IEEE Std 1003.1"-2008

(Revision of
IEEE Std 1003.1-2004)

The Open Group Technical Standard
Base Specifications, Issue 7

Standard for Information Technology—
Portable Operating System Interface (POSIX®)

Base Specifications, Issue 7

Sponsor

Portable Applications Standards Committee
of the

IEEE Computer Society

and

The Open Group

Approved 26 September 2008
IEEE-SA Standards Board

Approved 24 July 2008
The Open Group

@ I E E E tHE ()pen Group
® Making standards work®

Abstract

POSIX.1-2008 is simultaneously IEEE Std 1003.1"-2008 and The Open Group Technical Standard Base Specifications,
Issue 7.

POSIX.1-2008 defines a standard operating system interface and environment, including a command interpreter (or
“shell”), and common utility programs to support applications portability at the source code level. POSIX.1-2008 is
intended to be used by both application developers and system implementors and comprises four major components
(each in an associated volume):

o General terms, concepts, and interfaces common to all volumes of this standard, including utility conventions and
C-language header definitions, are included in the Base Definitions volume.

o Definitions for system service functions and subroutines, language-specific system services for the C
programming language, function issues, including portability, error handling, and error recovery, are included in
the System Interfaces volume.

o Definitions for a standard source code-level interface to command interpretation services (a “shell””) and common
utility programs for application programs are included in the Shell and Utilities volume.

. Extended rationale that did not fit well into the rest of the document structure, which contains historical
information concerning the contents of POSIX.1-2008 and why features were included or discarded by the
standard developers, is included in the Rationale (Informative) volume.

The following areas are outside the scope of POSIX.1-2008:

o Graphics interfaces

. Database management system interfaces

. Record I/O considerations

o Object or binary code portability

o System configuration and resource availability

POSIX.1-2008 describes the external characteristics and facilities that are of importance to application developers, rather
than the internal construction techniques employed to achieve these capabilities. Special emphasis is placed on those
functions and facilities that are needed in a wide variety of commercial applications.

Keywords

application program interface (API), argument, asynchronous, basic regular expression (BRE), batch job, batch system,
built-in utility, byte, child, command language interpreter, CPU, extended regular expression (ERE), FIFO, file access
control mechanism, input/output (I/0), job control, network, portable operating system interface (POSIX™), parent, shell,
stream, string, synchronous, system, thread, X/Open System Interface (XSI)

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

The Open Group
Thames Tower, Station Road, Reading, Berkshire, RG1 1LX, U.K.

Copyright © 2008 by the Institute of Electrical and Electronics Engineers, Inc. and The Open Group

All rights reserved.

Published 1 December 2008 by the IEEE. Printed in the United States of America by the IEEE.

PDF: ISBN 978-0-7381-5798-6 STD95820

CDROM: ISBN 978-0-7381-5799-3 STDCD95820

Published 1 December 2008 by The Open Group. Printed in the United Kingdom by The Open Group.
Doc. Number: C082

ISBN: 1-931624-79-8

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the
publisher. Permission to reproduce all or any part of this standard must be with the consent of both copyright holders and may be subject to a license
fee. Both copyright holders will need to be satisfied that the other has granted permission. Requests should be sent by email to
austin-group-permissions@opengroup.org.

This standard has been prepared by the Austin Group. Feedback relating to the material contained within this standard may be submitted by using the
Austin Group web site at www.opengroup.org/austin/defectform.htmi.

ii Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

http://www.opengroup.org/austin/defectform.html

IEEE

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the
IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus
development process, approved by the American National Standards Institute, which brings together volunteers
representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the
Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote
fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of
any of the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property, or other
damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly
resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims
any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or
that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied
“AS IS”.

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase,
market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint
expressed at the time a standard is approved and issued is subject to change brought about through developments in the
state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least
every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed,
it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the
art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services
for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or
entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a
competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate
action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason,
IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant
response to interpretation requests except in those cases where the matter has previously received formal consideration.
At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE Standards shall
make it clear that his or her views should be considered the personal views of that individual rather than the formal
position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation
with IEEE.” Suggestions for changes in documents should be in the form of a proposed change of text, together with
appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane

Piscataway, NJ 08854

USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of
Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To
arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood
Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for
educational classroom use can also be obtained through the Copyright Clearance Center.

A For this standard please send comments via the Austin Group, as indicated on page ii.

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. il

The Open Group

The Open Group is a vendor-neutral and technology-neutral consortium, whose vision of Boundaryless Information
Flow" will enable access to integrated information within and between enterprises based on open standards and global
interoperability. The Open Group works with customers, suppliers, consortia, and other standards bodies. Its role is to
capture, understand, and address current and emerging requirements, establish policies, and share best practices; to
facilitate interoperability, develop consensus, and evolve and integrate specifications and Open Source technologies; to
offer a comprehensive set of services to enhance the operational efficiency of consortia; and to operate the industry's
premier certification service, including UNIX" certification.

Further information on The Open Group is available at www.opengroup.org.

The Open Group has over 20 years' experience in developing and operating certification programs and has extensive
experience developing and facilitating industry adoption of test suites used to validate conformance to an open standard
or specification.

The Open Group publishes a wide range of technical documentation, the main part of which is focused on development
of Technical and Product Standards and Guides, but which also includes white papers, technical studies, branding and
testing documentation, and business titles. Full details and a catalog are available at www.opengroup.org/bookstore.

As with all live documents, Technical Standards and Specifications require revision to align with new developments and
associated international standards. To distinguish between revised specifications which are fully backwards compatible
and those which are not:

o A new Version indicates there is no change to the definitive information contained in the previous publication of
that title, but additions/extensions are included. As such, it replaces the previous publication.

o A new Issue indicates there is substantive change to the definitive information contained in the previous
publication of that title, and there may also be additions/extensions. As such, both previous and new documents
are maintained as current publications.

Readers should note that Corrigenda may apply to any publication. Corrigenda information is published at
www.opengroup.org/corrigenda.

iv Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

http://www.opengroup.org/
http://www.opengroup.org/bookstore
http://www.opengroup.org/corrigenda

Introduction

This introduction is not part of POSIX.1-2008, Standard for Information Technology — Portable Operating System
Interface (POSIX).

This standard was developed, and is maintained, by a joint working group of members of the IEEE Portable
Applications Standards Committee, members of The Open Group, and members of ISO/IEC Joint Technical
Committee 1. This joint working group is known as the Austin Group.”

The Austin Group arose out of discussions amongst the parties which started in early 1998, leading to an initial meeting
and formation of the group in September 1998. The purpose of the Austin Group is to develop and maintain the core
open systems interfaces that are the POSIX® 1003.1 (and former 1003.2) standards, ISO/IEC 9945, and the core of the
Single UNIX Specification.

The approach to specification development has been one of “write once, adopt everywhere”, with the deliverables being
a set of specifications that carry the IEEE POSIX designation, The Open Group's Technical Standard designation, and an
ISO/IEC designation.

This unique development has combined both the industry-led efforts and the formal standardization activities into a
single initiative, and included a wide spectrum of participants. The Austin Group continues as the maintenance body for
this document.

Anyone wishing to participate in the Austin Group should contact the chair with their request. There are no fees for
participation or membership. You may participate as an observer or as a contributor. You do not have to attend face-to-
face meetings to participate; electronic participation is most welcome. For more information on the Austin Group and
how to participate, see www.opengroup.org/austin.

Background

The developers of POSIX.1-2008 represent a cross-section of hardware manufacturers, vendors of operating systems and
other software development tools, software designers, consultants, academics, authors, applications programmers, and
others.

Conceptually, POSIX.1-2008 describes a set of fundamental services needed for the efficient construction of application
programs. Access to these services has been provided by defining an interface, using the C programming language, a
command interpreter, and common utility programs that establish standard semantics and syntax. Since this interface
enables application developers to write portable applications — it was developed with that goal in mind — it has been
designated POSIXC, an acronym for Portable Operating System Interface.

Although originated to refer to the original IEEE Std 1003.1-1988, the name POSIX more correctly refers to a family of
related standards: IEEE Std 1003.n and the parts of ISO/IEC 9945. In earlier editions of the IEEE standard, the term
POSIX was used as a synonym for IEEE Std 1003.1-1988. A preferred term, POSIX.1, emerged. This maintained the
advantages of readability of the symbol “POSIX” without being ambiguous with the POSIX family of standards.

Audience
The intended audience for POSIX.1-2008 is all persons concerned with an industry-wide standard operating system
based on the UNIX system. This includes at least four groups of people:

. Persons buying hardware and software systems

o Persons managing companies that are deciding on future corporate computing directions

. Persons implementing operating systems, and especially

. Persons developing applications where portability is an objective

B The Austin Group is named after the location of the inaugural meeting held at the IBM facility in Austin, Texas in September 1998.
€ The Name POSIX was suggested by Richard Stallman. It is expected to be pronounced pahz-icks, as in positive, not poh-six, or
other variations. The pronunciation has been published in an attempt to promulgate a standardized way of referring to a standard
operating system interface.

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. v

http://www.opengroup.org/austin

Purpose
Several principles guided the development of POSIX.1-2008:

vi

Application-Oriented — The basic goal was to promote portability of application programs across UNIX system

environments by developing a clear, consistent, and unambiguous standard for the interface specification of a

portable operating system based on the UNIX system documentation. POSIX.1-2008 codifies the common,

existing definition of the UNIX system.

Interface, Not Implementation — POSIX.1-2008 defines an interface, not an implementation. No distinction is

made between library functions and system calls; both are referred to as functions. No details of the

implementation of any function are given (although historical practice is sometimes indicated in the

RATIONALE section). Symbolic names are given for constants (such as signals and error numbers) rather than

numbers.

Source, Not Object, Portability — POSIX.1-2008 has been written so that a program written and translated for

execution on one conforming implementation may also be translated for execution on another conforming

implementation. POSIX.1-2008 does not guarantee that executable (object or binary) code will execute under a

different conforming implementation than that for which it was translated, even if the underlying hardware is

identical.

The C Language — The system interfaces and header definitions are written in terms of the standard C language

as specified in the ISO C standard.

No Superuser, No System Administration — There was no intention to specify all aspects of an operating system.

System administration facilities and functions are excluded from this standard, and functions usable only by the

superuser have not been included. Still, an implementation of the standard interface may also implement features

not in POSIX.1-2008. POSIX.1-2008 is also not concerned with hardware constraints or system maintenance.

Minimal Interface, Minimally Defined — In keeping with the historical design principles of the UNIX system, the

mandatory core facilities of POSIX.1-2008 have been kept as minimal as possible. Additional capabilities have

been added as optional extensions.

Broadly Implementable — The developers of POSIX.1-2008 endeavored to make all specified functions

implementable across a wide range of existing and potential systems, including:

— All of the current major systems that are ultimately derived from the original UNIX system code (Version 7
or later)

— Compatible systems that are not derived from the original UNIX system code

— Emulations hosted on entirely different operating systems

— Networked systems

— Distributed systems

— Systems running on a broad range of hardware

No direct references to this goal appear in POSIX.1-2008, but some results of it are mentioned in the Rationale
(Informative) volume.

Minimal Changes to Historical Implementations — When the original version — IEEE Std 1003.1-1988 — was
published, there were no known historical implementations that did not have to change. However, there was a
broad consensus on a set of functions, types, definitions, and concepts that formed an interface that was common
to most historical implementations.

The adoption of the 1988 and 1990 IEEE system interface standards, the 1992 IEEE shell and utilities standard,

the various Open Group (formerly X/Open) specifications, and IEEE Std 1003.1-2001 and its technical

corrigenda have consolidated this consensus, and this version reflects the significantly increased level of

consensus arrived at since the original versions. The authors of the original versions tried, as much as possible, to

follow the principles below when creating new specifications:

— By standardizing an interface like one in an historical implementation; for example, directories

— By specifying an interface that is readily implementable in terms of, and backwards-compatible with,
historical implementations, such as the extended far format defined in the pax utility

— By specifying an interface that, when added to an historical implementation, will not conflict with it; for
example, the sigaction() function

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

POSIX.1-2008 is specifically not a codification of a particular vendor's product.

It should be noted that implementations will have different kinds of extensions. Some will reflect “historical
usage” and will be preserved for execution of pre-existing applications. These functions should be considered
“obsolescent” and the standard functions used for new applications. Some extensions will represent functions
beyond the scope of POSIX.1-2008. These need to be used with careful management to be able to adapt to future
extensions of POSIX.1-2008 and/or port to implementations that provide these services in a different manner.
o Minimal Changes to Existing Application Code — A goal of POSIX.1-2008 was to minimize additional work for

application developers. However, because every known historical implementation will have to change at least
slightly to conform, some applications will have to change.

POSIX.1-2008
POSIX.1-2008 defines the Portable Operating System Interface (POSIX) requirements and consists of the following
topics arranged as a series of volumes within the standard:

. Base Definitions

o System Interfaces

. Shell and Utilities

o Rationale (Informative)

Base Definitions
The Base Definitions volume provides common definitions for this standard, therefore readers should be familiar with it
before using the other volumes.
This volume is structured as follows:
o Chapter 1 is an introduction.
o Chapter 2 defines the conformance requirements.
o Chapter 3 defines general terms used.
o Chapter 4 describes general concepts used.

o Chapter 5 describes the notation used to specify file input and output formats in this volume and the Shell and
Utilities volume.

o Chapter 6 describes the portable character set and the process of character set definition.

. Chapter 7 describes the syntax for defining internationalization locales as well as the POSIX locale provided on
all systems.

o Chapter 8 describes the use of environment variables for internationalization and other purposes.

o Chapter 9 describes the syntax of pattern matching using regular expressions employed by many utilities and
matched by the regcomp() and regexec() functions.

. Chapter 10 describes files and devices found on all systems.

. Chapter 11 describes the asynchronous terminal interface for many of the functions in the System Interfaces
volume and the s#zy utility in the Shell and Utilities volume.

. Chapter 12 describes the policies for command line argument construction and parsing.

o Chapter 13 defines the contents of headers which declare the functions and global variables, and define types,
constants, macros, and data structures that are needed by programs using the services provided by the System
Interfaces volume.

Comprehensive references are available in the index.

System Interfaces

The System Interfaces volume describes the interfaces offered to application programs by POSIX-conformant systems.
Readers are expected to be experienced C language programmers, and to be familiar with the Base Definitions volume.

This volume is structured as follows:
. Chapter 1 explains the status of this volume and its relationship to other formal standards.
o Chapter 2 contains important concepts, terms, and caveats relating to the rest of this volume.
o Chapter 3 defines the functional interfaces to the POSIX-conformant system.
Comprehensive references are available in the index.

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. vii

Shell and Utilities
The Shell and Utilities volume describes the commands and utilities offered to application programs on POSIX-
conformant systems. Readers are expected to be familiar with the Base Definitions volume.
This volume is structured as follows:
. Chapter 1 explains the status of this volume and its relationship to other formal standards. It also describes the
defaults used by the utility descriptions.
o Chapter 2 describes the command language used in POSIX-conformant systems, and special built-in utilities.
. Chapter 3 describes a set of services and utilities that are implemented on systems supporting the Batch
Environment Services and Utilities option.
o Chapter 4 consists of reference pages for all utilities, other than the special built-in utilities described in Chapter
2, available on POSIX-conformant systems.
Comprehensive references are available in the index.

Rationale (Informative)

The Rationale volume is published to assist in the process of review. It contains historical information concerning the
contents of this standard and why features were included or discarded by the standard developers. It also contains notes
of interest to application programmers on recommended programming practices, emphasizing the consequences of some
aspects of POSIX.1-2008 that may not be immediately apparent.

This volume is organized in parallel to the normative volumes of this standard, with a separate part for each of the three
normative volumes.

Within this volume, the following terms are used:

o Base standard — The portions of POSIX.1-2008 that are not optional, equivalent to the definitions of classic
POSIX.1 and POSIX.2.

. POSIX.0 — Although this term is not used in the normative text of POSIX.1-2008, it is used in this volume to
refer to IEEE Std 1003.0™-1995.

. POSIX.1b — Although this term is not used in the normative text of POSIX.1-2008, it is used in this volume to
refer to the elements of the POSIX Realtime Extension amendment. (This was earlier referred to as POSIX.4
during the standard development process.)

. POSIX.1c — Although this term is not used in the normative text of POSIX.1-2008, it is used in this volume to
refer to the POSIX Threads Extension amendment. (This was earlier referred to as POSIX.4a during the standard
development process.)

. Standard developers — The individuals and companies in the development organizations responsible for POSIX.1-
2008: the IEEE P1003.1 working groups, The Open Group Base working group, advised by the hundreds of
individual technical experts who balloted the draft standards within the Austin Group, and the member bodies
and technical experts of ISO/IEC JTC 1/SC 22.

. XSI option — The portions of POSIX.1-2008 addressing the extension added for support of the Single UNIX
Specification.

Typographical Conventions

The following typographical conventions are used throughout this standard. In the text, this standard is referred to as
POSIX.1-2008, which is technically identical to The Open Group Base Specifications, Issue 7.

The typographical conventions listed here are for ease of reading only. Editorial inconsistencies in the use of typography
are unintentional and have no normative meaning in POSIX.1-2008.

viii Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Reference Example Notes
C-Language Data Structure aiocb

C-Language Data Structure Member aio_lio_opcode

C-Language Data Type long

C-Language External Variable errno

C-Language Function system()

C-Language Function Argument arg

C-Language Function Family exec

C-Language Header <sys/stat.h>

C-Language Keyword return

C-Language Macro with Argument assert()

C-Language Macro with No Argument NET _ADDRSTRLEN

C-Language Preprocessing Directive #define

Commands within a Utility a, c

Conversion Specifier, Specifier/Modifier Character %A, g, E 1
Environment Variable PATH

Error Number [EINTR]

Example Output Hello, World

Filename /tmp

Literal Character 'c', '"\r'

Literal String "abcde"

Optional Items in Utility Syntax [1

Parameter <directory pathname>

Special Character <newline> 3
Symbolic Constant _POSIX VDISABLE

Symbolic Limit, Configuration Value {LINE MAX} 4
Syntax #include <sys/stat.h>
User Input and Example Code echo Hello, World 5
Utility Name awk

Utility Operand file_ name

Utility Option -c

Utility Option with Option-Argument -w width

Note that:

1. Conversion specifications, specifier characters, and modifier characters are used primarily in date-related
functions and utilities and the fprintf() and fscanf() formatting functions.

2. Unless otherwise noted, the quotes shall not be used as input or output. When used in a list item, the quotes are
omitted. The literal characters <apostrophe> (also known as single-quote) and <backslash> are either shown as
the C constants '\ ' and ' \\ ', respectively, or as the special characters <apostrophe>, single-quote, and
<backslash> depending on context.

3. The style selected for some of the special characters, such as <newline>, matches the form of the input given to
the localedef utility. Generally, the characters selected for this special treatment are those that are not visually
distinct, such as the control characters <tab> or <newline>.

4. Names surrounded by braces represent symbolic limits or configuration values which may be declared in

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

appropriate headers by means of the C #define construct.

ix

5. Brackets shown in this font, " [1", are part of the syntax and do not indicate optional items. In syntax the ' | '
symbol is used to separate alternatives, and ellipses (" . . . ") are used to show that additional arguments are
optional.

Shading is used to identify extensions and options.

Footnotes and notes within the body of the normative text are for information only (informative).

Informative sections (such as Rationale, Change History, Application Usage, and so on) are denoted by continuous
shading bars in the margins.

Ranges of values are indicated with parentheses or brackets as follows:

1. (a,b) means the range of all values from a to b, including neither a nor b.
2. [a,p] means the range of all values from a to b, including a and b.

3. [a,h) means the range of all values from a to b, including a, but not b.

4, (a,b] means the range of all values from a to b, including b, but not a.

Note: A symbolic limit beginning with POSIX is treated differently, depending on context. In a C-language header,
the symbol POSIXstring (where string may contain underscores) is represented by the C identifier
_POSIXstring, with a leading underscore required to prevent ISO C standard name space pollution. However,
in other contexts, such as languages other than C, the leading underscore is not used because this requirement
does not exist.

X Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Notice to Users

Laws and Regulations

Users of this document should consult all applicable laws and regulations. Compliance with the provisions of this
standard does not imply compliance to any applicable regulatory requirements. Implementers of the standard are
responsible for observing or referring to the applicable regulatory requirements. IEEE and The Open Group do not, by
the publication of standards, intend to urge action that is not in compliance with applicable laws, and these documents
may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE and The Open Group. It is made available for a wide variety of both public
and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation,
standardization, and the promotion of engineering practices and methods. By making this document available for use
and adoption by public authorities and private users, the IEEE and The Open Group do not waive any rights in copyright
to this document.

Updating of IEEE Documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the issuance of new
editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official
IEEE document at any point in time consists of the current edition of the document together with any amendments,
corrigenda, or errata then in effect. In order to determine whether a given document is the current edition and whether it
has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE Standards Association web
site at ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process, visit the IEEE-
SA web site at standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following web site:
standards.icee.org/reading/ieee/updates/errata. Users are encouraged to check this URL for errata periodically.

Feedback

POSIX.1-2008 has been prepared by the Austin Group. Feedback relating to the material contained in POSIX.1-2008
may be submitted using the Austin Group web site at www.opengroup.org/austin/defectform.html.

Interpretations
Current interpretations can be accessed at the following web site: standards.ieee.org/reading/ieee/interp.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by
patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent
rights in connection therewith. A patent holder or patent applicant has filed a statement of assurance that it will grant
licenses under these rights without compensation or under reasonable rates, with reasonable terms and conditions that
are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses. Other Essential Patent
Claims may exist for which a statement of assurance has not been received. The IEEE and The Open Group are not
responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the
legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions are reasonable or
non-discriminatory. Further information may be obtained from the IEEE Standards Association and The Open Group.

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xi

http://ieeexplore.ieee.org/xpl/standards.jsp
http://standards.ieee.org/
http://standards.ieee.org/reading/ieee/updates/errata/
http://www.opengroup.org/austin/defectform.html
http://standards.ieee.org/reading/ieee/interp/

Participants

The Austin Group

This standard was prepared by the Austin Group, sponsored by the Portable Applications Standards Committee of the
IEEE Computer Society, The Open Group, and ISO/IEC JTC 1/SC 22. At the time of approval, the membership of the

Austin Group was as follows:

Andrew Josey, Chair

Donald W. Cragun, Organizational Representative, [EEE PASC

Nicholas Stoughton, Organizational Representative, ISO/IEC JTC 1/SC 22
Mark S. Brown, Organizational Representative, The Open Group

Cathy Fox, Technical Editor

Austin Group Technical Reviewers

Theodore P. Baker
Eric Blake

Andries E. Brouwer
Mark S. Brown
David Butenhof
Geoff Clare

David N. Clissold
Donald W. Cragun

Lawrence D.K.B. Dwyer

Cynthia Eastham
Paul Eggert

Clive D.W. Feather
Glenn Fowler
Cathy Fox

Working Group Members

William J. Ackerman
Adewole Akpose
Butch Anton

Peter Anvin

Jay Ashford
Theodore P. Baker
Hugh Barrass
William Bartholomew
Andy Bihain

Eric Blake

Xie Bo

Tomo Bogataj
Walter Briscoe
Andries E. Brouwer
Mark S. Brown
David Butenhof
Juan Carreon

Danila Chernetsov

Xii

Hallvard B. Furuseth

Michael Gonzalez Harbour

Joseph M. Gwinn
Bruno Haible
Mark Harris
Andrew Josey
Michael Kerrisk
David Korn
Vincent Lefévre
Evan Liebovitch
Wojtek Lerch
Jens Maurer
Roland McGrath
Jim Meyering

Karen Gordon
Randall Groves
Scott Gudgel
Joseph M. Gwinn
Charles Hammons
Mark Harris
Barry Hedquist
Werner Hoelzl
David Hopwood
David P. Howell
James Isaak
Michael Jones
Jaimon C. Jose
Andrew Josey
Piotr Karocki

Sujit Madhavan Karataparambil

Michael Kerrisk

Alexey V. Khoroshilov

Stephen Michell
Matthew Rice
Joerg Schilling
Stephen Schwarm
Konrad A. Schwarz
Keld Simonsen
Nicholas Stoughton
Alexander Terekhov
William L. Toth
Fred Tydeman
Mats Wichmann
Garrett Wollman
James Youngman

Jose Puthenkulam
G.K. Rajani

Chet Ramey
Matthew Rice
Gunnar Ritter
Robert Robinson
Curtis Royster Jr.
Eusebio Rufian
Wolfgang Sanow
Bartien Sayogo
Nico Schottelius
Stephen Schwarm
Konrad A. Schwarz
Glen Seeds

M. Sekiguchi

Al Simons

Keld Simonsen
Antonio Soares

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

Base Specifications, Issue 7

Keith Chow

Jimmy Chun

Geoff Clare

Tommy Cooper
Jeffrey L. Copeland
Donald W. Cragun
Dragan S. Cvetkovic
Lee Damico

Juan A. de la Puente
David Dice

Thomas Dickey
Loic Domaigne
Steven J. Dovich
Ulrich Drepper
Sourav Dutta
Lawrence D.K.B. Dwyer
Paul Eggert

Daniel M. Eischen
Marc Emmelmann
Laura Fairhead
Joanna Farley

Clive D.W. Feather
John Fendrich
Yaacov Fenster
Andrew Fieldsend
Glenn Fowler

Cathy Fox

Jesus Fuente

Mark Funkenhauser
Michael Geipel
Michael Gonzalez Harbour

Akio Kido
William King
Klaus Klein
David Korn
Wayne Krone
Thomas Kurihara
Susan Land
Kenneth Lang
Shawn Leard
Solomon Lee
Fernando Lucas Rodriguez
William Lumpkins
Scott Lurndal
Lieven Marchand
Roger Marquis
Roger J. Martin
Jack Mccann
Mick Meaden
Jim Meyering
Gary Michel

Hai Ming Li
Wilhelm Mueller
Bruce Muschlitz
Erik Naggum
Gergely Nagy
Michael S. Newman
Liviu Nicoara
Robert Nordier
Peter Petrov
Frank Prindle
Vikram Punj

Alexander A. Sortov
Thomas Starai
Nicholas Stoughton
Ienup Sung

Alfred Mieczyslaw Szmidt
Alexander Terekhov
Donn Terry
Michael Thomadakis
John Thywissen
Leon Toh

William L. Toth
Miloslav Trmac
Fred Tydeman
Mark-Rene Uchida
Steve Valentine
Peter Van Der Veen
Fred Web

Tao Weijian

David Wexelblat
Mats Wichmann
Robert Wilkens
Martin Wille

Matt Wilson
Michael Wilson

Jim Wise

Song Wonchang
Shao A. Wu

Oren Yuen

Janusz Zalewski
Jim Zepeda

Jason Zions

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

xiii

The Open Group

When The Open Group approved the Base Specifications, Issue 7 on 24 July 2008, the membership of the Base Working

Group was as follows:

Andrew Josey, Chair

Mark S. Brown, Vice Chair and Austin Group Liaison
Cathy Fox, Technical Editor

Base Working Group Members

Basabi Bhattacharya Donald W. Cragun Robbin Kawabata
Mark S. Brown Ulrich Drepper Craig Mohrman
David Butenhof Lawrence D.K.B. Dwyer Nicholas Stoughton
April Chin Cynthia Eastham William L. Toth
Geoff Clare Roger Faulkner Kenjiro Tsuji

David N. Clissold Carol Fields Kevin Van Vechten
Xiv Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

Base Specifications, Issue 7

IEEE

When the IEEE Standards Board approved IEEE Std 1003.1-2008 on 26 September 2008, the membership of the

committees was as follows:

Portable Application Standards Committee (PASC)
Lowell G. Johnson, Chair

Joseph M. Gwinn, Vice Chair

Jay Ashford, Functional Chair (Balloting)

Andrew Josey, Functional Chair (Interpretations)
Curtis Royster Jr., Functional Chair (Logistics)
Nicholas Stoughton, Secretary

Balloting Committee

The following members of the individual balloting committee voted on this standard. Balloters may have voted for
approval, disapproval, or abstention.

William J. Ackerman

Adewole Akpose
Butch Anton

Jay Ashford

Hugh Barrass
Andy Bihain
Tomo Bogataj
Mark S. Brown
Juan Carreon
Danila Chernetsov
Keith Chow
Tommy Cooper
Donald W. Cragun
Ulrich Drepper
Souray Dutta
Marc Emmelmann
John Fendrich

Andrew Fieldsend
Michael Geipel
Randall Groves
Scott Gudgel
Joseph M. Gwinn
Charles Hammons
Michael Gonzalez Harbour
Barry Hedquist
Werner Hoelzl
Andrew Josey
Piotr Karocki
Thomas Kurihara
Susan Land
Kenneth Lang
Shawn Leard
William Lumpkins
Roger J. Martin

Gary Michel

Bruce Muschlitz
Michael S. Newman
Peter Petrov
Vikram Punj

Jose Puthenkulam
Robert Robinson
Fernando Lucas Rodriguez
Bartien Sayogo
Stephen Schwarm
Thomas Starai

John Thywissen
Mark-Rene Uchida
Robert Wilkens
Oren Yuen

Janusz Zalewski

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

XV

IEEE-SA Standards Board

When the IEEE-SA Standards Board approved this standard on 26 September 2008, it had the following membership:
Robert M. Grow, Chair

Tom A. Prevost, Vice Chair

Steve M. Mills, Past Chair

Judith Gorman, Secretary

Victor Berman James Hughes Chuck Powers

Richard DeBlasio Richard H. Hulett Narayanan Ramachandran
Andrew Drozd Young Kyun Kim Jon Walter Rosdahl

Mark Epstein Joseph L. Koepfinger * Anne-Marie Sahazizian
Alexander Gelman John Kulick Malcolm V. Thaden
William R. Goldbach David J. Law Howard L. Wolfman
Arnold M. Greenspan Glenn Parsons Don Wright

Kenneth S. Hanus Ronald C. Petersen

* Member Emitirus

Also included are the following non-voting IEEE-SA Standards Board liaisons:

Satish K. Aggarwal, NRC Representative

Michael H. Kelley, NIST Representative

Don Messina, IEEE Standards Program Manager, Document Development

Michael Kipness, IEEE Standards Program Manager, Technical Program Development

XVi Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Volume

Chapter

Chapter

Chapter

Base Specifications, Issue 7

Contents

1

1

1.1
1.2
1.3
14
1.5
1.6
1.7
1.7.1
1.7.2

2.1

2.1.1
2.1.2
213
214
2.15
2.1.6
2.2

221
222
223
224
225
2.3

24

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

Introduction
SCOPE ..o
Conformance..........coceeevveeeveeereeennen.
Normative References
Change Historyccccocoviinanes
Terminologycoeeeiiiiicnnes
Definitions and Concepts.............
Portability.......ccoooiiiiiiiiicnaes

COdeS e

Margin Code Notation

Conformance
Implementation Conformance....
Requirements.........cccccoevrveunnnnene.
Documentation......cc.cceevveenee...
POSIX Conformance..................
XSI Conformanceccoueeun....
Option Groups........ccceeveveueuenenee.
Options ...,
Application Conformance............

Definitions
Abortive Release........cccouveeueenne...
Absolute Pathname.......................
Access Modecouveeeeeeevecieeenenenen.

Base Definitions, Issue 7

Strictly Conforming POSIX Application..........cccccceeiiciiiiiccnnee

Conforming POSIX Application

Conforming POSIX Application Using Extensions.........................

Strictly Conforming XSI Application ...

Conforming XSI Application Using Extensions..........cccccccceuneeee.
Language-Dependent Services for the C Programming

Language.......cccovvveieinininiccinnnns

Other Language-Related Specifications...........cccceevvvninnnininnncnnnnes

Additional File Access Control MechaniSm........cooeveevveeveveeeeeneneennns

Address Space........ccccoeveerereinnen.
Advisory Information...................
Affirmative Response....................
J AN =S TSR
Alert Character (<alert>)..............
Alias Name........ccocoevveevrevreeenenennen.
Alignment ..o,

Alternate File Access Control MechaniSmcccceeveveeevvvveeveeveeeseieennns

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

p—

WO Ul W

33
33
33
33
33
33
34
34
34
34
34
35
35

XVii

XViii

3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
341
342
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.60
3.61
3.62
3.63
3.64

Contents

Alternate Signal Stack..........oooeviiiiiiiii 35
Ancillary Data........cocoovviiiiiii 35
Angle Brackets.........coiiieiiiiiiii 35
Apostrophe Character (<apostrophe>)........ccccocovvivnnnnnnnnnn 35
APPLCAtION.....oiiiiiii 35
Application Address.........cccovvviviniiiniiininnii 36
Application Program Interface (API)......ccccccovviivinininiinininen, 36
Appropriate Privileges ... 36
ATGUMENE ..o 36
AT (2 TAMET) 1ottt ettt 36
Asterisk Character (<asterisk>)ccoovvevieerieienniinereeeeeeeeene 36
Async-Cancel-Safe FUNCHON........coviiiiiiiiiic, 36
Asynchronous EVents.........cccccovinnnn 37
Asynchronous Input and Outputcccoevivivinnnn, 37
Async-Signal-Safe FUNCHON...........oooviiiiiiiii 37
Asynchronously-Generated Signal...........cccccoovvniinnnn, 37
Asynchronous I/O Completion...........ccccevvniiniiiniiinn, 37
Asynchronous I/O Operation..........ccocvievvninniiinnn, 37
Authentication ... 37
AUthOTIiZation ..o 38
Background JOb ... 38
Background Process.........cooeeueiieieieiniiiiiciciecec e 38
Background Process Group (or Background Job)..........ccccceevevevennnnns 38
Backquote Character ..., 38
Backslash Character (<backslash>)ccccocvoinnnininnininiiiene, 38
Backspace Character (<backspace>) ..., 38
BarTier ...c.ooovviiiiiiiii 39
Basename.........cccoooiiiiiiiii 39
Basic Regular Expression (BRE).........cccccoceiiiiiiiiiiiiiiiieicieiceennn, 39
Batch AcCess Listc.ceucueueiiiiiiiiiieicicciccieeeeeeeeeeee e 39
Batch Administratorccccccceueeieieeieeeeieeeeeeeeeeeeeeeeeeeanes 39
Batch CHENT....c.c.ouiiiiicicccecceceeeeeeee e 39
Batch Destinationc.ccceeeeeeieieieieiicieieieeeeeeeeeeeeeeeeneeeeeennes 40
Batch Destination Identifier...........cccccccceeeieieecenineeeeeeeeeeeeenes 40
Batch DIrective.......ccccueicieieiiiiiecieiciceiceeieeeeeeee e 40
BatCh JOD ..o 40
Batch Job AttribDULe....c.coviieeiieiiieie e 40
Batch Job Identifier........cceivieirieirieirierieeeeeeee e 40
Batch JOD INAME «...cueeveiiiiieiiieieee et 41
Batch JOD OWNETcouiiiiiieiiieiieee ettt 41
Batch JOb Priority ... 41
Batch JOD STAteccveveieiiieiiieiiee e 41
Batch Name Servicec.ccccccuiueueucirieicieieicieieieeeeeeeeieeeeeeneeeeeeennes 41
Batch Name Space.........cccovviviiiiniiiiiiiis 41
Batch INOEviiiiiiccccccccece e 42
Batch Operator........coivviiiiiiiiii s 42
BatCh QUEUEccuveeieiiiieieieeeeet ettt ees 42
Batch Queue AHIIDULE........ccccvivviieieieeeeeeceee e 42
Batch QUeue POSIHIONccecvieiiiiieicieteieteteieeeeee et 42
Batch Queue Priority ... 42
Batch Rerunability ... 43
Batch REStartcccceueueueieieieiiiieieieieiceeeieieeeeieeeee et 43

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Contents

Base Specifications, Issue 7

3.65 BatCh SEIVET ..ot 43
3.66 Batch Server Name.........cceiveirieinieirieireeeeeeee et 43
3.67 BatCh SEIVICEcivieeieieieieeeee e 43
3.68 Batch Service ReqUESt.........ccccvviiiiviviiiiiiiies 43
3.69 Batch SUDMISSION ...cveuvriiieiiieiiiecie et 43
3.70 Batch SyStem.......ccoviiiiiiiiiii s 44
3.71 Batch Target USerccocoiiieiiieiiciieiccic 44
3.72 BatCh USET .ottt 44
3.73 BANA ottt enen 44
3.74 Blank Character (<blank=>)........ccccoevererireiineniniieeieeieeeese e 44
3.75 BIanK LiNe....c.cvueirieirieieieieieeete ettt enan 44
3.76 Blocked Process (0r Thread)ccceoveveeeeirienenenenenenienienieeeeeene 44
3.77 BlOCKING ..ot 44
3.78 Block-Mode Terminalc.cccevevienienienieiiiininnencseneeeeeeee e 45
3.79 Block Special File.........ccccoiiiiiiiiiiiiiiiiiics 45
3.80 BIACES ..ottt st 45
3.81 BIacCKetS. ...couieieiieiieieeicei ettt 45
3.82 BroadCast ..c.ceoeeueeuiririnieies et 45
3.83 Built-In Utility (or Built-In)......c.cccceeeeiiiiiccicccceeeeeceeeees 46
3.84 BY e ettt 46
3.85 Byte Input/Output FUNCtions ... 46
3.86 Carriage-Return Character (<carriage-return>)cccocoevvivirnrnnnncn. 46
3.87 CRATACLET ..ttt st ettt 47
3.88 Character AITaYococovviviinininiii s 47
3.89 Character Class........coererierierienieieietetetete ettt 47
3.90 Character Set......co.eveieririiieieteeeetetete ettt 47
3.91 Character Special File ..o 47
3.92 Character String........cocovviiiii 47
3.93 Child ProCeSS ..c..eoveeierieriiniiieietetetetetetete ettt e 48
3.94 Circumflex Character (<Circumflexs)........ccoevverieerereneeeneenieereenenns 48
3.95 CLOCK ittt sttt 48
3.96 CLOCK JUMP .ot 48
3.97 ClOCK TICK ettt ettt ettt 48
3.98 Coded Character Setcocoererierienienieieieeeeeereseeese et 48
3.99 COAESEL .ttt sttt bttt 49
3.100 Collating Element............cooiiiiiiiiiieiie 49
3.101 COAtION ..ttt sttt 49
3.102 Collation SEqUENCE.........ccoviiiviiiiii s 49
3.103 Column POSIHON.cceiiriiriiierieieieeetee e 50
3.104 COMMANG.....iiiiiiiriiriieresteee ettt ettt ettt 50
3.105 Command Language Interpreter ..., 50
3.106 Composite Graphic Symbol..........cccccovviiiiiiiiii, 50
3.107 Condition Variablecoeveririenienieieieieeneeeeeeeese e 50
3.108 CoNNECted SOCKELveuirveeirieirieieieeeeee ettt 51
3.109 CONNECHION ..ttt ettt ettt sttt se st 51
3.110 ConNEction MOAE......couiviiriiriiniiieieteteteteee e 51
3.111 Connectionless MOdeco.evvevieieieniiieinieeeeereseee e 51
3.112 Control Character.......c.coevererieieieieeteeee et 51
3.113 Control OPerator ..o 51
3.114 Controlling Processcccvvviiviiiiniiiiiiins 51
3.115 Controlling Terminal ..o, 52
3.116 Conversion Descriptor ..o 52
Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Xix

XX

3.117
3.118
3.119
3.120
3.121
3.122
3.123
3.124
3.125
3.126
3.127
3.128
3.129
3.130
3.131
3.132
3.133
3.134
3.135
3.136
3.137
3.138
3.139
3.140
3.141
3.142
3.143
3.144
3.145
3.146
3.147
3.148
3.149
3.150
3.151
3.152
3.153
3.154
3.155
3.156
3.157
3.158
3.159
3.160
3.161
3.162
3.163
3.164
3.165
3.166
3.167
3.168

Contents

COTE File...e s 52
CPU Time (Execution Time)ccceceeveeirvereneneneneneneniesieieeeseeeeeene 52
CPU-TIME ClOCK ..ottt 52
CPU-TIme TIMeTccoviviiiiiiiiiii s 52
CUTTENT JOD .ttt sttt 52
Current Working Directory..........oovoeucueiiiicieieiiicieeceee 53
CUrsor POSItION ... 53
Datagrami.......ccooviiiiiiii 53
Data Segment..........c..coooieiiiiiiiiic s 53
Deferred Batch SEIVICe ..., 53
DEVICE .ooviiiiiiiiitiii s 53
Device ID ... 53
DAIECHOTY et 53
Directory Entry (or Link)ccccovvvniiiinniiiiii 53
Directory Streamccovvviiiiiininiiii 54
Disarm (@ TIMET) ..ccueeveruerieriiieieieetetetete ettt et 54
DIASPLAY ..o 54
Display LINe......cccoviiiiiiiiiiiiiii s 54
Dollar-Sign Character (<dollar-sign>)cccccocvvivvvniniiiinnnnenn, 54
DOt 54
DOt-DOt ..o 55
Double-Quote Character..........occeveeciereecieneeieeeesieeeesre e eee e eee s 55
DOWNSHIfHING ..o 55
DIIVET ..ot 55
Effective Group IDcccoovvviiiiiiiiiiniiicns 55
Effective USer ID ... 55
Eight-Bit Transparency ... 55
Empty Directory ..o 56
Empty LINe..coooiiic 56
Empty String (or Null String).........cccooeeiieiiiiiieiececee 56
Empty Wide-Character String ..o, 56
Encoding Rulecoiiiiiii 56
Entire Regular EXpression..........ccoeieieiiicicieiccec 56
EPOCH o 57
Equivalence Class..........cocovviiviiinininininiiiiiii s 57
EIa. s 57
Event Management..........cocoovviviniiiniinini s 57
Executable File.........cccccooviiiiiiiiiii 57
EXOCULe....ocoiiiiiiiiii 58
Execution TEme ... 58
Execution Time Monitoring.........cocoovvivirinivinininininiiiiis 58
EXpand......ccooiiii 58
Extended Regular Expression (ERE)cccccocovvnininnnnnnnnninnn, 58
Extended Security Controls...........cccoovivvininininnnnn 58
Feature Test MacTO ..o 59
Field ..o 59
FIFO Special File (Or FIFO)cccovvirirrirnirirrrieee s 59
FAle oo 59
File Descriptioncccocovviiinininiiiiii s 59
File DeSCIiptorocouviviviiiiiiii s 60
File Group Classccccovviiinininiiiiii s 60
File MOde.....c.ciiiiiiiiiiiiiiii s 60

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Contents

Base Specifications, Issue 7

3.169 File Mode BitScovvviviiiiiiiiiiciins 60
3.170 Filename ... 60
3.171 File OffSet ..o 60
3.172 File Other Class ..ot 61
3.173 File OWNer Classccccocuiiviniiiiiiiiiiicc s 61
3.174 File Permission Bits.........ccccooeiiiiiiiiiiiiniiiiiicccccces 61
3.175 File Serial NUmMDbeTrccccoviiiiiiiiiiiiice 61
3.176 File System ..o 61
3.177 File TYPE oo 61
3.178 FIIEET oo 62
3.179 First Open (Of @ File) ..o 62
3.180 FIOW CONELOL ... s 62
3.181 Foreground JOb ..o 62
3.182 Foreground Process ..ot 62
3.183 Foreground Process Group (or Foreground Job)........cccccccoevviniinnn 62
3.184 Foreground Process Group ID ... 62
3.185 Form-Feed Character (<form-feed>).....c.ccccoevrernennennenieenieeienenns 63
3.186 Graphic Character ... 63
3.187 Group Database..........ccocoevviiiiiniiiiiii s 63
3.188 Group ID....oiiii 63
3.189 Group NamMe ..o 63
3.190 Hard Limit......cccooviiiiiis 63
3.191 Hard LInK ..o 64
3.192 Home Directory ..ot 64
3.193 Host Byte Order ..o 64
3.194 Incomplete Line.......cccoovviiiiiiiiii 64
3.195 INfoiii e 64
3.196 Instrumented Application ... 64
3.197 Interactive Shell ... 64
3.198 Internationalization ... 65
3.199 Interprocess CommuNiCationccovvvivinininininininiiii 65
3.200 INVOKE .. 65
3.201 JOD o 65
3.202 JOD CONETOL .ttt 65
3.203 JOb Control JOb ID ..ot 65
3.204 Last Close (Of @ File).....coecivueirieieieieieieeeceee e 66
3.205 LANE ittt 66
3.206 LINGET oot 66
3.207 LANK ot 66
3.208 Link Count ..o 66
3.209 Local CUStOmS ..o 66
3.210 Local Interprocess Communication (Local IPC).........ccceevviiinnnnn. 66
3.211 Locale ..o 67
3.212 Localization.......cccociiiiiiiininiiiiiici 67
3.213 LOGIN oottt 67
3.214 Login NAmME ..ot 67
3.215 MAPD oot 67
3.216 Marked MESSAZEcceuevurueiieiiiiciicici e 67
3.217 MaAtCREd ... s 68
3.218 Memory Mapped Files ... 68
3.219 Memory ODbject ... 68
3.220 Memory-Resident..........cccocoviviviiiininiiii 68
Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xxi

XXii

3.221
3.222
3.223
3.224
3.225
3.226
3.227
3.228
3.229
3.230
3.231
3.232
3.233
3.234
3.235
3.236
3.237
3.238
3.239
3.240
3.241
3.242
3.243
3.244
3.245
3.246
3.247
3.248
3.249
3.250
3.251
3.252
3.253
3.254
3.255
3.256
3.257
3.258
3.259
3.260
3.261
3.262
3.263
3.264
3.265
3.266
3.267
3.268
3.269
3.270
3.271
3.272

Contents

MESSAZE ... s 68
Message Catalog.........ccoveueveiiiiiieiiic s 68
Message Catalog Descriptor..........cooccueiiiciciciiiciccc 69
Message QUELE. ...t 69
MOE ..o 69
MONOtONIC CLOCK ...ueei s 69
Mount PoINt ..o 69
Multi-Character Collating Element ..o, 69
IMUEEX vttt s 69
NAME ...t 70
Named STREAM ... 70
NaN (Not @ NUMDET) ...cveviieiiieieieieieeeeeceeseseese et 70
Native Languagecccoevvvirininiiiii s 70
Negative REeSPONSe......covviviiiiiiiiii s 70
NEtWOTIK ..o 70
Network Address.......coccviviiininiiiiiiiice 70
Network Byte Order ... 71
Newline Character (KNeWIiNe>)cccoceevererenenenenieneneneeeeeeeene 71
INICE VAlUE ..o 71
NON-BIOCKINGoeiiiiiiiie e 71
Non-Spacing Characters ... 71
INUL oo s 72
NULL BYE...coiviiiiiiiniicc s 72
INUIL POINEET ... s 72
INUILSEING o 72
Null Wide-Character Code ..o 72
Number-Sign Character (<number-sign>)cccocoevvnnnininnininne, 72
Object File......oiiiiiii 72
OCtt .o 72
Offset MaXilmUIN ...c.cvviirieeeieec s 73
Opaque AddIeSs. ..o 73
OPEN FIle ..o 73
Open File DeScription.........cccoiivviiiininiiicns 73
Operand........ccocovviiiniii 73
OPEIAtOr ... 73
OPHON oo 74
Option-ArguUMENtcoooviviiiiiieiec s 74
Orientationcccciiiiiiii 74
Orphaned Process Group.........ccocovvivivininininininininiiinns 74
Page ..o 74
Page Size ... 74
Parameter ... 75
Parent Directory ... 75
Parent Process ... 75
Parent Process ID ..o 75
Pathname.........ccooeiiiii 75
Pathname Component..........cccccoovviviviininininie 76
Path PrefiX ..o s 76
Pattern ... 76
Period Character (<period>) ... 76
PermiSSionscccviviiiiiiiiiiiiiii s 76
PersiStence. ... 76

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Contents

Base Specifications, Issue 7

3.273 PAPC..iiiiiii s 77
3.274 POIING ..o 77
3.275 Portable Character Setccoeevievieciereeeseeeeeee e 77
3.276 Portable Filename Character Set...........ccccevvevieneenieneenieeeeneeeeseeeeene 77
3.277 Positional Parameter............ccoveeevereecierieecieneeieeeesieseesre e seeeee e e seas 78
3.278 PrealloCationceceeieiieiiiciei ettt v et esb s ssesnens 78
3.279 Preempted Process (or Thread).........ccccoveiiviniiiiiiniiiiiiiccinn, 78
3.280 Previous JOD ...t 78
3.281 Printable Character.........ococeveecierieceeeeseeeeeee e 78
3.282 Printable Fileccioiiiiiieeiceeceeeeee et 78
3.283 PriOTItY oo 79
3.284 Priority Band........cccocooivinniiiii 79
3.285 Priority INVeTISIONc.coiiiiicicc 79
3.286 Priority SChedulingccoveviiiiniiiiiiicecc e 79
3.287 Priority-Based Schedulingcccooevviviiivininiiiiiicine, 79
3.288 Privilege.....ouoviieeiici s 79
3.289 PrOCESS ettt sttt et et 80
3.290 Process GIOUPccoviiviviiiiiinii s 80
3.291 Process Group ID ... 80
3.292 Process Group Leader..........cccovvviiiiiiiiiiiicccn, 80
3.293 Process Group Lifetime ..o, 80
3.294 ProCeSS IDoieiiieetee ettt st st 81
3.295 Process Lifetime........coocuiviivriiieiiieieieieieeeeeteete et sv e esesnens 81
3.296 Process Memory LOCKINgcccoovivivivinininininniiii 81
3.297 Process Termination........cceeecveeveerieenieenienieenee et 81
3.298 Process-To-Process Communicationcecceeeerverenienenenienieneeneeneene 81
3.299 Process VIrtual TIMEccvevvevveieieieieieeeeeeeeee ettt s e esesnens 82
3.300 PrOgramcocoviiiiiiiiiii s 82
3.301 o0 Yoo) RS S 82
3.302 Pseudo-Terminalccoceevevieviiieieieieieeeeeeee et sesnens 82
3.303 RadixX Character........cccocvevieeieiieieieeiereeeee ettt 82
3.304 Read-Only File System..........cccoceeveiiiiiiiiiiiiiiiiccceecs 82
3.305 Read-WIite LOCKcovieieiieieieeteieeteeee ettt 82
3.306 Real Group ID ... 83
3.307 REAL TIMIE ...couiieeeieeeeeeteee ettt st saesseenneas 83
3.308 Realtime Signal EXteNSIonccccueviiiiiiiiiiccc e 83
3.309 REAl USET ID ...eeieiieeeceeeeteteeeee ettt st ae e se s enseas 83
3.310 Tl o) 4 TSRS 83
3.311 REAITECHION .ttt ettt ettt ettt b et sb e ssessees 83
3.312 Redirection Operatorccccovviiviiiiiiiins 84
3.313 Referenced Shared Memory Object ..o 84
3.314 REfIESI ...ttt ettt bbb bbb ees 84
3.315 Regular EXPIeSSiONcoceueveiiricieiieicicie et 84
3.316 REZION ..ttt 84
3.317 Regular Filec.coiiiiii s 84
3.318 Relative PathnNamiecccccveviieiiiieieieeceeeeee e 85
3.319 Relocatable File........cooivviiieiiiieieicecee ettt 85
3.320 =3 oY= 5 (o) o TSRS 85
3.321 Requested Batch Service ..., 85
3.322 (Time) ReSOIUHIONcoueiiiiriiriiiieieceetet e 85
3.323 RODUSE MULEX....c.viieiiiieieieeieieeteieete et sse et seeesae e sse e eseeseesesssennens 85
3.324 ROOt DITECLOTY .oveviiiciiiiect e 85
Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xxiii

XXiV

3.325
3.326
3.327
3.328
3.329
3.330
3.331
3.332
3.333
3.334
3.335
3.336
3.337
3.338
3.339
3.340
3.341
3.342
3.343
3.344
3.345
3.346
3.347
3.348
3.349
3.350
3.351
3.352
3.353
3.354
3.355
3.356
3.357
3.358
3.359
3.360
3.361
3.362
3.363
3.364
3.365
3.366
3.367
3.368
3.369
3.370
3.371
3.372
3.373
3.374
3.375
3.376

Contents

Runnable Process (0r Thread)cccoceeevveirienirenininieeieeieeeeeieeen 85
Running Process (or Thread)..........cccccoeveiiiiiiniiiiiiiiciicccc, 86
Saved Resource Limits ..o 86
Saved Set-Group-ID ... 86
Saved Set-User-ID ..o 86
SChEAULING ..o 86
Scheduling Allocation Domaincccceceimeiiiniiieiceees 86
Scheduling Contention SCOPEccovuevrueirieiiriniiieiee e 86
Scheduling POLCYccoovueiiieiiieiceici 87
SCIEEIN ...ttt 87
SCIOML..oviiiiice e 87
SEMAPRNOLE......cvivivieiiicicee e 87
SESSION ...ttt 88
Session Leader ... 88
Session Lifetime........coovviiiiiiiiiiniiii 88
Shared Memory Object..........ccoovieiiiniiiiiiiiiiiicccees 88
Shell....oiiiiiiiiici s 88
SREIL, the cocuveiiiece e et 88
Shell SCIIPt......civiiiiiiiiiiiiceccc e 89
SIGNALL..ouiiiiiiiie s 89
SigNal StACKc.oveviiiiicieicc s 89
Single-Quote Character ... 89
Slash Character (<Slash>)........ccccevevievieieieieicieeeeeeeee s 89
SOCKEL ...ttt 89
Socket AAAIESScoviveveieiiiiiiicic e 89
SOft LIMit ..o 90
SOULCE COEovviiiiiieteee e 90
Space Character (KSPaCe™)......ccceveviveiereieiiieieieieeeeeee e 90
SPAWTL oottt 90
Special BUilt-In........ccovveiiiiiiiiiii 90
Special Parameter ... 91
SPIN LOCK ..ot 91
SPOTadiC SEIVET.....ocviviiieicieiicice e 91
Standard EITor ... 91
Standard INPuUt........ccoveieeiiiic 91
Standard Output ..o 91
Standard ULHESsccccoeveveieiiiiiiiiciicc 91
SH@AIMN ...ttt 92
STREAM ...t s 92
STREAM ENd......covviimiiiiiiiiiiiiiiic s 92
STREAM Headcooovuviviiiiiiiiiiiiic s 92
STREAMS MUltipleXor........cccooviiiiiiiiiiiiiiiiiieiicecceeeeeeees 92
SHING oo s 92
SUDShEIL....cooiiiiiiiiic e 93
Successfully Transferred ... 93
Supplementary Group ID ..., 93
Suspended JOb ... 93
Symbolic CONStANLcccviviiiiiiiiiici s 93
Symbolic LinKccccoiiiiiiiiiiiii s 94
Synchronized Input and Output..........cccceeveeeeiiiiiiciiiic, 94
Synchronized I/O Completion ... 94
Synchronized I/O Data Integrity Completion..........cccccovvvvviviinnnnnnn 94

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Contents

Base Specifications, Issue 7

3.377 Synchronized I/O File Integrity Completioncccoeovviviininnnnee. 94
3.378 Synchronized I/O Operation ..., 94
3.379 Synchronous I/O Operation..........ccccocvviivnniiiiiiiinn, 95
3.380 Synchronously-Generated Signalcccooovvnnnnnnnn, 95
3.381 SYSTEML. i 95
3.382 System BoOt.........coviiiiiiii 95
3.383 System ClocK.......coviiiiiiiiiii 95
3.384 System CONSOLEcovveviieiiiiiiieiciccice e 95
3.385 System Crash ... 95
3.386 System Databases...........ccccoeviveiiiiiiiiiici 96
3.387 System Documentationc.ceeeeeiiiiiiiiinis 96
3.388 SYStemM Process........couvviveviieieiiiiiiicicicieceee e 96
3.389 System RebOot ... 96
3.390 System Trace Event ... 96
3.391 System-Widecccouvviiriiiiiiiiiiccc e 96
3.392 Tab Character (KTaD>) ...coevirerieieieieieteeee e 97
3.393 Terminal (or Terminal Device)ccccceveeverereneninineneneneieeeeeeene 97
3.394 Text COUMD.......ciiiiiii s 97
3.395 Text File. ..o 97
3.396 Thread. ... 97
3.397 Thread ID ... 97
3.398 Thread Listcccooiiiiiiiiiicii 98
3.399 TRIEAA-SALE ... s 98
3.400 Thread-Specific Data Key........ccccovviiiiiiiiiiiiiicnn, 98
3.401 Tilde Character (<HIAe>)....ccevevierierieiiieirncreceeeeeeeeeeeene 98
3.402 TIMEOULS ..ot 98
3.403 TIMOT ot 98
3.404 TIMer OVEITUN ...t 98
3.405 TOKEMN ...ttt 99
3.406 Trace Analyzer Process.........ccovvviviviiininininininini 99
3.407 Trace Controller Process.........cooovviiiiiiiiiniiiin, 99
3.408 Trace Event ... 99
3.409 Trace EVent TYPe ... 99
3.410 Trace Event Type Mappingccccoeveeeiiveieiieninieciecceeecea 99
3.411 Trace Filterccoiiiiiiiiiiiiiciiccc 99
3.412 Trace Generation Version ... 99
3.413 TrACE LOZ ..eveveveeietctcetctc s 100
3.414 Trace PoiNt......ccoiiviiiiiiii 100
3.415 Trace Streami.........cccoviviiiiiiiiiiiiii s 100
3.416 Trace Stream Identifier ..., 100
3.417 Trace SYStemccovvviiiviiiiii 100
3.418 Traced Process.........cocoviniiiiiininiiiiii s 100
3.419 Tracing Status of a Trace Streamcccocoevveeiieiicciicciieces 100
3.420 Typed Memory Name Spacecccocovvvininininninninien 100
3.421 Typed Memory ODbject ..o 101
3.422 Typed Memory Pool ... 101
3.423 Typed Memory Port.......ccocooiiiiiniiiiii 101
3.424 UNbind ... 101
3.425 Unit Data ..o 101
3.426 UPSHIftingoovieiic 101
3.427 User Database..........ccooiuiiiniiiiiiiiiccc s 101
3.428 USEr ID .o 102
Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. XXV

XXVi

Chapter

Chapter
Chapter

3.429
3.430
3.431
3.432
3.433
3.434
3.435
3.436
3.437
3.438
3.439
3.440
3.441
3.442
3.443
3.444
3.445

4.1
42
4.3
44
4.5
4.6
4.7
4.8
49
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

4.19.1
4.19.2
4.19.3
4.20

4.21
4.22

6.1
6.2

Contents

User Name ..o s 102
User Trace Event.........ccooviiiiiiiiniiiincns 102
UHIEY oo 102
Variable ... 103
Vertical-Tab Character (<vertical-tab>).......ccccocervrerireninenrenieeiennns 103
WHite SPace.......ccccoviiiiiiiii 103
Wide-Character Code (C Language)cccovvvivvivinininiiiiinnnnnnnen, 103
Wide-Character Input/Output Functions..........ccccevvvivviininnnnnnn, 103
Wide-Character String..........ooceeveiiicieiiiic 103
WWOI ... 104
Working Directory (or Current Working Directory)cccoovenne. 104
Worldwide Portability Interfacecccooovvvviiviviiiinne, 104
WEIIEE o 104
XOL oo 104
XSI-CONfOIMANLceeeeii s 105
ZOMDIE PrOCESS.......oeeieiiiiieieir s 105
B0 s 105
General Concepts 107
Concurrent EXecution..........coccceoiiviiiininiiiniccccces 107
Directory Protection.........cooeeiiiiiiiiiccc 107
Extended Security Controls...........cccoovivinininnnnn 107
File Access Permissions..........cccocovivivivinininininininininiiiis 108
File Hierarchy ... 108
Filenames.........cccociiiiiiiiiii s 109
Filename Portability ..o 109
File Times Updateccccooviivininiiniiiiiiiii 109
Host and Network Byte Orders ..., 110
Measurement of Execution Time ..o, 110
Memory Synchronization ... 110
Pathname Resolution...........cccccvviviiiiiniiiinniiiiiccccces 111
Process ID Reuse ... 112
Scheduling POLCYccoovueiiieiiieiceiceic e 112
Seconds Since the Epochcccoeiiiiiiii 113
SEMAPRNOTLE......cviiiiiiiciee e 113
Thread-Safety ... 114
TrACING v 114
Treatment of Error Conditions for Mathematical
FUNCHONS ..o 116
Domain EITOT ..o 116
POle BITOT ... 117
Range BITOTcvoviiiiiiiecet s 117
Treatment of NaN Arguments for the Mathematical
FUNCHONS ..o 118
UHLEY oo 118
Variable Assignment............cooooiiiiiiiiiiiii 118
File Format Notation 121
Character Set 125
Portable Character Set ... 125
Character ENCOdiNgccoceviiumiiiiiiicieiccc 128

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Contents

6.3
6.4
6.4.1

Chapter 7
7.1
7.2
73
7.3.1
7.3.2
7.3.3
734
7.3.5
7.3.6
74
74.1
74.2

Chapter 8
8.1
8.2
8.3

Chapter 9
9.1
9.2
9.3
9.3.1

9.3.2
9.3.3
9.34
9.3.5
9.3.6
9.3.7
9.3.8
94

94.1

9.4.2
943
944
94.5
9.4.6
94.7
94.8
9.49
9.5

9.5.1
952
9.5.3

C Language Wide-Character Codes
Character Set Description File
State-Dependent Character Encodings............ccccoooeuriennnes

Locale
General
POSIX Locale
Locale Definition

LC_CTYPE ..ottt

LC_COLLATEc.iooteeteteeeeeteeeeeteeeeeveeee et e eneenean

LC_MONETARY ...ovoovvitiereeteeeeeteeeeereeeee et eere e eee e eveesees

LC_INUMERICcotiititeetreereeeeereeeeereete et eeeeveeseeneas

LC_TIME ..ottt ettt eaeaean

LC_MESSAGESoootiteeteeeteeeeeteeeeeteeeee et eae v

Locale Definition Grammar

Locale Lexical Conventions........c.cceceeeeveeeeeevieeeeeecreeeeeeneens

Locale Grammar.........ccoeevieeiieeieecieeceeecreeeee e eereesaeeneen

Environment Variables
Environment Variable Definition
Internationalization Variables
Other Environment Variables

Regular Expressions
Regular Expression Definitions
Regular Expression General Requirements
Basic Regular Expressions

BREs Matching a Single Character or Collating

Element ..o
BRE Ordinary Characters...........cocoevvviiviiiiiniiiinennnn,
BRE Special Characterscccocovvvvviiniiniiiiiiennnnnn,
Periods in BRES ...,
RE Bracket EXPression.........cooeeereiinecnccninicccncncncnenes
BREs Matching Multiple Characters.............cccocovviviniuninnnen.
BRE Precedence...........coooviiiiiiiiiiccccccccceene,
BRE Expression ANchoring.........c.ccccoveeioiiiciciiincnne,
Extended Regular Expressions

EREs Matching a Single Character or Collating

Element ...
ERE Ordinary Characters..........cooevvviiviviiiiniiienenennn,
ERE Special Characterscccocovvviriiniiniiinniinennnnnn,
Periods in ERES ...,
ERE Bracket EXpression ...,
EREs Matching Multiple Characters...........c.cccocovviviiunnnnnen.
ERE Alternation........cocveeiiiiciccicccccccccncncncncenes
ERE Precedence..........ccoooviiiiiiiiiicccccccccccceenes
ERE Expression ANchoring.........c.cccceeieieiiiiiciciincnnn,
Regular Expression Grammar
BRE/ERE Grammar Lexical Conventions..........cccceeueeue...
RE and Bracket Expression Grammar-..........cccceevvuernrnennnen.
ERE Grammarcccoceeeimemimieecncccccscscscsesesescscscscennns

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

XXVii

XXviii

Chapter

Chapter

Chapter

Chapter

Volume

Chapter

Chapter

10
10.1
10.2

11
11.1
11.1.1
11.1.2
11.1.3
11.1.4
11.1.5
11.1.6
11.1.7
11.1.8
11.1.9
11.1.10
11.1.11
11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.2.6

12
12.1
12.2

13

1.1
1.2

21
211
212
2.2
221
222
23
231
24
241
242
243
244

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

Contents

Directory Structure and Devices 197
Directory Structure and Files..........ccccoooviin, 197
Output Devices and Terminal Types........cccccovvvivvivninninninnninines 198

General Terminal Interface 199
Interface Characteristics........covvviiiiiiiiiiicc, 199

Opening a Terminal Device File.........cccooouoiiiiiiiiiice, 199
Process GIOUPScceuiuiuimeiiiiiiiitctcictctcscseiiesr s 200
The Controlling Terminal...........cocoeveiiiiiiiiiiiec e, 200
Terminal Access CONtrol ... 201
Input Processing and Reading Data..........ccoovrueiiiireieiiiiiiciine, 201
Canonical Mode Input Processing...........ccccevueueuiuiiicceninincnnnnnnen, 202
Non-Canonical Mode Input Processing.............cocoeueveveircienninnnnnnn 202
Writing Data and Output Processingc.cccoevvveveiiiiiniineninnn, 203
Special Characters..........cooveieiieiiriiiiccc s 203
Modem DiSCONNECEccveviviiiiiriiiiiiciiicicicccec e 205
Closing a Terminal Device File.........c.cccoooiiiiiiiii 205
Parameters that Canbe Set ..o, 205
The termios Structure ..., 205
INPut MOdes.....c.ouiimiiiiiic s 206
Output Modes........oouiimimiiiiiiiicrc s 207
Control MOdes.......couiuimimiiiiiiiiiiciiciicrci s 209
Local MOdes........ooiiimiiiiiciiciicn s 210
Special Control Characters..........ccccveieiiiiiciiiieenes 212

Utility Conventions 213
Utility Argument SyNtaX........cococvvvivivinininninne 213
Utility Syntax Guidelines...........cococovivivinininninnn, 215

Headers 219

System Interfaces, Issue 7 463

Introduction 465
Relationship to Other Formal Standards............cccccoveveiiiiiiinnnnn. 465
Format of ENtries.......cccooeviiiiiiiiiiiiiiicccccns 465

General Information 467
Use and Implementation of Interfaces...........ccccoevvivviiiiiinnnnnncn, 467

Use and Implementation of Functions..........cccccocovvvvviiiiniinnnnn 467
Use and Implementation of Macrosccccevivviviniiinnicninnnns 468
The Compilation Environmentcccocovvivvnnnnnnnnnnn, 468
POSIX.1 SYMDOIS.....coovimimiiiiiiiiiiitctiicictcrcc s 468
The Name SPpace. ... 469
Error NUMDeTS........coovviviiiiiii s 477
Additional Error NUmbers ..., 484
SigNal CoONCEPLSovvviviviiiiieieictce e 484
Signal Generation and Delivery ..., 484
Realtime Signal Generation and Deliverycccoooiiiiiiinne, 485
Signal ACHONS ..ottt 486
Signal Effects on Other FUNCHONS..........ccovvviiiiiviiiiiiiicns 490

Base Specifications, Issue 7

Contents

25
251

252
2.6
2.6.1
2.7
2.7.1
2.8
281
282
2.8.3
284
2.8.5
29
29.1
29.2
293
294
295
29.6
29.7
298
2.10
2.10.1
2.10.2
2.10.3
2104
2.10.5
2.10.6
2.10.7
2.10.8
2.10.9
2.10.10
2.10.11
2.10.12
2.10.13
2.10.14
2.10.15
2.10.16
2.10.17
2.10.18
2.10.19

2.10.20

211
2111
2.11.2
2113
212
2121

Standard I/ O SEEEAIMSoovveiieiiieeeeeeeeeeeeeee et 490
Interaction of File Descriptors and Standard 1I/0O
SEIEAMS ... 491
Stream Orientation and Encoding Rulescccooovvvviiiniiininnnns 493
STREAMS ...t 494
Accessing STREAMScooiiiiiiiic s 495
XSI Interprocess Communication ..o 496
IPC General Description ... 496
Realtime.......coouiiiiiiiiiiiii s 497
Realtime Signals ..o 497
Asynchronous I/ O ..o 497
Memory Managementcooeeeieiiiiriieiiiiinineieeas 499
Process Scheduling..........ccccovueirieiiieiiiciicic s 501
Clocks and TIMETS.......c.ccueueuemimimiiememeieieeiereieiereneee e sesenenenens 505
Threads ... 507
Thread-Safety ... 507
Thread IDS.......ccccviiiiiiiiii s 508
Thread MUtexes.........ccccoviiiiniiiiiiiicie 508
Thread Scheduling ... 509
Thread Cancellation...........ccccccviiiiiiiiiiiniiics 511
Thread Read-Write LOcKS........ccccoiiiiiiiiiiniiiiiiiccicees 515
Thread Interactions with Regular File Operations...........ccc..c..c..... 516
Use of Application-Managed Thread Stacks............cccoovvviviinnnn 516
SOCKELS ..o 517
Address Families.........ccocoviiiniiiiiininiiiiiiccccce 517
AdAIeSSING ...t 517
Protocolscccciiiiiiiiiii e 517
ROUHNG wvviiiiiiiiiiii s 518
INEETTACES ..ot 518
SOCKEt TYPES...vviviiiiririiciciitctctt s 518
SOCKEt I/ O IMOAE.....oiiiiiiiiieceeeeeeeeeee et 519
Socket OWNET ... 519
Socket QUEUE LiMItSc.ecceeeveeieiieieiieiesteeeesie et ve e 519
Pending EITOTccoviuiieiiiiiciecci s 519
Socket Receive QUEUE.........cc.ecveiieieiieieeeese et 520
Socket Out-of-Band Data State..........cccococeeeccccicicrcccccceenen. 520
Connection Indication QUEUEccevveveveieieeeiericieee e 521
SIGNAIS...vieiiiiiiiciic s 521
Asynchronous EITOIS ... 521
Use Of OPtiONS ..o s 522
Use of Sockets for Local UNIX Connections..........c.cccoevviviinnnnnen 525
Use of Sockets over Internet Protocols............cccocvuvvviviiiiiiicninnnnns 525
Use of Sockets over Internet Protocols Based on
IPVA ..ot 526
Use of Sockets over Internet Protocols Based on
IPVO oot 526
TrACING v 529
Tracing Data Definitionscccocoevvviiiiiiiiiniiiccinns 531
Trace Event Type Definitions..........cccccviiviviiiniiiniiiiiiiiiinns 535
Trace FUNCIONSc.civviviiiiiiiiiii 539
Data TYPES...cucueeieiciieetcec s 540
Defined TYPeSccvvimiiviiiiiiiic e 540

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. XXix

XXX

Chapter

Volume

Chapter

Chapter

Contents

2122 The char TYPe. ..o 541
2123 Pointer TYPESccovoveieiiiiieicicc 541
3 System Interfaces 543
3 Shell and Utilities, Issue 7 2277
1 Introduction 2279
1.1 Relationship to Other Documentsccccoeveiiiiiieiiineeen, 2279
1.1.1 System INterfaces..........cccoviiviiiiiniiiiis 2279
1.1.2 Concepts Derived from the ISO C Standardccccccvuviiriiiinnns 2283
1.2 Utility LIMItS ..o 2285
1.3 Grammar Conventions.........cccoovininininninnins 2287
1.4 Utility Description Defaults...........ccocooviviiininiiiiiiiinn, 2288
1.5 Considerations for Utilities in Support of Files of

ATDIIary SIZe....coovoiiiiiiiiii 2295
1.6 Built-In UHIHES ..o 2296
2 Shell Command Language 2297
2.1 Shell INtroduction...........ceeveieiiieiieiiii e 2297
22 QUOLING .. 2298
221 Escape Character (Backslash) ..., 2298
222 SINGLe-QUOLES......cocvieieiiiict 2298
223 DoUble-QUOLES......ccvereeieieeieeteeeeeeeee ettt 2298
2.3 Token RecoOgnition.........cocoviiiviiiniiiiiiiii s 2299
23.1 Alias SUbSHEUONcovviiiiiiiic 2300
24 Reserved WOords..........cceeeiiiiiiiiiice e 2301
2.5 Parameters and Variables...........ccccocoovinnnnnn 2301
251 Positional Parameters.........cocevieiiiiiciiicccccenes 2301
252 Special Parameters ..o 2302
253 Shell Variables..........ccviiiiiiiiiiiic s 2302
2.6 Word EXPansions ... 2305
2.6.1 Tilde EXPansion ... 2305
2.6.2 Parameter EXpansion..........ccoeeeiininieieeniieccec e 2306
2.6.3 Command Substitution ..., 2309
2.6.4 Arithmetic EXpansion........ccoceiiiiiiiiiiiiccccccceccnes 2310
2.6.5 Field SpIttng ..o 2311
2.6.6 Pathname EXpansion ... 2311
2.6.7 Quote REMOVAL......ccoieiicieieeieeeeeeee et 2311
2.7 Redirectioncoeviviieiiieiiicicicicicce 2312
27.1 Redirecting INputcovoviiiiii 2312
272 Redirecting Outputc.oooveiuiiiiiiii 2313
2.7.3 Appending Redirected Output.........ccooviiiiiiiiiiiiccne, 2313
2.7.4 Here-Document ... 2313
2.7.5 Duplicating an Input File DeScriptorcccooevvviiiiiiniiiiininns 2314
2.7.6 Duplicating an Output File Descriptor........c.ccoovviviiiniiniiininnns 2314
2.7.7 Open File Descriptors for Reading and Writing.............ccccoceuene.. 2315
2.8 Exit Status and EIrors ... 2315
2.8.1 Consequences of Shell ErTors ... 2315
2.8.2 Exit Status for Commandsccccevviiiiiiniiiiins 2315
29 Shell ComMMANASccoeviiiriiiiiiiieice e 2316

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

Base Specifications, Issue 7

Contents

29.1
29.2
293
294
295
2.10
2.10.1
2.10.2
2.11
212
2.13
2.13.1
2.13.2
2.13.3
2.14

Chapter 3
3.1
3.1.1
3.1.2
3.1.3
3.14
3.1.5
3.1.6
3.1.7
3.1.8
3.19
3.1.10
3.1.11
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.3.3

Chapter 4
Volume 4

Part A

Appendix A
Al
All
Al2
Al3
Al4
Al5

Simple Commands.........cocriimiiiiirii s 2316
PIPElINeScuovviiiriiicicicctct s 2318
LLSES vttt ettt ettt 2319
Compound Commands..........ccvreueiiiiiiiiiccnes 2321
Function Definition Commandccccecerueirieirerereneeerieeneeienenes 2324
Shell GrammMAT.........ccceevverieeieiieieieetesee e se et e e eae e eseseessesseessesssensens 2325
Shell Grammar Lexical Conventions..........ccceceevevererereeeneeeneeeneenenns 2325
Shell Grammar RUl€S.........ccveveviirieriieieiieereeeeeeee e 2325
Signals and Error Handling...........ccooeiiiiiiiiiic 2330
Shell Execution ENvironment............ccccecceeeeverenenencnenenenieneeneeenes 2331
Pattern Matching Notation..........cccccovvvvnininnn, 2332
Patterns Matching a Single Character..........ccccccocvviiniiiiiiininns 2332
Patterns Matching Multiple Characters..........ccccoeviiiniiinnnnnnen. 2332
Patterns Used for Filename Expansion..........ccccveviiiiiiiininnns 2333
Special Built-In Utilities.........ccccooeveviiiiiiiiiiiiea, 2334
Batch Environment Services 2375
General CoNCePts ... 2375
Batch Client-Server Interactionc.cccceceeveeerverenenenenienienieneeene 2375
Batch QUEUES ..ot
Batch JOb Creation........coccveeererierierienieteteeeeeeeese e
Batch Job Tracking.........ccovieieiiiiiciic
Batch Job ROUtING ..o
Batch Job EXECUION ..c..oouiriiniiiiiiiiieietcteetecec s
Batch JOb EXit...cooiiiiiiiiiriiieriereeeeetec e
Batch JOD ADOTt....cc.ciiiiiiiriinieierieeetetetee et
Batch AUthorization.........ccccueeieiieieriieicecee e
Batch AdminiStrationc.cccevveecierieeienieeseeeeeee e
Batch NOtfiCatiON.......ccccieieiieieieieeiet et eee
BatCh SEIVICEScvvevievieiieiieiiciecieiet ettt ettt ees
Batch JOb States.......cocceiririirierineieieecte e
Deferred Batch SEIviCeS.covvevieverieeerieeinieinieirieteeee e
Requested Batch Services
Common Behavior for Batch Environment Utilities.........c.ccccecvneeee. 2397
Batch Job Identifier........ccocecvvueirieieiieeieeieeie e 2397
DEStINALION ..eevvieeiiiiiiiiteetecteee ettt ettt e 2398
Multiple Keyword-Value Pairs..........cccocovivvviniininiiiinen 2399
Utilities 2401
Rationale (Informative), Issue 7 3407
Base Definitions....... 3409
Rationale for Base Definitions..... 3411
INEOAUCHON .. 3411
SCOPE vttt 3411
CONTOIMANCE.....ecvvirietietietietieteite sttt et et ess e e e ebeebeeresbesbesbe s essessesseses 3414
Normative REfEreNCeSccovveverieuerieirieiieeeieeieeseee e 3414
Change HiStory ... 3414
TerminolOgYccuvuiviuiuiiiiiiiiciciccc s 3414

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. XXX1

XXXii

Al6
Al7
A2

A21
A22
A23

A24
A3
A4
A4l
A42
A43
Ad4
AA45
A46
A47
A48
A49
A410
A4l
A412
A413
A4l4
A415
A4l6
A417
A418
A419

A4.20

A421
A422
A5
A6
A6l
A6.2
A6.3
Ab4
A7
A71
A72
A73
A74
A75
A8
A81
AS82
AS83
A9
A91

Contents

Definitions and COncepts.........ccocvvvviiiiiniiniicecnns 3416
POTtabilitycvovivieiiiiiiiicicicicc s 3416
CONfOIMANCE.......cviviiiniiici s 3417
Implementation Conformanceccocoevveiivininiinnininnienns 3417
Application Conformance............cccoeevviiiiiiiiiniis 3421
Language-Dependent Services for the C Programming
LangUageccooeviviiiiiiiiiiiiniiii s 3421
Other Language-Related Specifications..........c.cccccovvviviiiniiiniiincnnnns 3422
DEfiNItiONS ..c.ceeee s 3422
General CoNCePts ... 3443
Concurrent EXeCUtion........coveiiiiiiiiiiicccccccenes 3443
Directory Protection............ccoveveieiiiiiiiic 3444
Extended Security CONtrols........cccceeiiiiiiiiiccicccccccnen, 3444
File Access Permissions...........ccccveueueurmiueinniinincnineiccceeenessnnes 3444
File Hierarchy ..o 3444
Filenames.........cccocoviiiiiiiiniiiiiii 3445
Filename Portability ... 3446
File Times Updatecccoviiiiiniiiiiicccccccccnes 3446
Host and Network Byte Order ..., 3447
Measurement of Execution Timecccccovvvvviiiviniiiicin 3447
Memory Synchronization ..., 3447
Pathname Resolution..........cceviiiiiiiiiniiiiccccccccccnes 3449
Process ID ReUSEcoooveviieiieieicictccc 3450
Scheduling POLiCYccoovueiiiiiiieicec e 3450
Seconds Since the Epoch ..., 3450
SeMAPROTLE......cviviiiiiiiit s 3452
Thread-Safety ... 3452
TEACING ovoveeiietc s 3452
Treatment of Error Conditions for Mathematical
FUNCHONS ..o 3452
Treatment of NaN Arguments for Mathematical
FUNCHONS ..o 3452
LY v 3452
Variable ASSIZNMENt........ccccovviiiiiiiiiiiiiiiiicicc e 3452
File Format Notation ..o 3452
Character Set........cocovviviiiiiiii 3453
Portable Character Set ... 3453
Character ENCOdingcooeueiiiinieieiicicienc e 3454
C Language Wide-Character Codes.........c.ccccooouernininicinininicininn. 3454
Character Set Description File..........cccocooeiiiiiiiiiiiicccnen, 3454
Locale ... 3456
General........ooiiiiii 3456
POSIX LOCAlevviiiiiicicictcicittctcr s 3457
Locale Definition ..o 3457
Locale Definition Grammarc.ccceveiiiviiiiiniiiinnniienns 3464
Locale Definition Example.........cccccovuviiiiiniiniiiniiiicnns 3464
Environment Variables ..., 3467
Environment Variable Definition...........ccccoviviniiiiininnininnns 3467
Internationalization Variablesccooovviiniiniiiiiinns 3468
Other Environment Variables...........ccocoovvviiiiiniiiiins 3469
Regular EXPIeSSIONScoeueveiiricieiieicieie e 3470
Regular Expression Definitions..........cccocoevviiiiiviniiiiiiniiiiinnns 3471

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Contents

A92
A93
A94
A95
A0
A10.1
A10.2
All
All1l
Al112
Al12
Al12.1
Al122
A13
A131
A13.2

Part B

Appendix B

B.1
B.1.1
B.1.2
B.1.3
B.2
B.2.1
B.2.2
B.2.3
B24
B.2.5
B.2.6
B.2.7
B.2.8
B.2.9
B.2.10
B.2.11
B.2.12
B.3
B.3.1
B.3.2
B.3.3

Part C

Appendix C
Ci1
C1l1
C12
C13
Cl4
C.15

Regular Expression General Requirements............cccccoovvvrvinrunnnnnee.
Basic Regular EXPIessions ...,
Extended Regular EXpressions...........ccceeeruiicniriniiniencncncncnennens
Regular Expression Grammar..........cocoeeeuerevemienerenineeeneeneneenenenens
Directory Structure and Devices ..o,
Directory Structure and Files..........ccoooiiiiiiiiiiice,
Output Devices and Terminal Types.........cccccoveiiiiiiiinincninnnnen.
General Terminal Interface ..o,
Interface Characteristics.........cocovivviiniiiiiiiiiiiccas
Parameters that Canbe Set ...,
Utility CONVENtIONS......ccooviviiiiiiiii s
Utility Argument SyntaX........cococeevvvniiiiiiiniiiceeeceees
Utility Syntax Guidelines...........cccoovvvviviiiiiiiiiiiicicccccen,
Headers.......ooiiiiiiii
Format of ENtries.......cccocvviiiiiiiiiiiiicccnns
Removed Headers in ISSUe 7c.cooueuiieiiininiciniiccccccccenes

System Interfaces

Rationale for System Interfaces
INtroduction ...
Change HiStory ..o
Relationship to Other Formal Standards............cccocoevviiiinininnnns
Format of ENtries.......cccovviiiiiiiniiiiiccccas
General Information ...
Use and Implementation of Interfaces...........ccccocovuvvvviniviinnnnnn
The Compilation Environmentcccoccovviiiniiiiniiiiiicnnns
Error NUmMDbers.ooiiiiiiiicns
Signal Coneepts......cciiiviiuiiiiiicc s
Standard I/ O StrEAIMScovviveiiieiieeiieeeeeeeeee et
STREAMS ...t
X8I Interprocess Communicationcceeeeveieriiiiniereneineienne,
Realtimecouimimiiiiiciccc s
Threads ...

TEACING vt
Data TYPES...voveeeieiieictcec
System INterfaces.........ccccueueueueueueueieieieieieieieieieeeeeiee e
System Interfaces Removed in this Versioncccccocoecccccnnee
System Interfaces Removed in the Previous Version......................
Examples for Spawm........ccocvvviiiniiiniiias

Shell and Utilities

Rationale for Shell and Utilities
INtroduction ...
Change HiStoryccviiiiiiiiiciccccccccenes
Relationship to Other Documents ...
Utility LIMitS....cooviiiiiiiiiciic s
Grammar Conventions...........ccoeeeviviniiiiinininciinecenes
Utility Description Defaults...........cccooovvviiivininniiiin

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

3491

3493
3493
3493
3496
3496
3497
3497
3498
3503
3507
3517
3517
3518
3519
3564
3592
3594
3620
3622
3622
3625
3625

3635

3637
3637
3637
3638
3639
3642
3642

XXxiii

XXX1V

Part

Appendix

C.1l6

C17
C2
C21
C22
C23
C24
C25
C26
c27
C28
C29
C.2.10
c21
C212
C213
C214
C3
C31
C32
C3.3
C4
C41
C42
C4.3

D
D

D11
D.1.2
D.1.3
D.14
D.1.5

D.1.6

D.1.7

D.1.8

D.19

D.1.10
D.1.11
D.1.12
D.1.13
D.1.14
D.1.15
D.1.16
D.1.17
D.1.18
D.1.19

Contents

Considerations for Utilities in Support of Files

Of ATDItrary Size ... 3645
Built-In UHLIHEScoovviviiiiiiiiiccinnas 3646
Shell Command Languagecccocovvvivnnininininininiinne 3648
Shell INtroduction..........coeueiiiiiiiiininiiiiies 3648
QUOLING .ot 3648
Token RecOgNItioN..........cocuevrueiiviiiieiiece e 3650
Reserved Words.........ccccviiiiiiiiiiiicicccces 3651
Parameters and Variables............cccoviiiniini 3651
Word EXPansions ... 3654
Redirection ... 3660
Exit Status and EI1ors........ccviiiiiiiniiicccs 3662
Shell Commandsccoviuiiiiniiiiiiii s 3662
Shell GIrammar.........ccccviviniiiiiniiii s 3669
Signals and Error Handling..........cccceviiiiiiiiniciiiccc 3671
Shell Execution Environment...........cccccccoeviviviiinniiinnicnnns 3671
Pattern Matching Notation ..o 3671
Special Built-In Utilities.........cccoovreiiiinniiiicccccecccne, 3673
Batch Environment Services and Utilitiesc.ccccceeeeveeiciccnnnnns 3673
Batch General Concepts ..., 3676
Batch Services ..o 3678
Common Behavior for Batch Environment Utilities..............c.c..... 3679
UHHHES. ..o 3679
Utilities Removed in this Versionccccccveciinicicniiccneee, 3679
Utilities Removed in the Previous Version...........ccccoceeeiviiieninnn. 3679
Exclusion of UtIHEs........ccccoeiiiiiiiiiceccccceccceececeenenee 3679
Portability Considerations 3683
Portability Considerations (Informative) 3685
User ReqUirements..........cccooveveeiiiiiiciiieecceceec s 3685
Configuration Interrogationc.ccoevveivieiiiciniciccc 3686
Process Managementc.cvireiiiiniiiinnssns s 3686
Access to Data.......cociiiiii 3686
Access to the Environmentcccoeiiiniiinniiiens 3686
Access to Determinism and Performance
Enhancements..........cccccoviniiiiniiiiiiniiiccas 3686
Operating System-Dependent Profilecccccovviiiiiiiinnninns 3687
I/ O INEETACHON c.vveiviieeeieeee ettt et 3687
Internationalization Interactioncccvviiinniinniiiinnn 3687
C-Language EXtensions..........cccoieueueiiiicieiiicie s 3687
Command LanguUageccocueviiurieieiiiicienci 3687
Interactive Facilities ... 3687
Accomplish Multiple Tasks Simultaneously..........ccccevviirinnnnee. 3687
Complex Data Manipulation...........cceeiiiiiiiiiiicccne, 3688
File Hierarchy Manipulation..........cccccoooviiiiiiiiiiiccccnen, 3688
Locale Configurationccovviiiviviniiiiiiiniiciens 3688
Inter-User Communication..........cccccviiinininiiiinniiiicccens 3688
System ENvironment ... 3688
PrintiNg ..o 3688
Software Development ... 3688

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Contents

D.2
D.21
D.2.2
D.23
D24
D.2.5
D.2.6
D.2.7
D.2.8
D.29
D.2.10
D.2.11
D.2.12
D.2.13
D.2.14
D.2.15
D.2.16
D.2.17
D.2.18
D.2.19
D.2.20
D.3
D.3.1
D32
D.3.3
D.3.4
D.3.5
D.3.6

Part E

Appendix E

List of Figures

B-1
B-2
B-3
B-4
B-5
B-6

List of Tables

3-1
5-1
6-1
6-2

Portability Capabilities...........cccovvivivinininiiniii
Configuration Interrogationc..cooovevieiiicinicicc
Process Management ..o
ACCesS t0 Data......oovoveviii
Access to the Environment ...,
Bounded (Realtime) Response ...
Operating System-Dependent Profilecccccovvviiiiiiniinnns
I/ O INEETACHON c.eveiviiieeeeeeee ettt et
Internationalization Interaction ...,
C-Language EXteNSIiONS..........ccveuiuiuirimimiieieiiicnicccccnccessesvennnes
Command LanguUageccocueviiurieieiiiicience e
Interactive Facilities ...,
Accomplish Multiple Tasks Simultaneously..........c.ccooovrrrnnnnee.
Complex Data Manipulation..........c.ccoeeeeiiiiiiiiiicccne,
File Hierarchy Manipulation...........cccooveriiniiiiincccccnen,
Locale Configuration ..o
Inter-User CommuNication.........c.cceeureeeiiiieicceceeeccennens
System ENvironment ...
Printingc.ccovviviiiiiiiiiii s
Software Development ...
Future Growth ...,

Profiling Considerationscccoeiiviiiiinininn,
Configuration OPtions ...
Configuration Options (Shell and Utilities)cccoccevvviiiiiininnnas
Configurable LimitS.........cccocovviiiiiiiiiiiicas
Configuration Options (System Interfaces)..........cccocoevvviniiiininnnns
Configurable LimitS.........ccocovviiiiiiiniiiias
Optional Behavior ...

Subprofiling Considerations

Subprofiling Considerations (Informative)
Subprofiling Option Groups..........cccveiviiiviniiiiiies

Index

Example of a System with Typed Memoryccccooviviiiiiiinnas
Trace System Overview: for Offline Analysis........c.cccoevvvviiiiiiinnnns
Trace System Overview: for Online Analysiscccocoevvvniiiiinnnas
Trace System Overview: States of a Trace Streamccccocvvvvviiiinnns
Trace Another Process ...
Trace Name Space Overview: With Third-Party Library

Job Control Job ID FOrmats.........coceeverienienienieininenenenesesieieseeseeeeeene
Escape Sequences and Associated Actionsccoevveiriiicnicnnnnen.
Portable Character Setccoceveevierieeeeeeeeeeeeeee e
Control Character Stcocvevvereeeierieiecieeeeeee e eees

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

3711
3711

3717

3537
3600
3601
3603
3613
3614

66
121
125
130

XXXV

XXXVi

10-1
2-1

2-3
2-4

2-5
2-6

2-7
1-1
1-2

1-4

1-5

3-2
3-3

3-5
A-1

Contents

Valid Character Class Combinations...........ccccoeveiireiciiiccicnnnnen. 142
Control Character Names ..o 198
Value of Level for Socket Options..........cccocovvvviiiiviiiiiiiiiiiiiinnns 522
Socket-Level Options.........cocoviiiiiiiiiiicccccccccs s 523
Trace Option: System Trace Events..........ccocoviiiiiiiiciniccccne, 537
Trace and Trace Event Filter Options: System Trace

BVENES ..o 537
Trace and Trace Log Options: System Trace Events........cccccovrunnnenee. 538
Trace, Trace Log, and Trace Event Filter Options:

System Trace EVeNntsccccovviiiiiiiiiiicccccccccccces 538
Trace Option: User Trace Event.........cccoovviiiiiiiiiicicccce, 539
Actions when Creating a File that Already Exists.......ccccccccoviiiiiinnns 2281
Selected ISO C Standard Operators and Control Flow

KeyWOIds ... 2284
Utility Limit Minimum Values..........ccccoovriiiiiiiicccne, 2285
Symbolic Utility LImitsccoeovviviiiiiiiiiniiiicnes 2286
Regular Built-In Utlitiesccoovevrueiieiiieiccecee 2296
Batch Utilities. ... 2375
Environment Variable SUMmAryccccoovvvniiiiiiciiinns 2379
Next State Table ... 2381
Results /Output Table........ccoiiiiiiiiiiiiicciccceecceeeeeeeenenene 2383
Batch Services SUMMAIYccocviiiiiiiiicccccccees 2390
Historical Practice for Symbolic Links.........cccccoiiiiiiiiiiiiiiiinnns 3440

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Trademarks

The following information is given for the convenience of users of POSIX.1-2008 and does not
constitute an endorsement by the IEEE or The Open Group of these products. Equivalent
products may be used if they can be shown to lead to the same results.

There may be other products mentioned in the text that might be covered by trademark
protection and readers are advised to verify them independently.

754m™, 854™, 1003.0™, 1003.1™, 1003.1d™, 1003.1g™, 1003.1j™™, 1003.1q™, 1003.2™, 1003.2a™,
1003.2d™, 1003.9™, and 1003.13™ are trademarks of the Institute of Electrical and Electronic
Engineers, Inc.

AIX® is a registered trademark of IBM Corporation.
AT&T® is a registered trademark of AT&T in the USA and other countries.

Boundaryless Information Flow™ and TOGAF™ are trademarks and Motif®, Making Standards
Work®, OSF/1®, The Open Group®, UNIX®, and the “X” device are registered trademarks of
The Open Group in the United States and other countries.

BSD™ is a trademark of the University of California, Berkeley, USA.

Hewlett-Packard®, HP®, and HP-UX® are registered trademarks of Hewlett-Packard Company.
IBM® is a registered trademark of International Business Machines Corporation.

IEEE® is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.

®

Linux" is a registered trademark of Linus Torvalds.

POSIX® is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.

®

Sun® and Sun Microsystems® are registered trademarks of Sun Microsystems, Inc.

/usr/group® is a registered trademark of UniForum, the International Network of UNIX System
Users.

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. XXXVii

XXXViil

“ Acknowledgements

The contributions of the following organizations to the development of POSIX.1-2008 are
gratefully acknowledged:

o AT&T for permission to reproduce portions of its copyrighted System V Interface
Definition (SVID) and material from the UNIX System V Release 2.0 documentation.

« Hewlett-Packard Company, International Business Machines Corporation, Novell Inc., The
Open Software Foundation, and Sun Microsystems Inc. for permission to reproduce
portions of their copyrighted documentation

« ISO/IECJTC 1/SC 22/WG 14 C Language Committee
¢ Red Hat Inc. for permission to reproduce portions of its copyrighted documentation

POSIX.1-2008 was prepared by the Austin Group, a joint working group of the IEEE, The Open
Group, and ISO/IEC JTC 1/5C 22.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Referenced Documents

Normative References

Normative references for POSIX.1-2008 are defined in Section 1.3 (on page 4).

Informative References
The following documents are referenced in POSIX.1-2008:

1984 /usr/group Standard
/usr/group Standards Committee, Santa Clara, CA, UniForum 1984.

Almasi and Gottlieb
George S. Almasi and Allan Gottlieb, Highly Parallel Computing, The Benjamin/Cummings
Publishing Company, Inc., 1989, ISBN: 0-8053-0177-1.

ANSIC
American National Standard for Information Systems: Standard X3.159-1989, Programming
Language C.

ANSI X3.226-1994
American National Standard for Information Systems: Standard X3.226-1994, Programming
Language Common LISP.

Brawer
Steven Brawer, Introduction to Parallel Programming, Academic Press, 1989,
ISBN: 0-12-128470-0.

DeRemer and Pennello Article
DeRemer, Frank and Pennello, Thomas J., Efficient Computation of LALR(1) Look-Ahead Sets,
SigPlan Notices, Volume 15, No. 8, August 1979.

Draft ANSI X3J11.1
IEEE Floating Point draft report of ANSI X3]J11.1 (NCEG).

FIPS 151-1
Federal Information Procurement Standard (FIPS) 151-1. Portable Operating System
Interface (POSIX)—Part 1: System Application Program Interface (API) [C Language].

FIPS 151-2
Federal Information Procurement Standards (FIPS) 151-2, Portable Operating System
Interface (POSIX)— Part 1: System Application Program Interface (API) [C Language].

HP-UX Manual
Hewlett-Packard HP-UX Release 9.0 Reference Manual, Third Edition, August 1992.

IEC 60559: 1989
IEC 60559: 1989, Binary Floating-Point Arithmetic for Microprocessor Systems (previously
designated IEC 559:1989).

IEEE Standards Terms
IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. XXXIX

x1

Referenced Documents

IEEE Std 754™-1985
IEEE Std 754-1985 (Reaff 1990), IEEE Standard for Binary Floating-Point Arithmetic.

IEEE Std 854™-1987
IEEE Std 854-1987, IEEE Standard for Radix-Independent Floating-Point Arithmetic.

IEEE Std 1003.9m-1992
IEEE Std 1003.9-1992, IEEE Standard for Information Technology — POSIX FORTRAN 77
Language Interfaces — Part 1: Binding for System Application Program Interface APL

IETF RFC 791
Internet Protocol, Version 4 (IPv4), September 1981 (available at:
www.ietf.org/rfc/rfc0791.txt).

IETF RFC 819
The Domain Naming Convention for Internet User Applications, Z. Su,]. Postel, August
1982 (available at: www.ietf.org/rfc/rfc0819.txt).

IETF RFC 822
Standard for the Format of ARPA Internet Text Messages, D.H. Crocker, August 1982
(available at: www.ietf.org/rfc/rfc0822.txt).

IETF RFC 919
Broadcasting Internet Datagrams, J. Mogul, October 1984 (available at:
www.ietf.org/rfc/rfc0919.txt).

IETFE RFC 920
Domain Requirements, J. Postel,]. Reynolds, October 1984 (available at:
www.ietf.org/rfc/rfc0920.txt).

IETF RFC 921
Domain Name System Implementation Schedule, J. Postel, October 1984 (available at:
www.ietf.org/rfc/rfc0921.txt).

IETF RFC 922
Broadcasting Internet Datagrams in the Presence of Subnets, J. Mogul, October 1984
(available at: www.ietf.org/rfc/rfc0922.txt).

IETF RFC 1034
Domain Names — Concepts and Facilities, P. Mockapetris, November 1987 (available at:
www.ietf.org/rfc/rfc1034.txt).

IETF RFC 1035

Domain Names — Implementation and Specification, P. Mockapetris, November 1987
(available at: www.ietf.org/rfc/rfc1035.txt).
IETF RFC 1123

Requirements for Internet Hosts — Application and Support, R. Braden, October 1989
(available at: www.ietf.org/rfc/rfc1123.txt).

IETF RFC 1886
DNS Extensions to Support Internet Protocol, Version 6 (IPv6), C. Huitema, S. Thomson,
December 1995 (available at: www.ietf.org/rfc/rfc1886.txt).

IETF RFC 2045
Multipurpose Internet Mail Extensions (MIME), Part 1: Format of Internet Message Bodies,
N. Freed, N. Borenstein, November 1996 (available at: www.ietf.org/rfc/rfc2045.txt).

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Referenced Documents

IETF RFC 2181
Clarifications to the DNS Specification, R. Elz, R. Bush, July 1997 (available at:
www.ietf.org/rfc/rfc2181.txt).

IETF RFC 2373
Internet Protocol, Version 6 (IPv6) Addressing Architecture, S. Deering, R. Hinden, July 1998
(available at: www.ietf.org/rfc/rfc2373.txt).

IETF RFC 2460
Internet Protocol, Version 6 (IPv6), S. Deering, R. Hinden, December 1998 (available at:
www.ietf.org/rfc/rfc2460.txt).

Internationalisation Guide
Guide, July 1993, Internationalisation Guide, Version 2 (ISBN:1-859120-02-4, G304),
published by The Open Group.

ISO 2375:1985
ISO 2375:1985, Data Processing — Procedure for Registration of Escape Sequences.

ISO 8652: 1987
ISO 8652:1987, Programming Languages — Ada (technically identical to ANSI standard
1815A-1983).

ISO/IEC 1539: 1991
ISO/IEC 1539:1991, Information Technology — Programming Languages — Fortran
(technically identical to the ANSI X3.9-1978 standard [FORTRAN 77]).

ISO/IEC 4873:1991
ISO/IEC 4873:1991, Information Technology — ISO 8-bit Code for Information Interchange
— Structure and Rules for Implementation.

ISO/IEC 6429:1992
ISO/IEC 6429:1992, Information Technology — Control Functions for Coded Character
Sets.

ISO/IEC 6937:1994
ISO/IEC 6937:1994, Information Technology — Coded Graphic Character Set for Text
Communication — Latin Alphabet.

ISO/IEC 8802-3: 1996
ISO/IEC 8802-3:1996, Information Technology — Telecommunications and Information

Exchange Between Systems — Local and Metropolitan Area Networks — Specific
Requirements — Part 3: Carrier Sense Multiple Access with Collision Detection
(CSMA /CD) Access Method and Physical Layer Specifications.

ISO/IEC 8859

ISO/IEC 8859, Information Technology — 8-Bit Single-Byte Coded Graphic Character Sets:

Part 1: Latin Alphabet No. 1
Part 2: Latin Alphabet No. 2
Part 3: Latin Alphabet No. 3
Part 4: Latin Alphabet No. 4
Part 5: Latin/Cyrillic Alphabet
Part 6: Latin/ Arabic Alphabet
Part 7: Latin/Greek Alphabet
Part 8: Latin/Hebrew Alphabet
Part 9: Latin Alphabet No. 5
Part 10: Latin Alphabet No. 6
Part 11: Latin/Thai Alphabet

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xli

Referenced Documents

Part 13: Latin Alphabet No. 7

Part 14: Latin Alphabet No. 8 (Celtic)
Part 15: Latin Alphabet No. 9

Part 16: Latin Alphabet No. 10

ISO/IEC 9899: 1990
ISO/IEC 9899:1990, Programming Languages — C, including Amendment 1:1995 (E), C
Integrity (Multibyte Support Extensions (MSE) for ISO C).

ISO POSIX-1:1996
ISO/IEC 9945-1:1996, Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) [C Language] (identical to
ANSI/IEEE Std 1003.1-1996). Incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993,
1003.1¢-1995, and 1003.1i-1995.

ISO POSIX-2:1993
ISO/IEC 9945-2:1993, Information Technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities (identical to ANSI/IEEE Std 1003.2m-1992, as amended
by ANSI/IEEE Std 1003.2a™-1992).

Issue 1
X/Open Portability Guide, July 1985 (ISBN: 0-444-87839-4).

Issue 2
X/Open Portability Guide, January 1987:

e Volume 1: XVS Commands and Ultilities (ISBN: 0-444-70174-5)
 Volume 2: XVS System Calls and Libraries (ISBN: 0-444-70175-3)

Issue 3
X/Open Specification, 1988, 1989, February 1992:

« Commands and Utilities, Issue 3 (ISBN: 1-872630-36-7, C211); this specification was
formerly X/Open Portability Guide, Issue 3, Volume 1, January 1989, XSI Commands
and Utilities (ISBN: 0-13-685835-X, XO/XPG/89/002)

» System Interfaces and Headers, Issue 3 (ISBN: 1-872630-37-5, C212); this specification
was formerly X/Open Portability Guide, Issue 3, Volume 2, January 1989, XSI System
Interface and Headers (ISBN: 0-13-685843-0, XO/XPG/89/003)

e Curses Interface, Issue 3, contained in Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapters 9 to 14 inclusive; this specification was formerly
X/Open Portability Guide, Issue 3, Volume 3, January 1989, XSI Supplementary
Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004)

« Headers Interface, Issue 3, contained in Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapter 19, Cpio and Tar Headers; this specification was
formerly X/Open Portability Guide Issue 3, Volume 3, January 1989, XSI
Supplementary Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004)

Issue 4
CAE Specification, July 1992, published by The Open Group:

» System Interface Definitions (XBD), Issue 4 (ISBN: 1-872630-46-4, C204)
e Commands and Utilities (XCU), Issue 4 (ISBN: 1-872630-48-0, C203)
» System Interfaces and Headers (XSH), Issue 4 (ISBN: 1-872630-47-2, C202)

xlii Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Referenced Documents

Issue 4, Version 2
CAE Specification, August 1994, published by The Open Group:

 System Interface Definitions (XBD), Issue 4, Version 2 (ISBN: 1-85912-036-9, C434)
e Commands and Utilities (XCU), Issue 4, Version 2 (ISBN: 1-85912-034-2, C436)
» System Interfaces and Headers (XSH), Issue 4, Version 2 (ISBN: 1-85912-037-7, C435)

Issue 5
Technical Standard, February 1997, published by The Open Group:

» System Interface Definitions (XBD), Issue 5 (ISBN: 1-85912-186-1, C605)
e Commands and Utilities (XCU), Issue 5 (ISBN: 1-85912-191-8, C604)
» System Interfaces and Headers (XSH), Issue 5 (ISBN: 1-85912-181-0, C606)

Issue 6
Technical Standard, April 2004, published by The Open Group:

» Base Definitions (XBD), Issue 6 (ISBN: 1-931624-43-7, C046)
 System Interfaces (XSH), Issue 6 (ISBN: 1-931624-44-5, C047)
 Shell and Utilities (XCU), Issue 6 (ISBN: 1-931624-45-3, C048)

Knuth Article
Knuth, Donald E., On the Translation of Languages from Left to Right, Information and Control,
Volume 8, No. 6, October 1965.

KornShell
Bolsky, Morris I. and Korn, David G., The New KornShell Command and Programming
Language, March 1995, Prentice Hall.

MSE Working Draft
Working draft of ISO/IEC 9899:1990/Add3: Draft, Addendum 3 — Multibyte Support
Extensions (MSE) as documented in the ISO Working Paper SC22/WG14/N205 dated 31
March 1992.

POSIX.0:1995
IEEE Std 1003.0™-1995, IEEE Guide to the POSIX Open System Environment (OSE)
(identical to ISO/IEC TR 14252).

POSIX.1:1988
IEEE Std 1003.1™-1988, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) [C
Language].

POSIX.1: 1990
IEEE Std 1003.1™-1990, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) [C
Language].

POSIX.1a
P1003.1a, Standard for Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) — (C Language)
Amendment.

POSIX.1d: 1999
IEEE Std 1003.1d™-1999, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xliii

xliv

Referenced Documents

Amendment 4: Additional Realtime Extensions [C Language].

POSIX.1g: 2000
IEEE Std 1003.1g™-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 6: Protocol-Independent Interfaces (PII).

POSIX.1j: 2000
IEEE Std 1003.1j™-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 5: Advanced Realtime Extensions [C Language].

POSIX.1q: 2000
IEEE Std 1003.1q™-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 7: Tracing [C Language].

POSIX.2b
P1003.2b, Standard for Information Technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities — Amendment.

POSIX.2d: 1994
IEEE Std 1003.2d™-1994, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 2: Shell and Utilities — Amendment 1: Batch Environment.

POSIX.13:1998
IEEE Std 1003.13™-1998, IEEE Standard for Information Technology — Standardized
Application Environment Profile (AEP) — POSIX Realtime Application Support.

Sarwate Article
Sarwate, Dilip V., Computation of Cyclic Redundancy Checks via Table Lookup, Communications
of the ACM, Volume 30, No. 8, August 1988.

Sprunt, Sha, and Lehoczky
Sprunt, B., Sha, L., and Lehoczky, J.P., Aperiodic Task Scheduling for Hard Real-Time Systems,
The Journal of Real-Time Systems, Volume 1, 1989, Pages 27-60.

SVID, Issue 1
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
1; Morristown, NJ, UNIX Press, 1985.

SVID, Issue 2
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
2; Morristown, NJ, UNIX Press, 1986.

SVID, Issue 3
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
3; Morristown, NJ, UNIX Press, 1989.

The AWK Programming Language
Aho, Alfred V., Kernighan, Brian W., and Weinberger, Peter J., The AWK Programming
Language, Reading, MA, Addison-Wesley 1988.

UNIX Programmer’s Manual
American Telephone and Telegraph Company, UNIX Time-Sharing System: UNIX
Programmer’s Manual, 7th Edition, Murray Hill, NJ, Bell Telephone Laboratories, January
1979.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Referenced Documents

XNS, Issue 4
CAE Specification, August 1994, Networking Services, Issue 4 (ISBN: 1-85912-049-0, C438),
published by The Open Group.

XNS, Issue 5
CAE Specification, February 1997, Networking Services, Issue 5 (ISBN: 1-85912-165-9, C523),
published by The Open Group.

XNS, Issue 5.2
Technical Standard, January 2000, Networking Services (XNS), Issue 5.2
(ISBN: 1-85912-241-8, C808), published by The Open Group.

X/Open Curses, Issue 4, Version 2
CAE Specification, May 1996, X/Open Curses, Issue 4, Version 2 (ISBN:1-85912-171-3,
C610), published by The Open Group.

Yacc
Yacc: Yet Another Compiler Compiler, Stephen C. Johnson, 1978.
Source Documents
Parts of the following documents were used to create the base documents for POSIX.1-2008:

AIX 3.2 Manual
AIX Version 3.2 For RISC System /6000, Technical Reference: Base Operating System and
Extensions, 1990, 1992 (Part No. SC23-2382-00).

OSF/1
OSEF/1 Programmer’s Reference, Release 1.2 (ISBN: 0-13-020579-6).

OSF AES
Application Environment Specification (AES) Operating System Programming Interfaces
Volume, Revision A (ISBN: 0-13-043522-8).

System V Release 2.0
— UNIX System V Release 2.0 Programmer’s Reference Manual (April 1984 - Issue 2).
— UNIX System V Release 2.0 Programming Guide (April 1984 - Issue 2).

System V Release 4.2
Operating System API Reference, UNIX® SVR4.2 (1992) (ISBN: 0-13-017658-3).

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xlv

x1vi

Standard for Information Technology—
Portable Operating System Interface (POSIX®)

Technical Standard: Base Specifications, Issue 7

Prepared by the Austin Group (Wwww.opengroup.org/austin).

IMPORTANT NOTICE: This standard is not intended to assure safety, security, health, or
environmental protection in all circumstances. Implementors of the standard are responsible for
determining appropriate safety, security, environmental, and health practices or regulatory
requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers.
These notices and disclaimers appear in all publications containing this document and may be
found under the heading “Important Notice” or “Important Notices and Disclaimers
Concerning IEEE Documents”. They can also be obtained on request from IEEE or viewed at
http:/ /standards.ieee.org/IPR/disclaimers.html.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

http://www.opengroup.org/austin
http://standards.ieee.org/IPR/disclaimers.html

Technical Standard

Vol. 1:

Base Definitions, Issue 7

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

10
11

12

13
14
15

16
17
18
19

20
21
22

23
24
25
26

27

28

29

30

31

32

33
34
35
36

37

38
39

1.1

Chapter 1

Introduction

Scope

POSIX.1-2008 defines a standard operating system interface and environment, including a
command interpreter (or “shell”), and common utility programs to support applications
portability at the source code level. It is intended to be used by both application developers and
system implementors.

POSIX.1-2008 comprises four major components (each in an associated volume):

1.

General terms, concepts, and interfaces common to all volumes of POSIX.1-2008,
including utility conventions and C-language header definitions, are included in the Base
Definitions volume of POSIX.1-2008.

Definitions for system service functions and subroutines, language-specific system
services for the C programming language, function issues, including portability, error
handling, and error recovery, are included in the System Interfaces volume of
POSIX.1-2008.

Definitions for a standard source code-level interface to command interpretation services
(a “shell”) and common utility programs for application programs are included in the
Shell and Utilities volume of POSIX.1-2008.

Extended rationale that did not fit well into the rest of the document structure, containing
historical information concerning the contents of POSIX.1-2008 and why features were
included or discarded by the standard developers, is included in the Rationale
(Informative) volume of POSIX.1-2008.

The following areas are outside of the scope of POSIX.1-2008:

¢ Graphics interfaces

¢ Database management system interfaces

e Record I/0 considerations

¢ Object or binary code portability

 System configuration and resource availability

POSIX.1-2008 describes the external characteristics and facilities that are of importance to
application developers, rather than the internal construction techniques employed to achieve
these capabilities. Special emphasis is placed on those functions and facilities that are needed in
a wide variety of commercial applications.

The facilities provided in POSIX.1-2008 are drawn from the following base documents:
« IEEE Std 1003.1, 2004 Edition (POSIX-1) (incorporating IEEE Std 1003.1-2001,

IEEE Std 1003.1-2001/Cor 1-2002, and IEEE Std 1003.1-2001/Cor 2-2004)

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3

40

41

42

43

44
45
46

47
48

49
50

51
52

53

54

55
56

57

58
59

60

61

62

63
64
65
66
67
68

69
70
71

72
73
74

75
76

Scope

1.2

1.3

Introduction

¢ The Open Group Technical Standard, 2006, Extended API Set Part 1
¢ The Open Group Technical Standard, 2006, Extended API Set Part 2
¢ The Open Group Technical Standard, 2006, Extended API Set Part 3
¢ The Open Group Technical Standard, 2006, Extended API Set Part 4

e ISO/IEC 9899:1999, Programming Languages — C, including ISO/IEC
9899:1999/Cor.1: 2001(E), ISO/IEC 9899:1999/Cor.2: 2004(E), and ISO/IEC
9899:1999/Cor.3

Emphasis has been placed on standardizing existing practice for existing users, with changes
and additions limited to correcting deficiencies in the following areas:

« Issues raised by Austin Group defect reports, IEEE Interpretations against IEEE Std 1003.1,
and ISO/IEC defect reports against ISO/IEC 9945

o Issues raised in corrigenda for The Open Group Technical Standards and working group
resolutions from The Open Group

« Issues arising from ISO TR 24715: 2006, Contflicts between POSIX and the LSB
¢ Changes to make the text self-consistent with the additional material merged

o Features, marked Legacy or obsolescent in the base documents, have been considered for
removal in this version

A review and reorganization of the options within the standard

o Alignment with the ISO/IEC 9899:1999 standard, including ISO/IEC
9899: 1999/ Cor.2: 2004(E)

Conformance

Conformance requirements for POSIX.1-2008 are defined in Chapter 2 (on page 15).

Normative References

The following standards contain provisions which, through references in POSIX.1-2008,
constitute provisions of POSIX.1-2008. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to agreements based on POSIX.1-2008 are
encouraged to investigate the possibility of applying the most recent editions of the standards
listed below. Members of IEC and ISO maintain registers of currently valid International
Standards.

ANS X3.9-1978
(Reaffirmed 1989) American National Standard for Information Systems: Standard
X3.9-1978, Programming Language FORTRAN.!

ISO/IEC 646:1991
ISO/IEC 646:1991, Information Processing — ISO 7-Bit Coded Character Set for
Information Interchange.’

1. ANSI documents can be obtained from the Sales Department, American National Standards Institute, 1430 Broadway, New York, NY
10018, USA.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

77
78

79
80
81

82
83
84
85

86
87
88

89

90
91

92

93

94
95
96
97

98
99
100
101
102
103

104
105

106
107
108
109
110

111
112
113
114
115

116

Introduction Normative References

14

1.5

1SO 4217:2001
ISO 4217:2001, Codes for the Representation of Currencies and Funds.

ISO 8601: 2004
ISO 8601:2004, Data Elements and Interchange Formats — Information Interchange —
Representation of Dates and Times.

ISO C (1999)
ISO/IEC ~ 9899:1999, Programming Languages — C, including ISO/IEC
9899:1999/Cor.1: 2001(E), ISO/IEC 9899:1999/Cor.2: 2004(E), and ISO/IEC
9899:1999/Cor.3.

ISO/IEC 10646-1: 2000
ISO/IEC 10646-1:2000, Information Technology — Universal Multiple-Octet Coded
Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

Change History

Change history is described in the Rationale (Informative) volume of POSIX.1-2008, and in the
CHANGE HISTORY section of reference pages.

Terminology
For the purposes of POSIX.1-2008, the following terminology definitions apply:

can
Describes a permissible optional feature or behavior available to the user or application. The
feature or behavior is mandatory for an implementation that conforms to POSIX.1-2008. An
application can rely on the existence of the feature or behavior.

implementation-defined
Describes a value or behavior that is not defined by POSIX.1-2008 but is selected by an
implementor. The value or behavior may vary among implementations that conform to
POSIX.1-2008. An application should not rely on the existence of the value or behavior. An
application that relies on such a value or behavior cannot be assured to be portable across
conforming implementations.

The implementor shall document such a value or behavior so that it can be used correctly
by an application.

legacy
Describes a feature or behavior that is being retained for compatibility with older
applications, but which has limitations which make it inappropriate for developing portable
applications. New applications should use alternative means of obtaining equivalent
functionality.

may
Describes a feature or behavior that is optional for an implementation that conforms to
POSIX.1-2008. An application should not rely on the existence of the feature or behavior. An
application that relies on such a feature or behavior cannot be assured to be portable across
conforming implementations.

2.

ISO/IEC documents can be obtained from the ISO office: 1 Rue de Varembé, Case Postale 56, CH-1211, Genéve 20, Switzerland/Suisse

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 5

117

118
119
120

121

122
123
124
125
126

127
128

129
130
131

132
133
134
135

136
137
138

139
140
141
142

143

144

145

146
147
148

149
150
151

152
153
154
155
156

Terminology Introduction

1.6

1.7

To avoid ambiguity, the opposite of may is expressed as need not, instead of may not.

shall
For an implementation that conforms to POSIX.1-2008, describes a feature or behavior that
is mandatory. An application can rely on the existence of the feature or behavior.

For an application or user, describes a behavior that is mandatory.

should
For an implementation that conforms to POSIX.1-2008, describes a feature or behavior that
is recommended but not mandatory. An application should not rely on the existence of the
feature or behavior. An application that relies on such a feature or behavior cannot be
assured to be portable across conforming implementations.

For an application, describes a feature or behavior that is recommended programming
practice for optimum portability.

undefined
Describes the nature of a value or behavior not defined by POSIX.1-2008 which results from
use of an invalid program construct or invalid data input.

The value or behavior may vary among implementations that conform to POSIX.1-2008. An
application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be portable
across conforming implementations.

unspecified
Describes the nature of a value or behavior not specified by POSIX.1-2008 which results
from use of a valid program construct or valid data input.

The value or behavior may vary among implementations that conform to POSIX.1-2008. An
application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be portable
across conforming implementations.

Definitions and Concepts

Definitions and concepts are defined in Chapter 3 (on page 33) and Chapter 4 (on page 107).

Portability

Some of the utilities in the Shell and Utilities volume of POSIX.1-2008 and functions in the
System Interfaces volume of POSIX.1-2008 describe functionality that might not be fully portable
to systems meeting the requirements for POSIX conformance (see Chapter 2, on page 15).

Where optional, enhanced, or reduced functionality is specified, the text is shaded and a code in
the margin identifies the nature of the option, extension, or warning (see Section 1.7.1, on page
7). For maximum portability, an application should avoid such functionality.

Unless the primary task of a utility is to produce textual material on its standard output,
application developers should not rely on the format or content of any such material that may be
produced. Where the primary task is to provide such material, but the output format is
incompletely specified, the description is marked with the OF margin code and shading.
Application developers are warned not to expect that the output of such an interface on one

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

157

158

159

160
161
162

163
164
165

166
167

168
169
170

171
172

173
174
175

176
177
178

179
180
181

182
183
184

185
186
187
188
189

190
191

192
193

194
195
196

197
198

199

Introduction Portability

1.7.1

ADV

BE

CD

CPT

X

FD

FR

system is any guide to its behavior on another system.

Codes
The codes and their meanings are as follows. See also Section 1.7.2 (on page 13).

Advisory Information
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the ADV margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the ADV
margin legend.

Batch Environment Services and Utilities
The functionality described is optional.

Where applicable, utilities are marked with the BE margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the BE margin
legend.

C-Language Development Utilities
The functionality described is optional.

Where applicable, utilities are marked with the CD margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the CD margin
legend.

Process CPU-Time Clocks
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the CPT margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the CPT
margin legend.

Extension to the ISO C standard
The functionality described is an extension to the ISO C standard. Application developers may
make use of an extension as it is supported on all POSIX.1-2008-conforming systems.

With each function or header from the ISO C standard, a statement to the effect that “any
conflict is unintentional” is included. That is intended to refer to a direct conflict. POSIX.1-2008
acts in part as a profile of the ISO C standard, and it may choose to further constrain behaviors
allowed to vary by the ISO C standard. Such limitations and other compatible differences are not
considered conflicts, even if a CX mark is missing. The markings are for information only.

Where additional semantics apply to a function or header, the material is identified by use of the
CX margin legend.

FORTRAN Development Utilities
The functionality described is optional.

Where applicable, utilities are marked with the FD margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the FD margin
legend.

FORTRAN Runtime Utilities
The functionality described is optional.

Where applicable, utilities are marked with the FR margin legend in the SYNOPSIS section.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 7

200
201

202
203
204

205
206
207

208
209
210

211
212
213

214
215
216
217

218

219
220
221

222

223
224
225

226
227
228

229
230
231

232
233
234

235
236
237

238
239
240

241
242
243

244

Portability Introduction

FsC

1P6

MC1

ML

MLR

MON

MSG

Where additional semantics apply to a utility, the material is identified by use of the FR margin
legend.

File Synchronization
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the FSC margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the FSC
margin legend.

IPV6
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the IP6 margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the IP6
margin legend.

Non-Robust Mutex Priority Protection or Non-Robust Mutex Priority Inheritance or Robust
Mutex Priority Protection or Robust Mutex Priority Inheritance

The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

This is a shorthand notation for combinations of multiple option codes.

Where applicable, functions are marked with the MC1 margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MC1
margin legend.

Refer to Section 1.7.2 (on page 13).

Process Memory Locking
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the ML margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the ML
margin legend.

Range Memory Locking
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MLR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MLR
margin legend.

Monotonic Clock
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MON margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MON
margin legend.

Message Passing
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MSG margin legend in the SYNOPSIS section.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

245
246

247
248
249

250
251
252

253
254
255
256

257

258
259
260
261

262

263
264
265

266
267
268

269
270

271
272
273

274
275
276

277
278
279

280
281
282

283
284
285

286
287
288

Introduction Portability

MX

OB

OF

OH

OH

PIO

PS

RPI

Where additional semantics apply to a function, the material is identified by use of the MSG
margin legend.

IEC 60559 Floating-Point
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MX margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MX
margin legend.

Obsolescent

The functionality described may be removed in a future version of this volume of POSIX.1-2008.
Strictly Conforming POSIX Applications and Strictly Conforming XSI Applications shall not use
obsolescent features.

Where applicable, the material is identified by use of the OB margin legend.

Output Format Incompletely Specified

The functionality described is an XSI extension. The format of the output produced by the
utility is not fully specified. It is therefore not possible to post-process this output in a consistent
fashion. Typical problems include unknown length of strings and unspecified field delimiters.

Where applicable, the material is identified by use of the OF margin legend.

Optional Header
In the SYNOPSIS section of some interfaces in the System Interfaces volume of POSIX.1-2008 an
included header is marked as in the following example:

#include <sys/types.h>
#include <grp.h>
struct group *getgrnam(const char *name);

The OH margin legend indicates that the marked header is not required on XSI-conformant
systems.

Prioritized Input and Output
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the PIO margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the PIO
margin legend.

Process Scheduling
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the PS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the PS
margin legend.

Robust Mutex Priority Inheritance
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the RPI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the RPI
margin legend.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 9

289
290
291

292
293
294

295
296
297

298
299
300

301
302

303
304
305

306
307
308

309
310
311

312
313
314

315
316
317

318
319
320

321
322
323

324
325
326

327
328
329

330
331
332

333

Portability Introduction

RPP

RS

SD

SHM

SIO

SPN

SS

TCT

10

Robust Mutex Priority Protection
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the RPP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the RPP
margin legend.

Raw Sockets
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the RS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the RS
margin legend.

Software Development Utilities
The functionality described is optional.

Where applicable, utilities are marked with the SD margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the SD margin
legend.

Shared Memory Objects
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SHM margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SHM
margin legend.

Synchronized Input and Output
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SIO margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SIO
margin legend.

Spawn
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SPN margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SPN
margin legend.

Process Sporadic Server
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SS
margin legend.

Thread CPU-Time Clocks
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TCT margin legend in the SYNOPSIS section.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

334
335

336
337
338

339
340
341

342
343
344

345
346
347

348
349
350

351
352
353

354
355
356

357
358
359

360
361
362

363
364
365

366
367
368

369
370
371

372
373
374

375
376
377

Introduction Portability

TEF

TPI

TPP

TPS

TRC

TRI

TRL

Where additional semantics apply to a function, the material is identified by use of the TCT
margin legend.

Trace Event Filter
The functionality described is optional. This functionality is dependent on support for the Trace
option. The functionality described is also an extension to the ISO C standard.

Where applicable, functions are marked with the TEF margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TEF
margin legend.

Non-Robust Mutex Priority Inheritance
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPI
margin legend.

Non-Robust Mutex Priority Protection
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPP
margin legend.

Thread Execution Scheduling
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPS margin legend for the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPS
margin legend.

Trace
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TRC margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRC
margin legend.

Trace Inherit
The functionality described is optional. This functionality is dependent on support for the Trace
option. The functionality described is also an extension to the ISO C standard.

Where applicable, functions are marked with the TRI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRI
margin legend.

Trace Log
The functionality described is optional. This functionality is dependent on support for the Trace
option. The functionality described is also an extension to the ISO C standard.

Where applicable, functions are marked with the TRL margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRL
margin legend.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 11

378
379
380

381
382
383

384
385
386

387
388
389

390
391
392

393
394
395

396
397
398

399
400
401

402
403
404

405
406
407

408
409

410
411
412

413
414
415

416
417
418

419
420
421
422

Portability Introduction

TSA

TSH

TSP

TSS

TYM

ur

uu

X8I

12

Thread Stack Address Attribute
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSA margin legend for the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSA
margin legend.

Thread Process-Shared Synchronization
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSH margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSH
margin legend.

Thread Sporadic Server
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSP
margin legend.

Thread Stack Size Attribute
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSS
margin legend.

Typed Memory Objects
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TYM margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TYM
margin legend.

User Portability Utilities
The functionality described is optional.

Where applicable, utilities are marked with the UP margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the UP margin
legend.

UUCP Utilities
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the UU margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the UU
margin legend.

X/Open System Interfaces

The functionality described is part of the X/Open Systems Interfaces option. Functionality
marked XSI is an extension to the ISO C standard. Application developers may confidently
make use of such extensions on all systems supporting the X/Open System Interfaces option.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

423
424

425
426
427

428
429
430

431

432

433

434

435

436

437

438
439
440

441

442

443
444
445

446

447

448
449
450
451

452

453
454

455
456
457

Introduction Portability

XSR

1.7.2

SHM

SHM TYM

SHMITYM

MC1

XSI

If an entire SYNOPSIS section is shaded and marked XSI, all the functionality described in that
reference page is an extension. See Section 2.1.4 (on page 19).

XSI STREAMS
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the XSR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the XSR
margin legend.

Margin Code Notation

Some of the functionality described in POSIX.1-2008 depends on support of more than one
option, or independently may depend on several options. The following notation for margin
codes is used to denote the following cases.

A Feature Dependent on One or Two Options

In this case, margin codes have a <space> separator; for example:

This feature requires support for only the Shared Memory Objects option.

This feature requires support for both the Shared Memory Objects option and the Typed
Memory Objects option; that is, an application which uses this feature is portable only between
implementations that provide both options.

A Feature Dependent on Either of the Options Denoted

In this case, margin codes have a ’ | separator to denote the logical OR; for example:

This feature is dependent on support for either the Shared Memory Objects option or the Typed
Memory Objects option; that is, an application which uses this feature is portable between
implementations that provide any (or all) of the options.

A Feature Dependent on More than Two Options
The following shorthand notations are used:

The MC1 margin code is shorthand for TPP | TPI| RPP | RPI. Features which are shaded with this
margin code require support of either the Non-Robust Mutex Priority Protection option or the
Non-Robust Mutex Priority Inheritance option or the Robust Mutex Priority Protection option or
the Robust Mutex Priority Inheritance option.

Large Sections Dependent on an Option

Where large sections of text are dependent on support for an option, a lead-in text block is
provided and shaded accordingly; for example:

This section describes extensions to support interprocess communication. The functionality
described in this section shall be provided on implementations that support the XSI option (and
the rest of this section is not further shaded).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 13

14

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

Introduction

Vol. 1: Base Definitions, Issue 7

458

459

460

461
462

463

464

465
466
467

468
469

470
471
472

473
474

475

476

477

478

479

480

481

482
483

484

485
486

487
488
489
490
491

2.1

2.1.1

Chapter 2

Conformance

Implementation Conformance

For the purposes of POSIX.1-2008, the implementation conformance requirements given in this
section apply.

Requirements

A conforming implementation shall meet all of the following criteria:

1.

The system shall support all utilities, functions, and facilities defined within
POSIX.1-2008 that are required for POSIX conformance (see Section 2.1.3, on page 16).
These interfaces shall support the functional behavior described herein.

The system may support the X/Open System Interfaces (XSI) option as described in
Section 2.1.4 (on page 19).

The system may support one or more options as described under Section 2.1.5 (on page
20). When an implementation claims that an option is supported, all of its constituent
parts shall be provided.

The system may provide non-standard extensions. These are features not required by
POSIX.1-2008 and may include, but are not limited to:

— Additional functions

— Additional headers

— Additional symbols in standard headers
— Additional utilities

— Additional options for standard utilities
— Additional environment variables

— Additional file types

— Non-conforming file systems (for example, legacy file systems for which
_POSIX_NO_TRUNC is false, case-insensitive file systems, or network file systems)

— Dynamically populated file systems (for example, /proc)

— Additional character special files with special properties (for example, /dev/stdin,
/dev/stdout, and /dev/stderr)

Non-standard extensions of the utilities, functions, or facilities specified in POSIX.1-2008
should be identified as such in the system documentation. Non-standard extensions,
when used, may change the behavior of utilities, functions, or facilities defined by
POSIX.1-2008. The conformance document shall define an environment in which an
application can be run with the behavior specified by POSIX.1-2008. In no case shall such

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 15

492
493

494

495
496
497
498
499
500

501
502
503
504
505

506
507
508

509
510
511
512
513
514

515
516
517

518
519
520

521
522
523
524

525
526

527

528

Implementation Conformance Conformance

2.1.2

2.1.3

16

an environment require modification of a Strictly Conforming POSIX Application (see
Section 2.2.1, on page 29).

Documentation

A conformance document with the following information shall be available for an
implementation claiming conformance to POSIX.1-2008. The conformance document shall have
the same structure as POSIX.1-2008, with the information presented in the appropriate sections
and subsections. Sections and subsections that consist solely of subordinate section titles, with
no other information, are not required. The conformance document shall not contain
information about extended facilities or capabilities outside the scope of POSIX.1-2008.

The conformance document shall contain a statement that indicates the full name, number, and
date of the standard that applies. The conformance document may also list international
software standards that are available for use by a Conforming POSIX Application. Applicable
characteristics where documentation is required by one of these standards, or by standards of
government bodies, may also be included.

The conformance document shall describe the limit values found in the headers <limits.h> (on
page 268) and <unistd.h> (on page 430), stating values, the conditions under which those values
may change, and the limits of such variations, if any.

The conformance document shall describe the behavior of the implementation for all
implementation-defined features defined in POSIX.1-2008. This requirement shall be met by
listing these features and providing either a specific reference to the system documentation or
providing full syntax and semantics of these features. When the value or behavior in the
implementation is designed to be variable or customized on each instantiation of the system, the
implementation provider shall document the nature and permissible ranges of this variation.

The conformance document may specify the behavior of the implementation for those features
where POSIX.1-2008 states that implementations may vary or where features are identified as
undefined or unspecified.

The conformance document shall not contain documentation other than that specified in the
preceding paragraphs except where such documentation is specifically allowed or required by
other provisions of POSIX.1-2008.

The phrases “shall document” or “shall be documented” in POSIX.1-2008 mean that
documentation of the feature shall appear in the conformance document, as described
previously, unless there is an explicit reference in the conformance document to show where the
information can be found in the system documentation.

The system documentation should also contain the information found in the conformance
document.

POSIX Conformance

A conforming implementation shall meet the following criteria for POSIX conformance.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

529

530

531
532

533
534
535
536

537
538
539
540

541

542
543
544

545

546

547

548

549
550
551
552
553
554
555
556
557
558
559
560
561

562

563

564

565

566

567
568

Conformance Implementation Conformance

2.1.3.1 POSIX System Interfaces
The following requirements apply to the system interfaces (functions and headers):

e The system shall support all the mandatory functions and headers defined in
POSIX.1-2008, and shall set the symbolic constant _POSIX_VERSION to the value 200809L.

o Although all implementations conforming to POSIX.1-2008 support all the features
described below, there may be system-dependent or file system-dependent configuration
procedures that can remove or modify any or all of these features. Such configurations
should not be made if strict compliance is required.

The following symbolic constants shall be defined with a value other than —1. If a constant
is defined with the value zero, applications should use the sysconf(), pathconf(), or
fpathconf() functions, or the gefconf utility, to determine which features are present on the
system at that time or for the particular pathname in question.

— _POSIX_CHOWN_RESTRICTED

The use of chown() is restricted to a process with appropriate privileges, and to
changing the group ID of a file only to the effective group ID of the process or to one
of its supplementary group IDs.

— _POSIX_NO_TRUNC
Pathname components longer than {NAME_MAX]} generate an error.
¢ The following symbolic constants shall be defined by the implementation as follows:
— Symbolic constants defined with the value 200809L:

_POSIX_ASYNCHRONOUS_IO
_POSIX_BARRIERS
_POSIX_CLOCK_SELECTION
_POSIX_MAPPED_FILES
_POSIX_MEMORY_PROTECTION
_POSIX_READER_WRITER_LOCKS
_POSIX_REALTIME_SIGNALS
_POSIX_SEMAPHORES
_POSIX_SPIN_LOCKS
_POSIX_THREAD_SAFE_FUNCTIONS
_POSIX_THREADS
_POSIX_TIMEOUTS
_POSIX_TIMERS

— Symbolic constants defined with a value greater than zero:

_POSIX_JOB_CONTROL
_POSIX_SAVED_IDS

— Symbolic constants defined with a value other than 1.

_POSIX_VDISABLE

Note: The symbols above represent historical options that are no longer allowed as options, but
are retained here for backwards-compatibility of applications.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 17

Implementation Conformance Conformance

569 * The system may support one or more options (see Section 2.1.6, on page 26) denoted by the
570 following symbolic constants:

571 _POSIX_ADVISORY_INFO

572 _POSIX_CPUTIME

573 _POSIX_FSYNC

574 _POSIX_IPV6

575 _POSIX_MEMLOCK

576 _POSIX_MEMLOCK_RANGE

577 _POSIX_MESSAGE_PASSING

578 _POSIX_MONOTONIC_CLOCK

579 _POSIX_PRIORITIZED_IO

580 _POSIX_PRIORITY_SCHEDULING

581 _POSIX_RAW_SOCKETS

582 _POSIX_SHARED_MEMORY_OBJECTS

583 _POSIX_SPAWN

584 _POSIX_SPORADIC_SERVER

585 _POSIX_SYNCHRONIZED_IO

586 _POSIX_THREAD_ATTR_STACKADDR

587 _POSIX_THREAD_CPUTIME

588 _POSIX_THREAD_ATTR_STACKSIZE

589 _POSIX_THREAD_PRIO_INHERIT

590 _POSIX_THREAD_PRIO_PROTECT

591 _POSIX_THREAD_PRIORITY_SCHEDULING

592 _POSIX_THREAD_PROCESS_SHARED

593 _POSIX_THREAD_SPORADIC_SERVER

594 _POSIX_TRACE

595 _POSIX_TRACE_EVENT_FILTER

596 _POSIX_TRACE_INHERIT

597 _POSIX_TRACE_LOG

598 _POSIX_TYPED_MEMORY_OBJECTS

599 _XOPEN_CRYPT

600 _XOPEN_REALTIME

601 _XOPEN_REALTIME_THREADS

602 _XOPEN_STREAMS

603 _XOPEN_UNIX

604 If any of the symbolic constants _POSIX_TRACE_EVENT_FILTER, _POSIX_TRACE_LOG,
605 or _POSIX_TRACE_INHERIT is defined to have a value other than -1, then the symbolic
606 constant _POSIX_TRACE shall also be defined to have a value other than —1.

607 If the Advisory Information option is supported, there shall be at least one file system that
608 supports the functionality.

609 2.1.3.2 POSIX Shell and Utilities

610 The following requirements apply to the shell and utilities:

611 ¢ The system shall provide all the mandatory utilities in the Shell and Utilities volume of
612 POSIX.1-2008 with all the functional behavior described therein.

613 » The system shall support the Large File capabilities described in the Shell and Utilities
614 volume of POSIX.1-2008.

18 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

615
616

617
618
619
620
621
622
623
624
625
626
627
628
629
630

631
632
633
634
635

636

637
638
639
640

641
642
643

644
645

646

647

648
649
650

651
652

653
654
655
656

Conformance Implementation Conformance

2.1.4

XSI

2.14.1

 The system may support one or more options (see Section 2.1.6, on page 26) denoted by the
following symbolic constants. (The literal names below apply to the getconf utility.)

POSIX2_C_DEV
POSIX2_CHAR_TERM
POSIX2_FORT_DEV
POSIX2_FORT_RUN
POSIX2_LOCALEDEF
POSIX2_PBS
POSIX2_PBS_ACCOUNTING
POSIX2_PBS_LOCATE
POSIX2_PBS_MESSAGE
POSIX2_PBS_TRACK
POSIX2_SW_DEV
POSIX2_UPE
XOPEN_UNIX
XOPEN_UUCP

Additional language bindings and development utility options may be provided in other related
standards or in a future version of this standard. In the former case, additional symbolic
constants of the same general form as shown in this subsection should be defined by the related
standard document and made available to the application without requiring POSIX.1-2008 to be
updated.

XSI Conformance

This section describes the criteria for implementations providing conformance to the X/Open
System Interfaces (XSI) option (see Section 3.442, on page 104). The functionality described in
this section shall be provided on implementations that support the XSI option (and the rest of
this section is not further shaded).

POSIX.1-2008 describes utilities, functions, and facilities offered to application programs by the
X/Open System Interfaces (XSI) option. An XSI-conforming implementation shall meet the
criteria for POSIX conformance and the following requirements listed in this section.

XSI-conforming implementations shall set the symbolic constant _XOPEN_UNIX to a value
other than —1 and shall set the symbolic constant _XOPEN_VERSION to the value 700.

XSI System Interfaces
The following requirements apply to the system interfaces when the XSI option is supported:

¢ The system shall support all the functions and headers defined in POSIX.1-2008 as part of
the XSI option denoted by the XSI marking in the SYNOPSIS section, and any extensions
marked with the XSI option marking (see Section 1.7.1, on page 7) within the text.

¢ The system shall support the following options defined within POSIX.1-2008 (see Section
2.1.6, on page 26):

_POSIX_FSYNC
_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_PROCESS_SHARED

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 19

657
658

659

660

661

662

663

664

665

666

667

668
669
670
671

672
673

674

675

676
677

678
679
680
681

682

683
684

685
686

687
688

689

690
691
692
693

Implementation Conformance Conformance

2.1.4.2

2.1.5

2151

20

¢ The system may support the following XSI Option Groups (see Section 2.1.5.2, on page 22)
defined within POSIX.1-2008:

— Encryption

— Realtime

— Advanced Realtime

— Realtime Threads

— Advanced Realtime Threads
— Tracing

— XSI STREAMS

XSI Shell and Utilities Conformance
The following requirements apply to the shell and utilities when the XSI option is supported:

e The system shall support all the utilities defined in the Shell and Utilities volume of
POSIX.1-2008 as part of the XSI option denoted by the XSI marking in the SYNOPSIS
section, and any extensions marked with the XSI option marking (see Section 1.7.1, on
page 7) within the text.

o The system shall support the User Portability Utilities option and the Terminal
Characteristics option.

¢ The system shall support creation of locales (see Chapter 7, on page 135).
¢ The C-language Development utility c99 shall be supported.

e The XSI Development Ultilities option may be supported. It consists of the following
software development utilities:

admin delta rmdel val

cflow get sact what

ctags nm sccs

cxref prs unget
Option Groups

An Option Group is a group of related functions or options defined within the System Interfaces
volume of POSIX.1-2008.

If an implementation supports an Option Group, then the system shall support the functional
behavior described herein.

If an implementation does not support an Option Group, then the system need not support the
functional behavior described herein.

Subprofiling Considerations

Profiling standards supporting functional requirements less than that required in POSIX.1-2008
may subset both mandatory and optional functionality required for POSIX Conformance (see
Section 2.1.3, on page 16) or XSI Conformance (see Section 2.1.4, on page 19). Such profiles shall
organize the subsets into Subprofiling Option Groups.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

694
695
696
697

698
699
700
701

702
703

704

705
706

707

708

709
710
711
712

713
714

715
716
717

718
719

720

721

722
723

724
725

726
727
728
729
730

731
732
733
734

735
736

Conformance Implementation Conformance

XRAT Appendix E (on page 3711) describes a representative set of such Subprofiling Option
Groups for use by profiles applicable to specialized realtime systems. POSIX.1-2008 does not
require that the presence of Subprofiling Option Groups be testable at compile-time (as symbols
defined in any header) or at runtime (via sysconf() or getconf).

A Subprofiling Option Group may provide basic system functionality that other Subprofiling
Option Groups and other options depend upon.? If a profile of POSIX.1-2008 does not require an
implementation to provide a Subprofiling Option Group that provides features utilized by a
required Subprofiling Option Group (or option),* the profile shall specify” all of the following:

¢ Restricted or altered behavior of interfaces defined in POSIX.1-2008 that may differ on an
implementation of the profile

 Additional behaviors that may produce undefined or unspecified results

+ Additional implementation-defined behavior that implementations shall be required to
document in the profile’s conformance document

if any of the above is a result of the profile not requiring an interface required by POSIX.1-2008.
The following additional rules shall apply to all profiles of POSIX.1-2008:

¢ Any application that conforms to that profile shall also conform to POSIX.1-2008, unless
the application depends on the definition of a profile support indicator macro in
<unistd.h> (that is, a profile shall not require restricted, altered, or extended behaviors of
an implementation of POSIX.1-2008).

e Profiles are permitted to require the definition of a profile support indicator macro with a
name beginning _ POSIX_AEP_ in <unistd.h>.

o Profiles shall require the definition of the macro _POSIX_SUBPROFILE in <unistd.h> on
implementations that do not meet all of the requirements of a POSIX.1-conforming
implementation.

e Profiles are permitted to add additional requirements to the limits defined in <limits.h>
and <stdint.h>, subject to the following:

For the limits in <limits.h> and <stdint.h>:
— If the limit is specified as having a fixed value, it shall not be changed by a profile.

— If a limit is specified as having a minimum or maximum acceptable value, it may be
changed by a profile as follows:

— A profile may increase a minimum acceptable value, but shall not make a
minimum acceptable value smaller.

As an example, the File System profiling option group provides underlying support for pathname resolution and file creation which are
needed by any interface in POSIX.1-2008 that parses a path argument. If a profile requires support for the Device Input and Output
profiling option group but does not require support for the File System profiling option group, the profile must specify how pathname
resolution is to behave in that profile, how the O_CREAT flag to open() is to be handled (and the use of the character ’ a’ in the mode
argument of fopen () when a filename argument names a file that does not exist), and specify lots of other details.

As an example, POSIX.1-2008 requires that implementations claiming to support the Range Memory Locking option also support the
Process Memory Locking option. A profile could require that the Range Memory Locking option had to be supplied without requiring that
the Process Memory Locking option be supplied as long as the profile specifies everything an application developer or system implementor
would have to know to build an application or implementation conforming to the profile.

Note that the profile could just specify that any use of the features not specified by the profile would produce undefined or unspecified
results.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 21

737
738

739
740

741

742
743
744

745

746
747
748
749

750

751

752
753

754

755

756
757
758
759

760

761

762

763

764
765

766
767
768
769

770
771

772
773

Implementation Conformance Conformance

2.1.5.2

XSI

22

— A profile may reduce a maximum acceptable value, but shall not make a
maximum acceptable value larger.

« A profile shall not change a limit specified as having a minimum or maximum value into a
limit specified as having a fixed value.

« A profile shall not create new limits.

¢ Any implementation that conforms to POSIX.1-2008 (including all options and extended
limits required by the profile) shall also conform to that profile, except for the possible
omission from <unistd.h> of a profile support indicator macro required by the profile.

XSI Option Groups

This section describes Option Groups to support the definition of XSI conformance within the
System Interfaces volume of POSIX.1-2008. The functionality described in this section shall be
provided on implementations that support the XSI option and the appropriate Option Group
(and the rest of this section is not further shaded).

The following Option Groups are defined.

Encryption

The Encryption Option Group is denoted by the symbolic constant _XOPEN_CRYPT. It includes
the following functions:

crypt (), encrypt (), setkey ()

These functions are marked CRYPT.

Due to export restrictions on the decoding algorithm in some countries, implementations may
be restricted in making these functions available. All the functions in the Encryption Option
Group may therefore return [ENOSYS] or, alternatively, encrypt () shall return [ENOSYS] for the
decryption operation.

An implementation that claims conformance to this Option Group shall set _XOPEN_CRYPT to
a value other than —1.

Realtime

The Realtime Option Group is denoted by the symbolic constant _XOPEN_REALTIME.

This Option Group includes a set of realtime functions drawn from options within POSIX.1-2008
(see Section 2.1.6, on page 26).

Where entire functions are included in the Option Group, the NAME section is marked with
REALTIME. Where additional semantics have been added to existing pages, the new material is
identified by use of the appropriate margin legend for the underlying option defined within
POSIX.1-2008.

An implementation that claims conformance to this Option Group shall set
_XOPEN_REALTIME to a value other than —1.

This Option Group consists of the set of the following options from within POSIX.1-2008 (see
Section 2.1.6, on page 26):

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

Conformance Implementation Conformance

774 _POSIX_FSYNC

775 _POSIX_MEMLOCK

776 _POSIX_MEMLOCK_RANGE

777 _POSIX_MESSAGE_PASSING

778 _POSIX_PRIORITIZED_IO

779 _POSIX_PRIORITY_SCHEDULING

780 _POSIX_SHARED_MEMORY_OBJECTS

781 _POSIX_SYNCHRONIZED_IO

782 If the symbolic constant _XOPEN_REALTIME is defined to have a value other than -1, then the
783 following symbolic constants shall be defined by the implementation to have the value 200809L.:
784 _POSIX_MEMLOCK

785 _POSIX_MEMLOCK_RANGE

786 _POSIX_MESSAGE_PASSING

787 _POSIX_PRIORITY_SCHEDULING

788 _POSIX_SHARED_MEMORY_OBJECTS

789 _POSIX_SYNCHRONIZED_IO

790 The functionality associated with _ POSIX_FSYNC shall always be supported on XSI-conformant
791 systems.

792 Support of _POSIX_PRIORITIZED_IO on XSI-conformant systems is optional. If
793 _POSIX_PRIORITIZED_IO is supported, then asynchronous I/O operations performed by
794 aio_read (), aio_write(), and lio_listio() shall be submitted at a priority equal to the scheduling
795 priority equal to a base scheduling priority minus aiocbp—>aio_reqprio. If Thread Execution
796 Scheduling is not supported, then the base scheduling priority is that of the calling process;
797 otherwise, the base scheduling priority is that of the calling thread. The implementation shall
798 also document for which files I/O prioritization is supported.

799 Advanced Realtime

800 An implementation that claims conformance to this Option Group shall also support the
801 Realtime Option Group.

802 Where entire functions are included in the Option Group, the NAME section is marked with
803 ADVANCED REALTIME. Where additional semantics have been added to existing pages, the
804 new material is identified by use of the appropriate margin legend for the underlying option
805 defined within POSIX.1-2008.

806 This Option Group consists of the set of the following options from within POSIX.1-2008 (see
807 Section 2.1.6, on page 26):

808 _POSIX_ADVISORY_INFO

809 _POSIX_CPUTIME

810 _POSIX_MONOTONIC_CLOCK

811 _POSIX_SPAWN

812 _POSIX_SPORADIC_SERVER

813 _POSIX_TYPED_MEMORY_OBJECTS

814 If the implementation supports the Advanced Realtime Option Group, then the following
815 symbolic constants shall be defined by the implementation to have the value 200809L:

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 23

816
817
818
819
820
821

822
823
824

825

826
827

828
829

830
831
832

833
834

835
836

837
838

839
840
841

842

843
844

845
846
847
848

849
850

851
852

853
854
855

856
857

Implementation Conformance Conformance

24

_POSIX_ADVISORY_INFO
_POSIX_CPUTIME
_POSIX_MONOTONIC_CLOCK
_POSIX_SPAWN
_POSIX_SPORADIC_SERVER
_POSIX_TYPED_MEMORY_OBJECTS

If the symbolic constant _POSIX_SPORADIC_SERVER is defined, then the symbolic constant
_POSIX_PRIORITY_SCHEDULING shall also be defined by the implementation to have the
value 200809L.

Realtime Threads

The Realtime Threads Option Group is denoted by the symbolic constant
_XOPEN_REALTIME_THREADS.

This Option Group consists of the set of the following options from within POSIX.1-2008 (see
Section 2.1.6, on page 26):

_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING

Where applicable, whole pages are marked REALTIME THREADS, together with the
appropriate option margin legend for the SYNOPSIS section (see Section 1.7.1, on page 7).

An implementation that claims conformance to this Option Group shall set
_XOPEN_REALTIME_THREADS to a value other than —1.

If the symbol _XOPEN_REALTIME_THREADS is defined to have a value other than -1, then the
following options shall also be defined by the implementation to have the value 200809L.:

_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING

Advanced Realtime Threads

An implementation that claims conformance to this Option Group shall also support the
Realtime Threads Option Group.

Where entire functions are included in the Option Group, the NAME section is marked with
ADVANCED REALTIME THREADS. Where additional semantics have been added to existing
pages, the new material is identified by use of the appropriate margin legend for the underlying
option defined within POSIX.1-2008.

This Option Group consists of the set of the following options from within POSIX.1-2008 (see
Section 2.1.6, on page 26):

_POSIX_THREAD_CPUTIME
_POSIX_THREAD_SPORADIC_SERVER

If the symbolic constant _POSIX_THREAD_SPORADIC_SERVER is defined to have the value
200809L, then the symbolic constant _POSIX_THREAD_PRIORITY_SCHEDULING shall also be
defined by the implementation to have the value 200809L.

If the implementation supports the Advanced Realtime Threads Option Group, then the
following symbolic constants shall be defined by the implementation to have the value 200809L.:

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

858
859

860

861
862

863
864
865
866

867
868

869
870
871
872

873
874

875
876
877
878

879

880
881
882
883

884
885
886

887

888
889
890
891

892

893
894
895
896

897
898

Conformance Implementation Conformance

OB XSR

_POSIX_THREAD_CPUTIME
_POSIX_THREAD_SPORADIC_SERVER

Tracing

This Option Group includes a set of tracing functions drawn from options within POSIX.1-2008
(see Section 2.1.6, on page 26).

Where entire functions are included in the Option Group, the NAME section is marked with
TRACING. Where additional semantics have been added to existing pages, the new material is
identified by use of the appropriate margin legend for the underlying option defined within
POSIX.1-2008.

This Option Group consists of the set of the following options from within POSIX.1-2008 (see
Section 2.1.6, on page 26):

_POSIX_TRACE
_POSIX_TRACE_EVENT_FILTER
_POSIX_TRACE_LOG
_POSIX_TRACE_INHERIT

If the implementation supports the Tracing Option Group, then the following symbolic
constants shall be defined by the implementation to have the value 200809L.:

_POSIX_TRACE
_POSIX_TRACE_EVENT_FILTER
_POSIX_TRACE_LOG
_POSIX_TRACE_INHERIT

XSI STREAMS

This section describes the XSI STREAMS Option Group, denoted by the symbolic constant
_XOPEN_STREAMS. The functionality described in this section shall be provided on
implementations that support the XSI STREAMS option (and the rest of this section is not
further shaded).

This Option Group includes functionality related to STREAMS, a uniform mechanism for
implementing networking services and other character-based I/0O as described in XSH Section
2.6 (on page 494).

It includes the following functions:

fattach() ioctl()
fdetach() isastream ()
getmsg () putmsg()
getpmsg () putpmsg()

and the <stropts.h> header.

Where applicable, whole pages are marked STREAMS, together with the appropriate option
margin legend for the SYNOPSIS section (see Section 1.7.1, on page 7). Where additional
semantics have been added to existing pages, the new material is identified by use of the
appropriate margin legend for the underlying option defined within POSIX.1-2008.

An implementation that claims conformance to this Option Group shall set _XOPEN_STREAMS
to a value other than -1.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 25

899

900
901
902
903

904

905
906
907
908
909
910
911
912
913

914

915
916
917
918
919

920

921
922
923
924
925
926
927
928
929
930
931

932
933
934
935
936

937

938

939
940

Implementation Conformance Conformance

2.1.6

2.1.6.1

26

Options

The symbolic constants defined in <unistd.h>, Constants for Options and Option Groups (on
page 430) reflect implementation options for POSIX.1-2008. These symbols can be used by the
application to determine which of three categories of support for optional facilities are provided
by the implementation.

1. Option not supported for compilation.

The implementation advertises at compile time (by defining the constant in <unistd.h>
with value —1, or by leaving it undefined) that the option is not supported for compilation
and, at the time of compilation, is not supported for runtime use. In this case, the headers,
data types, function interfaces, and utilities required only for the option need not be
present. A later runtime check using the fpathconf(), pathconf(), or sysconf functions
defined in the System Interfaces volume of POSIX.1-2008 or the getconf utility defined in
the Shell and Utilities volume of POSIX.1-2008 can in some circumstances indicate that
the option is supported at runtime. (For example, an old application binary might be run
on a newer implementation to which support for the option has been added.)

2. Option always supported.

The implementation advertises at compile time (by defining the constant in <unistd.h>
with a value greater than zero) that the option is supported both for compilation and for
use at runtime. In this case, all headers, data types, function interfaces, and utilities
required only for the option shall be available and shall operate as specified. Runtime
checks with fpathconf(), pathconf(), or sysconf shall indicate that the option is supported.

3. Option might or might not be supported at runtime.

The implementation advertises at compile time (by defining the constant in <unistd.h>
with value zero) that the option is supported for compilation and might or might not be
supported at runtime. In this case, the fpathconf(), pathconf(), or sysconf() functions
defined in the System Interfaces volume of POSIX.1-2008 or the getconf utility defined in
the Shell and Utilities volume of POSIX.1-2008 can be used to retrieve the value of each
symbol on each specific implementation to determine whether the option is supported at
runtime. All headers, data types, and function interfaces required to compile and execute
applications which use the option at runtime (after checking at runtime that the option is
supported) shall be provided, but if the option is not supported at runtime they need not
operate as specified. Utilities or other facilities required only for the option, but not
needed to compile and execute such applications, need not be present.

If an option is not supported for compilation, an application that attempts to use anything
associated only with the option is considered to be requiring an extension. Unless explicitly
specified otherwise, the behavior of functions associated with an option that is not supported at
runtime is unspecified, and an application that uses such functions without first checking
fpathconf(), pathconf(), or sysconf is considered to be requiring an extension.

Margin codes are defined for each option (see Section 1.7.1, on page 7).

System Interfaces

Refer to <unistd.h>, Constants for Options and Option Groups (on page 430) for the list of
options.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

941

942
943

944

945
946

947
948
949
950

951
952
953

954
955
956

957
958
959

960

961
962
963

964
965

966
967
968

969
970

971
972

973

974
975

976
977

978

979
980
981

Conformance Implementation Conformance

2.1.6.2

CD

FD

FR

Shell and Utilities

Each of these symbols shall be considered valid names by the implementation. Refer to
<unistd.h>, Constants for Options and Option Groups (on page 430).

The literal names shown below apply only to the getconf utility.

POSIX2_C_DEV
The system supports the C-Language Development Utilities option.

The utilities in the C-Language Development Utilities option are used for the development
of C-language applications, including compilation or translation of C source code and
complex program generators for simple lexical tasks and processing of context-free
grammars.

The utilities listed below may be provided by a conforming system; however, any system
claiming conformance to the C-Language Development Utilities option shall provide all of
the utilities listed.

c99
lex
yacc

POSIX2_CHAR_TERM
The system supports the Terminal Characteristics option. This value need not be present on
a system not supporting the User Portability Utilities option.

Where applicable, the dependency is noted within the description of the utility.

This option applies only to systems supporting the User Portability Utilities option. If
supported, then the system supports at least one terminal type capable of all operations
described in POSIX.1-2008; see Section 10.2 (on page 198).

POSIX2_FORT_DEV
The system supports the FORTRAN Development Utilities option.

The fort77 FORTRAN compiler is the only utility in the FORTRAN Development Utilities
option. This is used for the development of FORTRAN language applications, including
compilation or translation of FORTRAN source code.

The fort77 utility may be provided by a conforming system; however, any system claiming
conformance to the FORTRAN Development Utilities option shall provide the fort77 utility.

POSIX2_FORT_RUN
The system supports the FORTRAN Runtime Utilities option.

The asa utility is the only utility in the FORTRAN Runtime Utilities option.

The asa utility may be provided by a conforming system; however, any system claiming
conformance to the FORTRAN Runtime Utilities option shall provide the asa utility.

POSIX2_LOCALEDEF
The system supports the Locale Creation Utilities option.

If supported, the system supports the creation of locales as described in the localedef utility.

The localedef utility may be provided by a conforming system; however, any system
claiming conformance to the Locale Creation Utilities option shall provide the localedef
utility.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 27

982
983
984

985
986
987

988
989

990
991

992
993

994
995

996
997

998
999

1000
1001
1002
1003

1004
1005
1006

1007
1008
1009
1010

1011
1012

1013
1014
1015
1016
1017

1018

1019

1020

1021
1022
1023

Implementation Conformance Conformance

OB BE

SD

up

X8I

28

POSIX2_PBS
The system supports the Batch Environment Services and Utilities option (see XCU Chapter
3, on page 2375).

Note: The Batch Environment Services and Utilities option is a combination of mandatory and
optional batch services and utilities. The POSIX_PBS symbolic constant implies the system
supports all the mandatory batch services and utilities.

POSIX2_PBS_ACCOUNTING
The system supports the Batch Accounting option.

POSIX2_PBS_CHECKPOINT
The system supports the Batch Checkpoint/Restart option.

POSIX2_PBS_LOCATE
The system supports the Locate Batch Job Request option.

POSIX2_PBS_MESSAGE
The system supports the Batch Job Message Request option.

POSIX2_PBS_TRACK
The system supports the Track Batch Job Request option.

POSIX2_SW_DEV
The system supports the Software Development Utilities option.

The utilities in the Software Development Utilities option are used for the development of
applications, including compilation or translation of source code, the creation and
maintenance of library archives, and the maintenance of groups of inter-dependent
programs.

The utilities listed below may be provided by the conforming system; however, any system
claiming conformance to the Software Development Utilities option shall provide all of the
utilities listed here.

ar
make
nm

strip

POSIX2_UPE
The system supports the User Portability Utilities option.

The utilities in the User Portability Utilities option shall be implemented on all systems that
claim conformance to this option, except for the vi utility which is noted as having features
that cannot be implemented on all terminal types; if the POSIX2_CHAR_TERM option is
supported, the system shall support all such features on at least one terminal type; see
Section 10.2 (on page 198).

The list of utilities in the User Portability Utilities option is as follows:
bg fc jobs talk

ex fg - more vi

XOPEN_UNIX
The system supports the X/Open System Interfaces (XSI) option (see Section 2.1.4, on page
19).

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1024
1025

1026

1027
1028
1029

1030

1031
1032

1033
1034
1035
1036

1037

1038
1039

1040
1041
1042

1043

1044
1045
1046

1047

1048
1049

1050
1051
1052
1053

1054
1055
1056

1057
1058

1059
1060

Conformance

Implementation Conformance

uu XOPEN_UUCP
The system supports the UUCP Utilities option.

The list of utilities in the UUCP Utilities option is as follows:

uucp
uustat
uux

2.2 Application Conformance

For the purposes of POSIX.1-2008, the application conformance requirements given in this
section apply.

All applications claiming conformance to POSIX.1-2008 shall use only language-dependent
services for the C programming language described in Section 2.3 (on page 31), shall use only
the utilities and facilities defined in the Shell and Utilities volume of POSIX.1-2008, and shall fall
within one of the following categories.

221 Strictly Conforming POSIX Application

A Strictly Conforming POSIX Application is an application that requires only the facilities
described in POSIX.1-2008. Such an application:

1.

Shall accept any implementation behavior that results from actions it takes in areas
described in POSIX.1-2008 as implementation-defined or unspecified, or where POSIX.1-2008
indicates that implementations may vary

Shall not perform any actions that are described as producing undefined results

For symbolic constants, shall accept any value in the range permitted by POSIX.1-2008,
but shall not rely on any value in the range being greater than the minimums listed or
being less than the maximums listed in POSIX.1-2008

Shall not use facilities designated as obsolescent

Is required to tolerate and permitted to adapt to the presence or absence of optional
facilities whose availability is indicated by Section 2.1.3 (on page 16)

For the C programming language, shall not produce any output dependent on any
behavior described in the ISO/IEC 9899:1999 standard as unspecified, undefined, or
implementation-defined, unless the System Interfaces volume of POSIX.1-2008 specifies the
behavior

For the C programming language, shall not exceed any minimum implementation limit
defined in the ISO/IEC 9899:1999 standard, unless the System Interfaces volume of
POSIX.1-2008 specifies a higher minimum implementation limit

For the C programming language, shall define _POSIX_C_SOURCE to be 200809L before
any header is included

Within POSIX.1-2008, any restrictions placed upon a Conforming POSIX Application shall
restrict a Strictly Conforming POSIX Application.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 29

1061

1062

1063
1064
1065
1066

1067

1068
1069
1070
1071
1072

1073

1074
1075
1076
1077
1078
1079
1080

1081

1082
1083

1084
1085
1086

1087

1088
1089
1090

1091

1092
1093

1094
1095
1096

Application Conformance Conformance

2.2.2

2221

2222

2.2.3

224

30

Conforming POSIX Application

ISO/IEC Conforming POSIX Application

An ISO/IEC Conforming POSIX Application is an application that uses only the facilities
described in POSIX.1-2008 and approved Conforming Language bindings for any ISO or IEC
standard. Such an application shall include a statement of conformance that documents all
options and limit dependencies, and all other ISO or IEC standards used.

<National Body> Conforming POSIX Application

A <National Body> Conforming POSIX Application differs from an ISO/IEC Conforming
POSIX Application in that it also may use specific standards of a single ISO/IEC member body
referred to here as <National Body>. Such an application shall include a statement of
conformance that documents all options and limit dependencies, and all other <National Body>
standards used.

Conforming POSIX Application Using Extensions

A Conforming POSIX Application Using Extensions is an application that differs from a
Conforming POSIX Application only in that it uses non-standard facilities that are consistent
with POSIX.1-2008. Such an application shall fully document its requirements for these extended
facilities, in addition to the documentation required of a Conforming POSIX Application. A
Conforming POSIX Application Using Extensions shall be either an ISO/IEC Conforming
POSIX Application Using Extensions or a <National Body> Conforming POSIX Application
Using Extensions (see Section 2.2.2.1 and Section 2.2.2.2).

Strictly Conforming XSI Application

A Strictly Conforming XSI Application is an application that requires only the facilities
described in POSIX.1-2008. Such an application:

1. Shall accept any implementation behavior that results from actions it takes in areas
described in POSIX.1-2008 as implementation-defined or unspecified, or where POSIX.1-2008
indicates that implementations may vary

2. Shall not perform any actions that are described as producing undefined results

3. For symbolic constants, shall accept any value in the range permitted by POSIX.1-2008,
but shall not rely on any value in the range being greater than the minimums listed or
being less than the maximums listed in POSIX.1-2008

4. Shall not use facilities designated as obsolescent

5. Is required to tolerate and permitted to adapt to the presence or absence of optional
facilities whose availability is indicated by Section 2.1.4 (on page 19)

6. For the C programming language, shall not produce any output dependent on any
behavior described in the ISO C standard as umnspecified, undefined, or implementation-
defined, unless the System Interfaces volume of POSIX.1-2008 specifies the behavior

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1097
1098
1099

1100
1101

1102
1103

1104

1105
1106
1107
1108

1109

1110
1111

1112

1113
1114

1115
1116
1117
1118
1119
1120
1121
1122

Conformance Application Conformance

2.2.5

2.3

24

7. For the C programming language, shall not exceed any minimum implementation limit
defined in the ISO C standard, unless the System Interfaces volume of POSIX.1-2008
specifies a higher minimum implementation limit

8. For the C programming language, shall define _XOPEN_SOURCE to be 700 before any
header is included

Within POSIX.1-2008, any restrictions placed upon a Conforming POSIX Application shall
restrict a Strictly Conforming XSI Application.

Conforming XSI Application Using Extensions

A Conforming XSI Application Using Extensions is an application that differs from a Strictly
Conforming XSI Application only in that it uses non-standard facilities that are consistent with
POSIX.1-2008. Such an application shall fully document its requirements for these extended
facilities, in addition to the documentation required of a Strictly Conforming XSI Application.

Language-Dependent Services for the C Programming Language

Implementors seeking to claim conformance using the ISO C standard shall claim POSIX
conformance as described in Section 2.1.3 (on page 16).

Other Language-Related Specifications

POSIX.1-2008 is currently specified in terms of the shell command language and ISO C. Bindings
to other programming languages are being developed.

If conformance to POSIX.1-2008 is claimed for implementation of any programming language,
the implementation of that language shall support the use of external symbols distinct to at least
31 bytes in length in the source program text. (That is, identifiers that differ at or before the
thirty-first byte shall be distinct.) If a national or international standard governing a language
defines a maximum length that is less than this value, the language-defined maximum shall be
supported. External symbols that differ only by case shall be distinct when the character set in
use distinguishes uppercase and lowercase characters and the language permits (or requires)
uppercase and lowercase characters to be distinct in external symbols.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 31

32

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

Conformance

Vol. 1: Base Definitions, Issue 7

1123

1124

1125
1126
1127

1128
1129
1130

1131

1132

1133

1134
1135

1136

1137

1138

1139

1140
1141
1142

1143

1144

1145

3.1

3.2

3.3

3.4

3.5

Chapter 3

Definitions

For the purposes of POSIX.1-2008, the following terms and definitions apply. The Authoritative
Dictionary of IEEE Standards Terms, Seventh Edition should be referenced for terms not defined
in this section.

Note: No shading to denote extensions or options occurs in this chapter. Where the terms and
definitions given in this chapter are used elsewhere in text related to extensions and options,
they are shaded as appropriate.

Abortive Release

An abrupt termination of a network connection that may result in the loss of data.

Absolute Pathname

A pathname beginning with a single or more than two <slash> characters; see also Section 3.266
(on page 75).

Note: Pathname Resolution is defined in detail in Section 4.12 (on page 111).

Access Mode

A particular form of access permitted to a file.

Additional File Access Control Mechanism

An implementation-defined mechanism that is layered upon the access control mechanisms
defined here, but which do not grant permissions beyond those defined herein, although they
may further restrict them.

Note: File Access Permissions are defined in detail in Section 4.4 (on page 108).

Address Space

The memory locations that can be referenced by a process or the threads of a process.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 33

1146

1147
1148

1149

1150
1151

1152

1153

1154
1155
1156
1157
1158

1159

1160
1161
1162
1163

1164

1165
1166

1167

1168

Advisory Information Definitions

3.6

3.7

3.8

3.9

3.10

34

Advisory Information

An interface that advises the implementation on (portable) application behavior so that it can
optimize the system.

Affirmative Response

An input string that matches one of the responses acceptable to the LC_MESSAGES category
keyword yesexpr, matching an extended regular expression in the current locale.

Note: The LC_MESSAGES category is defined in detail in Section 7.3.6 (on page 164).

Alert

To cause the user’s terminal to give some audible or visual indication that an error or some other
event has occurred. When the standard output is directed to a terminal device, the method for
alerting the terminal user is unspecified. When the standard output is not directed to a terminal
device, the alert is accomplished by writing the alert to standard output (unless the utility
description indicates that the use of standard output produces undefined results in this case).

Alert Character (<alert>)

A character that in the output stream should cause a terminal to alert its user via a visual or
audible notification. It is the character designated by " \a’ in the C language. It is unspecified
whether this character is the exact sequence transmitted to an output device by the system to
accomplish the alert function.

Alias Name

In the shell command language, a word consisting solely of underscores, digits, and alphabetics
from the portable character set and any of the following characters: * !7, " %", ,’,"@".

Implementations may allow other characters within alias names as an extension.

Note: The Portable Character Set is defined in detail in Section 6.1 (on page 125).

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1169

1170
1171

1172

1173

1174
1175
1176
1177

1178

1179

1180
1181
1182

1183

1184
1185
1186

1187

1188
1189
1190
1191

1192

1193

1194

1195

Definitions Alignment

3.11

3.12

3.13

3.14

3.15

3.16

3.17

Alignment

A requirement that objects of a particular type be located on storage boundaries with addresses
that are particular multiples of a byte address.

Note: See also the ISO C standard, Section B3.

Alternate File Access Control Mechanism

An implementation-defined mechanism that is independent of the access control mechanisms
defined herein, and which if enabled on a file may either restrict or extend the permissions of a
given user. POSIX.1-2008 defines when such mechanisms can be enabled and when they are
disabled.

Note: File Access Permissions are defined in detail in Section 4.4 (on page 108).

Alternate Signal Stack

Memory associated with a thread, established upon request by the implementation for a thread,
separate from the thread signal stack, in which signal handlers responding to signals sent to that
thread may be executed.

Ancillary Data

Protocol-specific, local system-specific, or optional information. The information can be both
local or end-to-end significant, header information, part of a data portion, protocol-specific, and
implementation or system-specific.

Angle Brackets

The characters ’ <’ (left-angle-bracket) and ’ >’ (right-angle-bracket). When used in the phrase
“enclosed in angle brackets”, the symbol ’ <’ immediately precedes the object to be enclosed,
and ’ >’ immediately follows it. When describing these characters in the portable character set,
the names <less-than-sign> and <greater-than-sign> are used.

Apostrophe Character (<apostrophe>)

The character designated by ” \’ * in the C language, also known as the single-quote character.

Application

A computer program that performs some desired function.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 35

1196

1197

1198

1199

1200

1201
1202
1203
1204

1205
1206

1207

1208
1209
1210

1211
1212

1213
1214

1215

1216
1217

1218

1219

1220

1221
1222

Application Address Definitions

3.18

3.19

3.20

3.21

3.22

3.23

3.24

36

Application Address

Endpoint address of a specific application.

Application Program Interface (API)

The definition of syntax and semantics for providing computer system services.

Appropriate Privileges

An implementation-defined means of associating privileges with a process with regard to the
function calls, function call options, and the commands that need special privileges. There may
be zero or more such means. These means (or lack thereof) are described in the conformance
document.

Note: Function calls are defined in the System Interfaces volume of POSIX.1-2008, and commands are
defined in the Shell and Utilities volume of POSIX.1-2008.

Argument

In the shell command language, a parameter passed to a utility as the equivalent of a single
string in the argov array created by one of the exec functions. An argument is one of the options,
option-arguments, or operands following the command name.

Note: The Utility Argument Syntax is defined in detail in Section 12.1 (on page 213) and XCU Section
2.9.1.1 (on page 2317).

In the C language, an expression in a function call expression or a sequence of preprocessing
tokens in a function-like macro invocation.

Arm (a Timer)

To start a timer measuring the passage of time, enabling notifying a process when the specified
time or time interval has passed.

Asterisk Character (<asterisk>)

The character ” *’.

Async-Cancel-Safe Function

A function that may be safely invoked by an application while the asynchronous form of
cancellation is enabled. No function is async-cancel-safe unless explicitly described as such.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1223

1224

1225

1226
1227

1228

1229
1230

1231

1232
1233
1234
1235

1236

1237

1238
1239

1240

1241
1242

1243

1244

1245

Definitions Asynchronous Events

3.25

3.26

3.27

3.28

3.29

3.30

3.31

Asynchronous Events

Events that occur independently of the execution of the application.

Asynchronous Input and Output

A functionality enhancement to allow an application process to queue data input and output
commands with asynchronous notification of completion.

Async-Signal-Safe Function

A function that may be invoked, without restriction, from signal-catching functions. No function
is async-signal-safe unless explicitly described as such.

Asynchronously-Generated Signal

A signal that is not attributable to a specific thread. Examples are signals sent via kill(), signals
sent from the keyboard, and signals delivered to process groups. Being asynchronous is a
property of how the signal was generated and not a property of the signal number. All signals
may be generated asynchronously.

Note: The kill() function is defined in detail in the System Interfaces volume of POSIX.1-2008.

Asynchronous I/O Completion

For an asynchronous read or write operation, when a corresponding synchronous read or write
would have completed and when any associated status fields have been updated.

Asynchronous I/O Operation

An I/0O operation that does not of itself cause the thread requesting the I/O to be blocked from
further use of the processor.

This implies that the process and the /O operation may be running concurrently.

Authentication

The process of validating a user or process to verify that the user or process is not a counterfeit.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 37

1246

1247
1248

1249
1250

1251

1252

1253

1254

1255

1256
1257

1258

1259

1260

1261

1262

1263
1264
1265
1266
1267
1268

1269

Authorization Definitions

3.32

3.33

3.34

3.35

3.36

3.37

3.38

38

Authorization

The process of verifying that a user or process has permission to use a resource in the manner
requested.

To ensure security, the user or process would also need to be authenticated before granting
access.

Background Job

See Background Process Group in Section 3.35.

Background Process

A process that is a member of a background process group.

Background Process Group (or Background Job)

Any process group, other than a foreground process group, that is a member of a session that
has established a connection with a controlling terminal.

Backquote Character

The character ’ *’, also known as <grave-accent>.

Backslash Character (<backslash>)

The character designated by * \\’ in the C language, also known as reverse solidus.

Backspace Character (<backspace>)

A character that, in the output stream, should cause printing (or displaying) to occur one
column position previous to the position about to be printed. If the position about to be printed
is at the beginning of the current line, the behavior is unspecified. It is the character designated
by “\b’ in the C language. It is unspecified whether this character is the exact sequence
transmitted to an output device by the system to accomplish the backspace function. The
backspace defined here is not necessarily the ERASE special character.

Note: Special Characters are defined in detail in Section 11.1.9 (on page 203).

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1270

1271
1272

1273

1274

1275

1276
1277

1278

1279

1280
1281

1282
1283

1284

1285
1286

1287

1288

1289
1290

Definitions Barrier

3.39

3.40

3.41

3.42

3.43

3.44

Barrier

A synchronization object that allows multiple threads to synchronize at a particular point in
their execution.

Basename

The final, or only, filename in a pathname.

Basic Regular Expression (BRE)

A regular expression (see Section 3.315, on page 84) used by the majority of utilities that select
strings from a set of character strings.

Note: Basic Regular Expressions are described in detail in Section 9.3 (on page 183).

Batch Access List

A list of user IDs and group IDs of those users and groups authorized to place batch jobs in a
batch queue.

A batch access list is associated with a batch queue. A batch server uses the batch access list of a
batch queue as one of the criteria in deciding to put a batch job in a batch queue.

Batch Administrator

A user that is authorized to modify all the attributes of queues and jobs and to change the status
of a batch server.

Batch Client

A computational entity that utilizes batch services by making requests of batch servers.

Batch clients often provide the means by which users access batch services, although a batch
server may act as a batch client by virtue of making requests of another batch server.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 39

1291

1292

1293
1294
1295
1296

1297

1298

1299

1300

1301

1302
1303

1304

1305

1306

1307

1308
1309
1310

1311

1312

1313
1314

1315

1316
1317
1318

Batch Destination Definitions

3.45

3.46

3.47

3.48

3.49

3.50

40

Batch Destination
The batch server in a batch system to which a batch job should be sent for processing.

Acceptance of a batch job at a batch destination is the responsibility of a receiving batch server.
A batch destination may consist of a batch server-specific portion, a network-wide portion, or
both. The batch server-specific portion is referred to as the “batch queue”. The network-wide
portion is referred to as a “batch server name”.

Batch Destination Identifier
A string that identifies a specific batch destination.
A string of characters in the portable character set used to specify a particular batch destination.

Note: The Portable Character Set is defined in detail in Section 6.1 (on page 125).

Batch Directive

A line from a file that is interpreted by the batch server. The line is usually in the form of a
comment and is an additional means of passing options to the gsub utility.

Note: The gsub utility is defined in detail in the Shell and Utilities volume of POSIX.1-2008.

Batch Job
A set of computational tasks for a computing system.
Batch jobs are managed by batch servers.

Once created, a batch job may be executing or pending execution. A batch job that is executing
has an associated session leader (a process) that initiates and monitors the computational tasks
of the batch job.

Batch Job Attribute

A named data type whose value affects the processing of a batch job.

The values of the attributes of a batch job affect the processing of that job by the batch server that
manages the batch job.

Batch Job Identifier

A unique name for a batch job. A name that is unique among all other batch job identifiers in a
batch system and that identifies the batch server to which the batch job was originally
submitted.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1319

1320

1321

1322
1323

1324

1325
1326
1327

1328

1329

1330
1331
1332

1333

1334
1335

1336

1337

Definitions Batch Job Name

3.51

3.52

3.53

3.54

3.55

3.56

Batch Job Name

A label that is an attribute of a batch job. The batch job name is not necessarily unique.

Batch Job Owner

The username@hostname of the user submitting the batch job, where username is a user name (see
also Section 3.429, on page 102) and hostname is a network host name.

Batch Job Priority

A value specified by the user that may be used by an implementation to determine the order in
which batch jobs are selected to be executed. Job priority has a numeric value in the range
—-1024 to 1023.

Note: The batch job priority is not the execution priority (nice value) of the batch job.

Batch Job State

An attribute of a batch job which determines the types of requests that the batch server that
manages the batch job can accept for the batch job. Valid states include QUEUED, RUNNING,
HELD, WAITING, EXITING, and TRANSITING.

Batch Name Service

A service that assigns batch names that are unique within the batch name space, and that can
translate a unique batch name into the location of the named batch entity.

Batch Name Space

The environment within which a batch name is known to be unique.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 41

1338

1339

1340

1341

1342

1343

1344

1345
1346

1347

1348

1349
1350
1351

1352

1353

1354
1355

1356
1357

1358

1359
1360

1361

1362

1363
1364

Batch Node Definitions

3.57

3.58

3.59

3.60

3.61

3.62

42

Batch Node

A host containing part or all of a batch system.

A batch node is a host meeting at least one of the following conditions:
 Capable of executing a batch client
 Contains a routing batch queue

» Contains an execution batch queue

Batch Operator

A user that is authorized to modify some, but not all, of the attributes of jobs and queues, and
may change the status of the batch server.

Batch Queue

A manageable object that represents a set of batch jobs and is managed by a single batch server.

Note: A set of batch jobs is called a batch queue largely for historical reasons. Jobs are selected from
the batch queue for execution based on attributes such as priority, resource requirements, and
hold conditions.

See also XCU Section 3.1.2 (on page 2376).

Batch Queue Attribute

A named data type whose value affects the processing of all batch jobs that are members of the
batch queue.

A batch queue has attributes that affect the processing of batch jobs that are members of the
batch queue.

Batch Queue Position

The place, relative to other jobs in the batch queue, occupied by a particular job in a batch queue.
This is defined in part by submission time and priority; see also Section 3.62.

Batch Queue Priority
The maximum job priority allowed for any batch job in a given batch queue.

The batch queue priority is set and may be changed by users with appropriate privileges. The
priority is bounded in an implementation-defined manner.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1365

1366
1367

1368

1369
1370

1371

1372

1373

1374
1375

1376

1377

1378

1379

1380

1381

1382

1383
1384

1385
1386

1387

1388
1389

Definitions Batch Rerunability

3.63

3.64

3.65

3.66

3.67

3.68

3.69

Batch Rerunability

An attribute of a batch job indicating that it may be rerun after an abnormal termination from
the beginning without affecting the validity of the results.

Batch Restart

The action of resuming the processing of a batch job from the point of the last checkpoint.
Typically, this is done if the batch job has been interrupted because of a system failure.

Batch Server

A computational entity that provides batch services.

Batch Server Name

A string of characters in the portable character set used to specify a particular server in a
network.

Note: The Portable Character Set is defined in detail in Section 6.1 (on page 125).

Batch Service
Computational and organizational services performed by a batch system on behalf of batch jobs.

Batch services are of two types: requested and deferred.

Note: Batch Services are listed in XCU Table 3-5 (on page 2390).

Batch Service Request
A solicitation of services from a batch client to a batch server.

A batch service request may entail the exchange of any number of messages between the batch
client and the batch server.

When naming specific types of service requests, the term “request” is qualified by the type of
request, as in Queue Batch Job Request and Delete Batch Job Request.

Batch Submission

The process by which a batch client requests that a batch server create a batch job via a Queue Job
Request to perform a specified computational task.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 43

1390

1391

1392

1393

1394
1395

1396

1397

1398

1399

1400

1401
1402
1403

1404

1405
1406

1407

1408
1409

1410

1411
1412

Batch System Definitions

3.70

3.71

3.72

3.73

3.74

3.75

3.76

3.77

44

Batch System

A collection of one or more batch servers.

Batch Target User
The name of a user on the batch destination batch server.

The target user is the user name under whose account the batch job is to execute on the
destination batch server.

Batch User

A user who is authorized to make use of batch services.

Bind

The process of assigning a network address to an endpoint.

Blank Character (<blank>)

One of the characters that belong to the blank character class as defined via the LC_CTYPE
category in the current locale. In the POSIX locale, a <blank> character is either a <tab> or a
<space>.

Blank Line

A line consisting solely of zero or more <blank> characters terminated by a <newline>; see also
Section 3.145 (on page 56).

Blocked Process (or Thread)

A process (or thread) that is waiting for some condition (other than the availability of a
processor) to be satisfied before it can continue execution.

Blocking

A property of an open file description that causes function calls associated with it to wait for the
requested action to be performed before returning.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1413

1414
1415

1416

1417

1418
1419
1420

1421

1422
1423
1424
1425
1426

1427

1428
1429
1430
1431

1432

1433
1434

Definitions Block-Mode Terminal

3.78

3.79

3.80

3.81

3.82

Block-Mode Terminal

A terminal device operating in a mode incapable of the character-at-a-time input and output
operations described by some of the standard utilities.

Note: Output Devices and Terminal Types are defined in detail in Section 10.2 (on page 198).

Block Special File

A file that refers to a device. A block special file is normally distinguished from a character
special file by providing access to the device in a manner such that the hardware characteristics
of the device are not visible.

Braces

The characters ’ {* (left-curly-bracket) and ’ }’ (right-curly-bracket). When used in the phrase
“enclosed in (curly) braces” the symbol ’ {’ immediately precedes the object to be enclosed, and
}' immediately follows it. When describing these characters in the portable character set, the
names <left-curly-bracket> and <left-brace> are used for ’ {’, and <right-curly-bracket> and
<right-brace> are used for * }’.

Brackets

The characters ’ [’ (left-square-bracket) and ’]’ (right-square-bracket). When used in the
phrase “enclosed in (square) brackets” the symbol ’ [/ immediately precedes the object to be
enclosed, and ’]’ immediately follows it. When describing these characters in the portable
character set, the names <left-square-bracket> and <right-square-bracket> are used.

Broadcast

The transfer of data from one endpoint to several endpoints, as described in RFC 919 and
RFC 922.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 45

1435

1436
1437
1438
1439

1440

1441

1442

1443
1444
1445
1446

1447
1448

1449

1450
1451
1452

1453

1454

1455
1456
1457
1458

Built-In Utility (or Built-In) Definitions

3.83

3.84

3.85

3.86

46

Built-In Utility (or Built-In)

A utility implemented within a shell. The utilities referred to as special built-ins have special
qualities. Unless qualified, the term “built-in” includes the special built-in utilities. Regular
built-ins are not required to be actually built into the shell on the implementation, but they do
have special command-search qualities.

Note: Special Built-In Utilities are defined in detail in XCU Section 2.14 (on page 2334).
Regular Built-In Utilities are defined in detail in XCU Section 2.9.1.1 (on page 2317).

Byte

An individually addressable unit of data storage that is exactly an octet, used to store a character
or a portion of a character; see also Section 3.87 (on page 47). A byte is composed of a
contiguous sequence of 8 bits. The least significant bit is called the “low-order” bit; the most
significant is called the “high-order” bit.

Note: The definition of byte from the ISOC standard is broader than the above and might
accommodate hardware architectures with different sized addressable units than octets.

Byte Input/Output Functions

The functions that perform byte-oriented input from streams or byte-oriented output to streams:

fetc(), fgets(), forintf(), foutc(), fouts(), fread(), fscanf(), furite(), getc(), getchar(), getdelim(),
getline(), gets(), printf(), putc(), putchar (), puts(), scanf(), ungetc(), vfprintf(), and vprintf().

Note: Functions are defined in detail in the System Interfaces volume of POSIX.1-2008.

Carriage-Return Character (<carriage-return>)

A character that in the output stream indicates that printing should start at the beginning of the
same physical line in which the carriage-return occurred. It is the character designated by ’ \r’
in the C language. It is unspecified whether this character is the exact sequence transmitted to an
output device by the system to accomplish the movement to the beginning of the line.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1459

1460

1461
1462
1463
1464

1465
1466
1467

1468

1469

1470

1471
1472
1473

1474

1475

1476

1477

1478
1479

1480

1481

1482

Definitions Character

3.87

3.88

3.89

3.90

3.91

3.92

Character

A sequence of one or more bytes representing a single graphic symbol or control code.

Note: This term corresponds to the ISO C standard term multi-byte character, where a single-byte
character is a special case of a multi-byte character. Unlike the usage in the ISO C standard,
character here has no necessary relationship with storage space, and byte is used when storage
space is discussed.

See the definition of the portable character set in Section 6.1 (on page 125) for a further
explanation of the graphical representations of (abstract) characters, as opposed to character
encodings.

Character Array

An array of elements of type char.

Character Class

A named set of characters sharing an attribute associated with the name of the class. The classes
and the characters that they contain are dependent on the value of the LC_CTYPE category in
the current locale.

Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 139).

Character Set

A finite set of different characters used for the representation, organization, or control of data.

Character Special File

A file that refers to a device (such as a terminal device file) or that has special properties (such as
/dev/null).

Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 199).

Character String

A contiguous sequence of characters terminated by and including the first null byte.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 47

1483

1484
1485

1486
1487

1488

1489

1490

1491
1492

1493
1494

1495

1496
1497

1498

1499
1500

1501

1502
1503

Child Process Definitions

3.93

3.94

3.95

3.96

3.97

3.98

48

Child Process

A new process created (by fork(), posix_spawn (), or posix_spawnp()) by a given process. A child
process remains the child of the creating process as long as both processes continue to exist.

Note: The fork(), posix_spawn(), and posix_spawnp() functions are defined in detail in the System
Interfaces volume of POSIX.1-2008.

Circumflex Character (<circumflex>)

The character ” ~ .

Clock

A software or hardware object that can be used to measure the apparent or actual passage of
time.

The current value of the time measured by a clock can be queried and, possibly, set to a value
within the legal range of the clock.

Clock Jump

The difference between two successive distinct values of a clock, as observed from the
application via one of the “get time” operations.

Clock Tick

An interval of time; an implementation-defined number of these occur each second. Clock ticks
are one of the units that may be used to express a value found in type clock_t.

Coded Character Set

A set of unambiguous rules that establishes a character set and the one-to-one relationship
between each character of the set and its bit representation.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1504

1505
1506
1507
1508
1509
1510

1511

1512

1513
1514
1515
1516

1517

1518
1519
1520

1521

1522
1523
1524
1525
1526

1527
1528
1529
1530
1531

1532

Definitions Codeset

3.99

3.100

3.101

3.102

Codeset

The result of applying rules that map a numeric code value to each element of a character set.
An element of a character set may be related to more than one numeric code value but the
reverse is not true. However, for state-dependent encodings the relationship between numeric
code values and elements of a character set may be further controlled by state information. The
character set may contain fewer elements than the total number of possible numeric code values;
that is, some code values may be unassigned.

Note: Character Encoding is defined in detail in Section 6.2 (on page 128).

Collating Element

The smallest entity used to determine the logical ordering of character or wide-character strings;
see also Section 3.102. A collating element consists of either a single character, or two or more
characters collating as a single entity. The value of the LC_COLLATE category in the current
locale determines the current set of collating elements.

Collation

The logical ordering of character or wide-character strings according to defined precedence
rules. These rules identify a collation sequence between the collating elements, and such
additional rules that can be used to order strings consisting of multiple collating elements.

Collation Sequence

The relative order of collating elements as determined by the setting of the LC_COLLATE
category in the current locale. The collation sequence is used for sorting and is determined from
the collating weights assigned to each collating element. In the absence of weights, the collation
sequence is the order in which collating elements are specified between order_start and
order_end keywords in the LC_COLLATE category.

Multi-level sorting is accomplished by assigning elements one or more collation weights, up to
the limit {COLL_WEIGHTS_MAX]}. On each level, elements may be given the same weight (at
the primary level, called an equivalence class; see also Section 3.151, on page 57) or be omitted
from the sequence. Strings that collate equally using the first assigned weight (primary ordering)
are then compared using the next assigned weight (secondary ordering), and so on.

Note: {COLL_WEIGHTS_MAX]} is defined in detail in <limits.h>.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 49

1533

1534

1535
1536
1537
1538
1539

1540
1541

1542

1543

1544

1545

1546
1547
1548
1549
1550
1551

1552

1553
1554

1555

1556
1557

1558

1559
1560
1561

Column Position Definitions

3.103

3.104

3.105

3.106

3.107

50

Column Position
A unit of horizontal measure related to characters in a line.

It is assumed that each character in a character set has an intrinsic column width independent of
any output device. Each printable character in the portable character set has a column width of
one. The standard utilities, when used as described in POSIX.1-2008, assume that all characters
have integral column widths. The column width of a character is not necessarily related to the
internal representation of the character (numbers of bits or bytes).

The column position of a character in a line is defined as one plus the sum of the column widths
of the preceding characters in the line. Column positions are numbered starting from 1.

Command
A directive to the shell to perform a particular task.

Note: Shell Commands are defined in detail in XCU Section 2.9 (on page 2316).

Command Language Interpreter

An interface that interprets sequences of text input as commands. It may operate on an input
stream or it may interactively prompt and read commands from a terminal. It is possible for
applications to invoke utilities through a number of interfaces, which are collectively considered
to act as command interpreters. The most obvious of these are the sh utility and the system()
function, although popen () and the various forms of exec may also be considered to behave as
interpreters.

Note: The sh utility is defined in detail in the Shell and Utilities volume of POSIX.1-2008.

The system (), popen(), and exec functions are defined in detail in the System Interfaces volume
of POSIX.1-2008.

Composite Graphic Symbol

A graphic symbol consisting of a combination of two or more other graphic symbols in a single
character position, such as a diacritical mark and a base character.

Condition Variable

A synchronization object which allows a thread to suspend execution, repeatedly, until some
associated predicate becomes true. A thread whose execution is suspended on a condition
variable is said to be blocked on the condition variable.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1562

1563
1564
1565

1566

1567

1568

1569

1570

1571
1572

1573

1574
1575

1576

1577
1578

1579

1580

1581

1582

1583
1584
1585

Definitions Connected Socket

3.108

3.109

3.110

3.111

3.112

3.113

3.114

Connected Socket

A connection-mode socket for which a connection has been established, or a connectionless-
mode socket for which a peer address has been set. See also Section 3.109, Section 3.110, Section
3.111, and Section 3.348 (on page 89).

Connection

An association established between two or more endpoints for the transfer of data

Connection Mode

The transfer of data in the context of a connection; see also Section 3.111.

Connectionless Mode

The transfer of data other than in the context of a connection; see also Section 3.110 and Section
3.124 (on page 53).

Control Character

A character, other than a graphic character, that affects the recording, processing, transmission,
or interpretation of text.

Control Operator

In the shell command language, a token that performs a control function. It is one of the
following symbols:

& && () ; HY newline | [
The end-of-input indicator used internally by the shell is also considered a control operator.

Note: Token Recognition is defined in detail in XCU Section 2.3 (on page 2299).

Controlling Process

The session leader that established the connection to the controlling terminal. If the terminal
subsequently ceases to be a controlling terminal for this session, the session leader ceases to be
the controlling process.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 51

1586

1587
1588
1589
1590

1591

1592

1593

1594

1595

1596

1597
1598
1599
1600
1601
1602

1603

1604

1605

1606

1607

1608
1609

Controlling Terminal Definitions

3.115

3.116

3.117

3.118

3.119

3.120

3.121

52

Controlling Terminal

A terminal that is associated with a session. Each session may have at most one controlling
terminal associated with it, and a controlling terminal is associated with exactly one session.
Certain input sequences from the controlling terminal cause signals to be sent to all processes in
the foreground process group associated with the controlling terminal.

Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 199).

Conversion Descriptor

A per-process unique value used to identify an open codeset conversion.

Core File

A file of unspecified format that may be generated when a process terminates abnormally.

CPU Time (Execution Time)

The time spent executing a process or thread, including the time spent executing system services
on behalf of that process or thread. If the Threads option is supported, then the value of the
CPU-time clock for a process is implementation-defined. With this definition the sum of all the
execution times of all the threads in a process might not equal the process execution time, even
in a single-threaded process, because implementations may differ in how they account for time
during context switches or for other reasons.

CPU-Time Clock

A clock that measures the execution time of a particular process or thread.

CPU-Time Timer
A timer attached to a CPU-time clock.

Current Job

In the context of job control, the job that will be used as the default for the fg or bg utilities. There
is at most one current job; see also Section 3.203 (on page 65).

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626
1627

1628

1629

Definitions Current Working Directory

3.122

3.123

3.124

3.125

3.126

3.127

3.128

3.129

3.130

Current Working Directory
See Working Directory in Section 3.439 (on page 104).

Cursor Position

The line and column position on the screen denoted by the terminal’s cursor.

Datagram

A unit of data transferred from one endpoint to another in connectionless mode service.

Data Segment

Memory associated with a process, that can contain dynamically allocated data.

Deferred Batch Service

A service that is performed as a result of events that are asynchronous with respect to requests.

Note: Once a batch job has been created, it is subject to deferred services.

Device

A computer peripheral or an object that appears to the application as such.

Device ID

A non-negative integer used to identify a device.

Directory

A file that contains directory entries. No two directory entries in the same directory have the
same name.

Directory Entry (or Link)

An object that associates a filename with a file. Several directory entries can associate names

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 53

1630

1631

1632
1633

1634

1635
1636

1637

1638
1639

1640

1641
1642

1643

1644

1645

1646

1647

1648

1649

Directory Entry (or Link) Definitions

3.131

3.132

3.133

3.134

3.135

3.136

54

with the same file.

Directory Stream

A sequence of all the directory entries in a particular directory. An open directory stream may be
implemented using a file descriptor.

Disarm (a Timer)

To stop a timer from measuring the passage of time, disabling any future process notifications
(until the timer is armed again).

Display

To output to the user’s terminal. If the output is not directed to a terminal, the results are
undefined.

Display Line

A line of text on a physical device or an emulation thereof. Such a line will have a maximum
number of characters which can be presented.

Note: This may also be written as “line on the display”.

Dollar-Sign Character (<dollar-sign>)

The character ’ $”.

Dot

In the context of naming files, the filename consisting of a single dot character (" .").
Note: In the context of shell special built-in utilities, see dot in XCU Section 2.14 (on page 2334).
Pathname Resolution is defined in detail in Section 4.12 (on page 111).

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1650

1651

1652

1653

1654

1655
1656
1657

1658

1659
1660

1661

1662

1663
1664
1665

1666

1667
1668

1669

1670
1671

1672

1673
1674
1675

Definitions Dot-Dot

3.137

3.138

3.139

3.140

3.141

3.142

3.143

Dot-Dot
The filename consisting solely of two dot characters (". . ").
Note: Pathname Resolution is defined in detail in Section 4.12 (on page 111).

Double-Quote Character

The character ’ "/, also known as <quotation-mark>.

Note: The “double” adjective in this term refers to the two strokes in the character glyph.
POSIX.1-2008 never uses the term “double-quote” to refer to two apostrophes or quotation-
marks.

Downshifting

The conversion of an uppercase character that has a single-character lowercase representation
into this lowercase representation.

Driver
A module that controls data transferred to and received from devices.

Note: Drivers are traditionally written to be a part of the system implementation, although they are
frequently written separately from the writing of the implementation. A driver may contain
processor-specific code, and therefore be non-portable.

Effective Group ID

An attribute of a process that is used in determining various permissions, including file access
permissions; see also Section 3.188 (on page 63).

Effective User ID

An attribute of a process that is used in determining various permissions, including file access
permissions; see also Section 3.428 (on page 102).

Eight-Bit Transparency

The ability of a software component to process 8-bit characters without modifying or utilizing
any part of the character in a way that is inconsistent with the rules of the current coded
character set.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 55

1676

1677
1678
1679
1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691
1692

1693

Empty Directory Definitions

3.144

3.145

3.146

3.147

3.148

3.149

56

Empty Directory

A directory that contains, at most, directory entries for dot and dot-dot, and has exactly one link
to it (other than its own dot entry, if one exists), in dot-dot. No other links to the directory may
exist. It is unspecified whether an implementation can ever consider the root directory to be
empty.

Empty Line

A line consisting of only a <newline>; see also Section 3.75 (on page 44).

Empty String (or Null String)
A string whose first byte is a null byte.

Empty Wide-Character String

A wide-character string whose first element is a null wide-character code.

Encoding Rule
The rules used to convert between wide-character codes and multi-byte character codes.

Note: Stream Orientation and Encoding Rules are defined in detail in XSH Section 2.5.2 (on page 493).

Entire Regular Expression

The concatenated set of one or more basic regular expressions or extended regular expressions
that make up the pattern specified for string selection.

Note: Regular Expressions are defined in detail in Chapter 9 (on page 181).

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1694

1695
1696

1697

1698

1699

1700
1701

1702
1703

1704

1705

1706

1707

1708
1709

1710

1711
1712
1713
1714
1715

Definitions Epoch

3.150

3.151

3.152

3.153

3.154

Epoch

The time zero hours, zero minutes, zero seconds, on January 1, 1970 Coordinated Universal Time
(UTQ).

Note: See also Seconds Since the Epoch defined in Section 4.15 (on page 113).

Equivalence Class
A set of collating elements with the same primary collation weight.

Elements in an equivalence class are typically elements that naturally group together, such as all
accented letters based on the same base letter.

The collation order of elements within an equivalence class is determined by the weights
assigned on any subsequent levels after the primary weight.

Era
A locale-specific method for counting and displaying years.

Note: The LC_TIME category is defined in detail in Section 7.3.5 (on page 158).

Event Management

The mechanism that enables applications to register for and be made aware of external events
such as data becoming available for reading.

Executable File

A regular file acceptable as a new process image file by the equivalent of the exec family of
functions, and thus usable as one form of a utility. The standard utilities described as compilers
can produce executable files, but other unspecified methods of producing executable files may
also be provided. The internal format of an executable file is unspecified, but a conforming
application cannot assume an executable file is a text file.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 57

1716

1717
1718

1719

1720

1721

1722

1723
1724

1725

1726

1727

1728

1729
1730

1731

1732

1733
1734
1735

1736

1737

Execute Definitions

3.155 Execute

To perform command search and execution actions, as defined in the Shell and Utilities volume
of POSIX.1-2008; see also Section 3.200 (on page 65).

Note: Command Search and Execution is defined in detail in XCU Section 2.9.1.1 (on page 2317).

3.156 Execution Time
See CPU Time in Section 3.118 (on page 52).

3.157 Execution Time Monitoring

A set of execution time monitoring primitives that allow online measuring of thread and process
execution times.

3.158 Expand

In the shell command language, when not qualified, the act of applying word expansions.

Note: Word Expansions are defined in detail in XCU Section 2.6 (on page 2305).

3.159 Extended Regular Expression (ERE)

A regular expression (see also Section 3.315, on page 84) that is an alternative to the Basic
Regular Expression using a more extensive syntax, occasionally used by some utilities.

Note: Extended Regular Expressions are described in detail in Section 9.4 (on page 188).

3.160 Extended Security Controls

Implementation-defined security controls allowed by the file access permission and appropriate
privileges (see also Section 3.20, on page 36) mechanisms, through which an implementation can
support different security policies from those described in POSIX.1-2008.

Note: See also Extended Security Controls defined in Section 4.3 (on page 107).

File Access Permissions are defined in detail in Section 4.4 (on page 108).

58 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1738

1739

1740

1741

1742
1743
1744

1745

1746

1747

1748

1749

1750

1751

1752
1753

1754

1755
1756
1757
1758

1759

1760

Definitions Feature Test Macro

3.161

3.162

3.163

3.164

3.165

Feature Test Macro
A macro used to determine whether a particular set of features is included from a header.

Note: See also XSH Section 2.2 (on page 468).

Field

In the shell command language, a unit of text that is the result of parameter expansion,
arithmetic expansion, command substitution, or field splitting. During command processing, the
resulting fields are used as the command name and its arguments.

Note: Parameter Expansion is defined in detail in XCU Section 2.6.2 (on page 2306).
Arithmetic Expansion is defined in detail in XCU Section 2.6.4 (on page 2310).
Command Substitution is defined in detail in XCU Section 2.6.3 (on page 2309).
Field Splitting is defined in detail in XCU Section 2.6.5 (on page 2311).

For further information on command processing, see XCU Section 2.9.1 (on page 2316).

FIFO Special File (or FIFO)

A type of file with the property that data written to such a file is read on a first-in-first-out basis.

Note: Other characteristics of FIFOs are described in the System Interfaces volume of POSIX.1-2008,
Iseek (), open(), read (), and write().

File

An object that can be written to, or read from, or both. A file has certain attributes, including
access permissions and type. File types include regular file, character special file, block special
file, FIFO special file, symbolic link, socket, and directory. Other types of files may be supported
by the implementation.

File Description
See Open File Description in Section 3.253 (on page 73).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 59

1761

1762
1763
1764
1765
1766

1767

1768

1769
1770
1771
1772
1773

1774

1775

1776

1777

1778
1779

1780

1781

1782
1783
1784
1785

1786

1787

1788
1789

File Descriptor Definitions

3.166

3.167

3.168

3.169

3.170

3.171

60

File Descriptor

A per-process unique, non-negative integer used to identify an open file for the purpose of file
access. The value of a file descriptor is from zero to {OPEN_MAX]}. A process can have no more
than {OPEN_MAX] file descriptors open simultaneously. File descriptors may also be used to
implement message catalog descriptors and directory streams; see also Section 3.253 (on page
73).

Note: {OPEN_MAX} is defined in detail in <limits.h>.

File Group Class

The property of a file indicating access permissions for a process related to the group
identification of a process. A process is in the file group class of a file if the process is not in the
file owner class and if the effective group ID or one of the supplementary group IDs of the
process matches the group ID associated with the file. Other members of the class may be
implementation-defined.

File Mode
An object containing the file mode bits and file type of a file.

Note: File mode bits and file types are defined in detail in <sys/stat.h>.

File Mode Bits

A file’s file permission bits, set-user-ID-on-execution bit (S_ISUID), set-group-ID-on-execution
bit (S_ISGID), and, on directories, the restricted deletion flag bit (S_ISVTX).

Note: File Mode Bits are defined in detail in <sys/stat.h>.

Filename

A name consisting of 1 to {NAME_MAX] bytes used to name a file. The characters composing
the name may be selected from the set of all character values excluding the <slash> character
and the null byte. The filenames dot and dot-dot have special meaning. A filename is sometimes
referred to as a “pathname component”.

Note: Pathname Resolution is defined in detail in Section 4.12 (on page 111).

File Offset

The byte position in the file where the next I/O operation begins. Each open file description
associated with a regular file, block special file, or directory has a file offset. A character special

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1790
1791

1792

1793
1794
1795

1796

1797
1798
1799

1800

1801
1802
1803
1804

1805

1806

1807

1808

1809

1810
1811

1812

1813

Definitions File Offset

3.172

3.173

3.174

3.175

3.176

3.177

file that does not refer to a terminal device may have a file offset. There is no file offset specified
for a pipe or FIFO.

File Other Class

The property of a file indicating access permissions for a process related to the user and group
identification of a process. A process is in the file other class of a file if the process is not in the
file owner class or file group class.

File Owner Class

The property of a file indicating access permissions for a process related to the user
identification of a process. A process is in the file owner class of a file if the effective user ID of
the process matches the user ID of the file.

File Permission Bits

Information about a file that is used, along with other information, to determine whether a
process has read, write, or execute/search permission to a file. The bits are divided into three
parts: owner, group, and other. Each part is used with the corresponding file class of processes.
These bits are contained in the file mode.

Note: File modes are defined in detail in <sys/stat.h>.

File Access Permissions are defined in detail in Section 4.4 (on page 108).

File Serial Number

A per-file system unique identifier for a file.

File System

A collection of files and certain of their attributes. It provides a name space for file serial
numbers referring to those files.

File Type
See File in Section 3.164 (on page 59).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 61

1814

1815
1816
1817

1818

1819

1820

1821
1822

1823

1824

1825

1826

1827

1828
1829
1830
1831

1832

1833

1834

Filter

3.178

3.179

3.180

3.181

3.182

3.183

3.184

62

Definitions

Filter

A command whose operation consists of reading data from standard input or a list of input files
and writing data to standard output. Typically, its function is to perform some transformation
on the data stream.

First Open (of a File)

When a process opens a file that is not currently an open file within any process.

Flow Control

The mechanism employed by a communications provider that constrains a sending entity to
wait until the receiving entities can safely receive additional data without loss.

Foreground Job

See Foreground Process Group in Section 3.183.

Foreground Process

A process that is a member of a foreground process group.

Foreground Process Group (or Foreground Job)

A process group whose member processes have certain privileges, denied to processes in
background process groups, when accessing their controlling terminal. Each session that has
established a connection with a controlling terminal has at most one process group of the session
as the foreground process group of that controlling terminal.

Note: The General Terminal Interface is defined in detail in Chapter 11.

Foreground Process Group ID

The process group ID of the foreground process group.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1835

1836
1837
1838
1839
1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852
1853
1854
1855

1856

1857
1858
1859

1860

1861
1862

Definitions Form-Feed Character (<form-feed>)

3.185

3.186

3.187

3.188

3.189

3.190

Form-Feed Character (<form-feed>)

A character that in the output stream indicates that printing should start on the next page of an
output device. It is the character designated by " \£’ in the C language. If the form-feed is not
the first character of an output line, the result is unspecified. It is unspecified whether this
character is the exact sequence transmitted to an output device by the system to accomplish the
movement to the next page.

Graphic Character
A member of the graph character class of the current locale.

Note: The graph character class is defined in detail in Section 7.3.1 (on page 139).

Group Database
A system database that contains at least the following information for each group ID:
e Group name
» Numerical group ID
o List of users allowed in the group
The list of users allowed in the group is used by the newgrp utility.
Note: The newgrp utility is defined in detail in the Shell and Utilities volume of POSIX.1-2008.

Group ID

A non-negative integer, which can be contained in an object of type gid_t, that is used to identify
a group of system users. Each system user is a member of at least one group. When the identity
of a group is associated with a process, a group ID value is referred to as a real group ID, an
effective group ID, one of the supplementary group IDs, or a saved set-group-ID.

Group Name

A string that is used to identify a group; see also Section 3.187. To be portable across conforming
systems, the value is composed of characters from the portable filename character set. The
<hyphen> should not be used as the first character of a portable group name.

Hard Limit

A system resource limitation that may be reset to a lesser or greater limit by a privileged process.
A non-privileged process is restricted to only lowering its hard limit.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 63

1863

1864
1865
1866

1867

1868

1869

1870

1871
1872
1873
1874
1875

1876

1877

1878

1879
1880

1881

1882
1883
1884

1885

1886

Hard Link Definitions

3.191

3.192

3.193

3.194

3.195

3.196

3.197

64

Hard Link

The relationship between two directory entries that represent the same file; see also Section 3.130
(on page 53). The result of an execution of the In utility (without the —s option) or the link()
function. This term is contrasted against symbolic link; see also Section 3.373 (on page 94).

Home Directory
The directory specified by the HOME environment variable.

Host Byte Order

The arrangement of bytes in any integer type when using a specific machine architecture.

Note: Two common methods of byte ordering are big-endian and little-endian. Big-endian is a format
for storage of binary data in which the most significant byte is placed first, with the rest in
descending order. Little-endian is a format for storage or transmission of binary data in which
the least significant byte is placed first, with the rest in ascending order. See also Section 4.9 (on
page 110).

Incomplete Line

A sequence of one or more non-<newline> characters at the end of the file.

Inf

A value representing +infinity or a value representing —infinity that can be stored in a floating
type. Not all systems support the Inf values.

Instrumented Application

An application that contains at least one call to the trace point function posix_trace_event(). Each
process of an instrumented application has a mapping of trace event names to trace event type
identifiers. This mapping is used by the trace stream that is created for that process.

Interactive Shell

A processing mode of the shell that is suitable for direct user interaction.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1887

1888
1889

1890

1891
1892

1893

1894
1895

1896

1897

1898
1899

1900

1901

1902
1903
1904

1905

1906
1907

Definitions Internationalization

3.198

3.199

3.200

3.201

3.202

3.203

Internationalization

The provision within a computer program of the capability of making itself adaptable to the
requirements of different native languages, local customs, and coded character sets.

Interprocess Communication

A functionality enhancement to add a high-performance, deterministic interprocess
communication facility for local communication.

Invoke

To perform command search and execution actions, except that searching for shell functions and
special built-in utilities is suppressed; see also Section 3.155 (on page 58).

Note: Command Search and Execution is defined in detail in XCU Section 2.9.1.1 (on page 2317).

Job

A set of processes, comprising a shell pipeline, and any processes descended from it, that are all
in the same process group.

Note: See also XCU Section 2.9.2 (on page 2318).

Job Control

A facility that allows users selectively to stop (suspend) the execution of processes and continue
(resume) their execution at a later point. The user typically employs this facility via the
interactive interface jointly supplied by the terminal I/O driver and a command interpreter.

Job Control Job ID

A handle that is used to refer to a job. The job control job ID can be any of the forms shown in
the following table:

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 65

1908

1909
1910

1911
1912
1913
1914
1915
1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928
1929

1930

1931

Job Control Job ID Definitions

3.204

3.205

3.206

3.207

3.208

3.209

3.210

66

Table 3-1 Job Control Job ID Formats

Job Control
Job ID Meaning
%% Current job.
Yo+ Current job.
Yo— Previous job.
Yon Job number #.
Yostring Job whose command begins with string.
Y%?string Job whose command contains string.

Last Close (of a File)

When a process closes a file, resulting in the file not being an open file within any process.

Line

A sequence of zero or more non-<newline> characters plus a terminating <newline> character.

Linger

The period of time before terminating a connection, to allow outstanding data to be transferred.

Link
See Directory Entry in Section 3.130 (on page 53).

Link Count

The number of directory entries that refer to a particular file.

Local Customs

The conventions of a geographical area or territory for such things as date, time, and currency
formats.

Local Interprocess Communication (Local IPC)

The transfer of data between processes in the same system.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1932

1933
1934

1935

1936

1937
1938

1939

1940
1941

1942

1943

1944

1945
1946
1947
1948

1949

1950
1951
1952

1953

Definitions Locale

3.211

3.212

3.213

3.214

3.215

3.216

Locale

The definition of the subset of a user’s environment that depends on language and cultural
conventions.

Note: Locales are defined in detail in Chapter 7 (on page 135).

Localization

The process of establishing information within a computer system specific to the operation of
particular native languages, local customs, and coded character sets.

Login

The unspecified activity by which a user gains access to the system. Each login is associated
with exactly one login name.

Login Name

A user name that is associated with a login.

Map

To create an association between a page-aligned range of the address space of a process and
some memory object, such that a reference to an address in that range of the address space
results in a reference to the associated memory object. The mapped memory object is not
necessarily memory-resident.

Marked Message

A STREAMSs message on which a certain flag is set. Marking a message gives the application
protocol-specific information. An application can use ioctl() to determine whether a given
message is marked.

Note: The ioctl() function is defined in detail in the System Interfaces volume of POSIX.1-2008.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 67

1954

1955
1956
1957

1958

1959

1960

1961

1962

1963

1964

1965

1966
1967

1968

1969

1970
1971

1972

1973
1974
1975

1976

1977
1978
1979

Matched Definitions

3.217

3.218

3.219

3.220

3.221

3.222

68

Matched

A state applying to a sequence of zero or more characters when the characters in the sequence
correspond to a sequence of characters defined by a basic regular expression or extended regular
expression pattern.

Note: Regular Expressions are defined in detail in Chapter 9 (on page 181).

Memory Mapped Files

A facility to allow applications to access files as part of the address space.

Memory Object

One of:
« A file (see Section 3.164, on page 59)
¢ A shared memory object (see Section 3.340, on page 88)
A typed memory object (see Section 3.421, on page 101)

When used in conjunction with mmap(), a memory object appears in the address space of the
calling process.

Note: The mmap () function is defined in detail in the System Interfaces volume of POSIX.1-2008.

Memory-Resident

The process of managing the implementation in such a way as to provide an upper bound on
memory access times.

Message

In the context of programmatic message passing, information that can be transferred between
processes or threads by being added to and removed from a message queue. A message consists
of a fixed-size message buffer.

Message Catalog

In the context of providing natural language messages to the user, a file or storage area
containing program messages, command prompts, and responses to prompts for a particular
native language, territory, and codeset.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1980

1981
1982
1983

1984

1985
1986

1987

1988

1989

1990

1991
1992

1993

1994
1995

1996

1997

1998
1999
2000

2001

2002
2003
2004
2005

Definitions Message Catalog Descriptor

3.223

3.224

3.225

3.226

3.227

3.228

3.229

Message Catalog Descriptor

In the context of providing natural language messages to the user, a per-process unique value
used to identify an open message catalog. A message catalog descriptor may be implemented
using a file descriptor.

Message Queue

In the context of programmatic message passing, an object to which messages can be added and
removed. Messages may be removed in the order in which they were added or in priority order.

Mode

A collection of attributes that specifies a file’s type and its access permissions.

Note: File Access Permissions are defined in detail in Section 4.4 (on page 108).

Monotonic Clock

A clock measuring real time, whose value cannot be set via clock_settime() and which cannot
have negative clock jumps.

Mount Point

Either the system root directory or a directory for which the st_dev field of structure stat differs
from that of its parent directory.

Note: The stat structure is defined in detail in <sys/stat.h>.

Multi-Character Collating Element

A sequence of two or more characters that collate as an entity. For example, in some coded
character sets, an accented character is represented by a non-spacing accent, followed by the
letter. Other examples are the Spanish elements ch and Il.

Mutex

A synchronization object used to allow multiple threads to serialize their access to shared data.
The name derives from the capability it provides; namely, mutual-exclusion. The thread that has
locked a mutex becomes its owner and remains the owner until that same thread unlocks the
mutex.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 69

2006

2007
2008

2009

2010

2011
2012
2013

2014

2015
2016

2017

2018
2019

2020

2021
2022

2023

2024

2025

2026
2027

2028

2029
2030

Name

3.230

3.231

3.232

3.233

3.234

3.235

3.236

70

Definitions

Name

In the shell command language, a word consisting solely of underscores, digits, and alphabetics
from the portable character set. The first character of a name is not a digit.

Note: The Portable Character Set is defined in detail in Section 6.1 (on page 125).

Named STREAM

A STREAMS-based file descriptor that is attached to a name in the file system name space. All
subsequent operations on the named STREAM act on the STREAM that was associated with the
file descriptor until the name is disassociated from the STREAM.

NaN (Not a Number)

A set of values that may be stored in a floating type but that are neither Inf nor valid floating-
point numbers. Not all systems support NaN values.

Native Language

A computer user’s spoken or written language, such as American English, British English,
Danish, Dutch, French, German, Italian, Japanese, Norwegian, or Swedish.

Negative Response

An input string that matches one of the responses acceptable to the LC_MESSAGES category
keyword noexpr, matching an extended regular expression in the current locale.

Note: The LC_MESSAGES category is defined in detail in Section 7.3.6 (on page 164).

Network

A collection of interconnected hosts.

Note: The term “network’ in POSIX.1-2008 is used to refer to the network of hosts. The term “batch
system” is used to refer to the network of batch servers.

Network Address

A network-visible identifier used to designate specific endpoints in a network. Specific
endpoints on host systems have addresses, and host systems may also have addresses.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2031

2032
2033
2034

2035

2036

2037
2038
2039
2040

2041

2042
2043
2044
2045
2046

2047

2048
2049
2050

2051
2052
2053
2054
2055
2056

2057

2058
2059
2060

Definitions Network Byte Order

3.237

3.238

3.239

3.240

3.241

Network Byte Order

The way of representing any integer type such that, when transmitted over a network via a
network endpoint, the int type is transmitted as an appropriate number of octets with the most
significant octet first, followed by any other octets in descending order of significance.

Note: This order is more commonly known as big-endian ordering. See also Section 4.9 (on page 110).

Newline Character (<newline>)

A character that in the output stream indicates that printing should start at the beginning of the
next line. It is the character designated by ’ \n’ in the C language. It is unspecified whether this
character is the exact sequence transmitted to an output device by the system to accomplish the
movement to the next line.

Nice Value

A number used as advice to the system to alter process scheduling. Numerically smaller values
give a process additional preference when scheduling a process to run. Numerically larger
values reduce the preference and make a process less likely to run. Typically, a process with a
smaller nice value runs to completion more quickly than an equivalent process with a higher
nice value. The symbol {NZEROY} specifies the default nice value of the system.

Non-Blocking

A property of an open file description that causes function calls involving it to return without
delay when it is detected that the requested action associated with the function call cannot be
completed without unknown delay.

Note: The exact semantics are dependent on the type of file associated with the open file description.
For data reads from devices such as ttys and FIFOs, this property causes the read to return
immediately when no data was available. Similarly, for writes, it causes the call to return
immediately when the thread would otherwise be delayed in the write operation; for example,
because no space was available. For networking, it causes functions not to await protocol events
(for example, acknowledgements) to occur. See also XSH Section 2.10.7 (on page 519).

Non-Spacing Characters

A character, such as a character representing a diacritical mark in the ISO/IEC 6937:2001
standard coded graphic character set, which is used in combination with other characters to
form composite graphic symbols.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 71

2061

2062

2063

2064

2065

2066
2067
2068
2069

2070

2071

2072

2073

2074

2075

2076

2077
2078
2079
2080

2081

2082

NUL

3.242

3.243

3.244

3.245

3.246

3.247

3.248

3.249

72

Definitions

NUL

A character with all bits set to zero.

Null Byte
A byte with all bits set to zero.

Null Pointer

A pointer obtained by converting an integer constant expression with the value 0, or such an
expression cast to type void *, to a pointer type; for example, (char *)0. The C language
guarantees that a null pointer compares unequal to a pointer to any object or function, so it is
used by many functions that return pointers to indicate an error.

Null String
See Empty String in Section 3.146 (on page 56).

Null Wide-Character Code

A wide-character code with all bits set to zero.

Number-Sign Character (<number-sign>)

The character ’ #, also known as hash sign.

Object File

A regular file containing the output of a compiler, formatted as input to a linkage editor for
linking with other object files into an executable form. The methods of linking are unspecified
and may involve the dynamic linking of objects at runtime. The internal format of an object file
is unspecified, but a conforming application cannot assume an object file is a text file.

Octet

Unit of data representation that consists of eight contiguous bits.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2083

2084
2085

2086

2087

2088

2089

2090

2091
2092
2093
2094

2095

2096
2097

2098

2099

2100

Definitions Offset Maximum

3.250

3.251

3.252

3.253

3.254

3.255

Offset Maximum

An attribute of an open file description representing the largest value that can be used as a file
offset.

Opaque Address

An address such that the entity making use of it requires no details about its contents or format.

Open File

A file that is currently associated with a file descriptor.

Open File Description

A record of how a process or group of processes is accessing a file. Each file descriptor refers to
exactly one open file description, but an open file description can be referred to by more than
one file descriptor. The file offset, file status, and file access modes are attributes of an open file
description.

Operand

An argument to a command that is generally used as an object supplying information to a utility
necessary to complete its processing. Operands generally follow the options in a command line.

Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 213).

Operator

In the shell command language, either a control operator or a redirection operator.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 73

2101

2102
2103

2104

2105

2106
2107

2108

2109

2110

2111

2112

2113
2114

2115

2116

2117
2118
2119

2120

2121
2122
2123

Option

3.256

3.257

3.258

3.259

3.260

3.261

74

Definitions

Option

An argument to a command that is generally used to specify changes in the utility’s default
behavior.

Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 213).

Option-Argument

A parameter that follows certain options. In some cases an option-argument is included within
the same argument string as the option—in most cases it is the next argument.

Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 213).

Orientation
A stream has one of three orientations: unoriented, byte-oriented, or wide-oriented.

Note: For further information, see XSH Section 2.5.2 (on page 493).

Orphaned Process Group

A process group in which the parent of every member is either itself a member of the group or is
not a member of the group’s session.

Page
The granularity of process memory mapping or locking.

Physical memory and memory objects can be mapped into the address space of a process on
page boundaries and in integral multiples of pages. Process address space can be locked into
memory (made memory-resident) on page boundaries and in integral multiples of pages.

Page Size

The size, in bytes, of the system unit of memory allocation, protection, and mapping. On
systems that have segment rather than page-based memory architectures, the term “page”
means a segment.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2124

2125
2126
2127

2128

2129
2130
2131

2132

2133
2134

2135
2136

2137

2138

2139

2140

2141
2142
2143

2144

2145
2146
2147
2148
2149
2150

2151

Definitions Parameter

3.262

3.263

3.264

3.265

3.266

Parameter

In the shell command language, an entity that stores values. There are three types of parameters:
variables (named parameters), positional parameters, and special parameters. Parameter
expansion is accomplished by introducing a parameter with the ’ $’ character.

Note: See also XCU Section 2.5 (on page 2301).

In the C language, an object declared as part of a function declaration or definition that acquires
a value on entry to the function, or an identifier following the macro name in a function-like
macro definition.

Parent Directory

When discussing a given directory, the directory that both contains a directory entry for the
given directory and is represented by the pathname dot-dot in the given directory.

When discussing other types of files, a directory containing a directory entry for the file under
discussion.

This concept does not apply to dot and dot-dot.

Parent Process

The process which created (or inherited) the process under discussion.

Parent Process 1D

An attribute of a new process identifying the parent of the process. The parent process ID of a
process is the process ID of its creator, for the lifetime of the creator. After the creator’s lifetime
has ended, the parent process ID is the process ID of an implementation-defined system process.

Pathname

A character string that is used to identify a file. In the context of POSIX.1-2008, a pathname may
be limited to {PATH_MAX]} bytes, including the terminating null byte. It has an optional
beginning <slash>, followed by zero or more filenames separated by <slash> characters. A
pathname may optionally contain one or more trailing <slash> characters. Multiple successive
<slash> characters are considered to be the same as one <slash>, except for the case of exactly
two leading <slash> characters.

Note: Pathname Resolution is defined in detail in Section 4.12 (on page 111).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 75

2152

2153

2154

2155
2156
2157
2158
2159

2160
2161
2162
2163

2164

2165
2166

2167

2168

2169
2170

2171

2172
2173

2174

2175

2176

2177

2178
2179
2180

Pathname Component Definitions

3.267

3.268

3.269

3.270

3.271

3.272

76

Pathname Component
See Filename in Section 3.170 (on page 60).

Path Prefix

The part of a pathname up to, but not including, the last component and any trailing <slash>
characters, unless the pathname consists entirely of <slash> characters, in which case the path
prefix is ’/’ for a pathname containing either a single <slash> or three or more <slash>
characters, and ' / /' for the pathname //. The path prefix of a pathname containing no <slash>
characters is empty, but is treated as referring to the current working directory.

Note: The term is used both in the sense of identifying part of a pathname that forms the prefix and of
joining a non-empty path prefix to a filename to form a pathname. In the latter case, the path
prefix need not have a trailing <slash> (in which case the joining is done with a <slash>
character).

Pattern

A sequence of characters used either with regular expression notation or for pathname
expansion, as a means of selecting various character strings or pathnames, respectively.

Note: Regular Expressions are defined in detail in Chapter 9 (on page 181).
See also XCU Section 2.6.6 (on page 2311).

The syntaxes of the two types of patterns are similar, but not identical; POSIX.1-2008 always
indicates the type of pattern being referred to in the immediate context of the use of the term.

Period Character (<period>)

The character ’ . ”. The term “period” is contrasted with dot (see also Section 3.136, on page 54),
which is used to describe a specific directory entry.

Permissions
Attributes of an object that determine the privilege necessary to access or manipulate the object.

Note: File Access Permissions are defined in detail in Section 4.4 (on page 108).

Persistence

A mode for semaphores, shared memory, and message queues requiring that the object and its
state (including data, if any) are preserved after the object is no longer referenced by any
process.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2181
2182

2183

2184

2185

2186

2187
2188

2189

2190
2191

2192

2193

2194

2195

2196
2197
2198

2199

Definitions Persistence

3.273

3.274

3.275

3.276

Persistence of an object does not imply that the state of the object is maintained across a system
crash or a system reboot.

Pipe
An object identical to a FIFO which has no links in the file hierarchy.
Note: The pipe() function is defined in detail in the System Interfaces volume of POSIX.1-2008.

Polling

A scheduling scheme whereby the local process periodically checks until the pre-specified
events (for example, read, write) have occurred.

Portable Character Set

The collection of characters that are required to be present in all locales supported by
conforming systems.

Note: The Portable Character Set is defined in detail in Section 6.1 (on page 125).

This term is contrasted against the smaller portable filename character set; see also Section 3.276.

Portable Filename Character Set
The set of characters from which portable filenames are constructed.

ABCDEFGHIJKLMNOPOQRSTUVWIXYZ
abcdefghijklmnopgrstuvwzxyz
0123456789 ._-

The last three characters are the <period>, <underscore>, and <hyphen> characters, respectively.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 77

2200

2201
2202

2203

2204

2205

2206
2207

2208

2209
2210

2211

2212
2213

2214

2215
2216

2217

2218

2219
2220

2221

Positional Parameter Definitions

3.277

3.278

3.279

3.280

3.281

3.282

78

Positional Parameter

In the shell command language, a parameter denoted by a single digit or one or more digits in
curly braces.

Note: For further information, see XCU Section 2.5.1 (on page 2301).

Preallocation
The reservation of resources in a system for a particular use.

Preallocation does not imply that the resources are immediately allocated to that use, but merely
indicates that they are guaranteed to be available in bounded time when needed.

Preempted Process (or Thread)

A running thread whose execution is suspended due to another thread becoming runnable at a
higher priority.

Previous Job

In the context of job control, the job that will be used as the default for the fg or bg utilities if the
current job exits. There is at most one previous job; see also Section 3.203 (on page 65).

Printable Character

One of the characters included in the print character classification of the LC_CTYPE category in
the current locale.

Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 139).

Printable File

A text file consisting only of the characters included in the print and space character
classifications of the LC_CTYPE category and the <backspace>, all in the current locale.

Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 139).

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2222

2223
2224
2225

2226

2227
2228
2229
2230

2231

2232
2233
2234

2235

2236
2237

2238

2239
2240

2241

2242

Definitions Priority

3.283

3.284

3.285

3.286

3.287

3.288

Priority

A non-negative integer associated with processes or threads whose value is constrained to a
range defined by the applicable scheduling policy. Numerically higher values represent higher
priorities.

Priority Band

The queuing order applied to normal priority STREAMS messages. High priority STREAMS
messages are not grouped by priority bands. The only differentiation made by the STREAMS
mechanism is between zero and non-zero bands, but specific protocol modules may differentiate
between priority bands.

Priority Inversion

A condition in which a thread that is not voluntarily suspended (waiting for an event or time
delay) is not running while a lower priority thread is running. Such blocking of the higher
priority thread is often caused by contention for a shared resource.

Priority Scheduling

A performance and determinism improvement facility to allow applications to determine the
order in which threads that are ready to run are granted access to processor resources.

Priority-Based Scheduling

Scheduling in which the selection of a running thread is determined by the priorities of the
runnable processes or threads.

Privilege
See Appropriate Privileges in Section 3.20 (on page 36).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 79

Process Definitions

»i3 3.289 Process

2244 An address space with one or more threads executing within that address space, and the
2245 required system resources for those threads.

2246 Note: Many of the system resources defined by POSIX.1-2008 are shared among all of the threads
2247 within a process. These include the process ID, the parent process ID, process group ID, session
2248 membership, real, effective, and saved set-user-ID, real, effective, and saved set-group-ID,
2249 supplementary group IDs, current working directory, root directory, file mode creation mask,
2250 and file descriptors.

251 3.290 Process Group

252 A collection of processes that permits the signaling of related processes. Each process in the
2253 system is a member of a process group that is identified by a process group ID. A newly created
2254 process joins the process group of its creator.

25 3.291 Process Group ID

2256 The unique positive integer identifier representing a process group during its lifetime.

2257 Note: See also Process Group ID Reuse defined in Section 4.13 (on page 112).

253 3.292 Process Group Leader

2259 A process whose process ID is the same as its process group ID.

260 3.293 Process Group Lifetime

2261 The period of time that begins when a process group is created and ends when the last
2262 remaining process in the group leaves the group, due either to the end of the lifetime of the last
2263 process or to the last remaining process calling the setsid () or setpgid () functions.

2264 Note: The setsid() and setpgid() functions are defined in detail in the System Interfaces volume of
2265 POSIX.1-2008.

80 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2266

2267

2268

2269

2270
2271
2272
2273
2274
2275
2276
2277

2278
2279

2280

2281
2282
2283
2284

2285

2286

2287
2288
2289
2290

2291
2292

2293
2294

2295

2296

Definitions Process ID

3.294

3.295

3.296

3.297

3.298

Process ID
The unique positive integer identifier representing a process during its lifetime.

Note: See also Process ID Reuse defined in Section 4.13 (on page 112).

Process Lifetime

The period of time that begins when a process is created and ends when its process ID is
returned to the system. After a process is created by fork(), posix_spawn (), or posix_spawnp(), it is
considered active. At least one thread of control and address space exist until it terminates. It
then enters an inactive state where certain resources may be returned to the system, although
some resources, such as the process ID, are still in use. When another process executes a wait (),
waitid(), or waitpid() function for an inactive process, the remaining resources are returned to
the system. The last resource to be returned to the system is the process ID. At this time, the
lifetime of the process ends.

Note: The fork(), posix_spawn (), posix_spawnp (), wait (), waitid (), and waitpid () functions are defined in
detail in the System Interfaces volume of POSIX.1-2008.

Process Memory Locking

A performance improvement facility to bind application programs into the high-performance
random access memory of a computer system. This avoids potential latencies introduced by the
operating system in storing parts of a program that were not recently referenced on secondary
memory devices.

Process Termination
There are two kinds of process termination:

1. Normal termination occurs by a return from main(), when requested with the exit(),
_exit(), or _Exit() functions; or when the last thread in the process terminates by
returning from its start function, by calling the pthread_exit() function, or through
cancellation.

2. Abnormal termination occurs when requested by the abort() function or when some
signals are received.

Note: The _exit(), _Exit(), abort(), and exit() functions are defined in detail in the System Interfaces
volume of POSIX.1-2008.

Process-To-Process Communication

The transfer of data between processes.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 81

2297

2298

2299

2300
2301
2302

2303

2304

2305

2306
2307
2308
2309
2310
2311

2312

2313

2314

2315

2316

2317

2318
2319
2320

2321
2322
2323

Process Virtual Time Definitions

3.299

3.300

3.301

3.302

3.303

3.304

3.305

82

Process Virtual Time

The measurement of time in units elapsed by the system clock while a process is executing.

Program

A prepared sequence of instructions to the system to accomplish a defined task. The term
“program” in POSIX.1-2008 encompasses applications written in the Shell Command Language,
complex utility input languages (for example, awk, lex, sed, and so on), and high-level languages.

Protocol

A set of semantic and syntactic rules for exchanging information.

Pseudo-Terminal

A facility that provides an interface that is identical to the terminal subsystem, except where
noted otherwise in POSIX.1-2008. A pseudo-terminal is composed of two devices: the “master
device” and a “slave device”. The slave device provides processes with an interface that is
identical to the terminal interface, although there need not be hardware behind that interface.
Anything written on the master device is presented to the slave as an input and anything
written on the slave device is presented as an input on the master side.

Radix Character

The character that separates the integer part of a number from the fractional part.

Read-Only File System
A file system that has implementation-defined characteristics restricting modifications.

Note: File Times Update is described in detail in Section 4.8 (on page 109).

Read-Write Lock

Multiple readers, single writer (read-write) locks allow many threads to have simultaneous
read-only access to data while allowing only one thread to have write access at any given time.
They are typically used to protect data that is read-only more frequently than it is changed.

Read-write locks can be used to synchronize threads in the current process and other processes if
they are allocated in memory that is writable and shared among the cooperating processes and
have been initialized for this behavior.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2324

2325
2326

2327

2328
2329

2330

2331
2332

2333

2334
2335

2336

2337

2338

2339
2340

2341

Definitions Real Group ID

3.306

3.307

3.308

3.309

3.310

3.311

Real Group ID

The attribute of a process that, at the time of process creation, identifies the group of the user
who created the process; see also Section 3.188 (on page 63).

Real Time

Time measured as total units elapsed by the system clock without regard to which thread is
executing.

Realtime Signal Extension

A determinism improvement facility to enable asynchronous signal notifications to an
application to be queued without impacting compatibility with the existing signal functions.

Real User ID

The attribute of a process that, at the time of process creation, identifies the user who created the
process; see also Section 3.428 (on page 102).

Record

A collection of related data units or words which is treated as a unit.

Redirection

In the shell command language, a method of associating files with the input or output of
commands.

Note: For further information, see XCU Section 2.7 (on page 2312).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 83

Redirection Operator Definitions

»e2 3.312 Redirection Operator

2343 In the shell command language, a token that performs a redirection function. It is one of the
2344 following symbols:
2345 < > > | << >> <& >& <<— <>

x4 3.313 Referenced Shared Memory Object

2347 A shared memory object that is open or has one or more mappings defined on it.

s 3.314 Refresh

2349 To ensure that the information on the user’s terminal screen is up-to-date.

250 3.315 Regular Expression
2351 A pattern that selects specific strings from a set of character strings.

2352 Note: Regular Expressions are described in detail in Chapter 9 (on page 181).

23 3.316 Region

2354 In the context of the address space of a process, a sequence of addresses.

2355 In the context of a file, a sequence of offsets.

256 3.317 Regular File

2357 A file that is a randomly accessible sequence of bytes, with no further structure imposed by the
2358 system.

84 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2359

2360

2361

2362

2363
2364

2365

2366
2367
2368

2369

2370
2371

2372

2373

2374

2375

2376

2377

2378
2379

2380

2381

Definitions Relative Pathname

3.318

3.319

3.320

3.321

3.322

3.323

3.324

3.325

Relative Pathname

A pathname not beginning with a <slash> character.

Note: Pathname Resolution is defined in detail in Section 4.12 (on page 111).

Relocatable File

A file holding code or data suitable for linking with other object files to create an executable or a
shared object file.

Relocation

The process of connecting symbolic references with symbolic definitions. For example, when a
program calls a function, the associated call instruction transfers control to the proper
destination address at execution.

Requested Batch Service

A service that is either rejected or performed prior to a response from the service to the
requester.

(Time) Resolution

The minimum time interval that a clock can measure or whose passage a timer can detect.

Robust Mutex

A mutex with the robust attribute set.

Note: The robust attribute is defined in detail by the pthread_mutexattr_getrobust () function.

Root Directory

A directory, associated with a process, that is used in pathname resolution for pathnames that
begin with a <slash> character.

Runnable Process (or Thread)

A thread that is capable of being a running thread, but for which no processor is available.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 85

2382

2383
2384

2385

2386
2387

2388
2389

2390

2391
2392

2393
2394

2395

2396
2397

2398
2399

2400

2401
2402

2403

2404

2405

2406
2407

Running Process (or Thread) Definitions

3.326

3.327

3.328

3.329

3.330

3.331

3.332

86

Running Process (or Thread)

A thread currently executing on a processor. On multi-processor systems there may be more
than one such thread in a system at a time.

Saved Resource Limits

An attribute of a process that provides some flexibility in the handling of unrepresentable
resource limits, as described in the exec family of functions and setrlimit ().

Note: The exec and setrlimit() functions are defined in detail in the System Interfaces volume of
POSIX.1-2008.

Saved Set-Group-ID

An attribute of a process that allows some flexibility in the assignment of the effective group ID
attribute, as described in the exec family of functions and setgid ().

Note: The exec and sefgid() functions are defined in detail in the System Interfaces volume of
POSIX.1-2008.

Saved Set-User-ID

An attribute of a process that allows some flexibility in the assignment of the effective user ID
attribute, as described in the exec family of functions and setuid ().

Note: The exec and setuid() functions are defined in detail in the System Interfaces volume of
POSIX.1-2008.

Scheduling

The application of a policy to select a runnable process or thread to become a running process or
thread, or to alter one or more of the thread lists.

Scheduling Allocation Domain

The set of processors on which an individual thread can be scheduled at any given time.

Scheduling Contention Scope

A property of a thread that defines the set of threads against which that thread competes for
resources.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2408
2409
2410

2411

2412
2413

2414

2415

2416
2417

2418

2419
2420

2421

2422

2423

2424
2425

2426

Definitions Scheduling Contention Scope

3.333

3.334

3.335

3.336

For example, in a scheduling decision, threads sharing scheduling contention scope compete for
processor resources. In POSIX.1-2008, a thread has scheduling contention scope of either
PTHREAD_SCOPE_SYSTEM or PTHREAD_SCOPE_PROCESS.

Scheduling Policy

A set of rules that is used to determine the order of execution of processes or threads to achieve
some goal.

Note: Scheduling Policy is defined in detail in Section 4.14 (on page 112).

Screen

A rectangular region of columns and lines on a terminal display. A screen may be a portion of a
physical display device or may occupy the entire physical area of the display device.

Scroll

To move the representation of data vertically or horizontally relative to the terminal screen.
There are two types of scrolling;:

1. The cursor moves with the data.

2. The cursor remains stationary while the data moves.

Semaphore

A minimum synchronization primitive to serve as a basis for more complex synchronization
mechanisms to be defined by the application program.

Note: Semaphores are defined in detail in Section 4.16 (on page 113).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 87

2427

2428
2429
2430
2431

2432

2433

2434

2435
2436

2437

2438
2439

2440

2441
2442

2443

2444
2445

2446

2447

2448
2449

Session

3.337

3.338

3.339

3.340

3.341

3.342

88

Definitions

Session

A collection of process groups established for job control purposes. Each process group is a
member of a session. A process is considered to be a member of the session of which its process
group is a member. A newly created process joins the session of its creator. A process can alter
its session membership; see setsid (). There can be multiple process groups in the same session.

Note: The setsid () function is defined in detail in the System Interfaces volume of POSIX.1-2008.

Session Leader
A process that has created a session.

Note: For further information, see the setsid() function defined in the System Interfaces volume of
POSIX.1-2008.

Session Lifetime

The period between when a session is created and the end of the lifetime of all the process
groups that remain as members of the session.

Shared Memory Object

An object that represents memory that can be mapped concurrently into the address space of
more than one process.

Shell

A program that interprets sequences of text input as commands. It may operate on an input
stream or it may interactively prompt and read commands from a terminal.

Shell, the

The Shell Command Language Interpreter; a specific instance of a shell.

Note: For further information, see the sh utility defined in the Shell and Utilities volume of
POSIX.1-2008.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2450

2451
2452
2453
2454

2455

2456

2457

2458
2459
2460

2461

2462
2463

2464

2465

2466

2467

2468

2469
2470

2471

2472
2473
2474
2475

Definitions Shell Script

3.343

3.344

3.345

3.346

3.347

3.348

3.349

Shell Script

A file containing shell commands. If the file is made executable, it can be executed by specifying
its name as a simple command. Execution of a shell script causes a shell to execute the
commands within the script. Alternatively, a shell can be requested to execute the commands in
a shell script by specifying the name of the shell script as the operand to the sk utility.

Note: Simple Commands are defined in detail in XCU Section 2.9.1 (on page 2316).
The sh utility is defined in detail in the Shell and Utilities volume of POSIX.1-2008.

Signal

A mechanism by which a process or thread may be notified of, or affected by, an event occurring
in the system. Examples of such events include hardware exceptions and specific actions by
processes. The term signal is also used to refer to the event itself.

Signal Stack

Memory established for a thread, in which signal handlers catching signals sent to that thread
are executed.

Single-Quote Character

The character designated by * \” ’ in the C language, also known as <apostrophe>.

Slash Character (<slash>)

The character ’ /', also known as solidus.

Socket

A file of a particular type that is used as a communications endpoint for process-to-process
communication as described in the System Interfaces volume of POSIX.1-2008.

Socket Address

An address associated with a socket or remote endpoint, including an address family identifier
and addressing information specific to that address family. The address may include multiple
parts, such as a network address associated with a host system and an identifier for a specific
endpoint.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 89

2476

2477
2478

2479

2480
2481

2482
2483

2484
2485

2486

2487
2488

2489

2490
2491
2492

2493

2494
2495

2496

2497

Soft Limit Definitions

3.350

3.351

3.352

3.353

3.354

90

Soft Limit

A resource limitation established for each process that the process may set to any value less than
or equal to the hard limit.

Source Code

When dealing with the Shell Command Language, input to the command language interpreter.
The term “shell script” is synonymous with this meaning.

When dealing with an ISO/IEC-conforming programming language, source code is input to a
compiler conforming to that ISO/IEC standard.

Source code also refers to the input statements prepared for the following standard utilities: awk,
be, ed, lex, localedef, make, sed, and yacc.

Source code can also refer to a collection of sources meeting any or all of these meanings.

Note: The awk, be, ed, lex, localedef, make, sed, and yacc utilities are defined in detail in the Shell and
Utilities volume of POSIX.1-2008.

Space Character (<space>)

The character defined in the portable character set as <space>. The <space> character is a
member of the space character class of the current locale, but represents the single character, and
not all of the possible members of the class; see also Section 3.434 (on page 103).

Spawn

A process creation primitive useful for systems that have difficulty with fork() and as an efficient
replacement for fork()/exec.

Special Built-In
See Built-In Utility in Section 3.83 (on page 46).

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2498

2499

2500

2501

2502

2503

2504

2505
2506

2507

2508

2509

2510

2511

2512

2513

2514

Definitions Special Parameter

3.355

3.356

3.357

3.358

3.359

3.360

3.361

Special Parameter

In the shell command language, a parameter named by a single character from the following list:
e # ! - 5 0

Note: For further information, see XCU Section 2.5.2 (on page 2302).

Spin Lock

A synchronization object used to allow multiple threads to serialize their access to shared data.

Sporadic Server

A scheduling policy for threads and processes that reserves a certain amount of execution
capacity for processing aperiodic events at a given priority level.

Standard Error

An output stream usually intended to be used for diagnostic messages.

Standard Input

An input stream usually intended to be used for primary data input.

Standard Output

An output stream usually intended to be used for primary data output.

Standard Utilities
The utilities described in the Shell and Utilities volume of POSIX.1-2008.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 91

2515

2516
2517
2518
2519
2520

2521

2522
2523

2524

2525
2526
2527
2528

2529

2530

2531
2532

2533

2534
2535

2536

2537
2538
2539

2540

2541

Stream

3.362

3.363

3.364

3.365

3.366

3.367

92

Definitions

Stream

Appearing in lowercase, a stream is a file access object that allows access to an ordered sequence
of characters, as described by the ISO C standard. Such objects can be created by the fdopen (),
fmemopen (), fopen(), open_memstream(), or popen() functions, and are associated with a file
descriptor. A stream provides the additional services of user-selectable buffering and formatted
input and output; see also Section 3.363.

Note: For further information, see XSH Section 2.5 (on page 490).

The fdopen (), fmemopen (), fopen (), open_memstream(), and popen() functions are defined in detail
in the System Interfaces volume of POSIX.1-2008.

STREAM

Appearing in uppercase, STREAM refers to a full-duplex connection between a process and an
open device or pseudo-device. It optionally includes one or more intermediate processing
modules that are interposed between the process end of the STREAM and the device driver (or
pseudo-device driver) end of the STREAM; see also Section 3.362.

Note: For further information, see XSH Section 2.6 (on page 494).

STREAM End

The STREAM end is the driver end of the STREAM and is also known as the downstream end of
the STREAM.

STREAM Head

The STREAM head is the beginning of the STREAM and is at the boundary between the system
and the application process. This is also known as the upstream end of the STREAM.

STREAMS Multiplexor

A driver with multiple STREAMS connected to it. Multiplexing with STREAMS connected
above is referred to as N-to-1, or “upper multiplexing”. Multiplexing with STREAMS connected
below is referred to as 1-to-N or “lower multiplexing”.

String

A contiguous sequence of bytes terminated by and including the first null byte.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2542

2543
2544

2545

2546

2547
2548
2549

2550
2551

2552

2553
2554
2555
2556

2557

2558
2559
2560

2561

2562

2563

2564

2565
2566

2567

Definitions Subshell

3.368

3.369

3.370

3.371

3.372

Subshell

A shell execution environment, distinguished from the main or current shell execution
environment.

Note: For further information, see XCU Section 2.12 (on page 2331).

Successfully Transferred

For a write operation to a regular file, when the system ensures that all data written is readable
on any subsequent open of the file (even one that follows a system or power failure) in the
absence of a failure of the physical storage medium.

For a read operation, when an image of the data on the physical storage medium is available to
the requesting process.

Supplementary Group ID

An attribute of a process used in determining file access permissions. A process has up to
{NGROUPS_MAX]} supplementary group IDs in addition to the effective group ID. The
supplementary group IDs of a process are set to the supplementary group IDs of the parent
process when the process is created.

Suspended Job

A job that has received a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal that caused the
process group to stop. A suspended job is a background job, but a background job is not
necessarily a suspended job.

Symbolic Constant

An object-like macro defined with a constant value.

Unless stated otherwise, the following shall apply to every symbolic constant:
+ It expands to a compile-time constant expression with an integer type.

¢ It may be defined as another type of constant—e.g., an enumeration constant—as well as
being a macro.

¢ It need not be usable in #if preprocessing directives.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 93

2568

2569
2570
2571

2572

2573

2574
2575
2576

2577

2578
2579

2580

2581
2582
2583
2584
2585

2586
2587
2588

2589
2590

2591

2592
2593
2594

2595

2596
2597

Symbolic Link Definitions

3.373

3.374

3.375

3.376

3.377

3.378

94

Symbolic Link

A type of file with the property that when the file is encountered during pathname resolution, a
string stored by the file is used to modify the pathname resolution. The stored string has a
length of {SYMLINK_MAX] bytes or fewer.

Note: Pathname Resolution is defined in detail in Section 4.12 (on page 111).

Synchronized Input and Output

A determinism and robustness improvement mechanism to enhance the data input and output
mechanisms, so that an application can ensure that the data being manipulated is physically
present on secondary mass storage devices.

Synchronized I/0O Completion

The state of an I/O operation that has either been successfully transferred or diagnosed as
unsuccessful.

Synchronized I/0 Data Integrity Completion

For read, when the operation has been completed or diagnosed if unsuccessful. The read is
complete only when an image of the data has been successfully transferred to the requesting
process. If there were any pending write requests affecting the data to be read at the time that
the synchronized read operation was requested, these write requests are successfully transferred
prior to reading the data.

For write, when the operation has been completed or diagnosed if unsuccessful. The write is
complete only when the data specified in the write request is successfully transferred and all file
system information required to retrieve the data is successfully transferred.

File attributes that are not necessary for data retrieval (access time, modification time, status
change time) need not be successfully transferred prior to returning to the calling process.

Synchronized 1/O File Integrity Completion

Identical to a synchronized I/O data integrity completion with the addition that all file
attributes relative to the I/O operation (including access time, modification time, status change
time) are successfully transferred prior to returning to the calling process.

Synchronized I/0O Operation

An I/0O operation performed on a file that provides the application assurance of the integrity of
its data and files.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2598

2599
2600

2601
2602

2603

2604

2605
2606
2607

2608

2609

2610

2611
2612
2613

2614

2615

2616

2617
2618

2619
2620

2621

2622
2623

Definitions Synchronous /O Operation

3.379

3.380

3.381

3.382

3.383

3.384

3.385

Synchronous I/O Operation

An I/O operation that causes the thread requesting the I/O to be blocked from further use of the
processor until that I/O operation completes.

Note: A synchronous 1/0 operation does not imply synchronized I/O data integrity completion or
synchronized I/0 file integrity completion.

Synchronously-Generated Signal
A signal that is attributable to a specific thread.

For example, a thread executing an illegal instruction or touching invalid memory causes a
synchronously-generated signal. Being synchronous is a property of how the signal was
generated and not a property of the signal number.

System
An implementation of POSIX.1-2008.

System Boot

An unspecified sequence of events that may result in the loss of transitory data; that is, data that
is not saved in permanent storage. For example, message queues, shared memory, semaphores,
and processes.

System Clock

A clock with at least one second resolution that contains seconds since the Epoch.

System Console

A device that receives messages sent by the syslog() function, and the fmtmsg() function when
the MM_CONSOLE flag is set.

Note: The syslog() and fimtmsg() functions are defined in detail in the System Interfaces volume of
POSIX.1-2008.

System Crash

An interval initiated by an unspecified circumstance that causes all processes (possibly other
than special system processes) to be terminated in an undefined manner, after which any

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 95

2624
2625

2626

2627
2628

2629

2630
2631
2632

2633

2634
2635

2636

2637

2638

2639
2640
2641
2642
2643
2644
2645

2646

2647
2648

System Crash Definitions

3.386

3.387

3.388

3.389

3.390

3.391

96

changes to the state and contents of files created or written to by an application prior to the
interval are undefined, except as required elsewhere in POSIX.1-2008.

System Databases

An implementation provides two system databases: the “group database” (see also Section
3.187, on page 63) and the “user database” (see also Section 3.427, on page 101).

System Documentation

All documentation provided with an implementation except for the conformance document.
Electronically distributed documents for an implementation are considered part of the system
documentation.

System Process

An object other than a process executing an application, that is provided by the system and has a
process ID.

System Reboot
See System Boot defined in Section 3.382 (on page 95).

System Trace Event

A trace event that is generated by the implementation, in response either to a system-initiated
action or to an application-requested action, except for a call to posix_trace_event(). When
supported by the implementation, a system-initiated action generates a process-independent
system trace event and an application-requested action generates a process-dependent system
trace event. For a system trace event not defined by POSIX.1-2008, the associated trace event
type identifier is derived from the implementation-defined name for this trace event, and the
associated data is of implementation-defined content and length.

System-Wide

Pertaining to events occurring in all processes existing in an implementation at a given point in
time.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2649

2650
2651
2652
2653
2654

2655

2656

2657

2658

2659
2660
2661

2662

2663
2664
2665
2666
2667
2668

2669

2670
2671
2672
2673
2674
2675

2676

2677

2678
2679

Definitions Tab Character (<tab>)

3.392

3.393

3.394

3.395

3.396

3.397

Tab Character (<tab>)

A character that in the output stream indicates that printing or displaying should start at the
next horizontal tabulation position on the current line. It is the character designated by "\t in
the C language. If the current position is at or past the last defined horizontal tabulation
position, the behavior is unspecified. It is unspecified whether this character is the exact
sequence transmitted to an output device by the system to accomplish the tabulation.

Terminal (or Terminal Device)
A character special file that obeys the specifications of the general terminal interface.

Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 199).

Text Column

A roughly rectangular block of characters capable of being laid out side-by-side next to other
text columns on an output page or terminal screen. The widths of text columns are measured in
column positions.

Text File

A file that contains characters organized into zero or more lines. The lines do not contain NUL
characters and none can exceed {LINE_MAX]} bytes in length, including the <newline>
character. Although POSIX.1-2008 does not distinguish between text files and binary files (see
the ISO C standard), many utilities only produce predictable or meaningful output when
operating on text files. The standard utilities that have such restrictions always specify “text
files” in their STDIN or INPUT FILES sections.

Thread

A single flow of control within a process. Each thread has its own thread ID, scheduling priority
and policy, errno value, thread-specific key/value bindings, and the required system resources to
support a flow of control. Anything whose address may be determined by a thread, including
but not limited to static variables, storage obtained via malloc(), directly addressable storage
obtained through implementation-defined functions, and automatic variables, are accessible to
all threads in the same process.

Note: The malloc() function is defined in detail in the System Interfaces volume of POSIX.1-2008.

Thread ID

Each thread in a process is uniquely identified during its lifetime by a value of type pthread_t
called a thread ID.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 97

2680

2681

2682
2683

2684

2685
2686
2687
2688

2689

2690

2691
2692
2693

2694
2695

2696

2697

2698

2699

2700

2701
2702

2703

2704
2705

Thread List Definitions

3.398

3.399

3.400

3.401

3.402

3.403

3.404

98

Thread List

An ordered set of runnable threads that all have the same ordinal value for their priority.

The ordering of threads on the list is determined by a scheduling policy or policies. The set of
thread lists includes all runnable threads in the system.

Thread-Safe

A function that may be safely invoked concurrently by multiple threads. Each function defined
in the System Interfaces volume of POSIX.1-2008 is thread-safe unless explicitly stated
otherwise. Examples are any “pure” function, a function which holds a mutex locked while it is
accessing static storage, or objects shared among threads.

Thread-Specific Data Key
A process global handle of type pthread_key_t which is used for naming thread-specific data.

Although the same key value may be used by different threads, the values bound to the key by
pthread_setspecific() and accessed by pthread_getspecific() are maintained on a per-thread basis
and persist for the life of the calling thread.

Note: The pthread_getspecific() and pthread_setspecific() functions are defined in detail in the System
Interfaces volume of POSIX.1-2008.

Tilde Character (<tilde>)

The character ” = .

Timeouts

A method of limiting the length of time an interface will block; see also Section 3.76 (on page 44).

Timer

A mechanism that can notify a thread when the time as measured by a particular clock has
reached or passed a specified value, or when a specified amount of time has passed.

Timer Overrun

A condition that occurs each time a timer, for which there is already an expiration signal queued
to the process, expires.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2706

2707
2708

2709

2710

2711
2712

2713

2714

2715

2716
2717

2718

2719

2720

2721

2722

2723
2724

2725

2726
2727

Definitions Token

3.405

3.406

3.407

3.408

3.409

3.410

3.411

3.412

Token

In the shell command language, a sequence of characters that the shell considers as a single unit
when reading input. A token is either an operator or a word.

Note: The rules for reading input are defined in detail in XCU Section 2.3 (on page 2299).

Trace Analyzer Process

A process that extracts trace events from a trace stream to retrieve information about the
behavior of an application.

Trace Controller Process

A process that creates a trace stream for tracing a process.

Trace Event

A data object that represents an action executed by the system, and that is recorded in a trace
stream.

Trace Event Type

A data object type that defines a class of trace event.

Trace Event Type Mapping

A one-to-one mapping between trace event types and trace event names.

Trace Filter

A filter that allows the trace controller process to specify those trace event types that are to be
ignored; that is, not generated.

Trace Generation Version

A data object that is an implementation-defined character string, generated by the trace system
and describing the origin and version of the trace system.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 99

2728

2729

2730

2731

2732

2733
2734

2735

2736

2737

2738
2739

2740

2741
2742

2743

2744
2745
2746

2747

2748
2749

Trace Log Definitions

3.413

3.414

3.415

3.416

3.417

3.418

3.419

3.420

100

Trace Log

The flushed image of a trace stream, if the trace stream is created with a trace log.

Trace Point

An action that may cause a trace event to be generated.

Trace Stream

An opaque object that contains trace events plus internal data needed to interpret those trace
events.

Trace Stream Identifier

A handle to manage tracing operations in a trace stream.

Trace System

A system that allows both system and user trace events to be generated into a trace stream.
These trace events can be retrieved later.

Traced Process

A process for which at least one trace stream has been created. A traced process is also called a
target process.

Tracing Status of a Trace Stream

A status that describes the state of an active trace stream. The tracing status of a trace stream can
be retrieved from the trace stream attributes. An active trace stream can be in one of two states:
running or suspended.

Typed Memory Name Space

A system-wide name space that contains the names of the typed memory objects present in the
system. It is configurable for a given implementation.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2750

2751
2752
2753

2754

2755
2756

2757

2758

2759

2760

2761

2762

2763

2764
2765

2766

2767

2768

2769

2770

2771

2772

2773
2774

Definitions Typed Memory Object

3.421

3.422

3.423

3.424

3.425

3.426

3.427

Typed Memory Object

A combination of a typed memory pool and a typed memory port. The entire contents of the
pool are accessible from the port. The typed memory object is identified through a name that
belongs to the typed memory name space.

Typed Memory Pool

An extent of memory with the same operational characteristics. Typed memory pools may be
contained within each other.

Typed Memory Port

A hardware access path to one or more typed memory pools.

Unbind

Remove the association between a network address and an endpoint.

Unit Data
See Datagram in Section 3.124 (on page 53).

Upshifting

The conversion of a lowercase character that has a single-character uppercase representation into
this uppercase representation.

User Database
A system database that contains at least the following information for each user ID:
+ User name
¢ Numerical user ID
+ Initial numerical group ID
« Initial working directory
« Initial user program

The initial numerical group ID is used by the newgrp utility. Any other circumstances under
which the initial values are operative are implementation-defined.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 101

2775

2776
2777

2778

2779

2780
2781
2782

2783

2784
2785
2786
2787

2788

2789
2790

2791

2792
2793

2794

User Database Definitions

3.428

3.429

3.430

3.431

102

If the initial user program field is null, an implementation-defined program is used.

If the initial working directory field is null, the interpretation of that field is implementation-
defined.

Note: The newgrp utility is defined in detail in the Shell and Ultilities volume of POSIX.1-2008.

User ID

A non-negative integer that is used to identify a system user. When the identity of a user is
associated with a process, a user ID value is referred to as a real user ID, an effective user ID, or
a saved set-user-ID.

User Name

A string that is used to identify a user; see also Section 3.427 (on page 101). To be portable across
systems conforming to POSIX.1-2008, the value is composed of characters from the portable
filename character set. The <hyphen> character should not be used as the first character of a
portable user name.

User Trace Event

A trace event that is generated explicitly by the application as a result of a call to
posix_trace_event ().

Utility
A program, excluding special built-in utilities provided as part of the Shell Command Language,
that can be called by name from a shell to perform a specific task, or related set of tasks.

Note: For further information on special built-in utilities, see XCU Section 2.14 (on page 2334).

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2795

2796

2797

2798

2799
2800
2801
2802
2803

2804

2805
2806

2807
2808

2809

2810

2811

2812

2813
2814
2815

2816

2817

2818
2819

Definitions Variable

3.432

3.433

3.434

3.435

3.436

3.437

Variable

In the shell command language, a named parameter.

Note: For further information, see XCU Section 2.5 (on page 2301).

Vertical-Tab Character (<vertical-tab>)

A character that in the output stream indicates that printing should start at the next vertical
tabulation position. It is the character designated by ’\v’ in the C language. If the current
position is at or past the last defined vertical tabulation position, the behavior is unspecified. It is
unspecified whether this character is the exact sequence transmitted to an output device by the
system to accomplish the tabulation.

White Space

A sequence of one or more characters that belong to the space character class as defined via the
LC_CTYPE category in the current locale.

In the POSIX locale, white space consists of one or more <blank> (<space> and <tab>
characters), <newline>, <carriage-return>, <form-feed>, and <vertical-tab> characters.

Wide-Character Code (C Language)
An integer value corresponding to a single graphic symbol or control code.

Note: C Language Wide-Character Codes are defined in detail in Section 6.3 (on page 129).

Wide-Character Input/Output Functions

The functions that perform wide-oriented input from streams or wide-oriented output to

streams: fgetwc (), fgetws(), fputwe (), fputws(), fwprintf(), fwscanf(), getwe (), getwchar (), putwe(),
putwchar (), ungetwc (), vfwprintf(), vfwscanf(), vwprintf(), vwscanf(), wprintf(), and wscanf().

Note: These functions are defined in detail in the System Interfaces volume of POSIX.1-2008.

Wide-Character String

A contiguous sequence of wide-character codes terminated by and including the first null wide-
character code.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 103

2820

2821
2822
2823
2824
2825

2826

2827

2828
2829

2830

2831

2832

2833
2834
2835

2836

2837
2838
2839

Word

3.438

3.439

3.440

3.441

3.442

104

Definitions

Word

In the shell command language, a token other than an operator. In some cases a word is also a
portion of a word token: in the various forms of parameter expansion, such as ${name—word},
and variable assignment, such as name=word, the word is the portion of the token depicted by
word. The concept of a word is no longer applicable following word expansions—only fields
remain.

Note: For further information, see XCU Section 2.6.2 (on page 2306) and Section 2.6 (on page 2305).

Working Directory (or Current Working Directory)

A directory, associated with a process, that is used in pathname resolution for pathnames that do
not begin with a <slash> character.

Worldwide Portability Interface

Functions for handling characters in a codeset-independent manner.

Write

To output characters to a file, such as standard output or standard error. Unless otherwise stated,
standard output is the default output destination for all uses of the term “write”; see the
distinction between display and write in Section 3.133 (on page 54).

XSI

The X/Open System Interfaces (XSI) option is the core application programming interface for C
and sh programming for systems conforming to the Single UNIX Specification. This is a
superset of the mandatory requirements for conformance to POSIX.1-2008.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2840

2841
2842

2843

2844

2845
2846

2847

2848
2849

Definitions XSI-Conformant

3.443 XSI-Conformant

A system which allows an application to be built using a set of services that are consistent across
all systems that conform to POSIX.1-2008 and that support the XSI option.

Note: See also Chapter 2 (on page 15).

3.444 Zombie Process

A process that has terminated and that is deleted when its exit status has been reported to
another process which is waiting for that process to terminate.

3.445 0

The algebraic sign provides additional information about any variable that has the value zero
when the representation allows the sign to be determined.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 105

Definitions

106 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2850

2851

2852

2853
2854
2855

2856

2857
2858

2859

2860
2861

2862

2863

2864

2865
2866

2867

2868

2869
2870
2871
2872

4.1

4.2

4.3

Chapter 4

General Concepts

For the purposes of POSIX.1-2008, the general concepts given in Chapter 4 apply.

Note: No shading to denote extensions or options occurs in this chapter. Where the terms and
definitions given in this chapter are used elsewhere in text related to extensions and options,
they are shaded as appropriate.

Concurrent Execution

Functions that suspend the execution of the calling thread shall not cause the execution of other
threads to be indefinitely suspended.

Directory Protection

If a directory is writable and the mode bit S_ISVTX is set on the directory, a process may remove
or rename files within that directory only if one or more of the following is true:

« The effective user ID of the process is the same as that of the owner ID of the file.
« The effective user ID of the process is the same as that of the owner ID of the directory.
 The process has appropriate privileges.

 Optionally, the file is writable by the process. Whether or not files that are writable by the
process can be removed or renamed is implementation-defined.

If the S_ISVTX bit is set on a non-directory file, the behavior is unspecified.

Extended Security Controls

An implementation may provide implementation-defined extended security controls (see
Section 3.160, on page 58). These permit an implementation to provide security mechanisms to
implement different security policies than those described in POSIX.1-2008. These mechanisms
shall not alter or override the defined semantics of any of the interfaces in POSIX.1-2008.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 107

2873

2874

2875
2876
2877

2878
2879

2880
2881

2882
2883
2884

2885
2886

2887

2888

2889
2890
2891

2892

2893
2894

2895
2896
2897
2898
2899

2900
2901
2902

2903

2904
2905
2906
2907

File Access Permissions General Concepts

4.4

4.5

108

File Access Permissions
The standard file access control mechanism uses the file permission bits, as described below.

Implementations may provide additional or alternate file access control mechanisms, or both. An
additional access control mechanism shall only further restrict the access permissions defined by
the file permission bits. An alternate file access control mechanism shall:

« Specify file permission bits for the file owner class, file group class, and file other class of
that file, corresponding to the access permissions.

 Be enabled only by explicit user action, on a per-file basis by the file owner or a user with
appropriate privileges.

 Be disabled for a file after the file permission bits are changed for that file with chmod ().
The disabling of the alternate mechanism need not disable any additional mechanisms
supported by an implementation.

Whenever a process requests file access permission for read, write, or execute/search, if no
additional mechanism denies access, access shall be determined as follows:

« If a process has appropriate privileges:
— If read, write, or directory search permission is requested, access shall be granted.

— If execute permission is requested, access shall be granted if execute permission is
granted to at least one user by the file permission bits or by an alternate access
control mechanism; otherwise, access shall be denied.

e Otherwise:

— The file permission bits of a file contain read, write, and execute/search permissions
for the file owner class, file group class, and file other class.

— Access shall be granted if an alternate access control mechanism is not enabled and
the requested access permission bit is set for the class (file owner class, file group
class, or file other class) to which the process belongs, or if an alternate access control
mechanism is enabled and it allows the requested access; otherwise, access shall be
denied.

POSIX.1-2008 does not provide a way to open a directory for searching. It is unspecified
whether directory search permission is granted based on the file access modes of the directory’s
file descriptor or on the mode of the directory at the time the directory is searched.

File Hierarchy

Files in the system are organized in a hierarchical structure in which all of the non-terminal
nodes are directories and all of the terminal nodes are any other type of file. Since multiple
directory entries may refer to the same file, the hierarchy is properly described as a “directed
graph”.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2908

2909
2910

2911

2912
2913

2914
2915

2916

2917
2918
2919

2920
2921
2922
2923
2924
2925
2926
2927

2928
2929
2930
2931
2932
2933
2934
2935

2936
2937
2938
2939
2940
2941

General Concepts Filenames

4.6

4.7

4.8

Filenames

Uppercase and lowercase letters shall retain their unique identities between conforming
implementations.

Filename Portability

For a filename to be portable across implementations conforming to POSIX.1-2008, it shall
consist only of the portable filename character set as defined in Section 3.276 (on page 77).

Portable filenames shall not have the <hyphen> character as the first character since this may
cause problems when filenames are passed as command line arguments.

File Times Update

Each file has three distinct associated timestamps: the time of last data access, the time of last
data modification, and the time the file status last changed. These values are returned in the file
characteristics structure struct stat, as described in <sys/stat.h> (on page 388).

Each function or utility in POSIX.1-2008 that reads or writes data (even if the data does not
change) or performs an operation to change file status (even if the file status does not change)
indicates which of the appropriate timestamps shall be marked for update. If an implementation
of such a function or utility marks for update one of these timestamps in a place or time not
specified by POSIX.1-2008, this shall be documented, except that any changes caused by
pathname resolution need not be documented. For the other functions or utilities in
POSIX.1-2008 (those that are not explicitly required to read or write file data or change file
status, but that in some implementations happen to do so), the effect is unspecified.

An implementation may update timestamps that are marked for update immediately, or it may
update such timestamps periodically. At the point in time when an update occurs, any marked
timestamps shall be set to the current time and the update marks shall be cleared. All
timestamps that are marked for update shall be updated when the file ceases to be open by any
process or before a fstat(), fstatat(), fsync(), futimens(), Istat(), stat(), utime(), utimensat(), or
utimes() is successfully performed on the file. Other times at which updates are done are
unspecified. Marks for update, and updates themselves, shall not be done for files on read-only
file systems; see Section 3.304 (on page 82).

The resolution of timestamps of files in a file system is implementation-defined, but shall be no
coarser than one-second resolution. The three timestamps shall always have values that are
supported by the file system. Whenever any of a file’s timestamps are to be set to a value V
according to the rules of the preceding paragraphs of this section, the implementation shall
immediately set the timestamp to the greatest value supported by the file system that is not
greater than V.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 109

2942

2943
2944
2945
2946
2947

2948
2949
2950

2951

2952

2953
2954
2955
2956
2957
2958

2959

2960
2961
2962
2963

2964

2965
2966
2967
2968
2969

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979

2980
2981

Host and Network Byte Orders General Concepts

4.9

4.10

4.11

110

Host and Network Byte Orders

When data is transmitted over the network, it is sent as a sequence of octets (8-bit unsigned
values). If an entity (such as an address or a port number) can be larger than 8 bits, it needs to be
stored in several octets. The convention is that all such values are stored with 8 bits in each octet,
and with the first (lowest-addressed) octet holding the most-significant bits. This is called
“network byte order”.

Network byte order may not be convenient for processing actual values. For this, it is more
sensible for values to be stored as ordinary integers. This is known as “host byte order”. In host
byte order:

» The most significant bit might not be stored in the first byte in address order.
« Bits might not be allocated to bytes in any obvious order at all.

8-bit values stored in uint8_t objects do not require conversion to or from host byte order, as
they have the same representation. 16 and 32-bit values can be converted using the htonl(),
htons(), ntohl(), and ntohs() functions. When reading data that is to be converted to host byte
order, it should either be received directly into a uint16_t or uint32_t object or should be copied
from an array of bytes using memcpy() or similar. Passing the data through other types could
cause the byte order to be changed. Similar considerations apply when sending data.

Measurement of Execution Time

The mechanism used to measure execution time shall be implementation-defined. The
implementation shall also define to whom the CPU time that is consumed by interrupt handlers
and system services on behalf of the operating system will be charged. See Section 3.118 (on
page 52).

Memory Synchronization

Applications shall ensure that access to any memory location by more than one thread of control
(threads or processes) is restricted such that no thread of control can read or modify a memory
location while another thread of control may be modifying it. Such access is restricted using
functions that synchronize thread execution and also synchronize memory with respect to other
threads. The following functions synchronize memory with respect to other threads:

fork() pthread_mutex_trylock() pthread_rwlock_unlock()
pthread_barrier_wait () pthread_mutex_unlock () pthread_rwlock_wrlock()
pthread_cond_broadcast () pthread_spin_lock() sem_post ()
pthread_cond_signal () pthread_spin_trylock() sem_timedwait ()
pthread_cond_timeduwait () pthread_spin_unlock () sem_trywait ()
pthread_cond_wait () pthread_rwlock_rdlock() sem_wait ()
pthread_create() pthread_rwlock_timedrdlock() semctl()

pthread_join () pthread_rwlock_timedwrlock() semop()
pthread_mutex_lock () pthread_rwlock_tryrdlock() wait ()

pthread_mutex_timedlock() pthread_rwlock_trywrlock() waitpid ()

The pthread_once() function shall synchronize memory for the first call in each thread for a given
pthread_once_t object.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2982
2983
2984
2985

2986
2987

2988
2989

2990

2991
2992
2993
2994
2995
2996
2997
2998

2999
3000
3001
3002
3003
3004
3005
3006

3007
3008
3009

3010
3011
3012
3013
3014
3015
3016

3017
3018
3019

3020

3021

3022
3023

General Concepts Memory Synchronization

4.12

The pthread_mutex_lock() function need not synchronize memory if the mutex type if
PTHREAD_MUTEX_RECURSIVE and the calling thread already owns the mutex. The
pthread_mutex_unlock() function need not synchronize memory if the mutex type is
PTHREAD_MUTEX_RECURSIVE and the mutex has a lock count greater than one.

Unless explicitly stated otherwise, if one of the above functions returns an error, it is unspecified
whether the invocation causes memory to be synchronized.

Applications may allow more than one thread of control to read a memory location
simultaneously.

Pathname Resolution

Pathname resolution is performed for a process to resolve a pathname to a particular directory
entry for a file in the file hierarchy. There may be multiple pathnames that resolve to the same
directory entry, and multiple directory entries for the same file. When a process resolves a
pathname of an existing directory entry, the entire pathname shall be resolved as described
below. When a process resolves a pathname of a directory entry that is to be created immediately
after the pathname is resolved, pathname resolution terminates when all components of the path
prefix of the last component have been resolved. It is then the responsibility of the process to
create the final component.

Each filename in the pathname is located in the directory specified by its predecessor (for
example, in the pathname fragment a/b, file b is located in directory a). Pathname resolution
shall fail if this cannot be accomplished. If the pathname begins with a <slash>, the predecessor
of the first filename in the pathname shall be taken to be the root directory of the process (such
pathnames are referred to as “absolute pathnames”). If the pathname does not begin with a
<slash>, the predecessor of the first filename of the pathname shall be taken to be either the
current working directory of the process or for certain interfaces the directory identified by a file
descriptor passed to the interface (such pathnames are referred to as “relative pathnames”).

The interpretation of a pathname component is dependent on the value of {NAME_MAX]} and
_POSIX_NO_TRUNC associated with the path prefix of that component. If any pathname
component is longer than {NAME_MAX}, the implementation shall consider this an error.

A pathname that contains at least one non-<slash> character and that ends with one or more
trailing <slash> characters shall not be resolved successfully unless the last pathname
component before the trailing <slash> characters names an existing directory or a directory
entry that is to be created for a directory immediately after the pathname is resolved. Interfaces
using pathname resolution may specify additional constraints® when a pathname that does not
name an existing directory contains at least one non-<slash> character and contains one or more
trailing <slash> characters.

If a symbolic link is encountered during pathname resolution, the behavior shall depend on
whether the pathname component is at the end of the pathname and on the function being
performed. If all of the following are true, then pathname resolution is complete:

1. This is the last pathname component of the pathname.

2. The pathname has no trailing <slash>.

6. The only interfaces that further constrain pathnames in POSIX.1-2008 are the rename() and renameat() functions (see XSH rename())
and the mv utility (see XCU mv).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 111

3024
3025

3026
3027
3028
3029
3030
3031

3032
3033
3034
3035

3036
3037
3038

3039
3040
3041
3042

3043
3044
3045

3046

3047

3048
3049
3050
3051

3052

3053

3054

3055

3056

3057
3058

3059

3060
3061
3062

Pathname Resolution General Concepts

4.13

4.14

112

3. The function is required to act on the symbolic link itself, or certain arguments direct that
the function act on the symbolic link itself.

In all other cases, the system shall prefix the remaining pathname, if any, with the contents of the
symbolic link. If the combined length exceeds {PATH_MAX}, and the implementation considers
this to be an error, errno shall be set to [ENAMETOOLONG] and an error indication shall be
returned. Otherwise, the resolved pathname shall be the resolution of the pathname just created.
If the resulting pathname does not begin with a <slash>, the predecessor of the first filename of
the pathname is taken to be the directory containing the symbolic link.

If the system detects a loop in the pathname resolution process, it shall set errno to [ELOOP] and
return an error indication. The same may happen if during the resolution process more symbolic
links were followed than the implementation allows. This implementation-defined limit shall
not be smaller than {SYMLOOP_MAX]}.

The special filename dot shall refer to the directory specified by its predecessor. The special
filename dot-dot shall refer to the parent directory of its predecessor directory. As a special case,
in the root directory, dot-dot may refer to the root directory itself.

A pathname consisting of a single <slash> shall resolve to the root directory of the process. A
null pathname shall not be successfully resolved. A pathname that begins with two successive
<slash> characters may be interpreted in an implementation-defined manner, although more
than two leading <slash> characters shall be treated as a single <slash> character.

Pathname resolution for a given pathname shall yield the same results when used by any
interface in POSIX.1-2008 as long as there are no changes to any files evaluated during pathname
resolution for the given pathname between resolutions.

Process ID Reuse
A process group ID shall not be reused by the system until the process group lifetime ends.

A process ID shall not be reused by the system until the process lifetime ends. In addition, if
there exists a process group whose process group ID is equal to that process ID, the process ID
shall not be reused by the system until the process group lifetime ends. A process that is not a
system process shall not have a process ID of 1.

Scheduling Policy

A scheduling policy affects process or thread ordering:
e When a process or thread is a running thread and it becomes a blocked thread
» When a process or thread is a running thread and it becomes a preempted thread
« When a process or thread is a blocked thread and it becomes a runnable thread

e When a running thread calls a function that can change the priority or scheduling policy of
a process or thread

¢ In other scheduling policy-defined circumstances

Conforming implementations shall define the manner in which each of the scheduling policies
may modify the priorities or otherwise affect the ordering of processes or threads at each of the
occurrences listed above. Additionally, conforming implementations shall define in what other

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3063
3064

3065

3066
3067
3068
3069
3070

3071
3072
3073
3074

3075
3076
3077

3078
3079

3080
3081
3082

3083
3084
3085
3086
3087

3088

3089
3090

3091
3092
3093

3094
3095
3096
3097

General Concepts Scheduling Policy

4.15

4.16

circumstances and in what manner each scheduling policy may modify the priorities or affect
the ordering of processes or threads.

Seconds Since the Epoch

A value that approximates the number of seconds that have elapsed since the Epoch. A
Coordinated Universal Time name (specified in terms of seconds (tm_sec), minutes (tm_min),
hours (tm_hour), days since January 1 of the year (fm_yday), and calendar year minus 1900
(tm_year)) is related to a time represented as seconds since the Epoch, according to the
expression below.

If the year is <1970 or the value is negative, the relationship is undefined. If the year is 21970 and
the value is non-negative, the value is related to a Coordinated Universal Time name according
to the C-language expression, where tm_sec, tm_min, tm_hour, tm_yday, and tm_year are all
integer types:

tm_sec + tm min*60 + tm _hour*3600 + tm yday*86400 +
(tm_year—70) *31536000 + ((tm_year—69)/4)*86400 —
((tm_year—1)/100) *86400 + ((tm_year+299)/400)*86400

The relationship between the actual time of day and the current value for seconds since the
Epoch is unspecified.

How any changes to the value of seconds since the Epoch are made to align to a desired
relationship with the current actual time is implementation-defined. As represented in seconds
since the Epoch, each and every day shall be accounted for by exactly 86 400 seconds.

Note: The last three terms of the expression add in a day for each year that follows a leap year starting
with the first leap year since the Epoch. The first term adds a day every 4 years starting in 1973,
the second subtracts a day back out every 100 years starting in 2001, and the third adds a day
back in every 400 years starting in 2001. The divisions in the formula are integer divisions; that
is, the remainder is discarded leaving only the integer quotient.

Semaphore

A minimum synchronization primitive to serve as a basis for more complex synchronization
mechanisms to be defined by the application program.

For the semaphores associated with the Semaphores option, a semaphore is represented as a
shareable resource that has a non-negative integer value. When the value is zero, there is a
(possibly empty) set of threads awaiting the availability of the semaphore.

For the semaphores associated with the X/Open System Interfaces (XSI) option, a semaphore is
a positive integer (0 through 32767). The semget () function can be called to create a set or array of
semaphores. A semaphore set can contain one or more semaphores up to an implementation-
defined value.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 113

3098

3099
3100
3101

3102

3103
3104
3105

3106

3107

3108

3109
3110

3111
3112
3113
3114
3115
3116
3117
3118
3119
3120

3121
3122
3123
3124

3125
3126

3127

3128
3129

3130
3131

3132
3133
3134

Semaphore General Concepts

4.17

4.18

114

Semaphore Lock Operation

An operation that is applied to a semaphore. If, prior to the operation, the value of the
semaphore is zero, the semaphore lock operation shall cause the calling thread to be blocked and
added to the set of threads awaiting the semaphore; otherwise, the value shall be decremented.

Semaphore Unlock Operation

An operation that is applied to a semaphore. If, prior to the operation, there are any threads in
the set of threads awaiting the semaphore, then some thread from that set shall be removed from
the set and becomes unblocked; otherwise, the semaphore value shall be incremented.

Thread-Safety
Refer to XSH Section 2.9 (on page 507).

Tracing

The trace system allows a traced process to have a selection of events created for it. Traces
consist of streams of trace event types.

A trace event type is identified on the one hand by a trace event type name, also referenced as a
trace event name, and on the other hand by a trace event type identifier. A trace event name is a
human-readable string. A trace event type identifier is an opaque identifier used by the trace
system. There shall be a one-to-one relationship between trace event type identifiers and trace
event names for a given trace stream and also for a given traced process. The trace event type
identifier shall be generated automatically from a trace event name by the trace system either
when a trace controller process invokes posix_trace_trid_eventid_open() or when an instrumented
application process invokes posix_trace_eventid_open(). Trace event type identifiers are used to
filter trace event types, to allow interpretation of user data, and to identify the kind of trace
point that generated a trace event.

Each trace event shall be of a particular trace event type, and associated with a trace event type
identifier. The execution of a trace point shall generate a trace event if a trace stream has been
created and started for the process that executed the trace point and if the corresponding trace
event type identifier is not ignored by filtering.

A generated trace event shall be recorded in a trace stream, and optionally also in a trace log if a
trace log is associated with the trace stream, except that:

e For a trace stream, if no resources are available for the event, the event is lost.

« For a trace log, if no resources are available for the event, or a flush operation does not
succeed, the event is lost.

A trace event recorded in an active trace stream may be retrieved by an application having
appropriate privileges.

A trace event recorded in a trace log may be retrieved by an application having appropriate
privileges after opening the trace log as a pre-recorded trace stream, with the function
posix_trace_open ().

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

General Concepts Tracing

3135 When a trace event is reported it is possible to retrieve the following;:

3136 * A trace event type identifier

3137 + A timestamp

3138 ¢ The process ID of the traced process, if the trace event is process-dependent

3139 + Any optional trace event data including its length

3140 o If the Threads option is supported, the thread ID, if the trace event is process-dependent
3141 ¢ The program address at which the trace point was invoked

3142 Trace events may be mapped from trace event types to trace event names. One such mapping
3143 shall be associated with each trace stream. An active trace stream is associated with a traced
3144 process, and also with its children if the Trace Inherit option is supported and also the
3145 inheritance policy is set to _POSIX_TRACE_INHERIT. Therefore each traced process has a
3146 mapping of the trace event names to trace event type identifiers that have been defined for that
3147 process.

3148 Traces can be recorded into either trace streams or trace logs.

3149 The implementation and format of a trace stream are unspecified. A trace stream need not be
3150 and generally is not persistent. A trace stream may be either active or pre-recorded:

3151 e An active trace stream is a trace stream that has been created and has not yet been shut
3152 down. It can be of one of the two following classes:

3153 1. An active trace stream without a trace log that was created with the
3154 posix_trace_create() function

3155 2. If the Trace Log option is supported, an active trace stream with a trace log that was
3156 created with the posix_trace_create_withlog () function

3157 e A pre-recorded trace stream is a trace stream that was opened from a trace log object using
3158 the posix_trace_open () function.

3159 An active trace stream can loop. This behavior means that when the resources allocated by the
3160 trace system for the trace stream are exhausted, the trace system reuses the resources associated
3161 with the oldest recorded trace events to record new trace events.

3162 If the Trace Log option is supported, an active trace stream with a trace log can be flushed. This
3163 operation causes the trace system to write trace events from the trace stream to the associated
3164 trace log, following the defined policies or using an explicit function call. After this operation,
3165 the trace system may reuse the resources associated with the flushed trace events.

3166 An active trace stream with or without a trace log can be cleared. This operation shall cause all
3167 the resources associated with this trace stream to be reinitialized. The trace stream shall behave
3168 as if it was returning from its creation, except that the mapping of trace event type identifiers to
3169 trace event names shall not be cleared. If a trace log was associated with this trace stream, the
3170 trace log shall also be reinitialized.

3171 A trace log shall be recorded when the posix_trace_shutdown () operation is invoked or during
3172 tracing, depending on the tracing strategy which is defined by a log policy. After the trace
3173 stream has been shut down, the trace information can be retrieved from the associated trace log
3174 using the same interface used to retrieve information from an active trace stream.

3175 For a traced process, if the Trace Inherit option is supported and the trace stream’s inheritance
3176 attribute is _POSIX_TRACE_INHERIT, the initial targeted traced process shall be traced together
3177 with all of its future children. The posix_pid member of each trace event in a trace stream shall be
3178 the process ID of the traced process.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 115

Tracing General Concepts

3179 Each trace point may be an implementation-defined action such as a context switch, or an
3180 application-programmed action such as a call to a specific operating system service (for
3181 example, fork()) or a call to posix_trace_event ().

3182 Trace points may be filtered. The operation of the filter is to filter out (ignore) selected trace
3183 events. By default, no trace events are filtered.

3184 The results of the tracing operations can be analyzed and monitored by a trace controller process
3185 or a trace analyzer process.

3186 Only the trace controller process has control of the trace stream it has created. The control of the
3187 operation of a trace stream is done using its corresponding trace stream identifier. The trace
3188 controller process is able to:

3189 o Initialize the attributes of a trace stream

3190 ¢ Create the trace stream

3191 » Start and stop tracing

3192 » Know the mapping of the traced process

3193 o If the Trace Event Filter option is supported, filter the type of trace events to be recorded
3194 « Shut the trace stream down

3195 A traced process may also be a trace controller process. Only the trace controller process can
3196 control its trace stream(s). A trace stream created by a trace controller process shall be shut down
3197 if its controller process terminates or executes another file.

3198 A trace controller process may also be a trace analyzer process. Trace analysis can be done
3199 concurrently with the traced process or can be done off-line, in the same or in a different
3200 platform.

201 4.19 Treatment of Error Conditions for Mathematical Functions

3202 For all the functions in the <math.h> header, an application wishing to check for error situations
3203 should set errno to 0 and call feclearexcept(FE_ALL_EXCEPT) before calling the function. On
3204 return, if errno is non-zero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW |
3205 FE_UNDERFLOW) is non-zero, an error has occurred.

3206 The following error conditions are defined for all functions in the <math.h> header.

3207 4.19.1 Domain Error

3208 A “domain error” shall occur if an input argument is outside the domain over which the
3209 mathematical function is defined. The description of each function lists any required domain
3210 errors; an implementation may define additional domain errors, provided that such errors are
3211 consistent with the mathematical definition of the function.

3212 On a domain error, the function shall return an implementation-defined value; if the integer
3213 expression (math_errhandling & MATH_ERRNO) is non-zero, errno shall be set to [EDOM]; if
3214 the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, the “invalid”
3215 floating-point exception shall be raised.

116 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3216

3217
3218

3219
3220
3221
3222
3223

3224

3225
3226

3227

3228
3229
3230
3231
3232
3233
3234
3235

3236

3237
3238
3239
3240
3241
3242
3243
3244

General Concepts Treatment of Error Conditions for Mathematical Functions

4.19.2

4.19.3

4.19.3.1

4.19.3.2

Pole Error

A “pole error” occurs if the mathematical result of the function is an exact infinity (for example,
log(0.0)).

On a pole error, the function shall return the value of the macro HUGE_VAL, HUGE_VALE, or
HUGE_VALL according to the return type, with the same sign as the correct value of the
function; if the integer expression (math_errhandling & MATH_ERRNO) is non-zero, errno shall
be set to [ERANGE]; if the integer expression (math_errhandling & MATH_ERREXCEPT) is non-
zero, the “divide-by-zero” floating-point exception shall be raised.

Range Error

A “range error” shall occur if the finite mathematical result of the function cannot be
represented in an object of the specified type, due to extreme magnitude.

Result Overflows

A floating result overflows if the magnitude of the mathematical result is finite but so large that
the mathematical result cannot be represented without extraordinary roundoff error in an object
of the specified type. If a floating result overflows and default rounding is in effect, then the
function shall return the value of the macro HUGE_VAL, HUGE_VALF, or HUGE_VALL
according to the return type, with the same sign as the correct value of the function; if the integer
expression (math_errhandling & MATH_ERRNO) is non-zero, errno shall be set to [ERANGE]; if
the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, the “overflow”
floating-point exception shall be raised.

Result Underflows

The result underflows if the magnitude of the mathematical result is so small that the
mathematical result cannot be represented, without extraordinary roundoff error, in an object of
the specified type. If the result underflows, the function shall return an implementation-defined
value whose magnitude is no greater than the smallest normalized positive number in the
specified type; if the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
whether errno is set to [ERANGE] is implementation-defined; if the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, whether the “underflow” floating-point
exception is raised is implementation-defined.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 117

3245

3246
3247

3248
3249

3250
3251
3252

3253
3254

3255
3256

3257

3258

3259
3260
3261

3262

3263
3264
3265
3266

3267
3268
3269
3270
3271

3272

3273

3274

3275
3276

3277

3278
3279
3280

Treatment of NaN Arguments for the Mathematical Functions General Concepts

4.20

4.21

4.22

118

Treatment of NaN Arguments for the Mathematical Functions

For functions called with a NaN argument, no errors shall occur and a NaN shall be returned,
except where stated otherwise.

If a function with one or more NaN arguments returns a NaN result, the result should be the
same as one of the NaN arguments (after possible type conversion), except perhaps for the sign.

On implementations that support the IEC 60559:1989 standard floating point, functions with
signaling NaN argument(s) shall be treated as if the function were called with an argument that
is a required domain error and shall return a quiet NaN result, except where stated otherwise.

Note: The function might never see the signaling NaN, since it might trigger when the arguments are
evaluated during the function call.

On implementations that support the IEC 60559:1989 standard floating point, for those
functions that do not have a documented domain error, the following shall apply:

These functions shall fail if:
Domain Error Any argument is a signaling NaN.

Either, the integer expression (math_errhandling & MATH_ERRNO) is non-zero and errno
shall be set to [EDOM], or the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero and the invalid floating-point exception shall be raised.

Utility
A utility program shall be either an executable file, such as might be produced by a compiler or
linker system from computer source code, or a file of shell source code, directly interpreted by

the shell. The program may have been produced by the user, provided by the system
implementor, or acquired from an independent distributor.

The system may implement certain utilities as shell functions (see XCU Section 2.9.5, on page
2324) or built-in utilities, but only an application that is aware of the command search order (as
described in XCU Section 2.9.1.1, on page 2317) or of performance characteristics can discern
differences between the behavior of such a function or built-in utility and that of an executable
file.

Variable Assignment
In the shell command language, a word consisting of the following parts:
varname=value

When used in a context where assignment is defined to occur and at no other time, the value
(representing a word or field) shall be assigned as the value of the variable denoted by varname.

Note: For further information, see XCU Section 2.9.1 (on page 2316).

The varname and value parts shall meet the requirements for a name and a word, respectively,
except that they are delimited by the embedded unquoted <equals-sign>, in addition to other
delimiters.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

General Concepts Variable Assignment

3281 Note: Additional delimiters are described in XCU Section 2.3 (on page 2299).

3282 When a variable assignment is done, the variable shall be created if it did not already exist. If
3283 value is not specified, the variable shall be given a null value.

3284 Note: An alternative form of variable assignment:

3285 symbol=value

3286 (where symbol is a valid word delimited by an <equals-sign>, but not a valid name) produces
3287 unspecified results. The form symbol=value is used by the KornShell name[expression]=value
3288 syntax.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 119

General Concepts

120 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3289

3290

3291
3292
3293
3294
3295
3296
3297

3298

3299

3300

3301
3302

3303

3304

3305

3306

3307

3308

3309

3310
3311

3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325

Chapter 5

File Format Notation

The STDIN, STDOUT, STDERR, INPUT FILES, and OUTPUT FILES sections of the utility
descriptions use a syntax to describe the data organization within the files, when that
organization is not otherwise obvious. The syntax is similar to that used by the System Interfaces
volume of POSIX.1-2008 printf() function, as described in this chapter. When used in STDIN or
INPUT FILES sections of the utility descriptions, this syntax describes the format that could
have been used to write the text to be read, not a format that could be used by the System
Interfaces volume of POSIX.1-2008 scanf() function to read the input file.

The description of an individual record is as follows:
"<format>", [<argl>, <arg2>,..., <argn>]
The format is a character string that contains three types of objects defined below:

1. Characters that are not “escape sequences” or “conversion specifications”, as described
below, shall be copied to the output.

2. Escape Sequences represent non-graphic characters.

3. Conversion Specifications specify the output format of each argument; see below.
The following characters have the following special meaning in the format string:
* 7 (An empty character position.) Represents one or more <blank> characters.
A Represents exactly one <space> character.

Table 5-1 lists escape sequences and associated actions on display devices capable of the action.

Table 5-1 Escape Sequences and Associated Actions

Escape Represents
Sequence Character Terminal Action

A\ <backslash> Print the <backslash> character.

\a <alert> Attempt to alert the user through audible or visible notification.

\b <backspace> Move the printing position to one column before the current
position, unless the current position is the start of a line.

\f <form-feed> Move the printing position to the initial printing position of the
next logical page.

\n <newline> Move the printing position to the start of the next line.

\r <carriage-return>|Move the printing position to the start of the current line.

\t <tab> Move the printing position to the next tab position on the current
line. If there are no more tab positions remaining on the line, the
behavior is undefined.

\v <vertical-tab> Move the printing position to the start of the next <vertical-tab>
position. If there are no more <vertical-tab> positions left on the
page, the behavior is undefined.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 121

3326
3327

3328
3329

3330
3331
3332
3333

3334
3335
3336
3337
3338
3339
3340

3341
3342
3343

3344

3345

3346

3347
3348
3349

3350
3351
3352
3353
3354
3355
3356

3357
3358
3359
3360
3361
3362

3363
3364
3365

3366

3367
3368
3369
3370
3371

122

File Format Notation

Each conversion specification is introduced by the <percent-sign> character (* $’). After the
character ’ %', the following shall appear in sequence:

flags

field width

precision

Zero or more flags, in any order, that modify the meaning of the conversion
specification.

An optional string of decimal digits to specify a minimum field width. For an
output field, if the converted value has fewer bytes than the field width, it shall be
padded on the left (or right, if the left-adjustment flag (* -’), described below, has
been given) to the field width.

Gives the minimum number of digits to appear for the d, o, i, u, %, or X conversion
specifiers (the field is padded with leading zeros), the number of digits to appear
after the radix character for the e and f conversion specifiers, the maximum
number of significant digits for the g conversion specifier; or the maximum
number of bytes to be written from a string in the s conversion specifier. The
precision shall take the form of a <period> (” .") followed by a decimal digit
string; a null digit string is treated as zero.

conversion specifier characters

A conversion specifier character (see below) that indicates the type of conversion
to be applied.

The flag characters and their meanings are:

+

<space>

The result of the conversion shall be left-justified within the field.
The result of a signed conversion shall always begin with a sign (*+" or ' —").

If the first character of a signed conversion is not a sign, a <space> shall be
prefixed to the result. This means that if the <space> and '+’ flags both appear,
the <space> flag shall be ignored.

The value shall be converted to an alternative form. For c, d, i, u, and s
conversion specifiers, the behavior is undefined. For the o conversion specifier, it
shall increase the precision to force the first digit of the result to be a zero. For x or
X conversion specifiers, a non-zero result has 0x or 0X prefixed to it, respectively.
For a, A, e, E, £, F, g, and G conversion specifiers, the result shall always contain a
radix character, even if no digits follow the radix character. For g and G conversion
specifiers, trailing zeros shall not be removed from the result as they usually are.

For a,n,d,¢,E, £, F, g, G, i, o, u, x, and X conversion specifiers, leading zeros
(following any indication of sign or base) shall be used to pad to the field width
rather than performing space padding, except when converting an infinity or NaN.
If the ' 0’ and ’ -’ flags both appear, the / 0’ flag shall be ignored. For 4, i, o, u,
%, and X conversion specifiers, if a precision is specified, the ’ 0’ flag shall be
ignored. For other conversion specifiers, the behavior is undefined.

Each conversion specifier character shall result in fetching zero or more arguments. The results
are undefined if there are insufficient arguments for the format. If the format is exhausted while
arguments remain, the excess arguments shall be ignored.

The conversion specifiers and their meanings are:

a,A

The floating-point number argument representing a floating-point number shall be
converted in the style " [-] 0xh. hhhhptd", where there is one hexadecimal digit
(which shall be non-zero if the argument is a normalized floating-point number
and is otherwise unspecified) before the decimal-point character and the number
of hexadecimal digits after it is equal to the precision; if the precision is missing

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383

3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396

3397
3398
3399
3400
3401
3402

3403
3404
3405
3406
3407
3408
3409

3410
3411
3412
3413
3414
3415
3416
3417
3418
3419

3420
3421

File Format Notation

d,i,0,u,x,X

£,F

e, B

and FLT_RADIX is a power of 2, then the precision shall be sufficient for an exact
representation of the value; if the precision is missing and FLT_RADIX is not a
power of 2, then the precision shall be sufficient to distinguish different floating-
point values in the internal representation used by the utility, except that trailing
zeros may be omitted; if the precision is zero and the # flag is not specified, no
decimal-point character shall appear. The letters "abcdef" shall be used for a
conversion and the letters "ABCDEF" for A conversion. The A conversion specifier
produces a number with X and P instead of x and p. The exponent shall always
contain at least one digit, and only as many more digits as necessary to represent
the decimal exponent of 2. If the value is zero, the exponent shall be zero. A
floating-point number argument representing an infinity or NaN shall be
converted in the style of an £ or F conversion specifier.

The integer argument shall be written as signed decimal (d or i), unsigned octal
(o), unsigned decimal (u), or unsigned hexadecimal notation (x and X). The d and
i specifiers shall convert to signed decimal in the style " [-]dddd". The x
conversion specifier shall use the numbers and letters "0123456789%abcdef" and
the X conversion specifier shall wuse the numbers and Iletters
"0123456789ABCDEF". The precision component of the argument shall specify
the minimum number of digits to appear. If the value being converted can be
represented in fewer digits than the specified minimum, it shall be expanded with
leading zeros. The default precision shall be 1. The result of converting a zero
value with a precision of 0 shall be no characters. If both the field width and
precision are omitted, the implementation may precede, follow, or precede and
follow numeric arguments of types d, i, and u with <blank> characters; arguments
of type o (octal) may be preceded with leading zeros.

The floating-point number argument shall be written in decimal notation in the
style [-]ddd.ddd, where the number of digits after the radix character (shown here
as a decimal point) shall be equal to the precision specification. The LC_NUMERIC
locale category shall determine the radix character to use in this format. If the
precision is omitted from the argument, six digits shall be written after the radix
character; if the precision is explicitly 0, no radix character shall appear.

A floating-point number argument representing an infinity shall be converted in
one of the styles " [-]inf" or " [-]infinity"; which style is implementation-
defined. A floating-point number argument representing a NaN shall be converted
in one of the styles " [-]1nan (n-char-sequence) " or " [-]nan"; which style,
and the meaning of any n-char-sequence, is implementation-defined. The F
conversion specifier produces "INF", "INFINITY", or "NAN" instead of "inf",
"infinity", or "nan", respectively.

The floating-point number argument shall be written in the style [-]d.dddexdd (the
symbol ’ +’ indicates either a <plus-sign> or minus-sign), where there is one digit
before the radix character (shown here as a decimal point) and the number of
digits after it is equal to the precision. The LC_NUMERIC locale category shall
determine the radix character to use in this format. When the precision is missing,
six digits shall be written after the radix character; if the precision is 0, no radix
character shall appear. The E conversion specifier shall produce a number with E
instead of e introducing the exponent. The exponent shall always contain at least
two digits. However, if the value to be written requires an exponent greater than
two digits, additional exponent digits shall be written as necessary.

A floating-point number argument representing an infinity or NaN shall be
converted in the style of an £ or F conversion specifier.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 123

3422
3423
3424
3425
3426
3427

3428
3429

3430

3431
3432
3433
3434
3435

3436

3437
3438
3439
3440

3441

3442
3443

3444

3445

3446

3447

3448

124

File Format Notation

9,G The floating-point number argument shall be written in style £ or e (or in style F
or E in the case of a G conversion specifier), with the precision specifying the
number of significant digits. The style used depends on the value converted: style
e (or E) shall be used only if the exponent resulting from the conversion is less
than —4 or greater than or equal to the precision. Trailing zeros are removed from
the result. A radix character shall appear only if it is followed by a digit.

A floating-point number argument representing an infinity or NaN shall be
converted in the style of an £ or F conversion specifier.

c The single-byte character argument shall be written.

s The argument shall be taken to be a string and bytes from the string shall be
written until the end of the string or the number of bytes indicated by the precision
specification of the argument is reached. If the precision is omitted from the
argument, it shall be taken to be infinite, so all bytes up to the end of the string
shall be written.

% Write a ’ $’ character; no argument is converted.

In no case does a nonexistent or insufficient field width cause truncation of a field; if the result of
a conversion is wider than the field width, the field is simply expanded to contain the
conversion result. The term “field width” should not be confused with the term “precision”
used in the description of %s.

Examples

To represent the output of a program that prints a date and time in the form Sunday, July 3,
10:02, where weekday and month are strings:

"$s,A%sA%d, A%d:%.2d\n" <weekday>, <month>, <day>, <hour>, <min>
To show ’ #/ written to 5 decimal places:
"piA=A%.5f\n", <value of m>

To show an input file format consisting of five <colon>-separated fields:

n

o\
o\

S:%5:%s:%s:%s\n", <argl>, <arg2>, <arg3>, <arg4>, <argh>

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3449

3450

3451

3452
3453
3454
3455
3456

3457

3458

3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488

Chapter 6

Character Set

6.1 Portable Character Set

Conforming implementations shall support one or more coded character sets. Each supported
locale shall include the portable character set, which is the set of symbolic names for characters in
Table 6-1. This is used to describe characters within the text of POSIX.1-2008. The first eight
entries in Table 6-1 are defined in the ISO/IEC 6429: 1992 standard and the rest of the characters
are defined in the ISO/IEC 10646-1: 2000 standard.

Table 6-1 Portable Character Set

Symbolic Name Glyph UCsS Description
<NUL> <U0000> | NULL (NUL)
<alert> <U0007> | BELL (BEL)
<backspace> <U0008> | BACKSPACE (BS)
<tab> <U0009> | CHARACTER TABULATION (HT)
<carriage-return> <U000D> | CARRIAGE RETURN (CR)
<newline> <UO00A> | LINE FEED (LF)
<vertical-tab> <U000B> | LINE TABULATION (VT)
<form-feed> <U000C> | FORM FEED (FF)
<space> <U0020> | SPACE
<exclamation-mark> ! <U0021> | EXCLAMATION MARK
<quotation-mark> " <U0022> | QUOTATION MARK
<number-sign> # <U0023> | NUMBER SIGN
<dollar-sign> $ <U0024> | DOLLAR SIGN
<percent-sign> % <U0025> | PERCENT SIGN
<ampersand> & <U0026> | AMPERSAND
<apostrophe> ! <U0027> | APOSTROPHE
<left-parenthesis> (<U0028> | LEFT PARENTHESIS
<right-parenthesis>) <U0029> | RIGHT PARENTHESIS
<asterisk> * <U002A> | ASTERISK
<plus-sign> + <U002B> | PLUS SIGN
<comma> , <U002C> | COMMA
<hyphen-minus> - <U002D> | HYPHEN-MINUS
<hyphen> - <U002D> | HYPHEN-MINUS
<full-stop> <U002E> | FULL STOP
<period> . <U002E> | FULL STOP
<slash> / <UO002F> | SOLIDUS
<solidus> / <UO002F> | SOLIDUS
<zero> 0 <U0030> | DIGIT ZERO
<one> 1 <U0031> | DIGIT ONE
<two> 2 <U0032> | DIGIT TWO

Vol. 1: Base Definitions, Issue 7

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

125

3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540

Portable Character Set

126

Character Set

Symbolic Name Glyph UCSs Description
<three> 3 <U0033> | DIGIT THREE
<four> 4 <U0034> | DIGIT FOUR
<five> 5 <U0035> | DIGIT FIVE
<six> 6 <U0036> | DIGIT SIX
<seven> 7 <U0037> | DIGIT SEVEN
<eight> 8 <U0038> | DIGIT EIGHT
<nine> 9 <U0039> | DIGIT NINE
<colon> : <UO003A> | COLON
<semicolon> ; <U003B> | SEMICOLON
<less-than-sign> < <U003C> | LESS-THAN SIGN
<equals-sign> = <U003D> | EQUALS SIGN
<greater-than-sign> > <UO03E> | GREATER-THAN SIGN
<question-mark> ? <UO003F> | QUESTION MARK
<commercial-at> @ <U0040> | COMMERCIAL AT
<A> A <U0041> | LATIN CAPITAL LETTER A
 B <U0042> | LATIN CAPITAL LETTER B
<C> C <U0043> | LATIN CAPITAL LETTER C
<D> D <U0044> | LATIN CAPITAL LETTER D
<E> E <U0045> | LATIN CAPITAL LETTER E
<F> F <U0046> | LATIN CAPITAL LETTER F
<G> G <U0047> | LATIN CAPITAL LETTER G
<H> H <U0048> | LATIN CAPITAL LETTER H
<I> I <U0049> | LATIN CAPITAL LETTER I
<J> J <UO004A> | LATIN CAPITAL LETTER]
<K> K <U004B> | LATIN CAPITAL LETTER K
<L> L <U004C> | LATIN CAPITAL LETTER L
<M> M <U004D> | LATIN CAPITAL LETTER M
<N> N <UO04E> | LATIN CAPITAL LETTER N
<O> 0 <U004F> | LATIN CAPITAL LETTER O
<P> P <U0050> | LATIN CAPITAL LETTER P
<Q> 0 <U0051> | LATIN CAPITAL LETTER Q
<R> R <U0052> | LATIN CAPITAL LETTER R
<S> S <U0053> | LATIN CAPITAL LETTER S
<T> T <U0054> | LATIN CAPITAL LETTER T
<U> U <U0055> | LATIN CAPITAL LETTER U
<V> \Y% <U0056> | LATIN CAPITAL LETTERV
<W> W <U0057> | LATIN CAPITAL LETTER W
<X> X <U0058> | LATIN CAPITAL LETTER X
<Y> Y <U0059> | LATIN CAPITAL LETTERY
<Z> zZ <UO05A> | LATIN CAPITAL LETTER Z
<left-square-bracket> [<U005B> LEFT SQUARE BRACKET
<backslash> \ <U005C> | REVERSE SOLIDUS
<reverse-solidus> \ <U005C> | REVERSE SOLIDUS
<right-square-bracket>] <U005D> | RIGHT SQUARE BRACKET
<circumflex-accent> 8 <UO05E> | CIRCUMFLEX ACCENT
<circumflex> - <UO05E> | CIRCUMFLEX ACCENT
<low-line> _ <UO05F> | LOW LINE
<underscore> _ <UO05F> | LOW LINE
<grave-accent> N <U0060> | GRAVE ACCENT
<a> a <U0061> | LATIN SMALL LETTER A
 b <U0062> | LATIN SMALL LETTER B

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

Vol. 1: Base Definitions, Issue 7

Character Set Portable Character Set

3541 Symbolic Name Glyph UCSs Description

3542 <c> c <U0063> LATIN SMALL LETTER C

3543 <d> d <U0064> LATIN SMALL LETTER D

3544 <e> e <U0065> LATIN SMALL LETTER E

3545 <f> f <U0066> LATIN SMALL LETTER F

3546 <g> g <U0067> LATIN SMALL LETTER G

3547 <h> h <U0068> LATIN SMALL LETTER H

3548 <i> i <U0069> LATIN SMALL LETTER

3549 <> j <U006A> | LATIN SMALL LETTER]

3550 <k> k <U006B> | LATIN SMALL LETTER K

3551 <I> 1 <U006C> | LATIN SMALL LETTER L

3552 <m> m <U006D> | LATIN SMALL LETTER M

3553 <n> n <UO006E> | LATIN SMALL LETTER N

3554 <o> o <UO006F> | LATIN SMALL LETTER O

3555 <p> P <U0070> LATIN SMALL LETTER P

3556 <q> q <U0071> LATIN SMALL LETTER Q

3557 <r> r <U0072> LATIN SMALL LETTER R

3558 <s> s <U0073> LATIN SMALL LETTER S

3559 <t> t <U0074> LATIN SMALL LETTER T

3560 <u> u <U0075> LATIN SMALL LETTER U

3561 <> v <U0076> LATIN SMALL LETTER V

3562 <w> w <U0077> LATIN SMALL LETTER W

3563 <> X <U0078> LATIN SMALL LETTER X

3564 <y> y <U0079> LATIN SMALL LETTER Y

3565 <z> z <U007A> | LATIN SMALL LETTER Z

3566 <left-brace> { <U007B> | LEFT CURLY BRACKET

3567 <left-curly-bracket> { <U007B> LEFT CURLY BRACKET

3568 <vertical-line> | <U007C> | VERTICAL LINE

3569 <right-brace> } <U007D> | RIGHT CURLY BRACKET

3570 <right-curly-bracket> } <U007D> | RIGHT CURLY BRACKET

3571 <tilde> - <U007E> | TILDE

3572 POSIX.1-2008 uses character names other than the above, but only in an informative way; for
3573 example, in examples to illustrate the use of characters beyond the portable character set with
3574 the facilities of POSIX.1-2008.

3575 Table 6-1 (on page 125) defines the characters in the portable character set and the corresponding
3576 symbolic character names used to identify each character in a character set description file. The
3577 table contains more than one symbolic character name for characters whose traditional name
3578 differs from the chosen name. Characters defined in Table 6-2 (on page 130) may also be used in
3579 character set description files.

3580 POSIX.1-2008 places only the following requirements on the encoded values of the characters in
3581 the portable character set:

3582 o If the encoded values associated with each member of the portable character set are not
3583 invariant across all locales supported by the implementation, if an application accesses any
3584 pair of locales where the character encodings differ, or accesses data from an application
3585 running in a locale which has different encodings from the application’s current locale, the
3586 results are unspecified.

3587 » The encoded values associated with the digits 0 to 9 shall be such that the value of each
3588 character after 0 shall be one greater than the value of the previous character.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 127

3589

3590
3591
3592

3593
3594

3595

3596
3597
3598

3599
3600

3601
3602
3603
3604
3605
3606
3607
3608

3609
3610
3611
3612
3613
3614

3615
3616
3617
3618
3619

3620
3621
3622
3623

Portable Character Set Character Set

6.2

128

o A null character, NUL, which has all bits set to zero, shall be in the set of characters.

» The encoded values associated with the members of the portable character set are each
represented in a single byte. Moreover, if the value is stored in an object of C-language
type char, it is guaranteed to be positive (except the NUL, which is always zero).

Conforming implementations shall support certain character and character set attributes, as
defined in Section 7.2 (on page 136).

Character Encoding

The POSIX locale contains the characters in Table 6-1 (on page 125), which have the properties
listed in Section 7.3.1 (on page 139). In other locales, the presence, meaning, and representation
of any additional characters are locale-specific.

In locales other than the POSIX locale, a character may have a state-dependent encoding. There
are two types of these encodings:

« A single-shift encoding (where each character not in the initial shift state is preceded by a
shift code) can be defined if each shift-code and character sequence is considered a multi-
byte character. This is done using the concatenated-constant format in a character set
description file, as described in Section 6.4 (on page 129). If the implementation supports a
character encoding of this type, all of the standard utilities in the Shell and Utilities volume
of POSIX.1-2008 shall support it. Use of a single-shift encoding with any of the functions in
the System Interfaces volume of POSIX.1-2008 that do not specifically mention the effects
of state-dependent encoding is implementation-defined.

» A locking-shift encoding (where the state of the character is determined by a shift code
that may affect more than the single character following it) cannot be defined with the
current character set description file format. Use of a locking-shift encoding with any of
the standard utilities in the Shell and Utilities volume of POSIX.1-2008 or with any of the
functions in the System Interfaces volume of POSIX.1-2008 that do not specifically mention
the effects of state-dependent encoding is implementation-defined.

While in the initial shift state, all characters in the portable character set shall retain their usual
interpretation and shall not alter the shift state. The interpretation for subsequent bytes in the
sequence shall be a function of the current shift state. A byte with all bits zero shall be
interpreted as the null character independent of shift state. Such a byte shall not occur as part of
any other character.

The maximum allowable number of bytes in a character in the current locale shall be indicated
by {MB_CUR_MAX], defined in the <stdlib.h> header and by the <mb_cur_max> value in a
character set description file; see Section 6.4 (on page 129). The implementation’s maximum
number of bytes in a character shall be defined by the C-language macro {MB_LEN_MAX}.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3624

3625
3626
3627
3628
3629

3630
3631
3632
3633
3634
3635
3636
3637
3638
3639

3640

3641
3642
3643
3644

3645
3646
3647
3648

3649
3650
3651
3652
3653
3654

3655
3656
3657
3658
3659
3660
3661
3662
3663

Character Set C Language Wide-Character Codes

6.3

6.4

C Language Wide-Character Codes

In the shell, the standard utilities are written so that the encodings of characters are described by
the locale’s LC_CTYPE definition (see Section 7.3.1, on page 139) and there is no differentiation
between characters consisting of single octets (8-bit bytes) or multiple bytes. However, in the C
language, a differentiation is made. To ease the handling of variable length characters, the C
language has introduced the concept of wide-character codes.

All wide-character codes in a given process consist of an equal number of bits. This is in contrast
to characters, which can consist of a variable number of bytes. The byte or byte sequence that
represents a character can also be represented as a wide-character code. Wide-character codes
thus provide a uniform size for manipulating text data. A wide-character code having all bits
zero is the null wide-character code (see Section 3.246, on page 72), and terminates wide-
character strings (see Section 3.435, on page 103). The wide-character value for each member of
the portable character set shall equal its value when used as the lone character in an integer
character constant. Wide-character codes for other characters are locale and implementation-
defined. State shift bytes shall not have a wide-character code representation. POSIX.1-2008
provides no means of defining a wide-character codeset.

Character Set Description File

Implementations shall provide a character set description file for at least one coded character set
supported by the implementation. These files are referred to elsewhere in POSIX.1-2008 as
charmap files. It is implementation-defined whether or not users or applications can provide
additional character set description files.

POSIX.1-2008 does not require that multiple character sets or codesets be supported. Although
multiple charmap files are supported, it is the responsibility of the implementation to provide
the file or files; if only one is provided, only that one is accessible using the localedef utility’s —f
option.

Each character set description file, except those that use the ISO/IEC 10646-1:2000 standard
position values as the encoding values, shall define characteristics for the coded character set
and the encoding for the characters specified in Table 6-1 (on page 125), and may define
encoding for additional characters supported by the implementation. Other information about
the coded character set may also be in the file. Coded character set character values shall be
defined using symbolic character names followed by character encoding values.

Each symbolic name specified in Table 6-1 (on page 125) shall be included in the file and shall be
mapped to a unique coding value, except as noted below. The glyphs represented by the C
character constants * {*, "}, " _","=","/’,"\\’,’ .’ ,and ’ "’ have more than one symbolic
name; all symbolic names for each such glyph shall be included, each with identical encoding. If
some or all of the control characters identified in Table 6-2 (on page 130) are supported by the
implementation, the symbolic names and their corresponding encoding values shall be included
in the file. Some of the encodings associated with the symbolic names in Table 6-2 (on page 130)
may be the same as characters found in Table 6-1 (on page 125); both names shall be provided
for each encoding.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 129

3664

3665
3666
3667
3668
3669
3670

3671
3672
3673

3674
3675
3676
3677

3678
3679

3680
3681
3682

3683
3684
3685
3686

3687
3688
3689

3690
3691
3692
3693
3694
3695

3696

3697

3698
3699

3700
3701
3702
3703
3704

3705
3706
3707
3708

Character Set Description File Character Set

X8I

130

Table 6-2 Control Character Set

<ACK> <DC2> <ENQ> <FS> <IS4> <SOH>
<BEL> <DC3> <EOT> <GS> <LF> <STX>
<BS> <DC4> <ESC> <HT> <NAK> <SUB>
<CAN> <ETB> <IS1> <RS> <SYN>
<CR> <DLE> <ETX> <IS2> <SI> <US>
<DC1> <FF> <IS3> <SO> <VT>

The following declarations can precede the character definitions. Each shall consist of the
symbol shown in the following list, starting in column 1, including the surrounding brackets,
followed by one or more <blank> characters, followed by the value to be assigned to the symbol.

<code_set_ name> The name of the coded character set for which the character set
description file is defined. The characters of the name shall be taken from
the set of characters with visible glyphs defined in Table 6-1 (on page
125).

<mb_cur_max> The maximum number of bytes in a multi-byte character. This shall
default to 1.

<mb_cur_min> An unsigned positive integer value that defines the minimum number of
bytes in a character for the encoded character set. On XSI-conformant
systems, <mb_cur_min> shall always be 1.

<escape_char> The character used to indicate that the characters following shall be
interpreted in a special way, as defined later in this section. This shall
default to <backslash> (* \\’), which is the character used in all the
following text and examples, unless otherwise noted.

<comment_char> The character that, when placed in column 1 of a charmap line, is used to
indicate that the line shall be ignored. The default character shall be the
<number-sign> (" #').

The character set mapping definitions shall be all the lines immediately following an identifier
line containing the string "CHARMAP" starting in column 1, and preceding a trailer line
containing the string "END CHARMAP" starting in column 1. Empty lines and lines containing a
<comment_char> in the first column shall be ignored. Each non-comment line of the character
set mapping definition (that is, between the "CHARMAP" and "END CHARMAP" lines of the file)
shall be in either of two forms:

"$s %$s %s\n", <symbolic-name>, <encoding>, <comments>
or:

"$s...%s %s %s\n", <symbolic-name>, <symbolic-name>,
<encoding>, <comments>

In the first format, the line in the character set mapping definition shall define a single symbolic
name and a corresponding encoding. A symbolic name is one or more characters from the set
shown with visible glyphs in Table 6-1 (on page 125), enclosed between angle brackets. A
character following an escape character is interpreted as itself; for example, the sequence
"<\\\>>" represents the symbolic name "\>" enclosed between angle brackets.

In the second format, the line in the character set mapping definition shall define a range of one
or more symbolic names. In this form, the symbolic names shall consist of zero or more non-
numeric characters from the set shown with visible glyphs in Table 6-1 (on page 125), followed
by an integer formed by one or more decimal digits. Both integers shall contain the same

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

Character Set Character Set Description File

3709 number of digits. The characters preceding the integer shall be identical in the two symbolic
3710 names, and the integer formed by the digits in the second symbolic name shall be equal to or
3711 greater than the integer formed by the digits in the first name. This shall be interpreted as a
3712 series of symbolic names formed from the common part and each of the integers between the
3713 first and the second integer, inclusive. As an example, <j0101>...<j0104> is interpreted as the
3714 symbolic names <j0101>, <j0102>, <j0103>, and <j0104>, in that order.

3715 A character set mapping definition line shall exist for all symbolic names specified in Table 6-1
3716 (on page 125), and shall define the coded character value that corresponds to the character
3717 indicated in the table, or the coded character value that corresponds to the control character
3718 symbolic name. If the control characters commonly associated with the symbolic names in Table
3719 6-2 (on page 130) are supported by the implementation, the symbolic name and the
3720 corresponding encoding value shall be included in the file. Additional unique symbolic names
3721 may be included. A coded character value can be represented by more than one symbolic name.
3722 The encoding part is expressed as one (for single-byte character values) or more concatenated
3723 decimal, octal, or hexadecimal constants in the following formats:

3724 "$cd%u", <escape_char>, <decimal byte value>

3725 "%cx%x", <escape_char>, <hexadecimal byte value>

3726 "$c%o", <escape_char>, <octal byte value>

3727 Decimal constants shall be represented by two or three decimal digits, preceded by the escape
3728 character and the lowercase letter ’d’; for example, "\d05", "\d97", or "\dl143".
3729 Hexadecimal constants shall be represented by two hexadecimal digits, preceded by the escape
3730 character and the lowercase letter ’x’; for example, "\x05", "\x61", or "\x8f". Octal
3731 constants shall be represented by two or three octal digits, preceded by the escape character; for
3732 example, "\05", "\141", or "\217". In a portable charmap file, each constant represents an
3733 8-bit byte. When constants are concatenated for multi-byte character values, they shall be of the
3734 same type, and interpreted in sequence from from first to last with the first byte of the multi-
3735 byte character specified by the first byte in the sequence. The manner in which these constants
3736 are represented in the character stored in the system is implementation-defined. (This notation
3737 was chosen for reasons of portability. There is no requirement that the internal representation in
3738 the computer memory be in this same order.) Omitting bytes from a multi-byte character
3739 definition produces undefined results.

3740 In lines defining ranges of symbolic names, the encoded value shall be the value for the first
3741 symbolic name in the range (the symbolic name preceding the ellipsis). Subsequent symbolic
3742 names defined by the range shall have encoding values in increasing order. Bytes shall be
3743 treated as unsigned octets, and carry shall be propagated between the bytes as necessary to
3744 represent the range. However, because this causes a null byte in the second or subsequent bytes
3745 of a character, such a declaration should not be specified. For example, the line:

3746 <j0101>...<j0104> \d129\d254

3747 is interpreted as:

3748 <30101> \d129\d254

3749 <j50102> \d129\d255

3750 <350103> \d130\d00

3751 <350104> \d130\d01

3752 The expanded declaration of the symbol <j0103> in the above example is an invalid
3753 specification, because it contains a null byte in the second byte of a character.

3754 The comment is optional.

3755 POSIX.1-2008 provides no means of defining a wide-character codeset.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 131

3756
3757
3758

3759
3760
3761
3762
3763
3764
3765
3766

3767
3768
3769
3770

3771

3772

3773
3774
3775
3776
3777
3778
3779
3780

3781
3782
3783
3784
3785

3786

3787
3788

3789
3790
3791
3792
3793
3794
3795

Character Set Description File Character Set

6.4.1

132

The following declarations can follow the character set mapping definitions (after the "END
CHARMAP" statement). Each shall consist of the keyword shown in the following list, starting in
column 1, followed by the value(s) to be associated to the keyword, as defined below.

WIDTH A non-negative integer value defining the column width (see Section 3.103, on
page 50) for the printable characters in the coded character set specified in Table
6-1 (on page 125) and Table 6-2 (on page 130). Coded character set character values
shall be defined using symbolic character names followed by column width
values. Defining a character with more than one WIDTH produces undefined
results. The END WIDTH keyword shall be used to terminate the WIDTH
definitions. Specifying the width of a non-printable character in a WIDTH
declaration produces undefined results.

WIDTH_DEFAULT
A non-negative integer value defining the default column width for any printable
character not listed by one of the WIDTH keywords. If no WIDTH_DEFAULT
keyword is included in the charmap, the default character width shall be 1.

Example
After the "END CHARMAP" statement, a syntax for a width definition would be:

WIDTH
<A> 1
 1
<C>...<Z2> 1

<fool>...<foon> 2

END WIDTH

In this example, the numerical code point values represented by the symbols <A> and are
assigned a width of 1. The code point values <C> to <Z> inclusive (<C>, <D>, <E>, and so on)
are also assigned a width of 1. Using <A>...<Z> would have required fewer lines, but the

alternative was shown to demonstrate flexibility. The keyword WIDTH_DEFAULT could have
been added as appropriate.

State-Dependent Character Encodings

This section addresses the use of state-dependent character encodings (that is, those in which the
encoding of a character is dependent on one or more shift codes that may precede it).

A single-shift encoding (where each character not in the initial shift state is preceded by a shift
code) can be defined in the charmap format if each shift-code/character sequence is considered
a multi-byte character, defined using the concatenated-constant format described in Section 6.4
(on page 129). If the implementation supports a character encoding of this type, all of the
standard utilities shall support it. A locking-shift encoding (where the state of the character is
determined by a shift code that may affect more than the single character following it) could be
defined with an extension to the charmap format described in Section 6.4 (on page 129).

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

Character Set Character Set Description File

3796 If the implementation supports a character encoding of this type, any of the standard utilities
3797 that describe character (versus byte) or text-file manipulation shall have the following
3798 characteristics:

3799 1. The utility shall process the statefully encoded data as a concatenation of state-
3800 independent characters. The presence of redundant locking shifts shall not affect the
3801 comparison of two statefully encoded strings.

3802 2. A utility that divides, truncates, or extracts substrings from statefully encoded data shall
3803 produce output that contains locking shifts at the beginning or end of the resulting data,
3804 if appropriate, to retain correct state information.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 133

134

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

Character Set

Vol. 1: Base Definitions, Issue 7

3805

3806

3807

3808
3809
3810
3811

3812

3813

3814

3815

3816

3817

3818
3819
3820
3821
3822

3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834

3835
3836
3837
3838

3839
3840

3841

3842

7.1

Chapter 7

Locale

General

A locale is the definition of the subset of a user’s environment that depends on language and
cultural conventions. It is made up from one or more categories. Each category is identified by
its name and controls specific aspects of the behavior of components of the system. Category
names correspond to the following environment variable names:

LC_CTYPE Character classification and case conversion.

LC_COLLATE Collation order.

LC_MONETARY Monetary formatting.

LC_NUMERIC Numeric, non-monetary formatting.

LC_TIME Date and time formats.

LC_MESSAGES Formats of informative and diagnostic messages and interactive responses.

The standard utilities in the Shell and Ultilities volume of POSIX.1-2008 shall base their behavior
on the current locale, as defined in the ENVIRONMENT VARIABLES section for each utility.
The behavior of some of the C-language functions defined in the System Interfaces volume of
POSIX.1-2008 shall also be modified based on the current locale, as defined by the last call to
setlocale().

Locales other than those supplied by the implementation can be created via the localedef utility,
provided that the _POSIX2_LOCALEDEF symbol is defined on the system. Even if localedef is
not provided, all implementations conforming to the System Interfaces volume of POSIX.1-2008
shall provide one or more locales that behave as described in this chapter. The input to the
utility is described in Section 7.3 (on page 136). The value that is used to specify a locale when
using environment variables shall be the string specified as the name operand to the localedef
utility when the locale was created. The strings "C" and "POSIX" are reserved as identifiers for
the POSIX locale (see Section 7.2, on page 136). When the value of a locale environment variable
begins with a <slash> (* /"), it shall be interpreted as the pathname of the locale definition; the
type of file (regular, directory, and so on) used to store the locale definition is implementation-
defined. If the value does not begin with a <slash>, the mechanism used to locate the locale is
implementation-defined.

If different character sets are used by the locale categories, the results achieved by an application
utilizing these categories are undefined. Likewise, if different codesets are used for the data
being processed by interfaces whose behavior is dependent on the current locale, or the codeset
is different from the codeset assumed when the locale was created, the result is also undefined.

Applications can select the desired locale by invoking the setlocale() function (or equivalent)
with the appropriate value. If the function is invoked with an empty string, such as:

setlocale (LC_ALL, "");

the value of the corresponding environment variable is used. If the environment variable is

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 135

General Locale

3843 unset or is set to the empty string, the implementation shall set the appropriate environment as
3844 defined in Chapter 8 (on page 173).

3845 7.2 POSIX Locale

3846 Conforming systems shall provide a POSIX locale, also known as the C locale. The behavior of
3847 standard utilities and functions in the POSIX locale shall be as if the locale was defined via the
3848 localedef utility with input data from the POSIX locale tables in Section 7.3.

3849 The tables in Section 7.3 describe the characteristics and behavior of the POSIX locale for data
3850 consisting entirely of characters from the portable character set and the control character set. For
3851 other characters, the behavior is unspecified. For C-language programs, the POSIX locale shall
3852 be the default locale when the setlocale() function is not called.

3853 The POSIX locale can be specified by assigning to the appropriate environment variables the
3854 values "C" or "POSIX".

3855 All implementations shall define a locale as the default locale, to be invoked when no
3856 environment variables are set, or set to the empty string. This default locale can be the POSIX
3857 locale or any other implementation-defined locale. Some implementations may provide facilities
3858 for local installation administrators to set the default locale, customizing it for each location.
3859 POSIX.1-2008 does not require such a facility.

3860 7.3 Locale Definition

3861 The capability to specify additional locales to those provided by an implementation is optional,
3862 denoted by the _POSIX2_LOCALEDEF symbol. If the option is not supported, only
3863 implementation-supplied locales are available. Such locales shall be documented using the
3864 format specified in this section.

3865 Locales can be described with the file format presented in this section. The file format is that
3866 accepted by the localedef utility. For the purposes of this section, the file is referred to as the
3867 “locale definition file”, but no locales shall be affected by this file unless it is processed by
3868 localedef or some similar mechanism. Any requirements in this section imposed upon the utility
3869 shall apply to localedef or to any other similar utility used to install locale information using the
3870 locale definition file format described here.

3871 The locale definition file shall contain one or more locale category source definitions, and shall
3872 not contain more than one definition for the same locale category. If the file contains source
3873 definitions for more than one category, implementation-defined categories, if present, shall
3874 appear after the categories defined by Section 7.1 (on page 135). A category source definition
3875 contains either the definition of a category or a copy directive. For a description of the copy
3876 directive, see localedef. In the event that some of the information for a locale category, as
3877 specified in this volume of POSIX.1-2008, is missing from the locale source definition, the
3878 behavior of that category, if it is referenced, is unspecified.

3879 A category source definition shall consist of a category header, a category body, and a category
3880 trailer. A category header shall consist of the character string naming of the category, beginning
3881 with the characters LC_. The category trailer shall consist of the string "END", followed by one
3882 or more <blank> characters and the string used in the corresponding category header.

3883 The category body shall consist of one or more lines of text. Each line shall contain an identifier,
3884 optionally followed by one or more operands. Identifiers shall be either keywords, identifying a

136 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3885
3886
3887
3888
3889

3890
3891
3892
3893
3894

3895
3896

3897

3898
3899

3900
3901

3902

3903
3904

3905
3906
3907
3908
3909

3910
3911
3912
3913
3914
3915
3916

3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927

3928

3929

Locale

Locale Definition

particular locale element, or collating elements. In addition to the keywords defined in this
volume of POSIX.1-2008, the source can contain implementation-defined keywords. Each
keyword within a locale shall have a unique name (that is, two categories cannot have a
commonly-named keyword); no keyword shall start with the characters LC_. Identifiers shall be
separated from the operands by one or more <blank> characters.

Operands shall be characters, collating elements, or strings of characters. Strings shall be
enclosed in double-quotes. Literal double-quotes within strings shall be preceded by the <escape
character>, described below. When a keyword is followed by more than one operand, the
operands shall be separated by <semicolon> characters; <blank> characters shall be allowed
both before and after a <semicolon>.

The first category header in the file can be preceded by a line modifying the comment character.
It shall have the following format, starting in column 1:

"comment_char %c\n", <comment character>

The comment character shall default to the <number-sign> (' #’). Blank lines and lines
containing the <comment character> in the first position shall be ignored.

The first category header in the file can be preceded by a line modifying the escape character to
be used in the file. It shall have the following format, starting in column 1:

"escape_char %c\n", <escape character>

The escape character shall default to <backslash>, which is the character used in all examples
shown in this volume of POSIX.1-2008.

A line can be continued by placing an escape character as the last character on the line; this
continuation character shall be discarded from the input. Although the implementation need not
accept any one portion of a continued line with a length exceeding {LINE_MAX] bytes, it shall
place no limits on the accumulated length of the continued line. Comment lines shall not be
continued on a subsequent line using an escaped <newline>.

Individual characters, characters in strings, and collating elements shall be represented using
symbolic names, as defined below. In addition, characters can be represented using the
characters themselves or as octal, hexadecimal, or decimal constants. When non-symbolic
notation is used, the resultant locale definitions are in many cases not portable between systems.
The left angle bracket (* <*) is a reserved symbol, denoting the start of a symbolic name; when
used to represent itself it shall be preceded by the escape character. The following rules apply to
character representation:

1. A character can be represented via a symbolic name, enclosed within angle brackets ’ <’
and ’>’. The symbolic name, including the angle brackets, shall exactly match a
symbolic name defined in the charmap file specified via the localedef —f option, and it shall
be replaced by a character value determined from the value associated with the symbolic
name in the charmap file. The use of a symbolic name not found in the charmap file shall
constitute an error, unless the category is LC_CTYPE or LC_COLLATE, in which case it
shall constitute a warning condition (see localedef for a description of actions resulting
from errors and warnings). The specification of a symbolic name in a collating-element
or collating-symbol section that duplicates a symbolic name in the charmap file (if
present) shall be an error. Use of the escape character or a right angle bracket within a
symbolic name is invalid unless the character is preceded by the escape character.

For example:

<c>;<c—cedilla> "<M><a><y>"

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 137

3930
3931
3932
3933
3934
3935

3936

3937

3938

3939

3940
3941
3942
3943

3944

3945

3946
3947
3948
3949
3950

3951

3952

3953
3954
3955
3956
3957

3958

3959

3960
3961
3962
3963
3964
3965
3966

Locale Definition Locale

138

2. A character in the portable character set can be represented by the character itself, in
which case the value of the character is implementation-defined. (Implementations may
allow other characters to be represented as themselves, but such locale definitions are not
portable.) Within a string, the double-quote character, the escape character, and the right
angle bracket character shall be escaped (preceded by the escape character) to be
interpreted as the character itself. Outside strings, the characters:

, ; < > escape_char

shall be escaped to be interpreted as the character itself.
For example:

c "May"

3. A character can be represented as an octal constant. An octal constant shall be specified as
the escape character followed by two or three octal digits. Each constant shall represent a
byte value. Multi-byte values can be represented by concatenated constants specified in
byte order with the last constant specifying the least significant byte of the character.

For example:
\143;\347;\143\150 "\115\141\171"

4. A character can be represented as a hexadecimal constant. A hexadecimal constant shall
be specified as the escape character followed by an ’x’ followed by two hexadecimal
digits. Each constant shall represent a byte value. Multi-byte values can be represented by
concatenated constants specified in byte order with the last constant specifying the least
significant byte of the character.

For example:
\x63;\xe7;\x63\x68 "\x4d\x61\x79"

5. A character can be represented as a decimal constant. A decimal constant shall be
specified as the escape character followed by a " d’ followed by two or three decimal
digits. Each constant represents a byte value. Multi-byte values can be represented by
concatenated constants specified in byte order with the last constant specifying the least
significant byte of the character.

For example:
\d99;\d231;\d99\d104 "\d77\d97\d121"

Implementations may accept single-digit octal, decimal, or hexadecimal constants following the
escape character. Only characters existing in the character set for which the locale definition is
created shall be specified, whether using symbolic names, the characters themselves, or octal,
decimal, or hexadecimal constants. If a charmap file is present, only characters defined in the
charmap can be specified using octal, decimal, or hexadecimal constants. Symbolic names not
present in the charmap file can be specified and shall be ignored, as specified under item 1
above.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3967

3968
3969
3970
3971
3972
3973
3974
3975
3976

3977

3978

3979

3980
3981
3982
3983
3984
3985
3986

3987
3988
3989
3990
3991
3992

3993
3994

3995

3996

3997

3998
3999
4000
4001

4002

4003

4004

4005
4006
4007

4008

4009
4010

Locale

7.3.1

Locale Definition

LC_CTYPE

The LC_CTYPE category shall define character classification, case conversion, and other
character attributes. In addition, a series of characters can be represented by three adjacent
<period> characters representing an ellipsis symbol ("..."). The ellipsis specification shall be
interpreted as meaning that all values between the values preceding and following it represent
valid characters. The ellipsis specification shall be valid only within a single encoded character
set; that is, within a group of characters of the same size. An ellipsis shall be interpreted as
including in the list all characters with an encoded value higher than the encoded value of the
character preceding the ellipsis and lower than the encoded value of the character following the
ellipsis.

For example:
\x30;...;\x39;
includes in the character class all characters with encoded values between the endpoints.

The following keywords shall be recognized. In the descriptions, the term “automatically
included” means that it shall not be an error either to include or omit any of the referenced
characters; the implementation provides them if missing (even if the entire keyword is missing)
and accepts them silently if present. When the implementation automatically includes a missing
character, it shall have an encoded value dependent on the charmap file in effect (see the
description of the localedef —f option); otherwise, it shall have a value derived from an
implementation-defined character mapping.

The character classes digit, xdigit, lower, upper, and space have a set of automatically included
characters. These only need to be specified if the character values (that is, encoding) differ from
the implementation default values. It is not possible to define a locale without these
automatically included characters unless some implementation extension is used to prevent
their inclusion. Such a definition would not be a proper superset of the C or POSIX locale and,
thus, it might not be possible for conforming applications to work properly.

copy Specify the name of an existing locale which shall be used as the definition of
this category. If this keyword is specified, no other keyword shall be specified.

upper Define characters to be classified as uppercase letters.
In the POSIX locale, the 26 uppercase letters shall be included:
ABCDEFGHIJKLMNOPOQRSTUVWXYZ

In a locale definition file, no character specified for the keywords cntrl, digit,
punct, or space shall be specified. The uppercase letters <A> to <Z>, as
defined in Section 6.4 (on page 129) (the portable character set), are
automatically included in this class.

lower Define characters to be classified as lowercase letters.
In the POSIX locale, the 26 lowercase letters shall be included:
abcdefghijklmnopgrstuvwzixyz

In a locale definition file, no character specified for the keywords cntrl, digit,
punct, or space shall be specified. The lowercase letters <a> to <z> of the
portable character set are automatically included in this class.

alpha Define characters to be classified as letters.

In the POSIX locale, all characters in the classes upper and lower shall be
included.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 139

4011
4012
4013

4014

4015

4016

4017

4018
4019
4020
4021

4022
4023
4024
4025

4026

4027
4028

4029
4030
4031
4032
4033

4034

4035

4036
4037

4038

4039
4040

4041
4042

4043
4044

4045
4046

4047
4048
4049

4050
4051

4052
4053

Locale Definition

digit

alnum

space

cntrl

punct

graph

print

140

Locale

In a locale definition file, no character specified for the keywords cntrl, digit,
punct, or space shall be specified. Characters classified as either upper or
lower are automatically included in this class.

Define the characters to be classified as numeric digits.
In the POSIX locale, only:

012345672829

shall be included.

In a locale definition file, only the digits <zero>, <one>, <two>, <three>,
<four>, <five>, <six>, <seven>, <eight>, and <nine> shall be specified, and in
contiguous ascending sequence by numerical value. The digits <zero> to
<nine> of the portable character set are automatically included in this class.

Define characters to be classified as letters and numeric digits. Only the
characters specified for the alpha and digit keywords shall be specified.
Characters specified for the keywords alpha and digit are automatically
included in this class.

Define characters to be classified as white-space characters.

In the POSIX locale, exactly <space>, <form-feed>, <newline>, <carriage-
return>, <tab>, and <vertical-tab> shall be included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, graph, or xdigit shall be specified. The <space>, <form-
feed>, <newline>, <carriage-return>, <tab>, and <vertical-tab> of the portable
character set, and any characters included in the class blank are automatically
included in this class.

Define characters to be classified as control characters.
In the POSIX locale, no characters in classes alpha or print shall be included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, punct, graph, print, or xdigit shall be specified.

Define characters to be classified as punctuation characters.

In the POSIX locale, neither the <space> nor any characters in classes alpha,
digit, or cntrl shall be included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, cntrl, xdigit, or as the <space> shall be specified.

Define characters to be classified as printable characters, not including the
<space>.

In the POSIX locale, all characters in classes alpha, digit, and punct shall be
included; no characters in class cntrl shall be included.

In a locale definition file, characters specified for the keywords upper, lower,
alpha, digit, xdigit, and punct are automatically included in this class. No
character specified for the keyword cntrl shall be specified.

Define characters to be classified as printable characters, including the
<space>.

In the POSIX locale, all characters in class graph shall be included; no
characters in class cntrl shall be included.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4054
4055
4056

4057

4058

4059

4060

4061
4062
4063
4064
4065
4066
4067

4068

4069

4070
4071

4072
4073
4074
4075
4076
4077
4078
4079
4080

4081
4082
4083

4084
4085
4086

4087
4088
4089

4090

4091

4092

4093

4094

4095
4096
4097

Locale

xdigit

blank

charclass

charclass-name

toupper

Vol. 1: Base Definitions, Issue 7

Locale Definition

In a locale definition file, characters specified for the keywords upper, lower,
alpha, digit, xdigit, punct, graph, and the <space> are automatically included
in this class. No character specified for the keyword cntrl shall be specified.

Define the characters to be classified as hexadecimal digits.
In the POSIX locale, only:

0123456789 ABCDETFabcdef
shall be included.

In a locale definition file, only the characters defined for the class digit shall be
specified, in contiguous ascending sequence by numerical value, followed by
one or more sets of six characters representing the hexadecimal digits 10 to 15
inclusive, with each set in ascending order (for example, <A>, , <C>, <D>,
<E>, <F>, <a>, , <c>, <d>, <e>, <f>). The digits <zero> to <nine>, the
uppercase letters <A> to <F>, and the lowercase letters <a> to <f> of the
portable character set are automatically included in this class.

Define characters to be classified as <blank> characters.
In the POSIX locale, only the <space> and <tab> shall be included.

In a locale definition file, the <space> and <tab> are automatically included in
this class.

Define one or more locale-specific character class names as strings separated
by <semicolon> characters. Each named character class can then be defined
subsequently in the LC_CTYPE definition. A character class name shall consist
of at least one and at most {CHARCLASS_NAME MAX]} bytes of
alphanumeric characters from the portable filename character set. The first
character of a character class name shall not be a digit. The name shall not
match any of the LC_CTYPE keywords defined in this volume of
POSIX.1-2008. Future versions of this standard will not specify any LC_CTYPE
keywords containing uppercase letters.

Define characters to be classified as belonging to the named locale-specific
character class. In the POSIX locale, locale-specific named character classes
need not exist.

If a class name is defined by a charclass keyword, but no characters are
subsequently assigned to it, this is not an error; it represents a class without
any characters belonging to it.

The charclass-name can be used as the property argument to the wctype()
function, in regular expression and shell pattern-matching bracket
expressions, and by the tr command.

Define the mapping of lowercase letters to uppercase letters.

In the POSIX locale, at a minimum, the 26 lowercase characters:
abcdefghijklmnopgrstuvwsxyz
shall be mapped to the corresponding 26 uppercase characters:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

In a locale definition file, the operand shall consist of character pairs,
separated by <semicolon> characters. The characters in each character pair
shall be separated by a <comma> and the pair enclosed by parentheses. The

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 141

4098
4099
4100
4101
4102
4103

4104

4105

4106

4107

4108

4109
4110
4111
4112
4113
4114
4115
4116

4117

4118

4119
4120

4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131

4132

4133

4134

4135

4136

4137

4138
4139
4140

Locale Definition

142

tolower

Locale

first character in each pair is the lowercase letter, the second the corresponding
uppercase letter. Only characters specified for the keywords lower and upper
shall be specified. The lowercase letters <a> to <z>, and their corresponding
uppercase letters <A> to <Z>, of the portable character set are automatically
included in this mapping, but only when the toupper keyword is omitted
from the locale definition.

Define the mapping of uppercase letters to lowercase letters.

In the POSIX locale, at a minimum, the 26 uppercase characters:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
shall be mapped to the corresponding 26 lowercase characters:
abcdefghijklmnopgrstuvwsxyz

In a locale definition file, the operand shall consist of character pairs,
separated by <semicolon> characters. The characters in each character pair
shall be separated by a <comma> and the pair enclosed by parentheses. The
first character in each pair is the uppercase letter, the second the
corresponding lowercase letter. Only characters specified for the keywords
lower and upper shall be specified. If the tolower keyword is omitted from
the locale definition, the mapping is the reverse mapping of the one specified
for toupper.

The following table shows the character class combinations allowed:

Table 7-1 Valid Character Class Combinations

Can Also Belong To
In Class | upper lower alpha digit space cntrl punct graph print xdigit blank
upper — A X X X X A A — X
lower — A X X X X A A — X
alpha — — X X X X A A — X
digit X X X X X X A A A X
space X X X X — * * * X —
cntrl X X X X — X X X X —
punct X X X X — X A A X —
graph — — —_ = = X — A — —
print — — —_ = = X — — — —
xdigit — — —- - X X A A X
blank X X X X A — * * * X
Notes:
1. Explanation of codes:

A Automatically included; see text.

— Permitted.

x Mutually-exclusive.

* Seenote 2.

2. The <space>, which is part of the space and blank classes, cannot belong to punct or

8

raph, but shall automatically belong to the print class. Other space or blank characters

can be classified as any of punct, graph, or print.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4141

4142
4143

4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192

Locale

7.3.1.1

Vol. 1: Base Definitions, Issue 7

Locale Definition

LC_CTYPE Category in the POSIX Locale

The character classifications for the POSIX locale follow; the code listing depicts the localedef
input, and the table represents the same information, sorted by character.

LC_CTYPE

"alpha"
"alnum"
"print A
"graph"

T

upper

#

lower
digit
space

cntrl

punct

#
xdigit

#

blank

#
toupper

(
(
(
(
(
#

tolower (

(

The following

is by
by
by

by

is
is
is

<A>;

is the POSIX locale LC_CTYPE.

default "upper" and "lower"

definition "alpha" and "digit"

default "alnum", "punct", and the <space>
default "alnum" and "punct"

; <C>; <D>; <E>; <F>; <G>; <H>; <I>; <J>; <K>; <L>; <M>; \

<N>; <O>; <P>; <Q>; <R>; <S>; <T>; <U>; <V>; <W>; <X>; <Y>; <Z>

<a>; ;<c>;<d>;<e>; <f>;<g>; <h>; <i>; <J>; <k>; <1>; <m>; \
<N>; <0>; <P>; <g>; <r>; <s>; <t>; <u>; <v>; <w>; <X>; <y>;<z>

<zero>;

<one>; <two>;<three>;<four>;<five>;<six>;\

<seven>; <eight>; <nine>

<tab>;<newline>;<vertical-tab>; <form-feed>;\
<carriage-return>; <space>

<alert>; <backspace>; <tab>; <newline>; <vertical-tab>;\
<form-feed>; <carriage-return>;\

<NUL>; <SOH>; <STX>; <ETX>; <EOT>; <ENQ>; <ACK>; <SO>; \
<SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>; <NAK>; <SYN>; \
<ETB>; <CAN>; ; <SUB>; <ESC>; <IS4>;<IS3>;<IS2>;\
<IS1>;

<exclamation-mark>; <quotation-mark>; <number-sign>; \
<dollar-sign>; <percent-sign>; <ampersand>; <apostrophe>;\
<left-parenthesis>; <right-parenthesis>; <asterisk>;\
<plus-sign>; <comma>; <hyphen>; <period>; <slash>;\
<colon>;<semicolon>;<less—-than-sign>; <equals-sign>;\
<greater-than-sign>; <question-mark>; <commercial-at>;\
<left-square—-bracket>; <backslash>; <right-square-bracket>;\
<circumflex>; <underscore>; <grave-accent>;<left-curly-bracket>;\
<vertical-line>;<right-curly-bracket>;<tilde>

<zero>;

<one>; <two>;<three>; <four>;<five>;<six>;<seven>; \

<eight>; <nine>; <A>; ; <C>; <D>; <E>; <F>; <a>; ; <c>; <d>; <e>; <f>

<space>; <tab>

<a>, <A>); (,
<f>,<F>); (<g>,
<k>,<K>); (<1>,
<p>,<P>); (<g>,
<u>, <U>); (<v>,
<A>,<a>); (,
<F>,<f>); (<G>,

); (<c>,
<G>); (<h>,
<L>); (<m>,
<Q>); (<r>,
<V>) 5 (<w>,
); (<C>,
<g>); (<H>,

<C>) ; (<d>,
<H>); (<1i>,
<M>) ; (<n>,
<R>); (s>,
<W>) ; (<x>,
<c>); (<D>,
<h>); (<I>,

<D>); (<e>,<E>);
<I>); (<3>,<T>);
<N>) ; (<0>,<0>);
<S>); (<t>,<T>);
<X>); (<y>,<Y>);
<d>); (KE>, <e>);
<i>); (<T>,<3>);

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

\
\
\
\
(

\
\

<z>,<2>)

4193
4194
4195
4196

4197

4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243

Locale Definition

(<K>, <k>);
(<P>,<p>);
(<U>, <u>);

END LC_CTYPE

(<L>, <1>)
(<Q>, <g>)
(<V>, <v>)

7 (<M>, <m>)
; (KR>, <r>)
;(<W>, <w>)

4

4

4

(<N>, <n>) ;
(<S>, <s>);
(<X>,<x>) ;

(<0>, <0>);
(<T>, <t>)
(<Y>, <y>);

Locale

i\
i\

(<Z>,<z>)

Symbolic Name Other Case Character Classes

<NUL> cntrl

<SOH> cntrl

<STX> cntrl

<ETX> cntrl

<EOT> cntrl

<ENQ> cntrl

<ACK> cntrl

<alert> cntrl

<backspace> cntrl

<tab> cntrl, space, blank
<newline> cntrl, space

<vertical-tab>
<form-feed>
<carriage-return>
<SO>

<SI>

<DLE>

<DC1>

<DC2>

<DC3>

<DC4>

<NAK>

<SYN>

<ETB>

<CAN>

<SUB>

<ESC>

<IS4>

<IS3>

<IS2>

<IS1>

<space>
<exclamation-mark>
<quotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>
<right-parenthesis>
<asterisk>
<plus-sign>
<comma>
<hyphen>

cntrl, space

cntrl, space

cntrl, space

cntrl

cntrl

cntrl

cntrl

cntrl

cntrl

cntrl

cntrl

cntrl

cntrl

cntrl

cntrl

cntrl

cntrl

cntrl

cntrl

cntrl

cntrl

space, print, blank
punct, print, graph
punct, print, graph
punct, print, graph
punct, print, graph
punct, print, graph
punct, print, graph
punct, print, graph
punct, print, graph
punct, print, graph
punct, print, graph
punct, print, graph
punct, print, graph
punct, print, graph

144

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

Vol. 1: Base Definitions, Issue 7

4244

4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295

Locale

Locale Definition

Symbolic Name Other Case Character Classes
<period> punct, print, graph
<slash> punct, print, graph
<zero> digit, xdigit, print, graph
<one> digit, xdigit, print, graph
<two> digit, xdigit, print, graph
<three> digit, xdigit, print, graph
<four> digit, xdigit, print, graph
<five> digit, xdigit, print, graph
<six> digit, xdigit, print, graph
<seven> digit, xdigit, print, graph
<eight> digit, xdigit, print, graph
<nine> digit, xdigit, print, graph
<colon> punct, print, graph
<semicolon> punct, print, graph
<less-than-sign> punct, print, graph
<equals-sign> punct, print, graph
<greater-than-sign> punct, print, graph
<question-mark> punct, print, graph
<commercial-at> punct, print, graph
<A> <a> upper, xdigit, alpha, print, graph
 upper, xdigit, alpha, print, graph
<C> <c> upper, xdigit, alpha, print, graph
<D> <d> upper, xdigit, alpha, print, graph
<E> <e> upper, xdigit, alpha, print, graph
<F> <f> upper, xdigit, alpha, print, graph
<G> <g> upper, alpha, print, graph
<H> <h> upper, alpha, print, graph
<I> <i> upper, alpha, print, graph
<J> <j> upper, alpha, print, graph
<K> <k> upper, alpha, print, graph
<L> <I> upper, alpha, print, graph
<M> <m> upper, alpha, print, graph
<N> <n> upper, alpha, print, graph
<O> <0> upper, alpha, print, graph
<P> <p> upper, alpha, print, graph
<Q> <q> upper, alpha, print, graph
<R> <r> upper, alpha, print, graph
<S> <s> upper, alpha, print, graph
<T> <t> upper, alpha, print, graph
<U> <u> upper, alpha, print, graph
<V> <v> upper, alpha, print, graph
<W> <w> upper, alpha, print, graph
<X> <> upper, alpha, print, graph
<Y> <y> upper, alpha, print, graph
<Z> <z> upper, alpha, print, graph
<left-square-bracket> punct, print, graph
<backslash> punct, print, graph
<right-square-bracket> punct, print, graph
<circumflex> punct, print, graph
<underscore> punct, print, graph
<grave-accent> punct, print, graph

Vol. 1: Base Definitions, Issue 7

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

145

4296

4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327

4328

4329
4330
4331
4332

4333
4334
4335
4336
4337
4338
4339

4340
4341

Locale Definition Locale

7.3.2

146

Symbolic Name Other Case Character Classes
<a> <A> lower, xdigit, alpha, print, graph
 lower, xdigit, alpha, print, graph
<c> <C> lower, xdigit, alpha, print, graph
<d> <D> lower, xdigit, alpha, print, graph
<e> <E> lower, xdigit, alpha, print, graph
<f> <F> lower, xdigit, alpha, print, graph
<g> <G> lower, alpha, print, graph
<h> <H> lower, alpha, print, graph
<i> <I> lower, alpha, print, graph
<> <J> lower, alpha, print, graph
<k> <K> lower, alpha, print, graph
<I> <L> lower, alpha, print, graph
<m> <M> lower, alpha, print, graph
<n> <N> lower, alpha, print, graph
<0> <O> lower, alpha, print, graph
<p> <P> lower, alpha, print, graph
<q> <Q> lower, alpha, print, graph
<r> <R> lower, alpha, print, graph
<s> <5> lower, alpha, print, graph
<t> <T> lower, alpha, print, graph
<u> <U> lower, alpha, print, graph
<v> <V> lower, alpha, print, graph
<w> <W> lower, alpha, print, graph
<Xx> <X> lower, alpha, print, graph
<y> <Y> lower, alpha, print, graph
<z> <Z> lower, alpha, print, graph
<left-curly-bracket> punct, print, graph
<vertical-line> punct, print, graph
<right-curly-bracket> punct, print, graph
<tilde> punct, print, graph
 cntrl
LC_COLLATE

The LC_COLLATE category provides a collation sequence definition for numerous utilities in the
Shell and Utilities volume of POSIX.1-2008 (sort, uniq, and so on), regular expression matching
(see Chapter 9, on page 181), and the strcoll (), strxfrm(), wescoll(), and wesxfrm () functions in the
System Interfaces volume of POSIX.1-2008.

A collation sequence definition shall define the relative order between collating elements
(characters and multi-character collating elements) in the locale. This order is expressed in terms
of collation values; that is, by assigning each element one or more collation values (also known
as collation weights). This does not imply that implementations shall assign such values, but
that ordering of strings using the resultant collation definition in the locale behaves as if such
assignment is done and used in the collation process. At least the following capabilities are
provided:

1. Multi-character collating elements. Specification of multi-character collating elements
(that is, sequences of two or more characters to be collated as an entity).

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4342
4343
4344
4345

4346
4347
4348

4349

4350
4351

4352
4353
4354
4355
4356
4357

4358
4359

4360
4361
4362

4363
4364

4365
4366

4367
4368
4369

4370

4371

4372
4373

4374

4375
4376
4377
4378
4379

4380

4381
4382
4383

Locale

7.3.2.1

Locale Definition

2. User-defined ordering of collating elements. Each collating element shall be assigned a
collation value defining its order in the character (or basic) collation sequence. This
ordering is used by regular expressions and pattern matching and, unless collation
weights are explicitly specified, also as the collation weight to be used in sorting.

3. Multiple weights and equivalence classes. Collating elements can be assigned one or
more (up to the limit {COLL_WEIGHTS_MAX], as defined in <limits.h>) collating
weights for use in sorting. The first weight is hereafter referred to as the primary weight.

4. One-to-many mapping. A single character is mapped into a string of collating elements.

5. Equivalence class definition. Two or more collating elements have the same collation
value (primary weight).

6. Ordering by weights. When two strings are compared to determine their relative order,
the two strings are first broken up into a series of collating elements; the elements in each
successive pair of elements are then compared according to the relative primary weights
for the elements. If equal, and more than one weight has been assigned, then the pairs of
collating elements are re-compared according to the relative subsequent weights, until
either a pair of collating elements compare unequal or the weights are exhausted.

The following keywords shall be recognized in a collation sequence definition. They are
described in detail in the following sections.

copy Specify the name of an existing locale which shall be used as the
definition of this category. If this keyword is specified, no other keyword
shall be specified.

collating-element Define a collating-element symbol representing a multi-character

collating element. This keyword is optional.

collating-symbol Define a collating symbol for use in collation order statements. This
keyword is optional.

order_start Define collation rules. This statement shall be followed by one or more
collation order statements, assigning character collation values and
collation weights to collating elements.

order_end Specify the end of the collation-order statements.

The collating-element Keyword

In addition to the collating elements in the character set, the collating-element keyword can be
used to define multi-character collating elements. The syntax is as follows:

"collating-element %s from \"$s\"\n", <collating-symbol>, <string>

The <collating-symbol> operand shall be a symbolic name, enclosed between angle brackets (* <’
and ’ >"), and shall not duplicate any symbolic name in the current charmap file (if any), or any
other symbolic name defined in this collation definition. The string operand is a string of two or
more characters that collates as an entity. A <collating-element> defined via this keyword is only
recognized with the LC_COLLATE category.

For example:

collating-element <ch> from "<c><h>"
collating-element <e—acute> from "<acute><e>"
collating-element <11> from "11"

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 147

4384

4385
4386

4387

4388
4389
4390
4391

4392

4393
4394

4395
4396
4397

4398

4399
4400

4401

4402
4403
4404
4405
4406
4407
4408
4409
4410

4411
4412

4413
4414

4415
4416
4417
4418
4419
4420
4421
4422

4423

4424

Locale Definition Locale

7.3.2.2

7.3.2.3

148

The collating-symbol Keyword

This keyword shall be used to define symbols for use in collation sequence statements; that is,
between the order_start and the order_end keywords. The syntax is as follows:

"collating-symbol %s\n", <collating-symbol>

The <collating-symbol> shall be a symbolic name, enclosed between angle brackets (* <’ and
*>7), and shall not duplicate any symbolic name in the current charmap file (if any), or any
other symbolic name defined in this collation definition. A <collating-symbol> defined via this
keyword is only recognized within the LC_COLLATE category.

For example:

collating-symbol <UPPER_CASE>
collating-symbol <HIGH>

The collating-symbol keyword defines a symbolic name that can be associated with a relative
position in the character order sequence. While such a symbolic name does not represent any
collating element, it can be used as a weight.

The order_start Keyword

The order_start keyword shall precede collation order entries and also define the number of
weights for this collation sequence definition and other collation rules. The syntax is as follows:

"order_start %s;%sS;...;%s\n", <sort-rules>, <sort-rules>

The operands to the order_start keyword are optional. If present, the operands define rules to be
applied when strings are compared. The number of operands define how many weights each
element is assigned; if no operands are present, one forward operand is assumed. If present, the
first operand defines rules to be applied when comparing strings using the first (primary)
weight; the second when comparing strings using the second weight, and so on. Operands shall
be separated by <semicolon> characters (’;’). Each operand shall consist of one or more
collation directives, separated by <comma> characters (* , *). If the number of operands exceeds
the {COLL_WEIGHTS_MAX] limit, the utility shall issue a warning message. The following
directives shall be supported:

forward Specifies that comparison operations for the weight level shall proceed from start
of string towards the end of string.

backward Specifies that comparison operations for the weight level shall proceed from end of
string towards the beginning of string.

position Specifies that comparison operations for the weight level shall consider the relative
position of elements in the strings not subject to IGNORE. The string containing
an element not subject to IGNORE after the fewest collating elements subject to
IGNORE from the start of the compare shall collate first. If both strings contain a
character not subject to IGNORE in the same relative position, the collating values
assigned to the elements shall determine the ordering. In case of equality,
subsequent characters not subject to IGNORE shall be considered in the same
manner.

The directives forward and backward are mutually-exclusive.

If no operands are specified, a single forward operand shall be assumed.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4425

4426

4427

4428
4429

4430

4431
4432
4433
4434
4435

4436
4437
4438

4439
4440

4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452

4453
4454
4455
4456
4457
4458

4459
4460
4461
4462
4463
4464
4465
4466
4467

4468
4469
4470

Locale

7.3.2.4

Locale Definition

For example:

order_start forward; backward

Collation Order

The order_start keyword shall be followed by collating identifier entries. The syntax for the
collating element entries is as follows:

"$s %$5;%S;...;%s\n", <collating-identifier>, <weight>, <weight>,

Each collating-identifier shall consist of either a character (in any of the forms defined in Section
7.3, on page 136), a <collating-element>, a <collating-symbol>, an ellipsis, or the special symbol
UNDEFINED. The order in which collating elements are specified determines the character
order sequence, such that each collating element shall compare less than the elements following
it.

A <collating-element> shall be used to specify multi-character collating elements, and indicates
that the character sequence specified via the <collating-element> is to be collated as a unit and in
the relative order specified by its place.

A <collating-symbol> can be used to define a position in the relative order for use in weights. No
weights shall be specified with a <collating-symbol>.

The ellipsis symbol specifies that a sequence of characters shall collate according to their
encoded character values. It shall be interpreted as indicating that all characters with a coded
character set value higher than the value of the character in the preceding line, and lower than
the coded character set value for the character in the following line, in the current coded
character set, shall be placed in the character collation order between the previous and the
following character in ascending order according to their coded character set values. An initial
ellipsis shall be interpreted as if the preceding line specified the NUL character, and a trailing
ellipsis as if the following line specified the highest coded character set value in the current
coded character set. An ellipsis shall be treated as invalid if the preceding or following lines do
not specify characters in the current coded character set. The use of the ellipsis symbol ties the
definition to a specific coded character set and may preclude the definition from being portable
between implementations.

The symbol UNDEFINED shall be interpreted as including all coded character set values not
specified explicitly or via the ellipsis symbol. Such characters shall be inserted in the character
collation order at the point indicated by the symbol, and in ascending order according to their
coded character set values. If no UNDEFINED symbol is specified, and the current coded
character set contains characters not specified in this section, the utility shall issue a warning
message and place such characters at the end of the character collation order.

The optional operands for each collation-element shall be used to define the primary, secondary,
or subsequent weights for the collating element. The first operand specifies the relative primary
weight, the second the relative secondary weight, and so on. Two or more collation-elements can
be assigned the same weight; they belong to the same “equivalence class” if they have the same
primary weight. Collation shall behave as if, for each weight level, elements subject to IGNORE
are removed, unless the position collation directive is specified for the corresponding level with
the order_start keyword. Then each successive pair of elements shall be compared according to
the relative weights for the elements. If the two strings compare equal, the process shall be
repeated for the next weight level, up to the limit {COLL_WEIGHTS_MAX}.

Weights shall be expressed as characters (in any of the forms specified in Section 7.3, on page
136), <collating-symbol>s, <collating-element>s, an ellipsis, or the special symbol IGNORE. A
single character, a <collating-symbol>, or a <collating-element> shall represent the relative position

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 149

4471
4472
4473
4474

4475
4476
4477
4478
4479

4480
4481
4482
4483
4484
4485
4486

4487
4488
4489
4490
4491

4492

4493

4494

4495

4496

4497
4498

4499
4500

4501

4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517

Locale Definition Locale

150

in the character collating sequence of the character or symbol, rather than the character or
characters themselves. Thus, rather than assigning absolute values to weights, a particular
weight is expressed using the relative order value assigned to a collating element based on its
order in the character collation sequence.

One-to-many mapping is indicated by specifying two or more concatenated characters or
symbolic names. For example, if the <eszet> is given the string "<s><s>" as a weight,
comparisons are performed as if all occurrences of the <eszet> are replaced by "<s><s>"
(assuming that "<s>" has the collating weight "<s>"). If it is necessary to define <eszet> and
"<s><s>" as an equivalence class, then a collating element must be defined for the string "ss™".

All characters specified via an ellipsis shall by default be assigned unique weights, equal to the
relative order of characters. Characters specified via an explicit or implicit UNDEFINED special
symbol shall by default be assigned the same primary weight (that is, they belong to the same
equivalence class). An ellipsis symbol as a weight shall be interpreted to mean that each
character in the sequence shall have unique weights, equal to the relative order of their character
in the character collation sequence. The use of the ellipsis as a weight shall be treated as an error
if the collating element is neither an ellipsis nor the special symbol UNDEFINED.

The special keyword IGNORE as a weight shall indicate that when strings are compared using
the weights at the level where IGNORE is specified, the collating element shall be ignored; that
is, as if the string did not contain the collating element. In regular expressions and pattern
matching, all characters that are subject to IGNORE in their primary weight form an
equivalence class.

An empty operand shall be interpreted as the collating element itself.

For example, the order statement:

<a> <a>; <a>
is equal to:
<a>

An ellipsis can be used as an operand if the collating element was an ellipsis, and shall be
interpreted as the value of each character defined by the ellipsis.

The collation order as defined in this section affects the interpretation of bracket expressions in
regular expressions (see Section 9.3.5, on page 184).

For example:

order_start forward;backward

UNDEFINED IGNORE; IGNORE
<LOW>
<space> <LOW>; <space>
. <LOW>; ...
<a> <a>; <a>
<a—acute> <a>;<a—acute>
<a—-grave> <a>;<a—-grave>
<A> <a>; <A>
<A-acute> <a>;<A-acute>
<A-grave> <a>;<A-grave>
<ch> <ch>; <ch>
<Ch> <ch>; <Ch>
<s> <s>;<s>
<eszet> "<s><s>"; "<eszet><eszet>"

order_end

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4518

4519
4520

4521
4522

4523
4524

4525
4526
4527

4528

4529

4530

4531
4532

4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563

Locale

Locale Definition

This example is interpreted as follows:

1.

The UNDEFINED means that all characters not specified in this definition (explicitly or
via the ellipsis) shall be ignored for collation purposes.

All characters between <space> and ’a’ shall have the same primary equivalence class
and individual secondary weights based on their ordinal encoded values.

All characters based on the uppercase or lowercase character ’a’ belong to the same
primary equivalence class.

The multi-character collating element <ch> is represented by the collating symbol <ch>
and belongs to the same primary equivalence class as the multi-character collating
element <Ch>.

7.3.2.5 The order_end Keyword

The collating order entries shall be terminated with an order_end keyword.

7.3.2.6 LC_COLLATE Category in the POSIX Locale

The collation sequence definition of the POSIX locale follows; the code listing depicts the
localedef input.

LC_CO
Thi
The
order
<NUL>
<SOH>
<STX>
<ETX>
<EOT>
<ENQ>
<ACK>
<aler
<back
<tab>
<newl
<vert

LLATE

s is the POSIX locale definition for the LC_COLLATE category.
order is the same as in the ASCII codeset.

_start forward

t>
space>

ine>
ical-tab>

<form-feed>

<carr
<SO>

<SI>

<DLE>
<DC1>
<DC2>
<DC3>
<DC4>
<NAK>
<SYN>
<ETB>
<CAN>

<SUB>

iage-return>

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 151

4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616

Locale Definition

152

<ESC>

<ISs4>

<IS3>

<IS2>

<ISl>

<space>
<exclamation-mark>
<quotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>
<right-parenthesis>
<asterisk>
<plus-sign>
<comma>

<hyphen>
<period>

<slash>

<zero>

<one>

<two>

<three>

<four>

<five>

<six>

<seven>

<eight>

<nine>

<colon>
<semicolon>
<less-than-sign>
<equals-sign>
<greater-than-sign>
<gquestion-mark>
<commercial-at>
<A>

<C>

<D>

<E>

<F>

<G>

<H>

<I>

<J>

<K>

<L>

<M>

<N>

<O>

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

Locale

Vol. 1: Base Definitions, Issue 7

4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667

Locale

<P>

<Q>

<R>

<S>

<T>

<U>

<V>

<W>

<X>

<Y>

<zZ>
<left-square-bracket>
<backslash>
<right-square-bracket>
<circumflex>
<underscore>
<grave-—-accent>
<a>

<c>

<d>

<e>

<f>

<g>

<h>

<i>

<j>

<k>

<1>

<m>

<n>

<0o>

<p>

<q>

<r>

<s>

<t>

<u>

<v>

<w>

<X>

<y>

<z>
<left-curly-bracket>
<vertical-line>
<right-curly-bracket>
<tilde>

order_end

#

END LC_COLLATE

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

Locale Definition

153

4668

4669
4670

4671
4672

4673
4674

4675
4676
4677
4678
4679

4680
4681
4682
4683
4684

4685
4686
4687

4688

4689
4690
4691
4692
4693
4694

4695

4696
4697

4698
4699
4700

4701
4702
4703
4704
4705
4706
4707
4708

4709
4710

4711
4712

Locale Definition Locale

7.3.3

154

LC_MONETARY

The LC_MONETARY category shall define the rules and symbols that are used to format
monetary numeric information.

This information is available through the localeconv() function and is used by the strfmon()
function.

Some of the information is also available in an alternative form via the nl_langinfo() function
(see CRNCYSTR in <langinfo.h>).

The following items are defined in this category of the locale. The item names are the keywords
recognized by the localedef utility when defining a locale. They are also similar to the member
names of the lconv structure defined in <locale.h>; see <locale.h> for the exact symbols in the
header. The localeconv() function returns {CHAR_MAX] for unspecified integer items and the
empty string (" ") for unspecified or size zero string items.

In a locale definition file, the operands are strings, formatted as indicated by the grammar in
Section 7.4 (on page 165). For some keywords, the strings can contain only integers. Keywords
that are not provided, string values set to the empty string (" "), or integer keywords set to —1,
are used to indicate that the value is not available in the locale. The following keywords shall be
recognized:

copy Specify the name of an existing locale which shall be used as the
definition of this category. If this keyword is specified, no other keyword
shall be specified.
Note: This is a localedef utility keyword, unavailable through localeconv ().
int_curr_symbol The international currency symbol. The operand shall be a four-character

string, with the first three characters containing the alphabetic
international currency symbol. The international currency symbol should
be chosen in accordance with those specified in the ISO 4217 standard.
The fourth character shall be the character used to separate the
international currency symbol from the monetary quantity.

currency_symbol The string that shall be used as the local currency symbol.

mon_decimal_point The operand is a string containing the symbol that shall be used as the
decimal delimiter (radix character) in monetary formatted quantities.

mon_thousands_sep The operand is a string containing the symbol that shall be used as a
separator for groups of digits to the left of the decimal delimiter in
formatted monetary quantities.

mon_grouping Define the size of each group of digits in formatted monetary quantities.
The operand is a sequence of integers separated by <semicolon>
characters. Each integer specifies the number of digits in each group, with
the initial integer defining the size of the group immediately preceding
the decimal delimiter, and the following integers defining the preceding
groups. If the last integer is not —1, then the size of the previous group (if
any) shall be repeatedly used for the remainder of the digits. If the last
integer is —1, then no further grouping shall be performed.

positive_sign A string that shall be used to indicate a non-negative-valued formatted
monetary quantity.

negative_sign A string that shall be used to indicate a negative-valued formatted
monetary quantity.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4713
4714
4715

4716
4717
4718

4719
4720
4721

4722
4723

4724
4725

4726

4727
4728
4729

4730
4731
4732

4733
4734
4735

4736
4737

4738
4739
4740
4741

4742

4743

4744

4745

4746

4747
4748

4749
4750
4751

4752
4753
4754

Locale

Vol. 1: Base Definitions, Issue 7

int_frac_digits

frac_digits

p_cs_precedes

p_sep_by_space

n_cs_precedes

n_sep_by_space

p_sign_posn

n_sign_posn

int_p_cs_precedes

int_n_cs_precedes

Locale Definition

An integer representing the number of fractional digits (those to the right
of the decimal delimiter) to be written in a formatted monetary quantity
using int_curr_symbol.

An integer representing the number of fractional digits (those to the right
of the decimal delimiter) to be written in a formatted monetary quantity
using currency_symbol.

An integer set to 1 if the currency_symbol precedes the value for a
monetary quantity with a non-negative value, and set to 0 if the symbol
succeeds the value.

Set to a value indicating the separation of the currency_symbol, the sign
string, and the value for a non-negative formatted monetary quantity.

The values of p_sep_by_space, n_sep_by_space, int_p_sep_by_space,
and int_n_sep_by_space are interpreted according to the following:

0 No <space> separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a <space>
separates them from the value; otherwise, a <space> separates the
currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a <space>
separates them; otherwise, a <space> separates the sign string from
the value.

An integer set to 1 if the currency_symbol precedes the value for a
monetary quantity with a negative value, and set to 0 if the symbol
succeeds the value.

Set to a value indicating the separation of the currency_symbol, the sign
string, and the value for a negative formatted monetary quantity.

An integer set to a value indicating the positioning of the positive_sign
for a monetary quantity with a non-negative value. The following integer
values shall be recognized for int n_sign posn, int_p_sign_posn,
n_sign_posn, and p_sign_posn:

0 Parentheses enclose the quantity and the currency_symbol.

1 The sign string precedes the quantity and the currency_symbol.
2 The sign string succeeds the quantity and the currency_symbol.
3 The sign string precedes the currency_symbol.

4 The sign string succeeds the currency_symbol.

An integer set to a value indicating the positioning of the negative_sign
for a negative formatted monetary quantity.

An integer set to 1 if the int_curr_symbol precedes the value for a
monetary quantity with a non-negative value, and set to 0 if the symbol
succeeds the value.

An integer set to 1 if the int_curr_symbol precedes the value for a
monetary quantity with a negative value, and set to 0 if the symbol
succeeds the value.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 155

4755
4756
4757

4758
4759
4760

4761
4762

4763
4764

4765

4766
4767
4768

4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795

Locale Definition Locale

7.3.3.1

156

int_p_sep_by_space Set to a value indicating the separation of the int_curr_symbol, the sign
string, and the value for a non-negative internationally formatted
monetary quantity.

int_n_sep_by_space Set to a value indicating the separation of the int_curr_symbol, the sign
string, and the value for a negative internationally formatted monetary
quantity.

int_p_sign_posn An integer set to a value indicating the positioning of the positive_sign
for a positive monetary quantity formatted with the international format.

int_n_sign_posn An integer set to a value indicating the positioning of the negative_sign
for a negative monetary quantity formatted with the international format.

LC_MONETARY Category in the POSIX Locale

The monetary formatting definitions for the POSIX locale follow; the code listing depicting the
localedef input, the table representing the same information with the addition of localeconv() and
nl_langinfo() formats. All values are unspecified in the POSIX locale.

LC_MONETARY

This is the POSIX locale definition for
the LC_MONETARY category.

#

int_curr_symbol "

currency_symbol "
mon_decimal_point no
mon_thousands_sep "
mon_grouping -1

positive_sign "

negative_sign "

int_frac_digits -1
frac_digits -1
p_cs_precedes -1
p_sep_by_space -1
n_cs_precedes -1
n_sep_by_space -1
p_sign_posn -1
n_sign_posn -1
int_p_cs_precedes -1
int_p_sep_by_space -1
int_n_cs_precedes -1
int_n_sep_by_space -1
int_p_sign_posn -1
int_n_sign_posn -1
#

END LC_MONETARY

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4796
4797

4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818

4819

4820

4821
4822

4823

4824
4825
4826
4827
4828

4829
4830
4831
4832
4833

4834
4835

4836

4837
4838
4839
4840
4841

Locale

734

Vol. 1: Base Definitions, Issue 7

Locale Definition

langinfo POSIX Locale | localeconv() | localedef
Item Constant Value Value Value
int_curr_symbol — N/A " "
currency_symbol CRNCYSTR N/A " "
mon_decimal_point — N/A " "
mon_thousands_sep — N/A " "
mon_grouping — N/A " -1
positive_sign — N/A " "
negative_sign — N/A " "
int_frac_digits — N/A {CHAR_MAX} -1
frac_digits — N/A {CHAR_MAX} -1
p_cs_precedes CRNCYSTR N/A {CHAR_MAX]} -1
p_sep_by_space — N/A {CHAR_MAX]} -1
n_cs_precedes CRNCYSTR N/A {CHAR_MAX]} -1
n_sep_by_space — N/A {CHAR_MAX]} -1
p_sign_posn — N/A {CHAR_MAX]} -1
n_sign_posn — N/A {CHAR_MAX]} -1
int_p_cs_precedes — N/A {CHAR_MAX]} -1
int_p_sep_by_space — N/A {CHAR_MAX]} -1
int_n_cs_precedes — N/A {CHAR_MAX} -1
int_n_sep_by_space — N/A {CHAR_MAX]} -1
int_p_sign_posn — N/A {CHAR_MAX]} -1
int_n_sign_posn — N/A {CHAR_MAX]} -1

The entry N/ A indicates that the value is not available in the POSIX locale.

LC_NUMERIC

The LC_NUMERIC category shall define the rules and symbols that are used to format non-
monetary numeric information. This information is available through the localeconv () function.

Some of the information is also available in an alternative form via the nl_langinfo() function.

The following items are defined in this category of the locale. The item names are the keywords
recognized by the localedef utility when defining a locale. They are also similar to the member
names of the lconv structure defined in <locale.h>; see <locale.h> for the exact symbols in the
header. The localeconv() function returns {CHAR_MAX] for unspecified integer items and the
empty string (" ") for unspecified or size zero string items.

In a locale definition file, the operands are strings, formatted as indicated by the grammar in
Section 7.4 (on page 165). For some keywords, the strings can only contain integers. Keywords
that are not provided, string values set to the empty string (" "), or integer keywords set to -1,
shall be used to indicate that the value is not available in the locale. The following keywords
shall be recognized:

Specify the name of an existing locale which shall be used as the definition of
this category. If this keyword is specified, no other keyword shall be specified.

copy

Note: This is a localedef utility keyword, unavailable through localeconv ().

decimal_point The operand is a string containing the symbol that shall be used as the
decimal delimiter (radix character) in numeric, non-monetary formatted
quantities. This keyword cannot be omitted and cannot be set to the empty
string. In contexts where standards limit the decimal_point to a single byte,

the result of specifying a multi-byte operand shall be unspecified.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 157

4842
4843
4844
4845
4846

4847
4848
4849
4850
4851
4852
4853
4854

4855

4856
4857
4858

4859
4860
4861
4862
4863
4864
4865
4866
4867

4868
4869

4870
4871
4872

4873

4874

4875
4876
4877
4878

4879

4880

4881
4882

Locale Definition

7.3.4.1

7.3.5

7.3.5.1

158

thousands_sep

grouping

Locale

The operand is a string containing the symbol that shall be used as a separator
for groups of digits to the left of the decimal delimiter in numeric, non-
monetary formatted monetary quantities. In contexts where standards limit
the thousands_sep to a single byte, the result of specifying a multi-byte
operand shall be unspecified.

Define the size of each group of digits in formatted non-monetary quantities.
The operand is a sequence of integers separated by <semicolon> characters.
Each integer specifies the number of digits in each group, with the initial
integer defining the size of the group immediately preceding the decimal
delimiter, and the following integers defining the preceding groups. If the last
integer is not -1, then the size of the previous group (if any) shall be
repeatedly used for the remainder of the digits. If the last integer is —1, then no
further grouping shall be performed.

LC_NUMERIC Category in the POSIX Locale

The non-monetary numeric formatting definitions for the POSIX locale follow; the code listing
depicting the localedef input, the table representing the same information with the addition of
localeconv () values, and nl_langinfo() constants.

LC_NUMERIC

This is the POSIX locale definition for
the LC_NUMERIC category.

#

decimal_point "<period>"

thousands_sep "

grouping -1

#

END LC_NUMERIC

langinfo POSIX Locale | localeconv() | localedef
Item Constant Value Value Value

decimal_point RADIXCHAR " " .
thousands_sep THOUSEP N/A " "
grouping — N/A " -1

The entry N/A indicates that the value is not available in the POSIX locale.

LC_TIME

The LC_TIME category shall define the interpretation of the conversion specifications supported
by the date utility and shall affect the behavior of the strftime(), wcsftime(), strptime(), and
nl_langinfo() functions. Since the interfaces for C-language access and locale definition differ
significantly, they are described separately.

LC_TIME Locale Definition

In a locale definition, the following mandatory keywords shall be recognized:

copy

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.

Specify the name of an existing locale which shall be used as the definition of
this category. If this keyword is specified, no other keyword shall be specified.

Vol. 1: Base Definitions, Issue 7

4883
4884
4885
4886
4887
4888

4889
4890
4891
4892
4893

4894
4895
4896
4897
4898

4899
4900
4901
4902
4903

4904
4905
4906
4907
4908

4909
4910
4911
4912

4913
4914
4915
4916

4917
4918
4919
4920
4921

4922
4923
4924
4925
4926

4927
4928
4929

4930

Locale

abday

day

abmon

mon

d_t_fmt

d_fmt

t_fmt

am_pm

t_fmt_ampm

era

Vol. 1: Base Definitions, Issue 7

Locale Definition

Define the abbreviated weekday names, corresponding to the %a conversion
specification (conversion specification in the strftime(), wcsftime(), and
strptime() functions). The operand shall consist of seven
<semicolon>-separated strings, each surrounded by double-quotes. The first
string shall be the abbreviated name of the day corresponding to Sunday, the
second the abbreviated name of the day corresponding to Monday, and so on.

Define the full weekday names, corresponding to the %A conversion
specification. The operand shall consist of seven <semicolon>-separated
strings, each surrounded by double-quotes. The first string is the full name of
the day corresponding to Sunday, the second the full name of the day
corresponding to Monday, and so on.

Define the abbreviated month names, corresponding to the %$b conversion
specification. The operand shall consist of twelve <semicolon>-separated
strings, each surrounded by double-quotes. The first string shall be the
abbreviated name of the first month of the year (January), the second the
abbreviated name of the second month, and so on.

Define the full month names, corresponding to the $%B conversion
specification. The operand shall consist of twelve <semicolon>-separated
strings, each surrounded by double-quotes. The first string shall be the full
name of the first month of the year (January), the second the full name of the
second month, and so on.

Define the appropriate date and time representation, corresponding to the %c
conversion specification. The operand shall consist of a string containing any
combination of characters and conversion specifications. In addition, the
string can contain escape sequences defined in the table in Table 5-1 (on page
121)(’\\’,’\a’,’\b’,’\f’,’\n’,’\r’,’\t’,’\v’)

Define the appropriate date representation, corresponding to the %x
conversion specification. The operand shall consist of a string containing any
combination of characters and conversion specifications. In addition, the
string can contain escape sequences defined in Table 5-1 (on page 121).

Define the appropriate time representation, corresponding to the %X
conversion specification. The operand shall consist of a string containing any
combination of characters and conversion specifications. In addition, the
string can contain escape sequences defined in Table 5-1 (on page 121).

Define the appropriate representation of the ante-meridiem and post-meridiem
strings, corresponding to the %p conversion specification. The operand shall
consist of two strings, separated by a <semicolon>, each surrounded by
double-quotes. The first string shall represent the ante-meridiem designation,
the last string the post-meridiem designation.

Define the appropriate time representation in the 12-hour clock format with
am_pm, corresponding to the %r conversion specification. The operand shall
consist of a string and can contain any combination of characters and
conversion specifications. If the string is empty, the 12-hour format is not
supported in the locale.

Define how years are counted and displayed for each era in a locale. The
operand shall consist of <semicolon>-separated strings. Each string shall be an
era description segment with the format:

direction:offset:start_date:end _date:era name:era_format

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 159

4931
4932

4933
4934
4935

4936
4937
4938
4939
4940

4941
4942

4943
4944
4945

4946
4947
4948
4949

4950
4951

4952
4953

4954
4955

4956
4957

4958
4959

4960
4961
4962
4963
4964
4965
4966
4967

4968

4969
4970
4971

4972
4973

Locale Definition

7.3.5.2

160

era_d_fmt

era_t_fmt

era_d_t fmt

alt_digits

Locale

according to the definitions below. There can be as many era description
segments as are necessary to describe the different eras.

Note: The start of an era might not be the earliest point in the era—it may be the
latest. For example, the Christian era BC starts on the day before January 1,
AD 1, and increases with earlier time.

direction Eithera "+’ ora ’—' character. The ’ +’ character shall indicate
that years closer to the start_date have lower numbers than those
closer to the end_date. The ' —' character shall indicate that years
closer to the start_date have higher numbers than those closer to
the end_date.

offset The number of the year closest to the start_date in the era,
corresponding to the $Ey conversion specification.

start_date A date in the form yyyy /mm/dd, where yyyy, mm, and dd are the
year, month, and day numbers respectively of the start of the era.
Years prior to AD 1 shall be represented as negative numbers.

end_date The ending date of the era, in the same format as the start_date,
or one of the two special values "—*" or "+*". The value "—*"
shall indicate that the ending date is the beginning of time. The
value "+*" shall indicate that the ending date is the end of time.

era_name A string representing the name of the era, corresponding to the
$EC conversion specification.

era_format A string for formatting the year in the era, corresponding to the
$EY conversion specification.

Define the format of the date in alternative era notation, corresponding to the
$Ex conversion specification.

Define the locale’s appropriate alternative time format, corresponding to the
$EX conversion specification.

Define the locale’s appropriate alternative date and time format,
corresponding to the $Ec conversion specification.

Define alternative symbols for digits, corresponding to the %0 modified
conversion specification. The operand shall consist of <semicolon>-separated
strings, each surrounded by double-quotes. The first string shall be the
alternative symbol corresponding with zero, the second string the symbol
corresponding with one, and so on. Up to 100 alternative symbol strings can
be specified. The $0 modifier shall indicate that the string corresponding to
the value specified via the conversion specification shall be used instead of the
value.

LC_TIME C-Language Access

The following constants used to identify items of langinfo data can be used as arguments to the
nl_langinfo() function to access information in the LC_TIME category. These constants are
defined in the <langinfo.h> header.

ABDAY_x

The abbreviated weekday names (for example, Sun), where x is a number
from1to7.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4974
4975

4976
4977

4978
4979

4980

4981

4982

4983

4984

4985
4986

4987
4988
4989

4990

4991
4992
4993

4994
4995
4996
4997
4998

4999

5000
5001
5002

5003
5004
5005
5006

5007

5008
5009

5010

5011
5012

5013
5014

Locale

DAY x

ABMON_x

MON_x

D_T_FMT
D_FMT

T_FMT
AM_STR
PM_STR
T_FMT_AMPM

ERA

ERA_D_FMT
ERA_T_FMT

ERA_D_T_FMT

Vol. 1: Base Definitions, Issue 7

Locale Definition

The full weekday names (for example, Sunday), where x is a number from 1 to
7.

The abbreviated month names (for example, Jan), where x is a number from 1
to 12.

The full month names (for example, January), where x is a number from 1 to
12.

The appropriate date and time representation.
The appropriate date representation.
The appropriate time representation.
The appropriate ante-meridiem affix.
The appropriate post-meridiem affix.

The appropriate time representation in the 12-hour clock format with
AM_STR and PM_STR.

The era description segments, which describe how years are counted and
displayed for each era in a locale. Each era description segment shall have the
format:

direction:offset:start_date:end _date:era name:era_format

according to the definitions below. There can be as many era description
segments as are necessary to describe the different eras. Era description
segments are separated by <semicolon> characters.

direction Either a * +’ ora ’'—’ character. The ’ +’ character shall indicate
that years closer to the start_date have lower numbers than those
closer to the end_date. The ' —' character shall indicate that years
closer to the start_date have higher numbers than those closer to
the end_date.

offset The number of the year closest to the start_date in the era.

start_date A date in the form yyyy/mm/dd, where yyyy, mm, and dd are the
year, month, and day numbers respectively of the start of the era.
Years prior to AD 1 shall be represented as negative numbers.

end_date The ending date of the era, in the same format as the start_date,
or one of the two special values "—*" or "+*". The value "—*"
shall indicate that the ending date is the beginning of time. The
value "+*" shall indicate that the ending date is the end of time.

era_name The era, corresponding to the $EC conversion specification.

era_format The format of the year in the era, corresponding to the %EY
conversion specification.

The era date format.

The locale’s appropriate alternative time format, corresponding to the $EX
conversion specification.

The locale’s appropriate alternative date and time format, corresponding to
the $Ec conversion specification.

Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 161

5015
5016
5017
5018
5019

5020

5021
5022
5023
5024

5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064

Locale Definition Locale

7.3.5.3

162

ALT_DIGITS The alternative symbols for digits, corresponding to the %0 conversion
specification modifier. The value consists of <semicolon>-separated symbols.
The first is the alternative symbol corresponding to zero, the second is the
symbol corresponding to one, and so on. Up to 100 alternative symbols may
be specified.

LC_TIME Category in the P