
IEEE Std 1003.1™-2008
(Revision of

IEEE Std 1003.1-2004)

The Open Group Technical Standard

Base Specifications, Issue 7

Standard for Information Technology—
Portable Operating System Interface (POSIX

®
)

Base Specifications, Issue 7

Sponsor

Portable Applications Standards Committee

of the

IEEE Computer Society

and

The Open Group

Approved 26 September 2008

IEEE-SA Standards Board

Approved 24 July 2008

The Open Group

ii Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Abstract

POSIX.1-2008 is simultaneously IEEE Std 1003.1™-2008 and The Open Group Technical Standard Base Specifications,

Issue 7.

POSIX.1-2008 defines a standard operating system interface and environment, including a command interpreter (or

“shell”), and common utility programs to support applications portability at the source code level. POSIX.1-2008 is

intended to be used by both application developers and system implementors and comprises four major components

(each in an associated volume):

• General terms, concepts, and interfaces common to all volumes of this standard, including utility conventions and

C-language header definitions, are included in the Base Definitions volume.

• Definitions for system service functions and subroutines, language-specific system services for the C

programming language, function issues, including portability, error handling, and error recovery, are included in

the System Interfaces volume.

• Definitions for a standard source code-level interface to command interpretation services (a “shell”) and common

utility programs for application programs are included in the Shell and Utilities volume.

• Extended rationale that did not fit well into the rest of the document structure, which contains historical

information concerning the contents of POSIX.1-2008 and why features were included or discarded by the

standard developers, is included in the Rationale (Informative) volume.

The following areas are outside the scope of POSIX.1-2008:

• Graphics interfaces

• Database management system interfaces

• Record I/O considerations

• Object or binary code portability

• System configuration and resource availability

POSIX.1-2008 describes the external characteristics and facilities that are of importance to application developers, rather

than the internal construction techniques employed to achieve these capabilities. Special emphasis is placed on those

functions and facilities that are needed in a wide variety of commercial applications.

Keywords

application program interface (API), argument, asynchronous, basic regular expression (BRE), batch job, batch system,

built-in utility, byte, child, command language interpreter, CPU, extended regular expression (ERE), FIFO, file access

control mechanism, input/output (I/O), job control, network, portable operating system interface (POSIX®), parent, shell,

stream, string, synchronous, system, thread, X/Open System Interface (XSI)

The Institute of Electrical and Electronics Engineers, Inc.

3 Park Avenue, New York, NY 10016-5997, USA

The Open Group

Thames Tower, Station Road, Reading, Berkshire, RG1 1LX, U.K.

Copyright © 2008 by the Institute of Electrical and Electronics Engineers, Inc. and The Open Group

All rights reserved.

Published 1 December 2008 by the IEEE. Printed in the United States of America by the IEEE.

PDF: ISBN 978-0-7381-5798-6 STD95820

CDROM: ISBN 978-0-7381-5799-3 STDCD95820

Published 1 December 2008 by The Open Group. Printed in the United Kingdom by The Open Group.

Doc. Number: C082

ISBN: 1-931624-79-8

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the

publisher. Permission to reproduce all or any part of this standard must be with the consent of both copyright holders and may be subject to a license

fee. Both copyright holders will need to be satisfied that the other has granted permission. Requests should be sent by email to

austin-group-permissions@opengroup.org.

This standard has been prepared by the Austin Group. Feedback relating to the material contained within this standard may be submitted by using the

Austin Group web site at www.opengroup.org/austin/defectform.html.

http://www.opengroup.org/austin/defectform.html

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. iii

IEEE

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the

IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus

development process, approved by the American National Standards Institute, which brings together volunteers

representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the

Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote

fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of

any of the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property, or other

damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly

resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims

any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or

that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied

“AS IS”.

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase,

market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint

expressed at the time a standard is approved and issued is subject to change brought about through developments in the

state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least

every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed,

it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the

art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services

for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or

entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a

competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to

specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate

action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is

important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason,

IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant

response to interpretation requests except in those cases where the matter has previously received formal consideration.

At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE Standards shall

make it clear that his or her views should be considered the personal views of that individual rather than the formal

position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation

with IEEE.
A Suggestions for changes in documents should be in the form of a proposed change of text, together with

appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board

445 Hoes Lane

Piscataway, NJ 08854

USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of

Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To

arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood

Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for

educational classroom use can also be obtained through the Copyright Clearance Center.

A For this standard please send comments via the Austin Group, as indicated on page ii.

iv Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

The Open Group

The Open Group is a vendor-neutral and technology-neutral consortium, whose vision of Boundaryless Information

Flow™ will enable access to integrated information within and between enterprises based on open standards and global

interoperability. The Open Group works with customers, suppliers, consortia, and other standards bodies. Its role is to

capture, understand, and address current and emerging requirements, establish policies, and share best practices; to

facilitate interoperability, develop consensus, and evolve and integrate specifications and Open Source technologies; to

offer a comprehensive set of services to enhance the operational efficiency of consortia; and to operate the industry's

premier certification service, including UNIX® certification.

Further information on The Open Group is available at www.opengroup.org.

The Open Group has over 20 years' experience in developing and operating certification programs and has extensive

experience developing and facilitating industry adoption of test suites used to validate conformance to an open standard

or specification.

The Open Group publishes a wide range of technical documentation, the main part of which is focused on development

of Technical and Product Standards and Guides, but which also includes white papers, technical studies, branding and

testing documentation, and business titles. Full details and a catalog are available at www.opengroup.org/bookstore.

As with all live documents, Technical Standards and Specifications require revision to align with new developments and

associated international standards. To distinguish between revised specifications which are fully backwards compatible

and those which are not:

• A new Version indicates there is no change to the definitive information contained in the previous publication of

that title, but additions/extensions are included. As such, it replaces the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in the previous

publication of that title, and there may also be additions/extensions. As such, both previous and new documents

are maintained as current publications.

Readers should note that Corrigenda may apply to any publication. Corrigenda information is published at

www.opengroup.org/corrigenda.

http://www.opengroup.org/
http://www.opengroup.org/bookstore
http://www.opengroup.org/corrigenda

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. v

Introduction

This introduction is not part of POSIX.1-2008, Standard for Information Technology – Portable Operating System

Interface (POSIX).

This standard was developed, and is maintained, by a joint working group of members of the IEEE Portable

Applications Standards Committee, members of The Open Group, and members of ISO/IEC Joint Technical

Committee 1. This joint working group is known as the Austin Group.B

The Austin Group arose out of discussions amongst the parties which started in early 1998, leading to an initial meeting

and formation of the group in September 1998. The purpose of the Austin Group is to develop and maintain the core

open systems interfaces that are the POSIX® 1003.1 (and former 1003.2) standards, ISO/IEC 9945, and the core of the

Single UNIX Specification.

The approach to specification development has been one of “write once, adopt everywhere”, with the deliverables being

a set of specifications that carry the IEEE POSIX designation, The Open Group's Technical Standard designation, and an

ISO/IEC designation.

This unique development has combined both the industry-led efforts and the formal standardization activities into a

single initiative, and included a wide spectrum of participants. The Austin Group continues as the maintenance body for

this document.

Anyone wishing to participate in the Austin Group should contact the chair with their request. There are no fees for

participation or membership. You may participate as an observer or as a contributor. You do not have to attend face-to-

face meetings to participate; electronic participation is most welcome. For more information on the Austin Group and

how to participate, see www.opengroup.org/austin.

Background

The developers of POSIX.1-2008 represent a cross-section of hardware manufacturers, vendors of operating systems and

other software development tools, software designers, consultants, academics, authors, applications programmers, and

others.

Conceptually, POSIX.1-2008 describes a set of fundamental services needed for the efficient construction of application

programs. Access to these services has been provided by defining an interface, using the C programming language, a

command interpreter, and common utility programs that establish standard semantics and syntax. Since this interface

enables application developers to write portable applications – it was developed with that goal in mind – it has been

designated POSIXC, an acronym for Portable Operating System Interface.

Although originated to refer to the original IEEE Std 1003.1-1988, the name POSIX more correctly refers to a family of

related standards: IEEE Std 1003.n and the parts of ISO/IEC 9945. In earlier editions of the IEEE standard, the term

POSIX was used as a synonym for IEEE Std 1003.1-1988. A preferred term, POSIX.1, emerged. This maintained the

advantages of readability of the symbol “POSIX” without being ambiguous with the POSIX family of standards.

Audience

The intended audience for POSIX.1-2008 is all persons concerned with an industry-wide standard operating system

based on the UNIX system. This includes at least four groups of people:

• Persons buying hardware and software systems

• Persons managing companies that are deciding on future corporate computing directions

• Persons implementing operating systems, and especially

• Persons developing applications where portability is an objective

B The Austin Group is named after the location of the inaugural meeting held at the IBM facility in Austin, Texas in September 1998.
C The Name POSIX was suggested by Richard Stallman. It is expected to be pronounced pahz-icks, as in positive, not poh-six, or

other variations. The pronunciation has been published in an attempt to promulgate a standardized way of referring to a standard

operating system interface.

http://www.opengroup.org/austin

vi Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Purpose

Several principles guided the development of POSIX.1-2008:

• Application-Oriented – The basic goal was to promote portability of application programs across UNIX system

environments by developing a clear, consistent, and unambiguous standard for the interface specification of a

portable operating system based on the UNIX system documentation. POSIX.1-2008 codifies the common,

existing definition of the UNIX system.

• Interface, Not Implementation – POSIX.1-2008 defines an interface, not an implementation. No distinction is

made between library functions and system calls; both are referred to as functions. No details of the

implementation of any function are given (although historical practice is sometimes indicated in the

RATIONALE section). Symbolic names are given for constants (such as signals and error numbers) rather than

numbers.

• Source, Not Object, Portability – POSIX.1-2008 has been written so that a program written and translated for

execution on one conforming implementation may also be translated for execution on another conforming

implementation. POSIX.1-2008 does not guarantee that executable (object or binary) code will execute under a

different conforming implementation than that for which it was translated, even if the underlying hardware is

identical.

• The C Language – The system interfaces and header definitions are written in terms of the standard C language

as specified in the ISO C standard.

• No Superuser, No System Administration – There was no intention to specify all aspects of an operating system.

System administration facilities and functions are excluded from this standard, and functions usable only by the

superuser have not been included. Still, an implementation of the standard interface may also implement features

not in POSIX.1-2008. POSIX.1-2008 is also not concerned with hardware constraints or system maintenance.

• Minimal Interface, Minimally Defined – In keeping with the historical design principles of the UNIX system, the

mandatory core facilities of POSIX.1-2008 have been kept as minimal as possible. Additional capabilities have

been added as optional extensions.

• Broadly Implementable – The developers of POSIX.1-2008 endeavored to make all specified functions

implementable across a wide range of existing and potential systems, including:

— All of the current major systems that are ultimately derived from the original UNIX system code (Version 7

or later)

— Compatible systems that are not derived from the original UNIX system code

— Emulations hosted on entirely different operating systems

— Networked systems

— Distributed systems

— Systems running on a broad range of hardware

No direct references to this goal appear in POSIX.1-2008, but some results of it are mentioned in the Rationale

(Informative) volume.

• Minimal Changes to Historical Implementations – When the original version – IEEE Std 1003.1-1988 – was

published, there were no known historical implementations that did not have to change. However, there was a

broad consensus on a set of functions, types, definitions, and concepts that formed an interface that was common

to most historical implementations.

The adoption of the 1988 and 1990 IEEE system interface standards, the 1992 IEEE shell and utilities standard,

the various Open Group (formerly X/Open) specifications, and IEEE Std 1003.1-2001 and its technical

corrigenda have consolidated this consensus, and this version reflects the significantly increased level of

consensus arrived at since the original versions. The authors of the original versions tried, as much as possible, to

follow the principles below when creating new specifications:

— By standardizing an interface like one in an historical implementation; for example, directories

— By specifying an interface that is readily implementable in terms of, and backwards-compatible with,

historical implementations, such as the extended tar format defined in the pax utility

— By specifying an interface that, when added to an historical implementation, will not conflict with it; for

example, the sigaction() function

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. vii

POSIX.1-2008 is specifically not a codification of a particular vendor's product.

It should be noted that implementations will have different kinds of extensions. Some will reflect “historical

usage” and will be preserved for execution of pre-existing applications. These functions should be considered

“obsolescent” and the standard functions used for new applications. Some extensions will represent functions

beyond the scope of POSIX.1-2008. These need to be used with careful management to be able to adapt to future

extensions of POSIX.1-2008 and/or port to implementations that provide these services in a different manner.

• Minimal Changes to Existing Application Code – A goal of POSIX.1-2008 was to minimize additional work for

application developers. However, because every known historical implementation will have to change at least

slightly to conform, some applications will have to change.

POSIX.1-2008

POSIX.1-2008 defines the Portable Operating System Interface (POSIX) requirements and consists of the following

topics arranged as a series of volumes within the standard:

• Base Definitions

• System Interfaces

• Shell and Utilities

• Rationale (Informative)

Base Definitions

The Base Definitions volume provides common definitions for this standard, therefore readers should be familiar with it

before using the other volumes.

This volume is structured as follows:

• Chapter 1 is an introduction.

• Chapter 2 defines the conformance requirements.

• Chapter 3 defines general terms used.

• Chapter 4 describes general concepts used.

• Chapter 5 describes the notation used to specify file input and output formats in this volume and the Shell and

Utilities volume.

• Chapter 6 describes the portable character set and the process of character set definition.

• Chapter 7 describes the syntax for defining internationalization locales as well as the POSIX locale provided on

all systems.

• Chapter 8 describes the use of environment variables for internationalization and other purposes.

• Chapter 9 describes the syntax of pattern matching using regular expressions employed by many utilities and

matched by the regcomp() and regexec() functions.

• Chapter 10 describes files and devices found on all systems.

• Chapter 11 describes the asynchronous terminal interface for many of the functions in the System Interfaces

volume and the stty utility in the Shell and Utilities volume.

• Chapter 12 describes the policies for command line argument construction and parsing.

• Chapter 13 defines the contents of headers which declare the functions and global variables, and define types,

constants, macros, and data structures that are needed by programs using the services provided by the System

Interfaces volume.

Comprehensive references are available in the index.

System Interfaces

The System Interfaces volume describes the interfaces offered to application programs by POSIX-conformant systems.

Readers are expected to be experienced C language programmers, and to be familiar with the Base Definitions volume.

This volume is structured as follows:

• Chapter 1 explains the status of this volume and its relationship to other formal standards.

• Chapter 2 contains important concepts, terms, and caveats relating to the rest of this volume.

• Chapter 3 defines the functional interfaces to the POSIX-conformant system.

Comprehensive references are available in the index.

viii Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Shell and Utilities

The Shell and Utilities volume describes the commands and utilities offered to application programs on POSIX-

conformant systems. Readers are expected to be familiar with the Base Definitions volume.

This volume is structured as follows:

• Chapter 1 explains the status of this volume and its relationship to other formal standards. It also describes the

defaults used by the utility descriptions.

• Chapter 2 describes the command language used in POSIX-conformant systems, and special built-in utilities.

• Chapter 3 describes a set of services and utilities that are implemented on systems supporting the Batch

Environment Services and Utilities option.

• Chapter 4 consists of reference pages for all utilities, other than the special built-in utilities described in Chapter

2, available on POSIX-conformant systems.

Comprehensive references are available in the index.

Rationale (Informative)

The Rationale volume is published to assist in the process of review. It contains historical information concerning the

contents of this standard and why features were included or discarded by the standard developers. It also contains notes

of interest to application programmers on recommended programming practices, emphasizing the consequences of some

aspects of POSIX.1-2008 that may not be immediately apparent.

This volume is organized in parallel to the normative volumes of this standard, with a separate part for each of the three

normative volumes.

Within this volume, the following terms are used:

• Base standard – The portions of POSIX.1-2008 that are not optional, equivalent to the definitions of classic

POSIX.1 and POSIX.2.

• POSIX.0 – Although this term is not used in the normative text of POSIX.1-2008, it is used in this volume to

refer to IEEE Std 1003.0™-1995.

• POSIX.1b – Although this term is not used in the normative text of POSIX.1-2008, it is used in this volume to

refer to the elements of the POSIX Realtime Extension amendment. (This was earlier referred to as POSIX.4

during the standard development process.)

• POSIX.1c – Although this term is not used in the normative text of POSIX.1-2008, it is used in this volume to

refer to the POSIX Threads Extension amendment. (This was earlier referred to as POSIX.4a during the standard

development process.)

• Standard developers – The individuals and companies in the development organizations responsible for POSIX.1-

2008: the IEEE P1003.1 working groups, The Open Group Base working group, advised by the hundreds of

individual technical experts who balloted the draft standards within the Austin Group, and the member bodies

and technical experts of ISO/IEC JTC 1/SC 22.

• XSI option – The portions of POSIX.1-2008 addressing the extension added for support of the Single UNIX

Specification.

Typographical Conventions

The following typographical conventions are used throughout this standard. In the text, this standard is referred to as

POSIX.1-2008, which is technically identical to The Open Group Base Specifications, Issue 7.

The typographical conventions listed here are for ease of reading only. Editorial inconsistencies in the use of typography

are unintentional and have no normative meaning in POSIX.1-2008.

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. ix

Reference Example Notes

C-Language Data Structure aiocb

C-Language Data Structure Member aio_lio_opcode

C-Language Data Type long

C-Language External Variable errno

C-Language Function system()

C-Language Function Argument arg

C-Language Function Family exec

C-Language Header <sys/stat.h>

C-Language Keyword return

C-Language Macro with Argument assert()

C-Language Macro with No Argument NET_ADDRSTRLEN

C-Language Preprocessing Directive #define

Commands within a Utility a, c

Conversion Specifier, Specifier/Modifier Character %A, g, E 1

Environment Variable PATH

Error Number [EINTR]

Example Output Hello, World

Filename /tmp

Literal Character 'c', '\r' 2

Literal String "abcde" 2

Optional Items in Utility Syntax []

Parameter <directory pathname>

Special Character <newline> 3

Symbolic Constant _POSIX_VDISABLE

Symbolic Limit, Configuration Value {LINE_MAX} 4

Syntax #include <sys/stat.h>

User Input and Example Code echo Hello, World 5

Utility Name awk

Utility Operand file_name

Utility Option -c

Utility Option with Option-Argument -w width

Note that:

1. Conversion specifications, specifier characters, and modifier characters are used primarily in date-related

functions and utilities and the fprintf() and fscanf() formatting functions.

2. Unless otherwise noted, the quotes shall not be used as input or output. When used in a list item, the quotes are

omitted. The literal characters <apostrophe> (also known as single-quote) and <backslash> are either shown as

the C constants '\' and '\\', respectively, or as the special characters <apostrophe>, single-quote, and

<backslash> depending on context.

3. The style selected for some of the special characters, such as <newline>, matches the form of the input given to

the localedef utility. Generally, the characters selected for this special treatment are those that are not visually

distinct, such as the control characters <tab> or <newline>.

4. Names surrounded by braces represent symbolic limits or configuration values which may be declared in

appropriate headers by means of the C #define construct.

x Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

5. Brackets shown in this font, "[]", are part of the syntax and do not indicate optional items. In syntax the '|'

symbol is used to separate alternatives, and ellipses ("...") are used to show that additional arguments are

optional.

Shading is used to identify extensions and options.

Footnotes and notes within the body of the normative text are for information only (informative).

Informative sections (such as Rationale, Change History, Application Usage, and so on) are denoted by continuous

shading bars in the margins.

Ranges of values are indicated with parentheses or brackets as follows:

1. (a,b) means the range of all values from a to b, including neither a nor b.

2. [a,b] means the range of all values from a to b, including a and b.

3. [a,b) means the range of all values from a to b, including a, but not b.

4. (a,b] means the range of all values from a to b, including b, but not a.

Note: A symbolic limit beginning with POSIX is treated differently, depending on context. In a C-language header,

the symbol POSIXstring (where string may contain underscores) is represented by the C identifier

_POSIXstring, with a leading underscore required to prevent ISO C standard name space pollution. However,

in other contexts, such as languages other than C, the leading underscore is not used because this requirement

does not exist.

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xi

Notice to Users

Laws and Regulations

Users of this document should consult all applicable laws and regulations. Compliance with the provisions of this

standard does not imply compliance to any applicable regulatory requirements. Implementers of the standard are

responsible for observing or referring to the applicable regulatory requirements. IEEE and The Open Group do not, by

the publication of standards, intend to urge action that is not in compliance with applicable laws, and these documents

may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE and The Open Group. It is made available for a wide variety of both public

and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation,

standardization, and the promotion of engineering practices and methods. By making this document available for use

and adoption by public authorities and private users, the IEEE and The Open Group do not waive any rights in copyright

to this document.

Updating of IEEE Documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the issuance of new

editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official

IEEE document at any point in time consists of the current edition of the document together with any amendments,

corrigenda, or errata then in effect. In order to determine whether a given document is the current edition and whether it

has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE Standards Association web

site at ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process, visit the IEEE-

SA web site at standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following web site:

standards.ieee.org/reading/ieee/updates/errata. Users are encouraged to check this URL for errata periodically.

Feedback

POSIX.1-2008 has been prepared by the Austin Group. Feedback relating to the material contained in POSIX.1-2008

may be submitted using the Austin Group web site at www.opengroup.org/austin/defectform.html.

Interpretations

Current interpretations can be accessed at the following web site: standards.ieee.org/reading/ieee/interp.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by

patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent

rights in connection therewith. A patent holder or patent applicant has filed a statement of assurance that it will grant

licenses under these rights without compensation or under reasonable rates, with reasonable terms and conditions that

are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses. Other Essential Patent

Claims may exist for which a statement of assurance has not been received. The IEEE and The Open Group are not

responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the

legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions are reasonable or

non-discriminatory. Further information may be obtained from the IEEE Standards Association and The Open Group.

http://ieeexplore.ieee.org/xpl/standards.jsp
http://standards.ieee.org/
http://standards.ieee.org/reading/ieee/updates/errata/
http://www.opengroup.org/austin/defectform.html
http://standards.ieee.org/reading/ieee/interp/

xii Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Participants

The Austin Group

This standard was prepared by the Austin Group, sponsored by the Portable Applications Standards Committee of the

IEEE Computer Society, The Open Group, and ISO/IEC JTC 1/SC 22. At the time of approval, the membership of the

Austin Group was as follows:

Andrew Josey, Chair

Donald W. Cragun, Organizational Representative, IEEE PASC

Nicholas Stoughton, Organizational Representative, ISO/IEC JTC 1/SC 22

Mark S. Brown, Organizational Representative, The Open Group

Cathy Fox, Technical Editor

Austin Group Technical Reviewers

Theodore P. Baker Hallvard B. Furuseth Stephen Michell

Eric Blake Michael Gonzalez Harbour Matthew Rice

Andries E. Brouwer Joseph M. Gwinn Joerg Schilling

Mark S. Brown Bruno Haible Stephen Schwarm

David Butenhof Mark Harris Konrad A. Schwarz

Geoff Clare Andrew Josey Keld Simonsen

David N. Clissold Michael Kerrisk Nicholas Stoughton

Donald W. Cragun David Korn Alexander Terekhov

Lawrence D.K.B. Dwyer Vincent Lefèvre William L. Toth

Cynthia Eastham Evan Liebovitch Fred Tydeman

Paul Eggert Wojtek Lerch Mats Wichmann

Clive D.W. Feather Jens Maurer Garrett Wollman

Glenn Fowler Roland McGrath James Youngman

Cathy Fox Jim Meyering

Working Group Members

William J. Ackerman Karen Gordon Jose Puthenkulam

Adewole Akpose Randall Groves G.K. Rajani

Butch Anton Scott Gudgel Chet Ramey

Peter Anvin Joseph M. Gwinn Matthew Rice

Jay Ashford Charles Hammons Gunnar Ritter

Theodore P. Baker Mark Harris Robert Robinson

Hugh Barrass Barry Hedquist Curtis Royster Jr.

William Bartholomew Werner Hoelzl Eusebio Rufian

Andy Bihain David Hopwood Wolfgang Sanow

Eric Blake David P. Howell Bartien Sayogo

Xie Bo James Isaak Nico Schottelius

Tomo Bogataj Michael Jones Stephen Schwarm

Walter Briscoe Jaimon C. Jose Konrad A. Schwarz

Andries E. Brouwer Andrew Josey Glen Seeds

Mark S. Brown Piotr Karocki M. Sekiguchi

David Butenhof Sujit Madhavan Karataparambil Al Simons

Juan Carreon Michael Kerrisk Keld Simonsen

Danila Chernetsov Alexey V. Khoroshilov Antonio Soares

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xiii

Keith Chow Akio Kido Alexander A. Sortov

Jimmy Chun William King Thomas Starai

Geoff Clare Klaus Klein Nicholas Stoughton

Tommy Cooper David Korn Ienup Sung

Jeffrey L. Copeland Wayne Krone Alfred Mieczyslaw Szmidt

Donald W. Cragun Thomas Kurihara Alexander Terekhov

Dragan S. Cvetkovic Susan Land Donn Terry

Lee Damico Kenneth Lang Michael Thomadakis

Juan A. de la Puente Shawn Leard John Thywissen

David Dice Solomon Lee Leon Toh

Thomas Dickey Fernando Lucas Rodriguez William L. Toth

Loic Domaigne William Lumpkins Miloslav Trmač
Steven J. Dovich Scott Lurndal Fred Tydeman

Ulrich Drepper Lieven Marchand Mark-Rene Uchida

Sourav Dutta Roger Marquis Steve Valentine

Lawrence D.K.B. Dwyer Roger J. Martin Peter Van Der Veen

Paul Eggert Jack Mccann Fred Web

Daniel M. Eischen Mick Meaden Tao Weijian

Marc Emmelmann Jim Meyering David Wexelblat

Laura Fairhead Gary Michel Mats Wichmann

Joanna Farley Hai Ming Li Robert Wilkens

Clive D.W. Feather Wilhelm Mueller Martin Wille

John Fendrich Bruce Muschlitz Matt Wilson

Yaacov Fenster Erik Naggum Michael Wilson

Andrew Fieldsend Gergely Nagy Jim Wise

Glenn Fowler Michael S. Newman Song Wonchang

Cathy Fox Liviu Nicoara Shao A. Wu

Jesus Fuente Robert Nordier Oren Yuen

Mark Funkenhauser Peter Petrov Janusz Zalewski

Michael Geipel Frank Prindle Jim Zepeda

Michael Gonzalez Harbour Vikram Punj Jason Zions

xiv Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

The Open Group

When The Open Group approved the Base Specifications, Issue 7 on 24 July 2008, the membership of the Base Working

Group was as follows:

Andrew Josey, Chair

Mark S. Brown, Vice Chair and Austin Group Liaison

Cathy Fox, Technical Editor

Base Working Group Members

Basabi Bhattacharya Donald W. Cragun Robbin Kawabata

Mark S. Brown Ulrich Drepper Craig Mohrman

David Butenhof Lawrence D.K.B. Dwyer Nicholas Stoughton

April Chin Cynthia Eastham William L. Toth

Geoff Clare Roger Faulkner Kenjiro Tsuji

David N. Clissold Carol Fields Kevin Van Vechten

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xv

IEEE

When the IEEE Standards Board approved IEEE Std 1003.1-2008 on 26 September 2008, the membership of the

committees was as follows:

Portable Application Standards Committee (PASC)

Lowell G. Johnson, Chair

Joseph M. Gwinn, Vice Chair

Jay Ashford, Functional Chair (Balloting)

Andrew Josey, Functional Chair (Interpretations)

Curtis Royster Jr., Functional Chair (Logistics)

Nicholas Stoughton, Secretary

Balloting Committee

The following members of the individual balloting committee voted on this standard. Balloters may have voted for

approval, disapproval, or abstention.

William J. Ackerman Andrew Fieldsend Gary Michel

Adewole Akpose Michael Geipel Bruce Muschlitz

Butch Anton Randall Groves Michael S. Newman

Jay Ashford Scott Gudgel Peter Petrov

Hugh Barrass Joseph M. Gwinn Vikram Punj

Andy Bihain Charles Hammons Jose Puthenkulam

Tomo Bogataj Michael Gonzalez Harbour Robert Robinson

Mark S. Brown Barry Hedquist Fernando Lucas Rodriguez

Juan Carreon Werner Hoelzl Bartien Sayogo

Danila Chernetsov Andrew Josey Stephen Schwarm

Keith Chow Piotr Karocki Thomas Starai

Tommy Cooper Thomas Kurihara John Thywissen

Donald W. Cragun Susan Land Mark-Rene Uchida

Ulrich Drepper Kenneth Lang Robert Wilkens

Souray Dutta Shawn Leard Oren Yuen

Marc Emmelmann William Lumpkins Janusz Zalewski

John Fendrich Roger J. Martin

xvi Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

IEEE-SA Standards Board

When the IEEE-SA Standards Board approved this standard on 26 September 2008, it had the following membership:

Robert M. Grow, Chair

Tom A. Prevost, Vice Chair

Steve M. Mills, Past Chair

Judith Gorman, Secretary

Victor Berman James Hughes Chuck Powers

Richard DeBlasio Richard H. Hulett Narayanan Ramachandran

Andrew Drozd Young Kyun Kim Jon Walter Rosdahl

Mark Epstein Joseph L. Koepfinger * Anne-Marie Sahazizian

Alexander Gelman John Kulick Malcolm V. Thaden

William R. Goldbach David J. Law Howard L. Wolfman

Arnold M. Greenspan Glenn Parsons Don Wright

Kenneth S. Hanus Ronald C. Petersen

* Member Emitirus

Also included are the following non-voting IEEE-SA Standards Board liaisons:

Satish K. Aggarwal, NRC Representative

Michael H. Kelley, NIST Representative

Don Messina, IEEE Standards Program Manager, Document Development

Michael Kipness, IEEE Standards Program Manager, Technical Program Development

Contents

Volume 1 Base Definitions, Issue 7... 1

Chapter 1 Introduction ... 3
1.1 Scope ... 3
1.2 Conformance.. 4
1.3 Normative References .. 4
1.4 Change History ... 5
1.5 Terminology ... 5
1.6 Definitions and Concepts... 6
1.7 Portability... 6
1.7.1 Codes ... 7
1.7.2 Margin Code Notation .. 13

Chapter 2 Conformance ... 15
2.1 Implementation Conformance .. 15
2.1.1 Requirements .. 15
2.1.2 Documentation ... 16
2.1.3 POSIX Conformance .. 16
2.1.4 XSI Conformance ... 19
2.1.5 Option Groups .. 20
2.1.6 Options .. 26
2.2 Application Conformance .. 29
2.2.1 Strictly Conforming POSIX Application... 29
2.2.2 Conforming POSIX Application .. 30
2.2.3 Conforming POSIX Application Using Extensions......................... 30
2.2.4 Strictly Conforming XSI Application .. 30
2.2.5 Conforming XSI Application Using Extensions 31
2.3 Language-Dependent Services for the C Programming

Language .. 31
2.4 Other Language-Related Specifications... 31

Chapter 3 Definitions.. 33
3.1 Abortive Release .. 33
3.2 Absolute Pathname ... 33
3.3 Access Mode .. 33
3.4 Additional File Access Control Mechanism.. 33
3.5 Address Space.. 33
3.6 Advisory Information ... 34
3.7 Affirmative Response ... 34
3.8 Alert .. 34
3.9 Alert Character (<alert>).. 34
3.10 Alias Name ... 34
3.11 Alignment .. 35
3.12 Alternate File Access Control Mechanism .. 35

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xvii

Contents

3.13 Alternate Signal Stack... 35
3.14 Ancillary Data .. 35
3.15 Angle Brackets ... 35
3.16 Apostrophe Character (<apostrophe>) .. 35
3.17 Application... 35
3.18 Application Address ... 36
3.19 Application Program Interface (API) ... 36
3.20 Appropriate Privileges ... 36
3.21 Argument ... 36
3.22 Arm (a Timer) .. 36
3.23 Asterisk Character (<asterisk>) .. 36
3.24 Async-Cancel-Safe Function .. 36
3.25 Asynchronous Events... 37
3.26 Asynchronous Input and Output ... 37
3.27 Async-Signal-Safe Function ... 37
3.28 Asynchronously-Generated Signal... 37
3.29 Asynchronous I/O Completion.. 37
3.30 Asynchronous I/O Operation... 37
3.31 Authentication... 37
3.32 Authorization .. 38
3.33 Background Job ... 38
3.34 Background Process .. 38
3.35 Background Process Group (or Background Job)............................... 38
3.36 Backquote Character ... 38
3.37 Backslash Character (<backslash>) .. 38
3.38 Backspace Character (<backspace>) .. 38
3.39 Barrier ... 39
3.40 Basename.. 39
3.41 Basic Regular Expression (BRE).. 39
3.42 Batch Access List ... 39
3.43 Batch Administrator ... 39
3.44 Batch Client .. 39
3.45 Batch Destination .. 40
3.46 Batch Destination Identifier... 40
3.47 Batch Directive ... 40
3.48 Batch Job ... 40
3.49 Batch Job Attribute.. 40
3.50 Batch Job Identifier.. 40
3.51 Batch Job Name ... 41
3.52 Batch Job Owner.. 41
3.53 Batch Job Priority .. 41
3.54 Batch Job State ... 41
3.55 Batch Name Service .. 41
3.56 Batch Name Space... 41
3.57 Batch Node ... 42
3.58 Batch Operator ... 42
3.59 Batch Queue ... 42
3.60 Batch Queue Attribute.. 42
3.61 Batch Queue Position ... 42
3.62 Batch Queue Priority .. 42
3.63 Batch Rerunability ... 43
3.64 Batch Restart .. 43

xviii Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Contents

3.65 Batch Server ... 43
3.66 Batch Server Name.. 43
3.67 Batch Service .. 43
3.68 Batch Service Request... 43
3.69 Batch Submission .. 43
3.70 Batch System .. 44
3.71 Batch Target User .. 44
3.72 Batch User .. 44
3.73 Bind ... 44
3.74 Blank Character (<blank>)... 44
3.75 Blank Line ... 44
3.76 Blocked Process (or Thread) .. 44
3.77 Blocking .. 44
3.78 Block-Mode Terminal ... 45
3.79 Block Special File... 45
3.80 Braces .. 45
3.81 Brackets... 45
3.82 Broadcast .. 45
3.83 Built-In Utility (or Built-In).. 46
3.84 Byte.. 46
3.85 Byte Input/Output Functions ... 46
3.86 Carriage-Return Character (<carriage-return>) 46
3.87 Character .. 47
3.88 Character Array ... 47
3.89 Character Class .. 47
3.90 Character Set .. 47
3.91 Character Special File ... 47
3.92 Character String ... 47
3.93 Child Process ... 48
3.94 Circumflex Character (<circumflex>) ... 48
3.95 Clock ... 48
3.96 Clock Jump ... 48
3.97 Clock Tick ... 48
3.98 Coded Character Set ... 48
3.99 Codeset ... 49
3.100 Collating Element .. 49
3.101 Collation ... 49
3.102 Collation Sequence .. 49
3.103 Column Position .. 50
3.104 Command... 50
3.105 Command Language Interpreter .. 50
3.106 Composite Graphic Symbol... 50
3.107 Condition Variable .. 50
3.108 Connected Socket .. 51
3.109 Connection ... 51
3.110 Connection Mode .. 51
3.111 Connectionless Mode ... 51
3.112 Control Character.. 51
3.113 Control Operator ... 51
3.114 Controlling Process ... 51
3.115 Controlling Terminal .. 52
3.116 Conversion Descriptor ... 52

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xix

Contents

3.117 Core File .. 52
3.118 CPU Time (Execution Time) .. 52
3.119 CPU-Time Clock.. 52
3.120 CPU-Time Timer .. 52
3.121 Current Job... 52
3.122 Current Working Directory .. 53
3.123 Cursor Position .. 53
3.124 Datagram.. 53
3.125 Data Segment ... 53
3.126 Deferred Batch Service ... 53
3.127 Device ... 53
3.128 Device ID .. 53
3.129 Directory ... 53
3.130 Directory Entry (or Link) ... 53
3.131 Directory Stream ... 54
3.132 Disarm (a Timer) ... 54
3.133 Display.. 54
3.134 Display Line ... 54
3.135 Dollar-Sign Character (<dollar-sign>) ... 54
3.136 Dot ... 54
3.137 Dot-Dot ... 55
3.138 Double-Quote Character .. 55
3.139 Downshifting ... 55
3.140 Driver .. 55
3.141 Effective Group ID .. 55
3.142 Effective User ID ... 55
3.143 Eight-Bit Transparency ... 55
3.144 Empty Directory .. 56
3.145 Empty Line ... 56
3.146 Empty String (or Null String).. 56
3.147 Empty Wide-Character String ... 56
3.148 Encoding Rule ... 56
3.149 Entire Regular Expression .. 56
3.150 Epoch .. 57
3.151 Equivalence Class .. 57
3.152 Era.. 57
3.153 Event Management ... 57
3.154 Executable File ... 57
3.155 Execute.. 58
3.156 Execution Time .. 58
3.157 Execution Time Monitoring... 58
3.158 Expand.. 58
3.159 Extended Regular Expression (ERE) .. 58
3.160 Extended Security Controls ... 58
3.161 Feature Test Macro .. 59
3.162 Field... 59
3.163 FIFO Special File (or FIFO) .. 59
3.164 File ... 59
3.165 File Description ... 59
3.166 File Descriptor ... 60
3.167 File Group Class .. 60
3.168 File Mode .. 60

xx Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Contents

3.169 File Mode Bits .. 60
3.170 Filename ... 60
3.171 File Offset ... 60
3.172 File Other Class ... 61
3.173 File Owner Class ... 61
3.174 File Permission Bits... 61
3.175 File Serial Number .. 61
3.176 File System ... 61
3.177 File Type ... 61
3.178 Filter .. 62
3.179 First Open (of a File) ... 62
3.180 Flow Control .. 62
3.181 Foreground Job.. 62
3.182 Foreground Process .. 62
3.183 Foreground Process Group (or Foreground Job)................................ 62
3.184 Foreground Process Group ID .. 62
3.185 Form-Feed Character (<form-feed>).. 63
3.186 Graphic Character ... 63
3.187 Group Database... 63
3.188 Group ID... 63
3.189 Group Name .. 63
3.190 Hard Limit .. 63
3.191 Hard Link ... 64
3.192 Home Directory ... 64
3.193 Host Byte Order ... 64
3.194 Incomplete Line ... 64
3.195 Inf... 64
3.196 Instrumented Application ... 64
3.197 Interactive Shell ... 64
3.198 Internationalization .. 65
3.199 Interprocess Communication .. 65
3.200 Invoke ... 65
3.201 Job.. 65
3.202 Job Control ... 65
3.203 Job Control Job ID ... 65
3.204 Last Close (of a File).. 66
3.205 Line.. 66
3.206 Linger.. 66
3.207 Link ... 66
3.208 Link Count ... 66
3.209 Local Customs ... 66
3.210 Local Interprocess Communication (Local IPC)................................. 66
3.211 Locale .. 67
3.212 Localization.. 67
3.213 Login ... 67
3.214 Login Name ... 67
3.215 Map ... 67
3.216 Marked Message ... 67
3.217 Matched .. 68
3.218 Memory Mapped Files ... 68
3.219 Memory Object .. 68
3.220 Memory-Resident.. 68

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xxi

Contents

3.221 Message .. 68
3.222 Message Catalog .. 68
3.223 Message Catalog Descriptor.. 69
3.224 Message Queue .. 69
3.225 Mode ... 69
3.226 Monotonic Clock ... 69
3.227 Mount Point ... 69
3.228 Multi-Character Collating Element .. 69
3.229 Mutex .. 69
3.230 Name... 70
3.231 Named STREAM ... 70
3.232 NaN (Not a Number) ... 70
3.233 Native Language ... 70
3.234 Negative Response .. 70
3.235 Network.. 70
3.236 Network Address .. 70
3.237 Network Byte Order ... 71
3.238 Newline Character (<newline>) ... 71
3.239 Nice Value .. 71
3.240 Non-Blocking... 71
3.241 Non-Spacing Characters .. 71
3.242 NUL... 72
3.243 Null Byte ... 72
3.244 Null Pointer .. 72
3.245 Null String .. 72
3.246 Null Wide-Character Code .. 72
3.247 Number-Sign Character (<number-sign>) .. 72
3.248 Object File ... 72
3.249 Octet .. 72
3.250 Offset Maximum ... 73
3.251 Opaque Address .. 73
3.252 Open File .. 73
3.253 Open File Description... 73
3.254 Operand.. 73
3.255 Operator ... 73
3.256 Option ... 74
3.257 Option-Argument ... 74
3.258 Orientation ... 74
3.259 Orphaned Process Group ... 74
3.260 Page ... 74
3.261 Page Size ... 74
3.262 Parameter ... 75
3.263 Parent Directory .. 75
3.264 Parent Process .. 75
3.265 Parent Process ID .. 75
3.266 Pathname.. 75
3.267 Pathname Component .. 76
3.268 Path Prefix .. 76
3.269 Pattern... 76
3.270 Period Character (<period>) ... 76
3.271 Permissions .. 76
3.272 Persistence.. 76

xxii Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Contents

3.273 Pipe.. 77
3.274 Polling... 77
3.275 Portable Character Set .. 77
3.276 Portable Filename Character Set ... 77
3.277 Positional Parameter ... 78
3.278 Preallocation .. 78
3.279 Preempted Process (or Thread) ... 78
3.280 Previous Job ... 78
3.281 Printable Character ... 78
3.282 Printable File .. 78
3.283 Priority .. 79
3.284 Priority Band .. 79
3.285 Priority Inversion .. 79
3.286 Priority Scheduling ... 79
3.287 Priority-Based Scheduling ... 79
3.288 Privilege.. 79
3.289 Process .. 80
3.290 Process Group .. 80
3.291 Process Group ID .. 80
3.292 Process Group Leader... 80
3.293 Process Group Lifetime .. 80
3.294 Process ID... 81
3.295 Process Lifetime... 81
3.296 Process Memory Locking... 81
3.297 Process Termination .. 81
3.298 Process-To-Process Communication .. 81
3.299 Process Virtual Time ... 82
3.300 Program .. 82
3.301 Protocol ... 82
3.302 Pseudo-Terminal ... 82
3.303 Radix Character ... 82
3.304 Read-Only File System ... 82
3.305 Read-Write Lock.. 82
3.306 Real Group ID.. 83
3.307 Real Time .. 83
3.308 Realtime Signal Extension ... 83
3.309 Real User ID ... 83
3.310 Record ... 83
3.311 Redirection ... 83
3.312 Redirection Operator .. 84
3.313 Referenced Shared Memory Object .. 84
3.314 Refresh .. 84
3.315 Regular Expression ... 84
3.316 Region ... 84
3.317 Regular File .. 84
3.318 Relative Pathname .. 85
3.319 Relocatable File .. 85
3.320 Relocation... 85
3.321 Requested Batch Service .. 85
3.322 (Time) Resolution .. 85
3.323 Robust Mutex ... 85
3.324 Root Directory ... 85

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xxiii

Contents

3.325 Runnable Process (or Thread) ... 85
3.326 Running Process (or Thread) ... 86
3.327 Saved Resource Limits ... 86
3.328 Saved Set-Group-ID .. 86
3.329 Saved Set-User-ID ... 86
3.330 Scheduling.. 86
3.331 Scheduling Allocation Domain ... 86
3.332 Scheduling Contention Scope ... 86
3.333 Scheduling Policy .. 87
3.334 Screen .. 87
3.335 Scroll .. 87
3.336 Semaphore.. 87
3.337 Session .. 88
3.338 Session Leader ... 88
3.339 Session Lifetime ... 88
3.340 Shared Memory Object... 88
3.341 Shell ... 88
3.342 Shell, the ... 88
3.343 Shell Script .. 89
3.344 Signal... 89
3.345 Signal Stack .. 89
3.346 Single-Quote Character .. 89
3.347 Slash Character (<slash>)... 89
3.348 Socket .. 89
3.349 Socket Address .. 89
3.350 Soft Limit .. 90
3.351 Source Code ... 90
3.352 Space Character (<space>)... 90
3.353 Spawn ... 90
3.354 Special Built-In ... 90
3.355 Special Parameter .. 91
3.356 Spin Lock .. 91
3.357 Sporadic Server .. 91
3.358 Standard Error ... 91
3.359 Standard Input ... 91
3.360 Standard Output ... 91
3.361 Standard Utilities .. 91
3.362 Stream ... 92
3.363 STREAM... 92
3.364 STREAM End ... 92
3.365 STREAM Head .. 92
3.366 STREAMS Multiplexor ... 92
3.367 String... 92
3.368 Subshell... 93
3.369 Successfully Transferred .. 93
3.370 Supplementary Group ID .. 93
3.371 Suspended Job ... 93
3.372 Symbolic Constant .. 93
3.373 Symbolic Link .. 94
3.374 Synchronized Input and Output... 94
3.375 Synchronized I/O Completion ... 94
3.376 Synchronized I/O Data Integrity Completion.................................... 94

xxiv Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Contents

3.377 Synchronized I/O File Integrity Completion 94
3.378 Synchronized I/O Operation .. 94
3.379 Synchronous I/O Operation.. 95
3.380 Synchronously-Generated Signal ... 95
3.381 System... 95
3.382 System Boot .. 95
3.383 System Clock .. 95
3.384 System Console ... 95
3.385 System Crash ... 95
3.386 System Databases .. 96
3.387 System Documentation .. 96
3.388 System Process ... 96
3.389 System Reboot ... 96
3.390 System Trace Event ... 96
3.391 System-Wide .. 96
3.392 Tab Character (<tab>)... 97
3.393 Terminal (or Terminal Device) .. 97
3.394 Text Column... 97
3.395 Text File... 97
3.396 Thread ... 97
3.397 Thread ID ... 97
3.398 Thread List ... 98
3.399 Thread-Safe .. 98
3.400 Thread-Specific Data Key... 98
3.401 Tilde Character (<tilde>).. 98
3.402 Timeouts ... 98
3.403 Timer ... 98
3.404 Timer Overrun ... 98
3.405 Token ... 99
3.406 Trace Analyzer Process ... 99
3.407 Trace Controller Process ... 99
3.408 Trace Event ... 99
3.409 Trace Event Type ... 99
3.410 Trace Event Type Mapping .. 99
3.411 Trace Filter.. 99
3.412 Trace Generation Version ... 99
3.413 Trace Log .. 100
3.414 Trace Point.. 100
3.415 Trace Stream ... 100
3.416 Trace Stream Identifier ... 100
3.417 Trace System .. 100
3.418 Traced Process .. 100
3.419 Tracing Status of a Trace Stream ... 100
3.420 Typed Memory Name Space ... 100
3.421 Typed Memory Object .. 101
3.422 Typed Memory Pool ... 101
3.423 Typed Memory Port.. 101
3.424 Unbind.. 101
3.425 Unit Data .. 101
3.426 Upshifting .. 101
3.427 User Database .. 101
3.428 User ID .. 102

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xxv

Contents

3.429 User Name ... 102
3.430 User Trace Event.. 102
3.431 Utility .. 102
3.432 Variable ... 103
3.433 Vertical-Tab Character (<vertical-tab>).. 103
3.434 White Space .. 103
3.435 Wide-Character Code (C Language) .. 103
3.436 Wide-Character Input/Output Functions ... 103
3.437 Wide-Character String.. 103
3.438 Word.. 104
3.439 Working Directory (or Current Working Directory) 104
3.440 Worldwide Portability Interface ... 104
3.441 Write .. 104
3.442 XSI ... 104
3.443 XSI-Conformant .. 105
3.444 Zombie Process .. 105
3.445 ±0 ... 105

Chapter 4 General Concepts ... 107
4.1 Concurrent Execution... 107
4.2 Directory Protection .. 107
4.3 Extended Security Controls ... 107
4.4 File Access Permissions.. 108
4.5 File Hierarchy .. 108
4.6 Filenames.. 109
4.7 Filename Portability .. 109
4.8 File Times Update ... 109
4.9 Host and Network Byte Orders .. 110
4.10 Measurement of Execution Time .. 110
4.11 Memory Synchronization .. 110
4.12 Pathname Resolution .. 111
4.13 Process ID Reuse ... 112
4.14 Scheduling Policy .. 112
4.15 Seconds Since the Epoch .. 113
4.16 Semaphore.. 113
4.17 Thread-Safety ... 114
4.18 Tracing .. 114
4.19 Treatment of Error Conditions for Mathematical

Functions .. 116
4.19.1 Domain Error .. 116
4.19.2 Pole Error ... 117
4.19.3 Range Error ... 117
4.20 Treatment of NaN Arguments for the Mathematical

Functions .. 118
4.21 Utility .. 118
4.22 Variable Assignment... 118

Chapter 5 File Format Notation ... 121

Chapter 6 Character Set ... 125
6.1 Portable Character Set .. 125
6.2 Character Encoding .. 128

xxvi Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Contents

6.3 C Language Wide-Character Codes ... 129
6.4 Character Set Description File... 129
6.4.1 State-Dependent Character Encodings ... 132

Chapter 7 Locale .. 135
7.1 General.. 135
7.2 POSIX Locale ... 136
7.3 Locale Definition ... 136
7.3.1 LC_CTYPE .. 139
7.3.2 LC_COLLATE ... 146
7.3.3 LC_MONETARY .. 154
7.3.4 LC_NUMERIC.. 157
7.3.5 LC_TIME ... 158
7.3.6 LC_MESSAGES .. 164
7.4 Locale Definition Grammar... 165
7.4.1 Locale Lexical Conventions .. 165
7.4.2 Locale Grammar ... 166

Chapter 8 Environment Variables .. 173
8.1 Environment Variable Definition.. 173
8.2 Internationalization Variables ... 174
8.3 Other Environment Variables .. 177

Chapter 9 Regular Expressions .. 181
9.1 Regular Expression Definitions... 181
9.2 Regular Expression General Requirements ... 182
9.3 Basic Regular Expressions ... 183
9.3.1 BREs Matching a Single Character or Collating

Element .. 183
9.3.2 BRE Ordinary Characters.. 183
9.3.3 BRE Special Characters ... 183
9.3.4 Periods in BREs .. 184
9.3.5 RE Bracket Expression ... 184
9.3.6 BREs Matching Multiple Characters ... 186
9.3.7 BRE Precedence .. 187
9.3.8 BRE Expression Anchoring... 187
9.4 Extended Regular Expressions .. 188
9.4.1 EREs Matching a Single Character or Collating

Element .. 188
9.4.2 ERE Ordinary Characters.. 188
9.4.3 ERE Special Characters ... 188
9.4.4 Periods in EREs .. 189
9.4.5 ERE Bracket Expression .. 189
9.4.6 EREs Matching Multiple Characters ... 189
9.4.7 ERE Alternation .. 190
9.4.8 ERE Precedence .. 190
9.4.9 ERE Expression Anchoring... 190
9.5 Regular Expression Grammar... 191
9.5.1 BRE/ERE Grammar Lexical Conventions.. 191
9.5.2 RE and Bracket Expression Grammar... 192
9.5.3 ERE Grammar ... 194

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xxvii

Contents

Chapter 10 Directory Structure and Devices .. 197
10.1 Directory Structure and Files... 197
10.2 Output Devices and Terminal Types .. 198

Chapter 11 General Terminal Interface ... 199
11.1 Interface Characteristics ... 199
11.1.1 Opening a Terminal Device File... 199
11.1.2 Process Groups ... 200
11.1.3 The Controlling Terminal .. 200
11.1.4 Terminal Access Control ... 201
11.1.5 Input Processing and Reading Data .. 201
11.1.6 Canonical Mode Input Processing ... 202
11.1.7 Non-Canonical Mode Input Processing .. 202
11.1.8 Writing Data and Output Processing .. 203
11.1.9 Special Characters .. 203
11.1.10 Modem Disconnect .. 205
11.1.11 Closing a Terminal Device File... 205
11.2 Parameters that Can be Set .. 205
11.2.1 The termios Structure .. 205
11.2.2 Input Modes .. 206
11.2.3 Output Modes ... 207
11.2.4 Control Modes .. 209
11.2.5 Local Modes .. 210
11.2.6 Special Control Characters.. 212

Chapter 12 Utility Conventions ... 213
12.1 Utility Argument Syntax.. 213
12.2 Utility Syntax Guidelines... 215

Chapter 13 Headers .. 219

Volume 2 System Interfaces, Issue 7.. 463

Chapter 1 Introduction ... 465
1.1 Relationship to Other Formal Standards ... 465
1.2 Format of Entries... 465

Chapter 2 General Information ... 467
2.1 Use and Implementation of Interfaces ... 467
2.1.1 Use and Implementation of Functions.. 467
2.1.2 Use and Implementation of Macros .. 468
2.2 The Compilation Environment ... 468
2.2.1 POSIX.1 Symbols .. 468
2.2.2 The Name Space... 469
2.3 Error Numbers... 477
2.3.1 Additional Error Numbers ... 484
2.4 Signal Concepts ... 484
2.4.1 Signal Generation and Delivery... 484
2.4.2 Realtime Signal Generation and Delivery .. 485
2.4.3 Signal Actions ... 486
2.4.4 Signal Effects on Other Functions.. 490

xxviii Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Contents

2.5 Standard I/O Streams .. 490
2.5.1 Interaction of File Descriptors and Standard I/O

Streams .. 491
2.5.2 Stream Orientation and Encoding Rules .. 493
2.6 STREAMS... 494
2.6.1 Accessing STREAMS ... 495
2.7 XSI Interprocess Communication ... 496
2.7.1 IPC General Description ... 496
2.8 Realtime.. 497
2.8.1 Realtime Signals ... 497
2.8.2 Asynchronous I/O... 497
2.8.3 Memory Management ... 499
2.8.4 Process Scheduling... 501
2.8.5 Clocks and Timers .. 505
2.9 Threads ... 507
2.9.1 Thread-Safety .. 507
2.9.2 Thread IDs... 508
2.9.3 Thread Mutexes.. 508
2.9.4 Thread Scheduling ... 509
2.9.5 Thread Cancellation... 511
2.9.6 Thread Read-Write Locks.. 515
2.9.7 Thread Interactions with Regular File Operations.......................... 516
2.9.8 Use of Application-Managed Thread Stacks.................................... 516
2.10 Sockets .. 517
2.10.1 Address Families.. 517
2.10.2 Addressing .. 517
2.10.3 Protocols .. 517
2.10.4 Routing .. 518
2.10.5 Interfaces ... 518
2.10.6 Socket Types .. 518
2.10.7 Socket I/O Mode.. 519
2.10.8 Socket Owner .. 519
2.10.9 Socket Queue Limits .. 519
2.10.10 Pending Error ... 519
2.10.11 Socket Receive Queue.. 520
2.10.12 Socket Out-of-Band Data State... 520
2.10.13 Connection Indication Queue .. 521
2.10.14 Signals.. 521
2.10.15 Asynchronous Errors ... 521
2.10.16 Use of Options .. 522
2.10.17 Use of Sockets for Local UNIX Connections 525
2.10.18 Use of Sockets over Internet Protocols .. 525
2.10.19 Use of Sockets over Internet Protocols Based on

IPv4 ... 526
2.10.20 Use of Sockets over Internet Protocols Based on

IPv6 ... 526
2.11 Tracing .. 529
2.11.1 Tracing Data Definitions ... 531
2.11.2 Trace Event Type Definitions.. 535
2.11.3 Trace Functions... 539
2.12 Data Types .. 540
2.12.1 Defined Types ... 540

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xxix

Contents

2.12.2 The char Type .. 541
2.12.3 Pointer Types .. 541

Chapter 3 System Interfaces.. 543

Volume 3 Shell and Utilities, Issue 7 .. 2277

Chapter 1 Introduction ... 2279
1.1 Relationship to Other Documents .. 2279
1.1.1 System Interfaces .. 2279
1.1.2 Concepts Derived from the ISO C Standard 2283
1.2 Utility Limits .. 2285
1.3 Grammar Conventions ... 2287
1.4 Utility Description Defaults... 2288
1.5 Considerations for Utilities in Support of Files of

Arbitrary Size... 2295
1.6 Built-In Utilities ... 2296

Chapter 2 Shell Command Language .. 2297
2.1 Shell Introduction .. 2297
2.2 Quoting... 2298
2.2.1 Escape Character (Backslash) ... 2298
2.2.2 Single-Quotes.. 2298
2.2.3 Double-Quotes.. 2298
2.3 Token Recognition... 2299
2.3.1 Alias Substitution ... 2300
2.4 Reserved Words... 2301
2.5 Parameters and Variables ... 2301
2.5.1 Positional Parameters .. 2301
2.5.2 Special Parameters ... 2302
2.5.3 Shell Variables ... 2302
2.6 Word Expansions .. 2305
2.6.1 Tilde Expansion .. 2305
2.6.2 Parameter Expansion ... 2306
2.6.3 Command Substitution ... 2309
2.6.4 Arithmetic Expansion .. 2310
2.6.5 Field Splitting ... 2311
2.6.6 Pathname Expansion ... 2311
2.6.7 Quote Removal ... 2311
2.7 Redirection ... 2312
2.7.1 Redirecting Input ... 2312
2.7.2 Redirecting Output .. 2313
2.7.3 Appending Redirected Output .. 2313
2.7.4 Here-Document .. 2313
2.7.5 Duplicating an Input File Descriptor .. 2314
2.7.6 Duplicating an Output File Descriptor ... 2314
2.7.7 Open File Descriptors for Reading and Writing 2315
2.8 Exit Status and Errors ... 2315
2.8.1 Consequences of Shell Errors ... 2315
2.8.2 Exit Status for Commands .. 2315
2.9 Shell Commands ... 2316

xxx Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Contents

2.9.1 Simple Commands ... 2316
2.9.2 Pipelines .. 2318
2.9.3 Lists .. 2319
2.9.4 Compound Commands ... 2321
2.9.5 Function Definition Command .. 2324
2.10 Shell Grammar ... 2325
2.10.1 Shell Grammar Lexical Conventions... 2325
2.10.2 Shell Grammar Rules... 2325
2.11 Signals and Error Handling... 2330
2.12 Shell Execution Environment .. 2331
2.13 Pattern Matching Notation .. 2332
2.13.1 Patterns Matching a Single Character... 2332
2.13.2 Patterns Matching Multiple Characters.. 2332
2.13.3 Patterns Used for Filename Expansion... 2333
2.14 Special Built-In Utilities.. 2334

Chapter 3 Batch Environment Services ... 2375
3.1 General Concepts .. 2375
3.1.1 Batch Client-Server Interaction .. 2375
3.1.2 Batch Queues .. 2376
3.1.3 Batch Job Creation .. 2376
3.1.4 Batch Job Tracking .. 2376
3.1.5 Batch Job Routing... 2377
3.1.6 Batch Job Execution ... 2377
3.1.7 Batch Job Exit .. 2378
3.1.8 Batch Job Abort... 2378
3.1.9 Batch Authorization ... 2378
3.1.10 Batch Administration .. 2378
3.1.11 Batch Notification... 2379
3.2 Batch Services .. 2379
3.2.1 Batch Job States... 2380
3.2.2 Deferred Batch Services... 2381
3.2.3 Requested Batch Services.. 2390
3.3 Common Behavior for Batch Environment Utilities.......................... 2397
3.3.1 Batch Job Identifier... 2397
3.3.2 Destination .. 2398
3.3.3 Multiple Keyword-Value Pairs... 2399

Chapter 4 Utilities... 2401

Volume 4 Rationale (Informative), Issue 7.. 3407

Part A Base Definitions ... 3409

Appendix A Rationale for Base Definitions... 3411
A.1 Introduction ... 3411
A.1.1 Scope .. 3411
A.1.2 Conformance... 3414
A.1.3 Normative References ... 3414
A.1.4 Change History .. 3414
A.1.5 Terminology .. 3414

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xxxi

Contents

A.1.6 Definitions and Concepts.. 3416
A.1.7 Portability.. 3416
A.2 Conformance.. 3417
A.2.1 Implementation Conformance ... 3417
A.2.2 Application Conformance ... 3421
A.2.3 Language-Dependent Services for the C Programming

Language ... 3421
A.2.4 Other Language-Related Specifications.. 3422
A.3 Definitions .. 3422
A.4 General Concepts .. 3443
A.4.1 Concurrent Execution.. 3443
A.4.2 Directory Protection ... 3444
A.4.3 Extended Security Controls .. 3444
A.4.4 File Access Permissions... 3444
A.4.5 File Hierarchy ... 3444
A.4.6 Filenames... 3445
A.4.7 Filename Portability ... 3446
A.4.8 File Times Update .. 3446
A.4.9 Host and Network Byte Order ... 3447
A.4.10 Measurement of Execution Time ... 3447
A.4.11 Memory Synchronization ... 3447
A.4.12 Pathname Resolution ... 3449
A.4.13 Process ID Reuse .. 3450
A.4.14 Scheduling Policy ... 3450
A.4.15 Seconds Since the Epoch ... 3450
A.4.16 Semaphore... 3452
A.4.17 Thread-Safety .. 3452
A.4.18 Tracing ... 3452
A.4.19 Treatment of Error Conditions for Mathematical

Functions ... 3452
A.4.20 Treatment of NaN Arguments for Mathematical

Functions ... 3452
A.4.21 Utility ... 3452
A.4.22 Variable Assignment.. 3452
A.5 File Format Notation .. 3452
A.6 Character Set .. 3453
A.6.1 Portable Character Set ... 3453
A.6.2 Character Encoding ... 3454
A.6.3 C Language Wide-Character Codes .. 3454
A.6.4 Character Set Description File.. 3454
A.7 Locale .. 3456
A.7.1 General... 3456
A.7.2 POSIX Locale .. 3457
A.7.3 Locale Definition .. 3457
A.7.4 Locale Definition Grammar.. 3464
A.7.5 Locale Definition Example.. 3464
A.8 Environment Variables ... 3467
A.8.1 Environment Variable Definition... 3467
A.8.2 Internationalization Variables .. 3468
A.8.3 Other Environment Variables ... 3469
A.9 Regular Expressions ... 3470
A.9.1 Regular Expression Definitions.. 3471

xxxii Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Contents

A.9.2 Regular Expression General Requirements 3471
A.9.3 Basic Regular Expressions .. 3472
A.9.4 Extended Regular Expressions ... 3475
A.9.5 Regular Expression Grammar.. 3477
A.10 Directory Structure and Devices ... 3478
A.10.1 Directory Structure and Files.. 3478
A.10.2 Output Devices and Terminal Types ... 3478
A.11 General Terminal Interface .. 3478
A.11.1 Interface Characteristics .. 3479
A.11.2 Parameters that Can be Set ... 3483
A.12 Utility Conventions ... 3485
A.12.1 Utility Argument Syntax... 3485
A.12.2 Utility Syntax Guidelines.. 3486
A.13 Headers... 3488
A.13.1 Format of Entries.. 3488
A.13.2 Removed Headers in Issue 7 .. 3489

Part B System Interfaces... 3491

Appendix B Rationale for System Interfaces .. 3493
B.1 Introduction ... 3493
B.1.1 Change History .. 3493
B.1.2 Relationship to Other Formal Standards .. 3496
B.1.3 Format of Entries.. 3496
B.2 General Information ... 3497
B.2.1 Use and Implementation of Interfaces .. 3497
B.2.2 The Compilation Environment .. 3498
B.2.3 Error Numbers.. 3503
B.2.4 Signal Concepts .. 3507
B.2.5 Standard I/O Streams ... 3517
B.2.6 STREAMS.. 3517
B.2.7 XSI Interprocess Communication .. 3518
B.2.8 Realtime... 3519
B.2.9 Threads .. 3564
B.2.10 Sockets ... 3592
B.2.11 Tracing ... 3594
B.2.12 Data Types ... 3620
B.3 System Interfaces ... 3622
B.3.1 System Interfaces Removed in this Version 3622
B.3.2 System Interfaces Removed in the Previous Version 3625
B.3.3 Examples for Spawn .. 3625

Part C Shell and Utilities ... 3635

Appendix C Rationale for Shell and Utilities... 3637
C.1 Introduction ... 3637
C.1.1 Change History .. 3637
C.1.2 Relationship to Other Documents ... 3638
C.1.3 Utility Limits ... 3639
C.1.4 Grammar Conventions .. 3642
C.1.5 Utility Description Defaults.. 3642

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xxxiii

Contents

C.1.6 Considerations for Utilities in Support of Files
of Arbitrary Size ... 3645

C.1.7 Built-In Utilities .. 3646
C.2 Shell Command Language .. 3648
C.2.1 Shell Introduction ... 3648
C.2.2 Quoting.. 3648
C.2.3 Token Recognition.. 3650
C.2.4 Reserved Words.. 3651
C.2.5 Parameters and Variables .. 3651
C.2.6 Word Expansions ... 3654
C.2.7 Redirection .. 3660
C.2.8 Exit Status and Errors .. 3662
C.2.9 Shell Commands .. 3662
C.2.10 Shell Grammar .. 3669
C.2.11 Signals and Error Handling.. 3671
C.2.12 Shell Execution Environment ... 3671
C.2.13 Pattern Matching Notation ... 3671
C.2.14 Special Built-In Utilities... 3673
C.3 Batch Environment Services and Utilities ... 3673
C.3.1 Batch General Concepts .. 3676
C.3.2 Batch Services ... 3678
C.3.3 Common Behavior for Batch Environment Utilities....................... 3679
C.4 Utilities.. 3679
C.4.1 Utilities Removed in this Version .. 3679
C.4.2 Utilities Removed in the Previous Version 3679
C.4.3 Exclusion of Utilities.. 3679

Part D Portability Considerations.. 3683

Appendix D Portability Considerations (Informative) 3685
D.1 User Requirements .. 3685
D.1.1 Configuration Interrogation ... 3686
D.1.2 Process Management ... 3686
D.1.3 Access to Data... 3686
D.1.4 Access to the Environment ... 3686
D.1.5 Access to Determinism and Performance

Enhancements ... 3686
D.1.6 Operating System-Dependent Profile ... 3687
D.1.7 I/O Interaction ... 3687
D.1.8 Internationalization Interaction ... 3687
D.1.9 C-Language Extensions ... 3687
D.1.10 Command Language ... 3687
D.1.11 Interactive Facilities ... 3687
D.1.12 Accomplish Multiple Tasks Simultaneously.................................... 3687
D.1.13 Complex Data Manipulation.. 3688
D.1.14 File Hierarchy Manipulation .. 3688
D.1.15 Locale Configuration ... 3688
D.1.16 Inter-User Communication... 3688
D.1.17 System Environment ... 3688
D.1.18 Printing .. 3688
D.1.19 Software Development .. 3688

xxxiv Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Contents

D.2 Portability Capabilities ... 3689
D.2.1 Configuration Interrogation ... 3689
D.2.2 Process Management ... 3690
D.2.3 Access to Data... 3690
D.2.4 Access to the Environment ... 3691
D.2.5 Bounded (Realtime) Response ... 3692
D.2.6 Operating System-Dependent Profile ... 3692
D.2.7 I/O Interaction ... 3692
D.2.8 Internationalization Interaction ... 3693
D.2.9 C-Language Extensions ... 3693
D.2.10 Command Language ... 3693
D.2.11 Interactive Facilities ... 3694
D.2.12 Accomplish Multiple Tasks Simultaneously.................................... 3694
D.2.13 Complex Data Manipulation.. 3694
D.2.14 File Hierarchy Manipulation .. 3695
D.2.15 Locale Configuration ... 3695
D.2.16 Inter-User Communication... 3695
D.2.17 System Environment ... 3696
D.2.18 Printing .. 3696
D.2.19 Software Development .. 3696
D.2.20 Future Growth .. 3696
D.3 Profiling Considerations .. 3697
D.3.1 Configuration Options .. 3697
D.3.2 Configuration Options (Shell and Utilities) 3697
D.3.3 Configurable Limits ... 3699
D.3.4 Configuration Options (System Interfaces)...................................... 3699
D.3.5 Configurable Limits ... 3704
D.3.6 Optional Behavior .. 3707

Part E Subprofiling Considerations ... 3709

Appendix E Subprofiling Considerations (Informative) 3711
E.1 Subprofiling Option Groups .. 3711

Index .. 3717

List of Figures

B-1 Example of a System with Typed Memory .. 3537
B-2 Trace System Overview: for Offline Analysis .. 3600
B-3 Trace System Overview: for Online Analysis .. 3601
B-4 Trace System Overview: States of a Trace Stream 3603
B-5 Trace Another Process ... 3613
B-6 Trace Name Space Overview: With Third-Party Library 3614

List of Tables

3-1 Job Control Job ID Formats... 66
5-1 Escape Sequences and Associated Actions .. 121
6-1 Portable Character Set ... 125
6-2 Control Character Set .. 130

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xxxv

Contents

7-1 Valid Character Class Combinations... 142
10-1 Control Character Names ... 198
2-1 Value of Level for Socket Options.. 522
2-2 Socket-Level Options ... 523
2-3 Trace Option: System Trace Events.. 537
2-4 Trace and Trace Event Filter Options: System Trace

Events ... 537
2-5 Trace and Trace Log Options: System Trace Events.............................. 538
2-6 Trace, Trace Log, and Trace Event Filter Options:

System Trace Events .. 538
2-7 Trace Option: User Trace Event.. 539
1-1 Actions when Creating a File that Already Exists................................. 2281
1-2 Selected ISO C Standard Operators and Control Flow

Keywords .. 2284
1-3 Utility Limit Minimum Values ... 2285
1-4 Symbolic Utility Limits ... 2286
1-5 Regular Built-In Utilities ... 2296
3-1 Batch Utilities .. 2375
3-2 Environment Variable Summary ... 2379
3-3 Next State Table .. 2381
3-4 Results/Output Table .. 2383
3-5 Batch Services Summary... 2390
A-1 Historical Practice for Symbolic Links .. 3440

xxxvi Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Trademarks

The following information is given for the convenience of users of POSIX.1-2008 and does not
constitute an endorsement by the IEEE or The Open Group of these products. Equivalent
products may be used if they can be shown to lead to the same results.

There may be other products mentioned in the text that might be covered by trademark
protection and readers are advised to verify them independently.

754™, 854™, 1003.0™, 1003.1™, 1003.1d™, 1003.1g™, 1003.1j™, 1003.1q™, 1003.2™, 1003.2a™,
1003.2d™, 1003.9™, and 1003.13™ are trademarks of the Institute of Electrical and Electronic
Engineers, Inc.

AIX® is a registered trademark of IBM Corporation.

AT&T® is a registered trademark of AT&T in the USA and other countries.

Boundaryless Information Flow™ and TOGAF™ are trademarks and Motif®, Making Standards
Work®, OSF/1®, The Open Group®, UNIX®, and the ‘‘X’’ device are registered trademarks of
The Open Group in the United States and other countries.

BSD™ is a trademark of the University of California, Berkeley, USA.

Hewlett-Packard®, HP®, and HP-UX® are registered trademarks of Hewlett-Packard Company.

IBM® is a registered trademark of International Business Machines Corporation.

IEEE® is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.

Linux® is a registered trademark of Linus Torvalds.

POSIX® is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.

Sun® and Sun Microsystems® are registered trademarks of Sun Microsystems, Inc.

/usr/group® is a registered trademark of UniForum, the International Network of UNIX System
Users.

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xxxvii

Acknowledgements

The contributions of the following organizations to the development of POSIX.1-2008 are
gratefully acknowledged:

• AT&T for permission to reproduce portions of its copyrighted System V Interface
Definition (SVID) and material from the UNIX System V Release 2.0 documentation.

• Hewlett-Packard Company, International Business Machines Corporation, Novell Inc., The
Open Software Foundation, and Sun Microsystems Inc. for permission to reproduce
portions of their copyrighted documentation

• ISO/IEC JTC 1/SC 22/WG 14 C Language Committee

• Red Hat Inc. for permission to reproduce portions of its copyrighted documentation

POSIX.1-2008 was prepared by the Austin Group, a joint working group of the IEEE, The Open
Group, and ISO/IEC JTC 1/SC 22.

xxxviii Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Referenced Documents

Normative References

Normative references for POSIX.1-2008 are defined in Section 1.3 (on page 4).

Informative References

The following documents are referenced in POSIX.1-2008:

1984 /usr/group Standard
/usr/group Standards Committee, Santa Clara, CA, UniForum 1984.

Almasi and Gottlieb
George S. Almasi and Allan Gottlieb, Highly Parallel Computing, The Benjamin/Cummings
Publishing Company, Inc., 1989, ISBN: 0-8053-0177-1.

ANSI C
American National Standard for Information Systems: Standard X3.159-1989, Programming
Language C.

ANSI X3.226-1994
American National Standard for Information Systems: Standard X3.226-1994, Programming
Language Common LISP.

Brawer
Steven Brawer, Introduction to Parallel Programming, Academic Press, 1989,
ISBN: 0-12-128470-0.

DeRemer and Pennello Article
DeRemer, Frank and Pennello, Thomas J., Efficient Computation of LALR(1) Look-Ahead Sets,
SigPlan Notices, Volume 15, No. 8, August 1979.

Draft ANSI X3J11.1
IEEE Floating Point draft report of ANSI X3J11.1 (NCEG).

FIPS 151-1
Federal Information Procurement Standard (FIPS) 151-1. Portable Operating System
Interface (POSIX)—Part 1: System Application Program Interface (API) [C Language].

FIPS 151-2
Federal Information Procurement Standards (FIPS) 151-2, Portable Operating System
Interface (POSIX)— Part 1: System Application Program Interface (API) [C Language].

HP-UX Manual
Hewlett-Packard HP-UX Release 9.0 Reference Manual, Third Edition, August 1992.

IEC 60559: 1989
IEC 60559: 1989, Binary Floating-Point Arithmetic for Microprocessor Systems (previously
designated IEC 559: 1989).

IEEE Standards Terms
IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xxxix

Referenced Documents

IEEE Std 754™-1985
IEEE Std 754-1985 (Reaff 1990), IEEE Standard for Binary Floating-Point Arithmetic.

IEEE Std 854™-1987
IEEE Std 854-1987, IEEE Standard for Radix-Independent Floating-Point Arithmetic.

IEEE Std 1003.9™-1992
IEEE Std 1003.9-1992, IEEE Standard for Information Technology — POSIX FORTRAN 77
Language Interfaces — Part 1: Binding for System Application Program Interface API.

IETF RFC 791
Internet Protocol, Version 4 (IPv4), September 1981 (available at:
www.ietf.org/rfc/rfc0791.txt).

IETF RFC 819
The Domain Naming Convention for Internet User Applications, Z. Su, J. Postel, August
1982 (available at: www.ietf.org/rfc/rfc0819.txt).

IETF RFC 822
Standard for the Format of ARPA Internet Text Messages, D.H. Crocker, August 1982
(available at: www.ietf.org/rfc/rfc0822.txt).

IETF RFC 919
Broadcasting Internet Datagrams, J. Mogul, October 1984 (available at:
www.ietf.org/rfc/rfc0919.txt).

IETF RFC 920
Domain Requirements, J. Postel, J. Reynolds, October 1984 (available at:
www.ietf.org/rfc/rfc0920.txt).

IETF RFC 921
Domain Name System Implementation Schedule, J. Postel, October 1984 (available at:
www.ietf.org/rfc/rfc0921.txt).

IETF RFC 922
Broadcasting Internet Datagrams in the Presence of Subnets, J. Mogul, October 1984
(available at: www.ietf.org/rfc/rfc0922.txt).

IETF RFC 1034
Domain Names — Concepts and Facilities, P. Mockapetris, November 1987 (available at:
www.ietf.org/rfc/rfc1034.txt).

IETF RFC 1035
Domain Names — Implementation and Specification, P. Mockapetris, November 1987
(available at: www.ietf.org/rfc/rfc1035.txt).

IETF RFC 1123
Requirements for Internet Hosts — Application and Support, R. Braden, October 1989
(available at: www.ietf.org/rfc/rfc1123.txt).

IETF RFC 1886
DNS Extensions to Support Internet Protocol, Version 6 (IPv6), C. Huitema, S. Thomson,
December 1995 (available at: www.ietf.org/rfc/rfc1886.txt).

IETF RFC 2045
Multipurpose Internet Mail Extensions (MIME), Part 1: Format of Internet Message Bodies,
N. Freed, N. Borenstein, November 1996 (available at: www.ietf.org/rfc/rfc2045.txt).

xl Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Referenced Documents

IETF RFC 2181
Clarifications to the DNS Specification, R. Elz, R. Bush, July 1997 (available at:
www.ietf.org/rfc/rfc2181.txt).

IETF RFC 2373
Internet Protocol, Version 6 (IPv6) Addressing Architecture, S. Deering, R. Hinden, July 1998
(available at: www.ietf.org/rfc/rfc2373.txt).

IETF RFC 2460
Internet Protocol, Version 6 (IPv6), S. Deering, R. Hinden, December 1998 (available at:
www.ietf.org/rfc/rfc2460.txt).

Internationalisation Guide
Guide, July 1993, Internationalisation Guide, Version 2 (ISBN: 1-859120-02-4, G304),
published by The Open Group.

ISO 2375: 1985
ISO 2375: 1985, Data Processing — Procedure for Registration of Escape Sequences.

ISO 8652: 1987
ISO 8652: 1987, Programming Languages — Ada (technically identical to ANSI standard
1815A-1983).

ISO/IEC 1539: 1991
ISO/IEC 1539: 1991, Information Technology — Programming Languages — Fortran
(technically identical to the ANSI X3.9-1978 standard [FORTRAN 77]).

ISO/IEC 4873: 1991
ISO/IEC 4873: 1991, Information Technology — ISO 8-bit Code for Information Interchange
— Structure and Rules for Implementation.

ISO/IEC 6429: 1992
ISO/IEC 6429: 1992, Information Technology — Control Functions for Coded Character
Sets.

ISO/IEC 6937: 1994
ISO/IEC 6937: 1994, Information Technology — Coded Graphic Character Set for Text
Communication — Latin Alphabet.

ISO/IEC 8802-3: 1996
ISO/IEC 8802-3: 1996, Information Technology — Telecommunications and Information
Exchange Between Systems — Local and Metropolitan Area Networks — Specific
Requirements — Part 3: Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications.

ISO/IEC 8859
ISO/IEC 8859, Information Technology — 8-Bit Single-Byte Coded Graphic Character Sets:

Part 1: Latin Alphabet No. 1
Part 2: Latin Alphabet No. 2
Part 3: Latin Alphabet No. 3
Part 4: Latin Alphabet No. 4
Part 5: Latin/Cyrillic Alphabet
Part 6: Latin/Arabic Alphabet
Part 7: Latin/Greek Alphabet
Part 8: Latin/Hebrew Alphabet
Part 9: Latin Alphabet No. 5
Part 10: Latin Alphabet No. 6
Part 11: Latin/Thai Alphabet

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xli

Referenced Documents

Part 13: Latin Alphabet No. 7
Part 14: Latin Alphabet No. 8 (Celtic)
Part 15: Latin Alphabet No. 9
Part 16: Latin Alphabet No. 10

ISO/IEC 9899: 1990
ISO/IEC 9899: 1990, Programming Languages — C, including Amendment 1: 1995 (E), C
Integrity (Multibyte Support Extensions (MSE) for ISO C).

ISO POSIX-1: 1996
ISO/IEC 9945-1: 1996, Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) [C Language] (identical to
ANSI/IEEE Std 1003.1-1996). Incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993,
1003.1c-1995, and 1003.1i-1995.

ISO POSIX-2: 1993
ISO/IEC 9945-2: 1993, Information Technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities (identical to ANSI/IEEE Std 1003.2™-1992, as amended
by ANSI/IEEE Std 1003.2a™-1992).

Issue 1
X/Open Portability Guide, July 1985 (ISBN: 0-444-87839-4).

Issue 2
X/Open Portability Guide, January 1987:

• Volume 1: XVS Commands and Utilities (ISBN: 0-444-70174-5)

• Volume 2: XVS System Calls and Libraries (ISBN: 0-444-70175-3)

Issue 3
X/Open Specification, 1988, 1989, February 1992:

• Commands and Utilities, Issue 3 (ISBN: 1-872630-36-7, C211); this specification was
formerly X/Open Portability Guide, Issue 3, Volume 1, January 1989, XSI Commands
and Utilities (ISBN: 0-13-685835-X, XO/XPG/89/002)

• System Interfaces and Headers, Issue 3 (ISBN: 1-872630-37-5, C212); this specification
was formerly X/Open Portability Guide, Issue 3, Volume 2, January 1989, XSI System
Interface and Headers (ISBN: 0-13-685843-0, XO/XPG/89/003)

• Curses Interface, Issue 3, contained in Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapters 9 to 14 inclusive; this specification was formerly
X/Open Portability Guide, Issue 3, Volume 3, January 1989, XSI Supplementary
Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004)

• Headers Interface, Issue 3, contained in Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapter 19, Cpio and Tar Headers; this specification was
formerly X/Open Portability Guide Issue 3, Volume 3, January 1989, XSI
Supplementary Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004)

Issue 4
CAE Specification, July 1992, published by The Open Group:

• System Interface Definitions (XBD), Issue 4 (ISBN: 1-872630-46-4, C204)

• Commands and Utilities (XCU), Issue 4 (ISBN: 1-872630-48-0, C203)

• System Interfaces and Headers (XSH), Issue 4 (ISBN: 1-872630-47-2, C202)

xlii Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Referenced Documents

Issue 4, Version 2
CAE Specification, August 1994, published by The Open Group:

• System Interface Definitions (XBD), Issue 4, Version 2 (ISBN: 1-85912-036-9, C434)

• Commands and Utilities (XCU), Issue 4, Version 2 (ISBN: 1-85912-034-2, C436)

• System Interfaces and Headers (XSH), Issue 4, Version 2 (ISBN: 1-85912-037-7, C435)

Issue 5
Technical Standard, February 1997, published by The Open Group:

• System Interface Definitions (XBD), Issue 5 (ISBN: 1-85912-186-1, C605)

• Commands and Utilities (XCU), Issue 5 (ISBN: 1-85912-191-8, C604)

• System Interfaces and Headers (XSH), Issue 5 (ISBN: 1-85912-181-0, C606)

Issue 6
Technical Standard, April 2004, published by The Open Group:

• Base Definitions (XBD), Issue 6 (ISBN: 1-931624-43-7, C046)

• System Interfaces (XSH), Issue 6 (ISBN: 1-931624-44-5, C047)

• Shell and Utilities (XCU), Issue 6 (ISBN: 1-931624-45-3, C048)

Knuth Article
Knuth, Donald E., On the Translation of Languages from Left to Right, Information and Control,
Volume 8, No. 6, October 1965.

KornShell
Bolsky, Morris I. and Korn, David G., The New KornShell Command and Programming
Language, March 1995, Prentice Hall.

MSE Working Draft
Working draft of ISO/IEC 9899: 1990/Add3: Draft, Addendum 3 — Multibyte Support
Extensions (MSE) as documented in the ISO Working Paper SC22/WG14/N205 dated 31
March 1992.

POSIX.0: 1995
IEEE Std 1003.0™-1995, IEEE Guide to the POSIX Open System Environment (OSE)
(identical to ISO/IEC TR 14252).

POSIX.1: 1988
IEEE Std 1003.1™-1988, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) [C
Language].

POSIX.1: 1990
IEEE Std 1003.1™-1990, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) [C
Language].

POSIX.1a
P1003.1a, Standard for Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) — (C Language)
Amendment.

POSIX.1d: 1999
IEEE Std 1003.1d™-1999, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xliii

Referenced Documents

Amendment 4: Additional Realtime Extensions [C Language].

POSIX.1g: 2000
IEEE Std 1003.1g™-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 6: Protocol-Independent Interfaces (PII).

POSIX.1j: 2000
IEEE Std 1003.1j™-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 5: Advanced Realtime Extensions [C Language].

POSIX.1q: 2000
IEEE Std 1003.1q™-2000, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 1: System Application Program Interface (API) —
Amendment 7: Tracing [C Language].

POSIX.2b
P1003.2b, Standard for Information Technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities — Amendment.

POSIX.2d: 1994
IEEE Std 1003.2d™-1994, IEEE Standard for Information Technology — Portable Operating
System Interface (POSIX) — Part 2: Shell and Utilities — Amendment 1: Batch Environment.

POSIX.13: 1998
IEEE Std 1003.13™-1998, IEEE Standard for Information Technology — Standardized
Application Environment Profile (AEP) — POSIX Realtime Application Support.

Sarwate Article
Sarwate, Dilip V., Computation of Cyclic Redundancy Checks via Table Lookup, Communications
of the ACM, Volume 30, No. 8, August 1988.

Sprunt, Sha, and Lehoczky
Sprunt, B., Sha, L., and Lehoczky, J.P., Aperiodic Task Scheduling for Hard Real-Time Systems,
The Journal of Real-Time Systems, Volume 1, 1989, Pages 27-60.

SVID, Issue 1
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
1; Morristown, NJ, UNIX Press, 1985.

SVID, Issue 2
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
2; Morristown, NJ, UNIX Press, 1986.

SVID, Issue 3
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
3; Morristown, NJ, UNIX Press, 1989.

The AWK Programming Language
Aho, Alfred V., Kernighan, Brian W., and Weinberger, Peter J., The AWK Programming
Language, Reading, MA, Addison-Wesley 1988.

UNIX Programmer ’s Manual
American Telephone and Telegraph Company, UNIX Time-Sharing System: UNIX
Programmer ’s Manual, 7th Edition, Murray Hill, NJ, Bell Telephone Laboratories, January
1979.

xliv Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Referenced Documents

XNS, Issue 4
CAE Specification, August 1994, Networking Services, Issue 4 (ISBN: 1-85912-049-0, C438),
published by The Open Group.

XNS, Issue 5
CAE Specification, February 1997, Networking Services, Issue 5 (ISBN: 1-85912-165-9, C523),
published by The Open Group.

XNS, Issue 5.2
Technical Standard, January 2000, Networking Services (XNS), Issue 5.2
(ISBN: 1-85912-241-8, C808), published by The Open Group.

X/Open Curses, Issue 4, Version 2
CAE Specification, May 1996, X/Open Curses, Issue 4, Version 2 (ISBN: 1-85912-171-3,
C610), published by The Open Group.

Yacc
Yacc: Yet Another Compiler Compiler, Stephen C. Johnson, 1978.

Source Documents

Parts of the following documents were used to create the base documents for POSIX.1-2008:

AIX 3.2 Manual
AIX Version 3.2 For RISC System/6000, Technical Reference: Base Operating System and
Extensions, 1990, 1992 (Part No. SC23-2382-00).

OSF/1
OSF/1 Programmer ’s Reference, Release 1.2 (ISBN: 0-13-020579-6).

OSF AES
Application Environment Specification (AES) Operating System Programming Interfaces
Volume, Revision A (ISBN: 0-13-043522-8).

System V Release 2.0

— UNIX System V Release 2.0 Programmer ’s Reference Manual (April 1984 - Issue 2).

— UNIX System V Release 2.0 Programming Guide (April 1984 - Issue 2).

System V Release 4.2
Operating System API Reference, UNIX® SVR4.2 (1992) (ISBN: 0-13-017658-3).

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. xlv

Standard for Information Technology—
Portable Operating System Interface (POSIX®)

Technical Standard: Base Specifications, Issue 7

Prepared by the Austin Group (www.opengroup.org/austin).

IMPORTANT NOTICE: This standard is not intended to assure safety, security, health, or
environmental protection in all circumstances. Implementors of the standard are responsible for
determining appropriate safety, security, environmental, and health practices or regulatory
requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers.
These notices and disclaimers appear in all publications containing this document and may be
found under the heading ‘‘Important Notice’’ or ‘‘Important Notices and Disclaimers
Concerning IEEE Documents’’. They can also be obtained on request from IEEE or viewed at
http://standards.ieee.org/IPR/disclaimers.html.

xlvi Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

http://www.opengroup.org/austin
http://standards.ieee.org/IPR/disclaimers.html

Technical Standard

Vol. 1:

Base Definitions, Issue 7

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1

1

2

3

4

2 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

Chapter 1

Introduction

1.1 Scope

POSIX.1-2008 defines a standard operating system interface and environment, including a
command interpreter (or ‘‘shell’’), and common utility programs to support applications
portability at the source code level. It is intended to be used by both application developers and
system implementors.

POSIX.1-2008 comprises four major components (each in an associated volume):

1. General terms, concepts, and interfaces common to all volumes of POSIX.1-2008,
including utility conventions and C-language header definitions, are included in the Base
Definitions volume of POSIX.1-2008.

2. Definitions for system service functions and subroutines, language-specific system
services for the C programming language, function issues, including portability, error
handling, and error recovery, are included in the System Interfaces volume of
POSIX.1-2008.

3. Definitions for a standard source code-level interface to command interpretation services
(a ‘‘shell’’) and common utility programs for application programs are included in the
Shell and Utilities volume of POSIX.1-2008.

4. Extended rationale that did not fit well into the rest of the document structure, containing
historical information concerning the contents of POSIX.1-2008 and why features were
included or discarded by the standard developers, is included in the Rationale
(Informative) volume of POSIX.1-2008.

The following areas are outside of the scope of POSIX.1-2008:

• Graphics interfaces

• Database management system interfaces

• Record I/O considerations

• Object or binary code portability

• System configuration and resource availability

POSIX.1-2008 describes the external characteristics and facilities that are of importance to
application developers, rather than the internal construction techniques employed to achieve
these capabilities. Special emphasis is placed on those functions and facilities that are needed in
a wide variety of commercial applications.

The facilities provided in POSIX.1-2008 are drawn from the following base documents:

• IEEE Std 1003.1, 2004 Edition (POSIX-1) (incorporating IEEE Std 1003.1-2001,
IEEE Std 1003.1-2001/Cor 1-2002, and IEEE Std 1003.1-2001/Cor 2-2004)

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Scope Introduction

• The Open Group Technical Standard, 2006, Extended API Set Part 1

• The Open Group Technical Standard, 2006, Extended API Set Part 2

• The Open Group Technical Standard, 2006, Extended API Set Part 3

• The Open Group Technical Standard, 2006, Extended API Set Part 4

• ISO/IEC 9899: 1999, Programming Languages — C, including ISO/IEC
9899: 1999/Cor.1: 2001(E), ISO/IEC 9899: 1999/Cor.2: 2004(E), and ISO/IEC
9899: 1999/Cor.3

Emphasis has been placed on standardizing existing practice for existing users, with changes
and additions limited to correcting deficiencies in the following areas:

• Issues raised by Austin Group defect reports, IEEE Interpretations against IEEE Std 1003.1,
and ISO/IEC defect reports against ISO/IEC 9945

• Issues raised in corrigenda for The Open Group Technical Standards and working group
resolutions from The Open Group

• Issues arising from ISO TR 24715: 2006, Conflicts between POSIX and the LSB

• Changes to make the text self-consistent with the additional material merged

• Features, marked Legacy or obsolescent in the base documents, have been considered for
removal in this version

• A review and reorganization of the options within the standard

• Alignment with the ISO/IEC 9899: 1999 standard, including ISO/IEC
9899: 1999/Cor.2: 2004(E)

1.2 Conformance

Conformance requirements for POSIX.1-2008 are defined in Chapter 2 (on page 15).

1.3 Normative References

The following standards contain provisions which, through references in POSIX.1-2008,
constitute provisions of POSIX.1-2008. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to agreements based on POSIX.1-2008 are
encouraged to investigate the possibility of applying the most recent editions of the standards
listed below. Members of IEC and ISO maintain registers of currently valid International
Standards.

ANS X3.9-1978
(Reaffirmed 1989) American National Standard for Information Systems: Standard
X3.9-1978, Programming Language FORTRAN.1

ISO/IEC 646: 1991
ISO/IEC 646: 1991, Information Processing — ISO 7-Bit Coded Character Set for
Information Interchange.2

1. ANSI documents can be obtained from the Sales Department, American National Standards Institute, 1430 Broadway, New York, NY

10018, USA.

4 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

Introduction Normative References

ISO 4217: 2001
ISO 4217: 2001, Codes for the Representation of Currencies and Funds.

ISO 8601: 2004
ISO 8601: 2004, Data Elements and Interchange Formats — Information Interchange —
Representation of Dates and Times.

ISO C (1999)
ISO/IEC 9899: 1999, Programming Languages — C, including ISO/IEC
9899: 1999/Cor.1: 2001(E), ISO/IEC 9899: 1999/Cor.2: 2004(E), and ISO/IEC
9899: 1999/Cor.3.

ISO/IEC 10646-1: 2000
ISO/IEC 10646-1: 2000, Information Technology — Universal Multiple-Octet Coded
Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

1.4 Change History

Change history is described in the Rationale (Informative) volume of POSIX.1-2008, and in the
CHANGE HISTORY section of reference pages.

1.5 Terminology

For the purposes of POSIX.1-2008, the following terminology definitions apply:

can
Describes a permissible optional feature or behavior available to the user or application. The
feature or behavior is mandatory for an implementation that conforms to POSIX.1-2008. An
application can rely on the existence of the feature or behavior.

implementation-defined
Describes a value or behavior that is not defined by POSIX.1-2008 but is selected by an
implementor. The value or behavior may vary among implementations that conform to
POSIX.1-2008. An application should not rely on the existence of the value or behavior. An
application that relies on such a value or behavior cannot be assured to be portable across
conforming implementations.

The implementor shall document such a value or behavior so that it can be used correctly
by an application.

legacy
Describes a feature or behavior that is being retained for compatibility with older
applications, but which has limitations which make it inappropriate for developing portable
applications. New applications should use alternative means of obtaining equivalent
functionality.

may
Describes a feature or behavior that is optional for an implementation that conforms to
POSIX.1-2008. An application should not rely on the existence of the feature or behavior. An
application that relies on such a feature or behavior cannot be assured to be portable across
conforming implementations.

2. ISO/IEC documents can be obtained from the ISO office: 1 Rue de Varembé, Case Postale 56, CH-1211, Genève 20, Switzerland/Suisse

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 5

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Terminology Introduction

To avoid ambiguity, the opposite of may is expressed as need not, instead of may not.

shall
For an implementation that conforms to POSIX.1-2008, describes a feature or behavior that
is mandatory. An application can rely on the existence of the feature or behavior.

For an application or user, describes a behavior that is mandatory.

should
For an implementation that conforms to POSIX.1-2008, describes a feature or behavior that
is recommended but not mandatory. An application should not rely on the existence of the
feature or behavior. An application that relies on such a feature or behavior cannot be
assured to be portable across conforming implementations.

For an application, describes a feature or behavior that is recommended programming
practice for optimum portability.

undefined
Describes the nature of a value or behavior not defined by POSIX.1-2008 which results from
use of an invalid program construct or invalid data input.

The value or behavior may vary among implementations that conform to POSIX.1-2008. An
application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be portable
across conforming implementations.

unspecified
Describes the nature of a value or behavior not specified by POSIX.1-2008 which results
from use of a valid program construct or valid data input.

The value or behavior may vary among implementations that conform to POSIX.1-2008. An
application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be portable
across conforming implementations.

1.6 Definitions and Concepts

Definitions and concepts are defined in Chapter 3 (on page 33) and Chapter 4 (on page 107).

1.7 Portability

Some of the utilities in the Shell and Utilities volume of POSIX.1-2008 and functions in the
System Interfaces volume of POSIX.1-2008 describe functionality that might not be fully portable
to systems meeting the requirements for POSIX conformance (see Chapter 2, on page 15).

Where optional, enhanced, or reduced functionality is specified, the text is shaded and a code in
the margin identifies the nature of the option, extension, or warning (see Section 1.7.1, on page
7). For maximum portability, an application should avoid such functionality.

Unless the primary task of a utility is to produce textual material on its standard output,
application developers should not rely on the format or content of any such material that may be
produced. Where the primary task is to provide such material, but the output format is
incompletely specified, the description is marked with the OF margin code and shading.
Application developers are warned not to expect that the output of such an interface on one

6 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Introduction Portability

system is any guide to its behavior on another system.

1.7.1 Codes

The codes and their meanings are as follows. See also Section 1.7.2 (on page 13).

ADV Advisory Information
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the ADV margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the ADV
margin legend.

BE Batch Environment Services and Utilities
The functionality described is optional.

Where applicable, utilities are marked with the BE margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the BE margin
legend.

CD C-Language Development Utilities
The functionality described is optional.

Where applicable, utilities are marked with the CD margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the CD margin
legend.

CPT Process CPU-Time Clocks
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the CPT margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the CPT
margin legend.

CX Extension to the ISO C standard
The functionality described is an extension to the ISO C standard. Application developers may
make use of an extension as it is supported on all POSIX.1-2008-conforming systems.

With each function or header from the ISO C standard, a statement to the effect that ‘‘any
conflict is unintentional’’ is included. That is intended to refer to a direct conflict. POSIX.1-2008
acts in part as a profile of the ISO C standard, and it may choose to further constrain behaviors
allowed to vary by the ISO C standard. Such limitations and other compatible differences are not
considered conflicts, even if a CX mark is missing. The markings are for information only.

Where additional semantics apply to a function or header, the material is identified by use of the
CX margin legend.

FD FORTRAN Development Utilities
The functionality described is optional.

Where applicable, utilities are marked with the FD margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the FD margin
legend.

FR FORTRAN Runtime Utilities
The functionality described is optional.

Where applicable, utilities are marked with the FR margin legend in the SYNOPSIS section.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 7

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

Portability Introduction

Where additional semantics apply to a utility, the material is identified by use of the FR margin
legend.

FSC File Synchronization
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the FSC margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the FSC
margin legend.

IP6 IPV6
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the IP6 margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the IP6
margin legend.

MC1 Non-Robust Mutex Priority Protection or Non-Robust Mutex Priority Inheritance or Robust
Mutex Priority Protection or Robust Mutex Priority Inheritance
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

This is a shorthand notation for combinations of multiple option codes.

Where applicable, functions are marked with the MC1 margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MC1
margin legend.

Refer to Section 1.7.2 (on page 13).

ML Process Memory Locking
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the ML margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the ML
margin legend.

MLR Range Memory Locking
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MLR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MLR
margin legend.

MON Monotonic Clock
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MON margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MON
margin legend.

MSG Message Passing
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MSG margin legend in the SYNOPSIS section.

8 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

Introduction Portability

Where additional semantics apply to a function, the material is identified by use of the MSG
margin legend.

MX IEC 60559 Floating-Point
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MX margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MX
margin legend.

OB Obsolescent
The functionality described may be removed in a future version of this volume of POSIX.1-2008.
Strictly Conforming POSIX Applications and Strictly Conforming XSI Applications shall not use
obsolescent features.

Where applicable, the material is identified by use of the OB margin legend.

OF Output Format Incompletely Specified
The functionality described is an XSI extension. The format of the output produced by the
utility is not fully specified. It is therefore not possible to post-process this output in a consistent
fashion. Typical problems include unknown length of strings and unspecified field delimiters.

Where applicable, the material is identified by use of the OF margin legend.

OH Optional Header
In the SYNOPSIS section of some interfaces in the System Interfaces volume of POSIX.1-2008 an
included header is marked as in the following example:

OH #include <sys/types.h>
#include <grp.h>
struct group *getgrnam(const char *name);

The OH margin legend indicates that the marked header is not required on XSI-conformant
systems.

PIO Prioritized Input and Output
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the PIO margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the PIO
margin legend.

PS Process Scheduling
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the PS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the PS
margin legend.

RPI Robust Mutex Priority Inheritance
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the RPI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the RPI
margin legend.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 9

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

Portability Introduction

RPP Robust Mutex Priority Protection
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the RPP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the RPP
margin legend.

RS Raw Sockets
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the RS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the RS
margin legend.

SD Software Development Utilities
The functionality described is optional.

Where applicable, utilities are marked with the SD margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the SD margin
legend.

SHM Shared Memory Objects
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SHM margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SHM
margin legend.

SIO Synchronized Input and Output
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SIO margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SIO
margin legend.

SPN Spawn
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SPN margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SPN
margin legend.

SS Process Sporadic Server
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SS
margin legend.

TCT Thread CPU-Time Clocks
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TCT margin legend in the SYNOPSIS section.

10 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

Introduction Portability

Where additional semantics apply to a function, the material is identified by use of the TCT
margin legend.

TEF Trace Event Filter
The functionality described is optional. This functionality is dependent on support for the Trace
option. The functionality described is also an extension to the ISO C standard.

Where applicable, functions are marked with the TEF margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TEF
margin legend.

TPI Non-Robust Mutex Priority Inheritance
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPI
margin legend.

TPP Non-Robust Mutex Priority Protection
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPP
margin legend.

TPS Thread Execution Scheduling
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPS margin legend for the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPS
margin legend.

TRC Trace
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TRC margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRC
margin legend.

TRI Trace Inherit
The functionality described is optional. This functionality is dependent on support for the Trace
option. The functionality described is also an extension to the ISO C standard.

Where applicable, functions are marked with the TRI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRI
margin legend.

TRL Trace Log
The functionality described is optional. This functionality is dependent on support for the Trace
option. The functionality described is also an extension to the ISO C standard.

Where applicable, functions are marked with the TRL margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRL
margin legend.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 11

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

Portability Introduction

TSA Thread Stack Address Attribute
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSA margin legend for the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSA
margin legend.

TSH Thread Process-Shared Synchronization
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSH margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSH
margin legend.

TSP Thread Sporadic Server
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSP
margin legend.

TSS Thread Stack Size Attribute
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSS
margin legend.

TYM Typed Memory Objects
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TYM margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TYM
margin legend.

UP User Portability Utilities
The functionality described is optional.

Where applicable, utilities are marked with the UP margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the UP margin
legend.

UU UUCP Utilities
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the UU margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the UU
margin legend.

XSI X/Open System Interfaces
The functionality described is part of the X/Open Systems Interfaces option. Functionality
marked XSI is an extension to the ISO C standard. Application developers may confidently
make use of such extensions on all systems supporting the X/Open System Interfaces option.

12 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

Introduction Portability

If an entire SYNOPSIS section is shaded and marked XSI, all the functionality described in that
reference page is an extension. See Section 2.1.4 (on page 19).

XSR XSI STREAMS
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the XSR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the XSR
margin legend.

1.7.2 Margin Code Notation

Some of the functionality described in POSIX.1-2008 depends on support of more than one
option, or independently may depend on several options. The following notation for margin
codes is used to denote the following cases.

A Feature Dependent on One or Two Options

In this case, margin codes have a <space> separator; for example:

SHM This feature requires support for only the Shared Memory Objects option.

SHM TYM This feature requires support for both the Shared Memory Objects option and the Typed
Memory Objects option; that is, an application which uses this feature is portable only between
implementations that provide both options.

A Feature Dependent on Either of the Options Denoted

In this case, margin codes have a ’|’ separator to denote the logical OR; for example:

SHM|TYM This feature is dependent on support for either the Shared Memory Objects option or the Typed
Memory Objects option; that is, an application which uses this feature is portable between
implementations that provide any (or all) of the options.

A Feature Dependent on More than Two Options

The following shorthand notations are used:

MC1 The MC1 margin code is shorthand for TPP|TPI|RPP|RPI. Features which are shaded with this
margin code require support of either the Non-Robust Mutex Priority Protection option or the
Non-Robust Mutex Priority Inheritance option or the Robust Mutex Priority Protection option or
the Robust Mutex Priority Inheritance option.

Large Sections Dependent on an Option

Where large sections of text are dependent on support for an option, a lead-in text block is
provided and shaded accordingly; for example:

XSI This section describes extensions to support interprocess communication. The functionality
described in this section shall be provided on implementations that support the XSI option (and
the rest of this section is not further shaded).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 13

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

Introduction

14 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

Chapter 2

Conformance

2.1 Implementation Conformance

For the purposes of POSIX.1-2008, the implementation conformance requirements given in this
section apply.

2.1.1 Requirements

A conforming implementation shall meet all of the following criteria:

1. The system shall support all utilities, functions, and facilities defined within
POSIX.1-2008 that are required for POSIX conformance (see Section 2.1.3, on page 16).
These interfaces shall support the functional behavior described herein.

2. The system may support the X/Open System Interfaces (XSI) option as described in
Section 2.1.4 (on page 19).

3. The system may support one or more options as described under Section 2.1.5 (on page
20). When an implementation claims that an option is supported, all of its constituent
parts shall be provided.

4. The system may provide non-standard extensions. These are features not required by
POSIX.1-2008 and may include, but are not limited to:

— Additional functions

— Additional headers

— Additional symbols in standard headers

— Additional utilities

— Additional options for standard utilities

— Additional environment variables

— Additional file types

— Non-conforming file systems (for example, legacy file systems for which
_POSIX_NO_TRUNC is false, case-insensitive file systems, or network file systems)

— Dynamically populated file systems (for example, /proc)

— Additional character special files with special properties (for example, /dev/stdin,
/dev/stdout, and /dev/stderr)

Non-standard extensions of the utilities, functions, or facilities specified in POSIX.1-2008
should be identified as such in the system documentation. Non-standard extensions,
when used, may change the behavior of utilities, functions, or facilities defined by
POSIX.1-2008. The conformance document shall define an environment in which an
application can be run with the behavior specified by POSIX.1-2008. In no case shall such

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 15

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

Implementation Conformance Conformance

an environment require modification of a Strictly Conforming POSIX Application (see
Section 2.2.1, on page 29).

2.1.2 Documentation

A conformance document with the following information shall be available for an
implementation claiming conformance to POSIX.1-2008. The conformance document shall have
the same structure as POSIX.1-2008, with the information presented in the appropriate sections
and subsections. Sections and subsections that consist solely of subordinate section titles, with
no other information, are not required. The conformance document shall not contain
information about extended facilities or capabilities outside the scope of POSIX.1-2008.

The conformance document shall contain a statement that indicates the full name, number, and
date of the standard that applies. The conformance document may also list international
software standards that are available for use by a Conforming POSIX Application. Applicable
characteristics where documentation is required by one of these standards, or by standards of
government bodies, may also be included.

The conformance document shall describe the limit values found in the headers <limits.h> (on
page 268) and <unistd.h> (on page 430), stating values, the conditions under which those values
may change, and the limits of such variations, if any.

The conformance document shall describe the behavior of the implementation for all
implementation-defined features defined in POSIX.1-2008. This requirement shall be met by
listing these features and providing either a specific reference to the system documentation or
providing full syntax and semantics of these features. When the value or behavior in the
implementation is designed to be variable or customized on each instantiation of the system, the
implementation provider shall document the nature and permissible ranges of this variation.

The conformance document may specify the behavior of the implementation for those features
where POSIX.1-2008 states that implementations may vary or where features are identified as
undefined or unspecified.

The conformance document shall not contain documentation other than that specified in the
preceding paragraphs except where such documentation is specifically allowed or required by
other provisions of POSIX.1-2008.

The phrases ‘‘shall document’’ or ‘‘shall be documented’’ in POSIX.1-2008 mean that
documentation of the feature shall appear in the conformance document, as described
previously, unless there is an explicit reference in the conformance document to show where the
information can be found in the system documentation.

The system documentation should also contain the information found in the conformance
document.

2.1.3 POSIX Conformance

A conforming implementation shall meet the following criteria for POSIX conformance.

16 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

Conformance Implementation Conformance

2.1.3.1 POSIX System Interfaces

The following requirements apply to the system interfaces (functions and headers):

• The system shall support all the mandatory functions and headers defined in
POSIX.1-2008, and shall set the symbolic constant _POSIX_VERSION to the value 200809L.

• Although all implementations conforming to POSIX.1-2008 support all the features
described below, there may be system-dependent or file system-dependent configuration
procedures that can remove or modify any or all of these features. Such configurations
should not be made if strict compliance is required.

The following symbolic constants shall be defined with a value other than −1. If a constant
is defined with the value zero, applications should use the sysconf(), pathconf(), or
fpathconf() functions, or the getconf utility, to determine which features are present on the
system at that time or for the particular pathname in question.

— _POSIX_CHOWN_RESTRICTED

The use of chown() is restricted to a process with appropriate privileges, and to
changing the group ID of a file only to the effective group ID of the process or to one
of its supplementary group IDs.

— _POSIX_NO_TRUNC

Pathname components longer than {NAME_MAX} generate an error.

• The following symbolic constants shall be defined by the implementation as follows:

— Symbolic constants defined with the value 200809L:

_POSIX_ASYNCHRONOUS_IO
_POSIX_BARRIERS
_POSIX_CLOCK_SELECTION
_POSIX_MAPPED_FILES
_POSIX_MEMORY_PROTECTION
_POSIX_READER_WRITER_LOCKS
_POSIX_REALTIME_SIGNALS
_POSIX_SEMAPHORES
_POSIX_SPIN_LOCKS
_POSIX_THREAD_SAFE_FUNCTIONS
_POSIX_THREADS
_POSIX_TIMEOUTS
_POSIX_TIMERS

— Symbolic constants defined with a value greater than zero:

_POSIX_JOB_CONTROL
_POSIX_SAVED_IDS

— Symbolic constants defined with a value other than −1.

_POSIX_VDISABLE

Note: The symbols above represent historical options that are no longer allowed as options, but
are retained here for backwards-compatibility of applications.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 17

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

Implementation Conformance Conformance

• The system may support one or more options (see Section 2.1.6, on page 26) denoted by the
following symbolic constants:

_POSIX_ADVISORY_INFO
_POSIX_CPUTIME
_POSIX_FSYNC
_POSIX_IPV6
_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE
_POSIX_MESSAGE_PASSING
_POSIX_MONOTONIC_CLOCK
_POSIX_PRIORITIZED_IO
_POSIX_PRIORITY_SCHEDULING
_POSIX_RAW_SOCKETS
_POSIX_SHARED_MEMORY_OBJECTS
_POSIX_SPAWN
_POSIX_SPORADIC_SERVER
_POSIX_SYNCHRONIZED_IO
_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_CPUTIME
_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_PROCESS_SHARED
_POSIX_THREAD_SPORADIC_SERVER
_POSIX_TRACE
_POSIX_TRACE_EVENT_FILTER
_POSIX_TRACE_INHERIT
_POSIX_TRACE_LOG
_POSIX_TYPED_MEMORY_OBJECTS
_XOPEN_CRYPT
_XOPEN_REALTIME
_XOPEN_REALTIME_THREADS
_XOPEN_STREAMS
_XOPEN_UNIX

If any of the symbolic constants _POSIX_TRACE_EVENT_FILTER, _POSIX_TRACE_LOG,
or _POSIX_TRACE_INHERIT is defined to have a value other than −1, then the symbolic
constant _POSIX_TRACE shall also be defined to have a value other than −1.

If the Advisory Information option is supported, there shall be at least one file system that
supports the functionality.

2.1.3.2 POSIX Shell and Utilities

The following requirements apply to the shell and utilities:

• The system shall provide all the mandatory utilities in the Shell and Utilities volume of
POSIX.1-2008 with all the functional behavior described therein.

• The system shall support the Large File capabilities described in the Shell and Utilities
volume of POSIX.1-2008.

18 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

Conformance Implementation Conformance

• The system may support one or more options (see Section 2.1.6, on page 26) denoted by the
following symbolic constants. (The literal names below apply to the getconf utility.)

POSIX2_C_DEV
POSIX2_CHAR_TERM
POSIX2_FORT_DEV
POSIX2_FORT_RUN
POSIX2_LOCALEDEF
POSIX2_PBS
POSIX2_PBS_ACCOUNTING
POSIX2_PBS_LOCATE
POSIX2_PBS_MESSAGE
POSIX2_PBS_TRACK
POSIX2_SW_DEV
POSIX2_UPE
XOPEN_UNIX
XOPEN_UUCP

Additional language bindings and development utility options may be provided in other related
standards or in a future version of this standard. In the former case, additional symbolic
constants of the same general form as shown in this subsection should be defined by the related
standard document and made available to the application without requiring POSIX.1-2008 to be
updated.

2.1.4 XSI Conformance

XSI This section describes the criteria for implementations providing conformance to the X/Open
System Interfaces (XSI) option (see Section 3.442, on page 104). The functionality described in
this section shall be provided on implementations that support the XSI option (and the rest of
this section is not further shaded).

POSIX.1-2008 describes utilities, functions, and facilities offered to application programs by the
X/Open System Interfaces (XSI) option. An XSI-conforming implementation shall meet the
criteria for POSIX conformance and the following requirements listed in this section.

XSI-conforming implementations shall set the symbolic constant _XOPEN_UNIX to a value
other than −1 and shall set the symbolic constant _XOPEN_VERSION to the value 700.

2.1.4.1 XSI System Interfaces

The following requirements apply to the system interfaces when the XSI option is supported:

• The system shall support all the functions and headers defined in POSIX.1-2008 as part of
the XSI option denoted by the XSI marking in the SYNOPSIS section, and any extensions
marked with the XSI option marking (see Section 1.7.1, on page 7) within the text.

• The system shall support the following options defined within POSIX.1-2008 (see Section
2.1.6, on page 26):

_POSIX_FSYNC
_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_PROCESS_SHARED

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 19

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

Implementation Conformance Conformance

• The system may support the following XSI Option Groups (see Section 2.1.5.2, on page 22)
defined within POSIX.1-2008:

— Encryption

— Realtime

— Advanced Realtime

— Realtime Threads

— Advanced Realtime Threads

— Tracing

— XSI STREAMS

2.1.4.2 XSI Shell and Utilities Conformance

The following requirements apply to the shell and utilities when the XSI option is supported:

• The system shall support all the utilities defined in the Shell and Utilities volume of
POSIX.1-2008 as part of the XSI option denoted by the XSI marking in the SYNOPSIS
section, and any extensions marked with the XSI option marking (see Section 1.7.1, on
page 7) within the text.

• The system shall support the User Portability Utilities option and the Terminal
Characteristics option.

• The system shall support creation of locales (see Chapter 7, on page 135).

• The C-language Development utility c99 shall be supported.

• The XSI Development Utilities option may be supported. It consists of the following
software development utilities:

admin
cflow
ctags
cxref

delta
get
nm
prs

rmdel
sact
sccs
unget

val
what

2.1.5 Option Groups

An Option Group is a group of related functions or options defined within the System Interfaces
volume of POSIX.1-2008.

If an implementation supports an Option Group, then the system shall support the functional
behavior described herein.

If an implementation does not support an Option Group, then the system need not support the
functional behavior described herein.

2.1.5.1 Subprofiling Considerations

Profiling standards supporting functional requirements less than that required in POSIX.1-2008
may subset both mandatory and optional functionality required for POSIX Conformance (see
Section 2.1.3, on page 16) or XSI Conformance (see Section 2.1.4, on page 19). Such profiles shall
organize the subsets into Subprofiling Option Groups.

20 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

Conformance Implementation Conformance

XRAT Appendix E (on page 3711) describes a representative set of such Subprofiling Option
Groups for use by profiles applicable to specialized realtime systems. POSIX.1-2008 does not
require that the presence of Subprofiling Option Groups be testable at compile-time (as symbols
defined in any header) or at runtime (via sysconf() or getconf).

A Subprofiling Option Group may provide basic system functionality that other Subprofiling
Option Groups and other options depend upon.3 If a profile of POSIX.1-2008 does not require an
implementation to provide a Subprofiling Option Group that provides features utilized by a
required Subprofiling Option Group (or option),4 the profile shall specify5 all of the following:

• Restricted or altered behavior of interfaces defined in POSIX.1-2008 that may differ on an
implementation of the profile

• Additional behaviors that may produce undefined or unspecified results

• Additional implementation-defined behavior that implementations shall be required to
document in the profile’s conformance document

if any of the above is a result of the profile not requiring an interface required by POSIX.1-2008.

The following additional rules shall apply to all profiles of POSIX.1-2008:

• Any application that conforms to that profile shall also conform to POSIX.1-2008, unless
the application depends on the definition of a profile support indicator macro in
<unistd.h> (that is, a profile shall not require restricted, altered, or extended behaviors of
an implementation of POSIX.1-2008).

• Profiles are permitted to require the definition of a profile support indicator macro with a
name beginning _POSIX_AEP_ in <unistd.h>.

• Profiles shall require the definition of the macro _POSIX_SUBPROFILE in <unistd.h> on
implementations that do not meet all of the requirements of a POSIX.1-conforming
implementation.

• Profiles are permitted to add additional requirements to the limits defined in <limits.h>
and <stdint.h>, subject to the following:

For the limits in <limits.h> and <stdint.h>:

— If the limit is specified as having a fixed value, it shall not be changed by a profile.

— If a limit is specified as having a minimum or maximum acceptable value, it may be
changed by a profile as follows:

— A profile may increase a minimum acceptable value, but shall not make a
minimum acceptable value smaller.

3. As an example, the File System profiling option group provides underlying support for pathname resolution and file creation which are

needed by any interface in POSIX.1-2008 that parses a path argument. If a profile requires support for the Device Input and Output

profiling option group but does not require support for the File System profiling option group, the profile must specify how pathname

resolution is to behave in that profile, how the O_CREAT flag to open() is to be handled (and the use of the character ’a’ in the mode

argument of fopen() when a filename argument names a file that does not exist), and specify lots of other details.

4. As an example, POSIX.1-2008 requires that implementations claiming to support the Range Memory Locking option also support the

Process Memory Locking option. A profile could require that the Range Memory Locking option had to be supplied without requiring that

the Process Memory Locking option be supplied as long as the profile specifies everything an application developer or system implementor

would have to know to build an application or implementation conforming to the profile.

5. Note that the profile could just specify that any use of the features not specified by the profile would produce undefined or unspecified

results.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 21

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

Implementation Conformance Conformance

— A profile may reduce a maximum acceptable value, but shall not make a
maximum acceptable value larger.

• A profile shall not change a limit specified as having a minimum or maximum value into a
limit specified as having a fixed value.

• A profile shall not create new limits.

• Any implementation that conforms to POSIX.1-2008 (including all options and extended
limits required by the profile) shall also conform to that profile, except for the possible
omission from <unistd.h> of a profile support indicator macro required by the profile.

2.1.5.2 XSI Option Groups

XSI This section describes Option Groups to support the definition of XSI conformance within the
System Interfaces volume of POSIX.1-2008. The functionality described in this section shall be
provided on implementations that support the XSI option and the appropriate Option Group
(and the rest of this section is not further shaded).

The following Option Groups are defined.

Encryption

The Encryption Option Group is denoted by the symbolic constant _XOPEN_CRYPT. It includes
the following functions:

crypt(), encrypt(), setkey()

These functions are marked CRYPT.

Due to export restrictions on the decoding algorithm in some countries, implementations may
be restricted in making these functions available. All the functions in the Encryption Option
Group may therefore return [ENOSYS] or, alternatively, encrypt() shall return [ENOSYS] for the
decryption operation.

An implementation that claims conformance to this Option Group shall set _XOPEN_CRYPT to
a value other than −1.

Realtime

The Realtime Option Group is denoted by the symbolic constant _XOPEN_REALTIME.

This Option Group includes a set of realtime functions drawn from options within POSIX.1-2008
(see Section 2.1.6, on page 26).

Where entire functions are included in the Option Group, the NAME section is marked with
REALTIME. Where additional semantics have been added to existing pages, the new material is
identified by use of the appropriate margin legend for the underlying option defined within
POSIX.1-2008.

An implementation that claims conformance to this Option Group shall set
_XOPEN_REALTIME to a value other than −1.

This Option Group consists of the set of the following options from within POSIX.1-2008 (see
Section 2.1.6, on page 26):

22 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

Conformance Implementation Conformance

_POSIX_FSYNC
_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE
_POSIX_MESSAGE_PASSING
_POSIX_PRIORITIZED_IO
_POSIX_PRIORITY_SCHEDULING
_POSIX_SHARED_MEMORY_OBJECTS
_POSIX_SYNCHRONIZED_IO

If the symbolic constant _XOPEN_REALTIME is defined to have a value other than −1, then the
following symbolic constants shall be defined by the implementation to have the value 200809L:

_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE
_POSIX_MESSAGE_PASSING
_POSIX_PRIORITY_SCHEDULING
_POSIX_SHARED_MEMORY_OBJECTS
_POSIX_SYNCHRONIZED_IO

The functionality associated with _POSIX_FSYNC shall always be supported on XSI-conformant
systems.

Support of _POSIX_PRIORITIZED_IO on XSI-conformant systems is optional. If
_POSIX_PRIORITIZED_IO is supported, then asynchronous I/O operations performed by
aio_read(), aio_write(), and lio_listio() shall be submitted at a priority equal to the scheduling
priority equal to a base scheduling priority minus aiocbp−>aio_reqprio. If Thread Execution
Scheduling is not supported, then the base scheduling priority is that of the calling process;
otherwise, the base scheduling priority is that of the calling thread. The implementation shall
also document for which files I/O prioritization is supported.

Advanced Realtime

An implementation that claims conformance to this Option Group shall also support the
Realtime Option Group.

Where entire functions are included in the Option Group, the NAME section is marked with
ADVANCED REALTIME. Where additional semantics have been added to existing pages, the
new material is identified by use of the appropriate margin legend for the underlying option
defined within POSIX.1-2008.

This Option Group consists of the set of the following options from within POSIX.1-2008 (see
Section 2.1.6, on page 26):

_POSIX_ADVISORY_INFO
_POSIX_CPUTIME
_POSIX_MONOTONIC_CLOCK
_POSIX_SPAWN
_POSIX_SPORADIC_SERVER
_POSIX_TYPED_MEMORY_OBJECTS

If the implementation supports the Advanced Realtime Option Group, then the following
symbolic constants shall be defined by the implementation to have the value 200809L:

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 23

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

Implementation Conformance Conformance

_POSIX_ADVISORY_INFO
_POSIX_CPUTIME
_POSIX_MONOTONIC_CLOCK
_POSIX_SPAWN
_POSIX_SPORADIC_SERVER
_POSIX_TYPED_MEMORY_OBJECTS

If the symbolic constant _POSIX_SPORADIC_SERVER is defined, then the symbolic constant
_POSIX_PRIORITY_SCHEDULING shall also be defined by the implementation to have the
value 200809L.

Realtime Threads

The Realtime Threads Option Group is denoted by the symbolic constant
_XOPEN_REALTIME_THREADS.

This Option Group consists of the set of the following options from within POSIX.1-2008 (see
Section 2.1.6, on page 26):

_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING

Where applicable, whole pages are marked REALTIME THREADS, together with the
appropriate option margin legend for the SYNOPSIS section (see Section 1.7.1, on page 7).

An implementation that claims conformance to this Option Group shall set
_XOPEN_REALTIME_THREADS to a value other than −1.

If the symbol _XOPEN_REALTIME_THREADS is defined to have a value other than −1, then the
following options shall also be defined by the implementation to have the value 200809L:

_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING

Advanced Realtime Threads

An implementation that claims conformance to this Option Group shall also support the
Realtime Threads Option Group.

Where entire functions are included in the Option Group, the NAME section is marked with
ADVANCED REALTIME THREADS. Where additional semantics have been added to existing
pages, the new material is identified by use of the appropriate margin legend for the underlying
option defined within POSIX.1-2008.

This Option Group consists of the set of the following options from within POSIX.1-2008 (see
Section 2.1.6, on page 26):

_POSIX_THREAD_CPUTIME
_POSIX_THREAD_SPORADIC_SERVER

If the symbolic constant _POSIX_THREAD_SPORADIC_SERVER is defined to have the value
200809L, then the symbolic constant _POSIX_THREAD_PRIORITY_SCHEDULING shall also be
defined by the implementation to have the value 200809L.

If the implementation supports the Advanced Realtime Threads Option Group, then the
following symbolic constants shall be defined by the implementation to have the value 200809L:

24 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

Conformance Implementation Conformance

_POSIX_THREAD_CPUTIME
_POSIX_THREAD_SPORADIC_SERVER

Tracing

This Option Group includes a set of tracing functions drawn from options within POSIX.1-2008
(see Section 2.1.6, on page 26).

Where entire functions are included in the Option Group, the NAME section is marked with
TRACING. Where additional semantics have been added to existing pages, the new material is
identified by use of the appropriate margin legend for the underlying option defined within
POSIX.1-2008.

This Option Group consists of the set of the following options from within POSIX.1-2008 (see
Section 2.1.6, on page 26):

_POSIX_TRACE
_POSIX_TRACE_EVENT_FILTER
_POSIX_TRACE_LOG
_POSIX_TRACE_INHERIT

If the implementation supports the Tracing Option Group, then the following symbolic
constants shall be defined by the implementation to have the value 200809L:

_POSIX_TRACE
_POSIX_TRACE_EVENT_FILTER
_POSIX_TRACE_LOG
_POSIX_TRACE_INHERIT

XSI STREAMS

OB XSR This section describes the XSI STREAMS Option Group, denoted by the symbolic constant
_XOPEN_STREAMS. The functionality described in this section shall be provided on
implementations that support the XSI STREAMS option (and the rest of this section is not
further shaded).

This Option Group includes functionality related to STREAMS, a uniform mechanism for
implementing networking services and other character-based I/O as described in XSH Section
2.6 (on page 494).

It includes the following functions:

fattach()
fdetach()
getmsg()
getpmsg()

ioctl()
isastream()
putmsg()
putpmsg()

and the <stropts.h> header.

Where applicable, whole pages are marked STREAMS, together with the appropriate option
margin legend for the SYNOPSIS section (see Section 1.7.1, on page 7). Where additional
semantics have been added to existing pages, the new material is identified by use of the
appropriate margin legend for the underlying option defined within POSIX.1-2008.

An implementation that claims conformance to this Option Group shall set _XOPEN_STREAMS
to a value other than −1.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 25

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

Implementation Conformance Conformance

2.1.6 Options

The symbolic constants defined in <unistd.h>, Constants for Options and Option Groups (on
page 430) reflect implementation options for POSIX.1-2008. These symbols can be used by the
application to determine which of three categories of support for optional facilities are provided
by the implementation.

1. Option not supported for compilation.

The implementation advertises at compile time (by defining the constant in <unistd.h>
with value −1, or by leaving it undefined) that the option is not supported for compilation
and, at the time of compilation, is not supported for runtime use. In this case, the headers,
data types, function interfaces, and utilities required only for the option need not be
present. A later runtime check using the fpathconf(), pathconf(), or sysconf functions
defined in the System Interfaces volume of POSIX.1-2008 or the getconf utility defined in
the Shell and Utilities volume of POSIX.1-2008 can in some circumstances indicate that
the option is supported at runtime. (For example, an old application binary might be run
on a newer implementation to which support for the option has been added.)

2. Option always supported.

The implementation advertises at compile time (by defining the constant in <unistd.h>
with a value greater than zero) that the option is supported both for compilation and for
use at runtime. In this case, all headers, data types, function interfaces, and utilities
required only for the option shall be available and shall operate as specified. Runtime
checks with fpathconf(), pathconf(), or sysconf shall indicate that the option is supported.

3. Option might or might not be supported at runtime.

The implementation advertises at compile time (by defining the constant in <unistd.h>
with value zero) that the option is supported for compilation and might or might not be
supported at runtime. In this case, the fpathconf(), pathconf(), or sysconf() functions
defined in the System Interfaces volume of POSIX.1-2008 or the getconf utility defined in
the Shell and Utilities volume of POSIX.1-2008 can be used to retrieve the value of each
symbol on each specific implementation to determine whether the option is supported at
runtime. All headers, data types, and function interfaces required to compile and execute
applications which use the option at runtime (after checking at runtime that the option is
supported) shall be provided, but if the option is not supported at runtime they need not
operate as specified. Utilities or other facilities required only for the option, but not
needed to compile and execute such applications, need not be present.

If an option is not supported for compilation, an application that attempts to use anything
associated only with the option is considered to be requiring an extension. Unless explicitly
specified otherwise, the behavior of functions associated with an option that is not supported at
runtime is unspecified, and an application that uses such functions without first checking
fpathconf(), pathconf(), or sysconf is considered to be requiring an extension.

Margin codes are defined for each option (see Section 1.7.1, on page 7).

2.1.6.1 System Interfaces

Refer to <unistd.h>, Constants for Options and Option Groups (on page 430) for the list of
options.

26 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

Conformance Implementation Conformance

2.1.6.2 Shell and Utilities

Each of these symbols shall be considered valid names by the implementation. Refer to
<unistd.h>, Constants for Options and Option Groups (on page 430).

The literal names shown below apply only to the getconf utility.

CD POSIX2_C_DEV
The system supports the C-Language Development Utilities option.

The utilities in the C-Language Development Utilities option are used for the development
of C-language applications, including compilation or translation of C source code and
complex program generators for simple lexical tasks and processing of context-free
grammars.

The utilities listed below may be provided by a conforming system; however, any system
claiming conformance to the C-Language Development Utilities option shall provide all of
the utilities listed.

c99
lex
yacc

POSIX2_CHAR_TERM
The system supports the Terminal Characteristics option. This value need not be present on
a system not supporting the User Portability Utilities option.

Where applicable, the dependency is noted within the description of the utility.

This option applies only to systems supporting the User Portability Utilities option. If
supported, then the system supports at least one terminal type capable of all operations
described in POSIX.1-2008; see Section 10.2 (on page 198).

FD POSIX2_FORT_DEV
The system supports the FORTRAN Development Utilities option.

The fort77 FORTRAN compiler is the only utility in the FORTRAN Development Utilities
option. This is used for the development of FORTRAN language applications, including
compilation or translation of FORTRAN source code.

The fort77 utility may be provided by a conforming system; however, any system claiming
conformance to the FORTRAN Development Utilities option shall provide the fort77 utility.

FR POSIX2_FORT_RUN
The system supports the FORTRAN Runtime Utilities option.

The asa utility is the only utility in the FORTRAN Runtime Utilities option.

The asa utility may be provided by a conforming system; however, any system claiming
conformance to the FORTRAN Runtime Utilities option shall provide the asa utility.

POSIX2_LOCALEDEF
The system supports the Locale Creation Utilities option.

If supported, the system supports the creation of locales as described in the localedef utility.

The localedef utility may be provided by a conforming system; however, any system
claiming conformance to the Locale Creation Utilities option shall provide the localedef
utility.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 27

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

Implementation Conformance Conformance

OB BE POSIX2_PBS
The system supports the Batch Environment Services and Utilities option (see XCU Chapter
3, on page 2375).

Note: The Batch Environment Services and Utilities option is a combination of mandatory and
optional batch services and utilities. The POSIX_PBS symbolic constant implies the system
supports all the mandatory batch services and utilities.

POSIX2_PBS_ACCOUNTING
The system supports the Batch Accounting option.

POSIX2_PBS_CHECKPOINT
The system supports the Batch Checkpoint/Restart option.

POSIX2_PBS_LOCATE
The system supports the Locate Batch Job Request option.

POSIX2_PBS_MESSAGE
The system supports the Batch Job Message Request option.

POSIX2_PBS_TRACK
The system supports the Track Batch Job Request option.

SD POSIX2_SW_DEV
The system supports the Software Development Utilities option.

The utilities in the Software Development Utilities option are used for the development of
applications, including compilation or translation of source code, the creation and
maintenance of library archives, and the maintenance of groups of inter-dependent
programs.

The utilities listed below may be provided by the conforming system; however, any system
claiming conformance to the Software Development Utilities option shall provide all of the
utilities listed here.

ar
make
nm
strip

UP POSIX2_UPE
The system supports the User Portability Utilities option.

The utilities in the User Portability Utilities option shall be implemented on all systems that
claim conformance to this option, except for the vi utility which is noted as having features
that cannot be implemented on all terminal types; if the POSIX2_CHAR_TERM option is
supported, the system shall support all such features on at least one terminal type; see
Section 10.2 (on page 198).

The list of utilities in the User Portability Utilities option is as follows:

bg
ex

fc
fg

jobs
more

talk
vi

XSI XOPEN_UNIX
The system supports the X/Open System Interfaces (XSI) option (see Section 2.1.4, on page
19).

28 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

Conformance Implementation Conformance

UU XOPEN_UUCP
The system supports the UUCP Utilities option.

The list of utilities in the UUCP Utilities option is as follows:

uucp
uustat
uux

2.2 Application Conformance

For the purposes of POSIX.1-2008, the application conformance requirements given in this
section apply.

All applications claiming conformance to POSIX.1-2008 shall use only language-dependent
services for the C programming language described in Section 2.3 (on page 31), shall use only
the utilities and facilities defined in the Shell and Utilities volume of POSIX.1-2008, and shall fall
within one of the following categories.

2.2.1 Strictly Conforming POSIX Application

A Strictly Conforming POSIX Application is an application that requires only the facilities
described in POSIX.1-2008. Such an application:

1. Shall accept any implementation behavior that results from actions it takes in areas
described in POSIX.1-2008 as implementation-defined or unspecified, or where POSIX.1-2008
indicates that implementations may vary

2. Shall not perform any actions that are described as producing undefined results

3. For symbolic constants, shall accept any value in the range permitted by POSIX.1-2008,
but shall not rely on any value in the range being greater than the minimums listed or
being less than the maximums listed in POSIX.1-2008

4. Shall not use facilities designated as obsolescent

5. Is required to tolerate and permitted to adapt to the presence or absence of optional
facilities whose availability is indicated by Section 2.1.3 (on page 16)

6. For the C programming language, shall not produce any output dependent on any
behavior described in the ISO/IEC 9899: 1999 standard as unspecified, undefined, or
implementation-defined, unless the System Interfaces volume of POSIX.1-2008 specifies the
behavior

7. For the C programming language, shall not exceed any minimum implementation limit
defined in the ISO/IEC 9899: 1999 standard, unless the System Interfaces volume of
POSIX.1-2008 specifies a higher minimum implementation limit

8. For the C programming language, shall define _POSIX_C_SOURCE to be 200809L before
any header is included

Within POSIX.1-2008, any restrictions placed upon a Conforming POSIX Application shall
restrict a Strictly Conforming POSIX Application.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 29

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

Application Conformance Conformance

2.2.2 Conforming POSIX Application

2.2.2.1 ISO/IEC Conforming POSIX Application

An ISO/IEC Conforming POSIX Application is an application that uses only the facilities
described in POSIX.1-2008 and approved Conforming Language bindings for any ISO or IEC
standard. Such an application shall include a statement of conformance that documents all
options and limit dependencies, and all other ISO or IEC standards used.

2.2.2.2 <National Body> Conforming POSIX Application

A <National Body> Conforming POSIX Application differs from an ISO/IEC Conforming
POSIX Application in that it also may use specific standards of a single ISO/IEC member body
referred to here as <National Body>. Such an application shall include a statement of
conformance that documents all options and limit dependencies, and all other <National Body>
standards used.

2.2.3 Conforming POSIX Application Using Extensions

A Conforming POSIX Application Using Extensions is an application that differs from a
Conforming POSIX Application only in that it uses non-standard facilities that are consistent
with POSIX.1-2008. Such an application shall fully document its requirements for these extended
facilities, in addition to the documentation required of a Conforming POSIX Application. A
Conforming POSIX Application Using Extensions shall be either an ISO/IEC Conforming
POSIX Application Using Extensions or a <National Body> Conforming POSIX Application
Using Extensions (see Section 2.2.2.1 and Section 2.2.2.2).

2.2.4 Strictly Conforming XSI Application

A Strictly Conforming XSI Application is an application that requires only the facilities
described in POSIX.1-2008. Such an application:

1. Shall accept any implementation behavior that results from actions it takes in areas
described in POSIX.1-2008 as implementation-defined or unspecified, or where POSIX.1-2008
indicates that implementations may vary

2. Shall not perform any actions that are described as producing undefined results

3. For symbolic constants, shall accept any value in the range permitted by POSIX.1-2008,
but shall not rely on any value in the range being greater than the minimums listed or
being less than the maximums listed in POSIX.1-2008

4. Shall not use facilities designated as obsolescent

5. Is required to tolerate and permitted to adapt to the presence or absence of optional
facilities whose availability is indicated by Section 2.1.4 (on page 19)

6. For the C programming language, shall not produce any output dependent on any
behavior described in the ISO C standard as unspecified, undefined, or implementation-
defined, unless the System Interfaces volume of POSIX.1-2008 specifies the behavior

30 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

Conformance Application Conformance

7. For the C programming language, shall not exceed any minimum implementation limit
defined in the ISO C standard, unless the System Interfaces volume of POSIX.1-2008
specifies a higher minimum implementation limit

8. For the C programming language, shall define _XOPEN_SOURCE to be 700 before any
header is included

Within POSIX.1-2008, any restrictions placed upon a Conforming POSIX Application shall
restrict a Strictly Conforming XSI Application.

2.2.5 Conforming XSI Application Using Extensions

A Conforming XSI Application Using Extensions is an application that differs from a Strictly
Conforming XSI Application only in that it uses non-standard facilities that are consistent with
POSIX.1-2008. Such an application shall fully document its requirements for these extended
facilities, in addition to the documentation required of a Strictly Conforming XSI Application.

2.3 Language-Dependent Services for the C Programming Language

Implementors seeking to claim conformance using the ISO C standard shall claim POSIX
conformance as described in Section 2.1.3 (on page 16).

2.4 Other Language-Related Specifications

POSIX.1-2008 is currently specified in terms of the shell command language and ISO C. Bindings
to other programming languages are being developed.

If conformance to POSIX.1-2008 is claimed for implementation of any programming language,
the implementation of that language shall support the use of external symbols distinct to at least
31 bytes in length in the source program text. (That is, identifiers that differ at or before the
thirty-first byte shall be distinct.) If a national or international standard governing a language
defines a maximum length that is less than this value, the language-defined maximum shall be
supported. External symbols that differ only by case shall be distinct when the character set in
use distinguishes uppercase and lowercase characters and the language permits (or requires)
uppercase and lowercase characters to be distinct in external symbols.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 31

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

Conformance

32 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

Chapter 3

Definitions

For the purposes of POSIX.1-2008, the following terms and definitions apply. The Authoritative
Dictionary of IEEE Standards Terms, Seventh Edition should be referenced for terms not defined
in this section.

Note: No shading to denote extensions or options occurs in this chapter. Where the terms and
definitions given in this chapter are used elsewhere in text related to extensions and options,
they are shaded as appropriate.

3.1 Abortive Release

An abrupt termination of a network connection that may result in the loss of data.

3.2 Absolute Pathname

A pathname beginning with a single or more than two <slash> characters; see also Section 3.266
(on page 75).

Note: Pathname Resolution is defined in detail in Section 4.12 (on page 111).

3.3 Access Mode

A particular form of access permitted to a file.

3.4 Additional File Access Control Mechanism

An implementation-defined mechanism that is layered upon the access control mechanisms
defined here, but which do not grant permissions beyond those defined herein, although they
may further restrict them.

Note: File Access Permissions are defined in detail in Section 4.4 (on page 108).

3.5 Address Space

The memory locations that can be referenced by a process or the threads of a process.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 33

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

Advisory Information Definitions

3.6 Advisory Information

An interface that advises the implementation on (portable) application behavior so that it can
optimize the system.

3.7 Affirmative Response

An input string that matches one of the responses acceptable to the LC_MESSAGES category
keyword yesexpr, matching an extended regular expression in the current locale.

Note: The LC_MESSAGES category is defined in detail in Section 7.3.6 (on page 164).

3.8 Alert

To cause the user’s terminal to give some audible or visual indication that an error or some other
event has occurred. When the standard output is directed to a terminal device, the method for
alerting the terminal user is unspecified. When the standard output is not directed to a terminal
device, the alert is accomplished by writing the alert to standard output (unless the utility
description indicates that the use of standard output produces undefined results in this case).

3.9 Alert Character (<alert>)

A character that in the output stream should cause a terminal to alert its user via a visual or
audible notification. It is the character designated by ’\a’ in the C language. It is unspecified
whether this character is the exact sequence transmitted to an output device by the system to
accomplish the alert function.

3.10 Alias Name

In the shell command language, a word consisting solely of underscores, digits, and alphabetics
from the portable character set and any of the following characters: ’!’, ’%’, ’,’, ’@’.

Implementations may allow other characters within alias names as an extension.

Note: The Portable Character Set is defined in detail in Section 6.1 (on page 125).

34 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

Definitions Alignment

3.11 Alignment

A requirement that objects of a particular type be located on storage boundaries with addresses
that are particular multiples of a byte address.

Note: See also the ISO C standard, Section B3.

3.12 Alternate File Access Control Mechanism

An implementation-defined mechanism that is independent of the access control mechanisms
defined herein, and which if enabled on a file may either restrict or extend the permissions of a
given user. POSIX.1-2008 defines when such mechanisms can be enabled and when they are
disabled.

Note: File Access Permissions are defined in detail in Section 4.4 (on page 108).

3.13 Alternate Signal Stack

Memory associated with a thread, established upon request by the implementation for a thread,
separate from the thread signal stack, in which signal handlers responding to signals sent to that
thread may be executed.

3.14 Ancillary Data

Protocol-specific, local system-specific, or optional information. The information can be both
local or end-to-end significant, header information, part of a data portion, protocol-specific, and
implementation or system-specific.

3.15 Angle Brackets

The characters ’<’ (left-angle-bracket) and ’>’ (right-angle-bracket). When used in the phrase
‘‘enclosed in angle brackets’’, the symbol ’<’ immediately precedes the object to be enclosed,
and ’>’ immediately follows it. When describing these characters in the portable character set,
the names <less-than-sign> and <greater-than-sign> are used.

3.16 Apostrophe Character (<apostrophe>)

The character designated by ’\’’ in the C language, also known as the single-quote character.

3.17 Application

A computer program that performs some desired function.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 35

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

Application Address Definitions

3.18 Application Address

Endpoint address of a specific application.

3.19 Application Program Interface (API)

The definition of syntax and semantics for providing computer system services.

3.20 Appropriate Privileges

An implementation-defined means of associating privileges with a process with regard to the
function calls, function call options, and the commands that need special privileges. There may
be zero or more such means. These means (or lack thereof) are described in the conformance
document.

Note: Function calls are defined in the System Interfaces volume of POSIX.1-2008, and commands are
defined in the Shell and Utilities volume of POSIX.1-2008.

3.21 Argument

In the shell command language, a parameter passed to a utility as the equivalent of a single
string in the argv array created by one of the exec functions. An argument is one of the options,
option-arguments, or operands following the command name.

Note: The Utility Argument Syntax is defined in detail in Section 12.1 (on page 213) and XCU Section
2.9.1.1 (on page 2317).

In the C language, an expression in a function call expression or a sequence of preprocessing
tokens in a function-like macro invocation.

3.22 Arm (a Timer)

To start a timer measuring the passage of time, enabling notifying a process when the specified
time or time interval has passed.

3.23 Asterisk Character (<asterisk>)

The character ’*’.

3.24 Async-Cancel-Safe Function

A function that may be safely invoked by an application while the asynchronous form of
cancellation is enabled. No function is async-cancel-safe unless explicitly described as such.

36 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

Definitions Asynchronous Events

3.25 Asynchronous Events

Events that occur independently of the execution of the application.

3.26 Asynchronous Input and Output

A functionality enhancement to allow an application process to queue data input and output
commands with asynchronous notification of completion.

3.27 Async-Signal-Safe Function

A function that may be invoked, without restriction, from signal-catching functions. No function
is async-signal-safe unless explicitly described as such.

3.28 Asynchronously-Generated Signal

A signal that is not attributable to a specific thread. Examples are signals sent via kill(), signals
sent from the keyboard, and signals delivered to process groups. Being asynchronous is a
property of how the signal was generated and not a property of the signal number. All signals
may be generated asynchronously.

Note: The kill() function is defined in detail in the System Interfaces volume of POSIX.1-2008.

3.29 Asynchronous I/O Completion

For an asynchronous read or write operation, when a corresponding synchronous read or write
would have completed and when any associated status fields have been updated.

3.30 Asynchronous I/O Operation

An I/O operation that does not of itself cause the thread requesting the I/O to be blocked from
further use of the processor.

This implies that the process and the I/O operation may be running concurrently.

3.31 Authentication

The process of validating a user or process to verify that the user or process is not a counterfeit.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 37

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

Authorization Definitions

3.32 Authorization

The process of verifying that a user or process has permission to use a resource in the manner
requested.

To ensure security, the user or process would also need to be authenticated before granting
access.

3.33 Background Job

See Background Process Group in Section 3.35.

3.34 Background Process

A process that is a member of a background process group.

3.35 Background Process Group (or Background Job)

Any process group, other than a foreground process group, that is a member of a session that
has established a connection with a controlling terminal.

3.36 Backquote Character

The character ’‘’, also known as <grave-accent>.

3.37 Backslash Character (<backslash>)

The character designated by ’\\’ in the C language, also known as reverse solidus.

3.38 Backspace Character (<backspace>)

A character that, in the output stream, should cause printing (or displaying) to occur one
column position previous to the position about to be printed. If the position about to be printed
is at the beginning of the current line, the behavior is unspecified. It is the character designated
by ’\b’ in the C language. It is unspecified whether this character is the exact sequence
transmitted to an output device by the system to accomplish the backspace function. The
backspace defined here is not necessarily the ERASE special character.

Note: Special Characters are defined in detail in Section 11.1.9 (on page 203).

38 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

Definitions Barrier

3.39 Barrier

A synchronization object that allows multiple threads to synchronize at a particular point in
their execution.

3.40 Basename

The final, or only, filename in a pathname.

3.41 Basic Regular Expression (BRE)

A regular expression (see Section 3.315, on page 84) used by the majority of utilities that select
strings from a set of character strings.

Note: Basic Regular Expressions are described in detail in Section 9.3 (on page 183).

3.42 Batch Access List

A list of user IDs and group IDs of those users and groups authorized to place batch jobs in a
batch queue.

A batch access list is associated with a batch queue. A batch server uses the batch access list of a
batch queue as one of the criteria in deciding to put a batch job in a batch queue.

3.43 Batch Administrator

A user that is authorized to modify all the attributes of queues and jobs and to change the status
of a batch server.

3.44 Batch Client

A computational entity that utilizes batch services by making requests of batch servers.

Batch clients often provide the means by which users access batch services, although a batch
server may act as a batch client by virtue of making requests of another batch server.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 39

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

Batch Destination Definitions

3.45 Batch Destination

The batch server in a batch system to which a batch job should be sent for processing.

Acceptance of a batch job at a batch destination is the responsibility of a receiving batch server.
A batch destination may consist of a batch server-specific portion, a network-wide portion, or
both. The batch server-specific portion is referred to as the ‘‘batch queue’’. The network-wide
portion is referred to as a ‘‘batch server name’’.

3.46 Batch Destination Identifier

A string that identifies a specific batch destination.

A string of characters in the portable character set used to specify a particular batch destination.

Note: The Portable Character Set is defined in detail in Section 6.1 (on page 125).

3.47 Batch Directive

A line from a file that is interpreted by the batch server. The line is usually in the form of a
comment and is an additional means of passing options to the qsub utility.

Note: The qsub utility is defined in detail in the Shell and Utilities volume of POSIX.1-2008.

3.48 Batch Job

A set of computational tasks for a computing system.

Batch jobs are managed by batch servers.

Once created, a batch job may be executing or pending execution. A batch job that is executing
has an associated session leader (a process) that initiates and monitors the computational tasks
of the batch job.

3.49 Batch Job Attribute

A named data type whose value affects the processing of a batch job.

The values of the attributes of a batch job affect the processing of that job by the batch server that
manages the batch job.

3.50 Batch Job Identifier

A unique name for a batch job. A name that is unique among all other batch job identifiers in a
batch system and that identifies the batch server to which the batch job was originally
submitted.

40 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

Definitions Batch Job Name

3.51 Batch Job Name

A label that is an attribute of a batch job. The batch job name is not necessarily unique.

3.52 Batch Job Owner

The username@hostname of the user submitting the batch job, where username is a user name (see
also Section 3.429, on page 102) and hostname is a network host name.

3.53 Batch Job Priority

A value specified by the user that may be used by an implementation to determine the order in
which batch jobs are selected to be executed. Job priority has a numeric value in the range
−1 024 to 1 023.

Note: The batch job priority is not the execution priority (nice value) of the batch job.

3.54 Batch Job State

An attribute of a batch job which determines the types of requests that the batch server that
manages the batch job can accept for the batch job. Valid states include QUEUED, RUNNING,
HELD, WAITING, EXITING, and TRANSITING.

3.55 Batch Name Service

A service that assigns batch names that are unique within the batch name space, and that can
translate a unique batch name into the location of the named batch entity.

3.56 Batch Name Space

The environment within which a batch name is known to be unique.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 41

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

Batch Node Definitions

3.57 Batch Node

A host containing part or all of a batch system.

A batch node is a host meeting at least one of the following conditions:

• Capable of executing a batch client

• Contains a routing batch queue

• Contains an execution batch queue

3.58 Batch Operator

A user that is authorized to modify some, but not all, of the attributes of jobs and queues, and
may change the status of the batch server.

3.59 Batch Queue

A manageable object that represents a set of batch jobs and is managed by a single batch server.

Note: A set of batch jobs is called a batch queue largely for historical reasons. Jobs are selected from
the batch queue for execution based on attributes such as priority, resource requirements, and
hold conditions.

See also XCU Section 3.1.2 (on page 2376).

3.60 Batch Queue Attribute

A named data type whose value affects the processing of all batch jobs that are members of the
batch queue.

A batch queue has attributes that affect the processing of batch jobs that are members of the
batch queue.

3.61 Batch Queue Position

The place, relative to other jobs in the batch queue, occupied by a particular job in a batch queue.
This is defined in part by submission time and priority; see also Section 3.62.

3.62 Batch Queue Priority

The maximum job priority allowed for any batch job in a given batch queue.

The batch queue priority is set and may be changed by users with appropriate privileges. The
priority is bounded in an implementation-defined manner.

42 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

Definitions Batch Rerunability

3.63 Batch Rerunability

An attribute of a batch job indicating that it may be rerun after an abnormal termination from
the beginning without affecting the validity of the results.

3.64 Batch Restart

The action of resuming the processing of a batch job from the point of the last checkpoint.
Typically, this is done if the batch job has been interrupted because of a system failure.

3.65 Batch Server

A computational entity that provides batch services.

3.66 Batch Server Name

A string of characters in the portable character set used to specify a particular server in a
network.

Note: The Portable Character Set is defined in detail in Section 6.1 (on page 125).

3.67 Batch Service

Computational and organizational services performed by a batch system on behalf of batch jobs.

Batch services are of two types: requested and deferred.

Note: Batch Services are listed in XCU Table 3-5 (on page 2390).

3.68 Batch Service Request

A solicitation of services from a batch client to a batch server.

A batch service request may entail the exchange of any number of messages between the batch
client and the batch server.

When naming specific types of service requests, the term ‘‘request’’ is qualified by the type of
request, as in Queue Batch Job Request and Delete Batch Job Request.

3.69 Batch Submission

The process by which a batch client requests that a batch server create a batch job via a Queue Job
Request to perform a specified computational task.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 43

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

Batch System Definitions

3.70 Batch System

A collection of one or more batch servers.

3.71 Batch Target User

The name of a user on the batch destination batch server.

The target user is the user name under whose account the batch job is to execute on the
destination batch server.

3.72 Batch User

A user who is authorized to make use of batch services.

3.73 Bind

The process of assigning a network address to an endpoint.

3.74 Blank Character (<blank>)

One of the characters that belong to the blank character class as defined via the LC_CTYPE
category in the current locale. In the POSIX locale, a <blank> character is either a <tab> or a
<space>.

3.75 Blank Line

A line consisting solely of zero or more <blank> characters terminated by a <newline>; see also
Section 3.145 (on page 56).

3.76 Blocked Process (or Thread)

A process (or thread) that is waiting for some condition (other than the availability of a
processor) to be satisfied before it can continue execution.

3.77 Blocking

A property of an open file description that causes function calls associated with it to wait for the
requested action to be performed before returning.

44 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

Definitions Block-Mode Terminal

3.78 Block-Mode Terminal

A terminal device operating in a mode incapable of the character-at-a-time input and output
operations described by some of the standard utilities.

Note: Output Devices and Terminal Types are defined in detail in Section 10.2 (on page 198).

3.79 Block Special File

A file that refers to a device. A block special file is normally distinguished from a character
special file by providing access to the device in a manner such that the hardware characteristics
of the device are not visible.

3.80 Braces

The characters ’{’ (left-curly-bracket) and ’}’ (right-curly-bracket). When used in the phrase
‘‘enclosed in (curly) braces’’ the symbol ’{’ immediately precedes the object to be enclosed, and
’}’ immediately follows it. When describing these characters in the portable character set, the
names <left-curly-bracket> and <left-brace> are used for ’{’, and <right-curly-bracket> and
<right-brace> are used for ’}’.

3.81 Brackets

The characters ’[’ (left-square-bracket) and ’]’ (right-square-bracket). When used in the
phrase ‘‘enclosed in (square) brackets’’ the symbol ’[’ immediately precedes the object to be
enclosed, and ’]’ immediately follows it. When describing these characters in the portable
character set, the names <left-square-bracket> and <right-square-bracket> are used.

3.82 Broadcast

The transfer of data from one endpoint to several endpoints, as described in RFC 919 and
RFC 922.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 45

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

Built-In Utility (or Built-In) Definitions

3.83 Built-In Utility (or Built-In)

A utility implemented within a shell. The utilities referred to as special built-ins have special
qualities. Unless qualified, the term ‘‘built-in’’ includes the special built-in utilities. Regular
built-ins are not required to be actually built into the shell on the implementation, but they do
have special command-search qualities.

Note: Special Built-In Utilities are defined in detail in XCU Section 2.14 (on page 2334).

Regular Built-In Utilities are defined in detail in XCU Section 2.9.1.1 (on page 2317).

3.84 Byte

An individually addressable unit of data storage that is exactly an octet, used to store a character
or a portion of a character; see also Section 3.87 (on page 47). A byte is composed of a
contiguous sequence of 8 bits. The least significant bit is called the ‘‘low-order ’’ bit; the most
significant is called the ‘‘high-order ’’ bit.

Note: The definition of byte from the ISO C standard is broader than the above and might
accommodate hardware architectures with different sized addressable units than octets.

3.85 Byte Input/Output Functions

The functions that perform byte-oriented input from streams or byte-oriented output to streams:
fgetc(), fgets(), fprintf(), fputc(), fputs(), fread(), fscanf(), fwrite(), getc(), getchar(), getdelim(),
getline(), gets(), printf(), putc(), putchar(), puts(), scanf(), ungetc(), vfprintf(), and vprintf().

Note: Functions are defined in detail in the System Interfaces volume of POSIX.1-2008.

3.86 Carriage-Return Character (<carriage-return>)

A character that in the output stream indicates that printing should start at the beginning of the
same physical line in which the carriage-return occurred. It is the character designated by ’\r’
in the C language. It is unspecified whether this character is the exact sequence transmitted to an
output device by the system to accomplish the movement to the beginning of the line.

46 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

Definitions Character

3.87 Character

A sequence of one or more bytes representing a single graphic symbol or control code.

Note: This term corresponds to the ISO C standard term multi-byte character, where a single-byte
character is a special case of a multi-byte character. Unlike the usage in the ISO C standard,
character here has no necessary relationship with storage space, and byte is used when storage
space is discussed.

See the definition of the portable character set in Section 6.1 (on page 125) for a further
explanation of the graphical representations of (abstract) characters, as opposed to character
encodings.

3.88 Character Array

An array of elements of type char.

3.89 Character Class

A named set of characters sharing an attribute associated with the name of the class. The classes
and the characters that they contain are dependent on the value of the LC_CTYPE category in
the current locale.

Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 139).

3.90 Character Set

A finite set of different characters used for the representation, organization, or control of data.

3.91 Character Special File

A file that refers to a device (such as a terminal device file) or that has special properties (such as
/dev/null).

Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 199).

3.92 Character String

A contiguous sequence of characters terminated by and including the first null byte.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 47

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

Child Process Definitions

3.93 Child Process

A new process created (by fork(), posix_spawn(), or posix_spawnp()) by a given process. A child
process remains the child of the creating process as long as both processes continue to exist.

Note: The fork(), posix_spawn(), and posix_spawnp() functions are defined in detail in the System
Interfaces volume of POSIX.1-2008.

3.94 Circumflex Character (<circumflex>)

The character ’ˆ’.

3.95 Clock

A software or hardware object that can be used to measure the apparent or actual passage of
time.

The current value of the time measured by a clock can be queried and, possibly, set to a value
within the legal range of the clock.

3.96 Clock Jump

The difference between two successive distinct values of a clock, as observed from the
application via one of the ‘‘get time’’ operations.

3.97 Clock Tick

An interval of time; an implementation-defined number of these occur each second. Clock ticks
are one of the units that may be used to express a value found in type clock_t.

3.98 Coded Character Set

A set of unambiguous rules that establishes a character set and the one-to-one relationship
between each character of the set and its bit representation.

48 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

Definitions Codeset

3.99 Codeset

The result of applying rules that map a numeric code value to each element of a character set.
An element of a character set may be related to more than one numeric code value but the
reverse is not true. However, for state-dependent encodings the relationship between numeric
code values and elements of a character set may be further controlled by state information. The
character set may contain fewer elements than the total number of possible numeric code values;
that is, some code values may be unassigned.

Note: Character Encoding is defined in detail in Section 6.2 (on page 128).

3.100 Collating Element

The smallest entity used to determine the logical ordering of character or wide-character strings;
see also Section 3.102. A collating element consists of either a single character, or two or more
characters collating as a single entity. The value of the LC_COLLATE category in the current
locale determines the current set of collating elements.

3.101 Collation

The logical ordering of character or wide-character strings according to defined precedence
rules. These rules identify a collation sequence between the collating elements, and such
additional rules that can be used to order strings consisting of multiple collating elements.

3.102 Collation Sequence

The relative order of collating elements as determined by the setting of the LC_COLLATE
category in the current locale. The collation sequence is used for sorting and is determined from
the collating weights assigned to each collating element. In the absence of weights, the collation
sequence is the order in which collating elements are specified between order_start and
order_end keywords in the LC_COLLATE category.

Multi-level sorting is accomplished by assigning elements one or more collation weights, up to
the limit {COLL_WEIGHTS_MAX}. On each level, elements may be given the same weight (at
the primary level, called an equivalence class; see also Section 3.151, on page 57) or be omitted
from the sequence. Strings that collate equally using the first assigned weight (primary ordering)
are then compared using the next assigned weight (secondary ordering), and so on.

Note: {COLL_WEIGHTS_MAX} is defined in detail in <limits.h>.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 49

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

Column Position Definitions

3.103 Column Position

A unit of horizontal measure related to characters in a line.

It is assumed that each character in a character set has an intrinsic column width independent of
any output device. Each printable character in the portable character set has a column width of
one. The standard utilities, when used as described in POSIX.1-2008, assume that all characters
have integral column widths. The column width of a character is not necessarily related to the
internal representation of the character (numbers of bits or bytes).

The column position of a character in a line is defined as one plus the sum of the column widths
of the preceding characters in the line. Column positions are numbered starting from 1.

3.104 Command

A directive to the shell to perform a particular task.

Note: Shell Commands are defined in detail in XCU Section 2.9 (on page 2316).

3.105 Command Language Interpreter

An interface that interprets sequences of text input as commands. It may operate on an input
stream or it may interactively prompt and read commands from a terminal. It is possible for
applications to invoke utilities through a number of interfaces, which are collectively considered
to act as command interpreters. The most obvious of these are the sh utility and the system()
function, although popen() and the various forms of exec may also be considered to behave as
interpreters.

Note: The sh utility is defined in detail in the Shell and Utilities volume of POSIX.1-2008.

The system(), popen(), and exec functions are defined in detail in the System Interfaces volume
of POSIX.1-2008.

3.106 Composite Graphic Symbol

A graphic symbol consisting of a combination of two or more other graphic symbols in a single
character position, such as a diacritical mark and a base character.

3.107 Condition Variable

A synchronization object which allows a thread to suspend execution, repeatedly, until some
associated predicate becomes true. A thread whose execution is suspended on a condition
variable is said to be blocked on the condition variable.

50 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

Definitions Connected Socket

3.108 Connected Socket

A connection-mode socket for which a connection has been established, or a connectionless-
mode socket for which a peer address has been set. See also Section 3.109, Section 3.110, Section
3.111, and Section 3.348 (on page 89).

3.109 Connection

An association established between two or more endpoints for the transfer of data

3.110 Connection Mode

The transfer of data in the context of a connection; see also Section 3.111.

3.111 Connectionless Mode

The transfer of data other than in the context of a connection; see also Section 3.110 and Section
3.124 (on page 53).

3.112 Control Character

A character, other than a graphic character, that affects the recording, processing, transmission,
or interpretation of text.

3.113 Control Operator

In the shell command language, a token that performs a control function. It is one of the
following symbols:

& && () ; ;; newline | ||

The end-of-input indicator used internally by the shell is also considered a control operator.

Note: Token Recognition is defined in detail in XCU Section 2.3 (on page 2299).

3.114 Controlling Process

The session leader that established the connection to the controlling terminal. If the terminal
subsequently ceases to be a controlling terminal for this session, the session leader ceases to be
the controlling process.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 51

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

Controlling Terminal Definitions

3.115 Controlling Terminal

A terminal that is associated with a session. Each session may have at most one controlling
terminal associated with it, and a controlling terminal is associated with exactly one session.
Certain input sequences from the controlling terminal cause signals to be sent to all processes in
the foreground process group associated with the controlling terminal.

Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 199).

3.116 Conversion Descriptor

A per-process unique value used to identify an open codeset conversion.

3.117 Core File

A file of unspecified format that may be generated when a process terminates abnormally.

3.118 CPU Time (Execution Time)

The time spent executing a process or thread, including the time spent executing system services
on behalf of that process or thread. If the Threads option is supported, then the value of the
CPU-time clock for a process is implementation-defined. With this definition the sum of all the
execution times of all the threads in a process might not equal the process execution time, even
in a single-threaded process, because implementations may differ in how they account for time
during context switches or for other reasons.

3.119 CPU-Time Clock

A clock that measures the execution time of a particular process or thread.

3.120 CPU-Time Timer

A timer attached to a CPU-time clock.

3.121 Current Job

In the context of job control, the job that will be used as the default for the fg or bg utilities. There
is at most one current job; see also Section 3.203 (on page 65).

52 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

Definitions Current Working Directory

3.122 Current Working Directory

See Working Directory in Section 3.439 (on page 104).

3.123 Cursor Position

The line and column position on the screen denoted by the terminal’s cursor.

3.124 Datagram

A unit of data transferred from one endpoint to another in connectionless mode service.

3.125 Data Segment

Memory associated with a process, that can contain dynamically allocated data.

3.126 Deferred Batch Service

A service that is performed as a result of events that are asynchronous with respect to requests.

Note: Once a batch job has been created, it is subject to deferred services.

3.127 Device

A computer peripheral or an object that appears to the application as such.

3.128 Device ID

A non-negative integer used to identify a device.

3.129 Directory

A file that contains directory entries. No two directory entries in the same directory have the
same name.

3.130 Directory Entry (or Link)

An object that associates a filename with a file. Several directory entries can associate names

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 53

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

Directory Entry (or Link) Definitions

with the same file.

3.131 Directory Stream

A sequence of all the directory entries in a particular directory. An open directory stream may be
implemented using a file descriptor.

3.132 Disarm (a Timer)

To stop a timer from measuring the passage of time, disabling any future process notifications
(until the timer is armed again).

3.133 Display

To output to the user’s terminal. If the output is not directed to a terminal, the results are
undefined.

3.134 Display Line

A line of text on a physical device or an emulation thereof. Such a line will have a maximum
number of characters which can be presented.

Note: This may also be written as ‘‘line on the display’’.

3.135 Dollar-Sign Character (<dollar-sign>)

The character ’$’.

3.136 Dot

In the context of naming files, the filename consisting of a single dot character (’.’).

Note: In the context of shell special built-in utilities, see dot in XCU Section 2.14 (on page 2334).

Pathname Resolution is defined in detail in Section 4.12 (on page 111).

54 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

Definitions Dot-Dot

3.137 Dot-Dot

The filename consisting solely of two dot characters ("..").

Note: Pathname Resolution is defined in detail in Section 4.12 (on page 111).

3.138 Double-Quote Character

The character ’"’, also known as <quotation-mark>.

Note: The ‘‘double’’ adjective in this term refers to the two strokes in the character glyph.
POSIX.1-2008 never uses the term ‘‘double-quote’’ to refer to two apostrophes or quotation-
marks.

3.139 Downshifting

The conversion of an uppercase character that has a single-character lowercase representation
into this lowercase representation.

3.140 Driver

A module that controls data transferred to and received from devices.

Note: Drivers are traditionally written to be a part of the system implementation, although they are
frequently written separately from the writing of the implementation. A driver may contain
processor-specific code, and therefore be non-portable.

3.141 Effective Group ID

An attribute of a process that is used in determining various permissions, including file access
permissions; see also Section 3.188 (on page 63).

3.142 Effective User ID

An attribute of a process that is used in determining various permissions, including file access
permissions; see also Section 3.428 (on page 102).

3.143 Eight-Bit Transparency

The ability of a software component to process 8-bit characters without modifying or utilizing
any part of the character in a way that is inconsistent with the rules of the current coded
character set.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 55

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

Empty Directory Definitions

3.144 Empty Directory

A directory that contains, at most, directory entries for dot and dot-dot, and has exactly one link
to it (other than its own dot entry, if one exists), in dot-dot. No other links to the directory may
exist. It is unspecified whether an implementation can ever consider the root directory to be
empty.

3.145 Empty Line

A line consisting of only a <newline>; see also Section 3.75 (on page 44).

3.146 Empty String (or Null String)

A string whose first byte is a null byte.

3.147 Empty Wide-Character String

A wide-character string whose first element is a null wide-character code.

3.148 Encoding Rule

The rules used to convert between wide-character codes and multi-byte character codes.

Note: Stream Orientation and Encoding Rules are defined in detail in XSH Section 2.5.2 (on page 493).

3.149 Entire Regular Expression

The concatenated set of one or more basic regular expressions or extended regular expressions
that make up the pattern specified for string selection.

Note: Regular Expressions are defined in detail in Chapter 9 (on page 181).

56 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

Definitions Epoch

3.150 Epoch

The time zero hours, zero minutes, zero seconds, on January 1, 1970 Coordinated Universal Time
(UTC).

Note: See also Seconds Since the Epoch defined in Section 4.15 (on page 113).

3.151 Equivalence Class

A set of collating elements with the same primary collation weight.

Elements in an equivalence class are typically elements that naturally group together, such as all
accented letters based on the same base letter.

The collation order of elements within an equivalence class is determined by the weights
assigned on any subsequent levels after the primary weight.

3.152 Era

A locale-specific method for counting and displaying years.

Note: The LC_TIME category is defined in detail in Section 7.3.5 (on page 158).

3.153 Event Management

The mechanism that enables applications to register for and be made aware of external events
such as data becoming available for reading.

3.154 Executable File

A regular file acceptable as a new process image file by the equivalent of the exec family of
functions, and thus usable as one form of a utility. The standard utilities described as compilers
can produce executable files, but other unspecified methods of producing executable files may
also be provided. The internal format of an executable file is unspecified, but a conforming
application cannot assume an executable file is a text file.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 57

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Execute Definitions

3.155 Execute

To perform command search and execution actions, as defined in the Shell and Utilities volume
of POSIX.1-2008; see also Section 3.200 (on page 65).

Note: Command Search and Execution is defined in detail in XCU Section 2.9.1.1 (on page 2317).

3.156 Execution Time

See CPU Time in Section 3.118 (on page 52).

3.157 Execution Time Monitoring

A set of execution time monitoring primitives that allow online measuring of thread and process
execution times.

3.158 Expand

In the shell command language, when not qualified, the act of applying word expansions.

Note: Word Expansions are defined in detail in XCU Section 2.6 (on page 2305).

3.159 Extended Regular Expression (ERE)

A regular expression (see also Section 3.315, on page 84) that is an alternative to the Basic
Regular Expression using a more extensive syntax, occasionally used by some utilities.

Note: Extended Regular Expressions are described in detail in Section 9.4 (on page 188).

3.160 Extended Security Controls

Implementation-defined security controls allowed by the file access permission and appropriate
privileges (see also Section 3.20, on page 36) mechanisms, through which an implementation can
support different security policies from those described in POSIX.1-2008.

Note: See also Extended Security Controls defined in Section 4.3 (on page 107).

File Access Permissions are defined in detail in Section 4.4 (on page 108).

58 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

Definitions Feature Test Macro

3.161 Feature Test Macro

A macro used to determine whether a particular set of features is included from a header.

Note: See also XSH Section 2.2 (on page 468).

3.162 Field

In the shell command language, a unit of text that is the result of parameter expansion,
arithmetic expansion, command substitution, or field splitting. During command processing, the
resulting fields are used as the command name and its arguments.

Note: Parameter Expansion is defined in detail in XCU Section 2.6.2 (on page 2306).

Arithmetic Expansion is defined in detail in XCU Section 2.6.4 (on page 2310).

Command Substitution is defined in detail in XCU Section 2.6.3 (on page 2309).

Field Splitting is defined in detail in XCU Section 2.6.5 (on page 2311).

For further information on command processing, see XCU Section 2.9.1 (on page 2316).

3.163 FIFO Special File (or FIFO)

A type of file with the property that data written to such a file is read on a first-in-first-out basis.

Note: Other characteristics of FIFOs are described in the System Interfaces volume of POSIX.1-2008,
lseek(), open(), read(), and write().

3.164 File

An object that can be written to, or read from, or both. A file has certain attributes, including
access permissions and type. File types include regular file, character special file, block special
file, FIFO special file, symbolic link, socket, and directory. Other types of files may be supported
by the implementation.

3.165 File Description

See Open File Description in Section 3.253 (on page 73).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 59

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

File Descriptor Definitions

3.166 File Descriptor

A per-process unique, non-negative integer used to identify an open file for the purpose of file
access. The value of a file descriptor is from zero to {OPEN_MAX}. A process can have no more
than {OPEN_MAX} file descriptors open simultaneously. File descriptors may also be used to
implement message catalog descriptors and directory streams; see also Section 3.253 (on page
73).

Note: {OPEN_MAX} is defined in detail in <limits.h>.

3.167 File Group Class

The property of a file indicating access permissions for a process related to the group
identification of a process. A process is in the file group class of a file if the process is not in the
file owner class and if the effective group ID or one of the supplementary group IDs of the
process matches the group ID associated with the file. Other members of the class may be
implementation-defined.

3.168 File Mode

An object containing the file mode bits and file type of a file.

Note: File mode bits and file types are defined in detail in <sys/stat.h>.

3.169 File Mode Bits

A file’s file permission bits, set-user-ID-on-execution bit (S_ISUID), set-group-ID-on-execution
bit (S_ISGID), and, on directories, the restricted deletion flag bit (S_ISVTX).

Note: File Mode Bits are defined in detail in <sys/stat.h>.

3.170 Filename

A name consisting of 1 to {NAME_MAX} bytes used to name a file. The characters composing
the name may be selected from the set of all character values excluding the <slash> character
and the null byte. The filenames dot and dot-dot have special meaning. A filename is sometimes
referred to as a ‘‘pathname component’’.

Note: Pathname Resolution is defined in detail in Section 4.12 (on page 111).

3.171 File Offset

The byte position in the file where the next I/O operation begins. Each open file description
associated with a regular file, block special file, or directory has a file offset. A character special

60 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

Definitions File Offset

file that does not refer to a terminal device may have a file offset. There is no file offset specified
for a pipe or FIFO.

3.172 File Other Class

The property of a file indicating access permissions for a process related to the user and group
identification of a process. A process is in the file other class of a file if the process is not in the
file owner class or file group class.

3.173 File Owner Class

The property of a file indicating access permissions for a process related to the user
identification of a process. A process is in the file owner class of a file if the effective user ID of
the process matches the user ID of the file.

3.174 File Permission Bits

Information about a file that is used, along with other information, to determine whether a
process has read, write, or execute/search permission to a file. The bits are divided into three
parts: owner, group, and other. Each part is used with the corresponding file class of processes.
These bits are contained in the file mode.

Note: File modes are defined in detail in <sys/stat.h>.

File Access Permissions are defined in detail in Section 4.4 (on page 108).

3.175 File Serial Number

A per-file system unique identifier for a file.

3.176 File System

A collection of files and certain of their attributes. It provides a name space for file serial
numbers referring to those files.

3.177 File Type

See File in Section 3.164 (on page 59).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 61

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Filter Definitions

3.178 Filter

A command whose operation consists of reading data from standard input or a list of input files
and writing data to standard output. Typically, its function is to perform some transformation
on the data stream.

3.179 First Open (of a File)

When a process opens a file that is not currently an open file within any process.

3.180 Flow Control

The mechanism employed by a communications provider that constrains a sending entity to
wait until the receiving entities can safely receive additional data without loss.

3.181 Foreground Job

See Foreground Process Group in Section 3.183.

3.182 Foreground Process

A process that is a member of a foreground process group.

3.183 Foreground Process Group (or Foreground Job)

A process group whose member processes have certain privileges, denied to processes in
background process groups, when accessing their controlling terminal. Each session that has
established a connection with a controlling terminal has at most one process group of the session
as the foreground process group of that controlling terminal.

Note: The General Terminal Interface is defined in detail in Chapter 11.

3.184 Foreground Process Group ID

The process group ID of the foreground process group.

62 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

Definitions Form-Feed Character (<form-feed>)

3.185 Form-Feed Character (<form-feed>)

A character that in the output stream indicates that printing should start on the next page of an
output device. It is the character designated by ’\f’ in the C language. If the form-feed is not
the first character of an output line, the result is unspecified. It is unspecified whether this
character is the exact sequence transmitted to an output device by the system to accomplish the
movement to the next page.

3.186 Graphic Character

A member of the graph character class of the current locale.

Note: The graph character class is defined in detail in Section 7.3.1 (on page 139).

3.187 Group Database

A system database that contains at least the following information for each group ID:

• Group name

• Numerical group ID

• List of users allowed in the group

The list of users allowed in the group is used by the newgrp utility.

Note: The newgrp utility is defined in detail in the Shell and Utilities volume of POSIX.1-2008.

3.188 Group ID

A non-negative integer, which can be contained in an object of type gid_t, that is used to identify
a group of system users. Each system user is a member of at least one group. When the identity
of a group is associated with a process, a group ID value is referred to as a real group ID, an
effective group ID, one of the supplementary group IDs, or a saved set-group-ID.

3.189 Group Name

A string that is used to identify a group; see also Section 3.187. To be portable across conforming
systems, the value is composed of characters from the portable filename character set. The
<hyphen> should not be used as the first character of a portable group name.

3.190 Hard Limit

A system resource limitation that may be reset to a lesser or greater limit by a privileged process.
A non-privileged process is restricted to only lowering its hard limit.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 63

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

Hard Link Definitions

3.191 Hard Link

The relationship between two directory entries that represent the same file; see also Section 3.130
(on page 53). The result of an execution of the ln utility (without the −s option) or the link()
function. This term is contrasted against symbolic link; see also Section 3.373 (on page 94).

3.192 Home Directory

The directory specified by the HOME environment variable.

3.193 Host Byte Order

The arrangement of bytes in any integer type when using a specific machine architecture.

Note: Two common methods of byte ordering are big-endian and little-endian. Big-endian is a format
for storage of binary data in which the most significant byte is placed first, with the rest in
descending order. Little-endian is a format for storage or transmission of binary data in which
the least significant byte is placed first, with the rest in ascending order. See also Section 4.9 (on
page 110).

3.194 Incomplete Line

A sequence of one or more non-<newline> characters at the end of the file.

3.195 Inf

A value representing +infinity or a value representing −infinity that can be stored in a floating
type. Not all systems support the Inf values.

3.196 Instrumented Application

An application that contains at least one call to the trace point function posix_trace_event(). Each
process of an instrumented application has a mapping of trace event names to trace event type
identifiers. This mapping is used by the trace stream that is created for that process.

3.197 Interactive Shell

A processing mode of the shell that is suitable for direct user interaction.

64 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

Definitions Internationalization

3.198 Internationalization

The provision within a computer program of the capability of making itself adaptable to the
requirements of different native languages, local customs, and coded character sets.

3.199 Interprocess Communication

A functionality enhancement to add a high-performance, deterministic interprocess
communication facility for local communication.

3.200 Invoke

To perform command search and execution actions, except that searching for shell functions and
special built-in utilities is suppressed; see also Section 3.155 (on page 58).

Note: Command Search and Execution is defined in detail in XCU Section 2.9.1.1 (on page 2317).

3.201 Job

A set of processes, comprising a shell pipeline, and any processes descended from it, that are all
in the same process group.

Note: See also XCU Section 2.9.2 (on page 2318).

3.202 Job Control

A facility that allows users selectively to stop (suspend) the execution of processes and continue
(resume) their execution at a later point. The user typically employs this facility via the
interactive interface jointly supplied by the terminal I/O driver and a command interpreter.

3.203 Job Control Job ID

A handle that is used to refer to a job. The job control job ID can be any of the forms shown in
the following table:

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 65

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

Job Control Job ID Definitions

Table 3-1 Job Control Job ID Formats

Job Control
Job ID Meaning

%% Current job.
%+ Current job.
%− Previous job.
%n Job number n.
%string Job whose command begins with string.
%?string Job whose command contains string.

3.204 Last Close (of a File)

When a process closes a file, resulting in the file not being an open file within any process.

3.205 Line

A sequence of zero or more non-<newline> characters plus a terminating <newline> character.

3.206 Linger

The period of time before terminating a connection, to allow outstanding data to be transferred.

3.207 Link

See Directory Entry in Section 3.130 (on page 53).

3.208 Link Count

The number of directory entries that refer to a particular file.

3.209 Local Customs

The conventions of a geographical area or territory for such things as date, time, and currency
formats.

3.210 Local Interprocess Communication (Local IPC)

The transfer of data between processes in the same system.

66 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

Definitions Locale

3.211 Locale

The definition of the subset of a user’s environment that depends on language and cultural
conventions.

Note: Locales are defined in detail in Chapter 7 (on page 135).

3.212 Localization

The process of establishing information within a computer system specific to the operation of
particular native languages, local customs, and coded character sets.

3.213 Login

The unspecified activity by which a user gains access to the system. Each login is associated
with exactly one login name.

3.214 Login Name

A user name that is associated with a login.

3.215 Map

To create an association between a page-aligned range of the address space of a process and
some memory object, such that a reference to an address in that range of the address space
results in a reference to the associated memory object. The mapped memory object is not
necessarily memory-resident.

3.216 Marked Message

A STREAMs message on which a certain flag is set. Marking a message gives the application
protocol-specific information. An application can use ioctl() to determine whether a given
message is marked.

Note: The ioctl() function is defined in detail in the System Interfaces volume of POSIX.1-2008.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 67

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

Matched Definitions

3.217 Matched

A state applying to a sequence of zero or more characters when the characters in the sequence
correspond to a sequence of characters defined by a basic regular expression or extended regular
expression pattern.

Note: Regular Expressions are defined in detail in Chapter 9 (on page 181).

3.218 Memory Mapped Files

A facility to allow applications to access files as part of the address space.

3.219 Memory Object

One of:

• A file (see Section 3.164, on page 59)

• A shared memory object (see Section 3.340, on page 88)

• A typed memory object (see Section 3.421, on page 101)

When used in conjunction with mmap(), a memory object appears in the address space of the
calling process.

Note: The mmap() function is defined in detail in the System Interfaces volume of POSIX.1-2008.

3.220 Memory-Resident

The process of managing the implementation in such a way as to provide an upper bound on
memory access times.

3.221 Message

In the context of programmatic message passing, information that can be transferred between
processes or threads by being added to and removed from a message queue. A message consists
of a fixed-size message buffer.

3.222 Message Catalog

In the context of providing natural language messages to the user, a file or storage area
containing program messages, command prompts, and responses to prompts for a particular
native language, territory, and codeset.

68 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

Definitions Message Catalog Descriptor

3.223 Message Catalog Descriptor

In the context of providing natural language messages to the user, a per-process unique value
used to identify an open message catalog. A message catalog descriptor may be implemented
using a file descriptor.

3.224 Message Queue

In the context of programmatic message passing, an object to which messages can be added and
removed. Messages may be removed in the order in which they were added or in priority order.

3.225 Mode

A collection of attributes that specifies a file’s type and its access permissions.

Note: File Access Permissions are defined in detail in Section 4.4 (on page 108).

3.226 Monotonic Clock

A clock measuring real time, whose value cannot be set via clock_settime() and which cannot
have negative clock jumps.

3.227 Mount Point

Either the system root directory or a directory for which the st_dev field of structure stat differs
from that of its parent directory.

Note: The stat structure is defined in detail in <sys/stat.h>.

3.228 Multi-Character Collating Element

A sequence of two or more characters that collate as an entity. For example, in some coded
character sets, an accented character is represented by a non-spacing accent, followed by the
letter. Other examples are the Spanish elements ch and ll.

3.229 Mutex

A synchronization object used to allow multiple threads to serialize their access to shared data.
The name derives from the capability it provides; namely, mutual-exclusion. The thread that has
locked a mutex becomes its owner and remains the owner until that same thread unlocks the
mutex.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 69

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

Name Definitions

3.230 Name

In the shell command language, a word consisting solely of underscores, digits, and alphabetics
from the portable character set. The first character of a name is not a digit.

Note: The Portable Character Set is defined in detail in Section 6.1 (on page 125).

3.231 Named STREAM

A STREAMS-based file descriptor that is attached to a name in the file system name space. All
subsequent operations on the named STREAM act on the STREAM that was associated with the
file descriptor until the name is disassociated from the STREAM.

3.232 NaN (Not a Number)

A set of values that may be stored in a floating type but that are neither Inf nor valid floating-
point numbers. Not all systems support NaN values.

3.233 Native Language

A computer user’s spoken or written language, such as American English, British English,
Danish, Dutch, French, German, Italian, Japanese, Norwegian, or Swedish.

3.234 Negative Response

An input string that matches one of the responses acceptable to the LC_MESSAGES category
keyword noexpr, matching an extended regular expression in the current locale.

Note: The LC_MESSAGES category is defined in detail in Section 7.3.6 (on page 164).

3.235 Network

A collection of interconnected hosts.

Note: The term ‘‘network’’ in POSIX.1-2008 is used to refer to the network of hosts. The term ‘‘batch
system’’ is used to refer to the network of batch servers.

3.236 Network Address

A network-visible identifier used to designate specific endpoints in a network. Specific
endpoints on host systems have addresses, and host systems may also have addresses.

70 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Definitions Network Byte Order

3.237 Network Byte Order

The way of representing any integer type such that, when transmitted over a network via a
network endpoint, the int type is transmitted as an appropriate number of octets with the most
significant octet first, followed by any other octets in descending order of significance.

Note: This order is more commonly known as big-endian ordering. See also Section 4.9 (on page 110).

3.238 Newline Character (<newline>)

A character that in the output stream indicates that printing should start at the beginning of the
next line. It is the character designated by ’\n’ in the C language. It is unspecified whether this
character is the exact sequence transmitted to an output device by the system to accomplish the
movement to the next line.

3.239 Nice Value

A number used as advice to the system to alter process scheduling. Numerically smaller values
give a process additional preference when scheduling a process to run. Numerically larger
values reduce the preference and make a process less likely to run. Typically, a process with a
smaller nice value runs to completion more quickly than an equivalent process with a higher
nice value. The symbol {NZERO} specifies the default nice value of the system.

3.240 Non-Blocking

A property of an open file description that causes function calls involving it to return without
delay when it is detected that the requested action associated with the function call cannot be
completed without unknown delay.

Note: The exact semantics are dependent on the type of file associated with the open file description.
For data reads from devices such as ttys and FIFOs, this property causes the read to return
immediately when no data was available. Similarly, for writes, it causes the call to return
immediately when the thread would otherwise be delayed in the write operation; for example,
because no space was available. For networking, it causes functions not to await protocol events
(for example, acknowledgements) to occur. See also XSH Section 2.10.7 (on page 519).

3.241 Non-Spacing Characters

A character, such as a character representing a diacritical mark in the ISO/IEC 6937: 2001
standard coded graphic character set, which is used in combination with other characters to
form composite graphic symbols.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 71

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

NUL Definitions

3.242 NUL

A character with all bits set to zero.

3.243 Null Byte

A byte with all bits set to zero.

3.244 Null Pointer

A pointer obtained by converting an integer constant expression with the value 0, or such an
expression cast to type void *, to a pointer type; for example, (char *)0. The C language
guarantees that a null pointer compares unequal to a pointer to any object or function, so it is
used by many functions that return pointers to indicate an error.

3.245 Null String

See Empty String in Section 3.146 (on page 56).

3.246 Null Wide-Character Code

A wide-character code with all bits set to zero.

3.247 Number-Sign Character (<number-sign>)

The character ’#’, also known as hash sign.

3.248 Object File

A regular file containing the output of a compiler, formatted as input to a linkage editor for
linking with other object files into an executable form. The methods of linking are unspecified
and may involve the dynamic linking of objects at runtime. The internal format of an object file
is unspecified, but a conforming application cannot assume an object file is a text file.

3.249 Octet

Unit of data representation that consists of eight contiguous bits.

72 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

Definitions Offset Maximum

3.250 Offset Maximum

An attribute of an open file description representing the largest value that can be used as a file
offset.

3.251 Opaque Address

An address such that the entity making use of it requires no details about its contents or format.

3.252 Open File

A file that is currently associated with a file descriptor.

3.253 Open File Description

A record of how a process or group of processes is accessing a file. Each file descriptor refers to
exactly one open file description, but an open file description can be referred to by more than
one file descriptor. The file offset, file status, and file access modes are attributes of an open file
description.

3.254 Operand

An argument to a command that is generally used as an object supplying information to a utility
necessary to complete its processing. Operands generally follow the options in a command line.

Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 213).

3.255 Operator

In the shell command language, either a control operator or a redirection operator.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 73

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

Option Definitions

3.256 Option

An argument to a command that is generally used to specify changes in the utility’s default
behavior.

Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 213).

3.257 Option-Argument

A parameter that follows certain options. In some cases an option-argument is included within
the same argument string as the option—in most cases it is the next argument.

Note: Utility Argument Syntax is defined in detail in Section 12.1 (on page 213).

3.258 Orientation

A stream has one of three orientations: unoriented, byte-oriented, or wide-oriented.

Note: For further information, see XSH Section 2.5.2 (on page 493).

3.259 Orphaned Process Group

A process group in which the parent of every member is either itself a member of the group or is
not a member of the group’s session.

3.260 Page

The granularity of process memory mapping or locking.

Physical memory and memory objects can be mapped into the address space of a process on
page boundaries and in integral multiples of pages. Process address space can be locked into
memory (made memory-resident) on page boundaries and in integral multiples of pages.

3.261 Page Size

The size, in bytes, of the system unit of memory allocation, protection, and mapping. On
systems that have segment rather than page-based memory architectures, the term ‘‘page’’
means a segment.

74 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

Definitions Parameter

3.262 Parameter

In the shell command language, an entity that stores values. There are three types of parameters:
variables (named parameters), positional parameters, and special parameters. Parameter
expansion is accomplished by introducing a parameter with the ’$’ character.

Note: See also XCU Section 2.5 (on page 2301).

In the C language, an object declared as part of a function declaration or definition that acquires
a value on entry to the function, or an identifier following the macro name in a function-like
macro definition.

3.263 Parent Directory

When discussing a given directory, the directory that both contains a directory entry for the
given directory and is represented by the pathname dot-dot in the given directory.

When discussing other types of files, a directory containing a directory entry for the file under
discussion.

This concept does not apply to dot and dot-dot.

3.264 Parent Process

The process which created (or inherited) the process under discussion.

3.265 Parent Process ID

An attribute of a new process identifying the parent of the process. The parent process ID of a
process is the process ID of its creator, for the lifetime of the creator. After the creator ’s lifetime
has ended, the parent process ID is the process ID of an implementation-defined system process.

3.266 Pathname

A character string that is used to identify a file. In the context of POSIX.1-2008, a pathname may
be limited to {PATH_MAX} bytes, including the terminating null byte. It has an optional
beginning <slash>, followed by zero or more filenames separated by <slash> characters. A
pathname may optionally contain one or more trailing <slash> characters. Multiple successive
<slash> characters are considered to be the same as one <slash>, except for the case of exactly
two leading <slash> characters.

Note: Pathname Resolution is defined in detail in Section 4.12 (on page 111).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 75

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

Pathname Component Definitions

3.267 Pathname Component

See Filename in Section 3.170 (on page 60).

3.268 Path Prefix

The part of a pathname up to, but not including, the last component and any trailing <slash>
characters, unless the pathname consists entirely of <slash> characters, in which case the path
prefix is ’/’ for a pathname containing either a single <slash> or three or more <slash>
characters, and ’//’ for the pathname //. The path prefix of a pathname containing no <slash>
characters is empty, but is treated as referring to the current working directory.

Note: The term is used both in the sense of identifying part of a pathname that forms the prefix and of
joining a non-empty path prefix to a filename to form a pathname. In the latter case, the path
prefix need not have a trailing <slash> (in which case the joining is done with a <slash>
character).

3.269 Pattern

A sequence of characters used either with regular expression notation or for pathname
expansion, as a means of selecting various character strings or pathnames, respectively.

Note: Regular Expressions are defined in detail in Chapter 9 (on page 181).

See also XCU Section 2.6.6 (on page 2311).

The syntaxes of the two types of patterns are similar, but not identical; POSIX.1-2008 always
indicates the type of pattern being referred to in the immediate context of the use of the term.

3.270 Period Character (<period>)

The character ’.’. The term ‘‘period’’ is contrasted with dot (see also Section 3.136, on page 54),
which is used to describe a specific directory entry.

3.271 Permissions

Attributes of an object that determine the privilege necessary to access or manipulate the object.

Note: File Access Permissions are defined in detail in Section 4.4 (on page 108).

3.272 Persistence

A mode for semaphores, shared memory, and message queues requiring that the object and its
state (including data, if any) are preserved after the object is no longer referenced by any
process.

76 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

Definitions Persistence

Persistence of an object does not imply that the state of the object is maintained across a system
crash or a system reboot.

3.273 Pipe

An object identical to a FIFO which has no links in the file hierarchy.

Note: The pipe() function is defined in detail in the System Interfaces volume of POSIX.1-2008.

3.274 Polling

A scheduling scheme whereby the local process periodically checks until the pre-specified
events (for example, read, write) have occurred.

3.275 Portable Character Set

The collection of characters that are required to be present in all locales supported by
conforming systems.

Note: The Portable Character Set is defined in detail in Section 6.1 (on page 125).

This term is contrasted against the smaller portable filename character set; see also Section 3.276.

3.276 Portable Filename Character Set

The set of characters from which portable filenames are constructed.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ -

The last three characters are the <period>, <underscore>, and <hyphen> characters, respectively.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 77

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

Positional Parameter Definitions

3.277 Positional Parameter

In the shell command language, a parameter denoted by a single digit or one or more digits in
curly braces.

Note: For further information, see XCU Section 2.5.1 (on page 2301).

3.278 Preallocation

The reservation of resources in a system for a particular use.

Preallocation does not imply that the resources are immediately allocated to that use, but merely
indicates that they are guaranteed to be available in bounded time when needed.

3.279 Preempted Process (or Thread)

A running thread whose execution is suspended due to another thread becoming runnable at a
higher priority.

3.280 Previous Job

In the context of job control, the job that will be used as the default for the fg or bg utilities if the
current job exits. There is at most one previous job; see also Section 3.203 (on page 65).

3.281 Printable Character

One of the characters included in the print character classification of the LC_CTYPE category in
the current locale.

Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 139).

3.282 Printable File

A text file consisting only of the characters included in the print and space character
classifications of the LC_CTYPE category and the <backspace>, all in the current locale.

Note: The LC_CTYPE category is defined in detail in Section 7.3.1 (on page 139).

78 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

Definitions Priority

3.283 Priority

A non-negative integer associated with processes or threads whose value is constrained to a
range defined by the applicable scheduling policy. Numerically higher values represent higher
priorities.

3.284 Priority Band

The queuing order applied to normal priority STREAMS messages. High priority STREAMS
messages are not grouped by priority bands. The only differentiation made by the STREAMS
mechanism is between zero and non-zero bands, but specific protocol modules may differentiate
between priority bands.

3.285 Priority Inversion

A condition in which a thread that is not voluntarily suspended (waiting for an event or time
delay) is not running while a lower priority thread is running. Such blocking of the higher
priority thread is often caused by contention for a shared resource.

3.286 Priority Scheduling

A performance and determinism improvement facility to allow applications to determine the
order in which threads that are ready to run are granted access to processor resources.

3.287 Priority-Based Scheduling

Scheduling in which the selection of a running thread is determined by the priorities of the
runnable processes or threads.

3.288 Privilege

See Appropriate Privileges in Section 3.20 (on page 36).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 79

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

Process Definitions

3.289 Process

An address space with one or more threads executing within that address space, and the
required system resources for those threads.

Note: Many of the system resources defined by POSIX.1-2008 are shared among all of the threads
within a process. These include the process ID, the parent process ID, process group ID, session
membership, real, effective, and saved set-user-ID, real, effective, and saved set-group-ID,
supplementary group IDs, current working directory, root directory, file mode creation mask,
and file descriptors.

3.290 Process Group

A collection of processes that permits the signaling of related processes. Each process in the
system is a member of a process group that is identified by a process group ID. A newly created
process joins the process group of its creator.

3.291 Process Group ID

The unique positive integer identifier representing a process group during its lifetime.

Note: See also Process Group ID Reuse defined in Section 4.13 (on page 112).

3.292 Process Group Leader

A process whose process ID is the same as its process group ID.

3.293 Process Group Lifetime

The period of time that begins when a process group is created and ends when the last
remaining process in the group leaves the group, due either to the end of the lifetime of the last
process or to the last remaining process calling the setsid() or setpgid() functions.

Note: The setsid() and setpgid() functions are defined in detail in the System Interfaces volume of
POSIX.1-2008.

80 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

Definitions Process ID

3.294 Process ID

The unique positive integer identifier representing a process during its lifetime.

Note: See also Process ID Reuse defined in Section 4.13 (on page 112).

3.295 Process Lifetime

The period of time that begins when a process is created and ends when its process ID is
returned to the system. After a process is created by fork(), posix_spawn(), or posix_spawnp(), it is
considered active. At least one thread of control and address space exist until it terminates. It
then enters an inactive state where certain resources may be returned to the system, although
some resources, such as the process ID, are still in use. When another process executes a wait(),
waitid(), or waitpid() function for an inactive process, the remaining resources are returned to
the system. The last resource to be returned to the system is the process ID. At this time, the
lifetime of the process ends.

Note: The fork(), posix_spawn(), posix_spawnp(), wait(), waitid(), and waitpid() functions are defined in
detail in the System Interfaces volume of POSIX.1-2008.

3.296 Process Memory Locking

A performance improvement facility to bind application programs into the high-performance
random access memory of a computer system. This avoids potential latencies introduced by the
operating system in storing parts of a program that were not recently referenced on secondary
memory devices.

3.297 Process Termination

There are two kinds of process termination:

1. Normal termination occurs by a return from main(), when requested with the exit(),
_exit(), or _Exit() functions; or when the last thread in the process terminates by
returning from its start function, by calling the pthread_exit() function, or through
cancellation.

2. Abnormal termination occurs when requested by the abort() function or when some
signals are received.

Note: The _exit(), _Exit(), abort(), and exit() functions are defined in detail in the System Interfaces
volume of POSIX.1-2008.

3.298 Process-To-Process Communication

The transfer of data between processes.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 81

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

Process Virtual Time Definitions

3.299 Process Virtual Time

The measurement of time in units elapsed by the system clock while a process is executing.

3.300 Program

A prepared sequence of instructions to the system to accomplish a defined task. The term
‘‘program’’ in POSIX.1-2008 encompasses applications written in the Shell Command Language,
complex utility input languages (for example, awk, lex, sed, and so on), and high-level languages.

3.301 Protocol

A set of semantic and syntactic rules for exchanging information.

3.302 Pseudo-Terminal

A facility that provides an interface that is identical to the terminal subsystem, except where
noted otherwise in POSIX.1-2008. A pseudo-terminal is composed of two devices: the ‘‘master
device’’ and a ‘‘slave device’’. The slave device provides processes with an interface that is
identical to the terminal interface, although there need not be hardware behind that interface.
Anything written on the master device is presented to the slave as an input and anything
written on the slave device is presented as an input on the master side.

3.303 Radix Character

The character that separates the integer part of a number from the fractional part.

3.304 Read-Only File System

A file system that has implementation-defined characteristics restricting modifications.

Note: File Times Update is described in detail in Section 4.8 (on page 109).

3.305 Read-Write Lock

Multiple readers, single writer (read-write) locks allow many threads to have simultaneous
read-only access to data while allowing only one thread to have write access at any given time.
They are typically used to protect data that is read-only more frequently than it is changed.

Read-write locks can be used to synchronize threads in the current process and other processes if
they are allocated in memory that is writable and shared among the cooperating processes and
have been initialized for this behavior.

82 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

Definitions Real Group ID

3.306 Real Group ID

The attribute of a process that, at the time of process creation, identifies the group of the user
who created the process; see also Section 3.188 (on page 63).

3.307 Real Time

Time measured as total units elapsed by the system clock without regard to which thread is
executing.

3.308 Realtime Signal Extension

A determinism improvement facility to enable asynchronous signal notifications to an
application to be queued without impacting compatibility with the existing signal functions.

3.309 Real User ID

The attribute of a process that, at the time of process creation, identifies the user who created the
process; see also Section 3.428 (on page 102).

3.310 Record

A collection of related data units or words which is treated as a unit.

3.311 Redirection

In the shell command language, a method of associating files with the input or output of
commands.

Note: For further information, see XCU Section 2.7 (on page 2312).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 83

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

Redirection Operator Definitions

3.312 Redirection Operator

In the shell command language, a token that performs a redirection function. It is one of the
following symbols:

< > >| << >> <& >& <<− <>

3.313 Referenced Shared Memory Object

A shared memory object that is open or has one or more mappings defined on it.

3.314 Refresh

To ensure that the information on the user’s terminal screen is up-to-date.

3.315 Regular Expression

A pattern that selects specific strings from a set of character strings.

Note: Regular Expressions are described in detail in Chapter 9 (on page 181).

3.316 Region

In the context of the address space of a process, a sequence of addresses.

In the context of a file, a sequence of offsets.

3.317 Regular File

A file that is a randomly accessible sequence of bytes, with no further structure imposed by the
system.

84 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

Definitions Relative Pathname

3.318 Relative Pathname

A pathname not beginning with a <slash> character.

Note: Pathname Resolution is defined in detail in Section 4.12 (on page 111).

3.319 Relocatable File

A file holding code or data suitable for linking with other object files to create an executable or a
shared object file.

3.320 Relocation

The process of connecting symbolic references with symbolic definitions. For example, when a
program calls a function, the associated call instruction transfers control to the proper
destination address at execution.

3.321 Requested Batch Service

A service that is either rejected or performed prior to a response from the service to the
requester.

3.322 (Time) Resolution

The minimum time interval that a clock can measure or whose passage a timer can detect.

3.323 Robust Mutex

A mutex with the robust attribute set.

Note: The robust attribute is defined in detail by the pthread_mutexattr_getrobust() function.

3.324 Root Directory

A directory, associated with a process, that is used in pathname resolution for pathnames that
begin with a <slash> character.

3.325 Runnable Process (or Thread)

A thread that is capable of being a running thread, but for which no processor is available.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 85

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

Running Process (or Thread) Definitions

3.326 Running Process (or Thread)

A thread currently executing on a processor. On multi-processor systems there may be more
than one such thread in a system at a time.

3.327 Saved Resource Limits

An attribute of a process that provides some flexibility in the handling of unrepresentable
resource limits, as described in the exec family of functions and setrlimit().

Note: The exec and setrlimit() functions are defined in detail in the System Interfaces volume of
POSIX.1-2008.

3.328 Saved Set-Group-ID

An attribute of a process that allows some flexibility in the assignment of the effective group ID
attribute, as described in the exec family of functions and setgid().

Note: The exec and setgid() functions are defined in detail in the System Interfaces volume of
POSIX.1-2008.

3.329 Saved Set-User-ID

An attribute of a process that allows some flexibility in the assignment of the effective user ID
attribute, as described in the exec family of functions and setuid().

Note: The exec and setuid() functions are defined in detail in the System Interfaces volume of
POSIX.1-2008.

3.330 Scheduling

The application of a policy to select a runnable process or thread to become a running process or
thread, or to alter one or more of the thread lists.

3.331 Scheduling Allocation Domain

The set of processors on which an individual thread can be scheduled at any given time.

3.332 Scheduling Contention Scope

A property of a thread that defines the set of threads against which that thread competes for
resources.

86 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

Definitions Scheduling Contention Scope

For example, in a scheduling decision, threads sharing scheduling contention scope compete for
processor resources. In POSIX.1-2008, a thread has scheduling contention scope of either
PTHREAD_SCOPE_SYSTEM or PTHREAD_SCOPE_PROCESS.

3.333 Scheduling Policy

A set of rules that is used to determine the order of execution of processes or threads to achieve
some goal.

Note: Scheduling Policy is defined in detail in Section 4.14 (on page 112).

3.334 Screen

A rectangular region of columns and lines on a terminal display. A screen may be a portion of a
physical display device or may occupy the entire physical area of the display device.

3.335 Scroll

To move the representation of data vertically or horizontally relative to the terminal screen.
There are two types of scrolling:

1. The cursor moves with the data.

2. The cursor remains stationary while the data moves.

3.336 Semaphore

A minimum synchronization primitive to serve as a basis for more complex synchronization
mechanisms to be defined by the application program.

Note: Semaphores are defined in detail in Section 4.16 (on page 113).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 87

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

Session Definitions

3.337 Session

A collection of process groups established for job control purposes. Each process group is a
member of a session. A process is considered to be a member of the session of which its process
group is a member. A newly created process joins the session of its creator. A process can alter
its session membership; see setsid(). There can be multiple process groups in the same session.

Note: The setsid() function is defined in detail in the System Interfaces volume of POSIX.1-2008.

3.338 Session Leader

A process that has created a session.

Note: For further information, see the setsid() function defined in the System Interfaces volume of
POSIX.1-2008.

3.339 Session Lifetime

The period between when a session is created and the end of the lifetime of all the process
groups that remain as members of the session.

3.340 Shared Memory Object

An object that represents memory that can be mapped concurrently into the address space of
more than one process.

3.341 Shell

A program that interprets sequences of text input as commands. It may operate on an input
stream or it may interactively prompt and read commands from a terminal.

3.342 Shell, the

The Shell Command Language Interpreter; a specific instance of a shell.

Note: For further information, see the sh utility defined in the Shell and Utilities volume of
POSIX.1-2008.

88 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

Definitions Shell Script

3.343 Shell Script

A file containing shell commands. If the file is made executable, it can be executed by specifying
its name as a simple command. Execution of a shell script causes a shell to execute the
commands within the script. Alternatively, a shell can be requested to execute the commands in
a shell script by specifying the name of the shell script as the operand to the sh utility.

Note: Simple Commands are defined in detail in XCU Section 2.9.1 (on page 2316).

The sh utility is defined in detail in the Shell and Utilities volume of POSIX.1-2008.

3.344 Signal

A mechanism by which a process or thread may be notified of, or affected by, an event occurring
in the system. Examples of such events include hardware exceptions and specific actions by
processes. The term signal is also used to refer to the event itself.

3.345 Signal Stack

Memory established for a thread, in which signal handlers catching signals sent to that thread
are executed.

3.346 Single-Quote Character

The character designated by ’\’’ in the C language, also known as <apostrophe>.

3.347 Slash Character (<slash>)

The character ’/’, also known as solidus.

3.348 Socket

A file of a particular type that is used as a communications endpoint for process-to-process
communication as described in the System Interfaces volume of POSIX.1-2008.

3.349 Socket Address

An address associated with a socket or remote endpoint, including an address family identifier
and addressing information specific to that address family. The address may include multiple
parts, such as a network address associated with a host system and an identifier for a specific
endpoint.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 89

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

Soft Limit Definitions

3.350 Soft Limit

A resource limitation established for each process that the process may set to any value less than
or equal to the hard limit.

3.351 Source Code

When dealing with the Shell Command Language, input to the command language interpreter.
The term ‘‘shell script’’ is synonymous with this meaning.

When dealing with an ISO/IEC-conforming programming language, source code is input to a
compiler conforming to that ISO/IEC standard.

Source code also refers to the input statements prepared for the following standard utilities: awk,
bc, ed, lex, localedef, make, sed, and yacc.

Source code can also refer to a collection of sources meeting any or all of these meanings.

Note: The awk, bc, ed, lex, localedef, make, sed, and yacc utilities are defined in detail in the Shell and
Utilities volume of POSIX.1-2008.

3.352 Space Character (<space>)

The character defined in the portable character set as <space>. The <space> character is a
member of the space character class of the current locale, but represents the single character, and
not all of the possible members of the class; see also Section 3.434 (on page 103).

3.353 Spawn

A process creation primitive useful for systems that have difficulty with fork() and as an efficient
replacement for fork()/exec.

3.354 Special Built-In

See Built-In Utility in Section 3.83 (on page 46).

90 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

Definitions Special Parameter

3.355 Special Parameter

In the shell command language, a parameter named by a single character from the following list:

* @ # ? ! − $ 0

Note: For further information, see XCU Section 2.5.2 (on page 2302).

3.356 Spin Lock

A synchronization object used to allow multiple threads to serialize their access to shared data.

3.357 Sporadic Server

A scheduling policy for threads and processes that reserves a certain amount of execution
capacity for processing aperiodic events at a given priority level.

3.358 Standard Error

An output stream usually intended to be used for diagnostic messages.

3.359 Standard Input

An input stream usually intended to be used for primary data input.

3.360 Standard Output

An output stream usually intended to be used for primary data output.

3.361 Standard Utilities

The utilities described in the Shell and Utilities volume of POSIX.1-2008.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 91

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

Stream Definitions

3.362 Stream

Appearing in lowercase, a stream is a file access object that allows access to an ordered sequence
of characters, as described by the ISO C standard. Such objects can be created by the fdopen(),
fmemopen(), fopen(), open_memstream(), or popen() functions, and are associated with a file
descriptor. A stream provides the additional services of user-selectable buffering and formatted
input and output; see also Section 3.363.

Note: For further information, see XSH Section 2.5 (on page 490).

The fdopen(), fmemopen(), fopen(), open_memstream(), and popen() functions are defined in detail
in the System Interfaces volume of POSIX.1-2008.

3.363 STREAM

Appearing in uppercase, STREAM refers to a full-duplex connection between a process and an
open device or pseudo-device. It optionally includes one or more intermediate processing
modules that are interposed between the process end of the STREAM and the device driver (or
pseudo-device driver) end of the STREAM; see also Section 3.362.

Note: For further information, see XSH Section 2.6 (on page 494).

3.364 STREAM End

The STREAM end is the driver end of the STREAM and is also known as the downstream end of
the STREAM.

3.365 STREAM Head

The STREAM head is the beginning of the STREAM and is at the boundary between the system
and the application process. This is also known as the upstream end of the STREAM.

3.366 STREAMS Multiplexor

A driver with multiple STREAMS connected to it. Multiplexing with STREAMS connected
above is referred to as N-to-1, or ‘‘upper multiplexing’’. Multiplexing with STREAMS connected
below is referred to as 1-to-N or ‘‘lower multiplexing’’.

3.367 String

A contiguous sequence of bytes terminated by and including the first null byte.

92 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

Definitions Subshell

3.368 Subshell

A shell execution environment, distinguished from the main or current shell execution
environment.

Note: For further information, see XCU Section 2.12 (on page 2331).

3.369 Successfully Transferred

For a write operation to a regular file, when the system ensures that all data written is readable
on any subsequent open of the file (even one that follows a system or power failure) in the
absence of a failure of the physical storage medium.

For a read operation, when an image of the data on the physical storage medium is available to
the requesting process.

3.370 Supplementary Group ID

An attribute of a process used in determining file access permissions. A process has up to
{NGROUPS_MAX} supplementary group IDs in addition to the effective group ID. The
supplementary group IDs of a process are set to the supplementary group IDs of the parent
process when the process is created.

3.371 Suspended Job

A job that has received a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal that caused the
process group to stop. A suspended job is a background job, but a background job is not
necessarily a suspended job.

3.372 Symbolic Constant

An object-like macro defined with a constant value.

Unless stated otherwise, the following shall apply to every symbolic constant:

• It expands to a compile-time constant expression with an integer type.

• It may be defined as another type of constant—e.g., an enumeration constant—as well as
being a macro.

• It need not be usable in #if preprocessing directives.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 93

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

Symbolic Link Definitions

3.373 Symbolic Link

A type of file with the property that when the file is encountered during pathname resolution, a
string stored by the file is used to modify the pathname resolution. The stored string has a
length of {SYMLINK_MAX} bytes or fewer.

Note: Pathname Resolution is defined in detail in Section 4.12 (on page 111).

3.374 Synchronized Input and Output

A determinism and robustness improvement mechanism to enhance the data input and output
mechanisms, so that an application can ensure that the data being manipulated is physically
present on secondary mass storage devices.

3.375 Synchronized I/O Completion

The state of an I/O operation that has either been successfully transferred or diagnosed as
unsuccessful.

3.376 Synchronized I/O Data Integrity Completion

For read, when the operation has been completed or diagnosed if unsuccessful. The read is
complete only when an image of the data has been successfully transferred to the requesting
process. If there were any pending write requests affecting the data to be read at the time that
the synchronized read operation was requested, these write requests are successfully transferred
prior to reading the data.

For write, when the operation has been completed or diagnosed if unsuccessful. The write is
complete only when the data specified in the write request is successfully transferred and all file
system information required to retrieve the data is successfully transferred.

File attributes that are not necessary for data retrieval (access time, modification time, status
change time) need not be successfully transferred prior to returning to the calling process.

3.377 Synchronized I/O File Integrity Completion

Identical to a synchronized I/O data integrity completion with the addition that all file
attributes relative to the I/O operation (including access time, modification time, status change
time) are successfully transferred prior to returning to the calling process.

3.378 Synchronized I/O Operation

An I/O operation performed on a file that provides the application assurance of the integrity of
its data and files.

94 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

Definitions Synchronous I/O Operation

3.379 Synchronous I/O Operation

An I/O operation that causes the thread requesting the I/O to be blocked from further use of the
processor until that I/O operation completes.

Note: A synchronous I/O operation does not imply synchronized I/O data integrity completion or
synchronized I/O file integrity completion.

3.380 Synchronously-Generated Signal

A signal that is attributable to a specific thread.

For example, a thread executing an illegal instruction or touching invalid memory causes a
synchronously-generated signal. Being synchronous is a property of how the signal was
generated and not a property of the signal number.

3.381 System

An implementation of POSIX.1-2008.

3.382 System Boot

An unspecified sequence of events that may result in the loss of transitory data; that is, data that
is not saved in permanent storage. For example, message queues, shared memory, semaphores,
and processes.

3.383 System Clock

A clock with at least one second resolution that contains seconds since the Epoch.

3.384 System Console

A device that receives messages sent by the syslog() function, and the fmtmsg() function when
the MM_CONSOLE flag is set.

Note: The syslog() and fmtmsg() functions are defined in detail in the System Interfaces volume of
POSIX.1-2008.

3.385 System Crash

An interval initiated by an unspecified circumstance that causes all processes (possibly other
than special system processes) to be terminated in an undefined manner, after which any

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 95

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

System Crash Definitions

changes to the state and contents of files created or written to by an application prior to the
interval are undefined, except as required elsewhere in POSIX.1-2008.

3.386 System Databases

An implementation provides two system databases: the ‘‘group database’’ (see also Section
3.187, on page 63) and the ‘‘user database’’ (see also Section 3.427, on page 101).

3.387 System Documentation

All documentation provided with an implementation except for the conformance document.
Electronically distributed documents for an implementation are considered part of the system
documentation.

3.388 System Process

An object other than a process executing an application, that is provided by the system and has a
process ID.

3.389 System Reboot

See System Boot defined in Section 3.382 (on page 95).

3.390 System Trace Event

A trace event that is generated by the implementation, in response either to a system-initiated
action or to an application-requested action, except for a call to posix_trace_event(). When
supported by the implementation, a system-initiated action generates a process-independent
system trace event and an application-requested action generates a process-dependent system
trace event. For a system trace event not defined by POSIX.1-2008, the associated trace event
type identifier is derived from the implementation-defined name for this trace event, and the
associated data is of implementation-defined content and length.

3.391 System-Wide

Pertaining to events occurring in all processes existing in an implementation at a given point in
time.

96 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

Definitions Tab Character (<tab>)

3.392 Tab Character (<tab>)

A character that in the output stream indicates that printing or displaying should start at the
next horizontal tabulation position on the current line. It is the character designated by ’\t’ in
the C language. If the current position is at or past the last defined horizontal tabulation
position, the behavior is unspecified. It is unspecified whether this character is the exact
sequence transmitted to an output device by the system to accomplish the tabulation.

3.393 Terminal (or Terminal Device)

A character special file that obeys the specifications of the general terminal interface.

Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 199).

3.394 Text Column

A roughly rectangular block of characters capable of being laid out side-by-side next to other
text columns on an output page or terminal screen. The widths of text columns are measured in
column positions.

3.395 Text File

A file that contains characters organized into zero or more lines. The lines do not contain NUL
characters and none can exceed {LINE_MAX} bytes in length, including the <newline>
character. Although POSIX.1-2008 does not distinguish between text files and binary files (see
the ISO C standard), many utilities only produce predictable or meaningful output when
operating on text files. The standard utilities that have such restrictions always specify ‘‘text
files’’ in their STDIN or INPUT FILES sections.

3.396 Thread

A single flow of control within a process. Each thread has its own thread ID, scheduling priority
and policy, errno value, thread-specific key/value bindings, and the required system resources to
support a flow of control. Anything whose address may be determined by a thread, including
but not limited to static variables, storage obtained via malloc(), directly addressable storage
obtained through implementation-defined functions, and automatic variables, are accessible to
all threads in the same process.

Note: The malloc() function is defined in detail in the System Interfaces volume of POSIX.1-2008.

3.397 Thread ID

Each thread in a process is uniquely identified during its lifetime by a value of type pthread_t
called a thread ID.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 97

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

Thread List Definitions

3.398 Thread List

An ordered set of runnable threads that all have the same ordinal value for their priority.

The ordering of threads on the list is determined by a scheduling policy or policies. The set of
thread lists includes all runnable threads in the system.

3.399 Thread-Safe

A function that may be safely invoked concurrently by multiple threads. Each function defined
in the System Interfaces volume of POSIX.1-2008 is thread-safe unless explicitly stated
otherwise. Examples are any ‘‘pure’’ function, a function which holds a mutex locked while it is
accessing static storage, or objects shared among threads.

3.400 Thread-Specific Data Key

A process global handle of type pthread_key_t which is used for naming thread-specific data.

Although the same key value may be used by different threads, the values bound to the key by
pthread_setspecific() and accessed by pthread_getspecific() are maintained on a per-thread basis
and persist for the life of the calling thread.

Note: The pthread_getspecific() and pthread_setspecific() functions are defined in detail in the System
Interfaces volume of POSIX.1-2008.

3.401 Tilde Character (<tilde>)

The character ’˜’.

3.402 Timeouts

A method of limiting the length of time an interface will block; see also Section 3.76 (on page 44).

3.403 Timer

A mechanism that can notify a thread when the time as measured by a particular clock has
reached or passed a specified value, or when a specified amount of time has passed.

3.404 Timer Overrun

A condition that occurs each time a timer, for which there is already an expiration signal queued
to the process, expires.

98 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

Definitions Token

3.405 Token

In the shell command language, a sequence of characters that the shell considers as a single unit
when reading input. A token is either an operator or a word.

Note: The rules for reading input are defined in detail in XCU Section 2.3 (on page 2299).

3.406 Trace Analyzer Process

A process that extracts trace events from a trace stream to retrieve information about the
behavior of an application.

3.407 Trace Controller Process

A process that creates a trace stream for tracing a process.

3.408 Trace Event

A data object that represents an action executed by the system, and that is recorded in a trace
stream.

3.409 Trace Event Type

A data object type that defines a class of trace event.

3.410 Trace Event Type Mapping

A one-to-one mapping between trace event types and trace event names.

3.411 Trace Filter

A filter that allows the trace controller process to specify those trace event types that are to be
ignored; that is, not generated.

3.412 Trace Generation Version

A data object that is an implementation-defined character string, generated by the trace system
and describing the origin and version of the trace system.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 99

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

Tr ace Log Definitions

3.413 Trace Log

The flushed image of a trace stream, if the trace stream is created with a trace log.

3.414 Trace Point

An action that may cause a trace event to be generated.

3.415 Trace Stream

An opaque object that contains trace events plus internal data needed to interpret those trace
events.

3.416 Trace Stream Identifier

A handle to manage tracing operations in a trace stream.

3.417 Trace System

A system that allows both system and user trace events to be generated into a trace stream.
These trace events can be retrieved later.

3.418 Traced Process

A process for which at least one trace stream has been created. A traced process is also called a
target process.

3.419 Tracing Status of a Trace Stream

A status that describes the state of an active trace stream. The tracing status of a trace stream can
be retrieved from the trace stream attributes. An active trace stream can be in one of two states:
running or suspended.

3.420 Typed Memory Name Space

A system-wide name space that contains the names of the typed memory objects present in the
system. It is configurable for a given implementation.

100 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

Definitions Typed Memory Object

3.421 Typed Memory Object

A combination of a typed memory pool and a typed memory port. The entire contents of the
pool are accessible from the port. The typed memory object is identified through a name that
belongs to the typed memory name space.

3.422 Typed Memory Pool

An extent of memory with the same operational characteristics. Typed memory pools may be
contained within each other.

3.423 Typed Memory Port

A hardware access path to one or more typed memory pools.

3.424 Unbind

Remove the association between a network address and an endpoint.

3.425 Unit Data

See Datagram in Section 3.124 (on page 53).

3.426 Upshifting

The conversion of a lowercase character that has a single-character uppercase representation into
this uppercase representation.

3.427 User Database

A system database that contains at least the following information for each user ID:

• User name

• Numerical user ID

• Initial numerical group ID

• Initial working directory

• Initial user program

The initial numerical group ID is used by the newgrp utility. Any other circumstances under
which the initial values are operative are implementation-defined.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 101

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

User Database Definitions

If the initial user program field is null, an implementation-defined program is used.

If the initial working directory field is null, the interpretation of that field is implementation-
defined.

Note: The newgrp utility is defined in detail in the Shell and Utilities volume of POSIX.1-2008.

3.428 User ID

A non-negative integer that is used to identify a system user. When the identity of a user is
associated with a process, a user ID value is referred to as a real user ID, an effective user ID, or
a saved set-user-ID.

3.429 User Name

A string that is used to identify a user; see also Section 3.427 (on page 101). To be portable across
systems conforming to POSIX.1-2008, the value is composed of characters from the portable
filename character set. The <hyphen> character should not be used as the first character of a
portable user name.

3.430 User Trace Event

A trace event that is generated explicitly by the application as a result of a call to
posix_trace_event().

3.431 Utility

A program, excluding special built-in utilities provided as part of the Shell Command Language,
that can be called by name from a shell to perform a specific task, or related set of tasks.

Note: For further information on special built-in utilities, see XCU Section 2.14 (on page 2334).

102 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

Definitions Variable

3.432 Variable

In the shell command language, a named parameter.

Note: For further information, see XCU Section 2.5 (on page 2301).

3.433 Vertical-Tab Character (<vertical-tab>)

A character that in the output stream indicates that printing should start at the next vertical
tabulation position. It is the character designated by ’\v’ in the C language. If the current
position is at or past the last defined vertical tabulation position, the behavior is unspecified. It is
unspecified whether this character is the exact sequence transmitted to an output device by the
system to accomplish the tabulation.

3.434 White Space

A sequence of one or more characters that belong to the space character class as defined via the
LC_CTYPE category in the current locale.

In the POSIX locale, white space consists of one or more <blank> (<space> and <tab>
characters), <newline>, <carriage-return>, <form-feed>, and <vertical-tab> characters.

3.435 Wide-Character Code (C Language)

An integer value corresponding to a single graphic symbol or control code.

Note: C Language Wide-Character Codes are defined in detail in Section 6.3 (on page 129).

3.436 Wide-Character Input/Output Functions

The functions that perform wide-oriented input from streams or wide-oriented output to
streams: fgetwc(), fgetws(), fputwc(), fputws(), fwprintf(), fwscanf(), getwc(), getwchar(), putwc(),
putwchar(), ungetwc(), vfwprintf(), vfwscanf(), vwprintf(), vwscanf(), wprintf(), and wscanf().

Note: These functions are defined in detail in the System Interfaces volume of POSIX.1-2008.

3.437 Wide-Character String

A contiguous sequence of wide-character codes terminated by and including the first null wide-
character code.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 103

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

Word Definitions

3.438 Word

In the shell command language, a token other than an operator. In some cases a word is also a
portion of a word token: in the various forms of parameter expansion, such as ${name−word},
and variable assignment, such as name=word, the word is the portion of the token depicted by
word. The concept of a word is no longer applicable following word expansions—only fields
remain.

Note: For further information, see XCU Section 2.6.2 (on page 2306) and Section 2.6 (on page 2305).

3.439 Working Directory (or Current Working Directory)

A directory, associated with a process, that is used in pathname resolution for pathnames that do
not begin with a <slash> character.

3.440 Worldwide Portability Interface

Functions for handling characters in a codeset-independent manner.

3.441 Write

To output characters to a file, such as standard output or standard error. Unless otherwise stated,
standard output is the default output destination for all uses of the term ‘‘write’’; see the
distinction between display and write in Section 3.133 (on page 54).

3.442 XSI

The X/Open System Interfaces (XSI) option is the core application programming interface for C
and sh programming for systems conforming to the Single UNIX Specification. This is a
superset of the mandatory requirements for conformance to POSIX.1-2008.

104 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

Definitions XSI-Conformant

3.443 XSI-Conformant

A system which allows an application to be built using a set of services that are consistent across
all systems that conform to POSIX.1-2008 and that support the XSI option.

Note: See also Chapter 2 (on page 15).

3.444 Zombie Process

A process that has terminated and that is deleted when its exit status has been reported to
another process which is waiting for that process to terminate.

3.445 ±0

The algebraic sign provides additional information about any variable that has the value zero
when the representation allows the sign to be determined.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 105

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

Definitions

106 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

Chapter 4

General Concepts

For the purposes of POSIX.1-2008, the general concepts given in Chapter 4 apply.

Note: No shading to denote extensions or options occurs in this chapter. Where the terms and
definitions given in this chapter are used elsewhere in text related to extensions and options,
they are shaded as appropriate.

4.1 Concurrent Execution

Functions that suspend the execution of the calling thread shall not cause the execution of other
threads to be indefinitely suspended.

4.2 Directory Protection

If a directory is writable and the mode bit S_ISVTX is set on the directory, a process may remove
or rename files within that directory only if one or more of the following is true:

• The effective user ID of the process is the same as that of the owner ID of the file.

• The effective user ID of the process is the same as that of the owner ID of the directory.

• The process has appropriate privileges.

• Optionally, the file is writable by the process. Whether or not files that are writable by the
process can be removed or renamed is implementation-defined.

If the S_ISVTX bit is set on a non-directory file, the behavior is unspecified.

4.3 Extended Security Controls

An implementation may provide implementation-defined extended security controls (see
Section 3.160, on page 58). These permit an implementation to provide security mechanisms to
implement different security policies than those described in POSIX.1-2008. These mechanisms
shall not alter or override the defined semantics of any of the interfaces in POSIX.1-2008.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 107

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

File Access Permissions General Concepts

4.4 File Access Permissions

The standard file access control mechanism uses the file permission bits, as described below.

Implementations may provide additional or alternate file access control mechanisms, or both. An
additional access control mechanism shall only further restrict the access permissions defined by
the file permission bits. An alternate file access control mechanism shall:

• Specify file permission bits for the file owner class, file group class, and file other class of
that file, corresponding to the access permissions.

• Be enabled only by explicit user action, on a per-file basis by the file owner or a user with
appropriate privileges.

• Be disabled for a file after the file permission bits are changed for that file with chmod().
The disabling of the alternate mechanism need not disable any additional mechanisms
supported by an implementation.

Whenever a process requests file access permission for read, write, or execute/search, if no
additional mechanism denies access, access shall be determined as follows:

• If a process has appropriate privileges:

— If read, write, or directory search permission is requested, access shall be granted.

— If execute permission is requested, access shall be granted if execute permission is
granted to at least one user by the file permission bits or by an alternate access
control mechanism; otherwise, access shall be denied.

• Otherwise:

— The file permission bits of a file contain read, write, and execute/search permissions
for the file owner class, file group class, and file other class.

— Access shall be granted if an alternate access control mechanism is not enabled and
the requested access permission bit is set for the class (file owner class, file group
class, or file other class) to which the process belongs, or if an alternate access control
mechanism is enabled and it allows the requested access; otherwise, access shall be
denied.

POSIX.1-2008 does not provide a way to open a directory for searching. It is unspecified
whether directory search permission is granted based on the file access modes of the directory’s
file descriptor or on the mode of the directory at the time the directory is searched.

4.5 File Hierarchy

Files in the system are organized in a hierarchical structure in which all of the non-terminal
nodes are directories and all of the terminal nodes are any other type of file. Since multiple
directory entries may refer to the same file, the hierarchy is properly described as a ‘‘directed
graph’’.

108 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

General Concepts Filenames

4.6 Filenames

Uppercase and lowercase letters shall retain their unique identities between conforming
implementations.

4.7 Filename Portability

For a filename to be portable across implementations conforming to POSIX.1-2008, it shall
consist only of the portable filename character set as defined in Section 3.276 (on page 77).

Portable filenames shall not have the <hyphen> character as the first character since this may
cause problems when filenames are passed as command line arguments.

4.8 File Times Update

Each file has three distinct associated timestamps: the time of last data access, the time of last
data modification, and the time the file status last changed. These values are returned in the file
characteristics structure struct stat, as described in <sys/stat.h> (on page 388).

Each function or utility in POSIX.1-2008 that reads or writes data (even if the data does not
change) or performs an operation to change file status (even if the file status does not change)
indicates which of the appropriate timestamps shall be marked for update. If an implementation
of such a function or utility marks for update one of these timestamps in a place or time not
specified by POSIX.1-2008, this shall be documented, except that any changes caused by
pathname resolution need not be documented. For the other functions or utilities in
POSIX.1-2008 (those that are not explicitly required to read or write file data or change file
status, but that in some implementations happen to do so), the effect is unspecified.

An implementation may update timestamps that are marked for update immediately, or it may
update such timestamps periodically. At the point in time when an update occurs, any marked
timestamps shall be set to the current time and the update marks shall be cleared. All
timestamps that are marked for update shall be updated when the file ceases to be open by any
process or before a fstat(), fstatat(), fsync(), futimens(), lstat(), stat(), utime(), utimensat(), or
utimes() is successfully performed on the file. Other times at which updates are done are
unspecified. Marks for update, and updates themselves, shall not be done for files on read-only
file systems; see Section 3.304 (on page 82).

The resolution of timestamps of files in a file system is implementation-defined, but shall be no
coarser than one-second resolution. The three timestamps shall always have values that are
supported by the file system. Whenever any of a file’s timestamps are to be set to a value V
according to the rules of the preceding paragraphs of this section, the implementation shall
immediately set the timestamp to the greatest value supported by the file system that is not
greater than V .

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 109

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

Host and Network Byte Orders General Concepts

4.9 Host and Network Byte Orders

When data is transmitted over the network, it is sent as a sequence of octets (8-bit unsigned
values). If an entity (such as an address or a port number) can be larger than 8 bits, it needs to be
stored in several octets. The convention is that all such values are stored with 8 bits in each octet,
and with the first (lowest-addressed) octet holding the most-significant bits. This is called
‘‘network byte order ’’.

Network byte order may not be convenient for processing actual values. For this, it is more
sensible for values to be stored as ordinary integers. This is known as ‘‘host byte order ’’. In host
byte order:

• The most significant bit might not be stored in the first byte in address order.

• Bits might not be allocated to bytes in any obvious order at all.

8-bit values stored in uint8_t objects do not require conversion to or from host byte order, as
they have the same representation. 16 and 32-bit values can be converted using the htonl(),
htons(), ntohl(), and ntohs() functions. When reading data that is to be converted to host byte
order, it should either be received directly into a uint16_t or uint32_t object or should be copied
from an array of bytes using memcpy() or similar. Passing the data through other types could
cause the byte order to be changed. Similar considerations apply when sending data.

4.10 Measurement of Execution Time

The mechanism used to measure execution time shall be implementation-defined. The
implementation shall also define to whom the CPU time that is consumed by interrupt handlers
and system services on behalf of the operating system will be charged. See Section 3.118 (on
page 52).

4.11 Memory Synchronization

Applications shall ensure that access to any memory location by more than one thread of control
(threads or processes) is restricted such that no thread of control can read or modify a memory
location while another thread of control may be modifying it. Such access is restricted using
functions that synchronize thread execution and also synchronize memory with respect to other
threads. The following functions synchronize memory with respect to other threads:

fork()
pthread_barrier_wait()
pthread_cond_broadcast()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_create()
pthread_join()
pthread_mutex_lock()
pthread_mutex_timedlock()

pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_spin_lock()
pthread_spin_trylock()
pthread_spin_unlock()
pthread_rwlock_rdlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()
pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()

pthread_rwlock_unlock()
pthread_rwlock_wrlock()
sem_post()
sem_timedwait()
sem_trywait()
sem_wait()
semctl()
semop()
wait()
waitpid()

The pthread_once() function shall synchronize memory for the first call in each thread for a given
pthread_once_t object.

110 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

General Concepts Memory Synchronization

The pthread_mutex_lock() function need not synchronize memory if the mutex type if
PTHREAD_MUTEX_RECURSIVE and the calling thread already owns the mutex. The
pthread_mutex_unlock() function need not synchronize memory if the mutex type is
PTHREAD_MUTEX_RECURSIVE and the mutex has a lock count greater than one.

Unless explicitly stated otherwise, if one of the above functions returns an error, it is unspecified
whether the invocation causes memory to be synchronized.

Applications may allow more than one thread of control to read a memory location
simultaneously.

4.12 Pathname Resolution

Pathname resolution is performed for a process to resolve a pathname to a particular directory
entry for a file in the file hierarchy. There may be multiple pathnames that resolve to the same
directory entry, and multiple directory entries for the same file. When a process resolves a
pathname of an existing directory entry, the entire pathname shall be resolved as described
below. When a process resolves a pathname of a directory entry that is to be created immediately
after the pathname is resolved, pathname resolution terminates when all components of the path
prefix of the last component have been resolved. It is then the responsibility of the process to
create the final component.

Each filename in the pathname is located in the directory specified by its predecessor (for
example, in the pathname fragment a/b, file b is located in directory a). Pathname resolution
shall fail if this cannot be accomplished. If the pathname begins with a <slash>, the predecessor
of the first filename in the pathname shall be taken to be the root directory of the process (such
pathnames are referred to as ‘‘absolute pathnames’’). If the pathname does not begin with a
<slash>, the predecessor of the first filename of the pathname shall be taken to be either the
current working directory of the process or for certain interfaces the directory identified by a file
descriptor passed to the interface (such pathnames are referred to as ‘‘relative pathnames’’).

The interpretation of a pathname component is dependent on the value of {NAME_MAX} and
_POSIX_NO_TRUNC associated with the path prefix of that component. If any pathname
component is longer than {NAME_MAX}, the implementation shall consider this an error.

A pathname that contains at least one non-<slash> character and that ends with one or more
trailing <slash> characters shall not be resolved successfully unless the last pathname
component before the trailing <slash> characters names an existing directory or a directory
entry that is to be created for a directory immediately after the pathname is resolved. Interfaces
using pathname resolution may specify additional constraints6 when a pathname that does not
name an existing directory contains at least one non-<slash> character and contains one or more
trailing <slash> characters.

If a symbolic link is encountered during pathname resolution, the behavior shall depend on
whether the pathname component is at the end of the pathname and on the function being
performed. If all of the following are true, then pathname resolution is complete:

1. This is the last pathname component of the pathname.

2. The pathname has no trailing <slash>.

6. The only interfaces that further constrain pathnames in POSIX.1-2008 are the rename() and renameat() functions (see XSH rename())

and the mv utility (see XCU mv).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 111

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

Pathname Resolution General Concepts

3. The function is required to act on the symbolic link itself, or certain arguments direct that
the function act on the symbolic link itself.

In all other cases, the system shall prefix the remaining pathname, if any, with the contents of the
symbolic link. If the combined length exceeds {PATH_MAX}, and the implementation considers
this to be an error, errno shall be set to [ENAMETOOLONG] and an error indication shall be
returned. Otherwise, the resolved pathname shall be the resolution of the pathname just created.
If the resulting pathname does not begin with a <slash>, the predecessor of the first filename of
the pathname is taken to be the directory containing the symbolic link.

If the system detects a loop in the pathname resolution process, it shall set errno to [ELOOP] and
return an error indication. The same may happen if during the resolution process more symbolic
links were followed than the implementation allows. This implementation-defined limit shall
not be smaller than {SYMLOOP_MAX}.

The special filename dot shall refer to the directory specified by its predecessor. The special
filename dot-dot shall refer to the parent directory of its predecessor directory. As a special case,
in the root directory, dot-dot may refer to the root directory itself.

A pathname consisting of a single <slash> shall resolve to the root directory of the process. A
null pathname shall not be successfully resolved. A pathname that begins with two successive
<slash> characters may be interpreted in an implementation-defined manner, although more
than two leading <slash> characters shall be treated as a single <slash> character.

Pathname resolution for a given pathname shall yield the same results when used by any
interface in POSIX.1-2008 as long as there are no changes to any files evaluated during pathname
resolution for the given pathname between resolutions.

4.13 Process ID Reuse

A process group ID shall not be reused by the system until the process group lifetime ends.

A process ID shall not be reused by the system until the process lifetime ends. In addition, if
there exists a process group whose process group ID is equal to that process ID, the process ID
shall not be reused by the system until the process group lifetime ends. A process that is not a
system process shall not have a process ID of 1.

4.14 Scheduling Policy

A scheduling policy affects process or thread ordering:

• When a process or thread is a running thread and it becomes a blocked thread

• When a process or thread is a running thread and it becomes a preempted thread

• When a process or thread is a blocked thread and it becomes a runnable thread

• When a running thread calls a function that can change the priority or scheduling policy of
a process or thread

• In other scheduling policy-defined circumstances

Conforming implementations shall define the manner in which each of the scheduling policies
may modify the priorities or otherwise affect the ordering of processes or threads at each of the
occurrences listed above. Additionally, conforming implementations shall define in what other

112 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

General Concepts Scheduling Policy

circumstances and in what manner each scheduling policy may modify the priorities or affect
the ordering of processes or threads.

4.15 Seconds Since the Epoch

A value that approximates the number of seconds that have elapsed since the Epoch. A
Coordinated Universal Time name (specified in terms of seconds (tm_sec), minutes (tm_min),
hours (tm_hour), days since January 1 of the year (tm_yday), and calendar year minus 1900
(tm_year)) is related to a time represented as seconds since the Epoch, according to the
expression below.

If the year is <1970 or the value is negative, the relationship is undefined. If the year is ≥1970 and
the value is non-negative, the value is related to a Coordinated Universal Time name according
to the C-language expression, where tm_sec, tm_min, tm_hour, tm_yday, and tm_year are all
integer types:

tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
(tm_year−70)*31536000 + ((tm_year−69)/4)*86400 −
((tm_year−1)/100)*86400 + ((tm_year+299)/400)*86400

The relationship between the actual time of day and the current value for seconds since the
Epoch is unspecified.

How any changes to the value of seconds since the Epoch are made to align to a desired
relationship with the current actual time is implementation-defined. As represented in seconds
since the Epoch, each and every day shall be accounted for by exactly 86 400 seconds.

Note: The last three terms of the expression add in a day for each year that follows a leap year starting
with the first leap year since the Epoch. The first term adds a day every 4 years starting in 1973,
the second subtracts a day back out every 100 years starting in 2001, and the third adds a day
back in every 400 years starting in 2001. The divisions in the formula are integer divisions; that
is, the remainder is discarded leaving only the integer quotient.

4.16 Semaphore

A minimum synchronization primitive to serve as a basis for more complex synchronization
mechanisms to be defined by the application program.

For the semaphores associated with the Semaphores option, a semaphore is represented as a
shareable resource that has a non-negative integer value. When the value is zero, there is a
(possibly empty) set of threads awaiting the availability of the semaphore.

For the semaphores associated with the X/Open System Interfaces (XSI) option, a semaphore is
a positive integer (0 through 32767). The semget() function can be called to create a set or array of
semaphores. A semaphore set can contain one or more semaphores up to an implementation-
defined value.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 113

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

Semaphore General Concepts

Semaphore Lock Operation

An operation that is applied to a semaphore. If, prior to the operation, the value of the
semaphore is zero, the semaphore lock operation shall cause the calling thread to be blocked and
added to the set of threads awaiting the semaphore; otherwise, the value shall be decremented.

Semaphore Unlock Operation

An operation that is applied to a semaphore. If, prior to the operation, there are any threads in
the set of threads awaiting the semaphore, then some thread from that set shall be removed from
the set and becomes unblocked; otherwise, the semaphore value shall be incremented.

4.17 Thread-Safety

Refer to XSH Section 2.9 (on page 507).

4.18 Tracing

The trace system allows a traced process to have a selection of events created for it. Traces
consist of streams of trace event types.

A trace event type is identified on the one hand by a trace event type name, also referenced as a
trace event name, and on the other hand by a trace event type identifier. A trace event name is a
human-readable string. A trace event type identifier is an opaque identifier used by the trace
system. There shall be a one-to-one relationship between trace event type identifiers and trace
event names for a given trace stream and also for a given traced process. The trace event type
identifier shall be generated automatically from a trace event name by the trace system either
when a trace controller process invokes posix_trace_trid_eventid_open() or when an instrumented
application process invokes posix_trace_eventid_open(). Trace event type identifiers are used to
filter trace event types, to allow interpretation of user data, and to identify the kind of trace
point that generated a trace event.

Each trace event shall be of a particular trace event type, and associated with a trace event type
identifier. The execution of a trace point shall generate a trace event if a trace stream has been
created and started for the process that executed the trace point and if the corresponding trace
event type identifier is not ignored by filtering.

A generated trace event shall be recorded in a trace stream, and optionally also in a trace log if a
trace log is associated with the trace stream, except that:

• For a trace stream, if no resources are available for the event, the event is lost.

• For a trace log, if no resources are available for the event, or a flush operation does not
succeed, the event is lost.

A trace event recorded in an active trace stream may be retrieved by an application having
appropriate privileges.

A trace event recorded in a trace log may be retrieved by an application having appropriate
privileges after opening the trace log as a pre-recorded trace stream, with the function
posix_trace_open().

114 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

General Concepts Tr acing

When a trace event is reported it is possible to retrieve the following:

• A trace event type identifier

• A timestamp

• The process ID of the traced process, if the trace event is process-dependent

• Any optional trace event data including its length

• If the Threads option is supported, the thread ID, if the trace event is process-dependent

• The program address at which the trace point was invoked

Trace events may be mapped from trace event types to trace event names. One such mapping
shall be associated with each trace stream. An active trace stream is associated with a traced
process, and also with its children if the Trace Inherit option is supported and also the
inheritance policy is set to _POSIX_TRACE_INHERIT. Therefore each traced process has a
mapping of the trace event names to trace event type identifiers that have been defined for that
process.

Traces can be recorded into either trace streams or trace logs.

The implementation and format of a trace stream are unspecified. A trace stream need not be
and generally is not persistent. A trace stream may be either active or pre-recorded:

• An active trace stream is a trace stream that has been created and has not yet been shut
down. It can be of one of the two following classes:

1. An active trace stream without a trace log that was created with the
posix_trace_create() function

2. If the Trace Log option is supported, an active trace stream with a trace log that was
created with the posix_trace_create_withlog() function

• A pre-recorded trace stream is a trace stream that was opened from a trace log object using
the posix_trace_open() function.

An active trace stream can loop. This behavior means that when the resources allocated by the
trace system for the trace stream are exhausted, the trace system reuses the resources associated
with the oldest recorded trace events to record new trace events.

If the Trace Log option is supported, an active trace stream with a trace log can be flushed. This
operation causes the trace system to write trace events from the trace stream to the associated
trace log, following the defined policies or using an explicit function call. After this operation,
the trace system may reuse the resources associated with the flushed trace events.

An active trace stream with or without a trace log can be cleared. This operation shall cause all
the resources associated with this trace stream to be reinitialized. The trace stream shall behave
as if it was returning from its creation, except that the mapping of trace event type identifiers to
trace event names shall not be cleared. If a trace log was associated with this trace stream, the
trace log shall also be reinitialized.

A trace log shall be recorded when the posix_trace_shutdown() operation is invoked or during
tracing, depending on the tracing strategy which is defined by a log policy. After the trace
stream has been shut down, the trace information can be retrieved from the associated trace log
using the same interface used to retrieve information from an active trace stream.

For a traced process, if the Trace Inherit option is supported and the trace stream’s inheritance
attribute is _POSIX_TRACE_INHERIT, the initial targeted traced process shall be traced together
with all of its future children. The posix_pid member of each trace event in a trace stream shall be
the process ID of the traced process.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 115

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

Tr acing General Concepts

Each trace point may be an implementation-defined action such as a context switch, or an
application-programmed action such as a call to a specific operating system service (for
example, fork()) or a call to posix_trace_event().

Trace points may be filtered. The operation of the filter is to filter out (ignore) selected trace
events. By default, no trace events are filtered.

The results of the tracing operations can be analyzed and monitored by a trace controller process
or a trace analyzer process.

Only the trace controller process has control of the trace stream it has created. The control of the
operation of a trace stream is done using its corresponding trace stream identifier. The trace
controller process is able to:

• Initialize the attributes of a trace stream

• Create the trace stream

• Start and stop tracing

• Know the mapping of the traced process

• If the Trace Event Filter option is supported, filter the type of trace events to be recorded

• Shut the trace stream down

A traced process may also be a trace controller process. Only the trace controller process can
control its trace stream(s). A trace stream created by a trace controller process shall be shut down
if its controller process terminates or executes another file.

A trace controller process may also be a trace analyzer process. Trace analysis can be done
concurrently with the traced process or can be done off-line, in the same or in a different
platform.

4.19 Treatment of Error Conditions for Mathematical Functions

For all the functions in the <math.h> header, an application wishing to check for error situations
should set errno to 0 and call feclearexcept(FE_ALL_EXCEPT) before calling the function. On
return, if errno is non-zero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW |
FE_UNDERFLOW) is non-zero, an error has occurred.

The following error conditions are defined for all functions in the <math.h> header.

4.19.1 Domain Error

A ‘‘domain error ’’ shall occur if an input argument is outside the domain over which the
mathematical function is defined. The description of each function lists any required domain
errors; an implementation may define additional domain errors, provided that such errors are
consistent with the mathematical definition of the function.

On a domain error, the function shall return an implementation-defined value; if the integer
expression (math_errhandling & MATH_ERRNO) is non-zero, errno shall be set to [EDOM]; if
the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, the ‘‘invalid’’
floating-point exception shall be raised.

116 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

General Concepts Tr eatment of Error Conditions for Mathematical Functions

4.19.2 Pole Error

A ‘‘pole error ’’ occurs if the mathematical result of the function is an exact infinity (for example,
log(0.0)).

On a pole error, the function shall return the value of the macro HUGE_VAL, HUGE_VALF, or
HUGE_VALL according to the return type, with the same sign as the correct value of the
function; if the integer expression (math_errhandling & MATH_ERRNO) is non-zero, errno shall
be set to [ERANGE]; if the integer expression (math_errhandling & MATH_ERREXCEPT) is non-
zero, the ‘‘divide-by-zero’’ floating-point exception shall be raised.

4.19.3 Range Error

A ‘‘range error ’’ shall occur if the finite mathematical result of the function cannot be
represented in an object of the specified type, due to extreme magnitude.

4.19.3.1 Result Overflows

A floating result overflows if the magnitude of the mathematical result is finite but so large that
the mathematical result cannot be represented without extraordinary roundoff error in an object
of the specified type. If a floating result overflows and default rounding is in effect, then the
function shall return the value of the macro HUGE_VAL, HUGE_VALF, or HUGE_VALL
according to the return type, with the same sign as the correct value of the function; if the integer
expression (math_errhandling & MATH_ERRNO) is non-zero, errno shall be set to [ERANGE]; if
the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, the ‘‘overflow’’
floating-point exception shall be raised.

4.19.3.2 Result Underflows

The result underflows if the magnitude of the mathematical result is so small that the
mathematical result cannot be represented, without extraordinary roundoff error, in an object of
the specified type. If the result underflows, the function shall return an implementation-defined
value whose magnitude is no greater than the smallest normalized positive number in the
specified type; if the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
whether errno is set to [ERANGE] is implementation-defined; if the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, whether the ‘‘underflow’’ floating-point
exception is raised is implementation-defined.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 117

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

Tr eatment of NaN Arguments for the Mathematical Functions General Concepts

4.20 Treatment of NaN Arguments for the Mathematical Functions

For functions called with a NaN argument, no errors shall occur and a NaN shall be returned,
except where stated otherwise.

If a function with one or more NaN arguments returns a NaN result, the result should be the
same as one of the NaN arguments (after possible type conversion), except perhaps for the sign.

On implementations that support the IEC 60559: 1989 standard floating point, functions with
signaling NaN argument(s) shall be treated as if the function were called with an argument that
is a required domain error and shall return a quiet NaN result, except where stated otherwise.

Note: The function might never see the signaling NaN, since it might trigger when the arguments are
evaluated during the function call.

On implementations that support the IEC 60559: 1989 standard floating point, for those
functions that do not have a documented domain error, the following shall apply:

These functions shall fail if:

Domain Error Any argument is a signaling NaN.

Either, the integer expression (math_errhandling & MATH_ERRNO) is non-zero and errno
shall be set to [EDOM], or the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero and the invalid floating-point exception shall be raised.

4.21 Utility

A utility program shall be either an executable file, such as might be produced by a compiler or
linker system from computer source code, or a file of shell source code, directly interpreted by
the shell. The program may have been produced by the user, provided by the system
implementor, or acquired from an independent distributor.

The system may implement certain utilities as shell functions (see XCU Section 2.9.5, on page
2324) or built-in utilities, but only an application that is aware of the command search order (as
described in XCU Section 2.9.1.1, on page 2317) or of performance characteristics can discern
differences between the behavior of such a function or built-in utility and that of an executable
file.

4.22 Variable Assignment

In the shell command language, a word consisting of the following parts:

varname=value

When used in a context where assignment is defined to occur and at no other time, the value
(representing a word or field) shall be assigned as the value of the variable denoted by varname.

Note: For further information, see XCU Section 2.9.1 (on page 2316).

The varname and value parts shall meet the requirements for a name and a word, respectively,
except that they are delimited by the embedded unquoted <equals-sign>, in addition to other
delimiters.

118 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

General Concepts Variable Assignment

Note: Additional delimiters are described in XCU Section 2.3 (on page 2299).

When a variable assignment is done, the variable shall be created if it did not already exist. If
value is not specified, the variable shall be given a null value.

Note: An alternative form of variable assignment:

symbol=value

(where symbol is a valid word delimited by an <equals-sign>, but not a valid name) produces
unspecified results. The form symbol=value is used by the KornShell name[expression]=value
syntax.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 119

3281

3282

3283

3284

3285

3286

3287

3288

General Concepts

120 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

Chapter 5

File Format Notation

The STDIN, STDOUT, STDERR, INPUT FILES, and OUTPUT FILES sections of the utility
descriptions use a syntax to describe the data organization within the files, when that
organization is not otherwise obvious. The syntax is similar to that used by the System Interfaces
volume of POSIX.1-2008 printf() function, as described in this chapter. When used in STDIN or
INPUT FILES sections of the utility descriptions, this syntax describes the format that could
have been used to write the text to be read, not a format that could be used by the System
Interfaces volume of POSIX.1-2008 scanf() function to read the input file.

The description of an individual record is as follows:

"<format>", [<arg1>, <arg2>,..., <argn>]

The format is a character string that contains three types of objects defined below:

1. Characters that are not ‘‘escape sequences’’ or ‘‘conversion specifications’’, as described
below, shall be copied to the output.

2. Escape Sequences represent non-graphic characters.

3. Conversion Specifications specify the output format of each argument; see below.

The following characters have the following special meaning in the format string:

’’ (An empty character position.) Represents one or more <blank> characters.

∆ Represents exactly one <space> character.

Table 5-1 lists escape sequences and associated actions on display devices capable of the action.

Table 5-1 Escape Sequences and Associated Actions

Escape Represents
Sequence Character Terminal Action

\\ <backslash> Print the <backslash> character.
\a <alert> Attempt to alert the user through audible or visible notification.
\b <backspace> Move the printing position to one column before the current

position, unless the current position is the start of a line.
\f <form-feed> Move the printing position to the initial printing position of the

next logical page.
\n <newline> Move the printing position to the start of the next line.
\r <carriage-return> Move the printing position to the start of the current line.
\t <tab> Move the printing position to the next tab position on the current

line. If there are no more tab positions remaining on the line, the
behavior is undefined.

\v <vertical-tab> Move the printing position to the start of the next <vertical-tab>
position. If there are no more <vertical-tab> positions left on the
page, the behavior is undefined.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 121

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

File Format Notation

Each conversion specification is introduced by the <percent-sign> character (’%’). After the
character ’%’, the following shall appear in sequence:

flags Zero or more flags, in any order, that modify the meaning of the conversion
specification.

field width An optional string of decimal digits to specify a minimum field width. For an
output field, if the converted value has fewer bytes than the field width, it shall be
padded on the left (or right, if the left-adjustment flag (’−’), described below, has
been given) to the field width.

precision Gives the minimum number of digits to appear for the d, o, i, u, x, or X conversion
specifiers (the field is padded with leading zeros), the number of digits to appear
after the radix character for the e and f conversion specifiers, the maximum
number of significant digits for the g conversion specifier; or the maximum
number of bytes to be written from a string in the s conversion specifier. The
precision shall take the form of a <period> (’.’) followed by a decimal digit
string; a null digit string is treated as zero.

conversion specifier characters
A conversion specifier character (see below) that indicates the type of conversion
to be applied.

The flag characters and their meanings are:

− The result of the conversion shall be left-justified within the field.

+ The result of a signed conversion shall always begin with a sign (’+’ or ’−’).

<space> If the first character of a signed conversion is not a sign, a <space> shall be
prefixed to the result. This means that if the <space> and ’+’ flags both appear,
the <space> flag shall be ignored.

The value shall be converted to an alternative form. For c, d, i, u, and s
conversion specifiers, the behavior is undefined. For the o conversion specifier, it
shall increase the precision to force the first digit of the result to be a zero. For x or
X conversion specifiers, a non-zero result has 0x or 0X prefixed to it, respectively.
For a, A, e, E, f, F, g, and G conversion specifiers, the result shall always contain a
radix character, even if no digits follow the radix character. For g and G conversion
specifiers, trailing zeros shall not be removed from the result as they usually are.

0 For a, A, d, e, E, f, F, g, G, i, o, u, x, and X conversion specifiers, leading zeros
(following any indication of sign or base) shall be used to pad to the field width
rather than performing space padding, except when converting an infinity or NaN.
If the ’0’ and ’−’ flags both appear, the ’0’ flag shall be ignored. For d, i, o, u,
x, and X conversion specifiers, if a precision is specified, the ’0’ flag shall be
ignored. For other conversion specifiers, the behavior is undefined.

Each conversion specifier character shall result in fetching zero or more arguments. The results
are undefined if there are insufficient arguments for the format. If the format is exhausted while
arguments remain, the excess arguments shall be ignored.

The conversion specifiers and their meanings are:

a,A The floating-point number argument representing a floating-point number shall be
converted in the style "[−]0xh.hhhhp±d", where there is one hexadecimal digit
(which shall be non-zero if the argument is a normalized floating-point number
and is otherwise unspecified) before the decimal-point character and the number
of hexadecimal digits after it is equal to the precision; if the precision is missing

122 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

File Format Notation

and FLT_RADIX is a power of 2, then the precision shall be sufficient for an exact
representation of the value; if the precision is missing and FLT_RADIX is not a
power of 2, then the precision shall be sufficient to distinguish different floating-
point values in the internal representation used by the utility, except that trailing
zeros may be omitted; if the precision is zero and the # flag is not specified, no
decimal-point character shall appear. The letters "abcdef" shall be used for a
conversion and the letters "ABCDEF" for A conversion. The A conversion specifier
produces a number with X and P instead of x and p. The exponent shall always
contain at least one digit, and only as many more digits as necessary to represent
the decimal exponent of 2. If the value is zero, the exponent shall be zero. A
floating-point number argument representing an infinity or NaN shall be
converted in the style of an f or F conversion specifier.

d,i,o,u,x,X The integer argument shall be written as signed decimal (d or i), unsigned octal
(o), unsigned decimal (u), or unsigned hexadecimal notation (x and X). The d and
i specifiers shall convert to signed decimal in the style "[−]dddd". The x
conversion specifier shall use the numbers and letters "0123456789abcdef" and
the X conversion specifier shall use the numbers and letters
"0123456789ABCDEF". The precision component of the argument shall specify
the minimum number of digits to appear. If the value being converted can be
represented in fewer digits than the specified minimum, it shall be expanded with
leading zeros. The default precision shall be 1. The result of converting a zero
value with a precision of 0 shall be no characters. If both the field width and
precision are omitted, the implementation may precede, follow, or precede and
follow numeric arguments of types d, i, and u with <blank> characters; arguments
of type o (octal) may be preceded with leading zeros.

f,F The floating-point number argument shall be written in decimal notation in the
style [−]ddd.ddd, where the number of digits after the radix character (shown here
as a decimal point) shall be equal to the precision specification. The LC_NUMERIC
locale category shall determine the radix character to use in this format. If the
precision is omitted from the argument, six digits shall be written after the radix
character; if the precision is explicitly 0, no radix character shall appear.

A floating-point number argument representing an infinity shall be converted in
one of the styles "[−]inf" or "[−]infinity"; which style is implementation-
defined. A floating-point number argument representing a NaN shall be converted
in one of the styles "[−]nan(n-char-sequence)" or "[−]nan"; which style,
and the meaning of any n-char-sequence, is implementation-defined. The F
conversion specifier produces "INF", "INFINITY", or "NAN" instead of "inf",
"infinity", or "nan", respectively.

e,E The floating-point number argument shall be written in the style [−]d.ddde±dd (the
symbol ’±’ indicates either a <plus-sign> or minus-sign), where there is one digit
before the radix character (shown here as a decimal point) and the number of
digits after it is equal to the precision. The LC_NUMERIC locale category shall
determine the radix character to use in this format. When the precision is missing,
six digits shall be written after the radix character; if the precision is 0, no radix
character shall appear. The E conversion specifier shall produce a number with E
instead of e introducing the exponent. The exponent shall always contain at least
two digits. However, if the value to be written requires an exponent greater than
two digits, additional exponent digits shall be written as necessary.

A floating-point number argument representing an infinity or NaN shall be
converted in the style of an f or F conversion specifier.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 123

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

File Format Notation

g,G The floating-point number argument shall be written in style f or e (or in style F
or E in the case of a G conversion specifier), with the precision specifying the
number of significant digits. The style used depends on the value converted: style
e (or E) shall be used only if the exponent resulting from the conversion is less
than −4 or greater than or equal to the precision. Trailing zeros are removed from
the result. A radix character shall appear only if it is followed by a digit.

A floating-point number argument representing an infinity or NaN shall be
converted in the style of an f or F conversion specifier.

c The single-byte character argument shall be written.

s The argument shall be taken to be a string and bytes from the string shall be
written until the end of the string or the number of bytes indicated by the precision
specification of the argument is reached. If the precision is omitted from the
argument, it shall be taken to be infinite, so all bytes up to the end of the string
shall be written.

% Write a ’%’ character; no argument is converted.

In no case does a nonexistent or insufficient field width cause truncation of a field; if the result of
a conversion is wider than the field width, the field is simply expanded to contain the
conversion result. The term ‘‘field width’’ should not be confused with the term ‘‘precision’’
used in the description of %s.

Examples

To represent the output of a program that prints a date and time in the form Sunday, July 3,
10:02, where weekday and month are strings:

"%s,∆%s∆%d,∆%d:%.2d\n" <weekday>, <month>, <day>, <hour>, <min>

To show ’π’ written to 5 decimal places:

"pi∆=∆%.5f\n",<value of π>

To show an input file format consisting of five <colon>-separated fields:

"%s:%s:%s:%s:%s\n", <arg1>, <arg2>, <arg3>, <arg4>, <arg5>

124 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

Chapter 6

Character Set

6.1 Portable Character Set

Conforming implementations shall support one or more coded character sets. Each supported
locale shall include the portable character set, which is the set of symbolic names for characters in
Table 6-1. This is used to describe characters within the text of POSIX.1-2008. The first eight
entries in Table 6-1 are defined in the ISO/IEC 6429: 1992 standard and the rest of the characters
are defined in the ISO/IEC 10646-1: 2000 standard.

Table 6-1 Portable Character Set

Symbolic Name Glyph UCS Description

<NUL> <U0000> NULL (NUL)
<alert> <U0007> BELL (BEL)
<backspace> <U0008> BACKSPACE (BS)
<tab> <U0009> CHARACTER TABULATION (HT)
<carriage-return> <U000D> CARRIAGE RETURN (CR)
<newline> <U000A> LINE FEED (LF)
<vertical-tab> <U000B> LINE TABULATION (VT)
<form-feed> <U000C> FORM FEED (FF)
<space> <U0020> SPACE
<exclamation-mark> ! <U0021> EXCLAMATION MARK
<quotation-mark> " <U0022> QUOTATION MARK
<number-sign> # <U0023> NUMBER SIGN
<dollar-sign> $ <U0024> DOLLAR SIGN
<percent-sign> % <U0025> PERCENT SIGN
<ampersand> & <U0026> AMPERSAND
<apostrophe> ’ <U0027> APOSTROPHE
<left-parenthesis> (<U0028> LEFT PARENTHESIS
<right-parenthesis>) <U0029> RIGHT PARENTHESIS
<asterisk> * <U002A> ASTERISK
<plus-sign> + <U002B> PLUS SIGN
<comma> , <U002C> COMMA
<hyphen-minus> − <U002D> HYPHEN-MINUS
<hyphen> - <U002D> HYPHEN-MINUS
<full-stop> . <U002E> FULL STOP
<period> . <U002E> FULL STOP
<slash> / <U002F> SOLIDUS
<solidus> / <U002F> SOLIDUS
<zero> 0 <U0030> DIGIT ZERO
<one> 1 <U0031> DIGIT ONE
<two> 2 <U0032> DIGIT TWO

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 125

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

Portable Character Set Character Set

Symbolic Name Glyph UCS Description

<three> 3 <U0033> DIGIT THREE
<four> 4 <U0034> DIGIT FOUR
<five> 5 <U0035> DIGIT FIVE
<six> 6 <U0036> DIGIT SIX
<seven> 7 <U0037> DIGIT SEVEN
<eight> 8 <U0038> DIGIT EIGHT
<nine> 9 <U0039> DIGIT NINE
<colon> : <U003A> COLON
<semicolon> ; <U003B> SEMICOLON
<less-than-sign> < <U003C> LESS-THAN SIGN
<equals-sign> = <U003D> EQUALS SIGN
<greater-than-sign> > <U003E> GREATER-THAN SIGN
<question-mark> ? <U003F> QUESTION MARK
<commercial-at> @ <U0040> COMMERCIAL AT
<A> A <U0041> LATIN CAPITAL LETTER A
 B <U0042> LATIN CAPITAL LETTER B
<C> C <U0043> LATIN CAPITAL LETTER C
<D> D <U0044> LATIN CAPITAL LETTER D
<E> E <U0045> LATIN CAPITAL LETTER E
<F> F <U0046> LATIN CAPITAL LETTER F
<G> G <U0047> LATIN CAPITAL LETTER G
<H> H <U0048> LATIN CAPITAL LETTER H
<I> I <U0049> LATIN CAPITAL LETTER I
<J> J <U004A> LATIN CAPITAL LETTER J
<K> K <U004B> LATIN CAPITAL LETTER K
<L> L <U004C> LATIN CAPITAL LETTER L
<M> M <U004D> LATIN CAPITAL LETTER M
<N> N <U004E> LATIN CAPITAL LETTER N
<O> O <U004F> LATIN CAPITAL LETTER O
<P> P <U0050> LATIN CAPITAL LETTER P
<Q> Q <U0051> LATIN CAPITAL LETTER Q
<R> R <U0052> LATIN CAPITAL LETTER R
<S> S <U0053> LATIN CAPITAL LETTER S
<T> T <U0054> LATIN CAPITAL LETTER T
<U> U <U0055> LATIN CAPITAL LETTER U
<V> V <U0056> LATIN CAPITAL LETTER V
<W> W <U0057> LATIN CAPITAL LETTER W
<X> X <U0058> LATIN CAPITAL LETTER X
<Y> Y <U0059> LATIN CAPITAL LETTER Y
<Z> Z <U005A> LATIN CAPITAL LETTER Z
<left-square-bracket> [<U005B> LEFT SQUARE BRACKET
<backslash> \ <U005C> REVERSE SOLIDUS
<reverse-solidus> \ <U005C> REVERSE SOLIDUS
<right-square-bracket>] <U005D> RIGHT SQUARE BRACKET
<circumflex-accent> ˆ <U005E> CIRCUMFLEX ACCENT
<circumflex> ˆ <U005E> CIRCUMFLEX ACCENT
<low-line> <U005F> LOW LINE
<underscore> <U005F> LOW LINE
<grave-accent> ‘ <U0060> GRAVE ACCENT
<a> a <U0061> LATIN SMALL LETTER A
 b <U0062> LATIN SMALL LETTER B

126 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

Character Set Portable Character Set

Symbolic Name Glyph UCS Description

<c> c <U0063> LATIN SMALL LETTER C
<d> d <U0064> LATIN SMALL LETTER D
<e> e <U0065> LATIN SMALL LETTER E
<f> f <U0066> LATIN SMALL LETTER F
<g> g <U0067> LATIN SMALL LETTER G
<h> h <U0068> LATIN SMALL LETTER H
<i> i <U0069> LATIN SMALL LETTER I
<j> j <U006A> LATIN SMALL LETTER J
<k> k <U006B> LATIN SMALL LETTER K
<l> l <U006C> LATIN SMALL LETTER L
<m> m <U006D> LATIN SMALL LETTER M
<n> n <U006E> LATIN SMALL LETTER N
<o> o <U006F> LATIN SMALL LETTER O
<p> p <U0070> LATIN SMALL LETTER P
<q> q <U0071> LATIN SMALL LETTER Q
<r> r <U0072> LATIN SMALL LETTER R
<s> s <U0073> LATIN SMALL LETTER S
<t> t <U0074> LATIN SMALL LETTER T
<u> u <U0075> LATIN SMALL LETTER U
<v> v <U0076> LATIN SMALL LETTER V
<w> w <U0077> LATIN SMALL LETTER W
<x> x <U0078> LATIN SMALL LETTER X
<y> y <U0079> LATIN SMALL LETTER Y
<z> z <U007A> LATIN SMALL LETTER Z
<left-brace> { <U007B> LEFT CURLY BRACKET
<left-curly-bracket> { <U007B> LEFT CURLY BRACKET
<vertical-line> | <U007C> VERTICAL LINE
<right-brace> } <U007D> RIGHT CURLY BRACKET
<right-curly-bracket> } <U007D> RIGHT CURLY BRACKET
<tilde> ˜ <U007E> TILDE

POSIX.1-2008 uses character names other than the above, but only in an informative way; for
example, in examples to illustrate the use of characters beyond the portable character set with
the facilities of POSIX.1-2008.

Table 6-1 (on page 125) defines the characters in the portable character set and the corresponding
symbolic character names used to identify each character in a character set description file. The
table contains more than one symbolic character name for characters whose traditional name
differs from the chosen name. Characters defined in Table 6-2 (on page 130) may also be used in
character set description files.

POSIX.1-2008 places only the following requirements on the encoded values of the characters in
the portable character set:

• If the encoded values associated with each member of the portable character set are not
invariant across all locales supported by the implementation, if an application accesses any
pair of locales where the character encodings differ, or accesses data from an application
running in a locale which has different encodings from the application’s current locale, the
results are unspecified.

• The encoded values associated with the digits 0 to 9 shall be such that the value of each
character after 0 shall be one greater than the value of the previous character.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 127

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

Portable Character Set Character Set

• A null character, NUL, which has all bits set to zero, shall be in the set of characters.

• The encoded values associated with the members of the portable character set are each
represented in a single byte. Moreover, if the value is stored in an object of C-language
type char, it is guaranteed to be positive (except the NUL, which is always zero).

Conforming implementations shall support certain character and character set attributes, as
defined in Section 7.2 (on page 136).

6.2 Character Encoding

The POSIX locale contains the characters in Table 6-1 (on page 125), which have the properties
listed in Section 7.3.1 (on page 139). In other locales, the presence, meaning, and representation
of any additional characters are locale-specific.

In locales other than the POSIX locale, a character may have a state-dependent encoding. There
are two types of these encodings:

• A single-shift encoding (where each character not in the initial shift state is preceded by a
shift code) can be defined if each shift-code and character sequence is considered a multi-
byte character. This is done using the concatenated-constant format in a character set
description file, as described in Section 6.4 (on page 129). If the implementation supports a
character encoding of this type, all of the standard utilities in the Shell and Utilities volume
of POSIX.1-2008 shall support it. Use of a single-shift encoding with any of the functions in
the System Interfaces volume of POSIX.1-2008 that do not specifically mention the effects
of state-dependent encoding is implementation-defined.

• A locking-shift encoding (where the state of the character is determined by a shift code
that may affect more than the single character following it) cannot be defined with the
current character set description file format. Use of a locking-shift encoding with any of
the standard utilities in the Shell and Utilities volume of POSIX.1-2008 or with any of the
functions in the System Interfaces volume of POSIX.1-2008 that do not specifically mention
the effects of state-dependent encoding is implementation-defined.

While in the initial shift state, all characters in the portable character set shall retain their usual
interpretation and shall not alter the shift state. The interpretation for subsequent bytes in the
sequence shall be a function of the current shift state. A byte with all bits zero shall be
interpreted as the null character independent of shift state. Such a byte shall not occur as part of
any other character.

The maximum allowable number of bytes in a character in the current locale shall be indicated
by {MB_CUR_MAX}, defined in the <stdlib.h> header and by the <mb_cur_max> value in a
character set description file; see Section 6.4 (on page 129). The implementation’s maximum
number of bytes in a character shall be defined by the C-language macro {MB_LEN_MAX}.

128 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

Character Set C Language Wide-Character Codes

6.3 C Language Wide-Character Codes

In the shell, the standard utilities are written so that the encodings of characters are described by
the locale’s LC_CTYPE definition (see Section 7.3.1, on page 139) and there is no differentiation
between characters consisting of single octets (8-bit bytes) or multiple bytes. However, in the C
language, a differentiation is made. To ease the handling of variable length characters, the C
language has introduced the concept of wide-character codes.

All wide-character codes in a given process consist of an equal number of bits. This is in contrast
to characters, which can consist of a variable number of bytes. The byte or byte sequence that
represents a character can also be represented as a wide-character code. Wide-character codes
thus provide a uniform size for manipulating text data. A wide-character code having all bits
zero is the null wide-character code (see Section 3.246, on page 72), and terminates wide-
character strings (see Section 3.435, on page 103). The wide-character value for each member of
the portable character set shall equal its value when used as the lone character in an integer
character constant. Wide-character codes for other characters are locale and implementation-
defined. State shift bytes shall not have a wide-character code representation. POSIX.1-2008
provides no means of defining a wide-character codeset.

6.4 Character Set Description File

Implementations shall provide a character set description file for at least one coded character set
supported by the implementation. These files are referred to elsewhere in POSIX.1-2008 as
charmap files. It is implementation-defined whether or not users or applications can provide
additional character set description files.

POSIX.1-2008 does not require that multiple character sets or codesets be supported. Although
multiple charmap files are supported, it is the responsibility of the implementation to provide
the file or files; if only one is provided, only that one is accessible using the localedef utility’s −f
option.

Each character set description file, except those that use the ISO/IEC 10646-1: 2000 standard
position values as the encoding values, shall define characteristics for the coded character set
and the encoding for the characters specified in Table 6-1 (on page 125), and may define
encoding for additional characters supported by the implementation. Other information about
the coded character set may also be in the file. Coded character set character values shall be
defined using symbolic character names followed by character encoding values.

Each symbolic name specified in Table 6-1 (on page 125) shall be included in the file and shall be
mapped to a unique coding value, except as noted below. The glyphs represented by the C
character constants ’{’, ’}’, ’_’, ’-’, ’/’, ’\\’, ’.’, and ’ˆ’ have more than one symbolic
name; all symbolic names for each such glyph shall be included, each with identical encoding. If
some or all of the control characters identified in Table 6-2 (on page 130) are supported by the
implementation, the symbolic names and their corresponding encoding values shall be included
in the file. Some of the encodings associated with the symbolic names in Table 6-2 (on page 130)
may be the same as characters found in Table 6-1 (on page 125); both names shall be provided
for each encoding.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 129

3624

3625

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

Character Set Description File Character Set

Table 6-2 Control Character Set

<ACK> <DC2> <ENQ> <FS> <IS4> <SOH>
<BEL> <DC3> <EOT> <GS> <LF> <STX>
<BS> <DC4> <ESC> <HT> <NAK> <SUB>
<CAN> <ETB> <IS1> <RS> <SYN>
<CR> <DLE> <ETX> <IS2> <SI> <US>
<DC1> <FF> <IS3> <SO> <VT>

The following declarations can precede the character definitions. Each shall consist of the
symbol shown in the following list, starting in column 1, including the surrounding brackets,
followed by one or more <blank> characters, followed by the value to be assigned to the symbol.

<code_set_name> The name of the coded character set for which the character set
description file is defined. The characters of the name shall be taken from
the set of characters with visible glyphs defined in Table 6-1 (on page
125).

<mb_cur_max> The maximum number of bytes in a multi-byte character. This shall
default to 1.

<mb_cur_min> An unsigned positive integer value that defines the minimum number of
XSI bytes in a character for the encoded character set. On XSI-conformant

systems, <mb_cur_min> shall always be 1.

<escape_char> The character used to indicate that the characters following shall be
interpreted in a special way, as defined later in this section. This shall
default to <backslash> (’\\’), which is the character used in all the
following text and examples, unless otherwise noted.

<comment_char> The character that, when placed in column 1 of a charmap line, is used to
indicate that the line shall be ignored. The default character shall be the
<number-sign> (’#’).

The character set mapping definitions shall be all the lines immediately following an identifier
line containing the string "CHARMAP" starting in column 1, and preceding a trailer line
containing the string "END CHARMAP" starting in column 1. Empty lines and lines containing a
<comment_char> in the first column shall be ignored. Each non-comment line of the character
set mapping definition (that is, between the "CHARMAP" and "END CHARMAP" lines of the file)
shall be in either of two forms:

"%s %s %s\n", <symbolic-name>, <encoding>, <comments>

or:

"%s...%s %s %s\n", <symbolic-name>, <symbolic-name>,
<encoding>, <comments>

In the first format, the line in the character set mapping definition shall define a single symbolic
name and a corresponding encoding. A symbolic name is one or more characters from the set
shown with visible glyphs in Table 6-1 (on page 125), enclosed between angle brackets. A
character following an escape character is interpreted as itself; for example, the sequence
"<\\\>>" represents the symbolic name "\>" enclosed between angle brackets.

In the second format, the line in the character set mapping definition shall define a range of one
or more symbolic names. In this form, the symbolic names shall consist of zero or more non-
numeric characters from the set shown with visible glyphs in Table 6-1 (on page 125), followed
by an integer formed by one or more decimal digits. Both integers shall contain the same

130 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

Character Set Character Set Description File

number of digits. The characters preceding the integer shall be identical in the two symbolic
names, and the integer formed by the digits in the second symbolic name shall be equal to or
greater than the integer formed by the digits in the first name. This shall be interpreted as a
series of symbolic names formed from the common part and each of the integers between the
first and the second integer, inclusive. As an example, <j0101>. . .<j0104> is interpreted as the
symbolic names <j0101>, <j0102>, <j0103>, and <j0104>, in that order.

A character set mapping definition line shall exist for all symbolic names specified in Table 6-1
(on page 125), and shall define the coded character value that corresponds to the character
indicated in the table, or the coded character value that corresponds to the control character
symbolic name. If the control characters commonly associated with the symbolic names in Table
6-2 (on page 130) are supported by the implementation, the symbolic name and the
corresponding encoding value shall be included in the file. Additional unique symbolic names
may be included. A coded character value can be represented by more than one symbolic name.

The encoding part is expressed as one (for single-byte character values) or more concatenated
decimal, octal, or hexadecimal constants in the following formats:

"%cd%u", <escape_char>, <decimal byte value>
"%cx%x", <escape_char>, <hexadecimal byte value>
"%c%o", <escape_char>, <octal byte value>

Decimal constants shall be represented by two or three decimal digits, preceded by the escape
character and the lowercase letter ’d’; for example, "\d05", "\d97", or "\d143".
Hexadecimal constants shall be represented by two hexadecimal digits, preceded by the escape
character and the lowercase letter ’x’; for example, "\x05", "\x61", or "\x8f". Octal
constants shall be represented by two or three octal digits, preceded by the escape character; for
example, "\05", "\141", or "\217". In a portable charmap file, each constant represents an
8-bit byte. When constants are concatenated for multi-byte character values, they shall be of the
same type, and interpreted in sequence from from first to last with the first byte of the multi-
byte character specified by the first byte in the sequence. The manner in which these constants
are represented in the character stored in the system is implementation-defined. (This notation
was chosen for reasons of portability. There is no requirement that the internal representation in
the computer memory be in this same order.) Omitting bytes from a multi-byte character
definition produces undefined results.

In lines defining ranges of symbolic names, the encoded value shall be the value for the first
symbolic name in the range (the symbolic name preceding the ellipsis). Subsequent symbolic
names defined by the range shall have encoding values in increasing order. Bytes shall be
treated as unsigned octets, and carry shall be propagated between the bytes as necessary to
represent the range. However, because this causes a null byte in the second or subsequent bytes
of a character, such a declaration should not be specified. For example, the line:

<j0101>...<j0104> \d129\d254

is interpreted as:

<j0101> \d129\d254
<j0102> \d129\d255
<j0103> \d130\d00
<j0104> \d130\d01

The expanded declaration of the symbol <j0103> in the above example is an invalid
specification, because it contains a null byte in the second byte of a character.

The comment is optional.

POSIX.1-2008 provides no means of defining a wide-character codeset.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 131

3709

3710

3711

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

3725

3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

Character Set Description File Character Set

The following declarations can follow the character set mapping definitions (after the "END
CHARMAP" statement). Each shall consist of the keyword shown in the following list, starting in
column 1, followed by the value(s) to be associated to the keyword, as defined below.

WIDTH A non-negative integer value defining the column width (see Section 3.103, on
page 50) for the printable characters in the coded character set specified in Table
6-1 (on page 125) and Table 6-2 (on page 130). Coded character set character values
shall be defined using symbolic character names followed by column width
values. Defining a character with more than one WIDTH produces undefined
results. The END WIDTH keyword shall be used to terminate the WIDTH
definitions. Specifying the width of a non-printable character in a WIDTH
declaration produces undefined results.

WIDTH_DEFAULT
A non-negative integer value defining the default column width for any printable
character not listed by one of the WIDTH keywords. If no WIDTH_DEFAULT
keyword is included in the charmap, the default character width shall be 1.

Example

After the "END CHARMAP" statement, a syntax for a width definition would be:

WIDTH
<A> 1
 1
<C>...<Z> 1
...
<foo1>...<foon> 2
...
END WIDTH

In this example, the numerical code point values represented by the symbols <A> and are
assigned a width of 1. The code point values <C> to <Z> inclusive (<C>, <D>, <E>, and so on)
are also assigned a width of 1. Using <A>. . .<Z> would have required fewer lines, but the
alternative was shown to demonstrate flexibility. The keyword WIDTH_DEFAULT could have
been added as appropriate.

6.4.1 State-Dependent Character Encodings

This section addresses the use of state-dependent character encodings (that is, those in which the
encoding of a character is dependent on one or more shift codes that may precede it).

A single-shift encoding (where each character not in the initial shift state is preceded by a shift
code) can be defined in the charmap format if each shift-code/character sequence is considered
a multi-byte character, defined using the concatenated-constant format described in Section 6.4
(on page 129). If the implementation supports a character encoding of this type, all of the
standard utilities shall support it. A locking-shift encoding (where the state of the character is
determined by a shift code that may affect more than the single character following it) could be
defined with an extension to the charmap format described in Section 6.4 (on page 129).

132 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

Character Set Character Set Description File

If the implementation supports a character encoding of this type, any of the standard utilities
that describe character (versus byte) or text-file manipulation shall have the following
characteristics:

1. The utility shall process the statefully encoded data as a concatenation of state-
independent characters. The presence of redundant locking shifts shall not affect the
comparison of two statefully encoded strings.

2. A utility that divides, truncates, or extracts substrings from statefully encoded data shall
produce output that contains locking shifts at the beginning or end of the resulting data,
if appropriate, to retain correct state information.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 133

3796

3797

3798

3799

3800

3801

3802

3803

3804

Character Set

134 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

Chapter 7

Locale

7.1 General

A locale is the definition of the subset of a user’s environment that depends on language and
cultural conventions. It is made up from one or more categories. Each category is identified by
its name and controls specific aspects of the behavior of components of the system. Category
names correspond to the following environment variable names:

LC_CTYPE Character classification and case conversion.

LC_COLLATE Collation order.

LC_MONETARY Monetary formatting.

LC_NUMERIC Numeric, non-monetary formatting.

LC_TIME Date and time formats.

LC_MESSAGES Formats of informative and diagnostic messages and interactive responses.

The standard utilities in the Shell and Utilities volume of POSIX.1-2008 shall base their behavior
on the current locale, as defined in the ENVIRONMENT VARIABLES section for each utility.
The behavior of some of the C-language functions defined in the System Interfaces volume of
POSIX.1-2008 shall also be modified based on the current locale, as defined by the last call to
setlocale().

Locales other than those supplied by the implementation can be created via the localedef utility,
provided that the _POSIX2_LOCALEDEF symbol is defined on the system. Even if localedef is
not provided, all implementations conforming to the System Interfaces volume of POSIX.1-2008
shall provide one or more locales that behave as described in this chapter. The input to the
utility is described in Section 7.3 (on page 136). The value that is used to specify a locale when
using environment variables shall be the string specified as the name operand to the localedef
utility when the locale was created. The strings "C" and "POSIX" are reserved as identifiers for
the POSIX locale (see Section 7.2, on page 136). When the value of a locale environment variable
begins with a <slash> (’/’), it shall be interpreted as the pathname of the locale definition; the
type of file (regular, directory, and so on) used to store the locale definition is implementation-
defined. If the value does not begin with a <slash>, the mechanism used to locate the locale is
implementation-defined.

If different character sets are used by the locale categories, the results achieved by an application
utilizing these categories are undefined. Likewise, if different codesets are used for the data
being processed by interfaces whose behavior is dependent on the current locale, or the codeset
is different from the codeset assumed when the locale was created, the result is also undefined.

Applications can select the desired locale by invoking the setlocale() function (or equivalent)
with the appropriate value. If the function is invoked with an empty string, such as:

setlocale(LC_ALL, "");

the value of the corresponding environment variable is used. If the environment variable is

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 135

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

3829

3830

3831

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

General Locale

unset or is set to the empty string, the implementation shall set the appropriate environment as
defined in Chapter 8 (on page 173).

7.2 POSIX Locale

Conforming systems shall provide a POSIX locale, also known as the C locale. The behavior of
standard utilities and functions in the POSIX locale shall be as if the locale was defined via the
localedef utility with input data from the POSIX locale tables in Section 7.3.

The tables in Section 7.3 describe the characteristics and behavior of the POSIX locale for data
consisting entirely of characters from the portable character set and the control character set. For
other characters, the behavior is unspecified. For C-language programs, the POSIX locale shall
be the default locale when the setlocale() function is not called.

The POSIX locale can be specified by assigning to the appropriate environment variables the
values "C" or "POSIX".

All implementations shall define a locale as the default locale, to be invoked when no
environment variables are set, or set to the empty string. This default locale can be the POSIX
locale or any other implementation-defined locale. Some implementations may provide facilities
for local installation administrators to set the default locale, customizing it for each location.
POSIX.1-2008 does not require such a facility.

7.3 Locale Definition

The capability to specify additional locales to those provided by an implementation is optional,
denoted by the _POSIX2_LOCALEDEF symbol. If the option is not supported, only
implementation-supplied locales are available. Such locales shall be documented using the
format specified in this section.

Locales can be described with the file format presented in this section. The file format is that
accepted by the localedef utility. For the purposes of this section, the file is referred to as the
‘‘locale definition file’’, but no locales shall be affected by this file unless it is processed by
localedef or some similar mechanism. Any requirements in this section imposed upon the utility
shall apply to localedef or to any other similar utility used to install locale information using the
locale definition file format described here.

The locale definition file shall contain one or more locale category source definitions, and shall
not contain more than one definition for the same locale category. If the file contains source
definitions for more than one category, implementation-defined categories, if present, shall
appear after the categories defined by Section 7.1 (on page 135). A category source definition
contains either the definition of a category or a copy directive. For a description of the copy
directive, see localedef. In the event that some of the information for a locale category, as
specified in this volume of POSIX.1-2008, is missing from the locale source definition, the
behavior of that category, if it is referenced, is unspecified.

A category source definition shall consist of a category header, a category body, and a category
trailer. A category header shall consist of the character string naming of the category, beginning
with the characters LC_. The category trailer shall consist of the string "END", followed by one
or more <blank> characters and the string used in the corresponding category header.

The category body shall consist of one or more lines of text. Each line shall contain an identifier,
optionally followed by one or more operands. Identifiers shall be either keywords, identifying a

136 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

Locale Locale Definition

particular locale element, or collating elements. In addition to the keywords defined in this
volume of POSIX.1-2008, the source can contain implementation-defined keywords. Each
keyword within a locale shall have a unique name (that is, two categories cannot have a
commonly-named keyword); no keyword shall start with the characters LC_. Identifiers shall be
separated from the operands by one or more <blank> characters.

Operands shall be characters, collating elements, or strings of characters. Strings shall be
enclosed in double-quotes. Literal double-quotes within strings shall be preceded by the <escape
character>, described below. When a keyword is followed by more than one operand, the
operands shall be separated by <semicolon> characters; <blank> characters shall be allowed
both before and after a <semicolon>.

The first category header in the file can be preceded by a line modifying the comment character.
It shall have the following format, starting in column 1:

"comment_char %c\n", <comment character>

The comment character shall default to the <number-sign> (’#’). Blank lines and lines
containing the <comment character> in the first position shall be ignored.

The first category header in the file can be preceded by a line modifying the escape character to
be used in the file. It shall have the following format, starting in column 1:

"escape_char %c\n", <escape character>

The escape character shall default to <backslash>, which is the character used in all examples
shown in this volume of POSIX.1-2008.

A line can be continued by placing an escape character as the last character on the line; this
continuation character shall be discarded from the input. Although the implementation need not
accept any one portion of a continued line with a length exceeding {LINE_MAX} bytes, it shall
place no limits on the accumulated length of the continued line. Comment lines shall not be
continued on a subsequent line using an escaped <newline>.

Individual characters, characters in strings, and collating elements shall be represented using
symbolic names, as defined below. In addition, characters can be represented using the
characters themselves or as octal, hexadecimal, or decimal constants. When non-symbolic
notation is used, the resultant locale definitions are in many cases not portable between systems.
The left angle bracket (’<’) is a reserved symbol, denoting the start of a symbolic name; when
used to represent itself it shall be preceded by the escape character. The following rules apply to
character representation:

1. A character can be represented via a symbolic name, enclosed within angle brackets ’<’
and ’>’. The symbolic name, including the angle brackets, shall exactly match a
symbolic name defined in the charmap file specified via the localedef −f option, and it shall
be replaced by a character value determined from the value associated with the symbolic
name in the charmap file. The use of a symbolic name not found in the charmap file shall
constitute an error, unless the category is LC_CTYPE or LC_COLLATE, in which case it
shall constitute a warning condition (see localedef for a description of actions resulting
from errors and warnings). The specification of a symbolic name in a collating-element
or collating-symbol section that duplicates a symbolic name in the charmap file (if
present) shall be an error. Use of the escape character or a right angle bracket within a
symbolic name is invalid unless the character is preceded by the escape character.

For example:

<c>;<c−cedilla> "<M><a><y>"

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 137

3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

3909

3910

3911

3912

3913

3914

3915

3916

3917

3918

3919

3920

3921

3922

3923

3924

3925

3926

3927

3928

3929

Locale Definition Locale

2. A character in the portable character set can be represented by the character itself, in
which case the value of the character is implementation-defined. (Implementations may
allow other characters to be represented as themselves, but such locale definitions are not
portable.) Within a string, the double-quote character, the escape character, and the right
angle bracket character shall be escaped (preceded by the escape character) to be
interpreted as the character itself. Outside strings, the characters:

, ; < > escape_char

shall be escaped to be interpreted as the character itself.

For example:

c "May"

3. A character can be represented as an octal constant. An octal constant shall be specified as
the escape character followed by two or three octal digits. Each constant shall represent a
byte value. Multi-byte values can be represented by concatenated constants specified in
byte order with the last constant specifying the least significant byte of the character.

For example:

\143;\347;\143\150 "\115\141\171"

4. A character can be represented as a hexadecimal constant. A hexadecimal constant shall
be specified as the escape character followed by an ’x’ followed by two hexadecimal
digits. Each constant shall represent a byte value. Multi-byte values can be represented by
concatenated constants specified in byte order with the last constant specifying the least
significant byte of the character.

For example:

\x63;\xe7;\x63\x68 "\x4d\x61\x79"

5. A character can be represented as a decimal constant. A decimal constant shall be
specified as the escape character followed by a ’d’ followed by two or three decimal
digits. Each constant represents a byte value. Multi-byte values can be represented by
concatenated constants specified in byte order with the last constant specifying the least
significant byte of the character.

For example:

\d99;\d231;\d99\d104 "\d77\d97\d121"

Implementations may accept single-digit octal, decimal, or hexadecimal constants following the
escape character. Only characters existing in the character set for which the locale definition is
created shall be specified, whether using symbolic names, the characters themselves, or octal,
decimal, or hexadecimal constants. If a charmap file is present, only characters defined in the
charmap can be specified using octal, decimal, or hexadecimal constants. Symbolic names not
present in the charmap file can be specified and shall be ignored, as specified under item 1
above.

138 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

3940

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

Locale Locale Definition

7.3.1 LC_CTYPE

The LC_CTYPE category shall define character classification, case conversion, and other
character attributes. In addition, a series of characters can be represented by three adjacent
<period> characters representing an ellipsis symbol ("..."). The ellipsis specification shall be
interpreted as meaning that all values between the values preceding and following it represent
valid characters. The ellipsis specification shall be valid only within a single encoded character
set; that is, within a group of characters of the same size. An ellipsis shall be interpreted as
including in the list all characters with an encoded value higher than the encoded value of the
character preceding the ellipsis and lower than the encoded value of the character following the
ellipsis.

For example:

\x30;...;\x39;

includes in the character class all characters with encoded values between the endpoints.

The following keywords shall be recognized. In the descriptions, the term ‘‘automatically
included’’ means that it shall not be an error either to include or omit any of the referenced
characters; the implementation provides them if missing (even if the entire keyword is missing)
and accepts them silently if present. When the implementation automatically includes a missing
character, it shall have an encoded value dependent on the charmap file in effect (see the
description of the localedef −f option); otherwise, it shall have a value derived from an
implementation-defined character mapping.

The character classes digit, xdigit, lower, upper, and space have a set of automatically included
characters. These only need to be specified if the character values (that is, encoding) differ from
the implementation default values. It is not possible to define a locale without these
automatically included characters unless some implementation extension is used to prevent
their inclusion. Such a definition would not be a proper superset of the C or POSIX locale and,
thus, it might not be possible for conforming applications to work properly.

copy Specify the name of an existing locale which shall be used as the definition of
this category. If this keyword is specified, no other keyword shall be specified.

upper Define characters to be classified as uppercase letters.

In the POSIX locale, the 26 uppercase letters shall be included:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

In a locale definition file, no character specified for the keywords cntrl, digit,
punct, or space shall be specified. The uppercase letters <A> to <Z>, as
defined in Section 6.4 (on page 129) (the portable character set), are
automatically included in this class.

lower Define characters to be classified as lowercase letters.

In the POSIX locale, the 26 lowercase letters shall be included:

a b c d e f g h i j k l m n o p q r s t u v w x y z

In a locale definition file, no character specified for the keywords cntrl, digit,
punct, or space shall be specified. The lowercase letters <a> to <z> of the
portable character set are automatically included in this class.

alpha Define characters to be classified as letters.

In the POSIX locale, all characters in the classes upper and lower shall be
included.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 139

3967

3968

3969

3970

3971

3972

3973

3974

3975

3976

3977

3978

3979

3980

3981

3982

3983

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

Locale Definition Locale

In a locale definition file, no character specified for the keywords cntrl, digit,
punct, or space shall be specified. Characters classified as either upper or
lower are automatically included in this class.

digit Define the characters to be classified as numeric digits.

In the POSIX locale, only:

0 1 2 3 4 5 6 7 8 9

shall be included.

In a locale definition file, only the digits <zero>, <one>, <two>, <three>,
<four>, <five>, <six>, <seven>, <eight>, and <nine> shall be specified, and in
contiguous ascending sequence by numerical value. The digits <zero> to
<nine> of the portable character set are automatically included in this class.

alnum Define characters to be classified as letters and numeric digits. Only the
characters specified for the alpha and digit keywords shall be specified.
Characters specified for the keywords alpha and digit are automatically
included in this class.

space Define characters to be classified as white-space characters.

In the POSIX locale, exactly <space>, <form-feed>, <newline>, <carriage-
return>, <tab>, and <vertical-tab> shall be included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, graph, or xdigit shall be specified. The <space>, <form-
feed>, <newline>, <carriage-return>, <tab>, and <vertical-tab> of the portable
character set, and any characters included in the class blank are automatically
included in this class.

cntrl Define characters to be classified as control characters.

In the POSIX locale, no characters in classes alpha or print shall be included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, punct, graph, print, or xdigit shall be specified.

punct Define characters to be classified as punctuation characters.

In the POSIX locale, neither the <space> nor any characters in classes alpha,
digit, or cntrl shall be included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, cntrl, xdigit, or as the <space> shall be specified.

graph Define characters to be classified as printable characters, not including the
<space>.

In the POSIX locale, all characters in classes alpha, digit, and punct shall be
included; no characters in class cntrl shall be included.

In a locale definition file, characters specified for the keywords upper, lower,
alpha, digit, xdigit, and punct are automatically included in this class. No
character specified for the keyword cntrl shall be specified.

print Define characters to be classified as printable characters, including the
<space>.

In the POSIX locale, all characters in class graph shall be included; no
characters in class cntrl shall be included.

140 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

Locale Locale Definition

In a locale definition file, characters specified for the keywords upper, lower,
alpha, digit, xdigit, punct, graph, and the <space> are automatically included
in this class. No character specified for the keyword cntrl shall be specified.

xdigit Define the characters to be classified as hexadecimal digits.

In the POSIX locale, only:

0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

shall be included.

In a locale definition file, only the characters defined for the class digit shall be
specified, in contiguous ascending sequence by numerical value, followed by
one or more sets of six characters representing the hexadecimal digits 10 to 15
inclusive, with each set in ascending order (for example, <A>, , <C>, <D>,
<E>, <F>, <a>, , <c>, <d>, <e>, <f>). The digits <zero> to <nine>, the
uppercase letters <A> to <F>, and the lowercase letters <a> to <f> of the
portable character set are automatically included in this class.

blank Define characters to be classified as <blank> characters.

In the POSIX locale, only the <space> and <tab> shall be included.

In a locale definition file, the <space> and <tab> are automatically included in
this class.

charclass Define one or more locale-specific character class names as strings separated
by <semicolon> characters. Each named character class can then be defined
subsequently in the LC_CTYPE definition. A character class name shall consist
of at least one and at most {CHARCLASS_NAME_MAX} bytes of
alphanumeric characters from the portable filename character set. The first
character of a character class name shall not be a digit. The name shall not
match any of the LC_CTYPE keywords defined in this volume of
POSIX.1-2008. Future versions of this standard will not specify any LC_CTYPE
keywords containing uppercase letters.

charclass-name Define characters to be classified as belonging to the named locale-specific
character class. In the POSIX locale, locale-specific named character classes
need not exist.

If a class name is defined by a charclass keyword, but no characters are
subsequently assigned to it, this is not an error; it represents a class without
any characters belonging to it.

The charclass-name can be used as the property argument to the wctype()
function, in regular expression and shell pattern-matching bracket
expressions, and by the tr command.

toupper Define the mapping of lowercase letters to uppercase letters.

In the POSIX locale, at a minimum, the 26 lowercase characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

shall be mapped to the corresponding 26 uppercase characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

In a locale definition file, the operand shall consist of character pairs,
separated by <semicolon> characters. The characters in each character pair
shall be separated by a <comma> and the pair enclosed by parentheses. The

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 141

4054

4055

4056

4057

4058

4059

4060

4061

4062

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

Locale Definition Locale

first character in each pair is the lowercase letter, the second the corresponding
uppercase letter. Only characters specified for the keywords lower and upper
shall be specified. The lowercase letters <a> to <z>, and their corresponding
uppercase letters <A> to <Z>, of the portable character set are automatically
included in this mapping, but only when the toupper keyword is omitted
from the locale definition.

tolower Define the mapping of uppercase letters to lowercase letters.

In the POSIX locale, at a minimum, the 26 uppercase characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

shall be mapped to the corresponding 26 lowercase characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

In a locale definition file, the operand shall consist of character pairs,
separated by <semicolon> characters. The characters in each character pair
shall be separated by a <comma> and the pair enclosed by parentheses. The
first character in each pair is the uppercase letter, the second the
corresponding lowercase letter. Only characters specified for the keywords
lower and upper shall be specified. If the tolower keyword is omitted from
the locale definition, the mapping is the reverse mapping of the one specified
for toupper.

The following table shows the character class combinations allowed:

Table 7-1 Valid Character Class Combinations

Can Also Belong To

In Class upper lower alpha digit space cntrl punct graph print xdigit blank

upper — A x x x x A A — x
lower — A x x x x A A — x
alpha — — x x x x A A — x
digit x x x x x x A A A x
space x x x x — * * * x —
cntrl x x x x — x x x x —
punct x x x x — x A A x —
graph — — — — — x — A — —
print — — — — — x — — — —
xdigit — — — — x x x A A x
blank x x x x A — * * * x

Notes:

1. Explanation of codes:

A Automatically included; see text.

— Permitted.

x Mutually-exclusive.

* See note 2.

2. The <space>, which is part of the space and blank classes, cannot belong to punct or
graph, but shall automatically belong to the print class. Other space or blank characters
can be classified as any of punct, graph, or print.

142 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

Locale Locale Definition

7.3.1.1 LC_CTYPE Category in the POSIX Locale

The character classifications for the POSIX locale follow; the code listing depicts the localedef
input, and the table represents the same information, sorted by character.

LC_CTYPE
The following is the POSIX locale LC_CTYPE.
"alpha" is by default "upper" and "lower"
"alnum" is by definition "alpha" and "digit"
"print" is by default "alnum", "punct", and the <space>
"graph" is by default "alnum" and "punct"
#
upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\

<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>
#
lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\

<n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>
#
digit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\

<seven>;<eight>;<nine>
#
space <tab>;<newline>;<vertical-tab>;<form-feed>;\

<carriage-return>;<space>
#
cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\

<form-feed>;<carriage-return>;\
<NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;\
<SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;\
<ETB>;<CAN>;;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;\
<IS1>;

#
punct <exclamation-mark>;<quotation-mark>;<number-sign>;\

<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;\
<left-parenthesis>;<right-parenthesis>;<asterisk>;\
<plus-sign>;<comma>;<hyphen>;<period>;<slash>;\
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
<greater-than-sign>;<question-mark>;<commercial-at>;\
<left-square-bracket>;<backslash>;<right-square-bracket>;\
<circumflex>;<underscore>;<grave-accent>;<left-curly-bracket>;\
<vertical-line>;<right-curly-bracket>;<tilde>

#
xdigit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;<seven>;\

<eight>;<nine>;<A>;;<C>;<D>;<E>;<F>;<a>;;<c>;<d>;<e>;<f>
#
blank <space>;<tab>
#
toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\

(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\
(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);\
(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\
(<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);(<z>,<Z>)

#
tolower (<A>,<a>);(,);(<C>,<c>);(<D>,<d>);(<E>,<e>);\

(<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>);(<J>,<j>);\

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 143

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

Locale Definition Locale

(<K>,<k>);(<L>,<l>);(<M>,<m>);(<N>,<n>);(<O>,<o>);\
(<P>,<p>);(<Q>,<q>);(<R>,<r>);(<S>,<s>);(<T>,<t>);\
(<U>,<u>);(<V>,<v>);(<W>,<w>);(<X>,<x>);(<Y>,<y>);(<Z>,<z>)

END LC_CTYPE

Symbolic Name Other Case Character Classes

<NUL> cntrl
<SOH> cntrl
<STX> cntrl
<ETX> cntrl
<EOT> cntrl
<ENQ> cntrl
<ACK> cntrl
<alert> cntrl
<backspace> cntrl
<tab> cntrl, space, blank
<newline> cntrl, space
<vertical-tab> cntrl, space
<form-feed> cntrl, space
<carriage-return> cntrl, space
<SO> cntrl
<SI> cntrl
<DLE> cntrl
<DC1> cntrl
<DC2> cntrl
<DC3> cntrl
<DC4> cntrl
<NAK> cntrl
<SYN> cntrl
<ETB> cntrl
<CAN> cntrl
 cntrl
<SUB> cntrl
<ESC> cntrl
<IS4> cntrl
<IS3> cntrl
<IS2> cntrl
<IS1> cntrl
<space> space, print, blank
<exclamation-mark> punct, print, graph
<quotation-mark> punct, print, graph
<number-sign> punct, print, graph
<dollar-sign> punct, print, graph
<percent-sign> punct, print, graph
<ampersand> punct, print, graph
<apostrophe> punct, print, graph
<left-parenthesis> punct, print, graph
<right-parenthesis> punct, print, graph
<asterisk> punct, print, graph
<plus-sign> punct, print, graph
<comma> punct, print, graph
<hyphen> punct, print, graph

144 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

4234

4235

4236

4237

4238

4239

4240

4241

4242

4243

Locale Locale Definition

Symbolic Name Other Case Character Classes

<period> punct, print, graph
<slash> punct, print, graph
<zero> digit, xdigit, print, graph
<one> digit, xdigit, print, graph
<two> digit, xdigit, print, graph
<three> digit, xdigit, print, graph
<four> digit, xdigit, print, graph
<five> digit, xdigit, print, graph
<six> digit, xdigit, print, graph
<seven> digit, xdigit, print, graph
<eight> digit, xdigit, print, graph
<nine> digit, xdigit, print, graph
<colon> punct, print, graph
<semicolon> punct, print, graph
<less-than-sign> punct, print, graph
<equals-sign> punct, print, graph
<greater-than-sign> punct, print, graph
<question-mark> punct, print, graph
<commercial-at> punct, print, graph
<A> <a> upper, xdigit, alpha, print, graph
 upper, xdigit, alpha, print, graph
<C> <c> upper, xdigit, alpha, print, graph
<D> <d> upper, xdigit, alpha, print, graph
<E> <e> upper, xdigit, alpha, print, graph
<F> <f> upper, xdigit, alpha, print, graph
<G> <g> upper, alpha, print, graph
<H> <h> upper, alpha, print, graph
<I> <i> upper, alpha, print, graph
<J> <j> upper, alpha, print, graph
<K> <k> upper, alpha, print, graph
<L> <l> upper, alpha, print, graph
<M> <m> upper, alpha, print, graph
<N> <n> upper, alpha, print, graph
<O> <o> upper, alpha, print, graph
<P> <p> upper, alpha, print, graph
<Q> <q> upper, alpha, print, graph
<R> <r> upper, alpha, print, graph
<S> <s> upper, alpha, print, graph
<T> <t> upper, alpha, print, graph
<U> <u> upper, alpha, print, graph
<V> <v> upper, alpha, print, graph
<W> <w> upper, alpha, print, graph
<X> <x> upper, alpha, print, graph
<Y> <y> upper, alpha, print, graph
<Z> <z> upper, alpha, print, graph
<left-square-bracket> punct, print, graph
<backslash> punct, print, graph
<right-square-bracket> punct, print, graph
<circumflex> punct, print, graph
<underscore> punct, print, graph
<grave-accent> punct, print, graph

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 145

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

4274

4275

4276

4277

4278

4279

4280

4281

4282

4283

4284

4285

4286

4287

4288

4289

4290

4291

4292

4293

4294

4295

Locale Definition Locale

Symbolic Name Other Case Character Classes

<a> <A> lower, xdigit, alpha, print, graph
 lower, xdigit, alpha, print, graph
<c> <C> lower, xdigit, alpha, print, graph
<d> <D> lower, xdigit, alpha, print, graph
<e> <E> lower, xdigit, alpha, print, graph
<f> <F> lower, xdigit, alpha, print, graph
<g> <G> lower, alpha, print, graph
<h> <H> lower, alpha, print, graph
<i> <I> lower, alpha, print, graph
<j> <J> lower, alpha, print, graph
<k> <K> lower, alpha, print, graph
<l> <L> lower, alpha, print, graph
<m> <M> lower, alpha, print, graph
<n> <N> lower, alpha, print, graph
<o> <O> lower, alpha, print, graph
<p> <P> lower, alpha, print, graph
<q> <Q> lower, alpha, print, graph
<r> <R> lower, alpha, print, graph
<s> <S> lower, alpha, print, graph
<t> <T> lower, alpha, print, graph
<u> <U> lower, alpha, print, graph
<v> <V> lower, alpha, print, graph
<w> <W> lower, alpha, print, graph
<x> <X> lower, alpha, print, graph
<y> <Y> lower, alpha, print, graph
<z> <Z> lower, alpha, print, graph
<left-curly-bracket> punct, print, graph
<vertical-line> punct, print, graph
<right-curly-bracket> punct, print, graph
<tilde> punct, print, graph
 cntrl

7.3.2 LC_COLLATE

The LC_COLLATE category provides a collation sequence definition for numerous utilities in the
Shell and Utilities volume of POSIX.1-2008 (sort, uniq, and so on), regular expression matching
(see Chapter 9, on page 181), and the strcoll(), strxfrm(), wcscoll(), and wcsxfrm() functions in the
System Interfaces volume of POSIX.1-2008.

A collation sequence definition shall define the relative order between collating elements
(characters and multi-character collating elements) in the locale. This order is expressed in terms
of collation values; that is, by assigning each element one or more collation values (also known
as collation weights). This does not imply that implementations shall assign such values, but
that ordering of strings using the resultant collation definition in the locale behaves as if such
assignment is done and used in the collation process. At least the following capabilities are
provided:

1. Multi-character collating elements. Specification of multi-character collating elements
(that is, sequences of two or more characters to be collated as an entity).

146 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4296

4297

4298

4299

4300

4301

4302

4303

4304

4305

4306

4307

4308

4309

4310

4311

4312

4313

4314

4315

4316

4317

4318

4319

4320

4321

4322

4323

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

4336

4337

4338

4339

4340

4341

Locale Locale Definition

2. User-defined ordering of collating elements. Each collating element shall be assigned a
collation value defining its order in the character (or basic) collation sequence. This
ordering is used by regular expressions and pattern matching and, unless collation
weights are explicitly specified, also as the collation weight to be used in sorting.

3. Multiple weights and equivalence classes. Collating elements can be assigned one or
more (up to the limit {COLL_WEIGHTS_MAX}, as defined in <limits.h>) collating
weights for use in sorting. The first weight is hereafter referred to as the primary weight.

4. One-to-many mapping. A single character is mapped into a string of collating elements.

5. Equivalence class definition. Two or more collating elements have the same collation
value (primary weight).

6. Ordering by weights. When two strings are compared to determine their relative order,
the two strings are first broken up into a series of collating elements; the elements in each
successive pair of elements are then compared according to the relative primary weights
for the elements. If equal, and more than one weight has been assigned, then the pairs of
collating elements are re-compared according to the relative subsequent weights, until
either a pair of collating elements compare unequal or the weights are exhausted.

The following keywords shall be recognized in a collation sequence definition. They are
described in detail in the following sections.

copy Specify the name of an existing locale which shall be used as the
definition of this category. If this keyword is specified, no other keyword
shall be specified.

collating-element Define a collating-element symbol representing a multi-character
collating element. This keyword is optional.

collating-symbol Define a collating symbol for use in collation order statements. This
keyword is optional.

order_start Define collation rules. This statement shall be followed by one or more
collation order statements, assigning character collation values and
collation weights to collating elements.

order_end Specify the end of the collation-order statements.

7.3.2.1 The collating-element Keyword

In addition to the collating elements in the character set, the collating-element keyword can be
used to define multi-character collating elements. The syntax is as follows:

"collating-element %s from \"%s\"\n", <collating-symbol>, <string>

The <collating-symbol> operand shall be a symbolic name, enclosed between angle brackets (’<’
and ’>’), and shall not duplicate any symbolic name in the current charmap file (if any), or any
other symbolic name defined in this collation definition. The string operand is a string of two or
more characters that collates as an entity. A <collating-element> defined via this keyword is only
recognized with the LC_COLLATE category.

For example:

collating-element <ch> from "<c><h>"
collating-element <e-acute> from "<acute><e>"
collating-element <ll> from "ll"

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 147

4342

4343

4344

4345

4346

4347

4348

4349

4350

4351

4352

4353

4354

4355

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4372

4373

4374

4375

4376

4377

4378

4379

4380

4381

4382

4383

Locale Definition Locale

7.3.2.2 The collating-symbol Keyword

This keyword shall be used to define symbols for use in collation sequence statements; that is,
between the order_start and the order_end keywords. The syntax is as follows:

"collating-symbol %s\n", <collating-symbol>

The <collating-symbol> shall be a symbolic name, enclosed between angle brackets (’<’ and
’>’), and shall not duplicate any symbolic name in the current charmap file (if any), or any
other symbolic name defined in this collation definition. A <collating-symbol> defined via this
keyword is only recognized within the LC_COLLATE category.

For example:

collating-symbol <UPPER_CASE>
collating-symbol <HIGH>

The collating-symbol keyword defines a symbolic name that can be associated with a relative
position in the character order sequence. While such a symbolic name does not represent any
collating element, it can be used as a weight.

7.3.2.3 The order_start Keyword

The order_start keyword shall precede collation order entries and also define the number of
weights for this collation sequence definition and other collation rules. The syntax is as follows:

"order_start %s;%s;...;%s\n", <sort-rules>, <sort-rules> ...

The operands to the order_start keyword are optional. If present, the operands define rules to be
applied when strings are compared. The number of operands define how many weights each
element is assigned; if no operands are present, one forward operand is assumed. If present, the
first operand defines rules to be applied when comparing strings using the first (primary)
weight; the second when comparing strings using the second weight, and so on. Operands shall
be separated by <semicolon> characters (’;’). Each operand shall consist of one or more
collation directives, separated by <comma> characters (’,’). If the number of operands exceeds
the {COLL_WEIGHTS_MAX} limit, the utility shall issue a warning message. The following
directives shall be supported:

forward Specifies that comparison operations for the weight level shall proceed from start
of string towards the end of string.

backward Specifies that comparison operations for the weight level shall proceed from end of
string towards the beginning of string.

position Specifies that comparison operations for the weight level shall consider the relative
position of elements in the strings not subject to IGNORE. The string containing
an element not subject to IGNORE after the fewest collating elements subject to
IGNORE from the start of the compare shall collate first. If both strings contain a
character not subject to IGNORE in the same relative position, the collating values
assigned to the elements shall determine the ordering. In case of equality,
subsequent characters not subject to IGNORE shall be considered in the same
manner.

The directives forward and backward are mutually-exclusive.

If no operands are specified, a single forward operand shall be assumed.

148 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4384

4385

4386

4387

4388

4389

4390

4391

4392

4393

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411

4412

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

Locale Locale Definition

For example:

order_start forward;backward

7.3.2.4 Collation Order

The order_start keyword shall be followed by collating identifier entries. The syntax for the
collating element entries is as follows:

"%s %s;%s;...;%s\n", <collating-identifier>, <weight>, <weight>, ...

Each collating-identifier shall consist of either a character (in any of the forms defined in Section
7.3, on page 136), a <collating-element>, a <collating-symbol>, an ellipsis, or the special symbol
UNDEFINED. The order in which collating elements are specified determines the character
order sequence, such that each collating element shall compare less than the elements following
it.

A <collating-element> shall be used to specify multi-character collating elements, and indicates
that the character sequence specified via the <collating-element> is to be collated as a unit and in
the relative order specified by its place.

A <collating-symbol> can be used to define a position in the relative order for use in weights. No
weights shall be specified with a <collating-symbol>.

The ellipsis symbol specifies that a sequence of characters shall collate according to their
encoded character values. It shall be interpreted as indicating that all characters with a coded
character set value higher than the value of the character in the preceding line, and lower than
the coded character set value for the character in the following line, in the current coded
character set, shall be placed in the character collation order between the previous and the
following character in ascending order according to their coded character set values. An initial
ellipsis shall be interpreted as if the preceding line specified the NUL character, and a trailing
ellipsis as if the following line specified the highest coded character set value in the current
coded character set. An ellipsis shall be treated as invalid if the preceding or following lines do
not specify characters in the current coded character set. The use of the ellipsis symbol ties the
definition to a specific coded character set and may preclude the definition from being portable
between implementations.

The symbol UNDEFINED shall be interpreted as including all coded character set values not
specified explicitly or via the ellipsis symbol. Such characters shall be inserted in the character
collation order at the point indicated by the symbol, and in ascending order according to their
coded character set values. If no UNDEFINED symbol is specified, and the current coded
character set contains characters not specified in this section, the utility shall issue a warning
message and place such characters at the end of the character collation order.

The optional operands for each collation-element shall be used to define the primary, secondary,
or subsequent weights for the collating element. The first operand specifies the relative primary
weight, the second the relative secondary weight, and so on. Two or more collation-elements can
be assigned the same weight; they belong to the same ‘‘equivalence class’’ if they have the same
primary weight. Collation shall behave as if, for each weight level, elements subject to IGNORE
are removed, unless the position collation directive is specified for the corresponding level with
the order_start keyword. Then each successive pair of elements shall be compared according to
the relative weights for the elements. If the two strings compare equal, the process shall be
repeated for the next weight level, up to the limit {COLL_WEIGHTS_MAX}.

Weights shall be expressed as characters (in any of the forms specified in Section 7.3, on page
136), <collating-symbol>s, <collating-element>s, an ellipsis, or the special symbol IGNORE. A
single character, a <collating-symbol>, or a <collating-element> shall represent the relative position

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 149

4425

4426

4427

4428

4429

4430

4431

4432

4433

4434

4435

4436

4437

4438

4439

4440

4441

4442

4443

4444

4445

4446

4447

4448

4449

4450

4451

4452

4453

4454

4455

4456

4457

4458

4459

4460

4461

4462

4463

4464

4465

4466

4467

4468

4469

4470

Locale Definition Locale

in the character collating sequence of the character or symbol, rather than the character or
characters themselves. Thus, rather than assigning absolute values to weights, a particular
weight is expressed using the relative order value assigned to a collating element based on its
order in the character collation sequence.

One-to-many mapping is indicated by specifying two or more concatenated characters or
symbolic names. For example, if the <eszet> is given the string "<s><s>" as a weight,
comparisons are performed as if all occurrences of the <eszet> are replaced by "<s><s>"
(assuming that "<s>" has the collating weight "<s>"). If it is necessary to define <eszet> and
"<s><s>" as an equivalence class, then a collating element must be defined for the string "ss".

All characters specified via an ellipsis shall by default be assigned unique weights, equal to the
relative order of characters. Characters specified via an explicit or implicit UNDEFINED special
symbol shall by default be assigned the same primary weight (that is, they belong to the same
equivalence class). An ellipsis symbol as a weight shall be interpreted to mean that each
character in the sequence shall have unique weights, equal to the relative order of their character
in the character collation sequence. The use of the ellipsis as a weight shall be treated as an error
if the collating element is neither an ellipsis nor the special symbol UNDEFINED.

The special keyword IGNORE as a weight shall indicate that when strings are compared using
the weights at the level where IGNORE is specified, the collating element shall be ignored; that
is, as if the string did not contain the collating element. In regular expressions and pattern
matching, all characters that are subject to IGNORE in their primary weight form an
equivalence class.

An empty operand shall be interpreted as the collating element itself.

For example, the order statement:

<a> <a>;<a>

is equal to:

<a>

An ellipsis can be used as an operand if the collating element was an ellipsis, and shall be
interpreted as the value of each character defined by the ellipsis.

The collation order as defined in this section affects the interpretation of bracket expressions in
regular expressions (see Section 9.3.5, on page 184).

For example:

order_start forward;backward
UNDEFINED IGNORE;IGNORE
<LOW>
<space> <LOW>;<space>
... <LOW>;...
<a> <a>;<a>
<a-acute> <a>;<a-acute>
<a-grave> <a>;<a-grave>
<A> <a>;<A>
<A-acute> <a>;<A-acute>
<A-grave> <a>;<A-grave>
<ch> <ch>;<ch>
<Ch> <ch>;<Ch>
<s> <s>;<s>
<eszet> "<s><s>";"<eszet><eszet>"
order_end

150 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4471

4472

4473

4474

4475

4476

4477

4478

4479

4480

4481

4482

4483

4484

4485

4486

4487

4488

4489

4490

4491

4492

4493

4494

4495

4496

4497

4498

4499

4500

4501

4502

4503

4504

4505

4506

4507

4508

4509

4510

4511

4512

4513

4514

4515

4516

4517

Locale Locale Definition

This example is interpreted as follows:

1. The UNDEFINED means that all characters not specified in this definition (explicitly or
via the ellipsis) shall be ignored for collation purposes.

2. All characters between <space> and ’a’ shall have the same primary equivalence class
and individual secondary weights based on their ordinal encoded values.

3. All characters based on the uppercase or lowercase character ’a’ belong to the same
primary equivalence class.

4. The multi-character collating element <ch> is represented by the collating symbol <ch>
and belongs to the same primary equivalence class as the multi-character collating
element <Ch>.

7.3.2.5 The order_end Keyword

The collating order entries shall be terminated with an order_end keyword.

7.3.2.6 LC_COLLATE Category in the POSIX Locale

The collation sequence definition of the POSIX locale follows; the code listing depicts the
localedef input.

LC_COLLATE
This is the POSIX locale definition for the LC_COLLATE category.
The order is the same as in the ASCII codeset.
order_start forward
<NUL>
<SOH>
<STX>
<ETX>
<EOT>
<ENQ>
<ACK>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<SO>
<SI>
<DLE>
<DC1>
<DC2>
<DC3>
<DC4>
<NAK>
<SYN>
<ETB>
<CAN>

<SUB>

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 151

4518

4519

4520

4521

4522

4523

4524

4525

4526

4527

4528

4529

4530

4531

4532

4533

4534

4535

4536

4537

4538

4539

4540

4541

4542

4543

4544

4545

4546

4547

4548

4549

4550

4551

4552

4553

4554

4555

4556

4557

4558

4559

4560

4561

4562

4563

Locale Definition Locale

<ESC>
<IS4>
<IS3>
<IS2>
<IS1>
<space>
<exclamation-mark>
<quotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>
<right-parenthesis>
<asterisk>
<plus-sign>
<comma>
<hyphen>
<period>
<slash>
<zero>
<one>
<two>
<three>
<four>
<five>
<six>
<seven>
<eight>
<nine>
<colon>
<semicolon>
<less-than-sign>
<equals-sign>
<greater-than-sign>
<question-mark>
<commercial-at>
<A>

<C>
<D>
<E>
<F>
<G>
<H>
<I>
<J>
<K>
<L>
<M>
<N>
<O>

152 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4564

4565

4566

4567

4568

4569

4570

4571

4572

4573

4574

4575

4576

4577

4578

4579

4580

4581

4582

4583

4584

4585

4586

4587

4588

4589

4590

4591

4592

4593

4594

4595

4596

4597

4598

4599

4600

4601

4602

4603

4604

4605

4606

4607

4608

4609

4610

4611

4612

4613

4614

4615

4616

Locale Locale Definition

<P>
<Q>
<R>
<S>
<T>
<U>
<V>
<W>
<X>
<Y>
<Z>
<left-square-bracket>
<backslash>
<right-square-bracket>
<circumflex>
<underscore>
<grave-accent>
<a>

<c>
<d>
<e>
<f>
<g>
<h>
<i>
<j>
<k>
<l>
<m>
<n>
<o>
<p>
<q>
<r>
<s>
<t>
<u>
<v>
<w>
<x>
<y>
<z>
<left-curly-bracket>
<vertical-line>
<right-curly-bracket>
<tilde>

order_end
#
END LC_COLLATE

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 153

4617

4618

4619

4620

4621

4622

4623

4624

4625

4626

4627

4628

4629

4630

4631

4632

4633

4634

4635

4636

4637

4638

4639

4640

4641

4642

4643

4644

4645

4646

4647

4648

4649

4650

4651

4652

4653

4654

4655

4656

4657

4658

4659

4660

4661

4662

4663

4664

4665

4666

4667

Locale Definition Locale

7.3.3 LC_MONETARY

The LC_MONETARY category shall define the rules and symbols that are used to format
monetary numeric information.

This information is available through the localeconv() function and is used by the strfmon()
function.

Some of the information is also available in an alternative form via the nl_langinfo() function
(see CRNCYSTR in <langinfo.h>).

The following items are defined in this category of the locale. The item names are the keywords
recognized by the localedef utility when defining a locale. They are also similar to the member
names of the lconv structure defined in <locale.h>; see <locale.h> for the exact symbols in the
header. The localeconv() function returns {CHAR_MAX} for unspecified integer items and the
empty string ("") for unspecified or size zero string items.

In a locale definition file, the operands are strings, formatted as indicated by the grammar in
Section 7.4 (on page 165). For some keywords, the strings can contain only integers. Keywords
that are not provided, string values set to the empty string (""), or integer keywords set to −1,
are used to indicate that the value is not available in the locale. The following keywords shall be
recognized:

copy Specify the name of an existing locale which shall be used as the
definition of this category. If this keyword is specified, no other keyword
shall be specified.

Note: This is a localedef utility keyword, unavailable through localeconv().

int_curr_symbol The international currency symbol. The operand shall be a four-character
string, with the first three characters containing the alphabetic
international currency symbol. The international currency symbol should
be chosen in accordance with those specified in the ISO 4217 standard.
The fourth character shall be the character used to separate the
international currency symbol from the monetary quantity.

currency_symbol The string that shall be used as the local currency symbol.

mon_decimal_point The operand is a string containing the symbol that shall be used as the
decimal delimiter (radix character) in monetary formatted quantities.

mon_thousands_sep The operand is a string containing the symbol that shall be used as a
separator for groups of digits to the left of the decimal delimiter in
formatted monetary quantities.

mon_grouping Define the size of each group of digits in formatted monetary quantities.
The operand is a sequence of integers separated by <semicolon>
characters. Each integer specifies the number of digits in each group, with
the initial integer defining the size of the group immediately preceding
the decimal delimiter, and the following integers defining the preceding
groups. If the last integer is not −1, then the size of the previous group (if
any) shall be repeatedly used for the remainder of the digits. If the last
integer is −1, then no further grouping shall be performed.

positive_sign A string that shall be used to indicate a non-negative-valued formatted
monetary quantity.

negative_sign A string that shall be used to indicate a negative-valued formatted
monetary quantity.

154 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4668

4669

4670

4671

4672

4673

4674

4675

4676

4677

4678

4679

4680

4681

4682

4683

4684

4685

4686

4687

4688

4689

4690

4691

4692

4693

4694

4695

4696

4697

4698

4699

4700

4701

4702

4703

4704

4705

4706

4707

4708

4709

4710

4711

4712

Locale Locale Definition

int_frac_digits An integer representing the number of fractional digits (those to the right
of the decimal delimiter) to be written in a formatted monetary quantity
using int_curr_symbol.

frac_digits An integer representing the number of fractional digits (those to the right
of the decimal delimiter) to be written in a formatted monetary quantity
using currency_symbol.

p_cs_precedes An integer set to 1 if the currency_symbol precedes the value for a
monetary quantity with a non-negative value, and set to 0 if the symbol
succeeds the value.

p_sep_by_space Set to a value indicating the separation of the currency_symbol, the sign
string, and the value for a non-negative formatted monetary quantity.

The values of p_sep_by_space, n_sep_by_space, int_p_sep_by_space,
and int_n_sep_by_space are interpreted according to the following:

0 No <space> separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a <space>
separates them from the value; otherwise, a <space> separates the
currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a <space>
separates them; otherwise, a <space> separates the sign string from
the value.

n_cs_precedes An integer set to 1 if the currency_symbol precedes the value for a
monetary quantity with a negative value, and set to 0 if the symbol
succeeds the value.

n_sep_by_space Set to a value indicating the separation of the currency_symbol, the sign
string, and the value for a negative formatted monetary quantity.

p_sign_posn An integer set to a value indicating the positioning of the positive_sign
for a monetary quantity with a non-negative value. The following integer
values shall be recognized for int_n_sign_posn, int_p_sign_posn,
n_sign_posn, and p_sign_posn:

0 Parentheses enclose the quantity and the currency_symbol.

1 The sign string precedes the quantity and the currency_symbol.

2 The sign string succeeds the quantity and the currency_symbol.

3 The sign string precedes the currency_symbol.

4 The sign string succeeds the currency_symbol.

n_sign_posn An integer set to a value indicating the positioning of the negative_sign
for a negative formatted monetary quantity.

int_p_cs_precedes An integer set to 1 if the int_curr_symbol precedes the value for a
monetary quantity with a non-negative value, and set to 0 if the symbol
succeeds the value.

int_n_cs_precedes An integer set to 1 if the int_curr_symbol precedes the value for a
monetary quantity with a negative value, and set to 0 if the symbol
succeeds the value.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 155

4713

4714

4715

4716

4717

4718

4719

4720

4721

4722

4723

4724

4725

4726

4727

4728

4729

4730

4731

4732

4733

4734

4735

4736

4737

4738

4739

4740

4741

4742

4743

4744

4745

4746

4747

4748

4749

4750

4751

4752

4753

4754

Locale Definition Locale

int_p_sep_by_space Set to a value indicating the separation of the int_curr_symbol, the sign
string, and the value for a non-negative internationally formatted
monetary quantity.

int_n_sep_by_space Set to a value indicating the separation of the int_curr_symbol, the sign
string, and the value for a negative internationally formatted monetary
quantity.

int_p_sign_posn An integer set to a value indicating the positioning of the positive_sign
for a positive monetary quantity formatted with the international format.

int_n_sign_posn An integer set to a value indicating the positioning of the negative_sign
for a negative monetary quantity formatted with the international format.

7.3.3.1 LC_MONETARY Category in the POSIX Locale

The monetary formatting definitions for the POSIX locale follow; the code listing depicting the
localedef input, the table representing the same information with the addition of localeconv() and
nl_langinfo() formats. All values are unspecified in the POSIX locale.

LC_MONETARY
This is the POSIX locale definition for
the LC_MONETARY category.
#
int_curr_symbol ""
currency_symbol ""
mon_decimal_point ""
mon_thousands_sep ""
mon_grouping -1
positive_sign ""
negative_sign ""
int_frac_digits -1
frac_digits -1
p_cs_precedes -1
p_sep_by_space -1
n_cs_precedes -1
n_sep_by_space -1
p_sign_posn -1
n_sign_posn -1
int_p_cs_precedes -1
int_p_sep_by_space -1
int_n_cs_precedes -1
int_n_sep_by_space -1
int_p_sign_posn -1
int_n_sign_posn -1
#
END LC_MONETARY

156 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4755

4756

4757

4758

4759

4760

4761

4762

4763

4764

4765

4766

4767

4768

4769

4770

4771

4772

4773

4774

4775

4776

4777

4778

4779

4780

4781

4782

4783

4784

4785

4786

4787

4788

4789

4790

4791

4792

4793

4794

4795

Locale Locale Definition

langinfo POSIX Locale localeconv() localedef
Item Constant Value Value Value

int_curr_symbol — N/A " " " "
currency_symbol CRNCYSTR N/A " " " "
mon_decimal_point — N/A " " " "
mon_thousands_sep — N/A " " " "
mon_grouping — N/A " " −1
positive_sign — N/A " " " "
negative_sign — N/A " " " "
int_frac_digits — N/A {CHAR_MAX} −1
frac_digits — N/A {CHAR_MAX} −1
p_cs_precedes CRNCYSTR N/A {CHAR_MAX} −1
p_sep_by_space — N/A {CHAR_MAX} −1
n_cs_precedes CRNCYSTR N/A {CHAR_MAX} −1
n_sep_by_space — N/A {CHAR_MAX} −1
p_sign_posn — N/A {CHAR_MAX} −1
n_sign_posn — N/A {CHAR_MAX} −1
int_p_cs_precedes — N/A {CHAR_MAX} −1
int_p_sep_by_space — N/A {CHAR_MAX} −1
int_n_cs_precedes — N/A {CHAR_MAX} −1
int_n_sep_by_space — N/A {CHAR_MAX} −1
int_p_sign_posn — N/A {CHAR_MAX} −1
int_n_sign_posn — N/A {CHAR_MAX} −1

The entry N/A indicates that the value is not available in the POSIX locale.

7.3.4 LC_NUMERIC

The LC_NUMERIC category shall define the rules and symbols that are used to format non-
monetary numeric information. This information is available through the localeconv() function.

Some of the information is also available in an alternative form via the nl_langinfo() function.

The following items are defined in this category of the locale. The item names are the keywords
recognized by the localedef utility when defining a locale. They are also similar to the member
names of the lconv structure defined in <locale.h>; see <locale.h> for the exact symbols in the
header. The localeconv() function returns {CHAR_MAX} for unspecified integer items and the
empty string ("") for unspecified or size zero string items.

In a locale definition file, the operands are strings, formatted as indicated by the grammar in
Section 7.4 (on page 165). For some keywords, the strings can only contain integers. Keywords
that are not provided, string values set to the empty string (""), or integer keywords set to −1,
shall be used to indicate that the value is not available in the locale. The following keywords
shall be recognized:

copy Specify the name of an existing locale which shall be used as the definition of
this category. If this keyword is specified, no other keyword shall be specified.

Note: This is a localedef utility keyword, unavailable through localeconv().

decimal_point The operand is a string containing the symbol that shall be used as the
decimal delimiter (radix character) in numeric, non-monetary formatted
quantities. This keyword cannot be omitted and cannot be set to the empty
string. In contexts where standards limit the decimal_point to a single byte,
the result of specifying a multi-byte operand shall be unspecified.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 157

4796

4797

4798

4799

4800

4801

4802

4803

4804

4805

4806

4807

4808

4809

4810

4811

4812

4813

4814

4815

4816

4817

4818

4819

4820

4821

4822

4823

4824

4825

4826

4827

4828

4829

4830

4831

4832

4833

4834

4835

4836

4837

4838

4839

4840

4841

Locale Definition Locale

thousands_sep The operand is a string containing the symbol that shall be used as a separator
for groups of digits to the left of the decimal delimiter in numeric, non-
monetary formatted monetary quantities. In contexts where standards limit
the thousands_sep to a single byte, the result of specifying a multi-byte
operand shall be unspecified.

grouping Define the size of each group of digits in formatted non-monetary quantities.
The operand is a sequence of integers separated by <semicolon> characters.
Each integer specifies the number of digits in each group, with the initial
integer defining the size of the group immediately preceding the decimal
delimiter, and the following integers defining the preceding groups. If the last
integer is not −1, then the size of the previous group (if any) shall be
repeatedly used for the remainder of the digits. If the last integer is −1, then no
further grouping shall be performed.

7.3.4.1 LC_NUMERIC Category in the POSIX Locale

The non-monetary numeric formatting definitions for the POSIX locale follow; the code listing
depicting the localedef input, the table representing the same information with the addition of
localeconv() values, and nl_langinfo() constants.

LC_NUMERIC
This is the POSIX locale definition for
the LC_NUMERIC category.
#
decimal_point "<period>"
thousands_sep ""
grouping -1
#
END LC_NUMERIC

langinfo POSIX Locale localeconv() localedef
Item Constant Value Value Value

decimal_point RADIXCHAR "." "." .
thousands_sep THOUSEP N/A " " " "
grouping — N/A " " −1

The entry N/A indicates that the value is not available in the POSIX locale.

7.3.5 LC_TIME

The LC_TIME category shall define the interpretation of the conversion specifications supported
by the date utility and shall affect the behavior of the strftime(), wcsftime(), strptime(), and
nl_langinfo() functions. Since the interfaces for C-language access and locale definition differ
significantly, they are described separately.

7.3.5.1 LC_TIME Locale Definition

In a locale definition, the following mandatory keywords shall be recognized:

copy Specify the name of an existing locale which shall be used as the definition of
this category. If this keyword is specified, no other keyword shall be specified.

158 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4842

4843

4844

4845

4846

4847

4848

4849

4850

4851

4852

4853

4854

4855

4856

4857

4858

4859

4860

4861

4862

4863

4864

4865

4866

4867

4868

4869

4870

4871

4872

4873

4874

4875

4876

4877

4878

4879

4880

4881

4882

Locale Locale Definition

abday Define the abbreviated weekday names, corresponding to the %a conversion
specification (conversion specification in the strftime(), wcsftime(), and
strptime() functions). The operand shall consist of seven
<semicolon>-separated strings, each surrounded by double-quotes. The first
string shall be the abbreviated name of the day corresponding to Sunday, the
second the abbreviated name of the day corresponding to Monday, and so on.

day Define the full weekday names, corresponding to the %A conversion
specification. The operand shall consist of seven <semicolon>-separated
strings, each surrounded by double-quotes. The first string is the full name of
the day corresponding to Sunday, the second the full name of the day
corresponding to Monday, and so on.

abmon Define the abbreviated month names, corresponding to the %b conversion
specification. The operand shall consist of twelve <semicolon>-separated
strings, each surrounded by double-quotes. The first string shall be the
abbreviated name of the first month of the year (January), the second the
abbreviated name of the second month, and so on.

mon Define the full month names, corresponding to the %B conversion
specification. The operand shall consist of twelve <semicolon>-separated
strings, each surrounded by double-quotes. The first string shall be the full
name of the first month of the year (January), the second the full name of the
second month, and so on.

d_t_fmt Define the appropriate date and time representation, corresponding to the %c
conversion specification. The operand shall consist of a string containing any
combination of characters and conversion specifications. In addition, the
string can contain escape sequences defined in the table in Table 5-1 (on page
121) (’\\’, ’\a’, ’\b’, ’\f’, ’\n’, ’\r’, ’\t’, ’\v’).

d_fmt Define the appropriate date representation, corresponding to the %x
conversion specification. The operand shall consist of a string containing any
combination of characters and conversion specifications. In addition, the
string can contain escape sequences defined in Table 5-1 (on page 121).

t_fmt Define the appropriate time representation, corresponding to the %X
conversion specification. The operand shall consist of a string containing any
combination of characters and conversion specifications. In addition, the
string can contain escape sequences defined in Table 5-1 (on page 121).

am_pm Define the appropriate representation of the ante-meridiem and post-meridiem
strings, corresponding to the %p conversion specification. The operand shall
consist of two strings, separated by a <semicolon>, each surrounded by
double-quotes. The first string shall represent the ante-meridiem designation,
the last string the post-meridiem designation.

t_fmt_ampm Define the appropriate time representation in the 12-hour clock format with
am_pm, corresponding to the %r conversion specification. The operand shall
consist of a string and can contain any combination of characters and
conversion specifications. If the string is empty, the 12-hour format is not
supported in the locale.

era Define how years are counted and displayed for each era in a locale. The
operand shall consist of <semicolon>-separated strings. Each string shall be an
era description segment with the format:

direction:offset:start_date:end_date:era_name:era_format

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 159

4883

4884

4885

4886

4887

4888

4889

4890

4891

4892

4893

4894

4895

4896

4897

4898

4899

4900

4901

4902

4903

4904

4905

4906

4907

4908

4909

4910

4911

4912

4913

4914

4915

4916

4917

4918

4919

4920

4921

4922

4923

4924

4925

4926

4927

4928

4929

4930

Locale Definition Locale

according to the definitions below. There can be as many era description
segments as are necessary to describe the different eras.

Note: The start of an era might not be the earliest point in the era—it may be the
latest. For example, the Christian era BC starts on the day before January 1,
AD 1, and increases with earlier time.

direction Either a ’+’ or a ’−’ character. The ’+’ character shall indicate
that years closer to the start_date have lower numbers than those
closer to the end_date. The ’−’ character shall indicate that years
closer to the start_date have higher numbers than those closer to
the end_date.

offset The number of the year closest to the start_date in the era,
corresponding to the %Ey conversion specification.

start_date A date in the form yyyy/mm/dd, where yyyy, mm, and dd are the
year, month, and day numbers respectively of the start of the era.
Years prior to AD 1 shall be represented as negative numbers.

end_date The ending date of the era, in the same format as the start_date,
or one of the two special values "−*" or "+*". The value "−*"
shall indicate that the ending date is the beginning of time. The
value "+*" shall indicate that the ending date is the end of time.

era_name A string representing the name of the era, corresponding to the
%EC conversion specification.

era_format A string for formatting the year in the era, corresponding to the
%EY conversion specification.

era_d_fmt Define the format of the date in alternative era notation, corresponding to the
%Ex conversion specification.

era_t_fmt Define the locale’s appropriate alternative time format, corresponding to the
%EX conversion specification.

era_d_t_fmt Define the locale’s appropriate alternative date and time format,
corresponding to the %Ec conversion specification.

alt_digits Define alternative symbols for digits, corresponding to the %O modified
conversion specification. The operand shall consist of <semicolon>-separated
strings, each surrounded by double-quotes. The first string shall be the
alternative symbol corresponding with zero, the second string the symbol
corresponding with one, and so on. Up to 100 alternative symbol strings can
be specified. The %O modifier shall indicate that the string corresponding to
the value specified via the conversion specification shall be used instead of the
value.

7.3.5.2 LC_TIME C-Language Access

The following constants used to identify items of langinfo data can be used as arguments to the
nl_langinfo() function to access information in the LC_TIME category. These constants are
defined in the <langinfo.h> header.

ABDAY_x The abbreviated weekday names (for example, Sun), where x is a number
from 1 to 7.

160 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

4931

4932

4933

4934

4935

4936

4937

4938

4939

4940

4941

4942

4943

4944

4945

4946

4947

4948

4949

4950

4951

4952

4953

4954

4955

4956

4957

4958

4959

4960

4961

4962

4963

4964

4965

4966

4967

4968

4969

4970

4971

4972

4973

Locale Locale Definition

DAY_x The full weekday names (for example, Sunday), where x is a number from 1 to
7.

ABMON_x The abbreviated month names (for example, Jan), where x is a number from 1
to 12.

MON_x The full month names (for example, January), where x is a number from 1 to
12.

D_T_FMT The appropriate date and time representation.

D_FMT The appropriate date representation.

T_FMT The appropriate time representation.

AM_STR The appropriate ante-meridiem affix.

PM_STR The appropriate post-meridiem affix.

T_FMT_AMPM The appropriate time representation in the 12-hour clock format with
AM_STR and PM_STR.

ERA The era description segments, which describe how years are counted and
displayed for each era in a locale. Each era description segment shall have the
format:

direction:offset:start_date:end_date:era_name:era_format

according to the definitions below. There can be as many era description
segments as are necessary to describe the different eras. Era description
segments are separated by <semicolon> characters.

direction Either a ’+’ or a ’−’ character. The ’+’ character shall indicate
that years closer to the start_date have lower numbers than those
closer to the end_date. The ’−’ character shall indicate that years
closer to the start_date have higher numbers than those closer to
the end_date.

offset The number of the year closest to the start_date in the era.

start_date A date in the form yyyy/mm/dd, where yyyy, mm, and dd are the
year, month, and day numbers respectively of the start of the era.
Years prior to AD 1 shall be represented as negative numbers.

end_date The ending date of the era, in the same format as the start_date,
or one of the two special values "−*" or "+*". The value "−*"
shall indicate that the ending date is the beginning of time. The
value "+*" shall indicate that the ending date is the end of time.

era_name The era, corresponding to the %EC conversion specification.

era_format The format of the year in the era, corresponding to the %EY
conversion specification.

ERA_D_FMT The era date format.

ERA_T_FMT The locale’s appropriate alternative time format, corresponding to the %EX
conversion specification.

ERA_D_T_FMT The locale’s appropriate alternative date and time format, corresponding to
the %Ec conversion specification.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 161

4974

4975

4976

4977

4978

4979

4980

4981

4982

4983

4984

4985

4986

4987

4988

4989

4990

4991

4992

4993

4994

4995

4996

4997

4998

4999

5000

5001

5002

5003

5004

5005

5006

5007

5008

5009

5010

5011

5012

5013

5014

Locale Definition Locale

ALT_DIGITS The alternative symbols for digits, corresponding to the %O conversion
specification modifier. The value consists of <semicolon>-separated symbols.
The first is the alternative symbol corresponding to zero, the second is the
symbol corresponding to one, and so on. Up to 100 alternative symbols may
be specified.

7.3.5.3 LC_TIME Category in the POSIX Locale

The LC_TIME category definition of the POSIX locale follows; the code listing depicts the
localedef input; the table represents the same information with the addition of localedef keywords,
conversion specifiers used by the date utility and the strftime(), wcsftime(), and strptime()
functions, and nl_langinfo() constants.

LC_TIME
This is the POSIX locale definition for
the LC_TIME category.
#
Abbreviated weekday names (%a)
abday "<S><u><n>";"<M><o><n>";"<T><u><e>";"<W><e><d>";\

"<T><h><u>";"<F><r><i>";"<S><a><t>"
#
Full weekday names (%A)
day "<S><u><n><d><a><y>";"<M><o><n><d><a><y>";\

"<T><u><e><s><d><a><y>";"<W><e><d><n><e><s><d><a><y>";\
"<T><h><u><r><s><d><a><y>";"<F><r><i><d><a><y>";\
"<S><a><t><u><r><d><a><y>"

#
Abbreviated month names (%b)
abmon "<J><a><n>";"<F><e>";"<M><a><r>";\

"<A><p><r>";"<M><a><y>";"<J><u><n>";\
"<J><u><l>";"<A><u><g>";"<S><e><p>";\
"<O><c><t>";"<N><o><v>";"<D><e><c>"

#
Full month names (%B)
mon "<J><a><n><u><a><r><y>";"<F><e><r><u><a><r><y>";\

"<M><a><r><c><h>";"<A><p><r><i><l>";\
"<M><a><y>";"<J><u><n><e>";\
"<J><u><l><y>";"<A><u><g><u><s><t>";\
"<S><e><p><t><e><m><e><r>";"<O><c><t><o><e><r>";\
"<N><o><v><e><m><e><r>";"<D><e><c><e><m><e><r>"

#
Equivalent of AM/PM (%p) "AM";"PM"
am_pm "<A><M>";"<P><M>"
#
Appropriate date and time representation (%c)
"%a %b %e %H:%M:%S %Y"
d_t_fmt "<percent-sign><a><space><percent-sign>\
<space><percent-sign><e><space><percent-sign><H>\
<colon><percent-sign><M><colon><percent-sign><S>\
<space><percent-sign><Y>"
#
Appropriate date representation (%x) "%m/%d/%y"
d_fmt "<percent-sign><m><slash><percent-sign><d>\

162 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

5015

5016

5017

5018

5019

5020

5021

5022

5023

5024

5025

5026

5027

5028

5029

5030

5031

5032

5033

5034

5035

5036

5037

5038

5039

5040

5041

5042

5043

5044

5045

5046

5047

5048

5049

5050

5051

5052

5053

5054

5055

5056

5057

5058

5059

5060

5061

5062

5063

5064

Locale Locale Definition

<slash><percent-sign><y>"
#
Appropriate time representation (%X) "%H:%M:%S"
t_fmt "<percent-sign><H><colon><percent-sign><M>\
<colon><percent-sign><S>"
#
Appropriate 12-hour time representation (%r) "%I:%M:%S %p"
t_fmt_ampm "<percent-sign><I><colon><percent-sign><M><colon>\
<percent-sign><S><space><percent_sign><p>"
#
END LC_TIME

localedef langinfo Conversion POSIX
Keyword Constant Specification Locale Value

d_t_fmt D_T_FMT %c "%a %b %e %H:%M:%S %Y"
d_fmt D_FMT %x "%m/%d/%y"
t_fmt T_FMT %X "%H:%M:%S"
am_pm AM_STR %p "AM"
am_pm PM_STR %p "PM"
t_fmt_ampm T_FMT_AMPM %r "%I:%M:%S %p"
day DAY_1 %A "Sunday"
day DAY_2 %A "Monday"
day DAY_3 %A "Tuesday"
day DAY_4 %A "Wednesday"
day DAY_5 %A "Thursday"
day DAY_6 %A "Friday"
day DAY_7 %A "Saturday"
abday ABDAY_1 %a "Sun"
abday ABDAY_2 %a "Mon"
abday ABDAY_3 %a "Tue"
abday ABDAY_4 %a "Wed"
abday ABDAY_5 %a "Thu"
abday ABDAY_6 %a "Fri"
abday ABDAY_7 %a "Sat"
mon MON_1 %B "January"
mon MON_2 %B "February"
mon MON_3 %B "March"
mon MON_4 %B "April"
mon MON_5 %B "May"
mon MON_6 %B "June"
mon MON_7 %B "July"
mon MON_8 %B "August"
mon MON_9 %B "September"
mon MON_10 %B "October"
mon MON_11 %B "November"
mon MON_12 %B "December"
abmon ABMON_1 %b "Jan"
abmon ABMON_2 %b "Feb"
abmon ABMON_3 %b "Mar"
abmon ABMON_4 %b "Apr"
abmon ABMON_5 %b "May"
abmon ABMON_6 %b "Jun"

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 163

5065

5066

5067

5068

5069

5070

5071

5072

5073

5074

5075

5076

5077

5078

5079

5080

5081

5082

5083

5084

5085

5086

5087

5088

5089

5090

5091

5092

5093

5094

5095

5096

5097

5098

5099

5100

5101

5102

5103

5104

5105

5106

5107

5108

5109

5110

5111

5112

5113

5114

5115

Locale Definition Locale

localedef langinfo Conversion POSIX
Keyword Constant Specification Locale Value

abmon ABMON_7 %b "Jul"
abmon ABMON_8 %b "Aug"
abmon ABMON_9 %b "Sep"
abmon ABMON_10 %b "Oct"
abmon ABMON_11 %b "Nov"
abmon ABMON_12 %b "Dec"
era ERA %EC, %Ey, %EY N/A
era_d_fmt ERA_D_FMT %Ex N/A
era_t_fmt ERA_T_FMT %EX N/A
era_d_t_fmt ERA_D_T_FMT %Ec N/A
alt_digits ALT_DIGITS %O N/A

The entry N/A indicates the value is not available in the POSIX locale.

7.3.6 LC_MESSAGES

The LC_MESSAGES category shall define the format and values used by various utilities for
affirmative and negative responses. This information is available through the nl_langinfo()
function.

The message catalog used by the standard utilities and selected by the catopen() function shall be
determined by the setting of NLSPATH; see Chapter 8 (on page 173). The LC_MESSAGES
category can be specified as part of an NLSPATH substitution field.

The following keywords shall be recognized as part of the locale definition file.

copy Specify the name of an existing locale which shall be used as the definition of this
category. If this keyword is specified, no other keyword shall be specified.

Note: This is a localedef keyword, unavailable through nl_langinfo().

yesexpr The operand consists of an extended regular expression (see Section 9.4, on page
188) that describes the acceptable affirmative response to a question expecting an
affirmative or negative response.

noexpr The operand consists of an extended regular expression that describes the
acceptable negative response to a question expecting an affirmative or negative
response.

7.3.6.1 LC_MESSAGES Category in the POSIX Locale

The format and values for affirmative and negative responses of the POSIX locale follow; the
code listing depicting the localedef input, the table representing the same information with the
addition of nl_langinfo() constants.

LC_MESSAGES
This is the POSIX locale definition for
the LC_MESSAGES category.
#
yesexpr "<circumflex><left-square-bracket><y><Y><right-square-bracket>"
#
noexpr "<circumflex><left-square-bracket><n><N><right-square-bracket>"
#
END LC_MESSAGES

164 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

5116

5117

5118

5119

5120

5121

5122

5123

5124

5125

5126

5127

5128

5129

5130

5131

5132

5133

5134

5135

5136

5137

5138

5139

5140

5141

5142

5143

5144

5145

5146

5147

5148

5149

5150

5151

5152

5153

5154

5155

5156

5157

5158

5159

Locale Locale Definition

localedef Keyword langinfo Constant POSIX Locale Value

yesexpr YESEXPR "ˆ[yY]"
noexpr NOEXPR "ˆ[nN]"

7.4 Locale Definition Grammar

The grammar and lexical conventions in this section shall together describe the syntax for the
locale definition source. The general conventions for this style of grammar are described in XCU
Section 1.3 (on page 2287). The grammar shall take precedence over the text in this chapter.

7.4.1 Locale Lexical Conventions

The lexical conventions for the locale definition grammar are described in this section.

The following tokens shall be processed (in addition to those string constants shown in the
grammar):

LOC_NAME A string of characters representing the name of a locale.

CHAR Any single character.

NUMBER A decimal number, represented by one or more decimal digits.

COLLSYMBOL A symbolic name, enclosed between angle brackets. The string
cannot duplicate any charmap symbol defined in the current
charmap (if any), or a COLLELEMENT symbol.

COLLELEMENT A symbolic name, enclosed between angle brackets, which cannot
duplicate either any charmap symbol or a COLLSYMBOL symbol.

CHARCLASS A string of alphanumeric characters from the portable character set,
the first of which is not a digit, consisting of at least one and at most
{CHARCLASS_NAME_MAX} bytes, and optionally surrounded by
double-quotes.

CHARSYMBOL A symbolic name, enclosed between angle brackets, from the current
charmap (if any).

OCTAL_CHAR One or more octal representations of the encoding of each byte in a
single character. The octal representation consists of an escape
character (normally a <backslash>) followed by two or more octal
digits.

HEX_CHAR One or more hexadecimal representations of the encoding of each
byte in a single character. The hexadecimal representation consists of
an escape character followed by the constant x and two or more
hexadecimal digits.

DECIMAL_CHAR One or more decimal representations of the encoding of each byte in
a single character. The decimal representation consists of an escape
character followed by a character ’d’ and two or more decimal
digits.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 165

5160

5161

5162

5163

5164

5165

5166

5167

5168

5169

5170

5171

5172

5173

5174

5175

5176

5177

5178

5179

5180

5181

5182

5183

5184

5185

5186

5187

5188

5189

5190

5191

5192

5193

5194

5195

5196

Locale Definition Grammar Locale

ELLIPSIS The string "...".

EXTENDED_REG_EXP An extended regular expression as defined in the grammar in Section
9.5 (on page 191).

EOL The line termination character <newline>.

7.4.2 Locale Grammar

This section presents the grammar for the locale definition.

%token LOC_NAME
%token CHAR
%token NUMBER
%token COLLSYMBOL COLLELEMENT
%token CHARSYMBOL OCTAL_CHAR HEX_CHAR DECIMAL_CHAR
%token ELLIPSIS
%token EXTENDED_REG_EXP
%token EOL

%start locale_definition

%%

locale_definition : global_statements locale_categories
| locale_categories
;

global_statements : global_statements symbol_redefine
| symbol_redefine
;

symbol_redefine : ’escape_char’ CHAR EOL
| ’comment_char’ CHAR EOL
;

locale_categories : locale_categories locale_category
| locale_category
;

locale_category : lc_ctype | lc_collate | lc_messages
| lc_monetary | lc_numeric | lc_time
;

/* The following grammar rules are common to all categories */

char_list : char_list char_symbol
| char_symbol
;

char_symbol : CHAR | CHARSYMBOL
| OCTAL_CHAR | HEX_CHAR | DECIMAL_CHAR
;

elem_list : elem_list char_symbol
| elem_list COLLSYMBOL
| elem_list COLLELEMENT
| char_symbol
| COLLSYMBOL

166 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

5197

5198

5199

5200

5201

5202

5203

5204

5205

5206

5207

5208

5209

5210

5211

5212

5213

5214

5215

5216

5217

5218

5219

5220

5221

5222

5223

5224

5225

5226

5227

5228

5229

5230

5231

5232

5233

5234

5235

5236

5237

5238

5239

Locale Locale Definition Grammar

| COLLELEMENT
;

symb_list : symb_list COLLSYMBOL
| COLLSYMBOL
;

locale_name : LOC_NAME
| ’"’ LOC_NAME ’"’
;

/* The following is the LC_CTYPE category grammar */

lc_ctype : ctype_hdr ctype_keywords ctype_tlr
| ctype_hdr ’copy’ locale_name EOL ctype_tlr
;

ctype_hdr : ’LC_CTYPE’ EOL
;

ctype_keywords : ctype_keywords ctype_keyword
| ctype_keyword
;

ctype_keyword : charclass_keyword charclass_list EOL
| charconv_keyword charconv_list EOL
| ’charclass’ charclass_namelist EOL
;

charclass_namelist : charclass_namelist ’;’ CHARCLASS
| CHARCLASS
;

charclass_keyword : ’upper’ | ’lower’ | ’alpha’ | ’digit’
| ’punct’ | ’xdigit’ | ’space’ | ’print’
| ’graph’ | ’blank’ | ’cntrl’ | ’alnum’
| CHARCLASS
;

charclass_list : charclass_list ’;’ char_symbol
| charclass_list ’;’ ELLIPSIS ’;’ char_symbol
| char_symbol
;

charconv_keyword : ’toupper’
| ’tolower’
;

charconv_list : charconv_list ’;’ charconv_entry
| charconv_entry
;

charconv_entry : ’(’ char_symbol ’,’ char_symbol ’)’
;

ctype_tlr : ’END’ ’LC_CTYPE’ EOL
;

/* The following is the LC_COLLATE category grammar */

lc_collate : collate_hdr collate_keywords collate_tlr

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 167

5240

5241

5242

5243

5244

5245

5246

5247

5248

5249

5250

5251

5252

5253

5254

5255

5256

5257

5258

5259

5260

5261

5262

5263

5264

5265

5266

5267

5268

5269

5270

5271

5272

5273

5274

5275

5276

5277

5278

5279

5280

5281

5282

5283

5284

Locale Definition Grammar Locale

| collate_hdr ’copy’ locale_name EOL collate_tlr
;

collate_hdr : ’LC_COLLATE’ EOL
;

collate_keywords : order_statements
| opt_statements order_statements
;

opt_statements : opt_statements collating_symbols
| opt_statements collating_elements
| collating_symbols
| collating_elements
;

collating_symbols : ’collating-symbol’ COLLSYMBOL EOL
;

collating_elements : ’collating-element’ COLLELEMENT
| ’from’ ’"’ elem_list ’"’ EOL
;

order_statements : order_start collation_order order_end
;

order_start : ’order_start’ EOL
| ’order_start’ order_opts EOL
;

order_opts : order_opts ’;’ order_opt
| order_opt
;

order_opt : order_opt ’,’ opt_word
| opt_word
;

opt_word : ’forward’ | ’backward’ | ’position’
;

collation_order : collation_order collation_entry
| collation_entry
;

collation_entry : COLLSYMBOL EOL
| collation_element weight_list EOL
| collation_element EOL
;

collation_element : char_symbol
| COLLELEMENT
| ELLIPSIS
| ’UNDEFINED’
;

weight_list : weight_list ’;’ weight_symbol
| weight_list ’;’
| weight_symbol
;

168 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

5285

5286

5287

5288

5289

5290

5291

5292

5293

5294

5295

5296

5297

5298

5299

5300

5301

5302

5303

5304

5305

5306

5307

5308

5309

5310

5311

5312

5313

5314

5315

5316

5317

5318

5319

5320

5321

5322

5323

5324

5325

5326

5327

5328

5329

5330

Locale Locale Definition Grammar

weight_symbol : /* empty */
| char_symbol
| COLLSYMBOL
| ’"’ elem_list ’"’
| ’"’ symb_list ’"’
| ELLIPSIS
| ’IGNORE’
;

order_end : ’order_end’ EOL
;

collate_tlr : ’END’ ’LC_COLLATE’ EOL
;

/* The following is the LC_MESSAGES category grammar */

lc_messages : messages_hdr messages_keywords messages_tlr
| messages_hdr ’copy’ locale_name EOL messages_tlr
;

messages_hdr : ’LC_MESSAGES’ EOL
;

messages_keywords : messages_keywords messages_keyword
| messages_keyword
;

messages_keyword : ’yesexpr’ ’"’ EXTENDED_REG_EXP ’"’ EOL
| ’noexpr’ ’"’ EXTENDED_REG_EXP ’"’ EOL
;

messages_tlr : ’END’ ’LC_MESSAGES’ EOL
;

/* The following is the LC_MONETARY category grammar */

lc_monetary : monetary_hdr monetary_keywords monetary_tlr
| monetary_hdr ’copy’ locale_name EOL monetary_tlr
;

monetary_hdr : ’LC_MONETARY’ EOL
;

monetary_keywords : monetary_keywords monetary_keyword
| monetary_keyword
;

monetary_keyword : mon_keyword_string mon_string EOL
| mon_keyword_char NUMBER EOL
| mon_keyword_char ’-1’ EOL
| mon_keyword_grouping mon_group_list EOL
;

mon_keyword_string : ’int_curr_symbol’ | ’currency_symbol’
| ’mon_decimal_point’ | ’mon_thousands_sep’
| ’positive_sign’ | ’negative_sign’
;

mon_string : ’"’ char_list ’"’

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 169

5331

5332

5333

5334

5335

5336

5337

5338

5339

5340

5341

5342

5343

5344

5345

5346

5347

5348

5349

5350

5351

5352

5353

5354

5355

5356

5357

5358

5359

5360

5361

5362

5363

5364

5365

5366

5367

5368

5369

5370

5371

5372

5373

5374

5375

Locale Definition Grammar Locale

| ’""’
;

mon_keyword_char : ’int_frac_digits’ | ’frac_digits’
| ’p_cs_precedes’ | ’p_sep_by_space’
| ’n_cs_precedes’ | ’n_sep_by_space’
| ’p_sign_posn’ | ’n_sign_posn’
| ’int_p_cs_precedes’ | ’int_p_sep_by_space’
| ’int_n_cs_precedes’ | ’int_n_sep_by_space’
| ’int_p_sign_posn’ | ’int_n_sign_posn’
;

mon_keyword_grouping : ’mon_grouping’
;

mon_group_list : NUMBER
| mon_group_list ’;’ NUMBER
;

monetary_tlr : ’END’ ’LC_MONETARY’ EOL
;

/* The following is the LC_NUMERIC category grammar */

lc_numeric : numeric_hdr numeric_keywords numeric_tlr
| numeric_hdr ’copy’ locale_name EOL numeric_tlr
;

numeric_hdr : ’LC_NUMERIC’ EOL
;

numeric_keywords : numeric_keywords numeric_keyword
| numeric_keyword
;

numeric_keyword : num_keyword_string num_string EOL
| num_keyword_grouping num_group_list EOL
;

num_keyword_string : ’decimal_point’
| ’thousands_sep’
;

num_string : ’"’ char_list ’"’
| ’""’
;

num_keyword_grouping: ’grouping’
;

num_group_list : NUMBER
| num_group_list ’;’ NUMBER
;

numeric_tlr : ’END’ ’LC_NUMERIC’ EOL
;

/* The following is the LC_TIME category grammar */

lc_time : time_hdr time_keywords time_tlr
| time_hdr ’copy’ locale_name EOL time_tlr

170 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

5376

5377

5378

5379

5380

5381

5382

5383

5384

5385

5386

5387

5388

5389

5390

5391

5392

5393

5394

5395

5396

5397

5398

5399

5400

5401

5402

5403

5404

5405

5406

5407

5408

5409

5410

5411

5412

5413

5414

5415

5416

5417

5418

5419

5420

Locale Locale Definition Grammar

;

time_hdr : ’LC_TIME’ EOL
;

time_keywords : time_keywords time_keyword
| time_keyword
;

time_keyword : time_keyword_name time_list EOL
| time_keyword_fmt time_string EOL
| time_keyword_opt time_list EOL
;

time_keyword_name : ’abday’ | ’day’ | ’abmon’ | ’mon’
;

time_keyword_fmt : ’d_t_fmt’ | ’d_fmt’ | ’t_fmt’
| ’am_pm’ | ’t_fmt_ampm’
;

time_keyword_opt : ’era’ | ’era_d_fmt’ | ’era_t_fmt’
| ’era_d_t_fmt’ | ’alt_digits’
;

time_list : time_list ’;’ time_string
| time_string
;

time_string : ’"’ char_list ’"’
;

time_tlr : ’END’ ’LC_TIME’ EOL
;

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 171

5421

5422

5423

5424

5425

5426

5427

5428

5429

5430

5431

5432

5433

5434

5435

5436

5437

5438

5439

5440

5441

5442

5443

5444

5445

Locale

172 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

Chapter 8

Environment Variables

8.1 Environment Variable Definition

Environment variables defined in this chapter affect the operation of multiple utilities, functions,
and applications. There are other environment variables that are of interest only to specific
utilities. Environment variables that apply to a single utility only are defined as part of the
utility description. See the ENVIRONMENT VARIABLES section of the utility descriptions in
the Shell and Utilities volume of POSIX.1-2008 for information on environment variable usage.

The value of an environment variable is a string of characters. For a C-language program, an
array of strings called the environment shall be made available when a process begins. The array
is pointed to by the external variable environ, which is defined as:

extern char **environ;

These strings have the form name=value; names shall not contain the character ’=’. For values to
be portable across systems conforming to POSIX.1-2008, the value shall be composed of
characters from the portable character set (except NUL and as indicated below). There is no
meaning associated with the order of strings in the environment. If more than one string in an
environment of a process has the same name, the consequences are undefined.

Environment variable names used by the utilities in the Shell and Utilities volume of
POSIX.1-2008 consist solely of uppercase letters, digits, and the <underscore> (’_’) from the
characters defined in Table 6-1 (on page 125) and do not begin with a digit. Other characters may
be permitted by an implementation; applications shall tolerate the presence of such names.
Uppercase and lowercase letters shall retain their unique identities and shall not be folded
together. The name space of environment variable names containing lowercase letters is
reserved for applications. Applications can define any environment variables with names from
this name space without modifying the behavior of the standard utilities.

Note: Other applications may have difficulty dealing with environment variable names that start with
a digit. For this reason, use of such names is not recommended anywhere.

The values that the environment variables may be assigned are not restricted except that they are
considered to end with a null byte and the total space used to store the environment and the
arguments to the process is limited to {ARG_MAX} bytes.

Other name=value pairs may be placed in the environment by, for example, calling any of the
XSI setenv(), unsetenv(), or putenv() functions, manipulating the environ variable, or by using envp

arguments when creating a process; see exec in the System Interfaces volume of POSIX.1-2008.

It is unwise to conflict with certain variables that are frequently exported by widely used
command interpreters and applications:

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 173

5446

5447

5448

5449

5450

5451

5452

5453

5454

5455

5456

5457

5458

5459

5460

5461

5462

5463

5464

5465

5466

5467

5468

5469

5470

5471

5472

5473

5474

5475

5476

5477

5478

5479

5480

Environment Variable Definition Environment Variables

ARFLAGS IFS MAILPATH PS1
CC LANG MAILRC PS2
CDPATH LC_ALL MAKEFLAGS PS3
CFLAGS LC_COLLATE MAKESHELL PS4
CHARSET LC_CTYPE MANPATH PWD
COLUMNS LC_MESSAGES MBOX RANDOM
DATEMSK LC_MONETARY MORE SECONDS
DEAD LC_NUMERIC MSGVERB SHELL
EDITOR LC_TIME NLSPATH TERM
ENV LDFLAGS NPROC TERMCAP
EXINIT LEX OLDPWD TERMINFO
FC LFLAGS OPTARG TMPDIR
FCEDIT LINENO OPTERR TZ
FFLAGS LINES OPTIND USER
GET LISTER PAGER VISUAL
GFLAGS LOGNAME PA TH YACC
HISTFILE LPDEST PPID YFLAGS
HISTORY MAIL PRINTER
HISTSIZE MAILCHECK PROCLANG
HOME MAILER PROJECTDIR

If the variables in the following two sections are present in the environment during the
execution of an application or utility, they shall be given the meaning described below. Some are
placed into the environment by the implementation at the time the user logs in; all can be added
or changed by the user or any ancestor of the current process. The implementation adds or
changes environment variables named in POSIX.1-2008 only as specified in POSIX.1-2008. If
they are defined in the application’s environment, the utilities in the Shell and Utilities volume
of POSIX.1-2008 and the functions in the System Interfaces volume of POSIX.1-2008 assume they
have the specified meaning. Conforming applications shall not set these environment variables
to have meanings other than as described. See getenv() (on page 1008) and XCU Section 2.12 (on
page 2331) for methods of accessing these variables.

8.2 Internationalization Variables

This section describes environment variables that are relevant to the operation of
internationalized interfaces described in POSIX.1-2008.

Users may use the following environment variables to announce specific localization
requirements to applications. Applications can retrieve this information using the setlocale()
function to initialize the correct behavior of the internationalized interfaces. The descriptions of
the internationalization environment variables describe the resulting behavior only when the
application locale is initialized in this way. The use of the internationalization variables by
utilities described in the Shell and Utilities volume of POSIX.1-2008 is described in the
ENVIRONMENT VARIABLES section for those utilities in addition to the global effects
described in this section.

LANG This variable shall determine the locale category for native language, local
customs, and coded character set in the absence of the LC_ALL and other LC_*
(LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC,
LC_TIME) environment variables. This can be used by applications to
determine the language to use for error messages and instructions, collating
sequences, date formats, and so on.

174 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

5481

5482

5483

5484

5485

5486

5487

5488

5489

5490

5491

5492

5493

5494

5495

5496

5497

5498

5499

5500

5501

5502

5503

5504

5505

5506

5507

5508

5509

5510

5511

5512

5513

5514

5515

5516

5517

5518

5519

5520

5521

5522

5523

5524

5525

5526

5527

Environment Variables Internationalization Variables

LC_ALL This variable shall determine the values for all locale categories. The value of
the LC_ALL environment variable has precedence over any of the other
environment variables starting with LC_ (LC_COLLATE, LC_CTYPE,
LC_MESSAGES, LC_MONETARY, LC_NUMERIC, LC_TIME) and the LANG
environment variable.

LC_COLLATE This variable shall determine the locale category for character collation. It
determines collation information for regular expressions and sorting,
including equivalence classes and multi-character collating elements, in
various utilities and the strcoll() and strxfrm() functions. Additional semantics
of this variable, if any, are implementation-defined.

LC_CTYPE This variable shall determine the locale category for character handling
functions, such as tolower(), toupper(), and isalpha(). This environment
variable determines the interpretation of sequences of bytes of text data as
characters (for example, single as opposed to multi-byte characters), the
classification of characters (for example, alpha, digit, graph), and the behavior
of character classes. Additional semantics of this variable, if any, are
implementation-defined.

LC_MESSAGES This variable shall determine the locale category for processing affirmative
and negative responses and the language and cultural conventions in which
messages should be written. It also affects the behavior of the catopen()
function in determining the message catalog. Additional semantics of this
variable, if any, are implementation-defined. The language and cultural
conventions of diagnostic and informative messages whose format is
unspecified by POSIX.1-2008 should be affected by the setting of
LC_MESSAGES.

LC_MONETARY This variable shall determine the locale category for monetary-related numeric
formatting information. Additional semantics of this variable, if any, are
implementation-defined.

LC_NUMERIC This variable shall determine the locale category for numeric formatting (for
example, thousands separator and radix character) information in various
utilities as well as the formatted I/O operations in printf() and scanf() and the
string conversion functions in strtod(). Additional semantics of this variable,
if any, are implementation-defined.

LC_TIME This variable shall determine the locale category for date and time formatting
information. It affects the behavior of the time functions in strftime().
Additional semantics of this variable, if any, are implementation-defined.

NLSPATH This variable shall contain a sequence of templates that the catopen() function
uses when attempting to locate message catalogs. Each template consists of an
optional prefix, one or more conversion specifications, a filename, and an
optional suffix.

For example:

NLSPATH="/system/nlslib/%N.cat"

defines that catopen() should look for all message catalogs in the directory
/system/nlslib, where the catalog name should be constructed from the name
parameter passed to catopen() (%N), with the suffix .cat.

Conversion specifications consist of a ’%’ symbol, followed by a single-letter
keyword. The following keywords are currently defined:

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 175

5528

5529

5530

5531

5532

5533

5534

5535

5536

5537

5538

5539

5540

5541

5542

5543

5544

5545

5546

5547

5548

5549

5550

5551

5552

5553

5554

5555

5556

5557

5558

5559

5560

5561

5562

5563

5564

5565

5566

5567

5568

5569

5570

5571

5572

5573

5574

Internationalization Variables Environment Variables

%N The value of the name parameter passed to catopen().

%L The value of the LC_MESSAGES category.

%l The language element from the LC_MESSAGES category.

%t The territory element from the LC_MESSAGES category.

%c The codeset element from the LC_MESSAGES category.

%% A single ’%’ character.

An empty string is substituted if the specified value is not currently defined.
The separators <underscore> (’_’) and <period> (’.’) are not included in
the %t and %c conversion specifications.

Templates defined in NLSPATH are separated by <colon> characters (’:’). A
leading or two adjacent <colon> characters ("::") is equivalent to specifying
%N. For example:

NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

indicates to catopen() that it should look for the requested message catalog in
name, name.cat, and /nlslib/category/name.cat, where category is the value of the
LC_MESSAGES category of the current locale.

Users should not set the NLSPATH variable unless they have a specific reason
to override the default system path. Setting NLSPATH to override the default
system path produces undefined results in the standard utilities and in
applications with appropriate privileges.

The environment variables LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, LC_TIME, and NLSPATH provide for the support of
internationalized applications. The standard utilities shall make use of these environment
variables as described in this section and the individual ENVIRONMENT VARIABLES sections
for the utilities. If these variables specify locale categories that are not based upon the same
underlying codeset, the results are unspecified.

The values of locale categories shall be determined by a precedence order; the first condition met
below determines the value:

1. If the LC_ALL environment variable is defined and is not null, the value of LC_ALL shall
be used.

2. If the LC_* environment variable (LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, LC_TIME) is defined and is not null, the value of the
environment variable shall be used to initialize the category that corresponds to the
environment variable.

3. If the LANG environment variable is defined and is not null, the value of the LANG
environment variable shall be used.

4. If the LANG environment variable is not set or is set to the empty string, the
implementation-defined default locale shall be used.

If the locale value is "C" or "POSIX", the POSIX locale shall be used and the standard utilities
behave in accordance with the rules in Section 7.2 (on page 136) for the associated category.

If the locale value begins with a <slash>, it shall be interpreted as the pathname of a file that was
created in the output format used by the localedef utility; see OUTPUT FILES under localedef.
Referencing such a pathname shall result in that locale being used for the indicated category.

176 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

5575

5576

5577

5578

5579

5580

5581

5582

5583

5584

5585

5586

5587

5588

5589

5590

5591

5592

5593

5594

5595

5596

5597

5598

5599

5600

5601

5602

5603

5604

5605

5606

5607

5608

5609

5610

5611

5612

5613

5614

5615

5616

5617

Environment Variables Internationalization Variables

XSI If the locale value has the form:

language[_territory][.codeset]

it refers to an implementation-provided locale, where settings of language, territory, and codeset
are implementation-defined.

LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and LC_TIME are
defined to accept an additional field @modifier, which allows the user to select a specific instance
of localization data within a single category (for example, for selecting the dictionary as opposed
to the character ordering of data). The syntax for these environment variables is thus defined as:

[language[_territory][.codeset][@modifier]]

For example, if a user wanted to interact with the system in French, but required to sort German
text files, LANG and LC_COLLATE could be defined as:

LANG=Fr_FR
LC_COLLATE=De_DE

This could be extended to select dictionary collation (say) by use of the @modifier field; for
example:

LC_COLLATE=De_DE@dict

An implementation may support other formats.

If the locale value is not recognized by the implementation, the behavior is unspecified.

At runtime, these values are bound to the locale of a process by calling the setlocale() function.

Additional criteria for determining a valid locale name are implementation-defined.

8.3 Other Environment Variables

COLUMNS This variable shall represent a decimal integer >0 used to indicate the user’s
preferred width in column positions for the terminal screen or window; see
Section 3.103 (on page 50). If this variable is unset or null, the implementation
determines the number of columns, appropriate for the terminal or window,
in an unspecified manner. When COLUMNS is set, any terminal-width
information implied by TERM is overridden. Users and conforming
applications should not set COLUMNS unless they wish to override the
system selection and produce output unrelated to the terminal characteristics.

Users should not need to set this variable in the environment unless there is a
specific reason to override the implementation’s default behavior, such as to
display data in an area arbitrarily smaller than the terminal or window.

XSI DATEMSK Indicates the pathname of the template file used by getdate().

HOME The system shall initialize this variable at the time of login to be a pathname of
the user’s home directory. See <pwd.h>.

LINES This variable shall represent a decimal integer >0 used to indicate the user’s
preferred number of lines on a page or the vertical screen or window size in
lines. A line in this case is a vertical measure large enough to hold the tallest
character in the character set being displayed. If this variable is unset or null,
the implementation determines the number of lines, appropriate for the

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 177

5618

5619

5620

5621

5622

5623

5624

5625

5626

5627

5628

5629

5630

5631

5632

5633

5634

5635

5636

5637

5638

5639

5640

5641

5642

5643

5644

5645

5646

5647

5648

5649

5650

5651

5652

5653

5654

5655

5656

5657

Other Environment Variables Environment Variables

terminal or window (size, terminal baud rate, and so on), in an unspecified
manner. When LINES is set, any terminal-height information implied by
TERM is overridden. Users and conforming applications should not set LINES
unless they wish to override the system selection and produce output
unrelated to the terminal characteristics.

Users should not need to set this variable in the environment unless there is a
specific reason to override the implementation’s default behavior, such as to
display data in an area arbitrarily smaller than the terminal or window.

LOGNAME The system shall initialize this variable at the time of login to be the user’s
login name. See <pwd.h>. For a value of LOGNAME to be portable across
implementations of POSIX.1-2008, the value should be composed of characters
from the portable filename character set.

XSI MSGVERB Describes which message components shall be used in writing messages by
fmtmsg().

PA TH This variable shall represent the sequence of path prefixes that certain
functions and utilities apply in searching for an executable file known only by
a filename. The prefixes shall be separated by a <colon> (’:’). When a non-
zero-length prefix is applied to this filename, a <slash> shall be inserted
between the prefix and the filename. A zero-length prefix is a legacy feature
that indicates the current working directory. It appears as two adjacent
<colon> characters ("::"), as an initial <colon> preceding the rest of the list,
or as a trailing <colon> following the rest of the list. A strictly conforming
application shall use an actual pathname (such as .) to represent the current
working directory in PA TH. The list shall be searched from beginning to end,
applying the filename to each prefix, until an executable file with the specified
name and appropriate execution permissions is found. If the pathname being
sought contains a <slash>, the search through the path prefixes shall not be
performed. If the pathname begins with a <slash>, the specified path is
resolved (see Section 4.12, on page 111). If PA TH is unset or is set to null, the
path search is implementation-defined.

PWD This variable shall represent an absolute pathname of the current working
directory. It shall not contain any components that are dot or dot-dot. The
value is set by the cd utility, and by the sh utility during initialization.

SHELL This variable shall represent a pathname of the user’s preferred command
language interpreter. If this interpreter does not conform to the Shell
Command Language in XCU Chapter 2 (on page 2297), utilities may behave
differently from those described in POSIX.1-2008.

TMPDIR This variable shall represent a pathname of a directory made available for
programs that need a place to create temporary files.

TERM This variable shall represent the terminal type for which output is to be
prepared. This information is used by utilities and application programs
wishing to exploit special capabilities specific to a terminal. The format and
allowable values of this environment variable are unspecified.

TZ This variable shall represent timezone information. The contents of the
environment variable named TZ shall be used by the ctime(), ctime_r(),
localtime(), localtime_r() strftime(), mktime(), functions, and by various
utilities, to override the default timezone. The value of TZ has one of the two
forms (spaces inserted for clarity):

178 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

5658

5659

5660

5661

5662

5663

5664

5665

5666

5667

5668

5669

5670

5671

5672

5673

5674

5675

5676

5677

5678

5679

5680

5681

5682

5683

5684

5685

5686

5687

5688

5689

5690

5691

5692

5693

5694

5695

5696

5697

5698

5699

5700

5701

5702

5703

5704

5705

Environment Variables Other Environment Variables

:characters

or:

std offset dst offset, rule

If TZ is of the first format (that is, if the first character is a <colon>), the
characters following the <colon> are handled in an implementation-defined
manner.

The expanded format (for all TZs whose value does not have a <colon> as the
first character) is as follows:

stdoffset[dst[offset][,start[/time],end[/time]]]

Where:

std and dst Indicate no less than three, nor more than {TZNAME_MAX},
bytes that are the designation for the standard (std) or the
alternative (dst—such as Daylight Savings Time) timezone. Only
std is required; if dst is missing, then the alternative time does
not apply in this locale.

Each of these fields may occur in either of two formats quoted or
unquoted:

— In the quoted form, the first character shall be the <less-
than-sign> (’<’) character and the last character shall be
the <greater-than-sign> (’>’) character. All characters
between these quoting characters shall be alphanumeric
characters from the portable character set in the current
locale, the <plus-sign> (’+’) character, or the minus-sign
(’−’) character. The std and dst fields in this case shall not
include the quoting characters.

— In the unquoted form, all characters in these fields shall be
alphabetic characters from the portable character set in the
current locale.

The interpretation of these fields is unspecified if either field is
less than three bytes (except for the case when dst is missing),
more than {TZNAME_MAX} bytes, or if they contain characters
other than those specified.

offset Indicates the value added to the local time to arrive at
Coordinated Universal Time. The offset has the form:

hh[:mm[:ss]]

The minutes (mm) and seconds (ss) are optional. The hour (hh)
shall be required and may be a single digit. The offset following
std shall be required. If no offset follows dst, the alternative time
is assumed to be one hour ahead of standard time. One or more
digits may be used; the value is always interpreted as a decimal
number. The hour shall be between zero and 24, and the minutes
(and seconds)—if present—between zero and 59. The result of
using values outside of this range is unspecified. If preceded by
a ’−’, the timezone shall be east of the Prime Meridian;
otherwise, it shall be west (which may be indicated by an
optional preceding ’+’).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 179

5706

5707

5708

5709

5710

5711

5712

5713

5714

5715

5716

5717

5718

5719

5720

5721

5722

5723

5724

5725

5726

5727

5728

5729

5730

5731

5732

5733

5734

5735

5736

5737

5738

5739

5740

5741

5742

5743

5744

5745

5746

5747

5748

5749

5750

5751

Other Environment Variables Environment Variables

rule Indicates when to change to and back from the alternative time.
The rule has the form:

date[/time],date[/time]

where the first date describes when the change from standard to
alternative time occurs and the second date describes when the
change back happens. Each time field describes when, in current
local time, the change to the other time is made.

The format of date is one of the following:

Jn The Julian day n (1 ≤ n ≤ 365). Leap days shall not be
counted. That is, in all years—including leap years—
February 28 is day 59 and March 1 is day 60. It is
impossible to refer explicitly to the occasional February
29.

n The zero-based Julian day (0 ≤ n ≤ 365). Leap days shall
be counted, and it is possible to refer to February 29.

Mm.n.d The d’th day (0 ≤ d ≤ 6) of week n of month m of the
year (1 ≤ n ≤ 5, 1 ≤ m ≤ 12, where week 5 means ‘‘the last
d day in month m’’ which may occur in either the fourth
or the fifth week). Week 1 is the first week in which the
d’th day occurs. Day zero is Sunday.

The time has the same format as offset except that no leading sign
(’−’ or ’+’) is allowed. The default, if time is not given, shall be
02:00:00.

180 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

5752

5753

5754

5755

5756

5757

5758

5759

5760

5761

5762

5763

5764

5765

5766

5767

5768

5769

5770

5771

5772

5773

5774

Chapter 9

Regular Expressions

Regular Expressions (REs) provide a mechanism to select specific strings from a set of character
strings.

Regular expressions are a context-independent syntax that can represent a wide variety of
character sets and character set orderings, where these character sets are interpreted according
to the current locale. While many regular expressions can be interpreted differently depending
on the current locale, many features, such as character class expressions, provide for contextual
invariance across locales.

The Basic Regular Expression (BRE) notation and construction rules in Section 9.3 (on page 183)
shall apply to most utilities supporting regular expressions. Some utilities, instead, support the
Extended Regular Expressions (ERE) described in Section 9.4 (on page 188); any exceptions for
both cases are noted in the descriptions of the specific utilities using regular expressions. Both
BREs and EREs are supported by the Regular Expression Matching interface in the System
Interfaces volume of POSIX.1-2008 under regcomp(), regexec(), and related functions.

9.1 Regular Expression Definitions

For the purposes of this section, the following definitions shall apply:

entire regular expression
The concatenated set of one or more BREs or EREs that make up the pattern specified for
string selection.

matched
A sequence of zero or more characters shall be said to be matched by a BRE or ERE when
the characters in the sequence correspond to a sequence of characters defined by the
pattern.

Matching shall be based on the bit pattern used for encoding the character, not on the
graphic representation of the character. This means that if a character set contains two or
more encodings for a graphic symbol, or if the strings searched contain text encoded in
more than one codeset, no attempt is made to search for any other representation of the
encoded symbol. If that is required, the user can specify equivalence classes containing all
variations of the desired graphic symbol.

The search for a matching sequence starts at the beginning of a string and stops when the
first sequence matching the expression is found, where ‘‘first’’ is defined to mean ‘‘begins
earliest in the string’’. If the pattern permits a variable number of matching characters and
thus there is more than one such sequence starting at that point, the longest such sequence
is matched. For example, the BRE "bb*" matches the second to fourth characters of the
string "abbbc", and the ERE "(wee|week)(knights|night)" matches all ten
characters of the string "weeknights".

Consistent with the whole match being the longest of the leftmost matches, each subpattern,
from left to right, shall match the longest possible string. For this purpose, a null string shall
be considered to be longer than no match at all. For example, matching the BRE

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 181

5775

5776

5777

5778

5779

5780

5781

5782

5783

5784

5785

5786

5787

5788

5789

5790

5791

5792

5793

5794

5795

5796

5797

5798

5799

5800

5801

5802

5803

5804

5805

5806

5807

5808

5809

5810

5811

5812

5813

5814

Regular Expression Definitions Regular Expressions

"\(.*\).*" against "abcdef", the subexpression "(\1)" is "abcdef", and matching
the BRE "\(a*\)*" against "bc", the subexpression "(\1)" is the null string.

When a multi-character collating element in a bracket expression (see Section 9.3.5, on page
184) is involved, the longest sequence shall be measured in characters consumed from the
string to be matched; that is, the collating element counts not as one element, but as the
number of characters it matches.

BRE (ERE) matching a single character
A BRE or ERE that shall match either a single character or a single collating element.

Only a BRE or ERE of this type that includes a bracket expression (see Section 9.3.5, on page
184) can match a collating element.

BRE (ERE) matching multiple characters
A BRE or ERE that shall match a concatenation of single characters or collating elements.

Such a BRE or ERE is made up from a BRE (ERE) matching a single character and BRE
(ERE) special characters.

invalid
This section uses the term ‘‘invalid’’ for certain constructs or conditions. Invalid REs shall
cause the utility or function using the RE to generate an error condition. When invalid is not
used, violations of the specified syntax or semantics for REs produce undefined results: this
may entail an error, enabling an extended syntax for that RE, or using the construct in error
as literal characters to be matched. For example, the BRE construct "\{1,2,3\}" does not
comply with the grammar. A conforming application cannot rely on it producing an error
nor matching the literal characters "\{1,2,3\}".

9.2 Regular Expression General Requirements

The requirements in this section shall apply to both basic and extended regular expressions.

The use of regular expressions is generally associated with text processing. REs (BREs and EREs)
operate on text strings; that is, zero or more characters followed by an end-of-string delimiter
(typically NUL). Some utilities employing regular expressions limit the processing to lines; that
is, zero or more characters followed by a <newline>. In the regular expression processing
described in POSIX.1-2008, the <newline> is regarded as an ordinary character and both a
<period> and a non-matching list can match one. The Shell and Utilities volume of
POSIX.1-2008 specifies within the individual descriptions of those standard utilities employing
regular expressions whether they permit matching of <newline> characters; if not stated
otherwise, the use of literal <newline> characters or any escape sequence equivalent produces
undefined results. Those utilities (like grep) that do not allow <newline> characters to match are
responsible for eliminating any <newline> from strings before matching against the RE. The
regcomp() function in the System Interfaces volume of POSIX.1-2008, however, can provide
support for such processing without violating the rules of this section.

The interfaces specified in POSIX.1-2008 do not permit the inclusion of a NUL character in an RE
or in the string to be matched. If during the operation of a standard utility a NUL is included in
the text designated to be matched, that NUL may designate the end of the text string for the
purposes of matching.

When a standard utility or function that uses regular expressions specifies that pattern matching
shall be performed without regard to the case (uppercase or lowercase) of either data or
patterns, then when each character in the string is matched against the pattern, not only the

182 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

5815

5816

5817

5818

5819

5820

5821

5822

5823

5824

5825

5826

5827

5828

5829

5830

5831

5832

5833

5834

5835

5836

5837

5838

5839

5840

5841

5842

5843

5844

5845

5846

5847

5848

5849

5850

5851

5852

5853

5854

5855

5856

5857

5858

Regular Expressions Regular Expression General Requirements

character, but also its case counterpart (if any), shall be matched. This definition of case-
insensitive processing is intended to allow matching of multi-character collating elements as
well as characters, as each character in the string is matched using both its cases. For example, in
a locale where "Ch" is a multi-character collating element and where a matching list expression
matches such elements, the RE "[[.Ch.]]" when matched against the string "char" is in
reality matched against "ch", "Ch", "cH", and "CH".

The implementation shall support any regular expression that does not exceed 256 bytes in
length.

9.3 Basic Regular Expressions

9.3.1 BREs Matching a Single Character or Collating Element

A BRE ordinary character, a special character preceded by a <backslash>, or a <period> shall
match a single character. A bracket expression shall match a single character or a single collating
element.

9.3.2 BRE Ordinary Characters

An ordinary character is a BRE that matches itself: any character in the supported character set,
except for the BRE special characters listed in Section 9.3.3.

The interpretation of an ordinary character preceded by a <backslash> (’\\’) is undefined,
except for:

• The characters ’)’, ’(’, ’{’, and ’}’

• The digits 1 to 9 inclusive (see Section 9.3.6, on page 186)

• A character inside a bracket expression

9.3.3 BRE Special Characters

A BRE special character has special properties in certain contexts. Outside those contexts, or
when preceded by a <backslash>, such a character is a BRE that matches the special character
itself. The BRE special characters and the contexts in which they have their special meaning are
as follows:

.[\ The <period>, <left-square-bracket>, and <backslash> shall be special except when
used in a bracket expression (see Section 9.3.5, on page 184). An expression containing
a ’[’ that is not preceded by a <backslash> and is not part of a bracket expression
produces undefined results.

* The <asterisk> shall be special except when used:

— In a bracket expression

— As the first character of an entire BRE (after an initial ’ˆ’, if any)

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 183

5859

5860

5861

5862

5863

5864

5865

5866

5867

5868

5869

5870

5871

5872

5873

5874

5875

5876

5877

5878

5879

5880

5881

5882

5883

5884

5885

5886

5887

5888

5889

5890

5891

Basic Regular Expressions Regular Expressions

— As the first character of a subexpression (after an initial ’ˆ’, if any); see Section
9.3.6 (on page 186)

ˆ The <circumflex> shall be special when used as:

— An anchor (see Section 9.3.8, on page 187)

— The first character of a bracket expression (see Section 9.3.5)

$ The <dollar-sign> shall be special when used as an anchor.

9.3.4 Periods in BREs

A <period> (’.’), when used outside a bracket expression, is a BRE that shall match any
character in the supported character set except NUL.

9.3.5 RE Bracket Expression

A bracket expression (an expression enclosed in square brackets, "[]") is an RE that shall
match a single collating element contained in the non-empty set of collating elements
represented by the bracket expression.

The following rules and definitions apply to bracket expressions:

1. A bracket expression is either a matching list expression or a non-matching list
expression. It consists of one or more expressions: collating elements, collating symbols,
equivalence classes, character classes, or range expressions. The <right-square-bracket>
(’]’) shall lose its special meaning and represent itself in a bracket expression if it occurs
first in the list (after an initial <circumflex> (’ˆ’), if any). Otherwise, it shall terminate
the bracket expression, unless it appears in a collating symbol (such as "[.].]") or is the
ending <right-square-bracket> for a collating symbol, equivalence class, or character
class. The special characters ’.’, ’*’, ’[’, and ’\\’ (<period>, <asterisk>, <left-square-
bracket>, and <backslash>, respectively) shall lose their special meaning within a bracket
expression.

The character sequences "[.", "[=", and "[:" (<left-square-bracket> followed by a
<period>, <equals-sign>, or <colon>) shall be special inside a bracket expression and are
used to delimit collating symbols, equivalence class expressions, and character class
expressions. These symbols shall be followed by a valid expression and the matching
terminating sequence ".]", "=]", or ":]", as described in the following items.

2. A matching list expression specifies a list that shall match any single-character collating
element in any of the expressions represented in the list. The first character in the list shall
not be the <circumflex>; for example, "[abc]" is an RE that matches any of the
characters ’a’, ’b’, or ’c’. It is unspecified whether a matching list expression matches
a multi-character collating element that is matched by one of the expressions.

3. A non-matching list expression begins with a <circumflex> (’ˆ’), and specifies a list that
shall match any single-character collating element except for the expressions represented
in the list after the leading <circumflex>. For example, "[ˆabc]" is an RE that matches
any character except the characters ’a’, ’b’, or ’c’. It is unspecified whether a non-
matching list expression matches a multi-character collating element that is not matched
by any of the expressions. The <circumflex> shall have this special meaning only when it
occurs first in the list, immediately following the <left-square-bracket>.

184 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

5892

5893

5894

5895

5896

5897

5898

5899

5900

5901

5902

5903

5904

5905

5906

5907

5908

5909

5910

5911

5912

5913

5914

5915

5916

5917

5918

5919

5920

5921

5922

5923

5924

5925

5926

5927

5928

5929

5930

5931

5932

Regular Expressions Basic Regular Expressions

4. A collating symbol is a collating element enclosed within bracket-period ("[." and
".]") delimiters. Collating elements are defined as described in Section 7.3.2.4 (on page
149). Conforming applications shall represent multi-character collating elements as
collating symbols when it is necessary to distinguish them from a list of the individual
characters that make up the multi-character collating element. For example, if the string
"ch" is a collating element defined using the line:

collating-element <ch-digraph> from "<c><h>"

in the locale definition, the expression "[[.ch.]]" shall be treated as an RE containing
the collating symbol ’ch’, while "[ch]" shall be treated as an RE matching ’c’ or ’h’.
Collating symbols are recognized only inside bracket expressions. If the string is not a
collating element in the current locale, the expression is invalid.

5. An equivalence class expression shall represent the set of collating elements belonging to
an equivalence class, as described in Section 7.3.2.4 (on page 149). Only primary
equivalence classes shall be recognized. The class shall be expressed by enclosing any one
of the collating elements in the equivalence class within bracket-equal ("[=" and "=]")
delimiters. For example, if ’a’, ’à’, and ’ˆ’ belong to the same equivalence class, then
"[[=a=]b]", "[[=à=]b]", and "[[=ˆ=]b]" are each equivalent to "[aàˆb]". If the
collating element does not belong to an equivalence class, the equivalence class
expression shall be treated as a collating symbol.

6. A character class expression shall represent the union of two sets:

a. The set of single-character collating elements whose characters belong to the
character class, as defined in the LC_CTYPE category in the current locale.

b. An unspecified set of multi-character collating elements.

All character classes specified in the current locale shall be recognized. A character class
expression is expressed as a character class name enclosed within bracket-<colon> ("[:"
and ":]") delimiters.

The following character class expressions shall be supported in all locales:

[:alnum:] [:cntrl:] [:lower:] [:space:]
[:alpha:] [:digit:] [:print:] [:upper:]
[:blank:] [:graph:] [:punct:] [:xdigit:]

In addition, character class expressions of the form:

[:name:]

are recognized in those locales where the name keyword has been given a charclass
definition in the LC_CTYPE category.

7. In the POSIX locale, a range expression represents the set of collating elements that fall
between two elements in the collation sequence, inclusive. In other locales, a range
expression has unspecified behavior: strictly conforming applications shall not rely on
whether the range expression is valid, or on the set of collating elements matched. A
range expression shall be expressed as the starting point and the ending point separated
by a <hyphen> (’−’).

In the following, all examples assume the POSIX locale.

The starting range point and the ending range point shall be a collating element or
collating symbol. An equivalence class expression used as a starting or ending point of a
range expression produces unspecified results. An equivalence class can be used portably
within a bracket expression, but only outside the range. If the represented set of collating

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 185

5933

5934

5935

5936

5937

5938

5939

5940

5941

5942

5943

5944

5945

5946

5947

5948

5949

5950

5951

5952

5953

5954

5955

5956

5957

5958

5959

5960

5961

5962

5963

5964

5965

5966

5967

5968

5969

5970

5971

5972

5973

5974

5975

5976

5977

Basic Regular Expressions Regular Expressions

elements is empty, it is unspecified whether the expression matches nothing, or is treated
as invalid.

The interpretation of range expressions where the ending range point is also the starting
range point of a subsequent range expression (for example, "[a−m−o]") is undefined.

The <hyphen> character shall be treated as itself if it occurs first (after an initial ’ˆ’, if
any) or last in the list, or as an ending range point in a range expression. As examples, the
expressions "[−ac]" and "[ac−]" are equivalent and match any of the characters ’a’,
’c’, or ’−’; "[ˆ−ac]" and "[ˆac−]" are equivalent and match any characters except
’a’, ’c’, or ’−’; the expression "[%− −]" matches any of the characters between ’%’
and ’−’ inclusive; the expression "[− −@]" matches any of the characters between ’−’
and ’@’ inclusive; and the expression "[a− −@]" is either invalid or equivalent to ’@’,
because the letter ’a’ follows the symbol ’−’ in the POSIX locale. To use a <hyphen> as
the starting range point, it shall either come first in the bracket expression or be specified
as a collating symbol; for example, "[][.−.]−0]", which matches either a <right-
square-bracket> or any character or collating element that collates between <hyphen>
and 0, inclusive.

If a bracket expression specifies both ’−’ and ’]’, the ’]’ shall be placed first (after the
’ˆ’, if any) and the ’−’ last within the bracket expression.

9.3.6 BREs Matching Multiple Characters

The following rules can be used to construct BREs matching multiple characters from BREs
matching a single character:

1. The concatenation of BREs shall match the concatenation of the strings matched by each
component of the BRE.

2. A subexpression can be defined within a BRE by enclosing it between the character pairs
"\(" and "\)". Such a subexpression shall match whatever it would have matched
without the "\(" and "\)", except that anchoring within subexpressions is optional
behavior; see Section 9.3.8 (on page 187). Subexpressions can be arbitrarily nested.

3. The back-reference expression ’\n’ shall match the same (possibly empty) string of
characters as was matched by a subexpression enclosed between "\(" and "\)"
preceding the ’\n’. The character ’n’ shall be a digit from 1 through 9, specifying the
nth subexpression (the one that begins with the nth "\(" from the beginning of the
pattern and ends with the corresponding paired "\)"). The expression is invalid if less
than n subexpressions precede the ’\n’. The string matched by a contained
subexpression shall be within the string matched by the containing subexpression. If the
containing subexpression does not match, or if there is no match for the contained
subexpression within the string matched by the containing subexpression, then back-
reference expressions corresponding to the contained subexpression shall not match.
When a subexpression matches more than one string, a back-reference expression
corresponding to the subexpression shall refer to the last matched string. For example, the
expression "ˆ\(.*\)\1$" matches lines consisting of two adjacent appearances of the
same string, and the expression "\(a\)*\1" fails to match ’a’, the expression
"\(a\(b\)*\)*\2" fails to match ’abab’, and the expression "ˆ\(ab*\)*\1$"
matches ’ababbabb’, but fails to match ’ababbab’.

4. When a BRE matching a single character, a subexpression, or a back-reference is followed
by the special character <asterisk> (’*’), together with that <asterisk> it shall match
what zero or more consecutive occurrences of the BRE would match. For example,
"[ab]*" and "[ab][ab]" are equivalent when matching the string "ab".

186 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

5978

5979

5980

5981

5982

5983

5984

5985

5986

5987

5988

5989

5990

5991

5992

5993

5994

5995

5996

5997

5998

5999

6000

6001

6002

6003

6004

6005

6006

6007

6008

6009

6010

6011

6012

6013

6014

6015

6016

6017

6018

6019

6020

6021

6022

6023

6024

Regular Expressions Basic Regular Expressions

5. When a BRE matching a single character, a subexpression, or a back-reference is followed
by an interval expression of the format "\{m\}", "\{m,\}", or "\{m,n\}", together
with that interval expression it shall match what repeated consecutive occurrences of the
BRE would match. The values of m and n are decimal integers in the range 0
≤m≤n≤{RE_DUP_MAX}, where m specifies the exact or minimum number of occurrences
and n specifies the maximum number of occurrences. The expression "\{m\}" shall
match exactly m occurrences of the preceding BRE, "\{m,\}" shall match at least m
occurrences, and "\{m,n\}" shall match any number of occurrences between m and n,
inclusive.

For example, in the string "abababccccccd" the BRE "c\{3\}" is matched by
characters seven to nine, the BRE "\(ab\)\{4,\}" is not matched at all, and the BRE
"c\{1,3\}d" is matched by characters ten to thirteen.

The behavior of multiple adjacent duplication symbols (’*’ and intervals) produces undefined
results.

A subexpression repeated by an <asterisk> (’*’) or an interval expression shall not match a null
expression unless this is the only match for the repetition or it is necessary to satisfy the exact or
minimum number of occurrences for the interval expression.

9.3.7 BRE Precedence

The order of precedence shall be as shown in the following table:

BRE Precedence (from high to low)

Collation-related bracket symbols [==] [::] [..]
Escaped characters \<special character>
Bracket expression []
Subexpressions/back-references \(\) \n
Single-character-BRE duplication * \{m,n\}
Concatenation
Anchoring ˆ $

9.3.8 BRE Expression Anchoring

A BRE can be limited to matching strings that begin or end a line; this is called ‘‘anchoring’’.
The <circumflex> and <dollar-sign> special characters shall be considered BRE anchors in the
following contexts:

1. A <circumflex> (’ˆ’) shall be an anchor when used as the first character of an entire BRE.
The implementation may treat the <circumflex> as an anchor when used as the first
character of a subexpression. The <circumflex> shall anchor the expression (or optionally
subexpression) to the beginning of a string; only sequences starting at the first character
of a string shall be matched by the BRE. For example, the BRE "ˆab" matches "ab" in
the string "abcdef", but fails to match in the string "cdefab". The BRE "\(ˆab\)"
may match the former string. A portable BRE shall escape a leading <circumflex> in a
subexpression to match a literal circumflex.

2. A <dollar-sign> (’$’) shall be an anchor when used as the last character of an entire BRE.
The implementation may treat a <dollar-sign> as an anchor when used as the last
character of a subexpression. The <dollar-sign> shall anchor the expression (or optionally
subexpression) to the end of the string being matched; the <dollar-sign> can be said to
match the end-of-string following the last character.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 187

6025

6026

6027

6028

6029

6030

6031

6032

6033

6034

6035

6036

6037

6038

6039

6040

6041

6042

6043

6044

6045

6046

6047

6048

6049

6050

6051

6052

6053

6054

6055

6056

6057

6058

6059

6060

6061

6062

6063

6064

6065

6066

6067

6068

Basic Regular Expressions Regular Expressions

3. A BRE anchored by both ’ˆ’ and ’$’ shall match only an entire string. For example, the
BRE "ˆabcdef$" matches strings consisting only of "abcdef".

9.4 Extended Regular Expressions

The extended regular expression (ERE) notation and construction rules shall apply to utilities
defined as using extended regular expressions; any exceptions to the following rules are noted
in the descriptions of the specific utilities using EREs.

9.4.1 EREs Matching a Single Character or Collating Element

An ERE ordinary character, a special character preceded by a <backslash,> or a <period> shall
match a single character. A bracket expression shall match a single character or a single collating
element. An ERE matching a single character enclosed in parentheses shall match the same as
the ERE without parentheses would have matched.

9.4.2 ERE Ordinary Characters

An ordinary character is an ERE that matches itself. An ordinary character is any character in the
supported character set, except for the ERE special characters listed in Section 9.4.3. The
interpretation of an ordinary character preceded by a <backslash> (’\\’) is undefined.

9.4.3 ERE Special Characters

An ERE special character has special properties in certain contexts. Outside those contexts, or
when preceded by a <backslash>, such a character shall be an ERE that matches the special
character itself. The extended regular expression special characters and the contexts in which
they shall have their special meaning are as follows:

.[\(The <period>, <left-square-bracket>, <backslash>, and <left-parenthesis> shall be
special except when used in a bracket expression (see Section 9.3.5, on page 184).
Outside a bracket expression, a <left-parenthesis> immediately followed by a <right-
parenthesis> produces undefined results.

) The <right-parenthesis> shall be special when matched with a preceding <left-
parenthesis>, both outside a bracket expression.

*+?{ The <asterisk>, <plus-sign>, <question-mark>, and <left-brace> shall be special except
when used in a bracket expression (see Section 9.3.5, on page 184). Any of the
following uses produce undefined results:

— If these characters appear first in an ERE, or immediately following a <vertical-
line>, <circumflex>, or <left-parenthesis>

— If a <left-brace> is not part of a valid interval expression (see Section 9.4.6, on
page 189)

| The <vertical-line> is special except when used in a bracket expression (see Section
9.3.5, on page 184). A <vertical-line> appearing first or last in an ERE, or immediately
following a <vertical-line> or a <left-parenthesis>, or immediately preceding a <right-
parenthesis>, produces undefined results.

188 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

6069

6070

6071

6072

6073

6074

6075

6076

6077

6078

6079

6080

6081

6082

6083

6084

6085

6086

6087

6088

6089

6090

6091

6092

6093

6094

6095

6096

6097

6098

6099

6100

6101

6102

6103

6104

6105

Regular Expressions Extended Regular Expressions

ˆ The <circumflex> shall be special when used as:

— An anchor (see Section 9.4.9, on page 190)

— The first character of a bracket expression (see Section 9.3.5, on page 184)

$ The <dollar-sign> shall be special when used as an anchor.

9.4.4 Periods in EREs

A <period> (’.’), when used outside a bracket expression, is an ERE that shall match any
character in the supported character set except NUL.

9.4.5 ERE Bracket Expression

The rules for ERE Bracket Expressions are the same as for Basic Regular Expressions; see Section
9.3.5 (on page 184).

9.4.6 EREs Matching Multiple Characters

The following rules shall be used to construct EREs matching multiple characters from EREs
matching a single character:

1. A concatenation of EREs shall match the concatenation of the character sequences
matched by each component of the ERE. A concatenation of EREs enclosed in parentheses
shall match whatever the concatenation without the parentheses matches. For example,
both the ERE "cd" and the ERE "(cd)" are matched by the third and fourth character of
the string "abcdefabcdef".

2. When an ERE matching a single character or an ERE enclosed in parentheses is followed
by the special character <plus-sign> (’+’), together with that <plus-sign> it shall match
what one or more consecutive occurrences of the ERE would match. For example, the
ERE "b+(bc)" matches the fourth to seventh characters in the string "acabbbcde".
And, "[ab]+" and "[ab][ab]*" are equivalent.

3. When an ERE matching a single character or an ERE enclosed in parentheses is followed
by the special character <asterisk> (’*’), together with that <asterisk> it shall match
what zero or more consecutive occurrences of the ERE would match. For example, the
ERE "b*c" matches the first character in the string "cabbbcde", and the ERE "b*cd"
matches the third to seventh characters in the string "cabbbcdebbbbbbcdbc". And,
"[ab]*" and "[ab][ab]" are equivalent when matching the string "ab".

4. When an ERE matching a single character or an ERE enclosed in parentheses is followed
by the special character <question-mark> (’?’), together with that <question-mark> it
shall match what zero or one consecutive occurrences of the ERE would match. For
example, the ERE "b?c" matches the second character in the string "acabbbcde".

5. When an ERE matching a single character or an ERE enclosed in parentheses is followed
by an interval expression of the format "{m}", "{m,}", or "{m,n}", together with that
interval expression it shall match what repeated consecutive occurrences of the ERE
would match. The values of m and n are decimal integers in the range 0
≤m≤n≤{RE_DUP_MAX}, where m specifies the exact or minimum number of occurrences
and n specifies the maximum number of occurrences. The expression "{m}" matches
exactly m occurrences of the preceding ERE, "{m,}" matches at least m occurrences, and
"{m,n}" matches any number of occurrences between m and n, inclusive.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 189

6106

6107

6108

6109

6110

6111

6112

6113

6114

6115

6116

6117

6118

6119

6120

6121

6122

6123

6124

6125

6126

6127

6128

6129

6130

6131

6132

6133

6134

6135

6136

6137

6138

6139

6140

6141

6142

6143

6144

6145

6146

Extended Regular Expressions Regular Expressions

For example, in the string "abababccccccd" the ERE "c{3}" is matched by characters
seven to nine and the ERE "(ab){2,}" is matched by characters one to six.

The behavior of multiple adjacent duplication symbols (’+’, ’*’, ’?’, and intervals) produces
undefined results.

An ERE matching a single character repeated by an ’*’, ’?’, or an interval expression shall not
match a null expression unless this is the only match for the repetition or it is necessary to satisfy
the exact or minimum number of occurrences for the interval expression.

9.4.7 ERE Alternation

Two EREs separated by the special character <vertical-line> (’|’) shall match a string that is
matched by either. For example, the ERE "a((bc)|d)" matches the string "abc" and the
string "ad". Single characters, or expressions matching single characters, separated by the
<vertical-line> and enclosed in parentheses, shall be treated as an ERE matching a single
character.

9.4.8 ERE Precedence

The order of precedence shall be as shown in the following table:

ERE Precedence (from high to low)

Collation-related bracket symbols [==] [::] [..]
Escaped characters \<special character>
Bracket expression []
Grouping ()
Single-character-ERE duplication * + ? {m,n}
Concatenation
Anchoring ˆ $
Alternation |

For example, the ERE "abba|cde" matches either the string "abba" or the string "cde"
(rather than the string "abbade" or "abbcde", because concatenation has a higher order of
precedence than alternation).

9.4.9 ERE Expression Anchoring

An ERE can be limited to matching strings that begin or end a line; this is called ‘‘anchoring’’.
The <circumflex> and <dollar-sign> special characters shall be considered ERE anchors when
used anywhere outside a bracket expression. This shall have the following effects:

1. A <circumflex> (’ˆ’) outside a bracket expression shall anchor the expression or
subexpression it begins to the beginning of a string; such an expression or subexpression
can match only a sequence starting at the first character of a string. For example, the EREs
"ˆab" and "(ˆab)" match "ab" in the string "abcdef", but fail to match in the string
"cdefab", and the ERE "aˆb" is valid, but can never match because the ’a’ prevents
the expression "ˆb" from matching starting at the first character.

2. A <dollar-sign> (’$’) outside a bracket expression shall anchor the expression or
subexpression it ends to the end of a string; such an expression or subexpression can
match only a sequence ending at the last character of a string. For example, the EREs
"ef$" and "(ef$)" match "ef" in the string "abcdef", but fail to match in the string

190 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

6147

6148

6149

6150

6151

6152

6153

6154

6155

6156

6157

6158

6159

6160

6161

6162

6163

6164

6165

6166

6167

6168

6169

6170

6171

6172

6173

6174

6175

6176

6177

6178

6179

6180

6181

6182

6183

6184

6185

6186

6187

Regular Expressions Extended Regular Expressions

"cdefab", and the ERE "e$f" is valid, but can never match because the ’f’ prevents
the expression "e$" from matching ending at the last character.

9.5 Regular Expression Grammar

Grammars describing the syntax of both basic and extended regular expressions are presented in
this section. The grammar takes precedence over the text. See XCU Section 1.3 (on page 2287).

9.5.1 BRE/ERE Grammar Lexical Conventions

The lexical conventions for regular expressions are as described in this section.

Except as noted, the longest possible token or delimiter beginning at a given point is recognized.

The following tokens are processed (in addition to those string constants shown in the
grammar):

COLL_ELEM_SINGLE Any single-character collating element, unless it is a META_CHAR.

COLL_ELEM_MULTI Any multi-character collating element.

BACKREF Applicable only to basic regular expressions. The character string
consisting of a <backslash> character followed by a single-digit
numeral, ’1’ to ’9’.

DUP_COUNT Represents a numeric constant. It shall be an integer in the range 0
≤DUP_COUNT ≤{RE_DUP_MAX}. This token is only recognized
when the context of the grammar requires it. At all other times, digits
not preceded by a <backslash> character are treated as ORD_CHAR.

META_CHAR One of the characters:

ˆ When found first in a bracket expression

− When found anywhere but first (after an initial ’ˆ’, if any)
or last in a bracket expression, or as the ending range point
in a range expression

] When found anywhere but first (after an initial ’ˆ’, if any)
in a bracket expression

L_ANCHOR Applicable only to basic regular expressions. The character ’ˆ’
when it appears as the first character of a basic regular expression
and when not QUOTED_CHAR. The ’ˆ’ may be recognized as an
anchor elsewhere; see Section 9.3.8 (on page 187).

ORD_CHAR A character, other than one of the special characters in SPEC_CHAR.

QUOTED_CHAR In a BRE, one of the character sequences:

\ˆ \. * \[\$ \\

In an ERE, one of the character sequences:

\ˆ \. \[\$ \(\) \|
* \+ \? \{ \\

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 191

6188

6189

6190

6191

6192

6193

6194

6195

6196

6197

6198

6199

6200

6201

6202

6203

6204

6205

6206

6207

6208

6209

6210

6211

6212

6213

6214

6215

6216

6217

6218

6219

6220

6221

6222

6223

Regular Expression Grammar Regular Expressions

R_ANCHOR (Applicable only to basic regular expressions.) The character ’$’
when it appears as the last character of a basic regular expression and
when not QUOTED_CHAR. The ’$’ may be recognized as an
anchor elsewhere; see Section 9.3.8 (on page 187).

SPEC_CHAR For basic regular expressions, one of the following special characters:

. Anywhere outside bracket expressions

\ Anywhere outside bracket expressions

[Anywhere outside bracket expressions

ˆ When used as an anchor (see Section 9.3.8, on page 187) or
when first in a bracket expression

$ When used as an anchor

* Anywhere except first in an entire RE, anywhere in a
bracket expression, directly following "\(", directly
following an anchoring ’ˆ’

For extended regular expressions, shall be one of the following
special characters found anywhere outside bracket expressions:

ˆ . [$ () |
* + ? { \

(The close-parenthesis shall be considered special in this context only
if matched with a preceding open-parenthesis.)

9.5.2 RE and Bracket Expression Grammar

This section presents the grammar for basic regular expressions, including the bracket
expression grammar that is common to both BREs and EREs.

%token ORD_CHAR QUOTED_CHAR DUP_COUNT

%token BACKREF L_ANCHOR R_ANCHOR

%token Back_open_paren Back_close_paren
/* ’\(’ ’\)’ */

%token Back_open_brace Back_close_brace
/* ’\{’ ’\}’ */

/* The following tokens are for the Bracket Expression
grammar common to both REs and EREs. */

%token COLL_ELEM_SINGLE COLL_ELEM_MULTI META_CHAR

%token Open_equal Equal_close Open_dot Dot_close Open_colon Colon_close
/* ’[=’ ’=]’ ’[.’ ’.]’ ’[:’ ’:]’ */

%token class_name
/* class_name is a keyword to the LC_CTYPE locale category */
/* (representing a character class) in the current locale */
/* and is only recognized between [: and :] */

%start basic_reg_exp
%%

192 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

6224

6225

6226

6227

6228

6229

6230

6231

6232

6233

6234

6235

6236

6237

6238

6239

6240

6241

6242

6243

6244

6245

6246

6247

6248

6249

6250

6251

6252

6253

6254

6255

6256

6257

6258

6259

6260

6261

6262

6263

Regular Expressions Regular Expression Grammar

/* --
Basic Regular Expression
--

*/
basic_reg_exp : RE_expression

| L_ANCHOR
| R_ANCHOR
| L_ANCHOR R_ANCHOR
| L_ANCHOR RE_expression
| RE_expression R_ANCHOR
| L_ANCHOR RE_expression R_ANCHOR
;

RE_expression : simple_RE
| RE_expression simple_RE
;

simple_RE : nondupl_RE
| nondupl_RE RE_dupl_symbol
;

nondupl_RE : one_char_or_coll_elem_RE
| Back_open_paren RE_expression Back_close_paren
| BACKREF
;

one_char_or_coll_elem_RE : ORD_CHAR
| QUOTED_CHAR
| ’.’
| bracket_expression
;

RE_dupl_symbol : ’*’
| Back_open_brace DUP_COUNT Back_close_brace
| Back_open_brace DUP_COUNT ’,’ Back_close_brace
| Back_open_brace DUP_COUNT ’,’ DUP_COUNT Back_close_brace
;

/* --
Bracket Expression

*/
bracket_expression : ’[’ matching_list ’]’

| ’[’ nonmatching_list ’]’
;

matching_list : bracket_list
;

nonmatching_list : ’ˆ’ bracket_list
;

bracket_list : follow_list
| follow_list ’-’
;

follow_list : expression_term
| follow_list expression_term
;

expression_term : single_expression
| range_expression
;

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 193

6264

6265

6266

6267

6268

6269

6270

6271

6272

6273

6274

6275

6276

6277

6278

6279

6280

6281

6282

6283

6284

6285

6286

6287

6288

6289

6290

6291

6292

6293

6294

6295

6296

6297

6298

6299

6300

6301

6302

6303

6304

6305

6306

6307

6308

6309

6310

6311

6312

6313

6314

6315

Regular Expression Grammar Regular Expressions

single_expression : end_range
| character_class
| equivalence_class
;

range_expression : start_range end_range
| start_range ’-’
;

start_range : end_range ’-’
;

end_range : COLL_ELEM_SINGLE
| collating_symbol
;

collating_symbol : Open_dot COLL_ELEM_SINGLE Dot_close
| Open_dot COLL_ELEM_MULTI Dot_close
| Open_dot META_CHAR Dot_close
;

equivalence_class : Open_equal COLL_ELEM_SINGLE Equal_close
| Open_equal COLL_ELEM_MULTI Equal_close
;

character_class : Open_colon class_name Colon_close
;

The BRE grammar does not permit L_ANCHOR or R_ANCHOR inside "\(" and "\)" (which
implies that ’ˆ’ and ’$’ are ordinary characters). This reflects the semantic limits on the
application, as noted in Section 9.3.8 (on page 187). Implementations are permitted to extend the
language to interpret ’ˆ’ and ’$’ as anchors in these locations, and as such, conforming
applications cannot use unescaped ’ˆ’ and ’$’ in positions inside "\(" and "\)" that might
be interpreted as anchors.

9.5.3 ERE Grammar

This section presents the grammar for extended regular expressions, excluding the bracket
expression grammar.

Note: The bracket expression grammar and the associated %token lines are identical between BREs
and EREs. It has been omitted from the ERE section to avoid unnecessary editorial duplication.

%token ORD_CHAR QUOTED_CHAR DUP_COUNT
%start extended_reg_exp
%%

/* --
Extended Regular Expression
--

*/
extended_reg_exp : ERE_branch

| extended_reg_exp ’|’ ERE_branch
;

ERE_branch : ERE_expression
| ERE_branch ERE_expression
;

ERE_expression : one_char_or_coll_elem_ERE
| ’ˆ’
| ’$’

194 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

6316

6317

6318

6319

6320

6321

6322

6323

6324

6325

6326

6327

6328

6329

6330

6331

6332

6333

6334

6335

6336

6337

6338

6339

6340

6341

6342

6343

6344

6345

6346

6347

6348

6349

6350

6351

6352

6353

6354

6355

6356

6357

6358

6359

6360

6361

6362

6363

Regular Expressions Regular Expression Grammar

| ’(’ extended_reg_exp ’)’
| ERE_expression ERE_dupl_symbol
;

one_char_or_coll_elem_ERE : ORD_CHAR
| QUOTED_CHAR
| ’.’
| bracket_expression
;

ERE_dupl_symbol : ’*’
| ’+’
| ’?’
| ’{’ DUP_COUNT ’}’
| ’{’ DUP_COUNT ’,’ ’}’
| ’{’ DUP_COUNT ’,’ DUP_COUNT ’}’
;

The ERE grammar does not permit several constructs that previous sections specify as having
undefined results:

• ORD_CHAR preceded by a <backslash> character

• One or more ERE_dupl_symbols appearing first in an ERE, or immediately following ’|’,
’ˆ’, or ’(’

• ’{’ not part of a valid ERE_dupl_symbol

• ’|’ appearing first or last in an ERE, or immediately following ’|’ or ’(’, or
immediately preceding ’)’

Implementations are permitted to extend the language to allow these. Conforming applications
cannot use such constructs.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 195

6364

6365

6366

6367

6368

6369

6370

6371

6372

6373

6374

6375

6376

6377

6378

6379

6380

6381

6382

6383

6384

6385

6386

6387

6388

Regular Expressions

196 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

Chapter 10

Directory Structure and Devices

10.1 Directory Structure and Files

The following directories shall exist on conforming systems and conforming applications shall
make use of them only as described. Strictly conforming applications shall not assume the
ability to create files in any of these directories, unless specified below.

/ The root directory.

/dev Contains /dev/console, /dev/null, and /dev/tty, described below.

The following directory shall exist on conforming systems and shall be used as described:

/tmp A directory made available for applications that need a place to create temporary
files. Applications shall be allowed to create files in this directory, but shall not
assume that such files are preserved between invocations of the application.

The following files shall exist on conforming systems and shall be both readable and writable:

/dev/null An infinite data source and data sink. Data written to /dev/null shall be discarded.
Reads from /dev/null shall always return end-of-file (EOF).

/dev/tty In each process, a synonym for the controlling terminal associated with the process
group of that process, if any. It is useful for programs or shell procedures that wish
to be sure of writing messages to or reading data from the terminal no matter how
output has been redirected. It can also be used for applications that demand the
name of a file for output, when typed output is desired and it is tiresome to find
out what terminal is currently in use.

The following file shall exist on conforming systems and need not be readable or writable:

/dev/console The /dev/console file is a generic name given to the system console (see Section
3.384, on page 95). It is usually linked to an implementation-defined special file. It
shall provide an interface to the system console conforming to the requirements of
Chapter 11 (on page 199).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 197

6389

6390

6391

6392

6393

6394

6395

6396

6397

6398

6399

6400

6401

6402

6403

6404

6405

6406

6407

6408

6409

6410

6411

6412

6413

6414

Output Devices and Terminal Types Directory Structure and Devices

10.2 Output Devices and Terminal Types

The utilities in the Shell and Utilities volume of POSIX.1-2008 historically have been
implemented on a wide range of terminal types, but a conforming implementation need not
support all features of all utilities on every conceivable terminal. POSIX.1-2008 states which
features are optional for certain classes of terminals in the individual utility description sections.
The implementation shall document in the system documentation which terminal types it
supports and which of these features and utilities are not supported by each terminal.

When a feature or utility is not supported on a specific terminal type, as allowed by
POSIX.1-2008, and the implementation considers such a condition to be an error preventing use
of the feature or utility, the implementation shall indicate such conditions through diagnostic
messages or exit status values or both (as appropriate to the specific utility description) that
inform the user that the terminal type lacks the appropriate capability.

POSIX.1-2008 uses a notational convention based on historical practice that identifies some of
the control characters defined in Section 7.3.1 (on page 139) in a manner easily remembered by
users on many terminals. The correspondence between this ‘‘<control>-char’’ notation and the
actual control characters is shown in the following table. When POSIX.1-2008 refers to a
character by its <control>-name, it is referring to the actual control character shown in the Value
column of the table, which is not necessarily the exact control key sequence on all terminals.
Some terminals have keyboards that do not allow the direct transmission of all the non-
alphanumeric characters shown. In such cases, the system documentation shall describe which
data sequences transmitted by the terminal are interpreted by the system as representing the
special characters.

Table 10-1 Control Character Names

Name Value Symbolic Name Name Value Symbolic Name

<control>-A <SOH> <SOH> <control>-Q <DC1> <DC1>
<control>-B <STX> <STX> <control>-R <DC2> <DC2>
<control>-C <ETX> <ETX> <control>-S <DC3> <DC3>
<control>-D <EOT> <EOT> <control>-T <DC4> <DC4>
<control>-E <ENQ> <ENQ> <control>-U <NAK> <NAK>
<control>-F <ACK> <ACK> <control>-V <SYN> <SYN>
<control>-G <BEL> <alert> <control>-W <ETB> <ETB>
<control>-H <BS> <backspace> <control>-X <CAN> <CAN>
<control>-I <HT> <tab> <control>-Y
<control>-J <LF> <linefeed> <control>-Z <SUB> <SUB>
<control>-K <VT> <vertical-tab> <control>-[<ESC> <ESC>
<control>-L <FF> <form-feed> <control>-\ <FS> <FS>
<control>-M <CR> <carriage-return> <control>-] <GS> <GS>
<control>-N <SO> <SO> <control>-ˆ <RS> <RS>
<control>-O <SI> <SI> <control>-_ <US> <US>
<control>-P <DLE> <DLE> <control>-?

Note: The notation uses uppercase letters for arbitrary editorial reasons. There is no implication that
the keystrokes represent control-shift-letter sequences.

198 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

6415

6416

6417

6418

6419

6420

6421

6422

6423

6424

6425

6426

6427

6428

6429

6430

6431

6432

6433

6434

6435

6436

6437

6438

6439

6440

6441

6442

6443

6444

6445

6446

6447

6448

6449

6450

6451

6452

6453

6454

6455

6456

Chapter 11

General Terminal Interface

This chapter describes a general terminal interface that shall be provided. It shall be supported
on any asynchronous communications ports if the implementation provides them. It is
implementation-defined whether it supports network connections or synchronous ports, or
both.

11.1 Interface Characteristics

11.1.1 Opening a Terminal Device File

When a terminal device file is opened, it normally causes the thread to wait until a connection is
established. In practice, application programs seldom open these files; they are opened by
special programs and become an application’s standard input, output, and error files.

Cases where applications do open a terminal device are as follows:

1. Opening /dev/tty, or the pathname returned by ctermid(), in order to obtain a file
descriptor for the controlling terminal; see Section 11.1.3 (on page 200).

2. Opening the slave side of a pseudo-terminal; see XSH ptsname().

3. Opening a modem or similar piece of equipment connected by a serial line. In this case,
the terminal parameters (see Section 11.2, on page 205) may be initialized to default
settings by the implementation in between the last close of the device by any process and
the next open of the device, or they may persist from one use to the next. The terminal
parameters can be set to values that ensure the terminal behaves in a conforming manner
by means of the O_TTY_INIT open flag when opening a terminal device that is not
already open in any process, or by executing the stty utility with the operand sane.

As described in open(), opening a terminal device file with the O_NONBLOCK flag clear shall
cause the thread to block until the terminal device is ready and available. If CLOCAL mode is
not set, this means blocking until a connection is established. If CLOCAL mode is set in the
terminal, or the O_NONBLOCK flag is specified in the open(), the open() function shall return a
file descriptor without waiting for a connection to be established.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 199

6457

6458

6459

6460

6461

6462

6463

6464

6465

6466

6467

6468

6469

6470

6471

6472

6473

6474

6475

6476

6477

6478

6479

6480

6481

6482

6483

Interface Characteristics General Terminal Interface

11.1.2 Process Groups

A terminal may have a foreground process group associated with it. This foreground process
group plays a special role in handling signal-generating input characters, as discussed in Section
11.1.9 (on page 203).

A command interpreter process supporting job control can allocate the terminal to different jobs,
or process groups, by placing related processes in a single process group and associating this
process group with the terminal. A terminal’s foreground process group may be set or examined
by a process, assuming the permission requirements are met; see tcgetpgrp() and tcsetpgrp().
The terminal interface aids in this allocation by restricting access to the terminal by processes
that are not in the current process group; see Section 11.1.4 (on page 201).

When there is no longer any process whose process ID or process group ID matches the
foreground process group ID, the terminal shall have no foreground process group. It is
unspecified whether the terminal has a foreground process group when there is a process whose
process ID matches the foreground process group ID, but whose process group ID does not. No
actions defined in POSIX.1-2008, other than allocation of a controlling terminal or a successful
call to tcsetpgrp(), shall cause a process group to become the foreground process group of the
terminal.

11.1.3 The Controlling Terminal

A terminal may belong to a process as its controlling terminal. Each process of a session that has
a controlling terminal has the same controlling terminal. A terminal may be the controlling
terminal for at most one session. The controlling terminal for a session is allocated by the session
leader in an implementation-defined manner. If a session leader has no controlling terminal, and
opens a terminal device file that is not already associated with a session without using the
O_NOCTTY option (see open()), it is implementation-defined whether the terminal becomes the
controlling terminal of the session leader. If a process which is not a session leader opens a
terminal file, or the O_NOCTTY option is used on open(), then that terminal shall not become
the controlling terminal of the calling process. When a controlling terminal becomes associated
with a session, its foreground process group shall be set to the process group of the session
leader.

The controlling terminal is inherited by a child process during a fork() function call. A process
relinquishes its controlling terminal when it creates a new session with the setsid() function;
other processes remaining in the old session that had this terminal as their controlling terminal
continue to have it. Upon the close of the last file descriptor in the system (whether or not it is in
the current session) associated with the controlling terminal, it is unspecified whether all
processes that had that terminal as their controlling terminal cease to have any controlling
terminal. Whether and how a session leader can reacquire a controlling terminal after the
controlling terminal has been relinquished in this fashion is unspecified. A process does not
relinquish its controlling terminal simply by closing all of its file descriptors associated with the
controlling terminal if other processes continue to have it open.

When a controlling process terminates, the controlling terminal is dissociated from the current
session, allowing it to be acquired by a new session leader. Subsequent access to the terminal by
other processes in the earlier session may be denied, with attempts to access the terminal treated
as if a modem disconnect had been sensed.

200 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

6484

6485

6486

6487

6488

6489

6490

6491

6492

6493

6494

6495

6496

6497

6498

6499

6500

6501

6502

6503

6504

6505

6506

6507

6508

6509

6510

6511

6512

6513

6514

6515

6516

6517

6518

6519

6520

6521

6522

6523

6524

6525

6526

General Terminal Interface Interface Characteristics

11.1.4 Terminal Access Control

If a process is in the foreground process group of its controlling terminal, read operations shall
be allowed, as described in Section 11.1.5. Any attempts by a process in a background process
group to read from its controlling terminal cause its process group to be sent a SIGTTIN signal
unless one of the following special cases applies: if the reading process is ignoring or blocking
the SIGTTIN signal, or if the process group of the reading process is orphaned, the read() shall
return −1, with errno set to [EIO] and no signal shall be sent. The default action of the SIGTTIN
signal shall be to stop the process to which it is sent. See <signal.h>.

If a process is in the foreground process group of its controlling terminal, write operations shall
be allowed as described in Section 11.1.8 (on page 203). Attempts by a process in a background
process group to write to its controlling terminal shall cause the process group to be sent a
SIGTTOU signal unless one of the following special cases applies: if TOSTOP is not set, or if
TOSTOP is set and the process is ignoring or blocking the SIGTTOU signal, the process is
allowed to write to the terminal and the SIGTTOU signal is not sent. If TOSTOP is set, and the
process group of the writing process is orphaned, and the writing process is not ignoring or
blocking the SIGTTOU signal, the write() shall return −1, with errno set to [EIO] and no signal
shall be sent.

Certain calls that set terminal parameters are treated in the same fashion as write(), except that
TOSTOP is ignored; that is, the effect is identical to that of terminal writes when TOSTOP is set
(see Section 11.2.5 (on page 210), tcdrain(), tcflow(), tcflush(), tcsendbreak(), tcsetattr(), and
tcsetpgrp()).

11.1.5 Input Processing and Reading Data

A terminal device associated with a terminal device file may operate in full-duplex mode, so
that data may arrive even while output is occurring. Each terminal device file has an input
queue associated with it, into which incoming data is stored by the system before being read by
a process. The system may impose a limit, {MAX_INPUT}, on the number of bytes that may be
stored in the input queue. The behavior of the system when this limit is exceeded is
implementation-defined.

Two general kinds of input processing are available, determined by whether the terminal device
file is in canonical mode or non-canonical mode. These modes are described in Section 11.1.6 (on
page 202) and Section 11.1.7 (on page 202). Additionally, input characters are processed
according to the c_iflag (see Section 11.2.2, on page 206) and c_lflag (see Section 11.2.5, on page
210) fields. Such processing can include ‘‘echoing’’, which in general means transmitting input
characters immediately back to the terminal when they are received from the terminal. This is
useful for terminals that can operate in full-duplex mode.

The manner in which data is provided to a process reading from a terminal device file is
dependent on whether the terminal file is in canonical or non-canonical mode, and on whether
or not the O_NONBLOCK flag is set by open() or fcntl().

If the O_NONBLOCK flag is clear, then the read request shall be blocked until data is available
or a signal has been received. If the O_NONBLOCK flag is set, then the read request shall be
completed, without blocking, in one of three ways:

1. If there is enough data available to satisfy the entire request, the read() shall complete
successfully and shall return the number of bytes read.

2. If there is not enough data available to satisfy the entire request, the read() shall complete
successfully, having read as much data as possible, and shall return the number of bytes it
was able to read.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 201

6527

6528

6529

6530

6531

6532

6533

6534

6535

6536

6537

6538

6539

6540

6541

6542

6543

6544

6545

6546

6547

6548

6549

6550

6551

6552

6553

6554

6555

6556

6557

6558

6559

6560

6561

6562

6563

6564

6565

6566

6567

6568

6569

6570

6571

6572

Interface Characteristics General Terminal Interface

3. If there is no data available, the read() shall return −1, with errno set to [EAGAIN].

When data is available depends on whether the input processing mode is canonical or non-
canonical. Section 11.1.6 and Section 11.1.7 describe each of these input processing modes.

11.1.6 Canonical Mode Input Processing

In canonical mode input processing, terminal input is processed in units of lines. A line is
delimited by a <newline> character (NL), an end-of-file character (EOF), or an end-of-line (EOL)
character. See Section 11.1.9 (on page 203) for more information on EOF and EOL. This means
that a read request shall not return until an entire line has been typed or a signal has been
received. Also, no matter how many bytes are requested in the read() call, at most one line shall
be returned. It is not, however, necessary to read a whole line at once; any number of bytes, even
one, may be requested in a read() without losing information.

If {MAX_CANON} is defined for this terminal device, it shall be a limit on the number of bytes
in a line. The behavior of the system when this limit is exceeded is implementation-defined. If
{MAX_CANON} is not defined, there shall be no such limit; see pathconf().

Erase and kill processing occur when either of two special characters, the ERASE and KILL
characters (see Section 11.1.9, on page 203), is received. This processing shall affect data in the
input queue that has not yet been delimited by an NL, EOF, or EOL character. This un-delimited
data makes up the current line. The ERASE character shall delete the last character in the current
line, if there is one. The KILL character shall delete all data in the current line, if there is any.
The ERASE and KILL characters shall have no effect if there is no data in the current line. The
ERASE and KILL characters themselves shall not be placed in the input queue.

11.1.7 Non-Canonical Mode Input Processing

In non-canonical mode input processing, input bytes are not assembled into lines, and erase and
kill processing shall not occur. The values of the MIN and TIME members of the c_cc array are
used to determine how to process the bytes received. POSIX.1-2008 does not specify whether
the setting of O_NONBLOCK takes precedence over MIN or TIME settings. Therefore, if
O_NONBLOCK is set, read() may return immediately, regardless of the setting of MIN or TIME.
Also, if no data is available, read() may either return 0, or return −1 with errno set to [EAGAIN].

MIN represents the minimum number of bytes that should be received when the read() function
returns successfully. TIME is a timer of 0.1 second granularity that is used to time out bursty and
short-term data transmissions. If MIN is greater than {MAX_INPUT}, the response to the request
is undefined. The four possible values for MIN and TIME and their interactions are described
below.

Case A: MIN>0, TIME>0

In case A, TIME serves as an inter-byte timer which shall be activated after the first byte is
received. Since it is an inter-byte timer, it shall be reset after a byte is received. The interaction
between MIN and TIME is as follows. As soon as one byte is received, the inter-byte timer shall
be started. If MIN bytes are received before the inter-byte timer expires (remember that the timer
is reset upon receipt of each byte), the read shall be satisfied. If the timer expires before MIN
bytes are received, the characters received to that point shall be returned to the user. Note that if
TIME expires at least one byte shall be returned because the timer would not have been enabled
unless a byte was received. In this case (MIN>0, TIME>0) the read shall block until the MIN and
TIME mechanisms are activated by the receipt of the first byte, or a signal is received. If data is
in the buffer at the time of the read(), the result shall be as if data has been received immediately

202 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

6573

6574

6575

6576

6577

6578

6579

6580

6581

6582

6583

6584

6585

6586

6587

6588

6589

6590

6591

6592

6593

6594

6595

6596

6597

6598

6599

6600

6601

6602

6603

6604

6605

6606

6607

6608

6609

6610

6611

6612

6613

6614

6615

6616

General Terminal Interface Interface Characteristics

after the read().

Case B: MIN>0, TIME=0

In case B, since the value of TIME is zero, the timer plays no role and only MIN is significant. A
pending read shall not be satisfied until MIN bytes are received (that is, the pending read shall
block until MIN bytes are received), or a signal is received. A program that uses case B to read
record-based terminal I/O may block indefinitely in the read operation.

Case C: MIN=0, TIME>0

In case C, since MIN=0, TIME no longer represents an inter-byte timer. It now serves as a read
timer that shall be activated as soon as the read() function is processed. A read shall be satisfied
as soon as a single byte is received or the read timer expires. Note that in case C if the timer
expires, no bytes shall be returned. If the timer does not expire, the only way the read can be
satisfied is if a byte is received. If bytes are not received, the read shall not block indefinitely
waiting for a byte; if no byte is received within TIME*0.1 seconds after the read is initiated, the
read() shall return a value of zero, having read no data. If data is in the buffer at the time of the
read(), the timer shall be started as if data has been received immediately after the read().

Case D: MIN=0, TIME=0

The minimum of either the number of bytes requested or the number of bytes currently
available shall be returned without waiting for more bytes to be input. If no characters are
available, read() shall return a value of zero, having read no data.

11.1.8 Writing Data and Output Processing

When a process writes one or more bytes to a terminal device file, they are processed according
to the c_oflag field (see Section 11.2.3, on page 207). The implementation may provide a
buffering mechanism; as such, when a call to write() completes, all of the bytes written have
been scheduled for transmission to the device, but the transmission has not necessarily
completed. See write() for the effects of O_NONBLOCK on write().

11.1.9 Special Characters

Certain characters have special functions on input or output or both. These functions are
summarized as follows:

INTR Special character on input, which is recognized if the ISIG flag is set. Generates a
SIGINT signal which is sent to all processes in the foreground process group for which
the terminal is the controlling terminal. If ISIG is set, the INTR character shall be
discarded when processed.

QUIT Special character on input, which is recognized if the ISIG flag is set. Generates a
SIGQUIT signal which is sent to all processes in the foreground process group for
which the terminal is the controlling terminal. If ISIG is set, the QUIT character shall be
discarded when processed.

ERASE Special character on input, which is recognized if the ICANON flag is set. Erases the
last character in the current line; see Section 11.1.6 (on page 202). It shall not erase
beyond the start of a line, as delimited by an NL, EOF, or EOL character. If ICANON is
set, the ERASE character shall be discarded when processed.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 203

6617

6618

6619

6620

6621

6622

6623

6624

6625

6626

6627

6628

6629

6630

6631

6632

6633

6634

6635

6636

6637

6638

6639

6640

6641

6642

6643

6644

6645

6646

6647

6648

6649

6650

6651

6652

6653

6654

6655

6656

Interface Characteristics General Terminal Interface

KILL Special character on input, which is recognized if the ICANON flag is set. Deletes the
entire line, as delimited by an NL, EOF, or EOL character. If ICANON is set, the KILL
character shall be discarded when processed.

EOF Special character on input, which is recognized if the ICANON flag is set. When
received, all the bytes waiting to be read are immediately passed to the process without
waiting for a <newline>, and the EOF is discarded. Thus, if there are no bytes waiting
(that is, the EOF occurred at the beginning of a line), a byte count of zero shall be
returned from the read(), representing an end-of-file indication. If ICANON is set, the
EOF character shall be discarded when processed.

NL Special character on input, which is recognized if the ICANON flag is set. It is the line
delimiter <newline>. It cannot be changed.

EOL Special character on input, which is recognized if the ICANON flag is set. It is an
additional line delimiter, like NL.

SUSP If the ISIG flag is set, receipt of the SUSP character shall cause a SIGTSTP signal to be
sent to all processes in the foreground process group for which the terminal is the
controlling terminal, and the SUSP character shall be discarded when processed.

STOP Special character on both input and output, which is recognized if the IXON (output
control) or IXOFF (input control) flag is set. Can be used to suspend output
temporarily. It is useful with CRT terminals to prevent output from disappearing before
it can be read. If IXON is set, the STOP character shall be discarded when processed.

START Special character on both input and output, which is recognized if the IXON (output
control) or IXOFF (input control) flag is set. Can be used to resume output that has been
suspended by a STOP character. If IXON is set, the START character shall be discarded
when processed.

CR Special character on input, which is recognized if the ICANON flag is set; it is the
carriage-return character. When ICANON and ICRNL are set and IGNCR is not set,
this character shall be translated into an NL, and shall have the same effect as an NL
character.

The NL and CR characters cannot be changed. It is implementation-defined whether the START
and STOP characters can be changed. The values for INTR, QUIT, ERASE, KILL, EOF, EOL, and
SUSP shall be changeable to suit individual tastes. Special character functions associated with
changeable special control characters can be disabled individually.

If two or more special characters have the same value, the function performed when that
character is received is undefined.

A special character is recognized not only by its value, but also by its context; for example, an
implementation may support multi-byte sequences that have a meaning different from the
meaning of the bytes when considered individually. Implementations may also support
additional single-byte functions. These implementation-defined multi-byte or single-byte
functions shall be recognized only if the IEXTEN flag is set; otherwise, data is received without
interpretation, except as required to recognize the special characters defined in this section.

XSI If IEXTEN is set, the ERASE, KILL, and EOF characters can be escaped by a preceding
<backslash> character, in which case no special function shall occur.

204 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

6657

6658

6659

6660

6661

6662

6663

6664

6665

6666

6667

6668

6669

6670

6671

6672

6673

6674

6675

6676

6677

6678

6679

6680

6681

6682

6683

6684

6685

6686

6687

6688

6689

6690

6691

6692

6693

6694

6695

6696

6697

6698

General Terminal Interface Interface Characteristics

11.1.10 Modem Disconnect

If a modem disconnect is detected by the terminal interface for a controlling terminal, and if
CLOCAL is not set in the c_cflag field for the terminal (see Section 11.2.4, on page 209), the
SIGHUP signal shall be sent to the controlling process for which the terminal is the controlling
terminal. Unless other arrangements have been made, this shall cause the controlling process to
terminate (see exit()). Any subsequent read from the terminal device shall return the value of
zero, indicating end-of-file; see read(). Thus, processes that read a terminal file and test for end-
of-file can terminate appropriately after a disconnect. If the EIO condition as specified in read()
also exists, it is unspecified whether on EOF condition or [EIO] is returned. Any subsequent
write() to the terminal device shall return −1, with errno set to [EIO], until the device is closed.

11.1.11 Closing a Terminal Device File

The last process to close a terminal device file shall cause any output to be sent to the device and
any input to be discarded. If HUPCL is set in the control modes and the communications port
supports a disconnect function, the terminal device shall perform a disconnect.

11.2 Parameters that Can be Set

11.2.1 The termios Structure

Routines that need to control certain terminal I/O characteristics shall do so by using the
termios structure as defined in the <termios.h> header.

Since the termios structure may include additional members, and the standard members may
include both standard and non-standard modes, the structure should never be initialized
directly by the application as this may cause the terminal to behave in a non-conforming
manner. When opening a terminal device (other than a pseudo-terminal) that is not already open
in any process, it should be opened with the O_TTY_INIT flag before initializing the structure
using tcgetattr() to ensure that any non-standard elements of the termios structure are set to
values that result in conforming behavior of the terminal interface.

The members of the termios structure include (but are not limited to):

Member Array Member
Type Size Name Description

tcflag_t c_iflag Input modes.
tcflag_t c_oflag Output modes.
tcflag_t c_cflag Control modes.
tcflag_t c_lflag Local modes.
cc_t NCCS c_cc[] Control characters.

The tcflag_t and cc_t types are defined in the <termios.h> header. They shall be unsigned
integer types.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 205

6699

6700

6701

6702

6703

6704

6705

6706

6707

6708

6709

6710

6711

6712

6713

6714

6715

6716

6717

6718

6719

6720

6721

6722

6723

6724

6725

6726

6727

6728

6729

6730

6731

6732

6733

Parameters that Can be Set General Terminal Interface

11.2.2 Input Modes

Values of the c_iflag field describe the basic terminal input control, and are composed of the
bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name
symbols in this table are defined in <termios.h>:

Mask Name Description

BRKINT Signal interrupt on break.
ICRNL Map CR to NL on input.
IGNBRK Ignore break condition.
IGNCR Ignore CR.
IGNPAR Ignore characters with parity errors.
INLCR Map NL to CR on input.
INPCK Enable input parity check.
ISTRIP Strip character.
IXANY Enable any character to restart output.
IXOFF Enable start/stop input control.
IXON Enable start/stop output control.
PARMRK Mark parity errors.

In the context of asynchronous serial data transmission, a break condition shall be defined as a
sequence of zero-valued bits that continues for more than the time to send one byte. The entire
sequence of zero-valued bits is interpreted as a single break condition, even if it continues for a
time equivalent to more than one byte. In contexts other than asynchronous serial data
transmission, the definition of a break condition is implementation-defined.

If IGNBRK is set, a break condition detected on input shall be ignored; that is, not put on the
input queue and therefore not read by any process. If IGNBRK is not set and BRKINT is set, the
break condition shall flush the input and output queues, and if the terminal is the controlling
terminal of a foreground process group, the break condition shall generate a single SIGINT
signal to that foreground process group. If neither IGNBRK nor BRKINT is set, a break
condition shall be read as a single 0x00, or if PARMRK is set, as 0xff 0x00 0x00.

If IGNPAR is set, a byte with a framing or parity error (other than break) shall be ignored.

If PARMRK is set, and IGNPAR is not set, a byte with a framing or parity error (other than
break) shall be given to the application as the three-byte sequence 0xff 0x00 X, where 0xff 0x00 is
a two-byte flag preceding each sequence and X is the data of the byte received in error. To avoid
ambiguity in this case, if ISTRIP is not set, a valid byte of 0xff is given to the application as 0xff
0xff. If neither PARMRK nor IGNPAR is set, a framing or parity error (other than break) shall be
given to the application as a single byte 0x00.

If INPCK is set, input parity checking shall be enabled. If INPCK is not set, input parity checking
shall be disabled, allowing output parity generation without input parity errors. Note that
whether input parity checking is enabled or disabled is independent of whether parity detection
is enabled or disabled (see Section 11.2.4, on page 209). If parity detection is enabled but input
parity checking is disabled, the hardware to which the terminal is connected shall recognize the
parity bit, but the terminal special file shall not check whether or not this bit is correctly set.

If ISTRIP is set, valid input bytes shall first be stripped to seven bits; otherwise, all eight bits
shall be processed.

If INLCR is set, a received NL character shall be translated into a CR character. If IGNCR is set, a
received CR character shall be ignored (not read). If IGNCR is not set and ICRNL is set, a
received CR character shall be translated into an NL character.

If IXANY is set, any input character shall restart output that has been suspended.

206 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

6734

6735

6736

6737

6738

6739

6740

6741

6742

6743

6744

6745

6746

6747

6748

6749

6750

6751

6752

6753

6754

6755

6756

6757

6758

6759

6760

6761

6762

6763

6764

6765

6766

6767

6768

6769

6770

6771

6772

6773

6774

6775

6776

6777

6778

6779

6780

General Terminal Interface Parameters that Can be Set

If IXON is set, start/stop output control shall be enabled. A received STOP character shall
suspend output and a received START character shall restart output. When IXON is set, START
and STOP characters are not read, but merely perform flow control functions. When IXON is not
set, the START and STOP characters shall be read.

If IXOFF is set, start/stop input control shall be enabled. The system shall transmit STOP
characters, which are intended to cause the terminal device to stop transmitting data, as needed
to prevent the input queue from overflowing and causing implementation-defined behavior,
and shall transmit START characters, which are intended to cause the terminal device to resume
transmitting data, as soon as the device can continue transmitting data without risk of
overflowing the input queue. The precise conditions under which STOP and START characters
are transmitted are implementation-defined.

The initial input control value after open() is implementation-defined.

11.2.3 Output Modes

The c_oflag field specifies the terminal interface’s treatment of output, and is composed of the
bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name
symbols in the following table are defined in <termios.h>:

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 207

6781

6782

6783

6784

6785

6786

6787

6788

6789

6790

6791

6792

6793

6794

6795

6796

Parameters that Can be Set General Terminal Interface

Mask Name Description

OPOST Perform output processing.
XSI ONLCR Map NL to CR-NL on output.

OCRNL Map CR to NL on output.
ONOCR No CR output at column 0.
ONLRET NL performs CR function.
OFILL Use fill characters for delay.
OFDEL Fill is DEL, else NUL.
NLDLY Select newline delays:

NL0 Newline character type 0.
NL1 Newline character type 1.

CRDLY Select carriage-return delays:
CR0 Carriage-return delay type 0.
CR1 Carriage-return delay type 1.
CR2 Carriage-return delay type 2.
CR3 Carriage-return delay type 3.

TABDLY Select horizontal-tab delays:
TAB0 Horizontal-tab delay type 0.
TAB1 Horizontal-tab delay type 1.
TAB2 Horizontal-tab delay type 2.
TAB3 Expand tabs to spaces.

BSDLY Select backspace delays:
BS0 Backspace-delay type 0.
BS1 Backspace-delay type 1.

VTDLY Select vertical-tab delays:
VT0 Vertical-tab delay type 0.
VT1 Vertical-tab delay type 1.

FFDLY Select form-feed delays:
FF0 Form-feed delay type 0.
FF1 Form-feed delay type 1.

If OPOST is set, output data shall be post-processed as described below, so that lines of text are
modified to appear appropriately on the terminal device; otherwise, characters shall be
transmitted without change.

XSI If ONLCR is set, the NL character shall be transmitted as the CR-NL character pair. If OCRNL is
set, the CR character shall be transmitted as the NL character. If ONOCR is set, no CR character
shall be transmitted when at column 0 (first position). If ONLRET is set, the NL character is
assumed to do the carriage-return function; the column pointer shall be set to 0 and the delays
specified for CR shall be used. Otherwise, the NL character is assumed to do just the line-feed
function; the column pointer remains unchanged. The column pointer shall also be set to 0 if the
CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In all cases a value of 0 shall indicate no delay. If
OFILL is set, fill characters shall be transmitted for delay instead of a timed delay. This is useful
for high baud rate terminals which need only a minimal delay. If OFDEL is set, the fill character
shall be DEL; otherwise, NUL.

If a <form-feed> or <vertical-tab> delay is specified, it shall last for about 2 seconds.

Newline delay shall last about 0.10 seconds. If ONLRET is set, the carriage-return delays shall be
used instead of the newline delays. If OFILL is set, two fill characters shall be transmitted.

Carriage-return delay type 1 shall be dependent on the current column position, type 2 shall be

208 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

6797

6798

6799

6800

6801

6802

6803

6804

6805

6806

6807

6808

6809

6810

6811

6812

6813

6814

6815

6816

6817

6818

6819

6820

6821

6822

6823

6824

6825

6826

6827

6828

6829

6830

6831

6832

6833

6834

6835

6836

6837

6838

6839

6840

6841

6842

6843

6844

6845

General Terminal Interface Parameters that Can be Set

about 0.10 seconds, and type 3 shall be about 0.15 seconds. If OFILL is set, delay type 1 shall
transmit two fill characters, and type 2 four fill characters.

Horizontal-tab delay type 1 shall be dependent on the current column position. Type 2 shall be
about 0.10 seconds. Type 3 specifies that <tab> characters shall be expanded into <space>
characters. If OFILL is set, two fill characters shall be transmitted for any delay.

Backspace delay shall last about 0.05 seconds. If OFILL is set, one fill character shall be
transmitted.

The actual delays depend on line speed and system load.

The initial output control value after open() is implementation-defined.

11.2.4 Control Modes

The c_cflag field describes the hardware control of the terminal, and is composed of the bitwise-
inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name symbols in
this table are defined in <termios.h>; not all values specified are required to be supported by the
underlying hardware (if any). If the terminal is a pseudo-terminal, it is unspecified whether non-
default values are unsupported, or are supported and emulated in software, or are handled by
tcsetattr(), tcgetattr(), and the stty utility as if they are supported but have no effect on the
behavior of the terminal interface.

Mask Name Description

CLOCAL Ignore modem status lines.
CREAD Enable receiver.
CSIZE Number of bits transmitted or received per byte:

CS5 5 bits
CS6 6 bits
CS7 7 bits
CS8 8 bits.

CSTOPB Send two stop bits, else one.
HUPCL Hang up on last close.
PARENB Parity enable.
PARODD Odd parity, else even.

In addition, the input and output baud rates are stored in the termios structure. The symbols in
the following table are defined in <termios.h>. Not all values specified are required to be
supported by the underlying hardware (if any). For pseudo-terminals, the input and output
baud rates set in the termios structure need not affect the speed of data transmission through the
terminal interface.

Note: The term ‘‘baud’’ is used historically here, but is not technically correct. This is properly ‘‘bits
per second’’, which may not be the same as baud. However, the term is used because of the
historical usage and understanding.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 209

6846

6847

6848

6849

6850

6851

6852

6853

6854

6855

6856

6857

6858

6859

6860

6861

6862

6863

6864

6865

6866

6867

6868

6869

6870

6871

6872

6873

6874

6875

6876

6877

6878

6879

6880

6881

6882

Parameters that Can be Set General Terminal Interface

Name Description Name Description

B0 Hang up B600 600 baud
B50 50 baud B1200 1200 baud
B75 75 baud B1800 1800 baud
B110 110 baud B2400 2400 baud
B134 134.5 baud B4800 4800 baud
B150 150 baud B9600 9600 baud
B200 200 baud B19200 19200 baud
B300 300 baud B38400 38400 baud

The following functions are provided for getting and setting the values of the input and output
baud rates in the termios structure: cfgetispeed(), cfgetospeed(), cfsetispeed(), and cfsetospeed().
The effects on the terminal device shall not become effective and not all errors need be detected
until the tcsetattr() function is successfully called.

The CSIZE bits shall specify the number of transmitted or received bits per byte. If ISTRIP is not
set, the value of all the other bits is unspecified. If ISTRIP is set, the value of all but the 7 low-
order bits shall be zero, but the value of any other bits beyond CSIZE is unspecified when read.
CSIZE shall not include the parity bit, if any. If CSTOPB is set, two stop bits shall be used;
otherwise, one stop bit. For example, at 110 baud, two stop bits are normally used.

If CREAD is set, the receiver shall be enabled; otherwise, no characters shall be received.

If PARENB is set, parity generation and detection shall be enabled and a parity bit is added to
each byte. If parity is enabled, PARODD shall specify odd parity if set; otherwise, even parity
shall be used.

If HUPCL is set, the modem control lines for the port shall be lowered when the last process
with the port open closes the port or the process terminates. The modem connection shall be
broken.

If CLOCAL is set, a connection shall not depend on the state of the modem status lines. If
CLOCAL is clear, the modem status lines shall be monitored.

Under normal circumstances, a call to the open() function shall wait for the modem connection
to complete. However, if the O_NONBLOCK flag is set (see open()) or if CLOCAL has been set,
the open() function shall return immediately without waiting for the connection.

If the object for which the control modes are set is not an asynchronous serial connection, some
of the modes may be ignored; for example, if an attempt is made to set the baud rate on a
network connection to a terminal on another host, the baud rate need not be set on the
connection between that terminal and the machine to which it is directly connected.

The initial hardware control value after open() is implementation-defined.

11.2.5 Local Modes

The c_lflag field of the argument structure is used to control various functions. It is composed of
the bitwise-inclusive OR of the masks shown, which shall be bitwise-distinct. The mask name
symbols in this table are defined in <termios.h>.

210 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

6883

6884

6885

6886

6887

6888

6889

6890

6891

6892

6893

6894

6895

6896

6897

6898

6899

6900

6901

6902

6903

6904

6905

6906

6907

6908

6909

6910

6911

6912

6913

6914

6915

6916

6917

6918

6919

6920

6921

General Terminal Interface Parameters that Can be Set

Mask Name Description

ECHO Enable echo.
ECHOE Echo ERASE as an error correcting backspace.
ECHOK Echo KILL.
ECHONL Echo <newline>.
ICANON Canonical input (erase and kill processing).
IEXTEN Enable extended (implementation-defined) functions.
ISIG Enable signals.
NOFLSH Disable flush after interrupt, quit, or suspend.
TOSTOP Send SIGTTOU for background output.

If ECHO is set, input characters shall be echoed back to the terminal. If ECHO is clear, input
characters shall not be echoed.

If ECHOE and ICANON are set, the ERASE character shall cause the terminal to erase, if
possible, the last character in the current line from the display. If there is no character to erase, an
implementation may echo an indication that this was the case, or do nothing.

If ECHOK and ICANON are set, the KILL character shall either cause the terminal to erase the
line from the display or shall echo the <newline> character after the KILL character.

If ECHONL and ICANON are set, the <newline> character shall be echoed even if ECHO is not
set.

If ICANON is set, canonical processing shall be enabled. This enables the erase and kill edit
functions, and the assembly of input characters into lines delimited by NL, EOF, and EOL, as
described in Section 11.1.6 (on page 202).

If ICANON is not set, read requests shall be satisfied directly from the input queue. A read shall
not be satisfied until at least MIN bytes have been received or the timeout value TIME expired
between bytes. The time value represents tenths of a second. See Section 11.1.7 (on page 202) for
more details.

If IEXTEN is set, implementation-defined functions shall be recognized from the input data. It is
implementation-defined how IEXTEN being set interacts with ICANON, ISIG, IXON, or IXOFF.
If IEXTEN is not set, implementation-defined functions shall not be recognized and the
corresponding input characters are processed as described for ICANON, ISIG, IXON, and
IXOFF.

If ISIG is set, each input character shall be checked against the special control characters INTR,
QUIT, and SUSP. If an input character matches one of these control characters, the function
associated with that character shall be performed. If ISIG is not set, no checking shall be done.
Thus these special input functions are possible only if ISIG is set.

If NOFLSH is set, the normal flush of the input and output queues associated with the INTR,
QUIT, and SUSP characters shall not be done.

If TOSTOP is set, the signal SIGTTOU shall be sent to the process group of a process that tries to
write to its controlling terminal if it is not in the foreground process group for that terminal. This
signal, by default, stops the members of the process group. Otherwise, the output generated by
that process shall be output to the current output stream. Processes that are blocking or ignoring
SIGTTOU signals are excepted and allowed to produce output, and the SIGTTOU signal shall
not be sent.

The initial local control value after open() is implementation-defined.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 211

6922

6923

6924

6925

6926

6927

6928

6929

6930

6931

6932

6933

6934

6935

6936

6937

6938

6939

6940

6941

6942

6943

6944

6945

6946

6947

6948

6949

6950

6951

6952

6953

6954

6955

6956

6957

6958

6959

6960

6961

6962

6963

6964

6965

Parameters that Can be Set General Terminal Interface

11.2.6 Special Control Characters

The special control character values shall be defined by the array c_cc. The subscript name and
description for each element in both canonical and non-canonical modes are as follows:

Subscript Usage

Canonical Non-Canonical
Mode Mode Description

VEOF EOF character
VEOL EOL character
VERASE ERASE character
VINTR VINTR INTR character
VKILL KILL character

VMIN MIN value
VQUIT VQUIT QUIT character
VSUSP VSUSP SUSP character

VTIME TIME value
VSTART VSTART START character
VSTOP VSTOP STOP character

The subscript values are unique, except that the VMIN and VTIME subscripts may have the
same values as the VEOF and VEOL subscripts, respectively.

Implementations that do not support changing the START and STOP characters may ignore the
character values in the c_cc array indexed by the VSTART and VSTOP subscripts when
tcsetattr() is called, but shall return the value in use when tcgetattr() is called.

The initial values of all control characters are implementation-defined.

If the value of one of the changeable special control characters (see Section 11.1.9, on page 203) is
_POSIX_VDISABLE, that function shall be disabled; that is, no input data is recognized as the
disabled special character. If ICANON is not set, the value of _POSIX_VDISABLE has no special
meaning for the VMIN and VTIME entries of the c_cc array.

212 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

6966

6967

6968

6969

6970

6971

6972

6973

6974

6975

6976

6977

6978

6979

6980

6981

6982

6983

6984

6985

6986

6987

6988

6989

6990

6991

6992

Chapter 12

Utility Conventions

12.1 Utility Argument Syntax

This section describes the argument syntax of the standard utilities and introduces terminology
used throughout POSIX.1-2008 for describing the arguments processed by the utilities.

Within POSIX.1-2008, a special notation is used for describing the syntax of a utility’s
arguments. Unless otherwise noted, all utility descriptions use this notation, which is illustrated
by this example (see XCU Section 2.9.1, on page 2316):

utility_name[−a][−b][−c option_argument]

[−d|−e][−f[option_argument]][operand...]

The notation used for the SYNOPSIS sections imposes requirements on the implementors of the
standard utilities and provides a simple reference for the application developer or system user.

1. The utility in the example is named utility_name. It is followed by options, option-
arguments, and operands. The arguments that consist of <hyphen> characters and single
letters or digits, such as ’a’, are known as ‘‘options’’ (or, historically, ‘‘flags’’). Certain
options are followed by an ‘‘option-argument’’, as shown with [−c option_argument]. The
arguments following the last options and option-arguments are named ‘‘operands’’.

2. Option-arguments are shown separated from their options by <blank> characters, except
when the option-argument is enclosed in the ’[’ and ’]’ notation to indicate that it is
optional. This reflects the situation in which an optional option-argument (if present) is
included within the same argument string as the option; for a mandatory option-
argument, it is the next argument. The Utility Syntax Guidelines in Section 12.2 (on page
215) require that the option be a separate argument from its option-argument and that
option-arguments not be optional, but there are some exceptions in POSIX.1-2008 to
ensure continued operation of historical applications:

a. If the SYNOPSIS of a standard utility shows an option with a mandatory option-
argument (as with [−c option_argument] in the example), a conforming application
shall use separate arguments for that option and its option-argument. However, a
conforming implementation shall also permit applications to specify the option
and option-argument in the same argument string without intervening <blank>
characters.

b. If the SYNOPSIS shows an optional option-argument (as with
[−f[option_argument]] in the example), a conforming application shall place any
option-argument for that option directly adjacent to the option in the same
argument string, without intervening <blank> characters. If the utility receives an
argument containing only the option, it shall behave as specified in its description
for an omitted option-argument; it shall not treat the next argument (if any) as the
option-argument for that option.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 213

6993

6994

6995

6996

6997

6998

6999

7000

7001

7002

7003

7004

7005

7006

7007

7008

7009

7010

7011

7012

7013

7014

7015

7016

7017

7018

7019

7020

7021

7022

7023

7024

7025

7026

7027

7028

7029

7030

Utility Argument Syntax Utility Conventions

3. Options are usually listed in alphabetical order unless this would make the utility
description more confusing. There are no implied relationships between the options
based upon the order in which they appear, unless otherwise stated in the OPTIONS
section, or unless the exception in Guideline 11 of Section 12.2 (on page 215) applies. If an
option that does not have option-arguments is repeated, the results are undefined, unless
otherwise stated.

4. Frequently, names of parameters that require substitution by actual values are shown
with embedded <underscore> characters. Alternatively, parameters are shown as follows:

<parameter name>

The angle brackets are used for the symbolic grouping of a phrase representing a single
parameter and conforming applications shall not include them in data submitted to the
utility.

5. When a utility has only a few permissible options, they are sometimes shown
individually, as in the example. Utilities with many flags generally show all of the
individual flags (that do not take option-arguments) grouped, as in:

utility_name [−abcDxyz][−p arg][operand]

Utilities with very complex arguments may be shown as follows:

utility_name [options][operands]

6. Unless otherwise specified, whenever an operand or option-argument is, or contains, a
numeric value:

• The number is interpreted as a decimal integer.

• Numerals in the range 0 to 2 147 483 647 are syntactically recognized as numeric
values.

• When the utility description states that it accepts negative numbers as operands or
option-arguments, numerals in the range −2 147 483 647 to 2 147 483 647 are
syntactically recognized as numeric values.

• Ranges greater than those listed here are allowed.

This does not mean that all numbers within the allowable range are necessarily
semantically correct. A standard utility that accepts an option-argument or operand that
is to be interpreted as a number, and for which a range of values smaller than that shown
above is permitted by the POSIX.1-2008, describes that smaller range along with the
description of the option-argument or operand. If an error is generated, the utility’s
diagnostic message shall indicate that the value is out of the supported range, not that it
is syntactically incorrect.

7. Arguments or option-arguments enclosed in the ’[’ and ’]’ notation are optional and
can be omitted. Conforming applications shall not include the ’[’ and ’]’ symbols in
data submitted to the utility.

8. Arguments separated by the ’|’ (<vertical-line>) bar notation are mutually-exclusive.
Conforming applications shall not include the ’|’ symbol in data submitted to the utility.
Alternatively, mutually-exclusive options and operands may be listed with multiple
synopsis lines.

214 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

7031

7032

7033

7034

7035

7036

7037

7038

7039

7040

7041

7042

7043

7044

7045

7046

7047

7048

7049

7050

7051

7052

7053

7054

7055

7056

7057

7058

7059

7060

7061

7062

7063

7064

7065

7066

7067

7068

7069

7070

7071

Utility Conventions Utility Argument Syntax

For example:

utility_name −d[−a][−c option_argument][operand...]
utility_name[−a][−b][operand...]

When multiple synopsis lines are given for a utility, it is an indication that the utility has
mutually-exclusive arguments. These mutually-exclusive arguments alter the
functionality of the utility so that only certain other arguments are valid in combination
with one of the mutually-exclusive arguments. Only one of the mutually-exclusive
arguments is allowed for invocation of the utility. Unless otherwise stated in an
accompanying OPTIONS section, the relationships between arguments depicted in the
SYNOPSIS sections are mandatory requirements placed on conforming applications. The
use of conflicting mutually-exclusive arguments produces undefined results, unless a
utility description specifies otherwise. When an option is shown without the ’[’ and
’]’ brackets, it means that option is required for that version of the SYNOPSIS. However,
it is not required to be the first argument, as shown in the example above, unless
otherwise stated.

9. Ellipses ("...") are used to denote that one or more occurrences of an operand are
allowed. When an option or an operand followed by ellipses is enclosed in brackets, zero
or more options or operands can be specified. The form:

utility_name [−g option_argument]...[operand...]

indicates that multiple occurrences of the option and its option-argument preceding the
ellipses are valid, with semantics as indicated in the OPTIONS section of the utility. (See
also Guideline 11 in Section 12.2.)

The form:

utility_name −f option_argument [−f option_argument]... [operand...]

indicates that the −f option is required to appear at least once and may appear multiple
times.

10. When the synopsis line is too long to be printed on a single line in the Shell and Utilities
volume of POSIX.1-2008, the indented lines following the initial line are continuation
lines. An actual use of the command would appear on a single logical line.

12.2 Utility Syntax Guidelines

The following guidelines are established for the naming of utilities and for the specification of
options, option-arguments, and operands. The getopt() function in the System Interfaces
volume of POSIX.1-2008 assists utilities in handling options and operands that conform to these
guidelines.

Operands and option-arguments can contain characters not specified in the portable character
set.

The guidelines are intended to provide guidance to the authors of future utilities, such as those
written specific to a local system or that are components of a larger application. Some of the
standard utilities do not conform to all of these guidelines; in those cases, the OPTIONS sections
describe the deviations.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 215

7072

7073

7074

7075

7076

7077

7078

7079

7080

7081

7082

7083

7084

7085

7086

7087

7088

7089

7090

7091

7092

7093

7094

7095

7096

7097

7098

7099

7100

7101

7102

7103

7104

7105

7106

7107

7108

7109

7110

7111

Utility Syntax Guidelines Utility Conventions

Guideline 1: Utility names should be between two and nine characters, inclusive.

Guideline 2: Utility names should include lowercase letters (the lower character
classification) and digits only from the portable character set.

Guideline 3: Each option name should be a single alphanumeric character (the alnum
character classification) from the portable character set. The −W (capital-W)
option shall be reserved for vendor options.

Multi-digit options should not be allowed.

Guideline 4: All options should be preceded by the ’−’ delimiter character.

Guideline 5: Options without option-arguments should be accepted when grouped behind
one ’−’ delimiter.

Guideline 6: Each option and option-argument should be a separate argument, except as
noted in Section 12.1 (on page 213), item (2).

Guideline 7: Option-arguments should not be optional.

Guideline 8: When multiple option-arguments are specified to follow a single option, they
should be presented as a single argument, using <comma> characters within
that argument or <blank> characters within that argument to separate them.

Guideline 9: All options should precede operands on the command line.

Guideline 10: The first − − argument that is not an option-argument should be accepted as a
delimiter indicating the end of options. Any following arguments should be
treated as operands, even if they begin with the ’−’ character.

Guideline 11: The order of different options relative to one another should not matter, unless
the options are documented as mutually-exclusive and such an option is
documented to override any incompatible options preceding it. If an option
that has option-arguments is repeated, the option and option-argument
combinations should be interpreted in the order specified on the command
line.

Guideline 12: The order of operands may matter and position-related interpretations should
be determined on a utility-specific basis.

Guideline 13: For utilities that use operands to represent files to be opened for either reading
or writing, the ’−’ operand should be used to mean only standard input (or
standard output when it is clear from context that an output file is being
specified) or a file named −.

Guideline 14: If an argument can be identified according to Guidelines 3 through 10 as an
option, or as a group of options without option-arguments behind one ’−’
delimiter, then it should be treated as such.

The utilities in the Shell and Utilities volume of POSIX.1-2008 that claim conformance to these
guidelines shall conform completely to these guidelines as if these guidelines contained the term
‘‘shall’’ instead of ‘‘should’’. On some implementations, the utilities accept usage in violation of
these guidelines for backwards-compatibility as well as accepting the required form.

Where a utility described in the Shell and Utilities volume of POSIX.1-2008 as conforming to
these guidelines is required to accept, or not to accept, the operand ’−’ to mean standard input
or output, this usage is explained in the OPERANDS section. Otherwise, if such a utility uses
operands to represent files, it is implementation-defined whether the operand ’−’ stands for
standard input (or standard output), or for a file named −.

216 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

7112

7113

7114

7115

7116

7117

7118

7119

7120

7121

7122

7123

7124

7125

7126

7127

7128

7129

7130

7131

7132

7133

7134

7135

7136

7137

7138

7139

7140

7141

7142

7143

7144

7145

7146

7147

7148

7149

7150

7151

7152

7153

7154

7155

Utility Conventions Utility Syntax Guidelines

It is recommended that all future utilities and applications use these guidelines to enhance user
portability. The fact that some historical utilities could not be changed (to avoid breaking
existing applications) should not deter this future goal.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 217

7156

7157

7158

Utility Conventions

218 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

Chapter 13

Headers

This chapter describes the contents of headers.

Headers contain function prototypes, the definition of symbolic constants, common structures,
preprocessor macros, and defined types. Each function in the System Interfaces volume of
POSIX.1-2008 specifies the headers that an application shall include in order to use that function.
In most cases, only one header is required. These headers are present on an application
development system; they need not be present on the target execution system.

Format of Entries

The entries in this chapter are based on a common format as follows. The only sections relating
to conformance are the SYNOPSIS and DESCRIPTION.

NAME
This section gives the name or names of the entry and briefly states its purpose.

SYNOPSIS
This section summarizes the use of the entry being described.

DESCRIPTION
This section describes the functionality of the header.

APPLICATION USAGE
This section is informative. This section gives warnings and advice to application
developers about the entry. In the event of conflict between warnings and advice and a
normative part of this volume of POSIX.1-2008, the normative material is to be taken as
correct.

RATIONALE
This section is informative. This section contains historical information concerning the
contents of this volume of POSIX.1-2008 and why features were included or discarded
by the standard developers.

FUTURE DIRECTIONS
This section is informative. This section provides comments which should be used as a
guide to current thinking; there is not necessarily a commitment to adopt these future
directions.

SEE ALSO
This section is informative. This section gives references to related information.

CHANGE HISTORY
This section is informative. This section shows the derivation of the entry and any
significant changes that have been made to it.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 219

7159

7160

7161

7162

7163

7164

7165

7166

7167

7168

7169

7170

7171

7172

7173

7174

7175

7176

7177

7178

7179

7180

7181

7182

7183

7184

7185

7186

7187

7188

7189

7190

7191

7192

7193

<aio.h> Headers

NAME
aio.h — asynchronous input and output

SYNOPSIS
#include <aio.h>

DESCRIPTION
The <aio.h> header shall define the aiocb structure, which shall include at least the following
members:

int aio_fildes File descriptor.
off_t aio_offset File offset.
volatile void *aio_buf Location of buffer.
size_t aio_nbytes Length of transfer.
int aio_reqprio Request priority offset.
struct sigevent aio_sigevent Signal number and value.
int aio_lio_opcode Operation to be performed.

The <aio.h> header shall define the off_t, pthread_attr_t, size_t, and ssize_t types as described
in <sys/types.h>.

The <aio.h> header shall define the struct timespec structure as described in <time.h>.

The tag sigevent shall be declared as naming an incomplete structure type, the contents of which
are described in the <signal.h> header.

The <aio.h> header shall define the following symbolic constants:

AIO_ALLDONE A return value indicating that none of the requested operations could be
canceled since they are already complete.

AIO_CANCELED A return value indicating that all requested operations have been
canceled.

AIO_NOTCANCELED
A return value indicating that some of the requested operations could not
be canceled since they are in progress.

LIO_NOP A lio_listio() element operation option indicating that no transfer is
requested.

LIO_NOWAIT A lio_listio() synchronization operation indicating that the calling thread
is to continue execution while the lio_listio() operation is being
performed, and no notification is given when the operation is complete.

LIO_READ A lio_listio() element operation option requesting a read.

LIO_WAIT A lio_listio() synchronization operation indicating that the calling thread
is to suspend until the lio_listio() operation is complete.

LIO_WRITE A lio_listio() element operation option requesting a write.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int aio_cancel(int, struct aiocb *);
int aio_error(const struct aiocb *);
int aio_fsync(int, struct aiocb *);
int aio_read(struct aiocb *);
ssize_t aio_return(struct aiocb *);
int aio_suspend(const struct aiocb *const [], int,

220 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

7194

7195

7196

7197

7198

7199

7200

7201

7202

7203

7204

7205

7206

7207

7208

7209

7210

7211

7212

7213

7214

7215

7216

7217

7218

7219

7220

7221

7222

7223

7224

7225

7226

7227

7228

7229

7230

7231

7232

7233

7234

7235

7236

7237

Headers <aio.h>

const struct timespec *);
int aio_write(struct aiocb *);
int lio_listio(int, struct aiocb *restrict const [restrict], int,

struct sigevent *restrict);

Inclusion of the <aio.h> header may make visible symbols defined in the headers <fcntl.h>,
<signal.h>, and <time.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<fcntl.h>, <signal.h>, <sys/types.h>, <time.h>

XSH aio_cancel(), aio_error(), aio_fsync(), aio_read(), aio_return(), aio_suspend(), aio_write(),
fsync(), lio_listio(), lseek(), read(), write()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The <aio.h> header is marked as part of the Asynchronous Input and Output option.

The description of the constants is expanded.

The restrict keyword is added to the prototype for lio_listio().

Issue 7
The <aio.h> header is moved from the Asynchronous Input and Output option to the Base.

This reference page is clarified with respect to macros and symbolic constants, and type and
structure declarations are added.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 221

7238

7239

7240

7241

7242

7243

7244

7245

7246

7247

7248

7249

7250

7251

7252

7253

7254

7255

7256

7257

7258

7259

7260

7261

7262

7263

<arpa/inet.h> Headers

NAME
arpa/inet.h — definitions for internet operations

SYNOPSIS
#include <arpa/inet.h>

DESCRIPTION
The <arpa/inet.h> header shall define the in_port_t and in_addr_t types as described in
<netinet/in.h>.

The <arpa/inet.h> header shall define the in_addr structure as described in <netinet/in.h>.

IP6 The <arpa/inet.h> header shall define the INET_ADDRSTRLEN and INET6_ADDRSTRLEN
macros as described in <netinet/in.h>.

The following shall be declared as functions, or defined as macros, or both. If functions are
declared, function prototypes shall be provided.

uint32_t htonl(uint32_t);
uint16_t htons(uint16_t);
uint32_t ntohl(uint32_t);
uint16_t ntohs(uint16_t);

The <arpa/inet.h> header shall define the uint32_t and uint16_t types as described in
<inttypes.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

in_addr_t inet_addr(const char *);
char *inet_ntoa(struct in_addr);
const char *inet_ntop(int, const void *restrict, char *restrict,

socklen_t);
int inet_pton(int, const char *restrict, void *restrict);

Inclusion of the <arpa/inet.h> header may also make visible all symbols from <netinet/in.h>
and <inttypes.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<inttypes.h>, <netinet/in.h>

XSH htonl(), inet_addr(), inet_ntop()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the prototypes for inet_ntop() and inet_pton().

Issue 7
SD5-XBD-ERN-6 is applied.

222 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

7264

7265

7266

7267

7268

7269

7270

7271

7272

7273

7274

7275

7276

7277

7278

7279

7280

7281

7282

7283

7284

7285

7286

7287

7288

7289

7290

7291

7292

7293

7294

7295

7296

7297

7298

7299

7300

7301

7302

7303

7304

Headers <assert.h>

NAME
assert.h — verify program assertion

SYNOPSIS
#include <assert.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The <assert.h> header shall define the assert() macro. It refers to the macro NDEBUG which is
not defined in the header. If NDEBUG is defined as a macro name before the inclusion of this
header, the assert() macro shall be defined simply as:

#define assert(ignore)((void) 0)

Otherwise, the macro behaves as described in assert().

The assert() macro shall be redefined according to the current state of NDEBUG each time
<assert.h> is included.

The assert() macro shall be implemented as a macro, not as a function. If the macro definition is
suppressed in order to access an actual function, the behavior is undefined.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH assert()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The definition of the assert() macro is changed for alignment with the ISO/IEC 9899: 1999
standard.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 223

7305

7306

7307

7308

7309

7310

7311

7312

7313

7314

7315

7316

7317

7318

7319

7320

7321

7322

7323

7324

7325

7326

7327

7328

7329

7330

7331

7332

7333

7334

<complex.h> Headers

NAME
complex.h — complex arithmetic

SYNOPSIS
#include <complex.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The <complex.h> header shall define the following macros:

complex Expands to _Complex.

_Complex_I Expands to a constant expression of type const float _Complex, with the value
of the imaginary unit (that is, a number i such that i2=−1).

imaginary Expands to _Imaginary.

_Imaginary_I Expands to a constant expression of type const float _Imaginary with the
value of the imaginary unit.

I Expands to either _Imaginary_I or _Complex_I. If _Imaginary_I is not defined,
I expands to _Complex_I.

The macros imaginary and _Imaginary_I shall be defined if and only if the implementation
supports imaginary types.

An application may undefine and then, perhaps, redefine the complex, imaginary, and I macros.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

double cabs(double complex);
float cabsf(float complex);
long double cabsl(long double complex);
double complex cacos(double complex);
float complex cacosf(float complex);
double complex cacosh(double complex);
float complex cacoshf(float complex);
long double complex cacoshl(long double complex);
long double complex cacosl(long double complex);
double carg(double complex);
float cargf(float complex);
long double cargl(long double complex);
double complex casin(double complex);
float complex casinf(float complex);
double complex casinh(double complex);
float complex casinhf(float complex);
long double complex casinhl(long double complex);
long double complex casinl(long double complex);
double complex catan(double complex);
float complex catanf(float complex);
double complex catanh(double complex);
float complex catanhf(float complex);
long double complex catanhl(long double complex);
long double complex catanl(long double complex);

224 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

7335

7336

7337

7338

7339

7340

7341

7342

7343

7344

7345

7346

7347

7348

7349

7350

7351

7352

7353

7354

7355

7356

7357

7358

7359

7360

7361

7362

7363

7364

7365

7366

7367

7368

7369

7370

7371

7372

7373

7374

7375

7376

7377

7378

7379

7380

Headers <complex.h>

double complex ccos(double complex);
float complex ccosf(float complex);
double complex ccosh(double complex);
float complex ccoshf(float complex);
long double complex ccoshl(long double complex);
long double complex ccosl(long double complex);
double complex cexp(double complex);
float complex cexpf(float complex);
long double complex cexpl(long double complex);
double cimag(double complex);
float cimagf(float complex);
long double cimagl(long double complex);
double complex clog(double complex);
float complex clogf(float complex);
long double complex clogl(long double complex);
double complex conj(double complex);
float complex conjf(float complex);
long double complex conjl(long double complex);
double complex cpow(double complex, double complex);
float complex cpowf(float complex, float complex);
long double complex cpowl(long double complex, long double complex);
double complex cproj(double complex);
float complex cprojf(float complex);
long double complex cprojl(long double complex);
double creal(double complex);
float crealf(float complex);
long double creall(long double complex);
double complex csin(double complex);
float complex csinf(float complex);
double complex csinh(double complex);
float complex csinhf(float complex);
long double complex csinhl(long double complex);
long double complex csinl(long double complex);
double complex csqrt(double complex);
float complex csqrtf(float complex);
long double complex csqrtl(long double complex);
double complex ctan(double complex);
float complex ctanf(float complex);
double complex ctanh(double complex);
float complex ctanhf(float complex);
long double complex ctanhl(long double complex);
long double complex ctanl(long double complex);

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 225

7381

7382

7383

7384

7385

7386

7387

7388

7389

7390

7391

7392

7393

7394

7395

7396

7397

7398

7399

7400

7401

7402

7403

7404

7405

7406

7407

7408

7409

7410

7411

7412

7413

7414

7415

7416

7417

7418

7419

7420

7421

7422

<complex.h> Headers

APPLICATION USAGE
Values are interpreted as radians, not degrees.

RATIONALE
The choice of I instead of i for the imaginary unit concedes to the widespread use of the
identifier i for other purposes. The application can use a different identifier, say j, for the
imaginary unit by following the inclusion of the <complex.h> header with:

#undef I
#define j _Imaginary_I

An I suffix to designate imaginary constants is not required, as multiplication by I provides a
sufficiently convenient and more generally useful notation for imaginary terms. The
corresponding real type for the imaginary unit is float, so that use of I for algorithmic or
notational convenience will not result in widening types.

On systems with imaginary types, the application has the ability to control whether use of the
macro I introduces an imaginary type, by explicitly defining I to be _Imaginary_I or _Complex_I.
Disallowing imaginary types is useful for some applications intended to run on
implementations without support for such types.

The macro _Imaginary_I provides a test for whether imaginary types are supported.

The cis() function (cos(x) + I*sin(x)) was considered but rejected because its implementation is
easy and straightforward, even though some implementations could compute sine and cosine
more efficiently in tandem.

FUTURE DIRECTIONS
The following function names and the same names suffixed with f or l are reserved for future
use, and may be added to the declarations in the <complex.h> header.

cerf()
cerfc()
cexp2()

cexpm1()
clog10()
clog1p()

clog2()
clgamma()
ctgamma()

SEE ALSO
XSH cabs(), cacos(), cacosh(), carg(), casin(), casinh(), catan(), catanh(), ccos(), ccosh(), cexp(),
cimag(), clog(), conj(), cpow(), cproj(), creal(), csin(), csinh(), csqrt(), ctan(), ctanh()

CHANGE HISTORY
First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

226 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

7423

7424

7425

7426

7427

7428

7429

7430

7431

7432

7433

7434

7435

7436

7437

7438

7439

7440

7441

7442

7443

7444

7445

7446

7447

7448

7449

7450

7451

7452

7453

Headers <cpio.h>

NAME
cpio.h — cpio archive values

SYNOPSIS
#include <cpio.h>

DESCRIPTION
The <cpio.h> header shall define the symbolic constants needed by the c_mode field of the cpio
archive format, with the names and values given in the following table:

Name Description Value (Octal)

C_IRUSR Read by owner. 0000400
C_IWUSR Write by owner. 0000200
C_IXUSR Execute by owner. 0000100
C_IRGRP Read by group. 0000040
C_IWGRP Write by group. 0000020
C_IXGRP Execute by group. 0000010
C_IROTH Read by others. 0000004
C_IWOTH Write by others. 0000002
C_IXOTH Execute by others. 0000001
C_ISUID Set user ID. 0004000
C_ISGID Set group ID. 0002000
C_ISVTX On directories, restricted deletion flag. 0001000
C_ISDIR Directory. 0040000
C_ISFIFO FIFO. 0010000
C_ISREG Regular file. 0100000
C_ISBLK Block special. 0060000
C_ISCHR Character special. 0020000
C_ISCTG Reserved. 0110000
C_ISLNK Symbolic link. 0120000
C_ISSOCK Socket. 0140000

The <cpio.h> header shall define the following symbolic constant as a string:

MAGIC "070707"

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XCU pax

CHANGE HISTORY
First released in the Headers Interface, Issue 3 specification. Derived from the POSIX.1-1988
standard.

Issue 6
The SEE ALSO is updated to refer to pax.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 227

7454

7455

7456

7457

7458

7459

7460

7461

7462

7463

7464

7465

7466

7467

7468

7469

7470

7471

7472

7473

7474

7475

7476

7477

7478

7479

7480

7481

7482

7483

7484

7485

7486

7487

7488

7489

7490

7491

7492

7493

7494

7495

7496

<cpio.h> Headers

Issue 7
The <cpio.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

228 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

7497

7498

7499

Headers <ctype.h>

NAME
ctype.h — character types

SYNOPSIS
#include <ctype.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 468) to
enable the visibility of these symbols in this header.

The <ctype.h> header shall define the locale_t type as described in <locale.h>, representing a
locale object.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

int isalnum(int);
CX int isalnum_l(int, locale_t);

int isalpha(int);
CX int isalpha_l(int, locale_t);
OB XSI int isascii(int);

int isblank(int);
CX int isblank_l(int, locale_t);

int iscntrl(int);
CX int iscntrl_l(int, locale_t);

int isdigit(int);
CX int isdigit_l(int, locale_t);

int isgraph(int);
CX int isgraph_l(int, locale_t);

int islower(int);
CX int islower_l(int, locale_t);

int isprint(int);
CX int isprint_l(int, locale_t);

int ispunct(int);
CX int ispunct_l(int, locale_t);

int isspace(int);
CX int isspace_l(int, locale_t);

int isupper(int);
CX int isupper_l(int, locale_t);

int isxdigit(int);
CX int isxdigit_l(int, locale_t);
OB XSI int toascii(int);

int tolower(int);
CX int tolower_l(int, locale_t);

int toupper(int);
CX int toupper_l(int, locale_t);

The <ctype.h> header shall define the following as macros:

OB XSI int _toupper(int);
int _tolower(int);

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 229

7500

7501

7502

7503

7504

7505

7506

7507

7508

7509

7510

7511

7512

7513

7514

7515

7516

7517

7518

7519

7520

7521

7522

7523

7524

7525

7526

7527

7528

7529

7530

7531

7532

7533

7534

7535

7536

7537

7538

7539

7540

7541

7542

7543

7544

<ctype.h> Headers

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<locale.h>

XSH Section 2.2 (on page 468), isalnum(), isalpha(), isascii(), isblank(), iscntrl(), isdigit(),
isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(), isxdigit(), mblen(), mbstowcs(),
mbtowc(), setlocale(), toascii(), tolower(), _tolower(), toupper(), _toupper(), wcstombs(), wctomb()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
SD5-XBD-ERN-6 is applied, updating the wording regarding the function declarations for
consistency.

The *_l() functions are added from The Open Group Technical Standard, 2006, Extended API Set
Part 4.

230 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

7545

7546

7547

7548

7549

7550

7551

7552

7553

7554

7555

7556

7557

7558

7559

7560

7561

7562

7563

7564

Headers <dirent.h>

NAME
dirent.h — format of directory entries

SYNOPSIS
#include <dirent.h>

DESCRIPTION
The internal format of directories is unspecified.

The <dirent.h> header shall define the following type:

DIR A type representing a directory stream. The DIR type may be an incomplete type.

It shall also define the structure dirent which shall include the following members:

XSI ino_t d_ino File serial number.
char d_name[] Name of entry.

XSI The <dirent.h> header shall define the ino_t type as described in <sys/types.h>.

The character array d_name is of unspecified size, but the number of bytes preceding the
terminating null byte shall not exceed {NAME_MAX}.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int alphasort(const struct dirent **, const struct dirent **);
int closedir(DIR *);
int dirfd(DIR *);
DIR *fdopendir(int);
DIR *opendir(const char *);
struct dirent *readdir(DIR *);
int readdir_r(DIR *restrict, struct dirent *restrict,

struct dirent **restrict);
void rewinddir(DIR *);
int scandir(const char *, struct dirent ***,

int (*)(const struct dirent *),
int (*)(const struct dirent **,
const struct dirent **));

XSI void seekdir(DIR *, long);
long telldir(DIR *);

APPLICATION USAGE
None.

RATIONALE
Information similar to that in the <dirent.h> header is contained in a file <sys/dir.h> in 4.2 BSD
and 4.3 BSD. The equivalent in these implementations of struct dirent from this volume of
POSIX.1-2008 is struct direct. The filename was changed because the name <sys/dir.h> was also
used in earlier implementations to refer to definitions related to the older access method; this
produced name conflicts. The name of the structure was changed because this volume of
POSIX.1-2008 does not completely define what is in the structure, so it could be different on
some implementations from struct direct.

The name of an array of char of an unspecified size should not be used as an lvalue. Use of:

sizeof(d_name)

is incorrect; use:

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 231

7565

7566

7567

7568

7569

7570

7571

7572

7573

7574

7575

7576

7577

7578

7579

7580

7581

7582

7583

7584

7585

7586

7587

7588

7589

7590

7591

7592

7593

7594

7595

7596

7597

7598

7599

7600

7601

7602

7603

7604

7605

7606

7607

7608

<dirent.h> Headers

strlen(d_name)

instead.

The array of char d_name is not a fixed size. Implementations may need to declare struct dirent
with an array size for d_name of 1, but the actual number of characters provided matches (or
only slightly exceeds) the length of the filename.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH alphasort(), closedir(), dirfd(), fdopendir(), readdir(), rewinddir(), seekdir(), telldir()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The Open Group Corrigendum U026/7 is applied, correcting the prototype for readdir_r().

The restrict keyword is added to the prototype for readdir_r().

Issue 7
The alphasort(), dirfd(), and scandir() functions are added from The Open Group Technical
Standard, 2006, Extended API Set Part 1.

The fopendir() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Austin Group Interpretation 1003.1-2001 #110 is applied, clarifying the definition of the DIR
type.

232 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

7609

7610

7611

7612

7613

7614

7615

7616

7617

7618

7619

7620

7621

7622

7623

7624

7625

7626

7627

7628

7629

7630

7631

7632

Headers <dlfcn.h>

NAME
dlfcn.h — dynamic linking

SYNOPSIS
#include <dlfcn.h>

DESCRIPTION
The <dlfcn.h> header shall define at least the following symbolic constants for use in the
construction of a dlopen() mode argument:

RTLD_LAZY Relocations are performed at an implementation-defined time.

RTLD_NOW Relocations are performed when the object is loaded.

RTLD_GLOBAL All symbols are available for relocation processing of other modules.

RTLD_LOCAL All symbols are not made available for relocation processing by other
modules.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int dlclose(void *);
char *dlerror(void);
void *dlopen(const char *, int);
void *dlsym(void *restrict, const char *restrict);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH dlclose(), dlerror(), dlopen(), dlsym()

CHANGE HISTORY
First released in Issue 5.

Issue 6
The restrict keyword is added to the prototype for dlsym().

Issue 7
The <dlfcn.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 233

7633

7634

7635

7636

7637

7638

7639

7640

7641

7642

7643

7644

7645

7646

7647

7648

7649

7650

7651

7652

7653

7654

7655

7656

7657

7658

7659

7660

7661

7662

7663

7664

7665

<errno.h> Headers

NAME
errno.h — system error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The ISO C standard only requires the symbols [EDOM], [EILSEQ], and [ERANGE] to be defined.

The <errno.h> header shall provide a declaration or definition for errno. The symbol errno shall
expand to a modifiable lvalue of type int. It is unspecified whether errno is a macro or an
identifier declared with external linkage. If a macro definition is suppressed in order to access an
actual object, or a program defines an identifier with the name errno, the behavior is undefined.

The <errno.h> header shall define the following macros which shall expand to integer constant
expressions with type int, distinct positive values (except as noted below), and which shall be
suitable for use in #if preprocessing directives:

[E2BIG] Argument list too long.

[EACCES] Permission denied.

[EADDRINUSE] Address in use.

[EADDRNOTAVAIL] Address not available.

[EAFNOSUPPORT] Address family not supported.

[EAGAIN] Resource unavailable, try again (may be the same value as
[EWOULDBLOCK]).

[EALREADY] Connection already in progress.

[EBADF] Bad file descriptor.

[EBADMSG] Bad message.

[EBUSY] Device or resource busy.

[ECANCELED] Operation canceled.

[ECHILD] No child processes.

[ECONNABORTED] Connection aborted.

[ECONNREFUSED] Connection refused.

[ECONNRESET] Connection reset.

[EDEADLK] Resource deadlock would occur.

[EDESTADDRREQ] Destination address required.

[EDOM] Mathematics argument out of domain of function.

[EDQUOT] Reserved.

[EEXIST] File exists.

234 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

7666

7667

7668

7669

7670

7671

7672

7673

7674

7675

7676

7677

7678

7679

7680

7681

7682

7683

7684

7685

7686

7687

7688

7689

7690

7691

7692

7693

7694

7695

7696

7697

7698

7699

7700

7701

7702

Headers <errno.h>

[EFAULT] Bad address.

[EFBIG] File too large.

[EHOSTUNREACH] Host is unreachable.

[EIDRM] Identifier removed.

[EILSEQ] Illegal byte sequence.

[EINPROGRESS] Operation in progress.

[EINTR] Interrupted function.

[EINVAL] Invalid argument.

[EIO] I/O error.

[EISCONN] Socket is connected.

[EISDIR] Is a directory.

[ELOOP] Too many levels of symbolic links.

[EMFILE] File descriptor value too large.

[EMLINK] Too many links.

[EMSGSIZE] Message too large.

[EMULTIHOP] Reserved.

[ENAMETOOLONG] Filename too long.

[ENETDOWN] Network is down.

[ENETRESET] Connection aborted by network.

[ENETUNREACH] Network unreachable.

[ENFILE] Too many files open in system.

[ENOBUFS] No buffer space available.

OB XSR [ENODATA] No message is available on the STREAM head read queue.

[ENODEV] No such device.

[ENOENT] No such file or directory.

[ENOEXEC] Executable file format error.

[ENOLCK] No locks available.

[ENOLINK] Reserved.

[ENOMEM] Not enough space.

[ENOMSG] No message of the desired type.

[ENOPROTOOPT] Protocol not available.

[ENOSPC] No space left on device.

OB XSR [ENOSR] No STREAM resources.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 235

7703

7704

7705

7706

7707

7708

7709

7710

7711

7712

7713

7714

7715

7716

7717

7718

7719

7720

7721

7722

7723

7724

7725

7726

7727

7728

7729

7730

7731

7732

7733

7734

7735

<errno.h> Headers

OB XSR [ENOSTR] Not a STREAM.

[ENOSYS] Function not supported.

[ENOTCONN] The socket is not connected.

[ENOTDIR] Not a directory.

[ENOTEMPTY] Directory not empty.

[ENOTRECOVERABLE]
State not recoverable.

[ENOTSOCK] Not a socket.

[ENOTSUP] Not supported (may be the same value as [EOPNOTSUPP]).

[ENOTTY] Inappropriate I/O control operation.

[ENXIO] No such device or address.

[EOPNOTSUPP] Operation not supported on socket (may be the same value as
[ENOTSUP]).

[EOVERFLOW] Value too large to be stored in data type.

[EOWNERDEAD] Previous owner died.

[EPERM] Operation not permitted.

[EPIPE] Broken pipe.

[EPROTO] Protocol error.

[EPROTONOSUPPORT]
Protocol not supported.

[EPROTOTYPE] Protocol wrong type for socket.

[ERANGE] Result too large.

[EROFS] Read-only file system.

[ESPIPE] Invalid seek.

[ESRCH] No such process.

[ESTALE] Reserved.

OB XSR [ETIME] Stream ioctl() timeout.

[ETIMEDOUT] Connection timed out.

[ETXTBSY] Text file busy.

[EWOULDBLOCK] Operation would block (may be the same value as [EAGAIN]).

[EXDEV] Cross-device link.

236 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

7736

7737

7738

7739

7740

7741

7742

7743

7744

7745

7746

7747

7748

7749

7750

7751

7752

7753

7754

7755

7756

7757

7758

7759

7760

7761

7762

7763

7764

7765

7766

Headers <errno.h>

APPLICATION USAGE
Additional error numbers may be defined on conforming systems; see the System Interfaces
volume of POSIX.1-2008.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH Section 2.3 (on page 477)

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Updated for alignment with the POSIX Realtime Extension.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The majority of the error conditions previously marked as extensions are now mandatory,
except for the STREAMS-related error conditions.

Values for errno are now required to be distinct positive values rather than non-zero values. This
change is for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #050 is applied, allowing [ENOTSUP] and
[EOPNOTSUPP] to be the same values.

The [ENOTRECOVERABLE] and [EOWNERDEAD] errors are added from The Open Group
Technical Standard, 2006, Extended API Set Part 2.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Functionality relating to the Threads option is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 237

7767

7768

7769

7770

7771

7772

7773

7774

7775

7776

7777

7778

7779

7780

7781

7782

7783

7784

7785

7786

7787

7788

7789

7790

7791

7792

7793

7794

<fcntl.h> Headers

NAME
fcntl.h — file control options

SYNOPSIS
#include <fcntl.h>

DESCRIPTION
The <fcntl.h> header shall define the following symbolic constants for the cmd argument used
by fcntl(). The values shall be unique and shall be suitable for use in #if preprocessing
directives.

F_DUPFD Duplicate file descriptor.

F_DUPFD_CLOEXEC
Duplicate file descriptor with the close-on-exec flag FD_CLOEXEC set.

F_GETFD Get file descriptor flags.

F_SETFD Set file descriptor flags.

F_GETFL Get file status flags and file access modes.

F_SETFL Set file status flags.

F_GETLK Get record locking information.

F_SETLK Set record locking information.

F_SETLKW Set record locking information; wait if blocked.

F_GETOWN Get process or process group ID to receive SIGURG signals.

F_SETOWN Set process or process group ID to receive SIGURG signals.

The <fcntl.h> header shall define the following symbolic constant used for the fcntl() file
descriptor flags, which shall be suitable for use in #if preprocessing directives.

FD_CLOEXEC Close the file descriptor upon execution of an exec family function.

The <fcntl.h> header shall also define the following symbolic constants for the l_type argument
used for record locking with fcntl(). The values shall be unique and shall be suitable for use in
#if preprocessing directives.

F_RDLCK Shared or read lock.

F_UNLCK Unlock.

F_WRLCK Exclusive or write lock.

The <fcntl.h> header shall define the values used for l_whence, SEEK_SET, SEEK_CUR, and
SEEK_END as described in <stdio.h>.

The <fcntl.h> header shall define the following symbolic constants as file creation flags for use
in the oflag value to open() and openat(). The values shall be bitwise-distinct and shall be
suitable for use in #if preprocessing directives.

O_CREAT Create file if it does not exist.

O_EXCL Exclusive use flag.

O_NOCTTY Do not assign controlling terminal.

O_TRUNC Truncate flag.

238 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

7795

7796

7797

7798

7799

7800

7801

7802

7803

7804

7805

7806

7807

7808

7809

7810

7811

7812

7813

7814

7815

7816

7817

7818

7819

7820

7821

7822

7823

7824

7825

7826

7827

7828

7829

7830

7831

7832

Headers <fcntl.h>

O_TTY_INIT Set the termios structure terminal parameters to a state that provides
conforming behavior; see Section 11.2 (on page 205).

The O_TTY_INIT flag can have the value zero and in this case it need not be bitwise-distinct
from the other flags.

The <fcntl.h> header shall define the following symbolic constants for use as file status flags for
open(), openat(), and fcntl(). The values shall be suitable for use in #if preprocessing directives.

O_APPEND Set append mode.

SIO O_DSYNC Write according to synchronized I/O data integrity completion.

O_NONBLOCK Non-blocking mode.

SIO O_RSYNC Synchronized read I/O operations.

O_SYNC Write according to synchronized I/O file integrity completion.

The <fcntl.h> header shall define the following symbolic constant for use as the mask for file
access modes. The value shall be suitable for use in #if preprocessing directives.

O_ACCMODE Mask for file access modes.

The <fcntl.h> header shall define the following symbolic constants for use as the file access
modes for open(), openat(), and fcntl(). The values shall be suitable for use in #if preprocessing
directives.

O_EXEC Open for execute only (non-directory files). The result is unspecified if this
flag is applied to a directory.

O_RDONLY Open for reading only.

O_RDWR Open for reading and writing.

O_SEARCH Open directory for search only. The result is unspecified if this flag is applied
to a non-directory file.

O_WRONLY Open for writing only.

The <fcntl.h> header shall define the symbolic constants for file modes for use as values of
mode_t as described in <sys/stat.h>.

The <fcntl.h> header shall define the following symbolic constant as a special value used in
place of a file descriptor for the *at() functions which take a directory file descriptor as a
parameter:

AT_FDCWD Use the current working directory to determine the target of relative file paths.

The <fcntl.h> header shall define the following symbolic constant as a value for the flag used by
faccessat():

AT_EACCESS Check access using effective user and group ID.

The <fcntl.h> header shall define the following symbolic constant as a value for the flag used by
fstatat(), fchmodat(), fchownat(), and utimensat():

AT_SYMLINK_NOFOLLOW
Do not follow symbolic links.

The <fcntl.h> header shall define the following symbolic constant as a value for the flag used by
linkat():

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 239

7833

7834

7835

7836

7837

7838

7839

7840

7841

7842

7843

7844

7845

7846

7847

7848

7849

7850

7851

7852

7853

7854

7855

7856

7857

7858

7859

7860

7861

7862

7863

7864

7865

7866

7867

7868

7869

7870

7871

<fcntl.h> Headers

AT_SYMLINK_FOLLOW
Follow symbolic link.

The <fcntl.h> header shall define the following symbolic constants as values for the flag used by
open() and openat():

O_CLOEXEC The FD_CLOEXEC flag associated with the new descriptor shall be set to close
the file descriptor upon execution of an exec family function.

O_DIRECTORY Fail if not a directory.

O_NOFOLLOW Do not follow symbolic links.

The <fcntl.h> header shall define the following symbolic constant as a value for the flag used by
unlinkat():

AT_REMOVEDIR
Remove directory instead of file.

ADV The <fcntl.h> header shall define the following symbolic constants for the advice argument used
by posix_fadvise():

POSIX_FADV_DONTNEED
The application expects that it will not access the specified data in the near future.

POSIX_FADV_NOREUSE
The application expects to access the specified data once and then not reuse it thereafter.

POSIX_FADV_NORMAL
The application has no advice to give on its behavior with respect to the specified data. It is
the default characteristic if no advice is given for an open file.

POSIX_FADV_RANDOM
The application expects to access the specified data in a random order.

POSIX_FADV_SEQUENTIAL
The application expects to access the specified data sequentially from lower offsets to higher
offsets.

POSIX_FADV_WILLNEED
The application expects to access the specified data in the near future.

The <fcntl.h> header shall define the flock structure describing a file lock. It shall include the
following members:

short l_type Type of lock; F_RDLCK, F_WRLCK, F_UNLCK.
short l_whence Flag for starting offset.
off_t l_start Relative offset in bytes.
off_t l_len Size; if 0 then until EOF.
pid_t l_pid Process ID of the process holding the lock; returned with F_GETLK.

The <fcntl.h> header shall define the mode_t, off_t, and pid_t types as described in
<sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int creat(const char *, mode_t);
int fcntl(int, int, ...);
int open(const char *, int, ...);

240 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

7872

7873

7874

7875

7876

7877

7878

7879

7880

7881

7882

7883

7884

7885

7886

7887

7888

7889

7890

7891

7892

7893

7894

7895

7896

7897

7898

7899

7900

7901

7902

7903

7904

7905

7906

7907

7908

7909

7910

7911

7912

7913

Headers <fcntl.h>

int openat(int, const char *, int, ...);
ADV int posix_fadvise(int, off_t, off_t, int);

int posix_fallocate(int, off_t, off_t);

Inclusion of the <fcntl.h> header may also make visible all symbols from <sys/stat.h> and
<unistd.h>.

APPLICATION USAGE
Although no existing implementation defines AT_SYMLINK_FOLLOW and
AT_SYMLINK_NOFOLLOW as the same numeric value, POSIX.1-2008 does not prohibit that as
the two constants are not used with the same interfaces.

RATIONALE
While many of the symbolic constants introduced in the <fcntl.h> header do not strictly need to
be used in #if preprocessor directives, widespread historic practice has defined them as macros
that are usable in such constructs, and examination of existing applications has shown that they
are occasionally used in such a way. Therefore it was decided to retain this requirement on an
implementation in POSIX.1-2008.

FUTURE DIRECTIONS
None.

SEE ALSO
<stdio.h>, <sys/stat.h>, <sys/types.h>, <unistd.h>

XSH creat(), exec , fcntl(), futimens(), open(), posix_fadvise(), posix_fallocate(), posix_madvise()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Issue 6
The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• O_DSYNC and O_RSYNC are marked as part of the Synchronized Input and Output
option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The definition of the mode_t, off_t, and pid_t types is mandated.

The F_GETOWN and F_SETOWN values are added for sockets.

The posix_fadvise(), posix_fallocate(), and posix_madvise() functions are added for alignment with
IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #102 is applied, moving the prototype for posix_madvise() to
<sys/mman.h>.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/18 is applied, updating the prototypes for
posix_fadvise() and posix_fallocate() to be large file-aware, using off_t instead of size_t.

Issue 7
Austin Group Interpretation 1003.1-2001 #144 is applied, adding the O_TTY_INIT flag.

Austin Group Interpretation 1003.1-2001 #171 is applied, adding support to set the
FD_CLOEXEC flag atomically at open(), and adding the F_DUPFD_CLOEXEC flag.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 241

7914

7915

7916

7917

7918

7919

7920

7921

7922

7923

7924

7925

7926

7927

7928

7929

7930

7931

7932

7933

7934

7935

7936

7937

7938

7939

7940

7941

7942

7943

7944

7945

7946

7947

7948

7949

7950

7951

7952

7953

7954

7955

<fcntl.h> Headers

The openat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Additional flags are added to support faccessat(), fchmodat(), fchownat(), fstatat(), linkat(),
open(), openat(), and unlinkat().

This reference page is clarified with respect to macros and symbolic constants.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

242 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

7956

7957

7958

7959

7960

7961

7962

Headers <fenv.h>

NAME
fenv.h — floating-point environment

SYNOPSIS
#include <fenv.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The <fenv.h> header shall define the following data types through typedef:

fenv_t Represents the entire floating-point environment. The floating-point environment
refers collectively to any floating-point status flags and control modes supported
by the implementation.

fexcept_t Represents the floating-point status flags collectively, including any status the
implementation associates with the flags. A floating-point status flag is a system
variable whose value is set (but never cleared) when a floating-point exception is
raised, which occurs as a side-effect of exceptional floating-point arithmetic to
provide auxiliary information. A floating-point control mode is a system variable
whose value may be set by the user to affect the subsequent behavior of floating-
point arithmetic.

The <fenv.h> header shall define each of the following macros if and only if the implementation
supports the floating-point exception by means of the floating-point functions feclearexcept(),
fegetexceptflag(), feraiseexcept(), fesetexceptflag(), and fetestexcept(). The defined macros shall
expand to integer constant expressions with values that are bitwise-distinct.

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW

MX If the implementation supports the IEC 60559 Floating-Point option, all five macros shall be
defined. Additional implementation-defined floating-point exceptions with macros beginning
with FE_ and an uppercase letter may also be specified by the implementation.

The <fenv.h> header shall define the macro FE_ALL_EXCEPT as the bitwise-inclusive OR of all
floating-point exception macros defined by the implementation, if any. If no such macros are
defined, then the macro FE_ALL_EXCEPT shall be defined as zero.

The <fenv.h> header shall define each of the following macros if and only if the implementation
supports getting and setting the represented rounding direction by means of the fegetround()
and fesetround() functions. The defined macros shall expand to integer constant expressions
whose values are distinct non-negative values.

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

MX If the implementation supports the IEC 60559 Floating-Point option, all four macros shall be
defined. Additional implementation-defined rounding directions with macros beginning with
FE_ and an uppercase letter may also be specified by the implementation.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 243

7963

7964

7965

7966

7967

7968

7969

7970

7971

7972

7973

7974

7975

7976

7977

7978

7979

7980

7981

7982

7983

7984

7985

7986

7987

7988

7989

7990

7991

7992

7993

7994

7995

7996

7997

7998

7999

8000

8001

8002

8003

8004

8005

8006

8007

<fenv.h> Headers

The <fenv.h> header shall define the following macro, which represents the default floating-
point environment (that is, the one installed at program startup) and has type pointer to const-
qualified fenv_t. It can be used as an argument to the functions within the <fenv.h> header that
manage the floating-point environment.

FE_DFL_ENV

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int feclearexcept(int);
int fegetenv(fenv_t *);
int fegetexceptflag(fexcept_t *, int);
int fegetround(void);
int feholdexcept(fenv_t *);
int feraiseexcept(int);
int fesetenv(const fenv_t *);
int fesetexceptflag(const fexcept_t *, int);
int fesetround(int);
int fetestexcept(int);
int feupdateenv(const fenv_t *);

The FENV_ACCESS pragma provides a means to inform the implementation when an
application might access the floating-point environment to test floating-point status flags or run
under non-default floating-point control modes. The pragma shall occur either outside external
declarations or preceding all explicit declarations and statements inside a compound statement.
When outside external declarations, the pragma takes effect from its occurrence until another
FENV_ACCESS pragma is encountered, or until the end of the translation unit. When inside a
compound statement, the pragma takes effect from its occurrence until another FENV_ACCESS
pragma is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is restored to
its condition just before the compound statement. If this pragma is used in any other context, the
behavior is undefined. If part of an application tests floating-point status flags, sets floating-
point control modes, or runs under non-default mode settings, but was translated with the state
for the FENV_ACCESS pragma off, the behavior is undefined. The default state (on or off) for
the pragma is implementation-defined. (When execution passes from a part of the application
translated with FENV_ACCESS off to a part translated with FENV_ACCESS on, the state of the
floating-point status flags is unspecified and the floating-point control modes have their default
settings.)

APPLICATION USAGE
This header is designed to support the floating-point exception status flags and directed-
rounding control modes required by the IEC 60559: 1989 standard, and other similar floating-
point state information. Also it is designed to facilitate code portability among all systems.

Certain application programming conventions support the intended model of use for the
floating-point environment:

• A function call does not alter its caller’s floating-point control modes, clear its caller’s
floating-point status flags, nor depend on the state of its caller’s floating-point status flags
unless the function is so documented.

• A function call is assumed to require default floating-point control modes, unless its
documentation promises otherwise.

244 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

8008

8009

8010

8011

8012

8013

8014

8015

8016

8017

8018

8019

8020

8021

8022

8023

8024

8025

8026

8027

8028

8029

8030

8031

8032

8033

8034

8035

8036

8037

8038

8039

8040

8041

8042

8043

8044

8045

8046

8047

8048

8049

8050

8051

8052

8053

Headers <fenv.h>

• A function call is assumed to have the potential for raising floating-point exceptions,
unless its documentation promises otherwise.

With these conventions, an application can safely assume default floating-point control modes
(or be unaware of them). The responsibilities associated with accessing the floating-point
environment fall on the application that does so explicitly.

Even though the rounding direction macros may expand to constants corresponding to the
values of FLT_ROUNDS, they are not required to do so.

For example:

#include <fenv.h>
void f(double x)
{

#pragma STDC FENV_ACCESS ON
void g(double);
void h(double);
/* ... */
g(x + 1);
h(x + 1);
/* ... */

}

If the function g() might depend on status flags set as a side-effect of the first x+1, or if the
second x+1 might depend on control modes set as a side-effect of the call to function g(), then
the application shall contain an appropriately placed invocation as follows:

#pragma STDC FENV_ACCESS ON

RATIONALE

The fexcept_t Type

fexcept_t does not have to be an integer type. Its values must be obtained by a call to
fegetexceptflag(), and cannot be created by logical operations from the exception macros. An
implementation might simply implement fexcept_t as an int and use the representations
reflected by the exception macros, but is not required to; other representations might contain
extra information about the exceptions. fexcept_t might be a struct with a member for each
exception (that might hold the address of the first or last floating-point instruction that caused
that exception). The ISO/IEC 9899: 1999 standard makes no claims about the internals of an
fexcept_t, and so the user cannot inspect it.

Exception and Rounding Macros

Macros corresponding to unsupported modes and rounding directions are not defined by the
implementation and must not be defined by the application. An application might use #ifdef to
test for this.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH feclearexcept(), fegetenv(), fegetexceptflag(), fegetround(), feholdexcept(), feraiseexcept(),
fetestexcept(), feupdateenv()

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 245

8054

8055

8056

8057

8058

8059

8060

8061

8062

8063

8064

8065

8066

8067

8068

8069

8070

8071

8072

8073

8074

8075

8076

8077

8078

8079

8080

8081

8082

8083

8084

8085

8086

8087

8088

8089

8090

8091

8092

8093

8094

8095

<fenv.h> Headers

CHANGE HISTORY
First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

The return types for feclearexcept(), fegetexceptflag(), feraiseexcept(), fesetexceptflag(), fegetenv(),
fesetenv(), and feupdateenv() are changed from void to int for alignment with the
ISO/IEC 9899: 1999 standard, Defect Report 202.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #37 (SD5-XBD-ERN-49) is applied.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 3 #36 is applied.

SD5-XBD-ERN-48 and SD5-XBD-ERN-69 are applied.

This reference page is clarified with respect to macros and symbolic constants.

246 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

8096

8097

8098

8099

8100

8101

8102

8103

8104

8105

Headers <float.h>

NAME
float.h — floating types

SYNOPSIS
#include <float.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The characteristics of floating types are defined in terms of a model that describes a
representation of floating-point numbers and values that provide information about an
implementation’s floating-point arithmetic.

The following parameters are used to define the model for each floating-point type:

s Sign (±1).

b Base or radix of exponent representation (an integer >1).

e Exponent (an integer between a minimum emin and a maximum emax).

p Precision (the number of base−b digits in the significand).

f k Non-negative integers less than b (the significand digits).

A floating-point number x is defined by the following model:

8106

8107

8108

8109

8110

8111

8112

8113

8114

8115

8116

8117

8118

8119

8120

8121

8122

8123

x = sbe
p

k=1
Σ f k b−k , emin ≤ e ≤ emax

In addition to normalized floating-point numbers (f1>0 if x≠0), floating types may be able to
contain other kinds of floating-point numbers, such as subnormal floating-point numbers (x≠0,
e=emin, f1=0) and unnormalized floating-point numbers (x≠0, e>emin, f1=0), and values that are
not floating-point numbers, such as infinities and NaNs. A NaN is an encoding signifying Not-a-
Number. A quiet NaN propagates through almost every arithmetic operation without raising a
floating-point exception; a signaling NaN generally raises a floating-point exception when
occurring as an arithmetic operand.

An implementation may give zero and non-numeric values, such as infinities and NaNs, a sign,
or may leave them unsigned. Wherever such values are unsigned, any requirement in
POSIX.1-2008 to retrieve the sign shall produce an unspecified sign and any requirement to set
the sign shall be ignored.

The accuracy of the floating-point operations (’+’, ’−’, ’*’, ’/’) and of the functions in
<math.h> and <complex.h> that return floating-point results is implementation-defined, as is
the accuracy of the conversion between floating-point internal representations and string
representations performed by the functions in <stdio.h>, <stdlib.h>, and <wchar.h>. The
implementation may state that the accuracy is unknown.

All integer values in the <float.h> header, except FLT_ROUNDS, shall be constant expressions
suitable for use in #if preprocessing directives; all floating values shall be constant expressions.
All except DECIMAL_DIG, FLT_EVAL_METHOD, FLT_RADIX, and FLT_ROUNDS have
separate names for all three floating-point types. The floating-point model representation is
provided for all values except FLT_EVAL_METHOD and FLT_ROUNDS.

The rounding mode for floating-point addition is characterized by the implementation-defined

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 247

8124

8125

8126

8127

8128

8129

8130

8131

8132

8133

8134

8135

8136

8137

8138

8139

8140

8141

8142

8143

8144

8145

<float.h> Headers

value of FLT_ROUNDS:

−1 Indeterminable.

0 Toward zero.

1 To nearest.

2 Toward positive infinity.

3 Toward negative infinity.

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

The values of operations with floating operands and values subject to the usual arithmetic
conversions and of floating constants are evaluated to a format whose range and precision may
be greater than required by the type. The use of evaluation formats is characterized by the
implementation-defined value of FLT_EVAL_METHOD:

−1 Indeterminable.

0 Evaluate all operations and constants just to the range and precision of the type.

1 Evaluate operations and constants of type float and double to the range and precision of
the double type; evaluate long double operations and constants to the range and precision
of the long double type.

2 Evaluate all operations and constants to the range and precision of the long double type.

All other negative values for FLT_EVAL_METHOD characterize implementation-defined
behavior.

The <float.h> header shall define the following values as constant expressions with
implementation-defined values that are greater or equal in magnitude (absolute value) to those
shown, with the same sign.

• Radix of exponent representation, b.

FLT_RADIX 2

• Number of base-FLT_RADIX digits in the floating-point significand, p.

FLT_MANT_DIG

DBL_MANT_DIG

LDBL_MANT_DIG

• Number of decimal digits, n, such that any floating-point number in the widest supported
floating type with pmax radix b digits can be rounded to a floating-point number with n
decimal digits and back again without change to the value.

8146

8147

8148

8149

8150

8151

8152

8153

8154

8155

8156

8157

8158

8159

8160

8161

8162

8163

8164

8165

8166

8167

8168

8169

8170

8171

8172

8173

8174

8175

8176







pmax log10 b




1 + pmax log10 b


if b is a power of 10

otherwise

DECIMAL_DIG 10

248 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

8177

Headers <float.h>

• Number of decimal digits, q, such that any floating-point number with q decimal digits can
be rounded into a floating-point number with p radix b digits and back again without
change to the q decimal digits.

8178

8179

8180







p log10 b




(p − 1) log10 b 


if b is a power of 10

otherwise

FLT_DIG 6

DBL_DIG 10

LDBL_DIG 10

• Minimum negative integer such that FLT_RADIX raised to that power minus 1 is a
normalized floating-point number, emin.

FLT_MIN_EXP

DBL_MIN_EXP

LDBL_MIN_EXP

• Minimum negative integer such that 10 raised to that power is in the range of normalized
floating-point numbers.

8181

8182

8183

8184

8185

8186

8187

8188

8189

8190




log10 bemin
−1 



FLT_MIN_10_EXP −37

DBL_MIN_10_EXP −37

LDBL_MIN_10_EXP −37

• Maximum integer such that FLT_RADIX raised to that power minus 1 is a representable
finite floating-point number, emax.

FLT_MAX_EXP

DBL_MAX_EXP

LDBL_MAX_EXP

• Maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers.

8191

8192

8193

8194

8195

8196

8197

8198

8199

8200




log10((1 − b−p) bemax) 


FLT_MAX_10_EXP +37

DBL_MAX_10_EXP +37

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 249

8201

8202

<float.h> Headers

LDBL_MAX_10_EXP +37

The <float.h> header shall define the following values as constant expressions with
implementation-defined values that are greater than or equal to those shown:

• Maximum representable finite floating-point number.

8203

8204

8205

8206

(1 − b−p) bemax

FLT_MAX 1E+37

DBL_MAX 1E+37

LDBL_MAX 1E+37

The <float.h> header shall define the following values as constant expressions with
implementation-defined (positive) values that are less than or equal to those shown:

• The difference between 1 and the least value greater than 1 that is representable in the
given floating-point type, b1 − p.

FLT_EPSILON 1E−5

DBL_EPSILON 1E−9

LDBL_EPSILON 1E−9

• Minimum normalized positive floating-point number, bemin
−1

.

FLT_MIN 1E−37

DBL_MIN 1E−37

LDBL_MIN 1E−37

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<complex.h>, <math.h>, <stdio.h>, <stdlib.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Issue 6
The description of the operations with floating-point values is updated for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #4 (SD5-XBD-ERN-50) and #5
(SD5-XBD-ERN-51) are applied.

250 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

8207

8208

8209

8210

8211

8212

8213

8214

8215

8216

8217

8218

8219

8220

8221

8222

8223

8224

8225

8226

8227

8228

8229

8230

8231

8232

8233

8234

8235

8236

Headers <fmtmsg.h>

NAME
fmtmsg.h — message display structures

SYNOPSIS
XSI #include <fmtmsg.h>

DESCRIPTION
The <fmtmsg.h> header shall define the following symbolic constants:

MM_HARD Source of the condition is hardware.

MM_SOFT Source of the condition is software.

MM_FIRM Source of the condition is firmware.

MM_APPL Condition detected by application.

MM_UTIL Condition detected by utility.

MM_OPSYS Condition detected by operating system.

MM_RECOVER Recoverable error.

MM_NRECOV Non-recoverable error.

MM_HALT Error causing application to halt.

MM_ERROR Application has encountered a non-fatal fault.

MM_WARNING Application has detected unusual non-error condition.

MM_INFO Informative message.

MM_NOSEV No severity level provided for the message.

MM_PRINT Display message on standard error.

MM_CONSOLE Display message on system console.

The table below indicates the null values and identifiers for fmtmsg() arguments. The
<fmtmsg.h> header shall define the symbolic constants in the Identifier column, which shall
have the type indicated in the Type column:

Argument Type Null-Value Identifier

label char * (char*)0 MM_NULLLBL
severity int 0 MM_NULLSEV
class long 0L MM_NULLMC
text char * (char*)0 MM_NULLTXT
action char * (char*)0 MM_NULLACT
tag char * (char*)0 MM_NULLTAG

The <fmtmsg.h> header shall also define the following symbolic constants for use as return
values for fmtmsg():

MM_OK The function succeeded.

MM_NOTOK The function failed completely.

MM_NOMSG The function was unable to generate a message on standard error, but
otherwise succeeded.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 251

8237

8238

8239

8240

8241

8242

8243

8244

8245

8246

8247

8248

8249

8250

8251

8252

8253

8254

8255

8256

8257

8258

8259

8260

8261

8262

8263

8264

8265

8266

8267

8268

8269

8270

8271

8272

8273

<fmtmsg.h> Headers

MM_NOCON The function was unable to generate a console message, but otherwise
succeeded.

The following shall be declared as a function and may also be defined as a macro. A function
prototype shall be provided.

int fmtmsg(long, const char *, int,
const char *, const char *, const char *);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH fmtmsg()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

252 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

8274

8275

8276

8277

8278

8279

8280

8281

8282

8283

8284

8285

8286

8287

8288

8289

8290

8291

Headers <fnmatch.h>

NAME
fnmatch.h — filename-matching types

SYNOPSIS
#include <fnmatch.h>

DESCRIPTION
The <fnmatch.h> header shall define the following symbolic constants:

FNM_NOMATCH The string does not match the specified pattern.

FNM_PATHNAME <slash> in string only matches <slash> in pattern.

FNM_PERIOD Leading <period> in string must be exactly matched by <period> in
pattern.

FNM_NOESCAPE Disable backslash escaping.

The following shall be declared as a function and may also be defined as a macro. A function
prototype shall be provided.

int fnmatch(const char *, const char *, int);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH fnmatch()

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 6
The FNM_NOSYS constant is marked obsolescent.

Issue 7
The obsolescent FNM_NOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 253

8292

8293

8294

8295

8296

8297

8298

8299

8300

8301

8302

8303

8304

8305

8306

8307

8308

8309

8310

8311

8312

8313

8314

8315

8316

8317

8318

8319

8320

<ftw.h> Headers

NAME
ftw.h — file tree traversal

SYNOPSIS
XSI #include <ftw.h>

DESCRIPTION
The <ftw.h> header shall define the FTW structure, which shall include at least the following
members:

int base
int level

The <ftw.h> header shall define the following symbolic constants for use as values of the third
argument to the application-supplied function that is passed as the second argument to ftw()
and nftw():

FTW_F File.

FTW_D Directory.

FTW_DNR Directory without read permission.

FTW_DP Directory with subdirectories visited.

FTW_NS Unknown type; stat() failed.

FTW_SL Symbolic link.

FTW_SLN Symbolic link that names a nonexistent file.

The <ftw.h> header shall define the following symbolic constants for use as values of the fourth
argument to nftw():

FTW_PHYS Physical walk, does not follow symbolic links. Otherwise, nftw() follows
links but does not walk down any path that crosses itself.

FTW_MOUNT The walk does not cross a mount point.

FTW_DEPTH All subdirectories are visited before the directory itself.

FTW_CHDIR The walk changes to each directory before reading it.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

OB int ftw(const char *, int (*)(const char *, const struct stat *,
int), int);

int nftw(const char *, int (*)(const char *, const struct stat *,
int, struct FTW *), int, int);

The <ftw.h> header shall define the stat structure and the symbolic names for st_mode and the
file type test macros as described in <sys/stat.h>.

Inclusion of the <ftw.h> header may also make visible all symbols from <sys/stat.h>.

254 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

8321

8322

8323

8324

8325

8326

8327

8328

8329

8330

8331

8332

8333

8334

8335

8336

8337

8338

8339

8340

8341

8342

8343

8344

8345

8346

8347

8348

8349

8350

8351

8352

8353

8354

8355

Headers <ftw.h>

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/stat.h>

XSH ftw(), nftw()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A description of FTW_DP is added.

Issue 7
The ftw() function is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 255

8356

8357

8358

8359

8360

8361

8362

8363

8364

8365

8366

8367

8368

8369

8370

8371

<glob.h> Headers

NAME
glob.h — pathname pattern-matching types

SYNOPSIS
#include <glob.h>

DESCRIPTION
The <glob.h> header shall define the structures and symbolic constants used by the glob()
function.

The <glob.h> header shall define the glob_t structure type, which shall include at least the
following members:

size_t gl_pathc Count of paths matched by pattern.
char **gl_pathv Pointer to a list of matched pathnames.
size_t gl_offs Slots to reserve at the beginning of gl_pathv.

The <glob.h> header shall define the size_t type as described in <sys/types.h>.

The <glob.h> header shall define the following symbolic constants as values for the flags
argument:

GLOB_APPEND Append generated pathnames to those previously obtained.

GLOB_DOOFFS Specify how many null pointers to add to the beginning of gl_pathv.

GLOB_ERR Cause glob() to return on error.

GLOB_MARK Each pathname that is a directory that matches pattern has a <slash>
appended.

GLOB_NOCHECK If pattern does not match any pathname, then return a list consisting of
only pattern.

GLOB_NOESCAPE Disable backslash escaping.

GLOB_NOSORT Do not sort the pathnames returned.

The <glob.h> header shall define the following symbolic constants as error return values:

GLOB_ABORTED The scan was stopped because GLOB_ERR was set or (*errfunc)()
returned non-zero.

GLOB_NOMATCH The pattern does not match any existing pathname, and
GLOB_NOCHECK was not set in flags.

GLOB_NOSPACE An attempt to allocate memory failed.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int glob(const char *restrict, int, int(*)(const char *, int),
glob_t *restrict);

void globfree(glob_t *);

256 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

8372

8373

8374

8375

8376

8377

8378

8379

8380

8381

8382

8383

8384

8385

8386

8387

8388

8389

8390

8391

8392

8393

8394

8395

8396

8397

8398

8399

8400

8401

8402

8403

8404

8405

8406

Headers <glob.h>

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH glob()

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 6
The restrict keyword is added to the prototype for glob().

The GLOB_NOSYS constant is marked obsolescent.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/8 is applied, correcting the glob()
prototype definition by removing the restrict qualifier from the function pointer argument.

Issue 7
SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t

The obsolescent GLOB_NOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 257

8407

8408

8409

8410

8411

8412

8413

8414

8415

8416

8417

8418

8419

8420

8421

8422

8423

8424

8425

8426

<grp.h> Headers

NAME
grp.h — group structure

SYNOPSIS
#include <grp.h>

DESCRIPTION
The <grp.h> header shall declare the group structure, which shall include the following
members:

char *gr_name The name of the group.
gid_t gr_gid Numerical group ID.
char **gr_mem Pointer to a null-terminated array of character

pointers to member names.

The <grp.h> header shall define the gid_t and size_t types as described in <sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void endgrent(void);
struct group *getgrent(void);
struct group *getgrgid(gid_t);
int getgrgid_r(gid_t, struct group *, char *,

size_t, struct group **);
struct group *getgrnam(const char *);
int getgrnam_r(const char *, struct group *, char *,

size_t , struct group **);
XSI void setgrent(void);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH endgrent(), getgrgid(), getgrnam()

CHANGE HISTORY
First released in Issue 1.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The definition of gid_t is mandated.

• The getgrgid_r() and getgrnam_r() functions are marked as part of the Thread-Safe
Functions option.

258 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

8427

8428

8429

8430

8431

8432

8433

8434

8435

8436

8437

8438

8439

8440

8441

8442

8443

8444

8445

8446

8447

8448

8449

8450

8451

8452

8453

8454

8455

8456

8457

8458

8459

8460

8461

8462

8463

8464

8465

8466

8467

8468

Headers <grp.h>

Issue 7
SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t type.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 259

8469

8470

<iconv.h> Headers

NAME
iconv.h — codeset conversion facility

SYNOPSIS
#include <iconv.h>

DESCRIPTION
The <iconv.h> header shall define the following types:

iconv_t Identifies the conversion from one codeset to another.

size_t As described in <sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

size_t iconv(iconv_t, char **restrict, size_t *restrict,
char **restrict, size_t *restrict);

int iconv_close(iconv_t);
iconv_t iconv_open(const char *, const char *);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH iconv(), iconv_close(), iconv_open()

CHANGE HISTORY
First released in Issue 4.

Issue 6
The restrict keyword is added to the prototype for iconv().

Issue 7
SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t type.

The <iconv.h> header is moved from the XSI option to the Base.

260 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

8471

8472

8473

8474

8475

8476

8477

8478

8479

8480

8481

8482

8483

8484

8485

8486

8487

8488

8489

8490

8491

8492

8493

8494

8495

8496

8497

8498

8499

8500

Headers <inttypes.h>

NAME
inttypes.h — fixed size integer types

SYNOPSIS
#include <inttypes.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 468) to
enable the visibility of these symbols in this header.

The <inttypes.h> header shall include the <stdint.h> header.

The <inttypes.h> header shall define at least the following type:

imaxdiv_t Structure type that is the type of the value returned by the imaxdiv() function.

The <inttypes.h> header shall define the following macros. Each expands to a character string
literal containing a conversion specifier, possibly modified by a length modifier, suitable for use
within the format argument of a formatted input/output function when converting the
corresponding integer type. These macros have the general form of PRI (character string literals
for the fprintf() and fwprintf() family of functions) or SCN (character string literals for the
fscanf() and fwscanf() family of functions), followed by the conversion specifier, followed by a
name corresponding to a similar type name in <stdint.h>. In these names, N represents the
width of the type as described in <stdint.h>. For example, PRIdFAST32 can be used in a format
string to print the value of an integer of type int_fast32_t.

The fprintf() macros for signed integers are:

PRIdN PRIdLEASTN PRIdFASTN PRIdMAX PRIdPTR
PRIiN PRIiLEASTN PRIiFASTN PRIiMAX PRIiPTR

The fprintf() macros for unsigned integers are:

PRIoN PRIoLEASTN PRIoFASTN PRIoMAX PRIoPTR
PRIuN PRIuLEASTN PRIuFASTN PRIuMAX PRIuPTR
PRIxN PRIxLEASTN PRIxFASTN PRIxMAX PRIxPTR
PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR

The fscanf() macros for signed integers are:

SCNdN SCNdLEASTN SCNdFASTN SCNdMAX SCNdPTR
SCNiN SCNiLEASTN SCNiFASTN SCNiMAX SCNiPTR

The fscanf() macros for unsigned integers are:

SCNoN SCNoLEASTN SCNoFASTN SCNoMAX SCNoPTR
SCNuN SCNuLEASTN SCNuFASTN SCNuMAX SCNuPTR
SCNxN SCNxLEASTN SCNxFASTN SCNxMAX SCNxPTR

For each type that the implementation provides in <stdint.h>, the corresponding fprintf() and
fwprintf() macros shall be defined and the corresponding fscanf() and fwscanf() macros shall be
defined unless the implementation does not have a suitable modifier for the type.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

intmax_t imaxabs(intmax_t);
imaxdiv_t imaxdiv(intmax_t, intmax_t);

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 261

8501

8502

8503

8504

8505

8506

8507

8508

8509

8510

8511

8512

8513

8514

8515

8516

8517

8518

8519

8520

8521

8522

8523

8524

8525

8526

8527

8528

8529

8530

8531

8532

8533

8534

8535

8536

8537

8538

8539

8540

8541

8542

<inttypes.h> Headers

intmax_t strtoimax(const char *restrict, char **restrict, int);
uintmax_t strtoumax(const char *restrict, char **restrict, int);
intmax_t wcstoimax(const wchar_t *restrict, wchar_t **restrict, int);
uintmax_t wcstoumax(const wchar_t *restrict, wchar_t **restrict, int);

EXAMPLES
#include <inttypes.h>
#include <wchar.h>
int main(void)
{

uintmax_t i = UINTMAX_MAX; // This type always exists.
wprintf(L"The largest integer value is %020"

PRIxMAX "\n", i);
return 0;

}

APPLICATION USAGE
The purpose of <inttypes.h> is to provide a set of integer types whose definitions are consistent
across machines and independent of operating systems and other implementation
idiosyncrasies. It defines, through typedef, integer types of various sizes. Implementations are
free to typedef them as ISO C standard integer types or extensions that they support. Consistent
use of this header will greatly increase the portability of applications across platforms.

RATIONALE
The ISO/IEC 9899: 1990 standard specified that the language should support four signed and
unsigned integer data types—char, short, int, and long—but placed very little requirement on
their size other than that int and short be at least 16 bits and long be at least as long as int and
not smaller than 32 bits. For 16-bit systems, most implementations assigned 8, 16, 16, and 32 bits
to char, short, int, and long, respectively. For 32-bit systems, the common practice has been to
assign 8, 16, 32, and 32 bits to these types. This difference in int size can create some problems
for users who migrate from one system to another which assigns different sizes to integer types,
because the ISO C standard integer promotion rule can produce silent changes unexpectedly.
The need for defining an extended integer type increased with the introduction of 64-bit
systems.

FUTURE DIRECTIONS
Macro names beginning with PRI or SCN followed by any lowercase letter or ’X’ may be added
to the macros defined in the <inttypes.h> header.

SEE ALSO
XSH Section 2.2 (on page 468), imaxabs(), imaxdiv(), strtoimax(), wcstoimax()

CHANGE HISTORY
First released in Issue 5.

Issue 6
The Open Group Base Resolution bwg97-006 is applied.

This reference page is updated to align with the ISO/IEC 9899: 1999 standard.

262 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

8543

8544

8545

8546

8547

8548

8549

8550

8551

8552

8553

8554

8555

8556

8557

8558

8559

8560

8561

8562

8563

8564

8565

8566

8567

8568

8569

8570

8571

8572

8573

8574

8575

8576

8577

8578

8579

8580

8581

8582

8583

Headers <iso646.h>

NAME
iso646.h — alternative spellings

SYNOPSIS
#include <iso646.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The <iso646.h> header shall define the following eleven macros (on the left) that expand to the
corresponding tokens (on the right):

and &&

and_eq &=

bitand &

bitor |

compl ˜

not !

not_eq !=

or ||

or_eq |=

xor ˆ

xor_eq ˆ=

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
None.

CHANGE HISTORY
First released in Issue 5. Derived from ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 263

8584

8585

8586

8587

8588

8589

8590

8591

8592

8593

8594

8595

8596

8597

8598

8599

8600

8601

8602

8603

8604

8605

8606

8607

8608

8609

8610

8611

8612

8613

8614

<langinfo.h> Headers

NAME
langinfo.h — language information constants

SYNOPSIS
#include <langinfo.h>

DESCRIPTION
The <langinfo.h> header shall define the symbolic constants used to identify items of langinfo
data (see nl_langinfo()).

The <langinfo.h> header shall define the locale_t type as described in <locale.h>.

The <langinfo.h> header shall define the nl_item type as described in <nl/types.h>.

The <langinfo.h> header shall define the following symbolic constants with type nl_item. The
entries under Category indicate in which setlocale() category each item is defined.

Constant Category Meaning

CODESET LC_CTYPE Codeset name.
D_T_FMT LC_TIME String for formatting date and time.
D_FMT LC_TIME Date format string.
T_FMT LC_TIME Time format string.
T_FMT_AMPM LC_TIME a.m. or p.m. time format string.
AM_STR LC_TIME Ante-meridiem affix.
PM_STR LC_TIME Post-meridiem affix.
DAY_1 LC_TIME Name of the first day of the week (for example, Sunday).
DAY_2 LC_TIME Name of the second day of the week (for example, Monday).
DAY_3 LC_TIME Name of the third day of the week (for example, Tuesday).
DAY_4 LC_TIME Name of the fourth day of the week

(for example, Wednesday).
DAY_5 LC_TIME Name of the fifth day of the week (for example, Thursday).
DAY_6 LC_TIME Name of the sixth day of the week (for example, Friday).
DAY_7 LC_TIME Name of the seventh day of the week

(for example, Saturday).
ABDAY_1 LC_TIME Abbreviated name of the first day of the week.
ABDAY_2 LC_TIME Abbreviated name of the second day of the week.
ABDAY_3 LC_TIME Abbreviated name of the third day of the week.
ABDAY_4 LC_TIME Abbreviated name of the fourth day of the week.
ABDAY_5 LC_TIME Abbreviated name of the fifth day of the week.
ABDAY_6 LC_TIME Abbreviated name of the sixth day of the week.
ABDAY_7 LC_TIME Abbreviated name of the seventh day of the week.
MON_1 LC_TIME Name of the first month of the year.
MON_2 LC_TIME Name of the second month.
MON_3 LC_TIME Name of the third month.
MON_4 LC_TIME Name of the fourth month.
MON_5 LC_TIME Name of the fifth month.
MON_6 LC_TIME Name of the sixth month.
MON_7 LC_TIME Name of the seventh month.
MON_8 LC_TIME Name of the eighth month.
MON_9 LC_TIME Name of the ninth month.
MON_10 LC_TIME Name of the tenth month.
MON_11 LC_TIME Name of the eleventh month.
MON_12 LC_TIME Name of the twelfth month.
ABMON_1 LC_TIME Abbreviated name of the first month.

264 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

8615

8616

8617

8618

8619

8620

8621

8622

8623

8624

8625

8626

8627

8628

8629

8630

8631

8632

8633

8634

8635

8636

8637

8638

8639

8640

8641

8642

8643

8644

8645

8646

8647

8648

8649

8650

8651

8652

8653

8654

8655

8656

8657

8658

8659

8660

8661

8662

Headers <langinfo.h>

Constant Category Meaning

ABMON_2 LC_TIME Abbreviated name of the second month.
ABMON_3 LC_TIME Abbreviated name of the third month.
ABMON_4 LC_TIME Abbreviated name of the fourth month.
ABMON_5 LC_TIME Abbreviated name of the fifth month.
ABMON_6 LC_TIME Abbreviated name of the sixth month.
ABMON_7 LC_TIME Abbreviated name of the seventh month.
ABMON_8 LC_TIME Abbreviated name of the eighth month.
ABMON_9 LC_TIME Abbreviated name of the ninth month.
ABMON_10 LC_TIME Abbreviated name of the tenth month.
ABMON_11 LC_TIME Abbreviated name of the eleventh month.
ABMON_12 LC_TIME Abbreviated name of the twelfth month.
ERA LC_TIME Era description segments.
ERA_D_FMT LC_TIME Era date format string.
ERA_D_T_FMT LC_TIME Era date and time format string.
ERA_T_FMT LC_TIME Era time format string.
ALT_DIGITS LC_TIME Alternative symbols for digits.
RADIXCHAR LC_NUMERIC Radix character.
THOUSEP LC_NUMERIC Separator for thousands.
YESEXPR LC_MESSAGES Affirmative response expression.
NOEXPR LC_MESSAGES Negative response expression.
CRNCYSTR LC_MONETARY Local currency symbol, preceded by ’−’ if the symbol

should appear before the value, ’+’ if the symbol should
appear after the value, or ’.’ if the symbol should replace
the radix character. If the local currency symbol is the empty
string, implementations may return the empty string ("").

If the locale’s values for p_cs_precedes and n_cs_precedes do not match, the value of
nl_langinfo(CRNCYSTR) and nl_langinfo_l(CRNCYSTR,loc) is unspecified.

The following shall be declared as a function and may also be defined as a macro. A function
prototype shall be provided.

char *nl_langinfo(nl_item);
char *nl_langinfo_l(nl_item, locale_t);

Inclusion of the <langinfo.h> header may also make visible all symbols from <nl_types.h>.

APPLICATION USAGE
Wherever possible, users are advised to use functions compatible with those in the ISO C
standard to access items of langinfo data. In particular, the strftime() function should be used to
access date and time information defined in category LC_TIME. The localeconv() function
should be used to access information corresponding to RADIXCHAR, THOUSEP, and
CRNCYSTR.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 7 (on page 135), <locale.h>, <nl_types.h>

XSH nl_langinfo(), localeconv(), strfmon(), strftime()

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 265

8663

8664

8665

8666

8667

8668

8669

8670

8671

8672

8673

8674

8675

8676

8677

8678

8679

8680

8681

8682

8683

8684

8685

8686

8687

8688

8689

8690

8691

8692

8693

8694

8695

8696

8697

8698

8699

8700

8701

8702

8703

8704

8705

8706

8707

8708

<langinfo.h> Headers

CHANGE HISTORY
First released in Issue 2.

Issue 5
The constants YESSTR and NOSTR are marked LEGACY.

Issue 6
The constants YESSTR and NOSTR are removed.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/9 is applied, adding a sentence to
the‘‘Meaning’’ column entry for the CRNCYSTR constant. This change is to accommodate
historic practice.

Issue 7
The <langinfo.h> header is moved from the XSI option to the Base.

The nl_langinfo_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants, and a declaration
for the locale_t type is added.

266 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

8709

8710

8711

8712

8713

8714

8715

8716

8717

8718

8719

8720

8721

8722

8723

Headers <libgen.h>

NAME
libgen.h — definitions for pattern matching functions

SYNOPSIS
XSI #include <libgen.h>

DESCRIPTION
The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

char *basename(char *);
char *dirname(char *);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH basename(), dirname()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
The function prototypes for basename() and dirname() are changed to indicate that the first
argument is of type char * rather than const char *.

Issue 6
The _ _loc1 symbol and the regcmp() and regex() functions are removed.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 267

8724

8725

8726

8727

8728

8729

8730

8731

8732

8733

8734

8735

8736

8737

8738

8739

8740

8741

8742

8743

8744

8745

8746

8747

<limits.h> Headers

NAME
limits.h — implementation-defined constants

SYNOPSIS
#include <limits.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 468) to
enable the visibility of these symbols in this header.

Many of the symbols listed here are not defined by the ISO/IEC 9899: 1999 standard. Such
symbols are not shown as CX shaded.

The <limits.h> header shall define macros and symbolic constants for various limits. Different
categories of limits are described below, representing various limits on resources that the
implementation imposes on applications. All macros and symbolic constants defined in this
header shall be suitable for use in #if preprocessing directives.

Implementations may choose any appropriate value for each limit, provided it is not more
restrictive than the Minimum Acceptable Values listed below. Symbolic constant names
beginning with _POSIX may be found in <unistd.h>.

Applications should not assume any particular value for a limit. To achieve maximum
portability, an application should not require more resource than the Minimum Acceptable
Value quantity. However, an application wishing to avail itself of the full amount of a resource
available on an implementation may make use of the value given in <limits.h> on that
particular implementation, by using the macros and symbolic constants listed below. It should
be noted, however, that many of the listed limits are not invariant, and at runtime, the value of
the limit may differ from those given in this header, for the following reasons:

• The limit is pathname-dependent.

• The limit differs between the compile and runtime machines.

For these reasons, an application may use the fpathconf(), pathconf(), and sysconf() functions to
determine the actual value of a limit at runtime.

The items in the list ending in _MIN give the most negative values that the mathematical types
are guaranteed to be capable of representing. Numbers of a more negative value may be
supported on some implementations, as indicated by the <limits.h> header on the
implementation, but applications requiring such numbers are not guaranteed to be portable to
all implementations. For positive constants ending in _MIN, this indicates the minimum
acceptable value.

Runtime Invariant Values (Possibly Indeterminate)

A definition of one of the symbolic constants in the following list shall be omitted from
<limits.h> on specific implementations where the corresponding value is equal to or greater
than the stated minimum, but is unspecified.

This indetermination might depend on the amount of available memory space on a specific
instance of a specific implementation. The actual value supported by a specific instance shall be
provided by the sysconf() function.

{AIO_LISTIO_MAX}
Maximum number of I/O operations in a single list I/O call supported by the
implementation.
Minimum Acceptable Value: {_POSIX_AIO_LISTIO_MAX}

268 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

8748

8749

8750

8751

8752

8753

8754

8755

8756

8757

8758

8759

8760

8761

8762

8763

8764

8765

8766

8767

8768

8769

8770

8771

8772

8773

8774

8775

8776

8777

8778

8779

8780

8781

8782

8783

8784

8785

8786

8787

8788

8789

8790

8791

8792

Headers <limits.h>

{AIO_MAX}
Maximum number of outstanding asynchronous I/O operations supported by the
implementation.
Minimum Acceptable Value: {_POSIX_AIO_MAX}

{AIO_PRIO_DELTA_MAX}
The maximum amount by which a process can decrease its asynchronous I/O priority level
from its own scheduling priority.
Minimum Acceptable Value: 0

{ARG_MAX}
Maximum length of argument to the exec functions including environment data.
Minimum Acceptable Value: {_POSIX_ARG_MAX}

{ATEXIT_MAX}
Maximum number of functions that may be registered with atexit().
Minimum Acceptable Value: 32

{CHILD_MAX}
Maximum number of simultaneous processes per real user ID.
Minimum Acceptable Value: {_POSIX_CHILD_MAX}

{DELAYTIMER_MAX}
Maximum number of timer expiration overruns.
Minimum Acceptable Value: {_POSIX_DELAYTIMER_MAX}

{HOST_NAME_MAX}
Maximum length of a host name (not including the terminating null) as returned from the
gethostname() function.
Minimum Acceptable Value: {_POSIX_HOST_NAME_MAX}

XSI {IOV_MAX}
Maximum number of iovec structures that one process has available for use with readv() or
writev().
Minimum Acceptable Value: {_XOPEN_IOV_MAX}

{LOGIN_NAME_MAX}
Maximum length of a login name.
Minimum Acceptable Value: {_POSIX_LOGIN_NAME_MAX}

MSG {MQ_OPEN_MAX}
The maximum number of open message queue descriptors a process may hold.
Minimum Acceptable Value: {_POSIX_MQ_OPEN_MAX}

MSG {MQ_PRIO_MAX}
The maximum number of message priorities supported by the implementation.
Minimum Acceptable Value: {_POSIX_MQ_PRIO_MAX}

{OPEN_MAX}
A value one greater than the maximum value that the system may assign to a newly-created
file descriptor.
Minimum Acceptable Value: {_POSIX_OPEN_MAX}

{PAGESIZE}
Size in bytes of a page.
Minimum Acceptable Value: 1

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 269

8793

8794

8795

8796

8797

8798

8799

8800

8801

8802

8803

8804

8805

8806

8807

8808

8809

8810

8811

8812

8813

8814

8815

8816

8817

8818

8819

8820

8821

8822

8823

8824

8825

8826

8827

8828

8829

8830

8831

8832

8833

8834

8835

8836

<limits.h> Headers

XSI {PAGE_SIZE}
Equivalent to {PAGESIZE}. If either {PAGESIZE} or {PAGE_SIZE} is defined, the other is
defined with the same value.

{PTHREAD_DESTRUCTOR_ITERATIONS}
Maximum number of attempts made to destroy a thread’s thread-specific data values on
thread exit.
Minimum Acceptable Value: {_POSIX_THREAD_DESTRUCTOR_ITERATIONS}

{PTHREAD_KEYS_MAX}
Maximum number of data keys that can be created by a process.
Minimum Acceptable Value: {_POSIX_THREAD_KEYS_MAX}

{PTHREAD_STACK_MIN}
Minimum size in bytes of thread stack storage.
Minimum Acceptable Value: 0

{PTHREAD_THREADS_MAX}
Maximum number of threads that can be created per process.
Minimum Acceptable Value: {_POSIX_THREAD_THREADS_MAX}

{RE_DUP_MAX}
Maximum number of repeated occurrences of a BRE or ERE interval expression; see Section
9.3.6 (on page 186) and Section 9.4.6 (on page 189).
Minimum Acceptable Value: {_POSIX2_RE_DUP_MAX}

{RTSIG_MAX}
Maximum number of realtime signals reserved for application use in this implementation.
Minimum Acceptable Value: {_POSIX_RTSIG_MAX}

{SEM_NSEMS_MAX}
Maximum number of semaphores that a process may have.
Minimum Acceptable Value: {_POSIX_SEM_NSEMS_MAX}

{SEM_VALUE_MAX}
The maximum value a semaphore may have.
Minimum Acceptable Value: {_POSIX_SEM_VALUE_MAX}

{SIGQUEUE_MAX}
Maximum number of queued signals that a process may send and have pending at the
receiver(s) at any time.
Minimum Acceptable Value: {_POSIX_SIGQUEUE_MAX}

SS|TSP {SS_REPL_MAX}
The maximum number of replenishment operations that may be simultaneously pending
for a particular sporadic server scheduler.
Minimum Acceptable Value: {_POSIX_SS_REPL_MAX}

{STREAM_MAX}
Maximum number of streams that one process can have open at one time. If defined, it has
the same value as {FOPEN_MAX} (see <stdio.h>).
Minimum Acceptable Value: {_POSIX_STREAM_MAX}

{SYMLOOP_MAX}
Maximum number of symbolic links that can be reliably traversed in the resolution of a
pathname in the absence of a loop.
Minimum Acceptable Value: {_POSIX_SYMLOOP_MAX}

270 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

8837

8838

8839

8840

8841

8842

8843

8844

8845

8846

8847

8848

8849

8850

8851

8852

8853

8854

8855

8856

8857

8858

8859

8860

8861

8862

8863

8864

8865

8866

8867

8868

8869

8870

8871

8872

8873

8874

8875

8876

8877

8878

8879

8880

8881

Headers <limits.h>

{TIMER_MAX}
Maximum number of timers per process supported by the implementation.
Minimum Acceptable Value: {_POSIX_TIMER_MAX}

OB TRC {TRACE_EVENT_NAME_MAX}
Maximum length of the trace event name (not including the terminating null).
Minimum Acceptable Value: {_POSIX_TRACE_EVENT_NAME_MAX}

OB TRC {TRACE_NAME_MAX}
Maximum length of the trace generation version string or of the trace stream name (not
including the terminating null).
Minimum Acceptable Value: {_POSIX_TRACE_NAME_MAX}

OB TRC {TRACE_SYS_MAX}
Maximum number of trace streams that may simultaneously exist in the system.
Minimum Acceptable Value: {_POSIX_TRACE_SYS_MAX}

OB TRC {TRACE_USER_EVENT_MAX}
Maximum number of user trace event type identifiers that may simultaneously exist in a
traced process, including the predefined user trace event
POSIX_TRACE_UNNAMED_USER_EVENT.
Minimum Acceptable Value: {_POSIX_TRACE_USER_EVENT_MAX}

{TTY_NAME_MAX}
Maximum length of terminal device name.
Minimum Acceptable Value: {_POSIX_TTY_NAME_MAX}

{TZNAME_MAX}
Maximum number of bytes supported for the name of a timezone (not of the TZ variable).
Minimum Acceptable Value: {_POSIX_TZNAME_MAX}

Note: The length given by {TZNAME_MAX} does not include the quoting characters mentioned in
Section 8.3 (on page 177).

Pathname Variable Values

The values in the following list may be constants within an implementation or may vary from
one pathname to another. For example, file systems or directories may have different
characteristics.

A definition of one of the symbolic constants in the following list shall be omitted from the
<limits.h> header on specific implementations where the corresponding value is equal to or
greater than the stated minimum, but where the value can vary depending on the file to which it
is applied. The actual value supported for a specific pathname shall be provided by the
pathconf() function.

{FILESIZEBITS}
Minimum number of bits needed to represent, as a signed integer value, the maximum size
of a regular file allowed in the specified directory.
Minimum Acceptable Value: 32

{LINK_MAX}
Maximum number of links to a single file.
Minimum Acceptable Value: {_POSIX_LINK_MAX}

{MAX_CANON}
Maximum number of bytes in a terminal canonical input line.
Minimum Acceptable Value: {_POSIX_MAX_CANON}

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 271

8882

8883

8884

8885

8886

8887

8888

8889

8890

8891

8892

8893

8894

8895

8896

8897

8898

8899

8900

8901

8902

8903

8904

8905

8906

8907

8908

8909

8910

8911

8912

8913

8914

8915

8916

8917

8918

8919

8920

8921

8922

8923

8924

8925

8926

<limits.h> Headers

{MAX_INPUT}
Minimum number of bytes for which space is available in a terminal input queue; therefore,
the maximum number of bytes a conforming application may require to be typed as input
before reading them.
Minimum Acceptable Value: {_POSIX_MAX_INPUT}

{NAME_MAX}
Maximum number of bytes in a filename (not including the terminating null).
Minimum Acceptable Value: {_POSIX_NAME_MAX}

XSI Minimum Acceptable Value: {_XOPEN_NAME_MAX}

{PATH_MAX}
Maximum number of bytes the implementation will store as a pathname in a user-supplied
buffer of unspecified size, including the terminating null character. Minimum number the
implementation will accept as the maximum number of bytes in a pathname.
Minimum Acceptable Value: {_POSIX_PATH_MAX}

XSI Minimum Acceptable Value: {_XOPEN_PATH_MAX}

{PIPE_BUF}
Maximum number of bytes that is guaranteed to be atomic when writing to a pipe.
Minimum Acceptable Value: {_POSIX_PIPE_BUF}

ADV {POSIX_ALLOC_SIZE_MIN}
Minimum number of bytes of storage actually allocated for any portion of a file.
Minimum Acceptable Value: Not specified.

ADV {POSIX_REC_INCR_XFER_SIZE}
Recommended increment for file transfer sizes between the
{POSIX_REC_MIN_XFER_SIZE} and {POSIX_REC_MAX_XFER_SIZE} values.
Minimum Acceptable Value: Not specified.

ADV {POSIX_REC_MAX_XFER_SIZE}
Maximum recommended file transfer size.
Minimum Acceptable Value: Not specified.

ADV {POSIX_REC_MIN_XFER_SIZE}
Minimum recommended file transfer size.
Minimum Acceptable Value: Not specified.

ADV {POSIX_REC_XFER_ALIGN}
Recommended file transfer buffer alignment.
Minimum Acceptable Value: Not specified.

{SYMLINK_MAX}
Maximum number of bytes in a symbolic link.
Minimum Acceptable Value: {_POSIX_SYMLINK_MAX}

Runtime Increasable Values

The magnitude limitations in the following list shall be fixed by specific implementations. An
application should assume that the value of the symbolic constant defined by <limits.h> in a
specific implementation is the minimum that pertains whenever the application is run under
that implementation. A specific instance of a specific implementation may increase the value
relative to that supplied by <limits.h> for that implementation. The actual value supported by a
specific instance shall be provided by the sysconf() function.

272 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

8927

8928

8929

8930

8931

8932

8933

8934

8935

8936

8937

8938

8939

8940

8941

8942

8943

8944

8945

8946

8947

8948

8949

8950

8951

8952

8953

8954

8955

8956

8957

8958

8959

8960

8961

8962

8963

8964

8965

8966

8967

8968

8969

8970

Headers <limits.h>

{BC_BASE_MAX}
Maximum obase values allowed by the bc utility.
Minimum Acceptable Value: {_POSIX2_BC_BASE_MAX}

{BC_DIM_MAX}
Maximum number of elements permitted in an array by the bc utility.
Minimum Acceptable Value: {_POSIX2_BC_DIM_MAX}

{BC_SCALE_MAX}
Maximum scale value allowed by the bc utility.
Minimum Acceptable Value: {_POSIX2_BC_SCALE_MAX}

{BC_STRING_MAX}
Maximum length of a string constant accepted by the bc utility.
Minimum Acceptable Value: {_POSIX2_BC_STRING_MAX}

{CHARCLASS_NAME_MAX}
Maximum number of bytes in a character class name.
Minimum Acceptable Value: {_POSIX2_CHARCLASS_NAME_MAX}

{COLL_WEIGHTS_MAX}
Maximum number of weights that can be assigned to an entry of the LC_COLLATE order
keyword in the locale definition file; see Chapter 7 (on page 135).
Minimum Acceptable Value: {_POSIX2_COLL_WEIGHTS_MAX}

{EXPR_NEST_MAX}
Maximum number of expressions that can be nested within parentheses by the expr utility.
Minimum Acceptable Value: {_POSIX2_EXPR_NEST_MAX}

{LINE_MAX}
Unless otherwise noted, the maximum length, in bytes, of a utility’s input line (either
standard input or another file), when the utility is described as processing text files. The
length includes room for the trailing <newline>.
Minimum Acceptable Value: {_POSIX2_LINE_MAX}

{NGROUPS_MAX}
Maximum number of simultaneous supplementary group IDs per process.
Minimum Acceptable Value: {_POSIX_NGROUPS_MAX}

{RE_DUP_MAX}
Maximum number of repeated occurrences of a regular expression permitted when using
the interval notation \{m,n\}; see Chapter 9 (on page 181).
Minimum Acceptable Value: {_POSIX2_RE_DUP_MAX}

Maximum Values

The <limits.h> header shall define the following symbolic constants with the values shown.
These are the most restrictive values for certain features on an implementation. A conforming
implementation shall provide values no larger than these values. A conforming application must
not require a smaller value for correct operation.

{_POSIX_CLOCKRES_MIN}
The resolution of the CLOCK_REALTIME clock, in nanoseconds.
Value: 20 000 000

MON If the Monotonic Clock option is supported, the resolution of the CLOCK_MONOTONIC
clock, in nanoseconds, is represented by {_POSIX_CLOCKRES_MIN}.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 273

8971

8972

8973

8974

8975

8976

8977

8978

8979

8980

8981

8982

8983

8984

8985

8986

8987

8988

8989

8990

8991

8992

8993

8994

8995

8996

8997

8998

8999

9000

9001

9002

9003

9004

9005

9006

9007

9008

9009

9010

9011

9012

9013

9014

<limits.h> Headers

Minimum Values

The <limits.h> header shall define the following symbolic constants with the values shown.
These are the most restrictive values for certain features on an implementation conforming to
this volume of POSIX.1-2008. Related symbolic constants are defined elsewhere in this volume
of POSIX.1-2008 which reflect the actual implementation and which need not be as restrictive. A
conforming implementation shall provide values at least this large. A strictly conforming
application must not require a larger value for correct operation.

{_POSIX_AIO_LISTIO_MAX}
The number of I/O operations that can be specified in a list I/O call.
Value: 2

{_POSIX_AIO_MAX}
The number of outstanding asynchronous I/O operations.
Value: 1

{_POSIX_ARG_MAX}
Maximum length of argument to the exec functions including environment data.
Value: 4 096

{_POSIX_CHILD_MAX}
Maximum number of simultaneous processes per real user ID.
Value: 25

{_POSIX_DELAYTIMER_MAX}
The number of timer expiration overruns.
Value: 32

{_POSIX_HOST_NAME_MAX}
Maximum length of a host name (not including the terminating null) as returned from the
gethostname() function.
Value: 255

{_POSIX_LINK_MAX}
Maximum number of links to a single file.
Value: 8

{_POSIX_LOGIN_NAME_MAX}
The size of the storage required for a login name, in bytes (including the terminating null).
Value: 9

{_POSIX_MAX_CANON}
Maximum number of bytes in a terminal canonical input queue.
Value: 255

{_POSIX_MAX_INPUT}
Maximum number of bytes allowed in a terminal input queue.
Value: 255

MSG {_POSIX_MQ_OPEN_MAX}
The number of message queues that can be open for a single process.
Value: 8

MSG {_POSIX_MQ_PRIO_MAX}
The maximum number of message priorities supported by the implementation.
Value: 32

274 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

9015

9016

9017

9018

9019

9020

9021

9022

9023

9024

9025

9026

9027

9028

9029

9030

9031

9032

9033

9034

9035

9036

9037

9038

9039

9040

9041

9042

9043

9044

9045

9046

9047

9048

9049

9050

9051

9052

9053

9054

9055

9056

9057

9058

Headers <limits.h>

{_POSIX_NAME_MAX}
Maximum number of bytes in a filename (not including the terminating null).
Value: 14

{_POSIX_NGROUPS_MAX}
Maximum number of simultaneous supplementary group IDs per process.
Value: 8

{_POSIX_OPEN_MAX}
Maximum number of files that one process can have open at any one time.
Value: 20

{_POSIX_PATH_MAX}
Minimum number the implementation will accept as the maximum number of bytes in a
pathname.
Value: 256

{_POSIX_PIPE_BUF}
Maximum number of bytes that is guaranteed to be atomic when writing to a pipe.
Value: 512

{_POSIX_RE_DUP_MAX}
The number of repeated occurrences of a BRE permitted by the regexec() and regcomp()
functions when using the interval notation {\(m,n\}; see Section 9.3.6 (on page 186).
Value: 255

{_POSIX_RTSIG_MAX}
The number of realtime signal numbers reserved for application use.
Value: 8

{_POSIX_SEM_NSEMS_MAX}
The number of semaphores that a process may have.
Value: 256

{_POSIX_SEM_VALUE_MAX}
The maximum value a semaphore may have.
Value: 32 767

{_POSIX_SIGQUEUE_MAX}
The number of queued signals that a process may send and have pending at the receiver(s)
at any time.
Value: 32

{_POSIX_SSIZE_MAX}
The value that can be stored in an object of type ssize_t.
Value: 32 767

SS|TSP {_POSIX_SS_REPL_MAX}
The number of replenishment operations that may be simultaneously pending for a
particular sporadic server scheduler.
Value: 4

{_POSIX_STREAM_MAX}
The number of streams that one process can have open at one time.
Value: 8

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 275

9059

9060

9061

9062

9063

9064

9065

9066

9067

9068

9069

9070

9071

9072

9073

9074

9075

9076

9077

9078

9079

9080

9081

9082

9083

9084

9085

9086

9087

9088

9089

9090

9091

9092

9093

9094

9095

9096

9097

9098

9099

9100

9101

<limits.h> Headers

{_POSIX_SYMLINK_MAX}
The number of bytes in a symbolic link.
Value: 255

{_POSIX_SYMLOOP_MAX}
The number of symbolic links that can be traversed in the resolution of a pathname in the
absence of a loop.
Value: 8

{_POSIX_THREAD_DESTRUCTOR_ITERATIONS}
The number of attempts made to destroy a thread’s thread-specific data values on thread
exit.
Value: 4

{_POSIX_THREAD_KEYS_MAX}
The number of data keys per process.
Value: 128

{_POSIX_THREAD_THREADS_MAX}
The number of threads per process.
Value: 64

{_POSIX_TIMER_MAX}
The per-process number of timers.
Value: 32

OB TRC {_POSIX_TRACE_EVENT_NAME_MAX}
The length in bytes of a trace event name (not including the terminating null).
Value: 30

OB TRC {_POSIX_TRACE_NAME_MAX}
The length in bytes of a trace generation version string or a trace stream name (not
including the terminating null).
Value: 8

OB TRC {_POSIX_TRACE_SYS_MAX}
The number of trace streams that may simultaneously exist in the system.
Value: 8

OB TRC {_POSIX_TRACE_USER_EVENT_MAX}
The number of user trace event type identifiers that may simultaneously exist in a traced
process, including the predefined user trace event
POSIX_TRACE_UNNAMED_USER_EVENT.
Value: 32

{_POSIX_TTY_NAME_MAX}
The size of the storage required for a terminal device name, in bytes (including the
terminating null).
Value: 9

{_POSIX_TZNAME_MAX}
Maximum number of bytes supported for the name of a timezone (not of the TZ variable).
Value: 6

Note: The length given by {_POSIX_TZNAME_MAX} does not include the quoting characters
mentioned in Section 8.3 (on page 177).

276 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

9102

9103

9104

9105

9106

9107

9108

9109

9110

9111

9112

9113

9114

9115

9116

9117

9118

9119

9120

9121

9122

9123

9124

9125

9126

9127

9128

9129

9130

9131

9132

9133

9134

9135

9136

9137

9138

9139

9140

9141

9142

9143

9144

9145

Headers <limits.h>

{_POSIX2_BC_BASE_MAX}
Maximum obase values allowed by the bc utility.
Value: 99

{_POSIX2_BC_DIM_MAX}
Maximum number of elements permitted in an array by the bc utility.
Value: 2 048

{_POSIX2_BC_SCALE_MAX}
Maximum scale value allowed by the bc utility.
Value: 99

{_POSIX2_BC_STRING_MAX}
Maximum length of a string constant accepted by the bc utility.
Value: 1 000

{_POSIX2_CHARCLASS_NAME_MAX}
Maximum number of bytes in a character class name.
Value: 14

{_POSIX2_COLL_WEIGHTS_MAX}
Maximum number of weights that can be assigned to an entry of the LC_COLLATE order
keyword in the locale definition file; see Chapter 7 (on page 135).
Value: 2

{_POSIX2_EXPR_NEST_MAX}
Maximum number of expressions that can be nested within parentheses by the expr utility.
Value: 32

{_POSIX2_LINE_MAX}
Unless otherwise noted, the maximum length, in bytes, of a utility’s input line (either
standard input or another file), when the utility is described as processing text files. The
length includes room for the trailing <newline>.
Value: 2 048

{_POSIX2_RE_DUP_MAX]
Maximum number of repeated occurrences of a regular expression permitted when using
the interval notation \{m,n\}; see Chapter 9 (on page 181).
Value: 255

XSI {_XOPEN_IOV_MAX}
Maximum number of iovec structures that one process has available for use with readv() or
writev().
Value: 16

XSI {_XOPEN_NAME_MAX}
Maximum number of bytes in a filename (not including the terminating null).
Value: 255

XSI {_XOPEN_PATH_MAX}
Minimum number the implementation will accept as the maximum number of bytes in a
pathname.
Value: 1 024

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 277

9146

9147

9148

9149

9150

9151

9152

9153

9154

9155

9156

9157

9158

9159

9160

9161

9162

9163

9164

9165

9166

9167

9168

9169

9170

9171

9172

9173

9174

9175

9176

9177

9178

9179

9180

9181

9182

9183

9184

9185

9186

9187

<limits.h> Headers

Numerical Limits

The <limits.h> header shall define the following macros and, except for {CHAR_BIT},
{LONG_BIT}, {MB_LEN_MAX}, and {WORD_BIT}, they shall be replaced by expressions that
have the same type as would an expression that is an object of the corresponding type converted
according to the integer promotions.

If the value of an object of type char is treated as a signed integer when used in an expression,
the value of {CHAR_MIN} is the same as that of {SCHAR_MIN} and the value of {CHAR_MAX}
is the same as that of {SCHAR_MAX}. Otherwise, the value of {CHAR_MIN} is 0 and the value
of {CHAR_MAX} is the same as that of {UCHAR_MAX}.

{CHAR_BIT}
Number of bits in a type char.

CX Value: 8

{CHAR_MAX}
Maximum value for an object of type char.
Value: {UCHAR_MAX} or {SCHAR_MAX}

{CHAR_MIN}
Minimum value for an object of type char.
Value: {SCHAR_MIN} or 0

{INT_MAX}
Maximum value for an object of type int.

CX Minimum Acceptable Value: 2 147 483 647

{INT_MIN}
Minimum value for an object of type int.

CX Maximum Acceptable Value: −2 147 483 647

{LLONG_MAX}
Maximum value for an object of type long long.
Minimum Acceptable Value: +9 223 372 036 854 775 807

{LLONG_MIN}
Minimum value for an object of type long long.
Maximum Acceptable Value: −9 223 372 036 854 775 807

{LONG_BIT}
Number of bits in an object of type long.
Minimum Acceptable Value: 32

{LONG_MAX}
Maximum value for an object of type long.
Minimum Acceptable Value: +2 147 483 647

{LONG_MIN}
Minimum value for an object of type long.
Maximum Acceptable Value: −2 147 483 647

{MB_LEN_MAX}
Maximum number of bytes in a character, for any supported locale.
Minimum Acceptable Value: 1

{SCHAR_MAX}
Maximum value for an object of type signed char.

278 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

9188

9189

9190

9191

9192

9193

9194

9195

9196

9197

9198

9199

9200

9201

9202

9203

9204

9205

9206

9207

9208

9209

9210

9211

9212

9213

9214

9215

9216

9217

9218

9219

9220

9221

9222

9223

9224

9225

9226

9227

9228

9229

9230

9231

Headers <limits.h>

CX Value: +127

{SCHAR_MIN}
Minimum value for an object of type signed char.

CX Value: −128

{SHRT_MAX}
Maximum value for an object of type short.
Minimum Acceptable Value: +32 767

{SHRT_MIN}
Minimum value for an object of type short.
Maximum Acceptable Value: −32 767

{SSIZE_MAX}
Maximum value for an object of type ssize_t.
Minimum Acceptable Value: {_POSIX_SSIZE_MAX}

{UCHAR_MAX}
Maximum value for an object of type unsigned char.

CX Value: 255

{UINT_MAX}
Maximum value for an object of type unsigned.

CX Minimum Acceptable Value: 4 294 967 295

{ULLONG_MAX}
Maximum value for an object of type unsigned long long.
Minimum Acceptable Value: 18 446 744 073 709 551 615

{ULONG_MAX}
Maximum value for an object of type unsigned long.
Minimum Acceptable Value: 4 294 967 295

{USHRT_MAX}
Maximum value for an object of type unsigned short.
Minimum Acceptable Value: 65 535

{WORD_BIT}
Number of bits in an object of type int.
Minimum Acceptable Value: 32

Other Invariant Values

The <limits.h> header shall define the following symbolic constants:

{NL_ARGMAX}
Maximum value of n in conversion specifications using the "%n$" sequence in calls to the
printf() and scanf() families of functions.
Minimum Acceptable Value: 9

XSI {NL_LANGMAX}
Maximum number of bytes in a LANG name.
Minimum Acceptable Value: 14

{NL_MSGMAX}
Maximum message number.
Minimum Acceptable Value: 32 767

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 279

9232

9233

9234

9235

9236

9237

9238

9239

9240

9241

9242

9243

9244

9245

9246

9247

9248

9249

9250

9251

9252

9253

9254

9255

9256

9257

9258

9259

9260

9261

9262

9263

9264

9265

9266

9267

9268

9269

9270

9271

9272

9273

9274

<limits.h> Headers

{NL_SETMAX}
Maximum set number.
Minimum Acceptable Value: 255

{NL_TEXTMAX}
Maximum number of bytes in a message string.
Minimum Acceptable Value: {_POSIX2_LINE_MAX}

XSI {NZERO}
Default process priority.
Minimum Acceptable Value: 20

APPLICATION USAGE
None.

RATIONALE
A request was made to reduce the value of {_POSIX_LINK_MAX} from the value of 8 specified
for it in the POSIX.1-1990 standard to 2. The standard developers decided to deny this request
for several reasons:

• They wanted to avoid making any changes to the standard that could break conforming
applications, and the requested change could have that effect.

• The use of multiple hard links to a file cannot always be replaced with use of symbolic
links. Symbolic links are semantically different from hard links in that they associate a
pathname with another pathname rather than a pathname with a file. This has
implications for access control, file permanence, and transparency.

• The original standard developers had considered the issue of allowing for
implementations that did not in general support hard links, and decided that this would
reduce consensus on the standard.

Systems that support historical versions of the development option of the ISO POSIX-2 standard
retain the name {_POSIX2_RE_DUP_MAX} as an alias for {_POSIX_RE_DUP_MAX}.

{PATH_MAX}
IEEE PASC Interpretation 1003.1 #15 addressed the inconsistency in the standard with the
definition of pathname and the description of {PATH_MAX}, allowing application
developers to allocate either {PATH_MAX} or {PATH_MAX}+1 bytes. The inconsistency has
been removed by correction to the {PATH_MAX} definition to include the null character.
With this change, applications that previously allocated {PATH_MAX} bytes will continue to
succeed.

{SYMLINK_MAX}
This symbol refers to space for data that is stored in the file system, as opposed to
{PATH_MAX} which is the length of a name that can be passed to a function. In some
existing implementations, the filenames pointed to by symbolic links are stored in the inodes
of the links, so it is important that {SYMLINK_MAX} not be constrained to be as large as
{PATH_MAX}.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 7 (on page 135), <stdio.h>, <unistd.h>

XSH Section 2.2 (on page 468), fpathconf(), sysconf()

280 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

9275

9276

9277

9278

9279

9280

9281

9282

9283

9284

9285

9286

9287

9288

9289

9290

9291

9292

9293

9294

9295

9296

9297

9298

9299

9300

9301

9302

9303

9304

9305

9306

9307

9308

9309

9310

9311

9312

9313

9314

9315

9316

9317

9318

Headers <limits.h>

CHANGE HISTORY
First released in Issue 1.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

{FILESIZEBITS} is added for the Large File Summit extensions.

The minimum acceptable values for {INT_MAX}, {INT_MIN}, and {UINT_MAX} are changed to
make 32-bit values the minimum requirement.

The entry is restructured to improve readability.

Issue 6
The Open Group Corrigendum U033/4 is applied. The wording is made clear for {CHAR_MIN},
{INT_MIN}, {LONG_MIN}, {SCHAR_MIN}, and {SHRT_MIN} that these are maximum
acceptable values.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The minimum value for {CHILD_MAX} is 25. This is a FIPS requirement.

• The minimum value for {OPEN_MAX} is 20. This is a FIPS requirement.

• The minimum value for {NGROUPS_MAX} is 8. This is also a FIPS requirement.

Symbolic constants are added for {_POSIX_SYMLINK_MAX}, {_POSIX_SYMLOOP_MAX},
{_POSIX_RE_DUP_MAX}, {RE_DUP_MAX}, {SYMLOOP_MAX}, and {SYMLINK_MAX}.

The following values are added for alignment with IEEE Std 1003.1d-1999:

{_POSIX_SS_REPL_MAX}
{SS_REPL_MAX}
{POSIX_ALLOC_SIZE_MIN}
{POSIX_REC_INCR_XFER_SIZE}
{POSIX_REC_MAX_XFER_SIZE}
{POSIX_REC_MIN_XFER_SIZE}
{POSIX_REC_XFER_ALIGN}

Reference to CLOCK_MONOTONIC is added in the description of {_POSIX_CLOCKRES_MIN}
for alignment with IEEE Std 1003.1j-2000.

The constants {LLONG_MIN}, {LLONG_MAX}, and {ULLONG_MAX} are added for alignment
with the ISO/IEC 9899: 1999 standard.

The following values are added for alignment with IEEE Std 1003.1q-2000:

{_POSIX_TRACE_EVENT_NAME_MAX}
{_POSIX_TRACE_NAME_MAX}
{_POSIX_TRACE_SYS_MAX}
{_POSIX_TRACE_USER_EVENT_MAX}
{TRACE_EVENT_NAME_MAX}
{TRACE_NAME_MAX}
{TRACE_SYS_MAX}
{TRACE_USER_EVENT_MAX}

The new limits {_XOPEN_NAME_MAX} and {_XOPEN_PATH_MAX} are added as minimum

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 281

9319

9320

9321

9322

9323

9324

9325

9326

9327

9328

9329

9330

9331

9332

9333

9334

9335

9336

9337

9338

9339

9340

9341

9342

9343

9344

9345

9346

9347

9348

9349

9350

9351

9352

9353

9354

9355

9356

9357

9358

9359

9360

<limits.h> Headers

values for {PATH_MAX} and {NAME_MAX} limits on XSI-conformant systems.

The LEGACY symbols {PASS_MAX} and {TMP_MAX} are removed.

The values for the limits {CHAR_BIT}, {SCHAR_MAX}, and {UCHAR_MAX} are now required
to be 8, +127, and 255, respectively.

The value for the limit {CHAR_MAX} is now {UCHAR_MAX} or {SCHAR_MAX}.

The value for the limit {CHAR_MIN} is now {SCHAR_MIN} or zero.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/10 is applied, correcting the value of
{_POSIX_CHILD_MAX} from 6 to 25. This is for FIPS 151-2 alignment.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/19 is applied, updating the values for
{INT_MAX}, {UINT_MAX}, and {INT_MIN} to be CX extensions over the ISO C standard, and
correcting {WORD_BIT} from 16 to 32.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/20 is applied, removing
{CHARCLASS_NAME_MAX} from the ‘‘Other Invariant Values’’ section (it also occurs under
‘‘Runtime Increasable Values’’).

Issue 7
Austin Group Interpretations 1003.1-2001 #143 and #160 are applied.

Austin Group Interpretation 1003.1-2001 #173 is applied, updating the descriptions of
{TRACE_EVENT_NAME_MAX} and {TRACE_NAME_MAX} to not include the terminating
null.

SD5-XBD-ERN-36 is applied, changing the description of {RE_DUP_MAX}.

SD5-XBD-ERN-90 is applied.

{NL_NMAX} is removed; it should have been removed in Issue 6.

The Trace option values are marked obsolescent.

The {ATEXIT_MAX}, {LONG_BIT}, {NL_MSGMAX}, {NL_SETMAX}, {NL_TEXTMAX}, and
{WORD_BIT} values are moved from the XSI option to the Base.

The AIO_* and _POSIX_AIO_* values are moved from the Asynchronous Input and Output
option to the Base.

The {_POSIX_RTSIG_MAX}, {_POSIX_SIGQUEUE_MAX}, {RTSIG_MAX}, and
{SIGQUEUE_MAX} values are moved from the Realtime Signals Extension option to the Base.

Functionality relating to the Threads and Timers options is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants.

282 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

9361

9362

9363

9364

9365

9366

9367

9368

9369

9370

9371

9372

9373

9374

9375

9376

9377

9378

9379

9380

9381

9382

9383

9384

9385

9386

9387

9388

9389

9390

9391

Headers <locale.h>

NAME
locale.h — category macros

SYNOPSIS
#include <locale.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 468) to
enable the visibility of these symbols in this header.

The <locale.h> header shall define the lconv structure, which shall include at least the following
members. (See the definitions of LC_MONETARY in Section 7.3.3 (on page 154) and Section 7.3.4
(on page 157).)

char *currency_symbol
char *decimal_point
char frac_digits
char *grouping
char *int_curr_symbol
char int_frac_digits
char int_n_cs_precedes
char int_n_sep_by_space
char int_n_sign_posn
char int_p_cs_precedes
char int_p_sep_by_space
char int_p_sign_posn
char *mon_decimal_point
char *mon_grouping
char *mon_thousands_sep
char *negative_sign
char n_cs_precedes
char n_sep_by_space
char n_sign_posn
char *positive_sign
char p_cs_precedes
char p_sep_by_space
char p_sign_posn
char *thousands_sep

The <locale.h> header shall define NULL (as described in <stddef.h>) and at least the following
as macros:

LC_ALL
LC_COLLATE
LC_CTYPE

CX LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME

which shall expand to integer constant expressions with distinct values for use as the first
argument to the setlocale() function.

Implementations may add additional masks using the form LC_* and an uppercase letter.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 283

9392

9393

9394

9395

9396

9397

9398

9399

9400

9401

9402

9403

9404

9405

9406

9407

9408

9409

9410

9411

9412

9413

9414

9415

9416

9417

9418

9419

9420

9421

9422

9423

9424

9425

9426

9427

9428

9429

9430

9431

9432

9433

9434

9435

9436

9437

9438

<locale.h> Headers

CX The <locale.h> header shall contain at least the following macros representing bitmasks for use
with the newlocale() function for each supported locale category:

LC_COLLATE_MASK
LC_CTYPE_MASK
LC_MESSAGES_MASK
LC_MONETARY_MASK
LC_NUMERIC_MASK
LC_TIME_MASK

Implementations may add additional masks using the form LC_*_MASK.

In addition, a macro to set the bits for all categories set shall be defined:

LC_ALL_MASK

The <locale.h> header shall define LC_GLOBAL_LOCALE, a special locale object descriptor
used by the uselocale() function.

The <locale.h> header shall define the locale_t type, representing a locale object.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

CX locale_t duplocale(locale_t);
void freelocale(locale_t);
struct lconv *localeconv(void);

CX locale_t newlocale(int, const char *, locale_t);
char *setlocale(int, const char *);

CX locale_t uselocale (locale_t);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 8 (on page 173), <stddef.h>

XSH duplocale(), freelocale(), localeconv(), newlocale(), setlocale(), uselocale()

CHANGE HISTORY
First released in Issue 3.

Included for alignment with the ISO C standard.

Issue 6
The lconv structure is expanded with new members (int_n_cs_precedes, int_n_sep_by_space,
int_n_sign_posn, int_p_cs_precedes, int_p_sep_by_space, and int_p_sign_posn) for alignment
with the ISO/IEC 9899: 1999 standard.

Extensions beyond the ISO C standard are marked.

284 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

9439

9440

9441

9442

9443

9444

9445

9446

9447

9448

9449

9450

9451

9452

9453

9454

9455

9456

9457

9458

9459

9460

9461

9462

9463

9464

9465

9466

9467

9468

9469

9470

9471

9472

9473

9474

9475

9476

9477

Headers <locale.h>

Issue 7
The duplocale(), freelocale(), newlocale(), and uselocale() functions are added from The Open
Group Technical Standard, 2006, Extended API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 285

9478

9479

9480

9481

<math.h> Headers

NAME
math.h — mathematical declarations

SYNOPSIS
#include <math.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 468) to
enable the visibility of these symbols in this header.

The <math.h> header shall define at least the following types:

float_t A real-floating type at least as wide as float.

double_t A real-floating type at least as wide as double, and at least as wide as float_t.

If FLT_EVAL_METHOD equals 0, float_t and double_t shall be float and double, respectively; if
FLT_EVAL_METHOD equals 1, they shall both be double; if FLT_EVAL_METHOD equals 2,
they shall both be long double; for other values of FLT_EVAL_METHOD, they are otherwise
implementation-defined.

The <math.h> header shall define the following macros, where real-floating indicates that the
argument shall be an expression of real-floating type:

int fpclassify(real-floating x);
int isfinite(real-floating x);
int isgreater(real-floating x, real-floating y);
int isgreaterequal(real-floating x, real-floating y);
int isinf(real-floating x);
int isless(real-floating x, real-floating y);
int islessequal(real-floating x, real-floating y);
int islessgreater(real-floating x, real-floating y);
int isnan(real-floating x);
int isnormal(real-floating x);
int isunordered(real-floating x, real-floating y);
int signbit(real-floating x);

The <math.h> header shall define the following symbolic constants. The values shall have type
double and shall be accurate within the precision of the double type.

XSI M_E Value of e

XSI M_LOG2E Value of log2 e

XSI M_LOG10E Value of log10 e

XSI M_LN2 Value of loge 2

XSI M_LN10 Value of loge 10

XSI M_PI Value of π

XSI M_PI_2 Value of π /2

XSI M_PI_4 Value of π /4

XSI M_1_PI Value of 1/π

XSI M_2_PI Value of 2/π

286 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

9482

9483

9484

9485

9486

9487

9488

9489

9490

9491

9492

9493

9494

9495

9496

9497

9498

9499

9500

9501

9502

9503

9504

9505

9506

9507

9508

9509

9510

9511

9512

9513

9514

9515

9516

9517

9518

9519

9520

9521

9522

Headers <math.h>

XSI M_2_SQRTPI Value of 2/√ π

XSI M_SQRT2 Value of √2

XSI M_SQRT1_2 Value of 1/√2

The <math.h> header shall define the following symbolic constant:

OB XSI MAXFLOAT Same value as FLT_MAX in <float.h>.

The <math.h> header shall define the following macros:

HUGE_VAL A positive double constant expression, not necessarily representable as a
float. Used as an error value returned by the mathematics library.
HUGE_VAL evaluates to +infinity on systems supporting IEEE Std 754-1985.

HUGE_VALF A positive float constant expression. Used as an error value returned by the
mathematics library. HUGE_VALF evaluates to +infinity on systems
supporting IEEE Std 754-1985.

HUGE_VALL A positive long double constant expression. Used as an error value returned
by the mathematics library. HUGE_VALL evaluates to +infinity on systems
supporting IEEE Std 754-1985.

INFINITY A constant expression of type float representing positive or unsigned infinity,
if available; else a positive constant of type float that overflows at translation
time.

NAN A constant expression of type float representing a quiet NaN. This macro is
only defined if the implementation supports quiet NaNs for the float type.

The following macros shall be defined for number classification. They represent the mutually-
exclusive kinds of floating-point values. They expand to integer constant expressions with
distinct values. Additional implementation-defined floating-point classifications, with macro
definitions beginning with FP_ and an uppercase letter, may also be specified by the
implementation.

FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

The following optional macros indicate whether the fma() family of functions are fast compared
with direct code:

FP_FAST_FMA
FP_FAST_FMAF
FP_FAST_FMAL

If defined, the FP_FAST_FMA macro shall expand to the integer constant 1 and shall indicate
that the fma() function generally executes about as fast as, or faster than, a multiply and an add
of double operands. If undefined, the speed of execution is unspecified. The other macros have
the equivalent meaning for the float and long double versions.

The following macros shall expand to integer constant expressions whose values are returned by
ilogb(x) if x is zero or NaN, respectively. The value of FP_ILOGB0 shall be either {INT_MIN} or
−{INT_MAX}. The value of FP_ILOGBNAN shall be either {INT_MAX} or {INT_MIN}.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 287

9523

9524

9525

9526

9527

9528

9529

9530

9531

9532

9533

9534

9535

9536

9537

9538

9539

9540

9541

9542

9543

9544

9545

9546

9547

9548

9549

9550

9551

9552

9553

9554

9555

9556

9557

9558

9559

9560

9561

9562

9563

9564

<math.h> Headers

FP_ILOGB0
FP_ILOGBNAN

The following macros shall expand to the integer constants 1 and 2, respectively;

MATH_ERRNO
MATH_ERREXCEPT

The following macro shall expand to an expression that has type int and the value
MATH_ERRNO, MATH_ERREXCEPT, or the bitwise-inclusive OR of both:

math_errhandling

The value of math_errhandling is constant for the duration of the program. It is unspecified
whether math_errhandling is a macro or an identifier with external linkage. If a macro definition
is suppressed or a program defines an identifier with the name math_errhandling , the behavior
is undefined. If the expression (math_errhandling & MATH_ERREXCEPT) can be non-zero, the
implementation shall define the macros FE_DIVBYZERO, FE_INVALID, and FE_OVERFLOW in
<fenv.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

double acos(double);
float acosf(float);
double acosh(double);
float acoshf(float);
long double acoshl(long double);
long double acosl(long double);
double asin(double);
float asinf(float);
double asinh(double);
float asinhf(float);
long double asinhl(long double);
long double asinl(long double);
double atan(double);
double atan2(double, double);
float atan2f(float, float);
long double atan2l(long double, long double);
float atanf(float);
double atanh(double);
float atanhf(float);
long double atanhl(long double);
long double atanl(long double);
double cbrt(double);
float cbrtf(float);
long double cbrtl(long double);
double ceil(double);
float ceilf(float);
long double ceill(long double);
double copysign(double, double);
float copysignf(float, float);
long double copysignl(long double, long double);
double cos(double);

288 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

9565

9566

9567

9568

9569

9570

9571

9572

9573

9574

9575

9576

9577

9578

9579

9580

9581

9582

9583

9584

9585

9586

9587

9588

9589

9590

9591

9592

9593

9594

9595

9596

9597

9598

9599

9600

9601

9602

9603

9604

9605

9606

9607

9608

9609

9610

9611

Headers <math.h>

float cosf(float);
double cosh(double);
float coshf(float);
long double coshl(long double);
long double cosl(long double);
double erf(double);
double erfc(double);
float erfcf(float);
long double erfcl(long double);
float erff(float);
long double erfl(long double);
double exp(double);
double exp2(double);
float exp2f(float);
long double exp2l(long double);
float expf(float);
long double expl(long double);
double expm1(double);
float expm1f(float);
long double expm1l(long double);
double fabs(double);
float fabsf(float);
long double fabsl(long double);
double fdim(double, double);
float fdimf(float, float);
long double fdiml(long double, long double);
double floor(double);
float floorf(float);
long double floorl(long double);
double fma(double, double, double);
float fmaf(float, float, float);
long double fmal(long double, long double, long double);
double fmax(double, double);
float fmaxf(float, float);
long double fmaxl(long double, long double);
double fmin(double, double);
float fminf(float, float);
long double fminl(long double, long double);
double fmod(double, double);
float fmodf(float, float);
long double fmodl(long double, long double);
double frexp(double, int *);
float frexpf(float, int *);
long double frexpl(long double, int *);
double hypot(double, double);
float hypotf(float, float);
long double hypotl(long double, long double);
int ilogb(double);
int ilogbf(float);
int ilogbl(long double);

XSI double j0(double);
double j1(double);

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 289

9612

9613

9614

9615

9616

9617

9618

9619

9620

9621

9622

9623

9624

9625

9626

9627

9628

9629

9630

9631

9632

9633

9634

9635

9636

9637

9638

9639

9640

9641

9642

9643

9644

9645

9646

9647

9648

9649

9650

9651

9652

9653

9654

9655

9656

9657

9658

9659

9660

9661

9662

9663

<math.h> Headers

double jn(int, double);
double ldexp(double, int);
float ldexpf(float, int);
long double ldexpl(long double, int);
double lgamma(double);
float lgammaf(float);
long double lgammal(long double);
long long llrint(double);
long long llrintf(float);
long long llrintl(long double);
long long llround(double);
long long llroundf(float);
long long llroundl(long double);
double log(double);
double log10(double);
float log10f(float);
long double log10l(long double);
double log1p(double);
float log1pf(float);
long double log1pl(long double);
double log2(double);
float log2f(float);
long double log2l(long double);
double logb(double);
float logbf(float);
long double logbl(long double);
float logf(float);
long double logl(long double);
long lrint(double);
long lrintf(float);
long lrintl(long double);
long lround(double);
long lroundf(float);
long lroundl(long double);
double modf(double, double *);
float modff(float, float *);
long double modfl(long double, long double *);
double nan(const char *);
float nanf(const char *);
long double nanl(const char *);
double nearbyint(double);
float nearbyintf(float);
long double nearbyintl(long double);
double nextafter(double, double);
float nextafterf(float, float);
long double nextafterl(long double, long double);
double nexttoward(double, long double);
float nexttowardf(float, long double);
long double nexttowardl(long double, long double);
double pow(double, double);
float powf(float, float);
long double powl(long double, long double);

290 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

9664

9665

9666

9667

9668

9669

9670

9671

9672

9673

9674

9675

9676

9677

9678

9679

9680

9681

9682

9683

9684

9685

9686

9687

9688

9689

9690

9691

9692

9693

9694

9695

9696

9697

9698

9699

9700

9701

9702

9703

9704

9705

9706

9707

9708

9709

9710

9711

9712

9713

9714

9715

Headers <math.h>

double remainder(double, double);
float remainderf(float, float);
long double remainderl(long double, long double);
double remquo(double, double, int *);
float remquof(float, float, int *);
long double remquol(long double, long double, int *);
double rint(double);
float rintf(float);
long double rintl(long double);
double round(double);
float roundf(float);
long double roundl(long double);
double scalbln(double, long);
float scalblnf(float, long);
long double scalblnl(long double, long);
double scalbn(double, int);
float scalbnf(float, int);
long double scalbnl(long double, int);
double sin(double);
float sinf(float);
double sinh(double);
float sinhf(float);
long double sinhl(long double);
long double sinl(long double);
double sqrt(double);
float sqrtf(float);
long double sqrtl(long double);
double tan(double);
float tanf(float);
double tanh(double);
float tanhf(float);
long double tanhl(long double);
long double tanl(long double);
double tgamma(double);
float tgammaf(float);
long double tgammal(long double);
double trunc(double);
float truncf(float);
long double truncl(long double);

XSI double y0(double);
double y1(double);
double yn(int, double);

The following external variable shall be defined:

XSI extern int signgam;

The behavior of each of the functions defined in <math.h> is specified in the System Interfaces
volume of POSIX.1-2008 for all representable values of its input arguments, except where stated
otherwise. Each function shall execute as if it were a single operation without generating any
externally visible exceptional conditions.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 291

9716

9717

9718

9719

9720

9721

9722

9723

9724

9725

9726

9727

9728

9729

9730

9731

9732

9733

9734

9735

9736

9737

9738

9739

9740

9741

9742

9743

9744

9745

9746

9747

9748

9749

9750

9751

9752

9753

9754

9755

9756

9757

9758

9759

9760

9761

9762

9763

<math.h> Headers

APPLICATION USAGE
The FP_CONTRACT pragma can be used to allow (if the state is on) or disallow (if the state is
off) the implementation to contract expressions. Each pragma can occur either outside external
declarations or preceding all explicit declarations and statements inside a compound statement.
When outside external declarations, the pragma takes effect from its occurrence until another
FP_CONTRACT pragma is encountered, or until the end of the translation unit. When inside a
compound statement, the pragma takes effect from its occurrence until another FP_CONTRACT
pragma is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is restored to
its condition just before the compound statement. If this pragma is used in any other context, the
behavior is undefined. The default state (on or off) for the pragma is implementation-defined.

Applications should use FLT_MAX as described in the <float.h> header instead of the
obsolescent MAXFLOAT.

RATIONALE
Before the ISO/IEC 9899: 1999 standard, the math library was defined only for the floating type
double. All the names formed by appending ’f’ or ’l’ to a name in <math.h> were reserved
to allow for the definition of float and long double libraries; and the ISO/IEC 9899: 1999
standard provides for all three versions of math functions.

The functions ecvt(), fcvt(), and gcvt() have been dropped from the ISO C standard since their
capability is available through sprintf().

FUTURE DIRECTIONS
None.

SEE ALSO
<float.h>, <stddef.h>, <sys/types.h>

XSH Section 2.2 (on page 468), acos(), acosh(), asin(), asinh(), atan(), atan2(), atanh(), cbrt(),
ceil(), copysign(), cos(), cosh(), erf(), erfc(), exp(), exp2(), expm1(), fabs(), fdim(), floor(), fma(),
fmax(), fmin(), fmod(), fpclassify(), frexp(), hypot(), ilogb(), isfinite(), isgreater(), isgreaterequal(),
isinf(), isless(), islessequal(), islessgreater(), isnan(), isnormal(), isunordered(), j0(), ldexp(),
lgamma(), llrint(), llround(), log(), log10(), log1p(), log2(), logb(), lrint(), lround(), modf(), nan(),
nearbyint(), nextafter(), pow(), remainder(), remquo(), rint(), round(), scalbln(), signbit(), sin(),
sinh(), sqrt(), tan(), tanh(), tgamma(), trunc(), y0()

CHANGE HISTORY
First released in Issue 1.

Issue 6
This reference page is updated to align with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/21 is applied, making it clear that the
meaning of the FP_FAST_FMA macro is unspecified if the macro is undefined.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #47 (SD5-XBD-ERN-52) is applied,
clarifying the wording of the FP_FAST_FMA macro.

The MAXFLOAT constant is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

292 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

9764

9765

9766

9767

9768

9769

9770

9771

9772

9773

9774

9775

9776

9777

9778

9779

9780

9781

9782

9783

9784

9785

9786

9787

9788

9789

9790

9791

9792

9793

9794

9795

9796

9797

9798

9799

9800

9801

9802

9803

9804

9805

Headers <monetary.h>

NAME
monetary.h — monetary types

SYNOPSIS
#include <monetary.h>

DESCRIPTION
The <monetary.h> header shall define the locale_t type as described in <locale.h>.

The <monetary.h> header shall define the size_t type as described in <stddef.h>.

The <monetary.h> header shall define the ssize_t type as described in <sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

ssize_t strfmon(char *restrict, size_t, const char *restrict, ...);
ssize_t strfmon_l(char *restrict, size_t, locale_t,

const char *restrict, ...);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<locale.h>, <stddef.h>, <sys/types.h>

XSH strfmon()

CHANGE HISTORY
First released in Issue 4.

Issue 6
The restrict keyword is added to the prototype for strfmon().

Issue 7
The <monetary.h> header is moved from the XSI option to the Base.

The strmon_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

A declaration for the locale_t type is added.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 293

9806

9807

9808

9809

9810

9811

9812

9813

9814

9815

9816

9817

9818

9819

9820

9821

9822

9823

9824

9825

9826

9827

9828

9829

9830

9831

9832

9833

9834

9835

9836

<mqueue.h> Headers

NAME
mqueue.h — message queues (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

DESCRIPTION
The <mqueue.h> header shall define the mqd_t type, which is used for message queue
descriptors. This is not an array type.

The <mqueue.h> header shall define the pthread_attr_t, size_t, and ssize_t types as described
in <sys/types.h>.

The <mqueue.h> header shall define the struct timespec structure as described in <time.h>.

The tag sigevent shall be declared as naming an incomplete structure type, the contents of which
are described in the <signal.h> header.

The <mqueue.h> header shall define the mq_attr structure, which is used in getting and setting
the attributes of a message queue. Attributes are initially set when the message queue is created.
An mq_attr structure shall have at least the following fields:

long mq_flags Message queue flags.
long mq_maxmsg Maximum number of messages.
long mq_msgsize Maximum message size.
long mq_curmsgs Number of messages currently queued.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int mq_close(mqd_t);
int mq_getattr(mqd_t, struct mq_attr *);
int mq_notify(mqd_t, const struct sigevent *);
mqd_t mq_open(const char *, int, ...);
ssize_t mq_receive(mqd_t, char *, size_t, unsigned *);
int mq_send(mqd_t, const char *, size_t, unsigned);
int mq_setattr(mqd_t, const struct mq_attr *restrict,

struct mq_attr *restrict);
ssize_t mq_timedreceive(mqd_t, char *restrict, size_t,

unsigned *restrict, const struct timespec *restrict);
int mq_timedsend(mqd_t, const char *, size_t, unsigned,

const struct timespec *);
int mq_unlink(const char *);

Inclusion of the <mqueue.h> header may make visible symbols defined in the headers
<fcntl.h>, <signal.h>, and <time.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

294 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

9837

9838

9839

9840

9841

9842

9843

9844

9845

9846

9847

9848

9849

9850

9851

9852

9853

9854

9855

9856

9857

9858

9859

9860

9861

9862

9863

9864

9865

9866

9867

9868

9869

9870

9871

9872

9873

9874

9875

9876

9877

9878

Headers <mqueue.h>

SEE ALSO
<fcntl.h>, <signal.h>, <sys/types.h>, <time.h>

XSH mq_close(), mq_getattr(), mq_notify(), mq_open(), mq_receive(), mq_send(), mq_setattr(),
mq_unlink()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The <mqueue.h> header is marked as part of the Message Passing option.

The mq_timedreceive() and mq_timedsend() functions are added for alignment with IEEE Std
1003.1d-1999.

The restrict keyword is added to the prototypes for mq_setattr() and mq_timedreceive().

Issue 7
Type and structure declarations are added.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 295

9879

9880

9881

9882

9883

9884

9885

9886

9887

9888

9889

9890

9891

<ndbm.h> Headers

NAME
ndbm.h — definitions for ndbm database operations

SYNOPSIS
XSI #include <ndbm.h>

DESCRIPTION
The <ndbm.h> header shall define the datum type as a structure, which shall include at least the
following members:

void *dptr A pointer to the application’s data.
size_t dsize The size of the object pointed to by dptr.

The <ndbm.h> header shall define the size_t type as described in <stddef.h>.

The <ndbm.h> header shall define the DBM type.

The <ndbm.h> header shall define the following symbolic constants as possible values for the
store_mode argument to dbm_store():

DBM_INSERT Insertion of new entries only.

DBM_REPLACE Allow replacing existing entries.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int dbm_clearerr(DBM *);
void dbm_close(DBM *);
int dbm_delete(DBM *, datum);
int dbm_error(DBM *);
datum dbm_fetch(DBM *, datum);
datum dbm_firstkey(DBM *);
datum dbm_nextkey(DBM *);
DBM *dbm_open(const char *, int, mode_t);
int dbm_store(DBM *, datum, datum, int);

The <ndbm.h> header shall define the mode_t type through typedef, as described in
<sys/types.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<stddef.h>, <sys/types.h>

XSH dbm_clearerr()

CHANGE HISTORY
First released in Issue 4, Version 2.

296 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

9892

9893

9894

9895

9896

9897

9898

9899

9900

9901

9902

9903

9904

9905

9906

9907

9908

9909

9910

9911

9912

9913

9914

9915

9916

9917

9918

9919

9920

9921

9922

9923

9924

9925

9926

9927

9928

9929

9930

Headers <ndbm.h>

Issue 5
References to the definitions of size_t and mode_t are added to the DESCRIPTION.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 297

9931

9932

9933

9934

<net/if.h> Headers

NAME
net/if.h — sockets local interfaces

SYNOPSIS
#include <net/if.h>

DESCRIPTION
The <net/if.h> header shall define the if_nameindex structure, which shall include at least the
following members:

unsigned if_index Numeric index of the interface.
char *if_name Null-terminated name of the interface.

The <net/if.h> header shall define the following symbolic constant for the length of a buffer
containing an interface name (including the terminating NULL character):

IF_NAMESIZE Interface name length.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void if_freenameindex(struct if_nameindex *);
char *if_indextoname(unsigned, char *);
struct if_nameindex *if_nameindex(void);
unsigned if_nametoindex(const char *);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH if_freenameindex(), if_indextoname(), if_nameindex(), if_nametoindex()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

298 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

9935

9936

9937

9938

9939

9940

9941

9942

9943

9944

9945

9946

9947

9948

9949

9950

9951

9952

9953

9954

9955

9956

9957

9958

9959

9960

9961

9962

9963

9964

Headers <netdb.h>

NAME
netdb.h — definitions for network database operations

SYNOPSIS
#include <netdb.h>

DESCRIPTION
The <netdb.h> header may define the in_port_t type and the in_addr_t type as described in
<netinet/in.h>.

The <netdb.h> header shall define the hostent structure, which shall include at least the
following members:

char *h_name Official name of the host.
char **h_aliases A pointer to an array of pointers to

alternative host names, terminated by a
null pointer.

int h_addrtype Address type.
int h_length The length, in bytes, of the address.
char **h_addr_list A pointer to an array of pointers to network

addresses (in network byte order) for the host,
terminated by a null pointer.

The <netdb.h> header shall define the netent structure, which shall include at least the
following members:

char *n_name Official, fully-qualified (including the
domain) name of the host.

char **n_aliases A pointer to an array of pointers to
alternative network names, terminated by a
null pointer.

int n_addrtype The address type of the network.
uint32_t n_net The network number, in host byte order.

The <netdb.h> header shall define the uint32_t type as described in <inttypes.h>.

The <netdb.h> header shall define the protoent structure, which shall include at least the
following members:

char *p_name Official name of the protocol.
char **p_aliases A pointer to an array of pointers to

alternative protocol names, terminated by
a null pointer.

int p_proto The protocol number.

The <netdb.h> header shall define the servent structure, which shall include at least the
following members:

char *s_name Official name of the service.
char **s_aliases A pointer to an array of pointers to

alternative service names, terminated by
a null pointer.

int s_port A value which, when converted to uint16_t,
yields the port number in network byte order
at which the service resides.

char *s_proto The name of the protocol to use when
contacting the service.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 299

9965

9966

9967

9968

9969

9970

9971

9972

9973

9974

9975

9976

9977

9978

9979

9980

9981

9982

9983

9984

9985

9986

9987

9988

9989

9990

9991

9992

9993

9994

9995

9996

9997

9998

9999

10000

10001

10002

10003

10004

10005

10006

10007

10008

10009

10010

<netdb.h> Headers

The <netdb.h> header shall define the IPPORT_RESERVED symbolic constant with the value of
the highest reserved Internet port number.

Address Information Structure

The <netdb.h> header shall define the addrinfo structure, which shall include at least the
following members:

int ai_flags Input flags.
int ai_family Address family of socket.
int ai_socktype Socket type.
int ai_protocol Protocol of socket.
socklen_t ai_addrlen Length of socket address.
struct sockaddr *ai_addr Socket address of socket.
char *ai_canonname Canonical name of service location.
struct addrinfo *ai_next Pointer to next in list.

The <netdb.h> header shall define the following symbolic constants that evaluate to bitwise-
distinct integer constants for use in the flags field of the addrinfo structure:

AI_PASSIVE Socket address is intended for bind().

AI_CANONNAME Request for canonical name.

AI_NUMERICHOST Return numeric host address as name.

AI_NUMERICSERV Inhibit service name resolution.

AI_V4MAPPED If no IPv6 addresses are found, query for IPv4 addresses and return them
to the caller as IPv4-mapped IPv6 addresses.

AI_ALL Query for both IPv4 and IPv6 addresses.

AI_ADDRCONFIG Query for IPv4 addresses only when an IPv4 address is configured; query
for IPv6 addresses only when an IPv6 address is configured.

The <netdb.h> header shall define the following symbolic constants that evaluate to bitwise-
distinct integer constants for use in the flags argument to getnameinfo():

NI_NOFQDN Only the nodename portion of the FQDN is returned for local hosts.

NI_NUMERICHOST The numeric form of the node’s address is returned instead of its name.

NI_NAMEREQD Return an error if the node’s name cannot be located in the database.

NI_NUMERICSERV The numeric form of the service address is returned instead of its name.

NI_NUMERICSCOPE
For IPv6 addresses, the numeric form of the scope identifier is returned
instead of its name.

NI_DGRAM Indicates that the service is a datagram service (SOCK_DGRAM).

300 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

10011

10012

10013

10014

10015

10016

10017

10018

10019

10020

10021

10022

10023

10024

10025

10026

10027

10028

10029

10030

10031

10032

10033

10034

10035

10036

10037

10038

10039

10040

10041

10042

10043

10044

Headers <netdb.h>

Address Information Errors

The <netdb.h> header shall define the following symbolic constants for use as error values for
getaddrinfo() and getnameinfo(). The values shall be suitable for use in #if preprocessing
directives.

EAI_AGAIN The name could not be resolved at this time. Future attempts may
succeed.

EAI_BADFLAGS The flags had an invalid value.

EAI_FAIL A non-recoverable error occurred.

EAI_FAMILY The address family was not recognized or the address length was invalid
for the specified family.

EAI_MEMORY There was a memory allocation failure.

EAI_NONAME The name does not resolve for the supplied parameters.

NI_NAMEREQD is set and the host’s name cannot be located, or both
nodename and servname were null.

EAI_SERVICE The service passed was not recognized for the specified socket type.

EAI_SOCKTYPE The intended socket type was not recognized.

EAI_SYSTEM A system error occurred. The error code can be found in errno.

EAI_OVERFLOW An argument buffer overflowed.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void endhostent(void);
void endnetent(void);
void endprotoent(void);
void endservent(void);
void freeaddrinfo(struct addrinfo *);
const char *gai_strerror(int);
int getaddrinfo(const char *restrict, const char *restrict,

const struct addrinfo *restrict,
struct addrinfo **restrict);

struct hostent *gethostent(void);
int getnameinfo(const struct sockaddr *restrict, socklen_t,

char *restrict, socklen_t, char *restrict,
socklen_t, int);

struct netent *getnetbyaddr(uint32_t, int);
struct netent *getnetbyname(const char *);
struct netent *getnetent(void);
struct protoent *getprotobyname(const char *);
struct protoent *getprotobynumber(int);
struct protoent *getprotoent(void);
struct servent *getservbyname(const char *, const char *);
struct servent *getservbyport(int, const char *);
struct servent *getservent(void);
void sethostent(int);
void setnetent(int);
void setprotoent(int);

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 301

10045

10046

10047

10048

10049

10050

10051

10052

10053

10054

10055

10056

10057

10058

10059

10060

10061

10062

10063

10064

10065

10066

10067

10068

10069

10070

10071

10072

10073

10074

10075

10076

10077

10078

10079

10080

10081

10082

10083

10084

10085

10086

10087

10088

10089

<netdb.h> Headers

void setservent(int);

The <netdb.h> header shall define the socklen_t type through typedef, as described in
<sys/socket.h>.

Inclusion of the <netdb.h> header may also make visible all symbols from <netinet/in.h>,
<sys/socket.h>, and <inttypes.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<inttypes.h>, <netinet/in.h>, <sys/socket.h>

XSH bind(), endhostent(), endnetent(), endprotoent(), endservent(), freeaddrinfo(), gai_strerror(),
getnameinfo()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The Open Group Base Resolution bwg2001-009 is applied, which changes the return type for
gai_strerror() from char * to const char *. This is for coordination with the IPnG Working Group.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/11 is applied, adding a description of the
NI_NUMERICSCOPE macro and correcting the getnameinfo() function prototype. These changes
are for alignment with IPv6.

Issue 7
SD5-XBD-ERN-14 is applied, changing the description of the s_port member of the servent
structure.

The obsolescent h_errno external integer, and the obsolescent gethostbyaddr(), and
gethostbyname() functions are removed, along with the HOST_NOT_FOUND, NO_DATA,
NO_RECOVERY, and TRY_AGAIN macros.

This reference page is clarified with respect to macros and symbolic constants.

302 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

10090

10091

10092

10093

10094

10095

10096

10097

10098

10099

10100

10101

10102

10103

10104

10105

10106

10107

10108

10109

10110

10111

10112

10113

10114

10115

10116

10117

10118

Headers <netinet/in.h>

NAME
netinet/in.h — Internet address family

SYNOPSIS
#include <netinet/in.h>

DESCRIPTION
The <netinet/in.h> header shall define the following types:

in_port_t Equivalent to the type uint16_t as described in <inttypes.h>.

in_addr_t Equivalent to the type uint32_t as described in <inttypes.h>.

The <netinet_in.h> header shall define the sa_family_t type as described in <sys/socket.h>.

The <netinet_in.h> header shall define the uint8_t and uint32_t types as described in
<inttypes.h>. Inclusion of the <netinet/in.h> header may also make visible all symbols from
<inttypes.h> and <sys/socket.h>.

The <netinet/in.h> header shall define the in_addr structure, which shall include at least the
following member:

in_addr_t s_addr

The <netinet/in.h> header shall define the sockaddr_in structure, which shall include at least
the following members:

sa_family_t sin_family AF_INET.
in_port_t sin_port Port number.
struct in_addr sin_addr IP address.

The sin_port and sin_addr members shall be in network byte order.

The sockaddr_in structure is used to store addresses for the Internet address family. Values of
this type shall be cast by applications to struct sockaddr for use with socket functions.

IP6 The <netinet/in.h> header shall define the in6_addr structure, which shall include at least the
following member:

uint8_t s6_addr[16]

This array is used to contain a 128-bit IPv6 address, stored in network byte order.

The <netinet/in.h> header shall define the sockaddr_in6 structure, which shall include at least
the following members:

sa_family_t sin6_family AF_INET6.
in_port_t sin6_port Port number.
uint32_t sin6_flowinfo IPv6 traffic class and flow information.
struct in6_addr sin6_addr IPv6 address.
uint32_t sin6_scope_id Set of interfaces for a scope.

The sin6_port and sin6_addr members shall be in network byte order.

The sockaddr_in6 structure shall be set to zero by an application prior to using it, since
implementations are free to have additional, implementation-defined fields in sockaddr_in6.

The sin6_scope_id field is a 32-bit integer that identifies a set of interfaces as appropriate for the
scope of the address carried in the sin6_addr field. For a link scope sin6_addr, the application
shall ensure that sin6_scope_id is a link index. For a site scope sin6_addr, the application shall
ensure that sin6_scope_id is a site index. The mapping of sin6_scope_id to an interface or set of
interfaces is implementation-defined.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 303

10119

10120

10121

10122

10123

10124

10125

10126

10127

10128

10129

10130

10131

10132

10133

10134

10135

10136

10137

10138

10139

10140

10141

10142

10143

10144

10145

10146

10147

10148

10149

10150

10151

10152

10153

10154

10155

10156

10157

10158

10159

10160

<netinet/in.h> Headers

The <netinet/in.h> header shall declare the following external variable:

const struct in6_addr in6addr_any

This variable is initialized by the system to contain the wildcard IPv6 address. The
<netinet/in.h> header also defines the IN6ADDR_ANY_INIT macro. This macro must be
constant at compile time and can be used to initialize a variable of type struct in6_addr to the
IPv6 wildcard address.

The <netinet/in.h> header shall declare the following external variable:

const struct in6_addr in6addr_loopback

This variable is initialized by the system to contain the loopback IPv6 address. The
<netinet/in.h> header also defines the IN6ADDR_LOOPBACK_INIT macro. This macro must be
constant at compile time and can be used to initialize a variable of type struct in6_addr to the
IPv6 loopback address.

The <netinet/in.h> header shall define the ipv6_mreq structure, which shall include at least the
following members:

struct in6_addr ipv6mr_multiaddr IPv6 multicast address.
unsigned ipv6mr_interface Interface index.

The <netinet/in.h> header shall define the following symbolic constants for use as values of the
level argument of getsockopt() and setsockopt():

IPPROTO_IP Internet protocol.

IP6 IPPROTO_IPV6 Internet Protocol Version 6.

IPPROTO_ICMP Control message protocol.

RS IPPROTO_RAW Raw IP Packets Protocol.

IPPROTO_TCP Transmission control protocol.

IPPROTO_UDP User datagram protocol.

The <netinet/in.h> header shall define the following symbolic constants for use as destination
addresses for connect(), sendmsg(), and sendto():

INADDR_ANY IPv4 local host address.

INADDR_BROADCAST IPv4 broadcast address.

The <netinet/in.h> header shall define the following symbolic constant, with the value
specified, to help applications declare buffers of the proper size to store IPv4 addresses in string
form:

INET_ADDRSTRLEN 16. Length of the string form for IP.

The htonl(), htons(), ntohl(), and ntohs() functions shall be available as described in
<arpa/inet.h>. Inclusion of the <netinet/in.h> header may also make visible all symbols from
<arpa/inet.h>.

IP6 The <netinet/in.h> header shall define the following symbolic constant, with the value
specified, to help applications declare buffers of the proper size to store IPv6 addresses in string
form:

304 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

10161

10162

10163

10164

10165

10166

10167

10168

10169

10170

10171

10172

10173

10174

10175

10176

10177

10178

10179

10180

10181

10182

10183

10184

10185

10186

10187

10188

10189

10190

10191

10192

10193

10194

10195

10196

10197

10198

Headers <netinet/in.h>

INET6_ADDRSTRLEN 46. Length of the string form for IPv6.

IP6 The <netinet/in.h> header shall define the following symbolic constants, with distinct integer
values, for use in the option_name argument in the getsockopt() or setsockopt() functions at
protocol level IPPROTO_IPV6:

IPV6_JOIN_GROUP Join a multicast group.

IPV6_LEAVE_GROUP Quit a multicast group.

IPV6_MULTICAST_HOPS
Multicast hop limit.

IPV6_MULTICAST_IF Interface to use for outgoing multicast packets.

IPV6_MULTICAST_LOOP
Multicast packets are delivered back to the local application.

IPV6_UNICAST_HOPS Unicast hop limit.

IPV6_V6ONLY Restrict AF_INET6 socket to IPv6 communications only.

The <netinet/in.h> header shall define the following macros that test for special IPv6 addresses.
Each macro is of type int and takes a single argument of type const struct in6_addr *:

IN6_IS_ADDR_UNSPECIFIED
Unspecified address.

IN6_IS_ADDR_LOOPBACK
Loopback address.

IN6_IS_ADDR_MULTICAST
Multicast address.

IN6_IS_ADDR_LINKLOCAL
Unicast link-local address.

IN6_IS_ADDR_SITELOCAL
Unicast site-local address.

IN6_IS_ADDR_V4MAPPED
IPv4 mapped address.

IN6_IS_ADDR_V4COMPAT
IPv4-compatible address.

IN6_IS_ADDR_MC_NODELOCAL
Multicast node-local address.

IN6_IS_ADDR_MC_LINKLOCAL
Multicast link-local address.

IN6_IS_ADDR_MC_SITELOCAL
Multicast site-local address.

IN6_IS_ADDR_MC_ORGLOCAL
Multicast organization-local address.

IN6_IS_ADDR_MC_GLOBAL
Multicast global address.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 305

10199

10200

10201

10202

10203

10204

10205

10206

10207

10208

10209

10210

10211

10212

10213

10214

10215

10216

10217

10218

10219

10220

10221

10222

10223

10224

10225

10226

10227

10228

10229

10230

10231

10232

10233

10234

10235

10236

10237

<netinet/in.h> Headers

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 4.9 (on page 110), <arpa/inet.h>, <inttypes.h>, <sys/socket.h>

XSH connect(), getsockopt(), htonl(), sendmsg(), sendto(), setsockopt()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The sin_zero member was removed from the sockaddr_in structure as per The Open Group Base
Resolution bwg2001-004.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/12 is applied, adding const qualifiers to
the in6addr_any and in6addr_loopback external variables.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/22 is applied, making it clear which
structure members are in network byte order.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

306 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

10238

10239

10240

10241

10242

10243

10244

10245

10246

10247

10248

10249

10250

10251

10252

10253

10254

10255

10256

Headers <netinet/tcp.h>

NAME
netinet/tcp.h — definitions for the Internet Transmission Control Protocol (TCP)

SYNOPSIS
#include <netinet/tcp.h>

DESCRIPTION
The <netinet/tcp.h> header shall define the following symbolic constant for use as a socket
option at the IPPROTO_TCP level:

TCP_NODELAY Avoid coalescing of small segments.

The implementation need not allow the value of the option to be set via setsockopt() or retrieved
via getsockopt().

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/socket.h>

XSH getsockopt(), setsockopt()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 307

10257

10258

10259

10260

10261

10262

10263

10264

10265

10266

10267

10268

10269

10270

10271

10272

10273

10274

10275

10276

10277

10278

10279

<nl_types.h> Headers

NAME
nl_types.h — data types

SYNOPSIS
#include <nl_types.h>

DESCRIPTION
The <nl_types.h> header shall define at least the following types:

nl_catd Used by the message catalog functions catopen(), catgets(), and catclose()
to identify a catalog descriptor.

nl_item Used by nl_langinfo() to identify items of langinfo data. Values of objects
of type nl_item are defined in <langinfo.h>.

The <nl_types.h> header shall define at least the following symbolic constants:

NL_SETD Used by gencat when no $set directive is specified in a message text source
file. This constant can be passed as the value of set_id on subsequent calls
to catgets() (that is, to retrieve messages from the default message set).
The value of NL_SETD is implementation-defined.

NL_CAT_LOCALE Value that must be passed as the oflag argument to catopen() to ensure that
message catalog selection depends on the LC_MESSAGES locale category,
rather than directly on the LANG environment variable.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int catclose(nl_catd);
char *catgets(nl_catd, int, int, const char *);
nl_catd catopen(const char *, int);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<langinfo.h>

XSH catclose(), catgets(), catopen(), nl_langinfo()

XCU gencat

CHANGE HISTORY
First released in Issue 2.

Issue 7
The <nl_types.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

308 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

10280

10281

10282

10283

10284

10285

10286

10287

10288

10289

10290

10291

10292

10293

10294

10295

10296

10297

10298

10299

10300

10301

10302

10303

10304

10305

10306

10307

10308

10309

10310

10311

10312

10313

10314

10315

10316

10317

Headers <poll.h>

NAME
poll.h — definitions for the poll() function

SYNOPSIS
#include <poll.h>

DESCRIPTION
The <poll.h> header shall define the pollfd structure, which shall include at least the following
members:

int fd The following descriptor being polled.
short events The input event flags (see below).
short revents The output event flags (see below).

The <poll.h> header shall define the following type through typedef:

nfds_t An unsigned integer type used for the number of file descriptors.

The implementation shall support one or more programming environments in which the width
of nfds_t is no greater than the width of type long. The names of these programming
environments can be obtained using the confstr() function or the getconf utility.

The <poll.h> header shall define the following symbolic constants, zero or more of which may
be OR’ed together to form the events or revents members in the pollfd structure:

POLLIN Data other than high-priority data may be read without blocking.

POLLRDNORM Normal data may be read without blocking.

POLLRDBAND Priority data may be read without blocking.

POLLPRI High priority data may be read without blocking.

POLLOUT Normal data may be written without blocking.

POLLWRNORM Equivalent to POLLOUT.

POLLWRBAND Priority data may be written.

POLLERR An error has occurred (revents only).

POLLHUP Device has been disconnected (revents only).

POLLNVAL Invalid fd member (revents only).

The significance and semantics of normal, priority, and high-priority data are file and device-
specific.

The following shall be declared as a function and may also be defined as a macro. A function
prototype shall be provided.

int poll(struct pollfd [], nfds_t, int);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 309

10318

10319

10320

10321

10322

10323

10324

10325

10326

10327

10328

10329

10330

10331

10332

10333

10334

10335

10336

10337

10338

10339

10340

10341

10342

10343

10344

10345

10346

10347

10348

10349

10350

10351

10352

10353

10354

10355

<poll.h> Headers

SEE ALSO
XSH confstr(), poll()

XCU getconf

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 6
The description of the symbolic constants is updated to match the poll() function.

Text related to STREAMS has been moved to the poll() reference page.

A note is added to the DESCRIPTION regarding the significance and semantics of normal,
priority, and high-priority data.

Issue 7
The <poll.h> header is moved from the XSI option to the Base.

310 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

10356

10357

10358

10359

10360

10361

10362

10363

10364

10365

10366

10367

Headers <pthread.h>

NAME
pthread.h — threads

SYNOPSIS
#include <pthread.h>

DESCRIPTION
The <pthread.h> header shall define the following symbolic constants:

PTHREAD_BARRIER_SERIAL_THREAD
PTHREAD_CANCEL_ASYNCHRONOUS
PTHREAD_CANCEL_ENABLE
PTHREAD_CANCEL_DEFERRED
PTHREAD_CANCEL_DISABLE
PTHREAD_CANCELED
PTHREAD_CREATE_DETACHED
PTHREAD_CREATE_JOINABLE

TPS PTHREAD_EXPLICIT_SCHED
PTHREAD_INHERIT_SCHED
PTHREAD_MUTEX_DEFAULT
PTHREAD_MUTEX_ERRORCHECK
PTHREAD_MUTEX_NORMAL
PTHREAD_MUTEX_RECURSIVE
PTHREAD_MUTEX_ROBUST
PTHREAD_MUTEX_STALLED
PTHREAD_ONCE_INIT

RPI|TPI PTHREAD_PRIO_INHERIT
MC1 PTHREAD_PRIO_NONE
RPP|TPP PTHREAD_PRIO_PROTECT

PTHREAD_PROCESS_SHARED
PTHREAD_PROCESS_PRIVATE

TPS PTHREAD_SCOPE_PROCESS
PTHREAD_SCOPE_SYSTEM

The <pthread.h> header shall define the following compile-time constant expressions valid as
initializers for the following types:

Name Initializer for Type

PTHREAD_COND_INITIALIZER pthread_cond_t
PTHREAD_MUTEX_INITIALIZER pthread_mutex_t
PTHREAD_RWLOCK_INITIALIZER pthread_rwlock_t

The <pthread.h> header shall define the pthread_attr_t, pthread_barrier_t,
pthread_barrierattr_t, pthread_cond_t, pthread_condattr_t, pthread_key_t, pthread_mutex_t,
pthread_mutexattr_t, pthread_once_t, pthread_rwlock_t, pthread_rwlockattr_t,
pthread_spinlock_t, and pthread_t types as described in <sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int pthread_atfork(void (*)(void), void (*)(void),
void(*)(void));

int pthread_attr_destroy(pthread_attr_t *);
int pthread_attr_getdetachstate(const pthread_attr_t *, int *);
int pthread_attr_getguardsize(const pthread_attr_t *restrict,

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 311

10368

10369

10370

10371

10372

10373

10374

10375

10376

10377

10378

10379

10380

10381

10382

10383

10384

10385

10386

10387

10388

10389

10390

10391

10392

10393

10394

10395

10396

10397

10398

10399

10400

10401

10402

10403

10404

10405

10406

10407

10408

10409

10410

10411

10412

10413

10414

<pthread.h> Headers

size_t *restrict);
TPS int pthread_attr_getinheritsched(const pthread_attr_t *restrict,

int *restrict);
int pthread_attr_getschedparam(const pthread_attr_t *restrict,

struct sched_param *restrict);
TPS int pthread_attr_getschedpolicy(const pthread_attr_t *restrict,

int *restrict);
int pthread_attr_getscope(const pthread_attr_t *restrict,

int *restrict);
TSA TSS int pthread_attr_getstack(const pthread_attr_t *restrict,

void **restrict, size_t *restrict);
TSS int pthread_attr_getstacksize(const pthread_attr_t *restrict,

size_t *restrict);
int pthread_attr_init(pthread_attr_t *);
int pthread_attr_setdetachstate(pthread_attr_t *, int);
int pthread_attr_setguardsize(pthread_attr_t *, size_t);

TPS int pthread_attr_setinheritsched(pthread_attr_t *, int);
int pthread_attr_setschedparam(pthread_attr_t *restrict,

const struct sched_param *restrict);
TPS int pthread_attr_setschedpolicy(pthread_attr_t *, int);

int pthread_attr_setscope(pthread_attr_t *, int);
TSA TSS int pthread_attr_setstack(pthread_attr_t *, void *, size_t);
TSS int pthread_attr_setstacksize(pthread_attr_t *, size_t);

int pthread_barrier_destroy(pthread_barrier_t *);
int pthread_barrier_init(pthread_barrier_t *restrict,

const pthread_barrierattr_t *restrict, unsigned);
int pthread_barrier_wait(pthread_barrier_t *);
int pthread_barrierattr_destroy(pthread_barrierattr_t *);

TSH int pthread_barrierattr_getpshared(
const pthread_barrierattr_t *restrict, int *restrict);

int pthread_barrierattr_init(pthread_barrierattr_t *);
TSH int pthread_barrierattr_setpshared(pthread_barrierattr_t *, int);

int pthread_cancel(pthread_t);
void pthread_cleanup_pop(int);
void pthread_cleanup_push(void (*)(void*), void *);
int pthread_cond_broadcast(pthread_cond_t *);
int pthread_cond_destroy(pthread_cond_t *);
int pthread_cond_init(pthread_cond_t *restrict,

const pthread_condattr_t *restrict);
int pthread_cond_signal(pthread_cond_t *);
int pthread_cond_timedwait(pthread_cond_t *restrict,

pthread_mutex_t *restrict, const struct timespec *restrict);
int pthread_cond_wait(pthread_cond_t *restrict,

pthread_mutex_t *restrict);
int pthread_condattr_destroy(pthread_condattr_t *);
int pthread_condattr_getclock(const pthread_condattr_t *restrict,

clockid_t *restrict);
TSH int pthread_condattr_getpshared(const pthread_condattr_t *restrict,

int *restrict);
int pthread_condattr_init(pthread_condattr_t *);
int pthread_condattr_setclock(pthread_condattr_t *, clockid_t);

312 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

10415

10416

10417

10418

10419

10420

10421

10422

10423

10424

10425

10426

10427

10428

10429

10430

10431

10432

10433

10434

10435

10436

10437

10438

10439

10440

10441

10442

10443

10444

10445

10446

10447

10448

10449

10450

10451

10452

10453

10454

10455

10456

10457

10458

10459

10460

10461

10462

10463

10464

10465

Headers <pthread.h>

TSH int pthread_condattr_setpshared(pthread_condattr_t *, int);
int pthread_create(pthread_t *restrict, const pthread_attr_t *restrict,

void *(*)(void*), void *restrict);
int pthread_detach(pthread_t);
int pthread_equal(pthread_t, pthread_t);
void pthread_exit(void *);

OB XSI int pthread_getconcurrency(void);
TCT int pthread_getcpuclockid(pthread_t, clockid_t *);
TPS int pthread_getschedparam(pthread_t, int *restrict,

struct sched_param *restrict);
void *pthread_getspecific(pthread_key_t);
int pthread_join(pthread_t, void **);
int pthread_key_create(pthread_key_t *, void (*)(void*));
int pthread_key_delete(pthread_key_t);
int pthread_mutex_consistent(pthread_mutex_t *);
int pthread_mutex_destroy(pthread_mutex_t *);

RPP|TPP int pthread_mutex_getprioceiling(const pthread_mutex_t *restrict,
int *restrict);

int pthread_mutex_init(pthread_mutex_t *restrict,
const pthread_mutexattr_t *restrict);

int pthread_mutex_lock(pthread_mutex_t *);
RPP|TPP int pthread_mutex_setprioceiling(pthread_mutex_t *restrict, int,

int *restrict);
int pthread_mutex_timedlock(pthread_mutex_t *restrict,

const struct timespec *restrict);
int pthread_mutex_trylock(pthread_mutex_t *);
int pthread_mutex_unlock(pthread_mutex_t *);
int pthread_mutexattr_destroy(pthread_mutexattr_t *);

RPP|TPP int pthread_mutexattr_getprioceiling(
const pthread_mutexattr_t *restrict, int *restrict);

MC1 int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *restrict,
int *restrict);

TSH int pthread_mutexattr_getpshared(const pthread_mutexattr_t *restrict,
int *restrict);

int pthread_mutexattr_getrobust(const pthread_mutexattr_t *restrict,
int *restrict);

int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict,
int *restrict);

int pthread_mutexattr_init(pthread_mutexattr_t *);
RPP|TPP int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *, int);
MC1 int pthread_mutexattr_setprotocol(pthread_mutexattr_t *, int);
TSH int pthread_mutexattr_setpshared(pthread_mutexattr_t *, int);

int pthread_mutexattr_setrobust(pthread_mutexattr_t *, int);
int pthread_mutexattr_settype(pthread_mutexattr_t *, int);
int pthread_once(pthread_once_t *, void (*)(void));
int pthread_rwlock_destroy(pthread_rwlock_t *);
int pthread_rwlock_init(pthread_rwlock_t *restrict,

const pthread_rwlockattr_t *restrict);
int pthread_rwlock_rdlock(pthread_rwlock_t *);
int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict,

const struct timespec *restrict);
int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict,

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 313

10466

10467

10468

10469

10470

10471

10472

10473

10474

10475

10476

10477

10478

10479

10480

10481

10482

10483

10484

10485

10486

10487

10488

10489

10490

10491

10492

10493

10494

10495

10496

10497

10498

10499

10500

10501

10502

10503

10504

10505

10506

10507

10508

10509

10510

10511

10512

10513

10514

10515

10516

10517

<pthread.h> Headers

const struct timespec *restrict);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *);
int pthread_rwlock_trywrlock(pthread_rwlock_t *);
int pthread_rwlock_unlock(pthread_rwlock_t *);
int pthread_rwlock_wrlock(pthread_rwlock_t *);
int pthread_rwlockattr_destroy(pthread_rwlockattr_t *);

TSH int pthread_rwlockattr_getpshared(
const pthread_rwlockattr_t *restrict, int *restrict);

int pthread_rwlockattr_init(pthread_rwlockattr_t *);
TSH int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *, int);

pthread_t
pthread_self(void);

int pthread_setcancelstate(int, int *);
int pthread_setcanceltype(int, int *);

OB XSI int pthread_setconcurrency(int);
TPS int pthread_setschedparam(pthread_t, int,

const struct sched_param *);
int pthread_setschedprio(pthread_t, int);
int pthread_setspecific(pthread_key_t, const void *);
int pthread_spin_destroy(pthread_spinlock_t *);
int pthread_spin_init(pthread_spinlock_t *, int);
int pthread_spin_lock(pthread_spinlock_t *);
int pthread_spin_trylock(pthread_spinlock_t *);
int pthread_spin_unlock(pthread_spinlock_t *);
void pthread_testcancel(void);

Inclusion of the <pthread.h> header shall make symbols defined in the headers <sched.h> and
<time.h> visible.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sched.h>, <sys/types.h>, <time.h>

XSH pthread_atfork(), pthread_attr_destroy(), pthread_attr_getdetachstate(),
pthread_attr_getguardsize(), pthread_attr_getinheritsched(), pthread_attr_getschedparam(),
pthread_attr_getschedpolicy(), pthread_attr_getscope(), pthread_attr_getstack(),
pthread_attr_getstacksize(), pthread_barrier_destroy(), pthread_barrier_wait(),
pthread_barrierattr_destroy(), pthread_barrierattr_getpshared(), pthread_cancel(),
pthread_cleanup_pop(), pthread_cond_broadcast(), pthread_cond_destroy(), pthread_cond_timedwait(),
pthread_condattr_destroy(), pthread_condattr_getclock(), pthread_condattr_getpshared(),
pthread_create(), pthread_detach(), pthread_equal(), pthread_exit(), pthread_getconcurrency(),
pthread_getcpuclockid(), pthread_getschedparam(), pthread_getspecific(), pthread_join(),
pthread_key_create(), pthread_key_delete(), pthread_mutex_consistent(), pthread_mutex_destroy(),
pthread_mutex_getprioceiling(), pthread_mutex_lock(), pthread_mutex_timedlock(),
pthread_mutexattr_destroy(), pthread_mutexattr_getprioceiling(), pthread_mutexattr_getprotocol(),
pthread_mutexattr_getpshared(), pthread_mutexattr_getrobust(), pthread_mutexattr_gettype(),
pthread_once(), pthread_rwlock_destroy(), pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(),

314 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

10518

10519

10520

10521

10522

10523

10524

10525

10526

10527

10528

10529

10530

10531

10532

10533

10534

10535

10536

10537

10538

10539

10540

10541

10542

10543

10544

10545

10546

10547

10548

10549

10550

10551

10552

10553

10554

10555

10556

10557

10558

10559

10560

10561

10562

10563

10564

10565

10566

Headers <pthread.h>

pthread_rwlock_timedwrlock(), pthread_rwlock_trywrlock(), pthread_rwlock_unlock(),
pthread_rwlockattr_destroy(), pthread_rwlockattr_getpshared(), pthread_self(),
pthread_setcancelstate(), pthread_setschedprio(), pthread_spin_destroy(), pthread_spin_lock(),
pthread_spin_unlock()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The RTT margin markers are broken out into their POSIX options.

The Open Group Corrigendum U021/9 is applied, correcting the prototype for the
pthread_cond_wait() function.

The Open Group Corrigendum U026/2 is applied, correcting the prototype for the
pthread_setschedparam() function so that its second argument is of type int.

The pthread_getcpuclockid() and pthread_mutex_timedlock() functions are added for alignment
with IEEE Std 1003.1d-1999.

The following functions are added for alignment with IEEE Std 1003.1j-2000:
pthread_barrier_destroy(), pthread_barrier_init(), pthread_barrier_wait(),
pthread_barrierattr_destroy(), pthread_barrierattr_getpshared(), pthread_barrierattr_init(),
pthread_barrierattr_setpshared(), pthread_condattr_getclock(), pthread_condattr_setclock(),
pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_spin_destroy(),
pthread_spin_init(), pthread_spin_lock(), pthread_spin_trylock(), and pthread_spin_unlock().

PTHREAD_RWLOCK_INITIALIZER is removed for alignment with IEEE Std 1003.1j-2000.

Functions previously marked as part of the Read-Write Locks option are now moved to the
Threads option.

The restrict keyword is added to the prototypes for pthread_attr_getguardsize(),
pthread_attr_getinheritsched(), pthread_attr_getschedparam(), pthread_attr_getschedpolicy(),
pthread_attr_getscope(), pthread_attr_getstackaddr(), pthread_attr_getstacksize(),
pthread_attr_setschedparam(), pthread_barrier_init(), pthread_barrierattr_getpshared(),
pthread_cond_init(), pthread_cond_signal(), pthread_cond_timedwait(), pthread_cond_wait(),
pthread_condattr_getclock(), pthread_condattr_getpshared(), pthread_create(),
pthread_getschedparam(), pthread_mutex_getprioceiling(), pthread_mutex_init(),
pthread_mutex_setprioceiling(), pthread_mutexattr_getprioceiling(), pthread_mutexattr_getprotocol(),
pthread_mutexattr_getpshared(), pthread_mutexattr_gettype(), pthread_rwlock_init(),
pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_rwlockattr_getpshared(), and
pthread_sigmask().

IEEE PASC Interpretation 1003.1 #86 is applied, allowing the symbols from <sched.h> and
<time.h> to be made visible when <pthread.h> is included. Previously this was an XSI option.

IEEE PASC Interpretation 1003.1c #42 is applied, removing the requirement for prototypes for
the pthread_kill() and pthread_sigmask() functions. These are required to be in the <signal.h>
header. They are allowed here through the name space rules.

IEEE PASC Interpretation 1003.1 #96 is applied, adding the pthread_setschedprio() function.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/13 is applied, correcting shading errors
that were in contradiction with the System Interfaces volume of POSIX.1-2008.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 315

10567

10568

10569

10570

10571

10572

10573

10574

10575

10576

10577

10578

10579

10580

10581

10582

10583

10584

10585

10586

10587

10588

10589

10590

10591

10592

10593

10594

10595

10596

10597

10598

10599

10600

10601

10602

10603

10604

10605

10606

10607

10608

<pthread.h> Headers

Issue 7
SD5-XBD-ERN-55 is applied, adding the restrict keyword to the pthread_mutex_timedlock()
function prototype.

SD5-XBD-ERN-62 is applied.

Austin Group Interpretation 1003.1-2001 #048 is applied, reinstating the
PTHREAD_RWLOCK_INITIALIZER symbol.

The <pthread.h> header is moved from the Threads option to the Base.

The following extended mutex types are moved from the XSI option to the Base:

PTHREAD_MUTEX_NORMAL
PTHREAD_MUTEX_ERRORCHECK
PTHREAD_MUTEX_RECURSIVE
PTHREAD_MUTEX_DEFAULT

The PTHREAD_MUTEX_ROBUST and PTHREAD_MUTEX_STALLED symbols and the
pthread_mutex_consistent(), pthread_mutexattr_getrobust(), and pthread_mutexattr_setrobust()
functions are added from The Open Group Technical Standard, 2006, Extended API Set Part 2.

Functionality relating to the Thread Priority Protection and Thread Priority Inheritance options
is changed to be Non-Robust Mutex or Robust Mutex Priority Protection and Non-Robust Mutex
or Robust Mutex Priority Inheritance, respectively.

This reference page is clarified with respect to macros and symbolic constants.

316 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

10609

10610

10611

10612

10613

10614

10615

10616

10617

10618

10619

10620

10621

10622

10623

10624

10625

10626

10627

Headers <pwd.h>

NAME
pwd.h — password structure

SYNOPSIS
#include <pwd.h>

DESCRIPTION
The <pwd.h> header shall define the struct passwd, structure, which shall include at least the
following members:

char *pw_name User ’s login name.
uid_t pw_uid Numerical user ID.
gid_t pw_gid Numerical group ID.
char *pw_dir Initial working directory.
char *pw_shell Program to use as shell.

The <pwd.h> header shall define the gid_t, uid_t, and size_t types as described in
<sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

XSI void endpwent(void);
struct passwd *getpwent(void);
struct passwd *getpwnam(const char *);
int getpwnam_r(const char *, struct passwd *, char *,

size_t, struct passwd **);
struct passwd *getpwuid(uid_t);
int getpwuid_r(uid_t, struct passwd *, char *,

size_t, struct passwd **);
XSI void setpwent(void);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH endpwent(), getpwnam(), getpwuid()

CHANGE HISTORY
First released in Issue 1.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The gid_t and uid_t types are mandated.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 317

10628

10629

10630

10631

10632

10633

10634

10635

10636

10637

10638

10639

10640

10641

10642

10643

10644

10645

10646

10647

10648

10649

10650

10651

10652

10653

10654

10655

10656

10657

10658

10659

10660

10661

10662

10663

10664

10665

10666

10667

10668

10669

<pwd.h> Headers

• The getpwnam_r() and getpwuid_r() functions are marked as part of the Thread-Safe
Functions option.

Issue 7
SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t type.

318 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

10670

10671

10672

10673

Headers <regex.h>

NAME
regex.h — regular expression matching types

SYNOPSIS
#include <regex.h>

DESCRIPTION
The <regex.h> header shall define the structures and symbolic constants used by the regcomp(),
regexec(), regerror(), and regfree() functions.

The <regex.h> header shall define the regex_t structure type, which shall include at least the
following member:

size_t re_nsub Number of parenthesized subexpressions.

The <regex.h> header shall define the size_t type as described in <sys/types.h>.

The <regex.h> header shall define the regoff_t type as a signed integer type that can hold the
largest value that can be stored in either a ptrdiff_t type or a ssize_t type.

The <regex.h> header shall define the regmatch_t structure type, which shall include at least the
following members:

regoff_t rm_so Byte offset from start of string
to start of substring.

regoff_t rm_eo Byte offset from start of string of the
first character after the end of substring.

The <regex.h> header shall define the following symbolic constants for the cflags parameter to
the regcomp() function:

REG_EXTENDED Use Extended Regular Expressions.

REG_ICASE Ignore case in match.

REG_NOSUB Report only success or fail in regexec().

REG_NEWLINE Change the handling of <newline>.

The <regex.h> header shall define the following symbolic constants for the eflags parameter to
the regexec() function:

REG_NOTBOL The <circumflex> character (’ˆ’), when taken as a special character, does
not match the beginning of string.

REG_NOTEOL The <dollar-sign> (’$’), when taken as a special character, does not
match the end of string.

The <regex.h> header shall define the following symbolic constants as error return values:

REG_NOMATCH regexec() failed to match.

REG_BADPAT Invalid regular expression.

REG_ECOLLATE Invalid collating element referenced.

REG_ECTYPE Invalid character class type referenced.

REG_EESCAPE Trailing <backslash> character in pattern.

REG_ESUBREG Number in \digit invalid or in error.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 319

10674

10675

10676

10677

10678

10679

10680

10681

10682

10683

10684

10685

10686

10687

10688

10689

10690

10691

10692

10693

10694

10695

10696

10697

10698

10699

10700

10701

10702

10703

10704

10705

10706

10707

10708

10709

10710

10711

<regex.h> Headers

REG_EBRACK "[]" imbalance.

REG_EPAREN "\(\)" or "()" imbalance.

REG_EBRACE "\{\}" imbalance.

REG_BADBR Content of "\{\}" invalid: not a number, number too large, more than
two numbers, first larger than second.

REG_ERANGE Invalid endpoint in range expression.

REG_ESPACE Out of memory.

REG_BADRPT ’?’, ’*’, or ’+’ not preceded by valid regular expression.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int regcomp(regex_t *restrict, const char *restrict, int);
size_t regerror(int, const regex_t *restrict, char *restrict, size_t);
int regexec(const regex_t *restrict, const char *restrict, size_t,

regmatch_t [restrict], int);
void regfree(regex_t *);

The implementation may define additional macros or constants using names beginning with
REG_.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH regcomp()

CHANGE HISTORY
First released in Issue 4.

Originally derived from the ISO POSIX-2 standard.

Issue 6
The REG_ENOSYS constant is marked obsolescent.

The restrict keyword is added to the prototypes for regcomp(), regerror(), and regexec().

A statement is added that the size_t type is defined as described in <sys/types.h>.

Issue 7
SD5-XBD-ERN-60 is applied.

The obsolescent REG_ENOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

320 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

10712

10713

10714

10715

10716

10717

10718

10719

10720

10721

10722

10723

10724

10725

10726

10727

10728

10729

10730

10731

10732

10733

10734

10735

10736

10737

10738

10739

10740

10741

10742

10743

10744

10745

10746

10747

10748

Headers <sched.h>

NAME
sched.h — execution scheduling

SYNOPSIS
#include <sched.h>

DESCRIPTION
PS The <sched.h> header shall define the pid_t type as described in <sys/types.h>.

SS|TSP The <sched.h> header shall define the time_t type as described in <sys/types.h>.

The <sched.h> header shall define the timespec structure as described in <time.h>.

The <sched.h> header shall define the sched_param structure, which shall include the
scheduling parameters required for implementation of each supported scheduling policy. This
structure shall include at least the following member:

int sched_priority Process or thread execution scheduling priority.

SS|TSP The sched_param structure defined in <sched.h> shall include the following members in
addition to those specified above:

int sched_ss_low_priority Low scheduling priority for
sporadic server.

struct timespec sched_ss_repl_period Replenishment period for
sporadic server.

struct timespec sched_ss_init_budget Initial budget for sporadic server.
int sched_ss_max_repl Maximum pending replenishments for

sporadic server.

Each process or thread is controlled by an associated scheduling policy and priority. Associated
with each policy is a priority range. Each policy definition specifies the minimum priority range
for that policy. The priority ranges for each policy may overlap the priority ranges of other
policies.

Four scheduling policies are defined; others may be defined by the implementation. The four
standard policies are indicated by the values of the following symbolic constants:

PS|TPS SCHED_FIFO First in-first out (FIFO) scheduling policy.

PS|TPS SCHED_RR Round robin scheduling policy.

SS|TSP SCHED_SPORADIC Sporadic server scheduling policy.

PS|TPS SCHED_OTHER Another scheduling policy.

The values of these constants are distinct.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

PS|TPS int sched_get_priority_max(int);
int sched_get_priority_min(int);

PS int sched_getparam(pid_t, struct sched_param *);
int sched_getscheduler(pid_t);

PS|TPS int sched_rr_get_interval(pid_t, struct timespec *);
PS int sched_setparam(pid_t, const struct sched_param *);

int sched_setscheduler(pid_t, int, const struct sched_param *);
int sched_yield(void);

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 321

10749

10750

10751

10752

10753

10754

10755

10756

10757

10758

10759

10760

10761

10762

10763

10764

10765

10766

10767

10768

10769

10770

10771

10772

10773

10774

10775

10776

10777

10778

10779

10780

10781

10782

10783

10784

10785

10786

10787

10788

10789

10790

<sched.h> Headers

Inclusion of the <sched.h> header may make visible all symbols from the <time.h> header.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>, <time.h>

XSH sched_get_priority_max(), sched_getparam(), sched_getscheduler(), sched_rr_get_interval(),
sched_setparam(), sched_setscheduler(), sched_yield()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The <sched.h> header is marked as part of the Process Scheduling option.

Sporadic server members are added to the sched_param structure, and the SCHED_SPORADIC
scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #108 is applied, correcting the sched_param structure whose
members sched_ss_repl_period and sched_ss_init_budget should be type struct timespec and not
timespec.

Symbols from <time.h> may be made visible when <sched.h> is included.

IEEE Std 1003.1-2001/Cor 1-2002, items XSH/TC1/D6/52 and XSH/TC1/D6/53 are applied,
aligning the function prototype shading and margin codes with the System Interfaces volume of
IEEE Std 1003.1-2001.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/23 is applied, updating the
DESCRIPTION to differentiate between thread and process execution.

Issue 7
SD5-XBD-ERN-13 is applied.

Austin Group Interpretation 1003.1-2001 #064 is applied, correcting the options markings.

The <sched.h> headers is moved from the Threads option to the Base.

Declarations for the pid_t and time_t types and the timespec structure are added.

322 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

10791

10792

10793

10794

10795

10796

10797

10798

10799

10800

10801

10802

10803

10804

10805

10806

10807

10808

10809

10810

10811

10812

10813

10814

10815

10816

10817

10818

10819

10820

10821

Headers <search.h>

NAME
search.h — search tables

SYNOPSIS
XSI #include <search.h>

DESCRIPTION
The <search.h> header shall define the ENTRY type for structure entry which shall include the
following members:

char *key
void *data

and shall define ACTION and VISIT as enumeration data types through type definitions as
follows:

enum { FIND, ENTER } ACTION;
enum { preorder, postorder, endorder, leaf } VISIT;

The <search.h> header shall define the size_t type as described in <sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int hcreate(size_t);
void hdestroy(void);
ENTRY *hsearch(ENTRY, ACTION);
void insque(void *, void *);
void *lfind(const void *, const void *, size_t *,

size_t, int (*)(const void *, const void *));
void *lsearch(const void *, void *, size_t *,

size_t, int (*)(const void *, const void *));
void remque(void *);
void *tdelete(const void *restrict, void **restrict,

int(*)(const void *, const void *));
void *tfind(const void *, void *const *,

int(*)(const void *, const void *));
void *tsearch(const void *, void **,

int(*)(const void *, const void *));
void twalk(const void *,

void (*)(const void *, VISIT, int));

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH hcreate(), insque(), lsearch(), tdelete()

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 323

10822

10823

10824

10825

10826

10827

10828

10829

10830

10831

10832

10833

10834

10835

10836

10837

10838

10839

10840

10841

10842

10843

10844

10845

10846

10847

10848

10849

10850

10851

10852

10853

10854

10855

10856

10857

10858

10859

10860

10861

10862

10863

<search.h> Headers

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The Open Group Corrigendum U021/6 is applied, updating the prototypes for tdelete() and
tsearch().

The restrict keyword is added to the prototype for tdelete().

324 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

10864

10865

10866

10867

10868

10869

Headers <semaphore.h>

NAME
semaphore.h — semaphores

SYNOPSIS
#include <semaphore.h>

DESCRIPTION
The <semaphore.h> header shall define the sem_t type, used in performing semaphore
operations. The semaphore may be implemented using a file descriptor, in which case
applications are able to open up at least a total of {OPEN_MAX} files and semaphores.

The <semaphore.h> header shall define the symbolic constant SEM_FAILED which shall have
type sem_t *.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int sem_close(sem_t *);
int sem_destroy(sem_t *);
int sem_getvalue(sem_t *restrict, int *restrict);
int sem_init(sem_t *, int, unsigned);
sem_t *sem_open(const char *, int, ...);
int sem_post(sem_t *);
int sem_timedwait(sem_t *restrict, const struct timespec *restrict);
int sem_trywait(sem_t *);
int sem_unlink(const char *);
int sem_wait(sem_t *);

Inclusion of the <semaphore.h> header may make visible symbols defined in the <fcntl.h> and
<time.h> headers.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<fcntl.h>, <sys/types.h>, <time.h>

XSH sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(), sem_post(),
sem_timedwait(), sem_trywait(), sem_unlink()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The <semaphore.h> header is marked as part of the Semaphores option.

The Open Group Corrigendum U021/3 is applied, adding a description of SEM_FAILED.

The sem_timedwait() function is added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the prototypes for sem_getvalue() and sem_timedwait().

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 325

10870

10871

10872

10873

10874

10875

10876

10877

10878

10879

10880

10881

10882

10883

10884

10885

10886

10887

10888

10889

10890

10891

10892

10893

10894

10895

10896

10897

10898

10899

10900

10901

10902

10903

10904

10905

10906

10907

10908

10909

10910

<semaphore.h> Headers

Issue 7
SD5-XBD-ERN-57 is applied, allowing the header to make visible symbols from the <time.h>
header.

The <semaphore.h> header is moved from the Semaphores option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

326 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

10911

10912

10913

10914

10915

Headers <setjmp.h>

NAME
setjmp.h — stack environment declarations

SYNOPSIS
#include <setjmp.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 468) to
enable the visibility of these symbols in this header.

CX The <setjmp.h> header shall define the array types jmp_buf and sigjmp_buf.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

OB XSI void _longjmp(jmp_buf, int);
void longjmp(jmp_buf, int);

CX void siglongjmp(sigjmp_buf, int);

The following may be declared as functions, or defined as macros, or both. If functions are
declared, function prototypes shall be provided.

OB XSI int _setjmp(jmp_buf);
int setjmp(jmp_buf);

CX int sigsetjmp(sigjmp_buf, int);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH Section 2.2 (on page 468), _longjmp(), longjmp(), setjmp(), siglongjmp(), sigsetjmp()

CHANGE HISTORY
First released in Issue 1.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
SD5-XBD-ERN-6 is applied.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 327

10916

10917

10918

10919

10920

10921

10922

10923

10924

10925

10926

10927

10928

10929

10930

10931

10932

10933

10934

10935

10936

10937

10938

10939

10940

10941

10942

10943

10944

10945

10946

10947

10948

<signal.h> Headers

NAME
signal.h — signals

SYNOPSIS
#include <signal.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 468) to
enable the visibility of these symbols in this header.

The <signal.h> header shall define the following macros, which shall expand to constant
expressions with distinct values that have a type compatible with the second argument to, and
the return value of, the signal() function, and whose values shall compare unequal to the
address of any declarable function.

SIG_DFL Request for default signal handling.

SIG_ERR Return value from signal() in case of error.

OB CX SIG_HOLD Request that signal be held.

SIG_IGN Request that signal be ignored.

CX The <signal.h> header shall define the pthread_t, size_t, and uid_t types as described in
<sys/types.h>.

The <signal.h> header shall define the timespec structure as described in <time.h>.

The <signal.h> header shall define the following data types:

sig_atomic_t Possibly volatile-qualified integer type of an object that can be accessed as
an atomic entity, even in the presence of asynchronous interrupts.

CX sigset_t Integer or structure type of an object used to represent sets of signals.

CX pid_t As described in <sys/types.h>.

CX The <signal.h> header shall define the pthread_attr_t type as described in <sys/types.h>.

The <signal.h> header shall define the sigevent structure, which shall include at least the
following members:

int sigev_notify Notification type.
int sigev_signo Signal number.
union sigval sigev_value Signal value.
void (*sigev_notify_function)(union sigval)

Notification function.
pthread_attr_t *sigev_notify_attributes Notification attributes.

The <signal.h> header shall define the following symbolic constants for the values of
sigev_notify:

SIGEV_NONE No asynchronous notification is delivered when the event of interest
occurs.

SIGEV_SIGNAL A queued signal, with an application-defined value, is generated when
the event of interest occurs.

SIGEV_THREAD A notification function is called to perform notification.

328 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

10949

10950

10951

10952

10953

10954

10955

10956

10957

10958

10959

10960

10961

10962

10963

10964

10965

10966

10967

10968

10969

10970

10971

10972

10973

10974

10975

10976

10977

10978

10979

10980

10981

10982

10983

10984

10985

10986

10987

10988

Headers <signal.h>

The sigval union shall be defined as:

int sival_int Integer signal value.
void *sival_ptr Pointer signal value.

The <signal.h> header shall declare the SIGRTMIN and SIGRTMAX macros, which shall expand
to positive integer expressions with type int, but which need not be constant expressions. These
macros specify a range of signal numbers that are reserved for application use and for which the
realtime signal behavior specified in this volume of POSIX.1-2008 is supported. The signal
numbers in this range do not overlap any of the signals specified in the following table.

The range SIGRTMIN through SIGRTMAX inclusive shall include at least {RTSIG_MAX} signal
numbers.

It is implementation-defined whether realtime signal behavior is supported for other signals.

The <signal.h> header shall define the following macros that are used to refer to the signals that
occur in the system. Signals defined here begin with the letters SIG followed by an uppercase
letter. The macros shall expand to positive integer constant expressions with type int and
distinct values. The value 0 is reserved for use as the null signal (see kill()). Additional
implementation-defined signals may occur in the system.

CX The ISO C standard only requires the signal names SIGABRT, SIGFPE, SIGILL, SIGINT,
SIGSEGV, and SIGTERM to be defined.

The following signals shall be supported on all implementations (default actions are explained
below the table):

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 329

10989

10990

10991

10992

10993

10994

10995

10996

10997

10998

10999

11000

11001

11002

11003

11004

11005

11006

11007

11008

<signal.h> Headers

Signal Default Action Description

SIGABRT A Process abort signal.
SIGALRM T Alarm clock.
SIGBUS A Access to an undefined portion of a memory object.
SIGCHLD I Child process terminated, stopped,

XSI or continued.
SIGCONT C Continue executing, if stopped.
SIGFPE A Erroneous arithmetic operation.
SIGHUP T Hangup.
SIGILL A Illegal instruction.
SIGINT T Terminal interrupt signal.
SIGKILL T Kill (cannot be caught or ignored).
SIGPIPE T Write on a pipe with no one to read it.
SIGQUIT A Terminal quit signal.
SIGSEGV A Invalid memory reference.
SIGSTOP S Stop executing (cannot be caught or ignored).
SIGTERM T Termination signal.
SIGTSTP S Terminal stop signal.
SIGTTIN S Background process attempting read.
SIGTTOU S Background process attempting write.
SIGUSR1 T User-defined signal 1.
SIGUSR2 T User-defined signal 2.

OB XSR SIGPOLL T Pollable event.
OB XSR SIGPROF T Profiling timer expired.
XSI SIGSYS A Bad system call.

SIGTRAP A Trace/breakpoint trap.
SIGURG I High bandwidth data is available at a socket.

XSI SIGVTALRM T Virtual timer expired.
SIGXCPU A CPU time limit exceeded.
SIGXFSZ A File size limit exceeded.

The default actions are as follows:

T Abnormal termination of the process.
XSI A Abnormal termination of the process with additional actions.

I Ignore the signal.
S Stop the process.
C Continue the process, if it is stopped; otherwise, ignore the signal.

The effects on the process in each case are described in XSH Section 2.4.3 (on page 486).

CX The <signal.h> header shall declare the sigaction structure, which shall include at least the
following members:

void (*sa_handler)(int) Pointer to a signal-catching function
or one of the SIG_IGN or SIG_DFL.

sigset_t sa_mask Set of signals to be blocked during execution
of the signal handling function.

int sa_flags Special flags.
void (*sa_sigaction)(int, siginfo_t *, void *)

Pointer to a signal-catching function.

330 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

11009

11010

11011

11012

11013

11014

11015

11016

11017

11018

11019

11020

11021

11022

11023

11024

11025

11026

11027

11028

11029

11030

11031

11032

11033

11034

11035

11036

11037

11038

11039

11040

11041

11042

11043

11044

11045

11046

11047

11048

11049

11050

11051

11052

11053

11054

Headers <signal.h>

XSI The storage occupied by sa_handler and sa_sigaction may overlap, and a conforming application
shall not use both simultaneously.

The <signal.h> header shall define the following macros which shall expand to integer constant
expressions that need not be usable in #if preprocessing directives:

CX SIG_BLOCK The resulting set is the union of the current set and the signal set pointed
to by the argument set.

CX SIG_UNBLOCK The resulting set is the intersection of the current set and the complement
of the signal set pointed to by the argument set.

CX SIG_SETMASK The resulting set is the signal set pointed to by the argument set.

The <signal.h> header shall also define the following symbolic constants:

CX SA_NOCLDSTOP Do not generate SIGCHLD when children stop
XSI or stopped children continue.

XSI SA_ONSTACK Causes signal delivery to occur on an alternate stack.

CX SA_RESETHAND Causes signal dispositions to be set to SIG_DFL on entry to signal
handlers.

CX SA_RESTART Causes certain functions to become restartable.

CX SA_SIGINFO Causes extra information to be passed to signal handlers at the time of
receipt of a signal.

CX SA_NOCLDWAIT Causes implementations not to create zombie processes on child death.

CX SA_NODEFER Causes signal not to be automatically blocked on entry to signal handler.

XSI SS_ONSTACK Process is executing on an alternate signal stack.

XSI SS_DISABLE Alternate signal stack is disabled.

XSI MINSIGSTKSZ Minimum stack size for a signal handler.

XSI SIGSTKSZ Default size in bytes for the alternate signal stack.

CX The <signal.h> header shall define the mcontext_t type through typedef.

CX The <signal.h> header shall define the ucontext_t type as a structure that shall include at least
the following members:

ucontext_t *uc_link Pointer to the context that is resumed
when this context returns.

sigset_t uc_sigmask The set of signals that are blocked when this
context is active.

stack_t uc_stack The stack used by this context.
mcontext_t uc_mcontext A machine-specific representation of the saved

context.

The <signal.h> header shall define the stack_t type as a structure, which shall include at least
the following members:

void *ss_sp Stack base or pointer.
size_t ss_size Stack size.
int ss_flags Flags.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 331

11055

11056

11057

11058

11059

11060

11061

11062

11063

11064

11065

11066

11067

11068

11069

11070

11071

11072

11073

11074

11075

11076

11077

11078

11079

11080

11081

11082

11083

11084

11085

11086

11087

11088

11089

11090

11091

11092

11093

<signal.h> Headers

CX The <signal.h> header shall define the siginfo_t type as a structure, which shall include at least
the following members:

CX int si_signo Signal number.
int si_code Signal code.

XSI int si_errno If non-zero, an errno value associated with
this signal, as described in <errno.h>.

CX pid_t si_pid Sending process ID.
uid_t si_uid Real user ID of sending process.
void *si_addr Address of faulting instruction.
int si_status Exit value or signal.

OB XSR long si_band Band event for SIGPOLL.
CX union sigval si_value Signal value.

CX The <signal.h> header shall define the symbolic constants in the Code column of the following
table for use as values of si_code that are signal-specific or non-signal-specific reasons why the
signal was generated.

332 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

11094

11095

11096

11097

11098

11099

11100

11101

11102

11103

11104

11105

11106

11107

11108

Headers <signal.h>

Signal Code Reason

CX SIGILL ILL_ILLOPC Illegal opcode.
ILL_ILLOPN Illegal operand.
ILL_ILLADR Illegal addressing mode.
ILL_ILLTRP Illegal trap.
ILL_PRVOPC Privileged opcode.
ILL_PRVREG Privileged register.
ILL_COPROC Coprocessor error.
ILL_BADSTK Internal stack error.

SIGFPE FPE_INTDIV Integer divide by zero.
FPE_INTOVF Integer overflow.
FPE_FLTDIV Floating-point divide by zero.
FPE_FLTOVF Floating-point overflow.
FPE_FLTUND Floating-point underflow.
FPE_FLTRES Floating-point inexact result.
FPE_FLTINV Invalid floating-point operation.
FPE_FLTSUB Subscript out of range.

SIGSEGV SEGV_MAPERR Address not mapped to object.
SEGV_ACCERR Invalid permissions for mapped object.

SIGBUS BUS_ADRALN Invalid address alignment.
BUS_ADRERR Nonexistent physical address.
BUS_OBJERR Object-specific hardware error.

XSI SIGTRAP TRAP_BRKPT Process breakpoint.
TRAP_TRACE Process trace trap.

CX SIGCHLD CLD_EXITED Child has exited.
CLD_KILLED Child has terminated abnormally and did not create a core file.
CLD_DUMPED Child has terminated abnormally and created a core file.
CLD_TRAPPED Traced child has trapped.
CLD_STOPPED Child has stopped.
CLD_CONTINUED Stopped child has continued.

OB XSR SIGPOLL POLL_IN Data input available.
POLL_OUT Output buffers available.
POLL_MSG Input message available.
POLL_ERR I/O error.
POLL_PRI High priority input available.
POLL_HUP Device disconnected.

CX Any SI_USER Signal sent by kill().
SI_QUEUE Signal sent by the sigqueue().
SI_TIMER Signal generated by expiration of a timer set by timer_settime().
SI_ASYNCIO Signal generated by completion of an asynchronous I/O

request.
SI_MESGQ Signal generated by arrival of a message on an empty message

queue.

CX Implementations may support additional si_code values not included in this list, may generate
values included in this list under circumstances other than those described in this list, and may
contain extensions or limitations that prevent some values from being generated.
Implementations do not generate a different value from the ones described in this list for
circumstances described in this list.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 333

11109

11110

11111

11112

11113

11114

11115

11116

11117

11118

11119

11120

11121

11122

11123

11124

11125

11126

11127

11128

11129

11130

11131

11132

11133

11134

11135

11136

11137

11138

11139

11140

11141

11142

11143

11144

11145

11146

11147

11148

11149

11150

11151

11152

11153

11154

11155

11156

<signal.h> Headers

CX In addition, the following signal-specific information shall be available:

Signal Member Value

SIGILL void * si_addr Address of faulting instruction.
SIGFPE

SIGSEGV void * si_addr Address of faulting memory reference.
SIGBUS

SIGCHLD pid_t si_pid Child process ID.
int si_status Exit value or signal.
uid_t si_uid Real user ID of the process that sent the signal.

OB XSR SIGPOLL long si_band Band event for POLL_IN, POLL_OUT, or POLL_MSG.

For some implementations, the value of si_addr may be inaccurate.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

CX int kill(pid_t, int);
XSI int killpg(pid_t, int);
CX void psiginfo(const siginfo_t *, const char *);

void psignal(int, const char *);
int pthread_kill(pthread_t, int);
int pthread_sigmask(int, const sigset_t *restrict,

sigset_t *restrict);
int raise(int);

CX int sigaction(int, const struct sigaction *restrict,
struct sigaction *restrict);

int sigaddset(sigset_t *, int);
XSI int sigaltstack(const stack_t *restrict, stack_t *restrict);
CX int sigdelset(sigset_t *, int);

int sigemptyset(sigset_t *);
int sigfillset(sigset_t *);

OB XSI int sighold(int);
int sigignore(int);
int siginterrupt(int, int);

CX int sigismember(const sigset_t *, int);
void (*signal(int, void (*)(int)))(int);

OB XSI int sigpause(int);
CX int sigpending(sigset_t *);

int sigprocmask(int, const sigset_t *restrict, sigset_t *restrict);
int sigqueue(pid_t, int, const union sigval);

OB XSI int sigrelse(int);
void (*sigset(int, void (*)(int)))(int);

CX int sigsuspend(const sigset_t *);
int sigtimedwait(const sigset_t *restrict, siginfo_t *restrict,

const struct timespec *restrict);
int sigwait(const sigset_t *restrict, int *restrict);
int sigwaitinfo(const sigset_t *restrict, siginfo_t *restrict);

CX Inclusion of the <signal.h> header may make visible all symbols from the <time.h> header.

334 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

11157

11158

11159

11160

11161

11162

11163

11164

11165

11166

11167

11168

11169

11170

11171

11172

11173

11174

11175

11176

11177

11178

11179

11180

11181

11182

11183

11184

11185

11186

11187

11188

11189

11190

11191

11192

11193

11194

11195

11196

11197

11198

11199

11200

11201

Headers <signal.h>

APPLICATION USAGE
On systems not supporting the XSI option, the si_pid and si_uid members of siginfo_t are only
required to be valid when si_code is SI_USER or SI_QUEUE. On XSI-conforming systems, they
are also valid for all si_code values less than or equal to 0; however, it is unspecified whether
SI_USER and SI_QUEUE have values less than or equal to zero, and therefore XSI applications
should check whether si_code has the value SI_USER or SI_QUEUE or is less than or equal to 0 to
tell whether si_pid and si_uid are valid.

RATIONALE
None.

FUTURE DIRECTIONS
The SIGPOLL and SIGPROF signals may be removed in a future version.

SEE ALSO
<errno.h>, <stropts.h>, <sys/types.h>, <time.h>

XSH Section 2.2 (on page 468), alarm(), ioctl(), kill(), killpg(), psiginfo(), pthread_kill(),
pthread_sigmask(), raise(), sigaction(), sigaddset(), sigaltstack(), sigdelset(), sigemptyset(),
sigfillset(), sighold(), siginterrupt(), sigismember(), signal(), sigpending(), sigqueue(), sigsuspend(),
sigtimedwait(), sigwait(), timer_create(), wait(), waitid()

CHANGE HISTORY
First released in Issue 1.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

The default action for SIGURG is changed from i to iii. The function prototype for sigmask() is
removed.

Issue 6
The Open Group Corrigendum U035/2 is applied. In the DESCRIPTION, the wording for
abnormal termination is clarified.

The Open Group Corrigendum U028/8 is applied, correcting the prototype for the sigset()
function.

The Open Group Corrigendum U026/3 is applied, correcting the type of the sigev_notify_function
function member of the sigevent structure.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The SIGCHLD, SIGCONT, SIGSTOP, SIGTSTP, SIGTTIN, and SIGTTOU signals are now
mandated. This is also a FIPS requirement.

• The pid_t definition is mandated.

The RT markings are changed to RTS to denote that the semantics are part of the Realtime
Signals Extension option.

The restrict keyword is added to the prototypes for sigaction(), sigaltstack(), sigprocmask(),
sigtimedwait(), sigwait(), and sigwaitinfo().

IEEE PASC Interpretation 1003.1 #85 is applied, adding the statement that symbols from
<time.h> may be made visible when <signal.h> is included.

Extensions beyond the ISO C standard are marked.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 335

11202

11203

11204

11205

11206

11207

11208

11209

11210

11211

11212

11213

11214

11215

11216

11217

11218

11219

11220

11221

11222

11223

11224

11225

11226

11227

11228

11229

11230

11231

11232

11233

11234

11235

11236

11237

11238

11239

11240

11241

11242

11243

11244

<signal.h> Headers

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/14 is applied, changing the descriptive
text for members of the sigaction structure.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/15 is applied, correcting the definition of
the sa_sigaction member of the sigaction structure.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/24 is applied, reworking the ordering of
the siginfo_t type structure in the DESCRIPTION. This is an editorial change and no normative
change is intended.

Issue 7
SD5-XBD-ERN-5 is applied.

SD5-XBD-ERN-39 is applied, removing the sigstack structure which should have been removed
at the same time as the LEGACY sigstack() function.

SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t type.

Austin Group Interpretation 1003.1-2001 #034 is applied.

The ucontext_t and mcontext_t structures are added here from the obsolescent <ucontext.h>
header.

The psiginfo() and psignal() functions are added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

The SIGPOLL and SIGPROF signals and text relating to the XSI STREAMS option are marked
obsolescent.

The SA_RESETHAND, SA_RESTART, SA_SIGINFO, SA_NOCLDWAIT, and SA_NODEFER
constants are moved from the XSI option to the Base.

Functionality relating to the Realtime Signals Extension option is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants, and declarations
for the pthread_attr_t, pthread_t, and uid_t types and the timespec structure are added.

SIGRTMIN and SIGRTMAX are required to be positive integer expressions.

The APPLICATION USAGE section is updated to describe the si_pid and si_uid members of
siginfo_t.

336 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

11245

11246

11247

11248

11249

11250

11251

11252

11253

11254

11255

11256

11257

11258

11259

11260

11261

11262

11263

11264

11265

11266

11267

11268

11269

11270

11271

Headers <spawn.h>

NAME
spawn.h — spawn (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

DESCRIPTION
The <spawn.h> header shall define the posix_spawnattr_t and posix_spawn_file_actions_t
types used in performing spawn operations.

The <spawn.h> header shall define the mode_t and pid_t types as described in <sys/types.h>.

The <spawn.h> header shall define the sigset_t type as described in <signal.h>.

The tag sched_param shall be declared as naming an incomplete structure type, the contents of
which are described in the <sched.h> header.

The <spawn.h> header shall define the following symbolic constants for use as the flags that
may be set in a posix_spawnattr_t object using the posix_spawnattr_setflags() function:

POSIX_SPAWN_RESETIDS
POSIX_SPAWN_SETPGROUP

PS POSIX_SPAWN_SETSCHEDPARAM
POSIX_SPAWN_SETSCHEDULER
POSIX_SPAWN_SETSIGDEF
POSIX_SPAWN_SETSIGMASK

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int posix_spawn(pid_t *restrict, const char *restrict,
const posix_spawn_file_actions_t *,
const posix_spawnattr_t *restrict, char *const [restrict],
char *const [restrict]);

int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t *,
int);

int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t *,
int, int);

int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t *restrict,
int, const char *restrict, int, mode_t);

int posix_spawn_file_actions_destroy(posix_spawn_file_actions_t *);
int posix_spawn_file_actions_init(posix_spawn_file_actions_t *);
int posix_spawnattr_destroy(posix_spawnattr_t *);
int posix_spawnattr_getflags(const posix_spawnattr_t *restrict,

short *restrict);
int posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict,

pid_t *restrict);
PS int posix_spawnattr_getschedparam(const posix_spawnattr_t *restrict,

struct sched_param *restrict);
int posix_spawnattr_getschedpolicy(const posix_spawnattr_t *restrict,

int *restrict);
int posix_spawnattr_getsigdefault(const posix_spawnattr_t *restrict,

sigset_t *restrict);
int posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict,

sigset_t *restrict);
int posix_spawnattr_init(posix_spawnattr_t *);

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 337

11272

11273

11274

11275

11276

11277

11278

11279

11280

11281

11282

11283

11284

11285

11286

11287

11288

11289

11290

11291

11292

11293

11294

11295

11296

11297

11298

11299

11300

11301

11302

11303

11304

11305

11306

11307

11308

11309

11310

11311

11312

11313

11314

11315

11316

11317

11318

<spawn.h> Headers

int posix_spawnattr_setflags(posix_spawnattr_t *, short);
int posix_spawnattr_setpgroup(posix_spawnattr_t *, pid_t);

PS int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict,
const struct sched_param *restrict);

int posix_spawnattr_setschedpolicy(posix_spawnattr_t *, int);
int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict,

const sigset_t *restrict);
int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict,

const sigset_t *restrict);
int posix_spawnp(pid_t *restrict, const char *restrict,

const posix_spawn_file_actions_t *,
const posix_spawnattr_t *restrict,
char *const [restrict], char *const [restrict]);

Inclusion of the <spawn.h> header may make visible symbols defined in the <sched.h> and
<signal.h> headers.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sched.h>, <semaphore.h>, <signal.h>, <sys/types.h>

XSH posix_spawn(), posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(),
posix_spawn_file_actions_destroy(), posix_spawnattr_destroy(), posix_spawnattr_getflags(),
posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigdefault(), posix_spawnattr_getsigmask()

CHANGE HISTORY
First released in Issue 6. Included for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the prototypes for posix_spawn(),
posix_spawn_file_actions_addopen(), posix_spawnattr_getsigdefault(), posix_spawnattr_getflags(),
posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigmask(), posix_spawnattr_setsigdefault(), posix_spawnattr_setschedparam(),
posix_spawnattr_setsigmask(), and posix_spawnp().

Issue 7
This reference page is clarified with respect to macros and symbolic constants, and declarations
for the mode_t, pid_t, and sigset_t types are added.

338 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

11319

11320

11321

11322

11323

11324

11325

11326

11327

11328

11329

11330

11331

11332

11333

11334

11335

11336

11337

11338

11339

11340

11341

11342

11343

11344

11345

11346

11347

11348

11349

11350

11351

11352

11353

11354

11355

Headers <stdarg.h>

NAME
stdarg.h — handle variable argument list

SYNOPSIS
#include <stdarg.h>

void va_start(va_list ap, argN);
void va_copy(va_list dest, va_list src);
type va_arg(va_list ap, type);
void va_end(va_list ap);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The <stdarg.h> header shall contain a set of macros which allows portable functions that accept
variable argument lists to be written. Functions that have variable argument lists (such as
printf()) but do not use these macros are inherently non-portable, as different systems use
different argument-passing conventions.

The <stdarg.h> header shall define the va_list type for variables used to traverse the list.

The va_start() macro is invoked to initialize ap to the beginning of the list before any calls to
va_arg().

The va_copy() macro initializes dest as a copy of src, as if the va_start() macro had been applied
to dest followed by the same sequence of uses of the va_arg() macro as had previously been used
to reach the present state of src. Neither the va_copy() nor va_start() macro shall be invoked to
reinitialize dest without an intervening invocation of the va_end() macro for the same dest.

The object ap may be passed as an argument to another function; if that function invokes the
va_arg() macro with parameter ap, the value of ap in the calling function is unspecified and shall
be passed to the va_end() macro prior to any further reference to ap. The parameter argN is the
identifier of the rightmost parameter in the variable parameter list in the function definition (the
one just before the . . .). If the parameter argN is declared with the register storage class, with a
function type or array type, or with a type that is not compatible with the type that results after
application of the default argument promotions, the behavior is undefined.

The va_arg() macro shall return the next argument in the list pointed to by ap. Each invocation
of va_arg() modifies ap so that the values of successive arguments are returned in turn. The type
parameter shall be a type name specified such that the type of a pointer to an object that has the
specified type can be obtained simply by postfixing a ’*’ to type. If there is no actual next
argument, or if type is not compatible with the type of the actual next argument (as promoted
according to the default argument promotions), the behavior is undefined, except for the
following cases:

• One type is a signed integer type, the other type is the corresponding unsigned integer
type, and the value is representable in both types.

• One type is a pointer to void and the other is a pointer to a character type.

XSI • Both types are pointers.

Different types can be mixed, but it is up to the routine to know what type of argument is
expected.

The va_end() macro is used to clean up; it invalidates ap for use (unless va_start() or va_copy() is
invoked again).

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 339

11356

11357

11358

11359

11360

11361

11362

11363

11364

11365

11366

11367

11368

11369

11370

11371

11372

11373

11374

11375

11376

11377

11378

11379

11380

11381

11382

11383

11384

11385

11386

11387

11388

11389

11390

11391

11392

11393

11394

11395

11396

11397

11398

11399

11400

<stdarg.h> Headers

Each invocation of the va_start() and va_copy() macros shall be matched by a corresponding
invocation of the va_end() macro in the same function.

Multiple traversals, each bracketed by va_start() . . . va_end(), are possible.

EXAMPLES
This example is a possible implementation of execl():

#include <stdarg.h>

#define MAXARGS 31

/*
* execl is called by
* execl(file, arg1, arg2, ..., (char *)(0));
*/
int execl(const char *file, const char *args, ...)
{

va_list ap;
char *array[MAXARGS +1];
int argno = 0;

va_start(ap, args);
while (args != 0 && argno < MAXARGS)
{

array[argno++] = args;
args = va_arg(ap, const char *);

}
array[argno] = (char *) 0;
va_end(ap);
return execv(file, array);

}

APPLICATION USAGE
It is up to the calling routine to communicate to the called routine how many arguments there
are, since it is not always possible for the called routine to determine this in any other way. For
example, execl() is passed a null pointer to signal the end of the list. The printf() function can tell
how many arguments are there by the format argument.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH exec , fprintf()

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 6
This reference page is updated to align with the ISO/IEC 9899: 1999 standard.

340 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

11401

11402

11403

11404

11405

11406

11407

11408

11409

11410

11411

11412

11413

11414

11415

11416

11417

11418

11419

11420

11421

11422

11423

11424

11425

11426

11427

11428

11429

11430

11431

11432

11433

11434

11435

11436

11437

11438

11439

11440

11441

Headers <stdbool.h>

NAME
stdbool.h — boolean type and values

SYNOPSIS
#include <stdbool.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The <stdbool.h> header shall define the following macros:

bool Expands to _Bool.

true Expands to the integer constant 1.

false Expands to the integer constant 0.

_ _bool_true_false_are_defined
Expands to the integer constant 1.

An application may undefine and then possibly redefine the macros bool, true, and false.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The ability to undefine and redefine the macros bool, true, and false is an obsolescent feature
and may be removed in a future version.

SEE ALSO
None.

CHANGE HISTORY
First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 341

11442

11443

11444

11445

11446

11447

11448

11449

11450

11451

11452

11453

11454

11455

11456

11457

11458

11459

11460

11461

11462

11463

11464

11465

11466

11467

<stddef.h> Headers

NAME
stddef.h — standard type definitions

SYNOPSIS
#include <stddef.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The <stddef.h> header shall define the following macros:

CX NULL Null pointer constant. The macro shall expand to an integer constant expression
with the value 0 cast to type void *.

offsetof(type, member-designator)
Integer constant expression of type size_t, the value of which is the offset in bytes
to the structure member (member-designator), from the beginning of its structure
(type).

The <stddef.h> header shall define the following types:

ptrdiff_t Signed integer type of the result of subtracting two pointers.

wchar_t Integer type whose range of values can represent distinct codes for all members of
the largest extended character set specified among the supported locales; the null
character shall have the code value zero. Each member of the basic character set
shall have a code value equal to its value when used as the lone character in an
integer character constant if an implementation does not define
_ _STDC_MB_MIGHT_NEQ_WC_ _.

size_t Unsigned integer type of the result of the sizeof operator.

The implementation shall support one or more programming environments in which the widths
of ptrdiff_t, size_t, and wchar_t are no greater than the width of type long. The names of these
programming environments can be obtained using the confstr() function or the getconf utility.

APPLICATION USAGE
None.

RATIONALE
The ISO C standard does not require the NULL macro to include the cast to type void * and
specifies that the NULL macro be implementation-defined. POSIX.1-2008 requires the cast and
therefore need not be implementation-defined.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>, <wchar.h>

XSH confstr()

XCU getconf

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

342 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

11468

11469

11470

11471

11472

11473

11474

11475

11476

11477

11478

11479

11480

11481

11482

11483

11484

11485

11486

11487

11488

11489

11490

11491

11492

11493

11494

11495

11496

11497

11498

11499

11500

11501

11502

11503

11504

11505

11506

11507

11508

Headers <stddef.h>

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

SD5-XBD-ERN-53 is applied, updating the definition of wchar_t to align with
ISO/IEC 9899: 1999 standard, Technical Corrigendum 3.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 343

11509

11510

11511

11512

<stdint.h> Headers

NAME
stdint.h — integer types

SYNOPSIS
#include <stdint.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 468) to
enable the visibility of these symbols in this header.

The <stdint.h> header shall declare sets of integer types having specified widths, and shall
define corresponding sets of macros. It shall also define macros that specify limits of integer
types corresponding to types defined in other standard headers.

Note: The ‘‘width’’ of an integer type is the number of bits used to store its value in a pure binary
system; the actual type may use more bits than that (for example, a 28-bit type could be stored
in 32 bits of actual storage). An N-bit signed type has values in the range −2N−1 or 1−2N−1 to
2N−1−1, while an N-bit unsigned type has values in the range 0 to 2N−1.

Types are defined in the following categories:

• Integer types having certain exact widths

• Integer types having at least certain specified widths

• Fastest integer types having at least certain specified widths

• Integer types wide enough to hold pointers to objects

• Integer types having greatest width

(Some of these types may denote the same type.)

Corresponding macros specify limits of the declared types and construct suitable constants.

For each type described herein that the implementation provides, the <stdint.h> header shall
declare that typedef name and define the associated macros. Conversely, for each type described
herein that the implementation does not provide, the <stdint.h> header shall not declare that
typedef name, nor shall it define the associated macros. An implementation shall provide those
types described as required, but need not provide any of the others (described as optional).

Integer Types

When typedef names differing only in the absence or presence of the initial u are defined, they
shall denote corresponding signed and unsigned types as described in the ISO/IEC 9899: 1999
standard, Section 6.2.5; an implementation providing one of these corresponding types shall also
provide the other.

In the following descriptions, the symbol N represents an unsigned decimal integer with no
leading zeros (for example, 8 or 24, but not 04 or 048).

• Exact-width integer types

The typedef name intN_t designates a signed integer type with width N , no padding bits,
and a two’s-complement representation. Thus, int8_t denotes a signed integer type with a
width of exactly 8 bits.

The typedef name uintN_t designates an unsigned integer type with width N . Thus,
uint24_t denotes an unsigned integer type with a width of exactly 24 bits.

344 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

11513

11514

11515

11516

11517

11518

11519

11520

11521

11522

11523

11524

11525

11526

11527

11528

11529

11530

11531

11532

11533

11534

11535

11536

11537

11538

11539

11540

11541

11542

11543

11544

11545

11546

11547

11548

11549

11550

11551

11552

11553

Headers <stdint.h>

CX The following types are required:

int8_t
int16_t
int32_t
uint8_t
uint16_t
uint32_t

If an implementation provides integer types with width 64 that meet these requirements,
then the following types are required:

int64_t
uint64_t

CX In particular, this will be the case if any of the following are true:

— The implementation supports the _POSIX_V7_ILP32_OFFBIG programming
environment and the application is being built in the _POSIX_V7_ILP32_OFFBIG
programming environment (see the Shell and Utilities volume of POSIX.1-2008, c99,
Programming Environments).

— The implementation supports the _POSIX_V7_LP64_OFF64 programming
environment and the application is being built in the _POSIX_V7_LP64_OFF64
programming environment.

— The implementation supports the _POSIX_V7_LPBIG_OFFBIG programming
environment and the application is being built in the _POSIX_V7_LPBIG_OFFBIG
programming environment.

All other types of this form are optional.

• Minimum-width integer types

The typedef name int_leastN_t designates a signed integer type with a width of at least N ,
such that no signed integer type with lesser size has at least the specified width. Thus,
int_least32_t denotes a signed integer type with a width of at least 32 bits.

The typedef name uint_leastN_t designates an unsigned integer type with a width of at
least N , such that no unsigned integer type with lesser size has at least the specified width.
Thus, uint_least16_t denotes an unsigned integer type with a width of at least 16 bits.

The following types are required:

int_least8_t
int_least16_t
int_least32_t
int_least64_t
uint_least8_t
uint_least16_t
uint_least32_t
uint_least64_t

All other types of this form are optional.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 345

11554

11555

11556

11557

11558

11559

11560

11561

11562

11563

11564

11565

11566

11567

11568

11569

11570

11571

11572

11573

11574

11575

11576

11577

11578

11579

11580

11581

11582

11583

11584

11585

11586

11587

11588

11589

11590

11591

11592

11593

<stdint.h> Headers

• Fastest minimum-width integer types

Each of the following types designates an integer type that is usually fastest to operate
with among all integer types that have at least the specified width.

The designated type is not guaranteed to be fastest for all purposes; if the implementation
has no clear grounds for choosing one type over another, it will simply pick some integer
type satisfying the signedness and width requirements.

The typedef name int_fastN_t designates the fastest signed integer type with a width of at
least N . The typedef name uint_fastN_t designates the fastest unsigned integer type with
a width of at least N .

The following types are required:

int_fast8_t
int_fast16_t
int_fast32_t
int_fast64_t
uint_fast8_t
uint_fast16_t
uint_fast32_t
uint_fast64_t

All other types of this form are optional.

• Integer types capable of holding object pointers

The following type designates a signed integer type with the property that any valid
pointer to void can be converted to this type, then converted back to a pointer to void, and
the result will compare equal to the original pointer:

intptr_t

The following type designates an unsigned integer type with the property that any valid
pointer to void can be converted to this type, then converted back to a pointer to void, and
the result will compare equal to the original pointer:

uintptr_t

XSI On XSI-conformant systems, the intptr_t and uintptr_t types are required; otherwise, they
are optional.

• Greatest-width integer types

The following type designates a signed integer type capable of representing any value of
any signed integer type:

intmax_t

The following type designates an unsigned integer type capable of representing any value
of any unsigned integer type:

uintmax_t

These types are required.

346 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

11594

11595

11596

11597

11598

11599

11600

11601

11602

11603

11604

11605

11606

11607

11608

11609

11610

11611

11612

11613

11614

11615

11616

11617

11618

11619

11620

11621

11622

11623

11624

11625

11626

11627

11628

11629

11630

11631

Headers <stdint.h>

Note: Applications can test for optional types by using the corresponding limit macro from Limits of
Specified-Width Integer Types.

Limits of Specified-Width Integer Types

The following macros specify the minimum and maximum limits of the types declared in the
<stdint.h> header. Each macro name corresponds to a similar type name in Integer Types (on
page 344).

Each instance of any defined macro shall be replaced by a constant expression suitable for use in
#if preprocessing directives, and this expression shall have the same type as would an
expression that is an object of the corresponding type converted according to the integer
promotions. Its implementation-defined value shall be equal to or greater in magnitude
(absolute value) than the corresponding value given below, with the same sign, except where
stated to be exactly the given value.

• Limits of exact-width integer types

— Minimum values of exact-width signed integer types:

{INTN_MIN} Exactly −(2N−1)

— Maximum values of exact-width signed integer types:

{INTN_MAX} Exactly 2N−1 −1

— Maximum values of exact-width unsigned integer types:

{UINTN_MAX} Exactly 2N −1

• Limits of minimum-width integer types

— Minimum values of minimum-width signed integer types:

{INT_LEASTN_MIN} −(2N−1 −1)

— Maximum values of minimum-width signed integer types:

{INT_LEASTN_MAX} 2N−1 −1

— Maximum values of minimum-width unsigned integer types:

{UINT_LEASTN_MAX} 2N −1

• Limits of fastest minimum-width integer types

— Minimum values of fastest minimum-width signed integer types:

{INT_FASTN_MIN} −(2N−1 −1)

— Maximum values of fastest minimum-width signed integer types:

{INT_FASTN_MAX} 2N−1 −1

— Maximum values of fastest minimum-width unsigned integer types:

{UINT_FASTN_MAX} 2N −1

• Limits of integer types capable of holding object pointers

— Minimum value of pointer-holding signed integer type:

{INTPTR_MIN} −(215 −1)

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 347

11632

11633

11634

11635

11636

11637

11638

11639

11640

11641

11642

11643

11644

11645

11646

11647

11648

11649

11650

11651

11652

11653

11654

11655

11656

11657

11658

11659

11660

11661

11662

11663

11664

11665

11666

11667

<stdint.h> Headers

— Maximum value of pointer-holding signed integer type:

{INTPTR_MAX} 215 −1

— Maximum value of pointer-holding unsigned integer type:

{UINTPTR_MAX} 216 −1

• Limits of greatest-width integer types

— Minimum value of greatest-width signed integer type:

{INTMAX_MIN} −(263 −1)

— Maximum value of greatest-width signed integer type:

{INTMAX_MAX} 263 −1

— Maximum value of greatest-width unsigned integer type:

{UINTMAX_MAX} 264 −1

Limits of Other Integer Types

The following macros specify the minimum and maximum limits of integer types corresponding
to types defined in other standard headers.

Each instance of these macros shall be replaced by a constant expression suitable for use in #if
preprocessing directives, and this expression shall have the same type as would an expression
that is an object of the corresponding type converted according to the integer promotions. Its
implementation-defined value shall be equal to or greater in magnitude (absolute value) than
the corresponding value given below, with the same sign.

• Limits of ptrdiff_t:

{PTRDIFF_MIN} −65 535

{PTRDIFF_MAX} +65 535

• Limits of sig_atomic_t:

{SIG_ATOMIC_MIN} See below.

{SIG_ATOMIC_MAX} See below.

• Limit of size_t:

{SIZE_MAX} 65 535

• Limits of wchar_t:

{WCHAR_MIN} See below.

{WCHAR_MAX} See below.

• Limits of wint_t:

{WINT_MIN} See below.

{WINT_MAX} See below.

If sig_atomic_t (see the <signal.h> header) is defined as a signed integer type, the value of
{SIG_ATOMIC_MIN} shall be no greater than −127 and the value of {SIG_ATOMIC_MAX} shall
be no less than 127; otherwise, sig_atomic_t shall be defined as an unsigned integer type, and
the value of {SIG_ATOMIC_MIN} shall be 0 and the value of {SIG_ATOMIC_MAX} shall be no

348 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

11668

11669

11670

11671

11672

11673

11674

11675

11676

11677

11678

11679

11680

11681

11682

11683

11684

11685

11686

11687

11688

11689

11690

11691

11692

11693

11694

11695

11696

11697

11698

11699

11700

11701

11702

11703

11704

Headers <stdint.h>

less than 255.

If wchar_t (see the <stddef.h> header) is defined as a signed integer type, the value of
{WCHAR_MIN} shall be no greater than −127 and the value of {WCHAR_MAX} shall be no less
than 127; otherwise, wchar_t shall be defined as an unsigned integer type, and the value of
{WCHAR_MIN} shall be 0 and the value of {WCHAR_MAX} shall be no less than 255.

If wint_t (see the <wchar.h> header) is defined as a signed integer type, the value of
{WINT_MIN} shall be no greater than −32 767 and the value of {WINT_MAX} shall be no less
than 32 767; otherwise, wint_t shall be defined as an unsigned integer type, and the value of
{WINT_MIN} shall be 0 and the value of {WINT_MAX} shall be no less than 65 535.

Macros for Integer Constant Expressions

The following macros expand to integer constant expressions suitable for initializing objects that
have integer types corresponding to types defined in the <stdint.h> header. Each macro name
corresponds to a similar type name listed under Minimum-width integer types and Greatest-width
integer types.

Each invocation of one of these macros shall expand to an integer constant expression suitable
for use in #if preprocessing directives. The type of the expression shall have the same type as
would an expression that is an object of the corresponding type converted according to the
integer promotions. The value of the expression shall be that of the argument.

The argument in any instance of these macros shall be an unsuffixed integer constant with a
value that does not exceed the limits for the corresponding type.

• Macros for minimum-width integer constant expressions

The macro INTN_C(value) shall expand to an integer constant expression corresponding to
the type int_leastN_t. The macro UINTN_C(value) shall expand to an integer constant
expression corresponding to the type uint_leastN_t. For example, if uint_least64_t is a
name for the type unsigned long long, then UINT64_C(0x123) might expand to the integer
constant 0x123ULL.

• Macros for greatest-width integer constant expressions

The following macro expands to an integer constant expression having the value specified
by its argument and the type intmax_t:

INTMAX_C(value)

The following macro expands to an integer constant expression having the value specified
by its argument and the type uintmax_t:

UINTMAX_C(value)

APPLICATION USAGE
None.

RATIONALE
The <stdint.h> header is a subset of the <inttypes.h> header more suitable for use in
freestanding environments, which might not support the formatted I/O functions. In some
environments, if the formatted conversion support is not wanted, using this header instead of
the <inttypes.h> header avoids defining such a large number of macros.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 349

11705

11706

11707

11708

11709

11710

11711

11712

11713

11714

11715

11716

11717

11718

11719

11720

11721

11722

11723

11724

11725

11726

11727

11728

11729

11730

11731

11732

11733

11734

11735

11736

11737

11738

11739

11740

11741

11742

11743

11744

<stdint.h> Headers

As a consequence of adding int8_t, the following are true:

• A byte is exactly 8 bits.

• {CHAR_BIT} has the value 8, {SCHAR_MAX} has the value 127, {SCHAR_MIN} has the
value −128, and {UCHAR_MAX} has the value 255.

(The POSIX standard explicitly requires 8-bit char and two’s-complement arithmetic.)

FUTURE DIRECTIONS
typedef names beginning with int or uint and ending with _t may be added to the types defined
in the <stdint.h> header. Macro names beginning with INT or UINT and ending with _MAX,
_MIN, or _C may be added to the macros defined in the <stdint.h> header.

SEE ALSO
<inttypes.h>, <signal.h>, <stddef.h>, <wchar.h>

XSH Section 2.2 (on page 468)

CHANGE HISTORY
First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is applied.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 3 #40 is applied.

SD5-XBD-ERN-67 is applied.

350 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

11745

11746

11747

11748

11749

11750

11751

11752

11753

11754

11755

11756

11757

11758

11759

11760

11761

11762

Headers <stdio.h>

NAME
stdio.h — standard buffered input/output

SYNOPSIS
#include <stdio.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 468) to
enable the visibility of these symbols in this header.

The <stdio.h> header shall define the following data types through typedef:

FILE A structure containing information about a file.

fpos_t A non-array type containing all information needed to specify uniquely
every position within a file.

off_t As described in <sys/types.h>.

size_t As described in <stddef.h>.

CX ssize_t As described in <sys/types.h>.

CX va_list As described in <stdarg.h>.

The <stdio.h> header shall define the following macros which shall expand to integer constant
expressions:

CX BUFSIZ Size of <stdio.h> buffers. This shall expand to a positive value.

CX L_ctermid Maximum size of character array to hold ctermid() output.

OB L_tmpnam Maximum size of character array to hold tmpnam() output.

The <stdio.h> header shall define the following macros which shall expand to integer constant
expressions with distinct values:

_IOFBF Input/output fully buffered.

_IOLBF Input/output line buffered.

_IONBF Input/output unbuffered.

The <stdio.h> header shall define the following macros which shall expand to integer constant
expressions with distinct values:

SEEK_CUR Seek relative to current position.

SEEK_END Seek relative to end-of-file.

SEEK_SET Seek relative to start-of-file.

The <stdio.h> header shall define the following macros which shall expand to integer constant
expressions denoting implementation limits:

{FILENAME_MAX} Maximum size in bytes of the longest filename string that the
implementation guarantees can be opened.

{FOPEN_MAX} Number of streams which the implementation guarantees can be open
simultaneously. The value is at least eight.

OB {TMP_MAX} Minimum number of unique filenames generated by tmpnam().
Maximum number of times an application can call tmpnam() reliably. The
value of {TMP_MAX} is at least 25.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 351

11763

11764

11765

11766

11767

11768

11769

11770

11771

11772

11773

11774

11775

11776

11777

11778

11779

11780

11781

11782

11783

11784

11785

11786

11787

11788

11789

11790

11791

11792

11793

11794

11795

11796

11797

11798

11799

11800

11801

11802

<stdio.h> Headers

OB XSI On XSI-conformant systems, the value of {TMP_MAX} is at least 10 000.

The <stdio.h> header shall define the following macro which shall expand to an integer constant
expression with type int and a negative value:

EOF End-of-file return value.

The <stdio.h> header shall define NULL as described in <stddef.h>.

The <stdio.h> header shall define the following macro which shall expand to a string constant:

OB XSI P_tmpdir Default directory prefix for tempnam().

The <stdio.h> header shall define the following macros which shall expand to expressions of
type ‘‘pointer to FILE’’ that point to the FILE objects associated, respectively, with the standard
error, input, and output streams:

stderr Standard error output stream.

stdin Standard input stream.

stdout Standard output stream.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void clearerr(FILE *);
CX char *ctermid(char *);

int dprintf(int, const char *restrict, ...)
int fclose(FILE *);

CX FILE *fdopen(int, const char *);
int feof(FILE *);
int ferror(FILE *);
int fflush(FILE *);
int fgetc(FILE *);
int fgetpos(FILE *restrict, fpos_t *restrict);
char *fgets(char *restrict, int, FILE *restrict);

CX int fileno(FILE *);
void flockfile(FILE *);
FILE *fmemopen(void *restrict, size_t, const char *restrict);
FILE *fopen(const char *restrict, const char *restrict);
int fprintf(FILE *restrict, const char *restrict, ...);
int fputc(int, FILE *);
int fputs(const char *restrict, FILE *restrict);
size_t fread(void *restrict, size_t, size_t, FILE *restrict);
FILE *freopen(const char *restrict, const char *restrict,

FILE *restrict);
int fscanf(FILE *restrict, const char *restrict, ...);
int fseek(FILE *, long, int);

CX int fseeko(FILE *, off_t, int);
int fsetpos(FILE *, const fpos_t *);
long ftell(FILE *);

CX off_t ftello(FILE *);
int ftrylockfile(FILE *);
void funlockfile(FILE *);
size_t fwrite(const void *restrict, size_t, size_t, FILE *restrict);
int getc(FILE *);

352 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

11803

11804

11805

11806

11807

11808

11809

11810

11811

11812

11813

11814

11815

11816

11817

11818

11819

11820

11821

11822

11823

11824

11825

11826

11827

11828

11829

11830

11831

11832

11833

11834

11835

11836

11837

11838

11839

11840

11841

11842

11843

11844

11845

11846

11847

11848

Headers <stdio.h>

int getchar(void);
CX int getc_unlocked(FILE *);

int getchar_unlocked(void);
ssize_t getdelim(char **restrict, size_t *restrict, int,

FILE *restrict);
ssize_t getline(char **restrict, size_t *restrict, FILE *restrict);

OB char *gets(char *);
CX FILE *open_memstream(char **, size_t *);

int pclose(FILE *);
void perror(const char *);

CX FILE *popen(const char *, const char *);
int printf(const char *restrict, ...);
int putc(int, FILE *);
int putchar(int);

CX int putc_unlocked(int, FILE *);
int putchar_unlocked(int);
int puts(const char *);
int remove(const char *);
int rename(const char *, const char *);

CX int renameat(int, const char *, int, const char *);
void rewind(FILE *);
int scanf(const char *restrict, ...);
void setbuf(FILE *restrict, char *restrict);
int setvbuf(FILE *restrict, char *restrict, int, size_t);
int snprintf(char *restrict, size_t, const char *restrict, ...);
int sprintf(char *restrict, const char *restrict, ...);
int sscanf(const char *restrict, const char *restrict, ...);

OB XSI char *tempnam(const char *, const char *);
FILE *tmpfile(void);

OB char *tmpnam(char *);
int ungetc(int, FILE *);

CX int vdprintf(int, const char *restrict, va_list);
int vfprintf(FILE *restrict, const char *restrict, va_list);
int vfscanf(FILE *restrict, const char *restrict, va_list);
int vprintf(const char *restrict, va_list);
int vscanf(const char *restrict, va_list);
int vsnprintf(char *restrict, size_t, const char *restrict,

va_list);
int vsprintf(char *restrict, const char *restrict, va_list);
int vsscanf(const char *restrict, const char *restrict, va_list);

CX Inclusion of the <stdio.h> header may also make visible all symbols from <stddef.h>.

APPLICATION USAGE
Since standard I/O streams may use an underlying file descriptor to access the file associated
with a stream, application developers need to be aware that {FOPEN_MAX} streams may not be
available if file descriptors are being used to access files that are not associated with streams.

RATIONALE
There is a conflict between the ISO C standard and the POSIX definition of the {TMP_MAX}
macro that is addressed by ISO/IEC 9899: 1999 standard, Defect Report 336. The POSIX standard
is in alignment with the public record of the response to the Defect Report. This change has not
yet been published as part of the ISO C standard.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 353

11849

11850

11851

11852

11853

11854

11855

11856

11857

11858

11859

11860

11861

11862

11863

11864

11865

11866

11867

11868

11869

11870

11871

11872

11873

11874

11875

11876

11877

11878

11879

11880

11881

11882

11883

11884

11885

11886

11887

11888

11889

11890

11891

11892

11893

11894

11895

11896

11897

11898

<stdio.h> Headers

FUTURE DIRECTIONS
None.

SEE ALSO
<stdarg.h>, <stddef.h>, <sys/types.h>

XSH Section 2.2 (on page 468), clearerr(), ctermid(), fclose(), fdopen(), feof(), ferror(), fflush(),
fgetc(), fgetpos(), fgets(), fileno(), flockfile(), fmemopen(), fopen(), fprintf(), fputc(), fputs(), fread(),
freopen(), fscanf(), fseek(), fsetpos(), ftell(), fwrite(), getc(), getchar(), getc_unlocked(), getdelim(),
getopt(), gets(), open_memstream(), pclose(), perror(), popen(), putc(), putchar(), puts(), remove(),
rename(), rewind(), setbuf(), setvbuf(), stdin , system(), tempnam(), tmpfile(), tmpnam(), ungetc(),
vfprintf(), vfscanf()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Large File System extensions are added.

The constant L_cuserid and the external variables optarg, opterr, optind, and optopt are marked as
extensions and LEGACY.

The cuserid() and getopt() functions are marked LEGACY.

Issue 6
The constant L_cuserid and the external variables optarg, opterr, optind, and optopt are removed
as they were previously marked LEGACY.

The cuserid(), getopt(), and getw() functions are removed as they were previously marked
LEGACY.

Several functions are marked as part of the Thread-Safe Functions option.

This reference page is updated to align with the ISO/IEC 9899: 1999 standard. Note that the
description of the fpos_t type is now explicitly updated to exclude array types.

Extensions beyond the ISO C standard are marked.

Issue 7
Austin Group Interpretation 1003.1-2001 #172 is applied, adding rationale about a conflict for the
definition of {TMP_MAX} with the ISO C standard.

SD5-XBD-ERN-99 is applied, adding APPLICATION USAGE.

The dprintf(), fmemopen(), getdelim(), getline(), open_memstream(), and vdprintf() functions are
added from The Open Group Technical Standard, 2006, Extended API Set Part 1.

The renameat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

The gets(), tmpnam(), and tempnam() functions and the L_tmpnam macro are marked
obsolescent.

This reference page is clarified with respect to macros and symbolic constants, and a declaration
for the off_t type is added.

354 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

11899

11900

11901

11902

11903

11904

11905

11906

11907

11908

11909

11910

11911

11912

11913

11914

11915

11916

11917

11918

11919

11920

11921

11922

11923

11924

11925

11926

11927

11928

11929

11930

11931

11932

11933

11934

11935

11936

11937

Headers <stdlib.h>

NAME
stdlib.h — standard library definitions

SYNOPSIS
#include <stdlib.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 468) to
enable the visibility of these symbols in this header.

The <stdlib.h> header shall define the following macros which shall expand to integer constant
expressions:

EXIT_FAILURE Unsuccessful termination for exit(); evaluates to a non-zero value.

EXIT_SUCCESS Successful termination for exit(); evaluates to 0.

{RAND_MAX} Maximum value returned by rand(); at least 32 767.

The <stdlib.h> header shall define the following macro which shall expand to a positive integer
expression with type size_t:

{MB_CUR_MAX} Maximum number of bytes in a character specified by the current locale
(category LC_CTYPE).

The <stdlib.h> header shall define NULL as described in <stddef.h>.

The <stdlib.h> header shall define the following data types through typedef:

div_t Structure type returned by the div() function.

ldiv_t Structure type returned by the ldiv() function.

lldiv_t Structure type returned by the lldiv() function.

size_t As described in <stddef.h>.

wchar_t As described in <stddef.h>.

CX In addition, the <stdlib.h> header shall define the following symbolic constants and macros as
described in <sys/wait.h>:

WEXITSTATUS
WIFEXITED
WIFSIGNALED
WIFSTOPPED
WNOHANG
WSTOPSIG
WTERMSIG
WUNTRACED

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void _Exit(int);
XSI long a64l(const char *);

void abort(void);
int abs(int);
int atexit(void (*)(void));
double atof(const char *);

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 355

11938

11939

11940

11941

11942

11943

11944

11945

11946

11947

11948

11949

11950

11951

11952

11953

11954

11955

11956

11957

11958

11959

11960

11961

11962

11963

11964

11965

11966

11967

11968

11969

11970

11971

11972

11973

11974

11975

11976

11977

11978

11979

<stdlib.h> Headers

int atoi(const char *);
long atol(const char *);
long long atoll(const char *);
void *bsearch(const void *, const void *, size_t, size_t,

int (*)(const void *, const void *));
void *calloc(size_t, size_t);
div_t div(int, int);

XSI double drand48(void);
double erand48(unsigned short [3]);
void exit(int);
void free(void *);
char *getenv(const char *);
int getsubopt(char **, char *const *, char **);

XSI int grantpt(int);
char *initstate(unsigned, char *, size_t);
long jrand48(unsigned short [3]);
char *l64a(long);
long labs(long);

XSI void lcong48(unsigned short [7]);
ldiv_t ldiv(long, long);
long long llabs(long long);
lldiv_t lldiv(long long, long long);

XSI long lrand48(void);
void *malloc(size_t);
int mblen(const char *, size_t);
size_t mbstowcs(wchar_t *restrict, const char *restrict, size_t);
int mbtowc(wchar_t *restrict, const char *restrict, size_t);

CX char *mkdtemp(char *);
int mkstemp(char *);

XSI long mrand48(void);
long nrand48(unsigned short [3]);

ADV int posix_memalign(void **, size_t, size_t);
XSI int posix_openpt(int);

char *ptsname(int);
int putenv(char *);
void qsort(void *, size_t, size_t, int (*)(const void *,

const void *));
int rand(void);

OB CX int rand_r(unsigned *);
XSI long random(void);

void *realloc(void *, size_t);
XSI char *realpath(const char *restrict, char *restrict);

unsigned short *seed48(unsigned short [3]);
CX int setenv(const char *, const char *, int);
XSI void setkey(const char *);

char *setstate(char *);
void srand(unsigned);

XSI void srand48(long);
void srandom(unsigned);
double strtod(const char *restrict, char **restrict);
float strtof(const char *restrict, char **restrict);
long strtol(const char *restrict, char **restrict, int);

356 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

11980

11981

11982

11983

11984

11985

11986

11987

11988

11989

11990

11991

11992

11993

11994

11995

11996

11997

11998

11999

12000

12001

12002

12003

12004

12005

12006

12007

12008

12009

12010

12011

12012

12013

12014

12015

12016

12017

12018

12019

12020

12021

12022

12023

12024

12025

12026

12027

12028

12029

12030

12031

Headers <stdlib.h>

long double strtold(const char *restrict, char **restrict);
long long strtoll(const char *restrict, char **restrict, int);
unsigned long strtoul(const char *restrict, char **restrict, int);
unsigned long long

strtoull(const char *restrict, char **restrict, int);
int system(const char *);

XSI int unlockpt(int);
CX int unsetenv(const char *);

size_t wcstombs(char *restrict, const wchar_t *restrict, size_t);
int wctomb(char *, wchar_t);

CX Inclusion of the <stdlib.h> header may also make visible all symbols from <stddef.h>,
<limits.h>, <math.h>, and <sys/wait.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<limits.h>, <math.h>, <stddef.h>, <sys/types.h>, <sys/wait.h>

XSH Section 2.2 (on page 468), _Exit(), a64l(), abort(), abs(), atexit(), atof(), atoi(), atol(),
bsearch(), calloc(), div(), drand48(), exit(), free(), getenv(), getsubopt(), grantpt(), initstate(), labs(),
ldiv(), malloc(), mblen(), mbstowcs(), mbtowc(), mkdtemp(), posix_memalign(), posix_openpt(),
ptsname(), putenv(), qsort(), rand(), realloc(), realpath(), setenv(), setkey(), strtod(), strtol(),
strtoul(), system(), unlockpt(), unsetenv(), wcstombs(), wctomb()

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

The ttyslot() and valloc() functions are marked LEGACY.

The type of the third argument to initstate() is changed from int to size_t. The type of the return
value from setstate() is changed from char to char *, and the type of the first argument is
changed from char * to const char *.

Issue 6
The Open Group Corrigendum U021/1 is applied, correcting the prototype for realpath() to be
consistent with the reference page.

The Open Group Corrigendum U028/13 is applied, correcting the prototype for putenv() to be
consistent with the reference page.

The rand_r() function is marked as part of the Thread-Safe Functions option.

Function prototypes for setenv() and unsetenv() are added.

The posix_memalign() function is added for alignment with IEEE Std 1003.1d-1999.

This reference page is updated to align with the ISO/IEC 9899: 1999 standard.

The ecvt(), fcvt(), gcvt(), and mktemp() functions are marked LEGACY.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 357

12032

12033

12034

12035

12036

12037

12038

12039

12040

12041

12042

12043

12044

12045

12046

12047

12048

12049

12050

12051

12052

12053

12054

12055

12056

12057

12058

12059

12060

12061

12062

12063

12064

12065

12066

12067

12068

12069

12070

12071

12072

12073

12074

<stdlib.h> Headers

The ttyslot() and valloc() functions are removed as they were previously marked LEGACY.

Extensions beyond the ISO C standard are marked.

Issue 7
SD5-XBD-ERN-79 and SD5-XBD-ERN-105 are applied.

The LEGACY functions are removed.

The mkdtemp() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

The rand_r() function is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

The type of the first argument to setstate() is changed from const char * to char *.

358 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

12075

12076

12077

12078

12079

12080

12081

12082

12083

12084

Headers <string.h>

NAME
string.h — string operations

SYNOPSIS
#include <string.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 468) to
enable the visibility of these symbols in this header.

The <string.h> header shall define NULL and size_t as described in <stddef.h>.

CX The <string.h> header shall define the locale_t type as described in <locale.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

XSI void *memccpy(void *restrict, const void *restrict, int, size_t);
void *memchr(const void *, int, size_t);
int memcmp(const void *, const void *, size_t);
void *memcpy(void *restrict, const void *restrict, size_t);
void *memmove(void *, const void *, size_t);
void *memset(void *, int, size_t);

CX char *stpcpy(char *restrict, const char *restrict);
char *stpncpy(char *restrict, const char *restrict, size_t);
char *strcat(char *restrict, const char *restrict);
char *strchr(const char *, int);
int strcmp(const char *, const char *);
int strcoll(const char *, const char *);

CX int strcoll_l(const char *, const char *, locale_t);
char *strcpy(char *restrict, const char *restrict);
size_t strcspn(const char *, const char *);

CX char *strdup(const char *);
char *strerror(int);

CX char *strerror_l(int, locale_t);
int strerror_r(int, char *, size_t);
size_t strlen(const char *);
char *strncat(char *restrict, const char *restrict, size_t);
int strncmp(const char *, const char *, size_t);
char *strncpy(char *restrict, const char *restrict, size_t);

CX char *strndup(const char *, size_t);
size_t strnlen(const char *, size_t);
char *strpbrk(const char *, const char *);
char *strrchr(const char *, int);

CX char *strsignal(int);
size_t strspn(const char *, const char *);
char *strstr(const char *, const char *);
char *strtok(char *restrict, const char *restrict);

CX char *strtok_r(char *restrict, const char *restrict, char **restrict);
size_t strxfrm(char *restrict, const char *restrict, size_t);

CX size_t strxfrm_l(char *restrict, const char *restrict,
size_t, locale_t);

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 359

12085

12086

12087

12088

12089

12090

12091

12092

12093

12094

12095

12096

12097

12098

12099

12100

12101

12102

12103

12104

12105

12106

12107

12108

12109

12110

12111

12112

12113

12114

12115

12116

12117

12118

12119

12120

12121

12122

12123

12124

12125

12126

12127

12128

12129

12130

12131

<string.h> Headers

CX Inclusion of the <string.h> header may also make visible all symbols from <stddef.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<locale.h>, <stddef.h>, <sys/types.h>

XSH Section 2.2 (on page 468), memccpy(), memchr(), memcmp(), memcpy(), memmove(),
memset(), strcat(), strchr(), strcmp(), strcoll(), strcpy(), strcspn(), strdup(), strerror(), strlen(),
strncat(), strncmp(), strncpy(), strpbrk(), strrchr(), strsignal(), strspn(), strstr(), strtok(), strxfrm()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The strtok_r() function is marked as part of the Thread-Safe Functions option.

This reference page is updated to align with the ISO/IEC 9899: 1999 standard.

The strerror_r() function is added in response to IEEE PASC Interpretation 1003.1c #39.

Issue 7
SD5-XBD-ERN-15 is applied, correcting the prototype for the strerror_r() function.

The stpcpy(), stpncpy(), strndup(), strnlen(), and strsignal() functions are added from The Open
Group Technical Standard, 2006, Extended API Set Part 1.

The strcoll_l(), strerror_l(), and strxfrm_l() functions are added from The Open Group Technical
Standard, 2006, Extended API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants, and a declaration
for the locale_t type is added.

360 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

12132

12133

12134

12135

12136

12137

12138

12139

12140

12141

12142

12143

12144

12145

12146

12147

12148

12149

12150

12151

12152

12153

12154

12155

12156

12157

12158

12159

Headers <strings.h>

NAME
strings.h — string operations

SYNOPSIS
#include <strings.h>

DESCRIPTION
The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

XSI int ffs(int);
int strcasecmp(const char *, const char *);
int strcasecmp_l(const char *, const char *, locale_t);
int strncasecmp(const char *, const char *, size_t);
int strncasecmp_l(const char *, const char *, size_t, locale_t);

The <strings.h> header shall define the locale_t type as described in <locale.h>.

The <strings.h> header shall define the size_t type as described in <sys/types.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<locale.h>, <sys/types.h>

XSH ffs(), strcasecmp()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 6
The Open Group Corrigendum U021/2 is applied, correcting the prototype for index() to be
consistent with the reference page.

The bcmp(), bcopy(), bzero(), index(), and rindex() functions are marked LEGACY.

Issue 7
SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t type.

The LEGACY functions are removed.

The <strings.h> header is moved from the XSI option to the Base.

The strcasecmp_l() and strncasecmp_l() functions are added from The Open Group Technical
Standard, 2006, Extended API Set Part 4.

A declaration for the locale_t type is added.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 361

12160

12161

12162

12163

12164

12165

12166

12167

12168

12169

12170

12171

12172

12173

12174

12175

12176

12177

12178

12179

12180

12181

12182

12183

12184

12185

12186

12187

12188

12189

12190

12191

12192

12193

12194

12195

<stropts.h> Headers

NAME
stropts.h — STREAMS interface (STREAMS)

SYNOPSIS
OB XSR #include <stropts.h>

DESCRIPTION
The <stropts.h> header shall define the bandinfo structure, which shall include at least the
following members:

int bi_flag Flushing type.
unsigned char bi_pri Priority band.

The <stropts.h> header shall define the strpeek structure, which shall include at least the
following members:

struct strbuf ctlbuf The control portion of the message.
struct strbuf databuf The data portion of the message.
t_uscalar_t flags RS_HIPRI or 0.

The <stropts.h> header shall define the strbuf structure, which shall include at least the
following members:

char *buf Pointer to buffer.
int len Length of data.
int maxlen Maximum buffer length.

The <stropts.h> header shall define the strfdinsert structure, which shall include at least the
following members:

struct strbuf ctlbuf The control portion of the message.
struct strbuf databuf The data portion of the message.
int fildes File descriptor of the other STREAM.
t_uscalar_t flags RS_HIPRI or 0.
int offset Relative location of the stored value.

The <stropts.h> header shall define the strioctl structure, which shall include at least the
following members:

int ic_cmd ioctl() command.
char *ic_dp Pointer to buffer.
int ic_len Length of data.
int ic_timout Timeout for response.

The <stropts.h> header shall define the strrecvfd structure, which shall include at least the
following members:

int fd Received file descriptor.
gid_t gid GID of sender.
uid_t uid UID of sender.

The <stropts.h> header shall define the uid_t and gid_t types through typedef, as described in
<sys/types.h>.

The <stropts.h> header shall define the t_scalar_t and t_uscalar_t types, respectively, as signed
and unsigned opaque types of equal length of at least 32 bits.

The <stropts.h> header shall define the str_list structure, which shall include at least the
following members:

362 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

12196

12197

12198

12199

12200

12201

12202

12203

12204

12205

12206

12207

12208

12209

12210

12211

12212

12213

12214

12215

12216

12217

12218

12219

12220

12221

12222

12223

12224

12225

12226

12227

12228

12229

12230

12231

12232

12233

12234

12235

12236

12237

12238

Headers <stropts.h>

struct str_mlist *sl_modlist STREAMS module names.
int sl_nmods Number of STREAMS module names.

The <stropts.h> header shall define the str_mlist structure, which shall include at least the
following member:

char l_name[FMNAMESZ+1] A STREAMS module name.

The <stropts.h> header shall define at least the following symbolic constants for use as the
request argument to ioctl():

I_ATMARK Is the top message ‘‘marked’’?

I_CANPUT Is a band writable?

I_CKBAND See if any messages exist in a band.

I_FDINSERT Send implementation-defined information about another STREAM.

I_FIND Look for a STREAMS module.

I_FLUSH Flush a STREAM.

I_FLUSHBAND Flush one band of a STREAM.

I_GETBAND Get the band of the top message on a STREAM.

I_GETCLTIME Get close time delay.

I_GETSIG Retrieve current notification signals.

I_GRDOPT Get the read mode.

I_GWROPT Get the write mode.

I_LINK Connect two STREAMs.

I_LIST Get all the module names on a STREAM.

I_LOOK Get the top module name.

I_NREAD Size the top message.

I_PEEK Peek at the top message on a STREAM.

I_PLINK Persistently connect two STREAMs.

I_POP Pop a STREAMS module.

I_PUNLINK Dismantle a persistent STREAMS link.

I_PUSH Push a STREAMS module.

I_RECVFD Get a file descriptor sent via I_SENDFD.

I_SENDFD Pass a file descriptor through a STREAMS pipe.

I_SETCLTIME Set close time delay.

I_SETSIG Ask for notification signals.

I_SRDOPT Set the read mode.

I_STR Send a STREAMS ioctl().

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 363

12239

12240

12241

12242

12243

12244

12245

12246

12247

12248

12249

12250

12251

12252

12253

12254

12255

12256

12257

12258

12259

12260

12261

12262

12263

12264

12265

12266

12267

12268

12269

12270

12271

12272

<stropts.h> Headers

I_SWROPT Set the write mode.

I_UNLINK Disconnect two STREAMs.

The <stropts.h> header shall define at least the following symbolic constant for use with
I_LOOK:

FMNAMESZ The minimum size in bytes of the buffer referred to by the arg argument.

The <stropts.h> header shall define at least the following symbolic constants for use with
I_FLUSH:

FLUSHR Flush read queues.

FLUSHRW Flush read and write queues.

FLUSHW Flush write queues.

The <stropts.h> header shall define at least the following symbolic constants for use with
I_SETSIG:

S_BANDURG When used in conjunction with S_RDBAND, SIGURG is generated instead of
SIGPOLL when a priority message reaches the front of the STREAM head read
queue.

S_ERROR Notification of an error condition reaches the STREAM head.

S_HANGUP Notification of a hangup reaches the STREAM head.

S_HIPRI A high-priority message is present on a STREAM head read queue.

S_INPUT A message, other than a high-priority message, has arrived at the head of a
STREAM head read queue.

S_MSG A STREAMS signal message that contains the SIGPOLL signal reaches the
front of the STREAM head read queue.

S_OUTPUT The write queue for normal data (priority band 0) just below the STREAM
head is no longer full. This notifies the process that there is room on the queue
for sending (or writing) normal data downstream.

S_RDBAND A message with a non-zero priority band has arrived at the head of a
STREAM head read queue.

S_RDNORM A normal (priority band set to 0) message has arrived at the head of a
STREAM head read queue.

S_WRBAND The write queue for a non-zero priority band just below the STREAM head is
no longer full.

S_WRNORM Equivalent to S_OUTPUT.

The <stropts.h> header shall define at least the following symbolic constant for use with
I_PEEK:

RS_HIPRI Only look for high-priority messages.

The <stropts.h> header shall define at least the following symbolic constants for use with
I_SRDOPT:

RMSGD Message-discard mode.

364 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

12273

12274

12275

12276

12277

12278

12279

12280

12281

12282

12283

12284

12285

12286

12287

12288

12289

12290

12291

12292

12293

12294

12295

12296

12297

12298

12299

12300

12301

12302

12303

12304

12305

12306

12307

12308

12309

12310

Headers <stropts.h>

RMSGN Message-non-discard mode.

RNORM Byte-STREAM mode, the default.

RPROTDAT Deliver the control part of a message as data when a process issues a read().

RPROTDIS Discard the control part of a message, delivering any data part, when a
process issues a read().

RPROTNORM Fail read() with [EBADMSG] if a message containing a control part is at the
front of the STREAM head read queue.

The <stropts.h> header shall define at least the following symbolic constant for use with
I_SWOPT:

SNDZERO Send a zero-length message downstream when a write() of 0 bytes occurs.

The <stropts.h> header shall define at least the following symbolic constants for use with
I_ATMARK:

ANYMARK Check if the message is marked.

LASTMARK Check if the message is the last one marked on the queue.

The <stropts.h> header shall define at least the following symbolic constant for use with
I_UNLINK:

MUXID_ALL Unlink all STREAMs linked to the STREAM associated with fildes.

The <stropts.h> header shall define the following symbolic constants for getmsg(), getpmsg(),
putmsg(), and putpmsg():

MORECTL More control information is left in message.

MOREDATA More data is left in message.

MSG_ANY Receive any message.

MSG_BAND Receive message from specified band.

MSG_HIPRI Send/receive high-priority message.

The <stropts.h> header may make visible all of the symbols from <unistd.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int fattach(int, const char *);
int fdetach(const char *);
int getmsg(int, struct strbuf *restrict, struct strbuf *restrict,

int *restrict);
int getpmsg(int, struct strbuf *restrict, struct strbuf *restrict,

int *restrict, int *restrict);
int ioctl(int, int, ...);
int isastream(int);
int putmsg(int, const struct strbuf *, const struct strbuf *, int);
int putpmsg(int, const struct strbuf *, const struct strbuf *, int,

int);

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 365

12311

12312

12313

12314

12315

12316

12317

12318

12319

12320

12321

12322

12323

12324

12325

12326

12327

12328

12329

12330

12331

12332

12333

12334

12335

12336

12337

12338

12339

12340

12341

12342

12343

12344

12345

12346

12347

12348

<stropts.h> Headers

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>, <unistd.h>

XSH close(), fattach(), fcntl(), fdetach(), getmsg(), ioctl(), isastream(), open(), pipe(), read(), poll(),
putmsg(), signal(), write()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
The flags members of the strpeek and strfdinsert structures are changed from type long to
t_uscalar_t.

Issue 6
This header is marked as part of the XSI STREAMS Option Group.

The restrict keyword is added to the prototypes for getmsg() and getpmsg().

Issue 7
SD5-XBD-ERN-87 is applied, correcting an error in the strrecvfd structure.

The <stropts.h> header is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

366 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

12349

12350

12351

12352

12353

12354

12355

12356

12357

12358

12359

12360

12361

12362

12363

12364

12365

12366

12367

12368

12369

12370

Headers <sys/ipc.h>

NAME
sys/ipc.h — XSI interprocess communication access structure

SYNOPSIS
XSI #include <sys/ipc.h>

DESCRIPTION
The <sys/ipc.h> header is used by three mechanisms for XSI interprocess communication (IPC):
messages, semaphores, and shared memory. All use a common structure type, ipc_perm, to pass
information used in determining permission to perform an IPC operation.

The <sys/ipc.h> header shall define the ipc_perm structure, which shall include the following
members:

uid_t uid Owner ’s user ID.
gid_t gid Owner ’s group ID.
uid_t cuid Creator ’s user ID.
gid_t cgid Creator ’s group ID.
mode_t mode Read/write permission.

The <sys/ipc.h> header shall define the uid_t, gid_t, mode_t, and key_t types as described in
<sys/types.h>.

The <sys/ipc.h> header shall define the following symbolic constants.

Mode bits:

IPC_CREAT Create entry if key does not exist.

IPC_EXCL Fail if key exists.

IPC_NOWAIT Error if request must wait.

Keys:

IPC_PRIVATE Private key.

Control commands:

IPC_RMID Remove identifier.

IPC_SET Set options.

IPC_STAT Get options.

The following shall be declared as a function and may also be defined as a macro. A function
prototype shall be provided.

key_t ftok(const char *, int);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 367

12371

12372

12373

12374

12375

12376

12377

12378

12379

12380

12381

12382

12383

12384

12385

12386

12387

12388

12389

12390

12391

12392

12393

12394

12395

12396

12397

12398

12399

12400

12401

12402

12403

12404

12405

12406

12407

<sys/ipc.h> Headers

SEE ALSO
<sys/types.h>

XSH ftok()

CHANGE HISTORY
First released in Issue 2. Derived from System V Release 2.0.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

368 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

12408

12409

12410

12411

12412

12413

12414

Headers <sys/mman.h>

NAME
sys/mman.h — memory management declarations

SYNOPSIS
#include <sys/mman.h>

DESCRIPTION
The <sys/mman.h> header shall define the following symbolic constants for use as protection
options:

PROT_EXEC Page can be executed.

PROT_NONE Page cannot be accessed.

PROT_READ Page can be read.

PROT_WRITE Page can be written.

The <sys/mman.h> header shall define the following symbolic constants for use as flag options:

MAP_FIXED Interpret addr exactly.

MAP_PRIVATE Changes are private.

MAP_SHARED Share changes.

XSI|SIO The <sys/mman.h> header shall define the following symbolic constants for the msync()
function:

MS_ASYNC Perform asynchronous writes.

MS_INVALIDATE Invalidate mappings.

MS_SYNC Perform synchronous writes.

ML The <sys/mman.h> header shall define the following symbolic constants for the mlockall()
function:

MCL_CURRENT Lock currently mapped pages.

MCL_FUTURE Lock pages that become mapped.

The <sys/mman.h> header shall define the symbolic constant MAP_FAILED which shall have
type void * and shall be used to indicate a failure from the mmap() function .

ADV If the Advisory Information option is supported, the <sys/mman.h> header shall define
symbolic constants for the advice argument to the posix_madvise() function as follows:

POSIX_MADV_DONTNEED
The application expects that it will not access the specified range in the near future.

POSIX_MADV_NORMAL
The application has no advice to give on its behavior with respect to the specified range. It
is the default characteristic if no advice is given for a range of memory.

POSIX_MADV_RANDOM
The application expects to access the specified range in a random order.

POSIX_MADV_SEQUENTIAL
The application expects to access the specified range sequentially from lower addresses to
higher addresses.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 369

12415

12416

12417

12418

12419

12420

12421

12422

12423

12424

12425

12426

12427

12428

12429

12430

12431

12432

12433

12434

12435

12436

12437

12438

12439

12440

12441

12442

12443

12444

12445

12446

12447

12448

12449

12450

12451

12452

<sys/mman.h> Headers

POSIX_MADV_WILLNEED
The application expects to access the specified range in the near future.

TYM The <sys/mman.h> header shall define the following symbolic constants for use as flags for the
posix_typed_mem_open() function:

POSIX_TYPED_MEM_ALLOCATE
Allocate on mmap().

POSIX_TYPED_MEM_ALLOCATE_CONTIG
Allocate contiguously on mmap().

POSIX_TYPED_MEM_MAP_ALLOCATABLE
Map on mmap(), without affecting allocatability.

The <sys/mman.h> header shall define the mode_t, off_t, and size_t types as described in
<sys/types.h>.

TYM The <sys/mman.h> header shall define the posix_typed_mem_info structure, which shall
include at least the following member:

size_t posix_tmi_length Maximum length which may be allocated
from a typed memory object.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

MLR int mlock(const void *, size_t);
ML int mlockall(int);

void *mmap(void *, size_t, int, int, int, off_t);
int mprotect(void *, size_t, int);

XSI|SIO int msync(void *, size_t, int);
MLR int munlock(const void *, size_t);
ML int munlockall(void);

int munmap(void *, size_t);
ADV int posix_madvise(void *, size_t, int);
TYM int posix_mem_offset(const void *restrict, size_t, off_t *restrict,

size_t *restrict, int *restrict);
int posix_typed_mem_get_info(int, struct posix_typed_mem_info *);
int posix_typed_mem_open(const char *, int, int);

SHM int shm_open(const char *, int, mode_t);
int shm_unlink(const char *);

370 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

12453

12454

12455

12456

12457

12458

12459

12460

12461

12462

12463

12464

12465

12466

12467

12468

12469

12470

12471

12472

12473

12474

12475

12476

12477

12478

12479

12480

12481

12482

12483

12484

12485

Headers <sys/mman.h>

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH mlock(), mlockall(), mmap(), mprotect(), msync(), munmap(), posix_madvise(),
posix_mem_offset(), posix_typed_mem_get_info(), posix_typed_mem_open(), shm_open(),
shm_unlink()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Updated for alignment with the POSIX Realtime Extension.

Issue 6
The <sys/mman.h> header is marked as dependent on support for either the Memory Mapped
Files, Process Memory Locking, or Shared Memory Objects options.

The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The TYM margin code is added to the list of margin codes for the <sys/mman.h> header
line, as well as for other lines.

• The POSIX_TYPED_MEM_ALLOCATE, POSIX_TYPED_MEM_ALLOCATE_CONTIG,
and POSIX_TYPED_MEM_MAP_ALLOCATABLE flags are added.

• The posix_tmi_length structure is added.

• The posix_mem_offset(), posix_typed_mem_get_info(), and posix_typed_mem_open() functions
are added.

The restrict keyword is added to the prototype for posix_mem_offset().

IEEE PASC Interpretation 1003.1 #102 is applied, adding the prototype for posix_madvise().

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/16 is applied, correcting margin code and
shading errors for the mlock() and munlock() functions.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/34 is applied, changing the margin code
for the mmap() function from MF|SHM to MC3 (notation for MF|SHM|TYM).

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/36 is applied, changing the margin code
for the munmap() function from MF|SHM to MC3 (notation for MF|SHM|TYM).

Issue 7
SD5-XBD-ERN-5 is applied, rewriting the DESCRIPTION.

Functionality relating to the Memory Protection and Memory Mapped Files options is moved to
the Base.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 371

12486

12487

12488

12489

12490

12491

12492

12493

12494

12495

12496

12497

12498

12499

12500

12501

12502

12503

12504

12505

12506

12507

12508

12509

12510

12511

12512

12513

12514

12515

12516

12517

12518

12519

12520

12521

12522

12523

12524

<sys/msg.h> Headers

NAME
sys/msg.h — XSI message queue structures

SYNOPSIS
XSI #include <sys/msg.h>

DESCRIPTION
The <sys/msg.h> header shall define the following data types through typedef:

msgqnum_t Used for the number of messages in the message queue.

msglen_t Used for the number of bytes allowed in a message queue.

These types shall be unsigned integer types that are able to store values at least as large as a type
unsigned short.

The <sys/msg.h> header shall define the following symbolic constant as a message operation
flag:

MSG_NOERROR No error if big message.

The <sys/msg.h> header shall define the msqid_ds structure, which shall include the following
members:

struct ipc_perm msg_perm Operation permission structure.
msgqnum_t msg_qnum Number of messages currently on queue.
msglen_t msg_qbytes Maximum number of bytes allowed on queue.
pid_t msg_lspid Process ID of last msgsnd().
pid_t msg_lrpid Process ID of last msgrcv().
time_t msg_stime Time of last msgsnd().
time_t msg_rtime Time of last msgrcv().
time_t msg_ctime Time of last change.

The <sys/msg.h> header shall define the pid_t, size_t, ssize_t, and time_t types as described in
<sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int msgctl(int, int, struct msqid_ds *);
int msgget(key_t, int);
ssize_t msgrcv(int, void *, size_t, long, int);
int msgsnd(int, const void *, size_t, int);

In addition, the <sys/msg.h> header shall include the <sys/ipc.h> header.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/ipc.h>, <sys/types.h>

XSH msgctl(), msgget(), msgrcv(), msgsnd()

372 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

12525

12526

12527

12528

12529

12530

12531

12532

12533

12534

12535

12536

12537

12538

12539

12540

12541

12542

12543

12544

12545

12546

12547

12548

12549

12550

12551

12552

12553

12554

12555

12556

12557

12558

12559

12560

12561

12562

12563

12564

12565

Headers <sys/msg.h>

CHANGE HISTORY
First released in Issue 2. Derived from System V Release 2.0.

Issue 7
Austin Group Interpretation 1003.1-2001 #179 is applied.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 373

12566

12567

12568

12569

12570

<sys/resource.h> Headers

NAME
sys/resource.h — definitions for XSI resource operations

SYNOPSIS
XSI #include <sys/resource.h>

DESCRIPTION
The <sys/resource.h> header shall define the following symbolic constants as possible values of
the which argument of getpriority() and setpriority():

PRIO_PROCESS Identifies the who argument as a process ID.

PRIO_PGRP Identifies the who argument as a process group ID.

PRIO_USER Identifies the who argument as a user ID.

The <sys/resource.h> header shall define the following type through typedef:

rlim_t Unsigned integer type used for limit values.

The <sys/resource.h> header shall define the following symbolic constants, which shall have
values suitable for use in #if preprocessing directives:

RLIM_INFINITY A value of rlim_t indicating no limit.

RLIM_SAVED_MAX A value of type rlim_t indicating an unrepresentable saved hard
limit.

RLIM_SAVED_CUR A value of type rlim_t indicating an unrepresentable saved soft limit.

On implementations where all resource limits are representable in an object of type rlim_t,
RLIM_SAVED_MAX and RLIM_SAVED_CUR need not be distinct from RLIM_INFINITY.

The <sys/resource.h> header shall define the following symbolic constants as possible values of
the who parameter of getrusage():

RUSAGE_SELF Returns information about the current process.

RUSAGE_CHILDREN Returns information about children of the current process.

The <sys/resource.h> header shall define the rlimit structure, which shall include at least the
following members:

rlim_t rlim_cur The current (soft) limit.
rlim_t rlim_max The hard limit.

The <sys/resource.h> header shall define the rusage structure, which shall include at least the
following members:

struct timeval ru_utime User time used.
struct timeval ru_stime System time used.

The <sys/resource.h> header shall define the timeval structure as described in <sys/time.h>.

The <sys/resource.h> header shall define the following symbolic constants as possible values for
the resource argument of getrlimit() and setrlimit():

RLIMIT_CORE Limit on size of core file.

RLIMIT_CPU Limit on CPU time per process.

374 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

12571

12572

12573

12574

12575

12576

12577

12578

12579

12580

12581

12582

12583

12584

12585

12586

12587

12588

12589

12590

12591

12592

12593

12594

12595

12596

12597

12598

12599

12600

12601

12602

12603

12604

12605

12606

12607

Headers <sys/resource.h>

RLIMIT_DATA Limit on data segment size.

RLIMIT_FSIZE Limit on file size.

RLIMIT_NOFILE Limit on number of open files.

RLIMIT_STACK Limit on stack size.

RLIMIT_AS Limit on address space size.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int getpriority(int, id_t);
int getrlimit(int, struct rlimit *);
int getrusage(int, struct rusage *);
int setpriority(int, id_t, int);
int setrlimit(int, const struct rlimit *);

The <sys/resource.h> header shall define the id_t type through typedef, as described in
<sys/types.h>.

Inclusion of the <sys/resource.h> header may also make visible all symbols from <sys/time.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/time.h>, <sys/types.h>

XSH getpriority(), getrlimit(), getrusage()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Large File System extensions are added.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 375

12608

12609

12610

12611

12612

12613

12614

12615

12616

12617

12618

12619

12620

12621

12622

12623

12624

12625

12626

12627

12628

12629

12630

12631

12632

12633

12634

12635

12636

12637

<sys/select.h> Headers

NAME
sys/select.h — select types

SYNOPSIS
#include <sys/select.h>

DESCRIPTION
The <sys/select.h> header shall define the timeval structure, which shall include at least the
following members:

time_t tv_sec Seconds.
suseconds_t tv_usec Microseconds.

The <sys/select.h> header shall define the time_t and suseconds_t types as described in
<sys/types.h>.

The <sys/select.h> header shall define the sigset_t type as described in <signal.h>.

The <sys/select.h> header shall define the timespec structure as described in <time.h>.

The <sys/select.h> header shall define the fd_set type as a structure.

The <sys/select.h> header shall define the following symbolic constant, which shall have a value
suitable for use in #if preprocessing directives:

FD_SETSIZE Maximum number of file descriptors in an fd_set structure.

The following shall be declared as functions, defined as macros, or both. If functions are
declared, function prototypes shall be provided.

void FD_CLR(int, fd_set *);
int FD_ISSET(int, fd_set *);
void FD_SET(int, fd_set *);
void FD_ZERO(fd_set *);

If implemented as macros, these may evaluate their arguments more than once, so applications
should ensure that the arguments they supply are never expressions with side-effects.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int pselect(int, fd_set *restrict, fd_set *restrict, fd_set *restrict,
const struct timespec *restrict, const sigset_t *restrict);

int select(int, fd_set *restrict, fd_set *restrict, fd_set *restrict,
struct timeval *restrict);

Inclusion of the <sys/select.h> header may make visible all symbols from the headers
<signal.h> and <time.h>.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

376 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

12638

12639

12640

12641

12642

12643

12644

12645

12646

12647

12648

12649

12650

12651

12652

12653

12654

12655

12656

12657

12658

12659

12660

12661

12662

12663

12664

12665

12666

12667

12668

12669

12670

12671

12672

12673

12674

12675

12676

Headers <sys/select.h>

SEE ALSO
<signal.h>, <sys/time.h>, <sys/types.h>, <time.h>

XSH pselect()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

The requirement for the fd_set structure to have a member fds_bits has been removed as per The
Open Group Base Resolution bwg2001-005.

Issue 7
SD5-XBD-ERN-6 is applied, reordering the DESCRIPTION.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 377

12677

12678

12679

12680

12681

12682

12683

12684

12685

12686

<sys/sem.h> Headers

NAME
sys/sem.h — XSI semaphore facility

SYNOPSIS
XSI #include <sys/sem.h>

DESCRIPTION
The <sys/sem.h> header shall define the following symbolic constant for use as a semaphore
operation flag:

SEM_UNDO Set up adjust on exit entry.

The <sys/sem.h> header shall define the following symbolic constants for use as commands for
the semctl() function:

GETNCNT Get semncnt.

GETPID Get sempid.

GETVAL Get semval.

GETALL Get all cases of semval.

GETZCNT Get semzcnt.

SETVAL Set semval.

SETALL Set all cases of semval.

The <sys/sem.h> header shall define the semid_ds structure, which shall include the following
members:

struct ipc_perm sem_perm Operation permission structure.
unsigned short sem_nsems Number of semaphores in set.
time_t sem_otime Last semop() time.
time_t sem_ctime Last time changed by semctl().

The <sys/sem.h> header shall define the pid_t, size_t, and time_t types as described in
<sys/types.h>.

A semaphore shall be represented by an anonymous structure, which shall include the following
members:

unsigned short semval Semaphore value.
pid_t sempid Process ID of last operation.
unsigned short semncnt Number of processes waiting for semval

to become greater than current value.
unsigned short semzcnt Number of processes waiting for semval

to become 0.

The <sys/sem.h> header shall define the sembuf structure, which shall include the following
members:

unsigned short sem_num Semaphore number.
short sem_op Semaphore operation.
short sem_flg Operation flags.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int semctl(int, int, int, ...);

378 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

12687

12688

12689

12690

12691

12692

12693

12694

12695

12696

12697

12698

12699

12700

12701

12702

12703

12704

12705

12706

12707

12708

12709

12710

12711

12712

12713

12714

12715

12716

12717

12718

12719

12720

12721

12722

12723

12724

12725

12726

12727

Headers <sys/sem.h>

int semget(key_t, int, int);
int semop(int, struct sembuf *, size_t);

In addition, the <sys/sem.h> header shall include the <sys/ipc.h> header.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/ipc.h>, <sys/types.h>

XSH semctl(), semget(), semop()

CHANGE HISTORY
First released in Issue 2. Derived from System V Release 2.0.

Issue 7
Austin Group Interpretation 1003.1-2001 #179 is applied.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 379

12728

12729

12730

12731

12732

12733

12734

12735

12736

12737

12738

12739

12740

12741

12742

12743

12744

<sys/shm.h> Headers

NAME
sys/shm.h — XSI shared memory facility

SYNOPSIS
XSI #include <sys/shm.h>

DESCRIPTION
The <sys/shm.h> header shall define the following symbolic constants:

SHM_RDONLY Attach read-only (else read-write).

SHM_RND Round attach address to SHMLBA.

SHMLBA Segment low boundary address multiple.

The <sys/shm.h> header shall define the following data types through typedef:

shmatt_t Unsigned integer used for the number of current attaches that must be able to
store values at least as large as a type unsigned short.

The <sys/shm.h> header shall define the shmid_ds structure, which shall include the following
members:

struct ipc_perm shm_perm Operation permission structure.
size_t shm_segsz Size of segment in bytes.
pid_t shm_lpid Process ID of last shared memory operation.
pid_t shm_cpid Process ID of creator.
shmatt_t shm_nattch Number of current attaches.
time_t shm_atime Time of last shmat().
time_t shm_dtime Time of last shmdt().
time_t shm_ctime Time of last change by shmctl().

The <sys/shm.h> header shall define the pid_t, size_t, and time_t types as described in
<sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void *shmat(int, const void *, int);
int shmctl(int, int, struct shmid_ds *);
int shmdt(const void *);
int shmget(key_t, size_t, int);

In addition, the <sys/shm.h> header shall include the <sys/ipc.h> header.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/ipc.h>, <sys/types.h>

XSH shmat(), shmctl(), shmdt(), shmget()

380 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

12745

12746

12747

12748

12749

12750

12751

12752

12753

12754

12755

12756

12757

12758

12759

12760

12761

12762

12763

12764

12765

12766

12767

12768

12769

12770

12771

12772

12773

12774

12775

12776

12777

12778

12779

12780

12781

12782

12783

12784

Headers <sys/shm.h>

CHANGE HISTORY
First released in Issue 2. Derived from System V Release 2.0.

Issue 5
The type of shm_segsz is changed from int to size_t.

Issue 7
Austin Group Interpretation 1003.1-2001 #179 is applied.

This reference page is clarified with respect to macros and symbolic constants.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 381

12785

12786

12787

12788

12789

12790

12791

<sys/socket.h> Headers

NAME
sys/socket.h — main sockets header

SYNOPSIS
#include <sys/socket.h>

DESCRIPTION
The <sys/socket.h> header shall define the socklen_t type, which is an integer type of width of
at least 32 bits; see APPLICATION USAGE.

The <sys/socket.h> header shall define the sa_family_t unsigned integer type.

The <sys/socket.h> header shall define the sockaddr structure, which shall include at least the
following members:

sa_family_t sa_family Address family.
char sa_data[] Socket address (variable-length data).

The sockaddr structure is used to define a socket address which is used in the bind(), connect(),
getpeername(), getsockname(), recvfrom(), and sendto() functions.

The <sys/socket.h> header shall define the sockaddr_storage structure, which shall be:

• Large enough to accommodate all supported protocol-specific address structures

• Aligned at an appropriate boundary so that pointers to it can be cast as pointers to
protocol-specific address structures and used to access the fields of those structures
without alignment problems

The sockaddr_storage structure shall include at least the following members:

sa_family_t ss_family

When a sockaddr_storage structure is cast as a sockaddr structure, the ss_family field of the
sockaddr_storage structure shall map onto the sa_family field of the sockaddr structure. When a
sockaddr_storage structure is cast as a protocol-specific address structure, the ss_family field
shall map onto a field of that structure that is of type sa_family_t and that identifies the
protocol’s address family.

The <sys/socket.h> header shall define the msghdr structure, which shall include at least the
following members:

void *msg_name Optional address.
socklen_t msg_namelen Size of address.
struct iovec *msg_iov Scatter/gather array.
int msg_iovlen Members in msg_iov.
void *msg_control Ancillary data; see below.
socklen_t msg_controllen Ancillary data buffer len.
int msg_flags Flags on received message.

The msghdr structure is used to minimize the number of directly supplied parameters to the
recvmsg() and sendmsg() functions. This structure is used as a value-result parameter in the
recvmsg() function and value only for the sendmsg() function.

The <sys/socket.h> header shall define the iovec structure as described in <sys/uio.h>.

The <sys/socket.h> header shall define the cmsghdr structure, which shall include at least the
following members:

socklen_t cmsg_len Data byte count, including the cmsghdr.
int cmsg_level Originating protocol.

382 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

12792

12793

12794

12795

12796

12797

12798

12799

12800

12801

12802

12803

12804

12805

12806

12807

12808

12809

12810

12811

12812

12813

12814

12815

12816

12817

12818

12819

12820

12821

12822

12823

12824

12825

12826

12827

12828

12829

12830

12831

12832

12833

12834

Headers <sys/socket.h>

int cmsg_type Protocol-specific type.

The cmsghdr structure is used for storage of ancillary data object information.

Ancillary data consists of a sequence of pairs, each consisting of a cmsghdr structure followed
by a data array. The data array contains the ancillary data message, and the cmsghdr structure
contains descriptive information that allows an application to correctly parse the data.

The values for cmsg_level shall be legal values for the level argument to the getsockopt() and
setsockopt() functions. The system documentation shall specify the cmsg_type definitions for the
supported protocols.

Ancillary data is also possible at the socket level. The <sys/socket.h> header shall define the
following symbolic constant for use as the cmsg_type value when cmsg_level is SOL_SOCKET:

SCM_RIGHTS Indicates that the data array contains the access rights to be sent or
received.

The <sys/socket.h> header shall define the following macros to gain access to the data arrays in
the ancillary data associated with a message header:

CMSG_DATA(cmsg)
If the argument is a pointer to a cmsghdr structure, this macro shall return an unsigned
character pointer to the data array associated with the cmsghdr structure.

CMSG_NXTHDR(mhdr,cmsg)
If the first argument is a pointer to a msghdr structure and the second argument is a pointer
to a cmsghdr structure in the ancillary data pointed to by the msg_control field of that
msghdr structure, this macro shall return a pointer to the next cmsghdr structure, or a null
pointer if this structure is the last cmsghdr in the ancillary data.

CMSG_FIRSTHDR(mhdr)
If the argument is a pointer to a msghdr structure, this macro shall return a pointer to the
first cmsghdr structure in the ancillary data associated with this msghdr structure, or a null
pointer if there is no ancillary data associated with the msghdr structure.

The <sys/socket.h> header shall define the linger structure, which shall include at least the
following members:

int l_onoff Indicates whether linger option is enabled.
int l_linger Linger time, in seconds.

The <sys/socket.h> header shall define the following symbolic constants with distinct values:

SOCK_DGRAM Datagram socket.

RS SOCK_RAW Raw Protocol Interface.

SOCK_SEQPACKET Sequenced-packet socket.

SOCK_STREAM Byte-stream socket.

The <sys/socket.h> header shall define the following symbolic constant for use as the level
argument of setsockopt() and getsockopt().

SOL_SOCKET Options to be accessed at socket level, not protocol level.

The <sys/socket.h> header shall define the following symbolic constants with distinct values for
use as the option_name argument in getsockopt() or setsockopt() calls (see XSH Section 2.10.16, on
page 522):

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 383

12835

12836

12837

12838

12839

12840

12841

12842

12843

12844

12845

12846

12847

12848

12849

12850

12851

12852

12853

12854

12855

12856

12857

12858

12859

12860

12861

12862

12863

12864

12865

12866

12867

12868

12869

12870

12871

12872

12873

12874

12875

<sys/socket.h> Headers

SO_ACCEPTCONN Socket is accepting connections.

SO_BROADCAST Transmission of broadcast messages is supported.

SO_DEBUG Debugging information is being recorded.

SO_DONTROUTE Bypass normal routing.

SO_ERROR Socket error status.

SO_KEEPALIVE Connections are kept alive with periodic messages.

SO_LINGER Socket lingers on close.

SO_OOBINLINE Out-of-band data is transmitted in line.

SO_RCVBUF Receive buffer size.

SO_RCVLOWAT Receive ‘‘low water mark’’.

SO_RCVTIMEO Receive timeout.

SO_REUSEADDR Reuse of local addresses is supported.

SO_SNDBUF Send buffer size.

SO_SNDLOWAT Send ‘‘low water mark’’.

SO_SNDTIMEO Send timeout.

SO_TYPE Socket type.

The <sys/socket.h> header shall define the following symbolic constant for use as the maximum
backlog queue length which may be specified by the backlog field of the listen() function:

SOMAXCONN The maximum backlog queue length.

The <sys/socket.h> header shall define the following symbolic constants with distinct values for
use as the valid values for the msg_flags field in the msghdr structure, or the flags parameter in
recv(), recvfrom(), recvmsg(), send(), sendmsg(), or sendto() calls:

MSG_CTRUNC Control data truncated.

MSG_DONTROUTE Send without using routing tables.

MSG_EOR Terminates a record (if supported by the protocol).

MSG_OOB Out-of-band data.

MSG_NOSIGNAL No SIGPIPE generated when an attempt to send is made on a stream-
oriented socket that is no longer connected.

MSG_PEEK Leave received data in queue.

MSG_TRUNC Normal data truncated.

MSG_WAITALL Attempt to fill the read buffer.

The <sys/socket.h> header shall define the following symbolic constants with distinct values:

AF_INET Internet domain sockets for use with IPv4 addresses.

IP6 AF_INET6 Internet domain sockets for use with IPv6 addresses.

AF_UNIX UNIX domain sockets.

384 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

12876

12877

12878

12879

12880

12881

12882

12883

12884

12885

12886

12887

12888

12889

12890

12891

12892

12893

12894

12895

12896

12897

12898

12899

12900

12901

12902

12903

12904

12905

12906

12907

12908

12909

12910

Headers <sys/socket.h>

AF_UNSPEC Unspecified.

The <sys/socket.h> header shall define the following symbolic constants with distinct values:

SHUT_RD Disables further receive operations.

SHUT_RDWR Disables further send and receive operations.

SHUT_WR Disables further send operations.

The <sys/socket.h> header shall define the size_t and ssize_t types as described in
<sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int accept(int, struct sockaddr *restrict, socklen_t *restrict);
int bind(int, const struct sockaddr *, socklen_t);
int connect(int, const struct sockaddr *, socklen_t);
int getpeername(int, struct sockaddr *restrict, socklen_t *restrict);
int getsockname(int, struct sockaddr *restrict, socklen_t *restrict);
int getsockopt(int, int, int, void *restrict, socklen_t *restrict);
int listen(int, int);
ssize_t recv(int, void *, size_t, int);
ssize_t recvfrom(int, void *restrict, size_t, int,

struct sockaddr *restrict, socklen_t *restrict);
ssize_t recvmsg(int, struct msghdr *, int);
ssize_t send(int, const void *, size_t, int);
ssize_t sendmsg(int, const struct msghdr *, int);
ssize_t sendto(int, const void *, size_t, int, const struct sockaddr *,

socklen_t);
int setsockopt(int, int, int, const void *, socklen_t);
int shutdown(int, int);
int sockatmark(int);
int socket(int, int, int);
int socketpair(int, int, int, int [2]);

Inclusion of <sys/socket.h> may also make visible all symbols from <sys/uio.h>.

APPLICATION USAGE
To forestall portability problems, it is recommended that applications not use values larger than
231 −1 for the socklen_t type.

The sockaddr_storage structure solves the problem of declaring storage for automatic variables
which is both large enough and aligned enough for storing the socket address data structure of
any family. For example, code with a file descriptor and without the context of the address
family can pass a pointer to a variable of this type, where a pointer to a socket address structure
is expected in calls such as getpeername(), and determine the address family by accessing the
received content after the call.

The example below illustrates a data structure which aligns on a 64-bit boundary. An
implementation-defined field _ss_align following _ss_pad1 is used to force a 64-bit alignment
which covers proper alignment good enough for needs of at least sockaddr_in6 (IPv6) and
sockaddr_in (IPv4) address data structures. The size of padding field _ss_pad1 depends on the
chosen alignment boundary. The size of padding field _ss_pad2 depends on the value of overall
size chosen for the total size of the structure. This size and alignment are represented in the
above example by implementation-defined (not required) constants _SS_MAXSIZE (chosen

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 385

12911

12912

12913

12914

12915

12916

12917

12918

12919

12920

12921

12922

12923

12924

12925

12926

12927

12928

12929

12930

12931

12932

12933

12934

12935

12936

12937

12938

12939

12940

12941

12942

12943

12944

12945

12946

12947

12948

12949

12950

12951

12952

12953

12954

12955

12956

<sys/socket.h> Headers

value 128) and _SS_ALIGNMENT (with chosen value 8). Constants _SS_PAD1SIZE (derived
value 6) and _SS_PAD2SIZE (derived value 112) are also for illustration and not required. The
implementation-defined definitions and structure field names above start with an <underscore>
to denote implementation private name space. Portable code is not expected to access or
reference those fields or constants.

/*
* Desired design of maximum size and alignment.
*/
#define _SS_MAXSIZE 128

/* Implementation-defined maximum size. */
#define _SS_ALIGNSIZE (sizeof(int64_t))

/* Implementation-defined desired alignment. */

/*
* Definitions used for sockaddr_storage structure paddings design.
*/
#define _SS_PAD1SIZE (_SS_ALIGNSIZE − sizeof(sa_family_t))
#define _SS_PAD2SIZE (_SS_MAXSIZE − (sizeof(sa_family_t)+ \

_SS_PAD1SIZE + _SS_ALIGNSIZE))
struct sockaddr_storage {

sa_family_t ss_family; /* Address family. */
/*
* Following fields are implementation-defined.
*/

char _ss_pad1[_SS_PAD1SIZE];
/* 6-byte pad; this is to make implementation-defined

pad up to alignment field that follows explicit in
the data structure. */

int64_t _ss_align; /* Field to force desired structure
storage alignment. */

char _ss_pad2[_SS_PAD2SIZE];
/* 112-byte pad to achieve desired size,

_SS_MAXSIZE value minus size of ss_family
__ss_pad1, __ss_align fields is 112. */

};

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>, <sys/uio.h>

XSH accept(), bind(), connect(), getpeername(), getsockname(), getsockopt(), listen(), recv(),
recvfrom(), recvmsg(), send(), sendmsg(), sendto(), setsockopt(), shutdown(), sockatmark(), socket(),
socketpair()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the prototypes for accept(), getpeername(), getsockname(),
getsockopt(), and recvfrom().

386 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

12957

12958

12959

12960

12961

12962

12963

12964

12965

12966

12967

12968

12969

12970

12971

12972

12973

12974

12975

12976

12977

12978

12979

12980

12981

12982

12983

12984

12985

12986

12987

12988

12989

12990

12991

12992

12993

12994

12995

12996

12997

12998

12999

13000

13001

13002

13003

Headers <sys/socket.h>

Issue 7
SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the ssize_t type.

SD5-XBD-ERN-62 is applied.

The MSG_NOSIGNAL symbolic constant is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

This reference page is clarified with respect to macros and symbolic constants, and a declaration
for the size_t type is added.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 387

13004

13005

13006

13007

13008

13009

13010

<sys/stat.h> Headers

NAME
sys/stat.h — data returned by the stat() function

SYNOPSIS
#include <sys/stat.h>

DESCRIPTION
The <sys/stat.h> header shall define the structure of the data returned by the fstat(), lstat(), and
stat() functions.

The <sys/stat.h> header shall define the stat structure, which shall include at least the following
members:

dev_t st_dev Device ID of device containing file.
ino_t st_ino File serial number.
mode_t st_mode Mode of file (see below).
nlink_t st_nlink Number of hard links to the file.
uid_t st_uid User ID of file.
gid_t st_gid Group ID of file.

XSI dev_t st_rdev Device ID (if file is character or block special).
off_t st_size For regular files, the file size in bytes.

For symbolic links, the length in bytes of the
pathname contained in the symbolic link.

SHM For a shared memory object, the length in bytes.
TYM For a typed memory object, the length in bytes.

For other file types, the use of this field is
unspecified.

struct timespec st_atim Last data access timestamp.
struct timespec st_mtim Last data modification timestamp.
struct timespec st_ctim Last file status change timestamp.

XSI blksize_t st_blksize A file system-specific preferred I/O block size
for this object. In some file system types, this
may vary from file to file.

blkcnt_t st_blocks Number of blocks allocated for this object.

The st_ino and st_dev fields taken together uniquely identify the file within the system.

The <sys/stat.h> header shall define the blkcnt_t, blksize_t, dev_t, ino_t, mode_t, nlink_t,
uid_t, gid_t, off_t, and time_t types as described in <sys/types.h>.

The <sys/stat.h> header shall define the timespec structure as described in <time.h>. Times
shall be given in seconds since the Epoch.

Which structure members have meaningful values depends on the type of file. For further
information, see the descriptions of fstat(), lstat(), and stat() in the System Interfaces volume of
POSIX.1-2008.

For compatibility with earlier versions of this standard, the st_atime macro shall be defined with
the value st_atim.tv_sec. Similarly, st_ctime and st_mtime shall be defined as macros with the
values st_ctim.tv_sec and st_mtim.tv_sec, respectively.

388 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

13011

13012

13013

13014

13015

13016

13017

13018

13019

13020

13021

13022

13023

13024

13025

13026

13027

13028

13029

13030

13031

13032

13033

13034

13035

13036

13037

13038

13039

13040

13041

13042

13043

13044

13045

13046

13047

13048

13049

13050

13051

Headers <sys/stat.h>

The <sys/stat.h> header shall define the following symbolic constants for the file types encoded
in type mode_t. The values shall be suitable for use in #if preprocessing directives:

XSI S_IFMT Type of file.

S_IFBLK Block special.

S_IFCHR Character special.

S_IFIFO FIFO special.

S_IFREG Regular.

S_IFDIR Directory.

S_IFLNK Symbolic link.

S_IFSOCK Socket.

The <sys/stat.h> header shall define the following symbolic constants for the file mode bits
encoded in type mode_t, with the indicated numeric values. These macros shall expand to an
expression which has a type that allows them to be used, either singly or OR’ed together, as the
third argument to open() without the need for a mode_t cast. The values shall be suitable for use
in #if preprocessing directives.

Name Numeric Value Description

S_IRWXU 0700 Read, write, execute/search by owner.
S_IRUSR 0400 Read permission, owner.
S_IWUSR 0200 Write permission, owner.
S_IXUSR 0100 Execute/search permission, owner.

S_IRWXG 070 Read, write, execute/search by group.
S_IRGRP 040 Read permission, group.
S_IWGRP 020 Write permission, group.
S_IXGRP 010 Execute/search permission, group.

S_IRWXO 07 Read, write, execute/search by others.
S_IROTH 04 Read permission, others.
S_IWOTH 02 Write permission, others.
S_IXOTH 01 Execute/search permission, others.

S_ISUID 04000 Set-user-ID on execution.
S_ISGID 02000 Set-group-ID on execution.

XSI S_ISVTX 01000 On directories, restricted deletion flag.

The following macros shall be provided to test whether a file is of the specified type. The value
m supplied to the macros is the value of st_mode from a stat structure. The macro shall evaluate
to a non-zero value if the test is true; 0 if the test is false.

S_ISBLK(m) Test for a block special file.

S_ISCHR(m) Test for a character special file.

S_ISDIR(m) Test for a directory.

S_ISFIFO(m) Test for a pipe or FIFO special file.

S_ISREG(m) Test for a regular file.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 389

13052

13053

13054

13055

13056

13057

13058

13059

13060

13061

13062

13063

13064

13065

13066

13067

13068

13069

13070

13071

13072

13073

13074

13075

13076

13077

13078

13079

13080

13081

13082

13083

13084

13085

13086

13087

13088

13089

13090

<sys/stat.h> Headers

S_ISLNK(m) Test for a symbolic link.

S_ISSOCK(m) Test for a socket.

The implementation may implement message queues, semaphores, or shared memory objects as
distinct file types. The following macros shall be provided to test whether a file is of the
specified type. The value of the buf argument supplied to the macros is a pointer to a stat
structure. The macro shall evaluate to a non-zero value if the specified object is implemented as
a distinct file type and the specified file type is contained in the stat structure referenced by buf .
Otherwise, the macro shall evaluate to zero.

S_TYPEISMQ(buf) Test for a message queue.

S_TYPEISSEM(buf) Test for a semaphore.

S_TYPEISSHM(buf) Test for a shared memory object.

TYM The implementation may implement typed memory objects as distinct file types, and the
following macro shall test whether a file is of the specified type. The value of the buf argument
supplied to the macros is a pointer to a stat structure. The macro shall evaluate to a non-zero
value if the specified object is implemented as a distinct file type and the specified file type is
contained in the stat structure referenced by buf . Otherwise, the macro shall evaluate to zero.

S_TYPEISTMO(buf) Test macro for a typed memory object.

The <sys/stat.h> header shall define the following symbolic constants as distinct integer values
outside of the range [0,999 999 999], for use with the futimens() and utimensat() functions:

UTIME_NOW
UTIME_OMIT

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int chmod(const char *, mode_t);
int fchmod(int, mode_t);
int fchmodat(int, const char *, mode_t, int);
int fstat(int, struct stat *);
int fstatat(int, const char *restrict, struct stat *restrict, int);
int futimens(int, const struct timespec [2]);
int lstat(const char *restrict, struct stat *restrict);
int mkdir(const char *, mode_t);
int mkdirat(int, const char *, mode_t);
int mkfifo(const char *, mode_t);
int mkfifoat(int, const char *, mode_t);

XSI int mknod(const char *, mode_t, dev_t);
int mknodat(int, const char *, mode_t, dev_t);
int stat(const char *restrict, struct stat *restrict);
mode_t umask(mode_t);
int utimensat(int, const char *, const struct timespec [2], int);

390 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

13091

13092

13093

13094

13095

13096

13097

13098

13099

13100

13101

13102

13103

13104

13105

13106

13107

13108

13109

13110

13111

13112

13113

13114

13115

13116

13117

13118

13119

13120

13121

13122

13123

13124

13125

13126

13127

13128

13129

Headers <sys/stat.h>

APPLICATION USAGE
Use of the macros is recommended for determining the type of a file.

RATIONALE
A conforming C-language application must include <sys/stat.h> for functions that have
arguments or return values of type mode_t, so that symbolic values for that type can be used.
An alternative would be to require that these constants are also defined by including
<sys/types.h>.

The S_ISUID and S_ISGID bits may be cleared on any write, not just on open(), as some
historical implementations do.

System calls that update the time entry fields in the stat structure must be documented by the
implementors. POSIX-conforming systems should not update the time entry fields for functions
listed in the System Interfaces volume of POSIX.1-2008 unless the standard requires that they do,
except in the case of documented extensions to the standard.

Upon assignment, file timestamps are immediately converted to the resolution of the file system
by truncation (i.e., the recorded time can be older than the actual time). For example, if the file
system resolution is 1 microsecond, then a conforming stat() must always return an
st_mtim.tv_nsec that is a multiple of 1000. Some older implementations returned higher-
resolution timestamps while the inode information was cached, and then spontaneously
truncated the tv_nsec fields when they were stored to and retrieved from disk, but this behavior
does not conform.

Note that st_dev must be unique within a Local Area Network (LAN) in a ‘‘system’’ made up of
multiple computers’ file systems connected by a LAN.

Networked implementations of a POSIX-conforming system must guarantee that all files visible
within the file tree (including parts of the tree that may be remotely mounted from other
machines on the network) on each individual processor are uniquely identified by the
combination of the st_ino and st_dev fields.

The unit for the st_blocks member of the stat structure is not defined within POSIX.1-2008. In
some implementations it is 512 bytes. It may differ on a file system basis. There is no correlation
between values of the st_blocks and st_blksize, and the f_bsize (from <sys/statvfs.h>) structure
members.

Traditionally, some implementations defined the multiplier for st_blocks in <sys/param.h> as the
symbol DEV_BSIZE.

Some earlier versions of this standard did not specify values for the file mode bit macros. The
expectation was that some implementors might choose to use a different encoding for these bits
than the traditional one, and that new applications would use symbolic file modes instead of
numeric. This version of the standard specifies the traditional encoding, in recognition that
nearly 20 years after the first publication of this standard numeric file modes are still in
widespread use by application developers, and that all conforming implementations still use the
traditional encoding.

FUTURE DIRECTIONS
No new S_IFMT symbolic names for the file type values of mode_t will be defined by
POSIX.1-2008; if new file types are required, they will only be testable through S_ISxx() or
S_TYPEISxxx() macros instead.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 391

13130

13131

13132

13133

13134

13135

13136

13137

13138

13139

13140

13141

13142

13143

13144

13145

13146

13147

13148

13149

13150

13151

13152

13153

13154

13155

13156

13157

13158

13159

13160

13161

13162

13163

13164

13165

13166

13167

13168

13169

13170

13171

13172

<sys/stat.h> Headers

SEE ALSO
<sys/statvfs.h>, <sys/types.h>, <time.h>

XSH chmod(), fchmod(), fstat(), fstatat(), futimens(), mkdir(), mkfifo(), mknod(), umask()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

The type of st_blksize is changed from long to blksize_t; the type of st_blocks is changed from
long to blkcnt_t.

Issue 6
The S_TYPEISMQ(), S_TYPEISSEM(), and S_TYPEISSHM() macros are unconditionally
mandated.

The Open Group Corrigendum U035/4 is applied. In the DESCRIPTION, the types blksize_t
and blkcnt_t have been described.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The dev_t, ino_t, mode_t, nlink_t, uid_t, gid_t, off_t, and time_t types are mandated.

S_IFSOCK and S_ISSOCK are added for sockets.

The description of stat structure members is changed to reflect contents when file type is a
symbolic link.

The test macro S_TYPEISTMO is added for alignment with IEEE Std 1003.1j-2000.

The restrict keyword is added to the prototypes for lstat() and stat().

The lstat() function is made mandatory.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/17 is applied, adding text regarding the
st_blocks member of the stat structure to the RATIONALE.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/25 is applied, adding to the
DESCRIPTION that the timespec structure may be defined as described in the <time.h> header.

Issue 7
SD5-XSH-ERN-161 is applied, updating the DESCRIPTION to clarify that the descriptions of the
interfaces should be consulted in order to determine which structure members have meaningful
values.

The fchmodat(), fstatat(), mkdirat(), mkfifoat(), mknodat(), and utimensat() functions are added
from The Open Group Technical Standard, 2006, Extended API Set Part 2.

The futimens() function is added.

This reference page is clarified with respect to macros and symbolic constants.

Changes are made related to support for finegrained timestamps and the UTIME_NOW and
UTIME_OMIT symbolic constants are added.

392 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

13173

13174

13175

13176

13177

13178

13179

13180

13181

13182

13183

13184

13185

13186

13187

13188

13189

13190

13191

13192

13193

13194

13195

13196

13197

13198

13199

13200

13201

13202

13203

13204

13205

13206

13207

13208

13209

Headers <sys/statvfs.h>

NAME
sys/statvfs.h — VFS File System information structure

SYNOPSIS
#include <sys/statvfs.h>

DESCRIPTION
The <sys/statvfs.h> header shall define the statvfs structure, which shall include at least the
following members:

unsigned long f_bsize File system block size.
unsigned long f_frsize Fundamental file system block size.
fsblkcnt_t f_blocks Total number of blocks on file system in units of f_frsize.
fsblkcnt_t f_bfree Total number of free blocks.
fsblkcnt_t f_bavail Number of free blocks available to

non-privileged process.
fsfilcnt_t f_files Total number of file serial numbers.
fsfilcnt_t f_ffree Total number of free file serial numbers.
fsfilcnt_t f_favail Number of file serial numbers available to

non-privileged process.
unsigned long f_fsid File system ID.
unsigned long f_flag Bit mask of f_flag values.
unsigned long f_namemax Maximum filename length.

The <sys/statvfs.h> header shall define the fsblkcnt_t and fsfilcnt_t types as described in
<sys/types.h>.

The <sys/statvfs.h> header shall define the following symbolic constants for the f_flag member:

ST_RDONLY Read-only file system.

ST_NOSUID Does not support the semantics of the ST_ISUID and ST_ISGID file mode bits.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int fstatvfs(int, struct statvfs *);
int statvfs(const char *restrict, struct statvfs *restrict);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH fstatvfs()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
The type of f_blocks, f_bfree, and f_bavail is changed from unsigned long to fsblkcnt_t; the type of
f_files, f_ffree, and f_favail is changed from unsigned long to fsfilcnt_t.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 393

13210

13211

13212

13213

13214

13215

13216

13217

13218

13219

13220

13221

13222

13223

13224

13225

13226

13227

13228

13229

13230

13231

13232

13233

13234

13235

13236

13237

13238

13239

13240

13241

13242

13243

13244

13245

13246

13247

13248

13249

13250

13251

13252

<sys/statvfs.h> Headers

Issue 6
The Open Group Corrigendum U035/5 is applied. In the DESCRIPTION, the types fsblkcnt_t
and fsfilcnt_t have been described.

The restrict keyword is added to the prototype for statvfs().

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/18 is applied, changing the description of
ST_NOSUID from ‘‘Does not support setuid()/setgid() semantics’’ to ‘‘Does not support the
semantics of the ST_ISUID and ST_ISGID file mode bits’’.

Issue 7
The <sys/statvfs.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

394 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

13253

13254

13255

13256

13257

13258

13259

13260

13261

13262

Headers <sys/time.h>

NAME
sys/time.h — time types

SYNOPSIS
XSI #include <sys/time.h>

DESCRIPTION
The <sys/time.h> header shall define the timeval structure, which shall include at least the
following members:

time_t tv_sec Seconds.
suseconds_t tv_usec Microseconds.

OB The <sys/time.h> header shall define the itimerval structure, which shall include at least the
following members:

struct timeval it_interval Timer interval.
struct timeval it_value Current value.

The <sys/time.h> header shall define the time_t and suseconds_t types as described in
<sys/types.h>.

The <sys/time.h> header shall define the fd_set type as described in <sys/select.h>.

OB The <sys/time.h> header shall define the following symbolic constants for the which argument of
getitimer() and setitimer():

ITIMER_REAL Decrements in real time.

ITIMER_VIRTUAL Decrements in process virtual time.

ITIMER_PROF Decrements both in process virtual time and when the system is running
on behalf of the process.

The <sys/time.h> header shall define the following as described in <sys/select.h>:

FD_CLR()
FD_ISSET()
FD_SET()
FD_ZERO()
FD_SETSIZE

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

OB int getitimer(int, struct itimerval *);
int gettimeofday(struct timeval *restrict, void *restrict);
int setitimer(int, const struct itimerval *restrict,

struct itimerval *restrict);
int select(int, fd_set *restrict, fd_set *restrict, fd_set *restrict,

struct timeval *restrict);
int utimes(const char *, const struct timeval [2]);

Inclusion of the <sys/time.h> header may make visible all symbols from the <sys/select.h>
header.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 395

13263

13264

13265

13266

13267

13268

13269

13270

13271

13272

13273

13274

13275

13276

13277

13278

13279

13280

13281

13282

13283

13284

13285

13286

13287

13288

13289

13290

13291

13292

13293

13294

13295

13296

13297

13298

13299

13300

13301

<sys/time.h> Headers

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/select.h>, <sys/types.h>

XSH futimens(), getitimer(), gettimeofday(), pselect()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
The type of tv_usec is changed from long to suseconds_t.

Issue 6
The restrict keyword is added to the prototypes for gettimeofday(), select(), and setitimer().

The note is added that inclusion of this header may also make symbols visible from
<sys/select.h>.

The utimes() function is marked LEGACY.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

396 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

13302

13303

13304

13305

13306

13307

13308

13309

13310

13311

13312

13313

13314

13315

13316

13317

13318

13319

13320

13321

Headers <sys/times.h>

NAME
sys/times.h — file access and modification times structure

SYNOPSIS
#include <sys/times.h>

DESCRIPTION
The <sys/times.h> header shall define the tms structure, which is returned by times() and shall
include at least the following members:

clock_t tms_utime User CPU time.
clock_t tms_stime System CPU time.
clock_t tms_cutime User CPU time of terminated child processes.
clock_t tms_cstime System CPU time of terminated child processes.

The <sys/times.h> header shall define the clock_t type as described in <sys/types.h>.

The following shall be declared as a function and may also be defined as a macro. A function
prototype shall be provided.

clock_t times(struct tms *);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH times()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 397

13322

13323

13324

13325

13326

13327

13328

13329

13330

13331

13332

13333

13334

13335

13336

13337

13338

13339

13340

13341

13342

13343

13344

13345

13346

13347

<sys/types.h> Headers

NAME
sys/types.h — data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The <sys/types.h> header shall define at least the following types:

blkcnt_t Used for file block counts.

blksize_t Used for block sizes.

clock_t Used for system times in clock ticks or CLOCKS_PER_SEC; see
<time.h>.

clockid_t Used for clock ID type in the clock and timer functions.

dev_t Used for device IDs.

XSI fsblkcnt_t Used for file system block counts.

XSI fsfilcnt_t Used for file system file counts.

gid_t Used for group IDs.

id_t Used as a general identifier; can be used to contain at least a pid_t,
uid_t, or gid_t.

ino_t Used for file serial numbers.

XSI key_t Used for XSI interprocess communication.

mode_t Used for some file attributes.

nlink_t Used for link counts.

off_t Used for file sizes.

pid_t Used for process IDs and process group IDs.

pthread_attr_t Used to identify a thread attribute object.

pthread_barrier_t Used to identify a barrier.

pthread_barrierattr_t Used to define a barrier attributes object.

pthread_cond_t Used for condition variables.

pthread_condattr_t Used to identify a condition attribute object.

pthread_key_t Used for thread-specific data keys.

pthread_mutex_t Used for mutexes.

pthread_mutexattr_t Used to identify a mutex attribute object.

pthread_once_t Used for dynamic package initialization.

pthread_rwlock_t Used for read-write locks.

pthread_rwlockattr_t Used for read-write lock attributes.

pthread_spinlock_t Used to identify a spin lock.

398 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

13348

13349

13350

13351

13352

13353

13354

13355

13356

13357

13358

13359

13360

13361

13362

13363

13364

13365

13366

13367

13368

13369

13370

13371

13372

13373

13374

13375

13376

13377

13378

13379

13380

13381

13382

Headers <sys/types.h>

pthread_t Used to identify a thread.

size_t Used for sizes of objects.

ssize_t Used for a count of bytes or an error indication.

XSI suseconds_t Used for time in microseconds.

time_t Used for time in seconds.

timer_t Used for timer ID returned by timer_create().

OB TRC Also used to identify a trace stream attributes object.

OB TRC trace_event_id_t Used to identify a trace event type.

OB TEF trace_event_set_t Used to identify a trace event type set.

OB TRC trace_id_t Used to identify a trace stream.

uid_t Used for user IDs.

All of the types shall be defined as arithmetic types of an appropriate length, with the following
exceptions:

pthread_attr_t
pthread_barrier_t
pthread_barrierattr_t
pthread_cond_t
pthread_condattr_t
pthread_key_t
pthread_mutex_t
pthread_mutexattr_t
pthread_once_t
pthread_rwlock_t
pthread_rwlockattr_t
pthread_spinlock_t
pthread_t

OB TRC trace_attr_t
trace_event_id_t

OB TEF trace_event_set_t
OB TRC trace_id_t

Additionally:

• mode_t shall be an integer type.

• nlink_t, uid_t, gid_t, and id_t shall be integer types.

• blkcnt_t and off_t shall be signed integer types.

XSI • fsblkcnt_t, fsfilcnt_t, and ino_t shall be defined as unsigned integer types.

• size_t shall be an unsigned integer type.

• blksize_t, pid_t, and ssize_t shall be signed integer types.

• time_t and clock_t shall be integer or real-floating types.

The type ssize_t shall be capable of storing values at least in the range [−1, {SSIZE_MAX}].

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 399

13383

13384

13385

13386

13387

13388

13389

13390

13391

13392

13393

13394

13395

13396

13397

13398

13399

13400

13401

13402

13403

13404

13405

13406

13407

13408

13409

13410

13411

13412

13413

13414

13415

13416

13417

13418

13419

13420

13421

<sys/types.h> Headers

XSI The type suseconds_t shall be a signed integer type capable of storing values at least in the
range [−1, 1 000 000].

The implementation shall support one or more programming environments in which the widths
of blksize_t, pid_t, size_t, ssize_t, and suseconds_t are no greater than the width of type long.
The names of these programming environments can be obtained using the confstr() function or
the getconf utility.

There are no defined comparison or assignment operators for the following types:

pthread_attr_t
pthread_barrier_t
pthread_barrierattr_t
pthread_cond_t
pthread_condattr_t
pthread_mutex_t
pthread_mutexattr_t
pthread_rwlock_t
pthread_rwlockattr_t
pthread_spinlock_t

OB TRC trace_attr_t

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<time.h>

XSH confstr()

XCU getconf

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The clockid_t and timer_t types are defined for alignment with the POSIX Realtime Extension.

The types blkcnt_t, blksize_t, fsblkcnt_t, fsfilcnt_t, and suseconds_t are added.

Large File System extensions are added.

Updated for alignment with the POSIX Threads Extension.

Issue 6
The pthread_barrier_t, pthread_barrierattr_t, and pthread_spinlock_t types are added for
alignment with IEEE Std 1003.1j-2000.

The margin code is changed from XSI to THR for the pthread_rwlock_t and
pthread_rwlockattr_t types as Read-Write Locks have been absorbed into the POSIX Threads
option. The threads types are marked THR.

400 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

13422

13423

13424

13425

13426

13427

13428

13429

13430

13431

13432

13433

13434

13435

13436

13437

13438

13439

13440

13441

13442

13443

13444

13445

13446

13447

13448

13449

13450

13451

13452

13453

13454

13455

13456

13457

13458

13459

13460

13461

13462

Headers <sys/types.h>

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/26 is applied, adding pthread_t to the list
of types that are not required to be arithmetic types, thus allowing pthread_t to be defined as a
structure.

Issue 7
Austin Group Interpretation 1003.1-2001 #033 is applied, requiring key_t to be an arithmetic
type.

The Trace option types are marked obsolescent.

The clock_t and id_t types are moved from the XSI option to the Base.

The pthread_barrier_t and pthread_barrierattr_t types are moved from the Barriers option to
the Base.

The pthread_spinlock_t type is moved from the Spin Locks option to the Base.

Functionality relating to the Timers and Threads options is moved to the Base.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 401

13463

13464

13465

13466

13467

13468

13469

13470

13471

13472

13473

13474

<sys/uio.h> Headers

NAME
sys/uio.h — definitions for vector I/O operations

SYNOPSIS
XSI #include <sys/uio.h>

DESCRIPTION
The <sys/uio.h> header shall define the iovec structure, which shall include at least the
following members:

void *iov_base Base address of a memory region for input or output.
size_t iov_len The size of the memory pointed to by iov_base.

The <sys/uio.h> header uses the iovec structure for scatter/gather I/O.

The <sys/uio.h> header shall define the ssize_t and size_t types as described in <sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

ssize_t readv(int, const struct iovec *, int);
ssize_t writev(int, const struct iovec *, int);

APPLICATION USAGE
The implementation can put a limit on the number of scatter/gather elements which can be
processed in one call. The symbol {IOV_MAX} defined in <limits.h> should always be used to
learn about the limits instead of assuming a fixed value.

RATIONALE
Traditionally, the maximum number of scatter/gather elements the system can process in one
call were described by the symbolic value {UIO_MAXIOV}. In IEEE Std 1003.1-2001 this value is
replaced by the constant {IOV_MAX} which can be found in <limits.h>.

FUTURE DIRECTIONS
None.

SEE ALSO
<limits.h>, <sys/types.h>

XSH read(), readv(), write(), writev()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 6
Text referring to scatter/gather I/O is added to the DESCRIPTION.

402 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

13475

13476

13477

13478

13479

13480

13481

13482

13483

13484

13485

13486

13487

13488

13489

13490

13491

13492

13493

13494

13495

13496

13497

13498

13499

13500

13501

13502

13503

13504

13505

13506

Headers <sys/un.h>

NAME
sys/un.h — definitions for UNIX domain sockets

SYNOPSIS
#include <sys/un.h>

DESCRIPTION
The <sys/un.h> header shall define the sockaddr_un structure, which shall include at least the
following members:

sa_family_t sun_family Address family.
char sun_path[] Socket pathname.

The sockaddr_un structure is used to store addresses for UNIX domain sockets. Values of this
type shall be cast by applications to struct sockaddr for use with socket functions.

The <sys/un.h> header shall define the sa_family_t type as described in <sys/socket.h>.

APPLICATION USAGE
The size of sun_path has intentionally been left undefined. This is because different
implementations use different sizes. For example, 4.3 BSD uses a size of 108, and 4.4 BSD uses a
size of 104. Since most implementations originate from BSD versions, the size is typically in the
range 92 to 108.

Applications should not assume a particular length for sun_path or assume that it can hold
{_POSIX_PATH_MAX} bytes (256).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/socket.h>

XSH bind(), socket(), socketpair()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
The value for {_POSIX_PATH_MAX} is updated to 256.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 403

13507

13508

13509

13510

13511

13512

13513

13514

13515

13516

13517

13518

13519

13520

13521

13522

13523

13524

13525

13526

13527

13528

13529

13530

13531

13532

13533

13534

13535

13536

<sys/utsname.h> Headers

NAME
sys/utsname.h — system name structure

SYNOPSIS
#include <sys/utsname.h>

DESCRIPTION
The <sys/utsname.h> header shall define the structure utsname which shall include at least the
following members:

char sysname[] Name of this implementation of the operating system.
char nodename[] Name of this node within the communications

network to which this node is attached, if any.
char release[] Current release level of this implementation.
char version[] Current version level of this release.
char machine[] Name of the hardware type on which the system is running.

The character arrays are of unspecified size, but the data stored in them shall be terminated by a
null byte.

The following shall be declared as a function and may also be defined as a macro:

int uname(struct utsname *);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH uname()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/27 is applied, changing the description of
nodename within the utsname structure from ‘‘an implementation-defined communications
network’’ to ‘‘the communications network to which this node is attached, if any’’.

404 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

13537

13538

13539

13540

13541

13542

13543

13544

13545

13546

13547

13548

13549

13550

13551

13552

13553

13554

13555

13556

13557

13558

13559

13560

13561

13562

13563

13564

13565

13566

13567

Headers <sys/wait.h>

NAME
sys/wait.h — declarations for waiting

SYNOPSIS
#include <sys/wait.h>

DESCRIPTION
The <sys/wait.h> header shall define the following symbolic constants for use with waitpid():

XSI WCONTINUED Report status of continued child process.

WNOHANG Do not hang if no status is available; return immediately.

WUNTRACED Report status of stopped child process.

The <sys/wait.h> header shall define the following macros for analysis of process status values:

WEXITSTATUS Return exit status.

XSI WIFCONTINUED Tr ue if child has been continued.

WIFEXITED True if child exited normally.

WIFSIGNALED True if child exited due to uncaught signal.

WIFSTOPPED True if child is currently stopped.

WSTOPSIG Return signal number that caused process to stop.

WTERMSIG Return signal number that caused process to terminate.

The <sys/wait.h> header shall define the following symbolic constants as possible values for the
options argument to waitid():

WEXITED Wait for processes that have exited.

WNOWAIT Keep the process whose status is returned in infop in a waitable state.

WSTOPPED Status is returned for any child that has stopped upon receipt of a signal.

XSI The WCONTINUED and WNOHANG constants, described above for waitpid(), can also be
used with waitid().

The type idtype_t shall be defined as an enumeration type whose possible values shall include
at least the following:

P_ALL
P_PGID
P_PID

The <sys/wait.h> header shall define the id_t and pid_t types as described in <sys/types.h>.

The <sys/wait.h> header shall define the siginfo_t type as described in <signal.h>.

Inclusion of the <sys/wait.h> header may also make visible all symbols from <signal.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

pid_t wait(int *);
int waitid(idtype_t, id_t, siginfo_t *, int);
pid_t waitpid(pid_t, int *, int);

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 405

13568

13569

13570

13571

13572

13573

13574

13575

13576

13577

13578

13579

13580

13581

13582

13583

13584

13585

13586

13587

13588

13589

13590

13591

13592

13593

13594

13595

13596

13597

13598

13599

13600

13601

13602

13603

13604

<sys/wait.h> Headers

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<signal.h>, <sys/types.h>

XSH wait(), waitid()

CHANGE HISTORY
First released in Issue 3.

Included for alignment with the POSIX.1-1988 standard.

Issue 6
The wait3() function is removed.

Issue 7
The waitid() function and symbolic constants for its options argument are moved to the Base.

The description of the WNOHANG constant is clarified.

406 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

13605

13606

13607

13608

13609

13610

13611

13612

13613

13614

13615

13616

13617

13618

13619

13620

13621

Headers <syslog.h>

NAME
syslog.h — definitions for system error logging

SYNOPSIS
XSI #include <syslog.h>

DESCRIPTION
The <syslog.h> header shall define the following symbolic constants, zero or more of which
may be OR’ed together to form the logopt option of openlog():

LOG_PID Log the process ID with each message.

LOG_CONS Log to the system console on error.

LOG_NDELAY Connect to syslog daemon immediately.

LOG_ODELAY Delay open until syslog() is called.

LOG_NOWAIT Do not wait for child processes.

The <syslog.h> header shall define the following symbolic constants for use as the facility
argument to openlog():

LOG_KERN Reserved for message generated by the system.

LOG_USER Message generated by a process.

LOG_MAIL Reserved for message generated by mail system.

LOG_NEWS Reserved for message generated by news system.

LOG_UUCP Reserved for message generated by UUCP system.

LOG_DAEMON Reserved for message generated by system daemon.

LOG_AUTH Reserved for message generated by authorization daemon.

LOG_CRON Reserved for message generated by clock daemon.

LOG_LPR Reserved for message generated by printer system.

LOG_LOCAL0 Reserved for local use.

LOG_LOCAL1 Reserved for local use.

LOG_LOCAL2 Reserved for local use.

LOG_LOCAL3 Reserved for local use.

LOG_LOCAL4 Reserved for local use.

LOG_LOCAL5 Reserved for local use.

LOG_LOCAL6 Reserved for local use.

LOG_LOCAL7 Reserved for local use.

The <syslog.h> header shall define the following macros for constructing the maskpri argument
to setlogmask(). The following macros expand to an expression of type int when the argument
pri is an expression of type int:

LOG_MASK(pri) A mask for priority pri.

The <syslog.h> header shall define the following symbolic constants for use as the priority
argument of syslog():

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 407

13622

13623

13624

13625

13626

13627

13628

13629

13630

13631

13632

13633

13634

13635

13636

13637

13638

13639

13640

13641

13642

13643

13644

13645

13646

13647

13648

13649

13650

13651

13652

13653

13654

13655

13656

13657

13658

<syslog.h> Headers

LOG_EMERG A panic condition was reported to all processes.

LOG_ALERT A condition that should be corrected immediately.

LOG_CRIT A critical condition.

LOG_ERR An error message.

LOG_WARNING A warning message.

LOG_NOTICE A condition requiring special handling.

LOG_INFO A general information message.

LOG_DEBUG A message useful for debugging programs.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void closelog(void);
void openlog(const char *, int, int);
int setlogmask(int);
void syslog(int, const char *, ...);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH closelog()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/Open UNIX to BASE.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

408 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

13659

13660

13661

13662

13663

13664

13665

13666

13667

13668

13669

13670

13671

13672

13673

13674

13675

13676

13677

13678

13679

13680

13681

13682

13683

13684

13685

13686

Headers <tar.h>

NAME
tar.h — extended tar definitions

SYNOPSIS
#include <tar.h>

DESCRIPTION
The <tar.h> header shall define the following symbolic constants with the indicated values.

General definitions:

Name Value Description

TMAGIC "ustar" ustar plus null byte.
TMAGLEN 6 Length of the above.
TVERSION "00" 00 without a null byte.
TVERSLEN 2 Length of the above.

Typeflag field definitions:

Name Value Description

REGTYPE ’0’ Regular file.
AREGTYPE ’\0’ Regular file.
LNKTYPE ’1’ Link.
SYMTYPE ’2’ Symbolic link.
CHRTYPE ’3’ Character special.
BLKTYPE ’4’ Block special.
DIRTYPE ’5’ Directory.
FIFOTYPE ’6’ FIFO special.
CONTTYPE ’7’ Reserved.

Mode field bit definitions (octal):

Name Value Description

TSUID 04000 Set UID on execution.
TSGID 02000 Set GID on execution.

XSI TSVTX 01000 On directories, restricted deletion flag.
TUREAD 00400 Read by owner.
TUWRITE 00200 Write by owner special.
TUEXEC 00100 Execute/search by owner.
TGREAD 00040 Read by group.
TGWRITE 00020 Write by group.
TGEXEC 00010 Execute/search by group.
TOREAD 00004 Read by other.
TOWRITE 00002 Write by other.
TOEXEC 00001 Execute/search by other.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 409

13687

13688

13689

13690

13691

13692

13693

13694

13695

13696

13697

13698

13699

13700

13701

13702

13703

13704

13705

13706

13707

13708

13709

13710

13711

13712

13713

13714

13715

13716

13717

13718

13719

13720

13721

13722

13723

<tar.h> Headers

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XCU pax

CHANGE HISTORY
First released in Issue 3. Derived from the POSIX.1-1988 standard.

Issue 6
The SEE ALSO section is updated to refer to pax.

Issue 7
This reference page is clarified with respect to macros and symbolic constants.

410 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

13724

13725

13726

13727

13728

13729

13730

13731

13732

13733

13734

13735

13736

13737

Headers <termios.h>

NAME
termios.h — define values for termios

SYNOPSIS
#include <termios.h>

DESCRIPTION
The <termios.h> header shall contain the definitions used by the terminal I/O interfaces (see
Chapter 11 (on page 199) for the structures and names defined).

The termios Structure

The <termios.h> header shall define the following data types through typedef:

cc_t Used for terminal special characters.

speed_t Used for terminal baud rates.

tcflag_t Used for terminal modes.

The above types shall be all unsigned integer types.

The implementation shall support one or more programming environments in which the widths
of cc_t, speed_t, and tcflag_t are no greater than the width of type long. The names of these
programming environments can be obtained using the confstr() function or the getconf utility.

The <termios.h> header shall define the termios structure, which shall include at least the
following members:

tcflag_t c_iflag Input modes.
tcflag_t c_oflag Output modes.
tcflag_t c_cflag Control modes.
tcflag_t c_lflag Local modes.
cc_t c_cc[NCCS] Control characters.

The <termios.h> header shall define the following symbolic constant:

NCCS Size of the array c_cc for control characters.

The <termios.h> header shall define the following symbolic constants for use as subscripts for
the array c_cc:

Subscript Usage
Canonical Mode Non-Canonical Mode Description

VEOF EOF character.
VEOL EOL character.
VERASE ERASE character.
VINTR VINTR INTR character.
VKILL KILL character.

VMIN MIN value.
VQUIT VQUIT QUIT character.
VSTART VSTART START character.
VSTOP VSTOP STOP character.
VSUSP VSUSP SUSP character.

VTIME TIME value.

The subscript values shall be suitable for use in #if preprocessing directives and shall be distinct,
except that the VMIN and VTIME subscripts may have the same values as the VEOF and VEOL
subscripts, respectively.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 411

13738

13739

13740

13741

13742

13743

13744

13745

13746

13747

13748

13749

13750

13751

13752

13753

13754

13755

13756

13757

13758

13759

13760

13761

13762

13763

13764

13765

13766

13767

13768

13769

13770

13771

13772

13773

13774

13775

13776

13777

13778

13779

13780

<termios.h> Headers

Input Modes

The <termios.h> header shall define the following symbolic constants for use as flags in the
c_iflag field. The c_iflag field describes the basic terminal input control.

BRKINT Signal interrupt on break.

ICRNL Map CR to NL on input.

IGNBRK Ignore break condition.

IGNCR Ignore CR.

IGNPAR Ignore characters with parity errors.

INLCR Map NL to CR on input.

INPCK Enable input parity check.

ISTRIP Strip character.

IXANY Enable any character to restart output.

IXOFF Enable start/stop input control.

IXON Enable start/stop output control.

PARMRK Mark parity errors.

Output Modes

The <termios.h> header shall define the following symbolic constants for use as flags in the
c_oflag field. The c_oflag field specifies the system treatment of output.

OPOST Post-process output.

XSI ONLCR Map NL to CR-NL on output.

XSI OCRNL Map CR to NL on output.

XSI ONOCR No CR output at column 0.

XSI ONLRET NL performs CR function.

XSI OFDEL Fill is DEL.

XSI OFILL Use fill characters for delay.

XSI NLDLY Select newline delays:

NL0 Newline type 0.

NL1 Newline type 1.

XSI CRDLY Select carriage-return delays:

CR0 Carriage-return delay type 0.

CR1 Carriage-return delay type 1.

CR2 Carriage-return delay type 2.

CR3 Carriage-return delay type 3.

412 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

13781

13782

13783

13784

13785

13786

13787

13788

13789

13790

13791

13792

13793

13794

13795

13796

13797

13798

13799

13800

13801

13802

13803

13804

13805

13806

13807

13808

13809

13810

13811

13812

13813

Headers <termios.h>

XSI TABDLY Select horizontal-tab delays:

TAB0 Horizontal-tab delay type 0.

TAB1 Horizontal-tab delay type 1.

TAB2 Horizontal-tab delay type 2.

TAB3 Expand tabs to spaces.

XSI BSDLY Select backspace delays:

BS0 Backspace-delay type 0.

BS1 Backspace-delay type 1.

XSI VTDLY Select vertical-tab delays:

VT0 Vertical-tab delay type 0.

VT1 Vertical-tab delay type 1.

XSI FFDLY Select form-feed delays:

FF0 Form-feed delay type 0.

FF1 Form-feed delay type 1.

Baud Rate Selection

The <termios.h> header shall define the following symbolic constants for use as values of
objects of type speed_t.

The input and output baud rates are stored in the termios structure. These are the valid values
for objects of type speed_t. Not all baud rates need be supported by the underlying hardware.

B0 Hang up

B50 50 baud

B75 75 baud

B110 110 baud

B134 134.5 baud

B150 150 baud

B200 200 baud

B300 300 baud

B600 600 baud

B1200 1 200 baud

B1800 1 800 baud

B2400 2 400 baud

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 413

13814

13815

13816

13817

13818

13819

13820

13821

13822

13823

13824

13825

13826

13827

13828

13829

13830

13831

13832

13833

13834

13835

13836

13837

13838

13839

13840

13841

13842

13843

13844

<termios.h> Headers

B4800 4 800 baud

B9600 9 600 baud

B19200 19 200 baud

B38400 38 400 baud

Control Modes

The <termios.h> header shall define the following symbolic constants for use as flags in the
c_cflag field. The c_cflag field describes the hardware control of the terminal; not all values
specified are required to be supported by the underlying hardware.

CSIZE Character size:

CS5 5 bits

CS6 6 bits

CS7 7 bits

CS8 8 bits

CSTOPB Send two stop bits, else one.

CREAD Enable receiver.

PARENB Parity enable.

PARODD Odd parity, else even.

HUPCL Hang up on last close.

CLOCAL Ignore modem status lines.

The implementation shall support the functionality associated with the symbols CS7, CS8,
CSTOPB, PARODD, and PARENB.

Local Modes

The <termios.h> header shall define the following symbolic constants for use as flags in the
c_lflag field. The c_lflag field of the argument structure is used to control various terminal
functions.

ECHO Enable echo.

ECHOE Echo erase character as error-correcting backspace.

ECHOK Echo KILL.

ECHONL Echo NL.

ICANON Canonical input (erase and kill processing).

IEXTEN Enable extended input character processing.

ISIG Enable signals.

NOFLSH Disable flush after interrupt or quit.

TOSTOP Send SIGTTOU for background output.

414 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

13845

13846

13847

13848

13849

13850

13851

13852

13853

13854

13855

13856

13857

13858

13859

13860

13861

13862

13863

13864

13865

13866

13867

13868

13869

13870

13871

13872

13873

13874

13875

13876

13877

13878

Headers <termios.h>

Attribute Selection

The <termios.h> header shall define the following symbolic constants for use with tcsetattr():

TCSANOW Change attributes immediately.

TCSADRAIN Change attributes when output has drained.

TCSAFLUSH Change attributes when output has drained; also flush pending input.

Line Control

The <termios.h> header shall define the following symbolic constants for use with tcflush():

TCIFLUSH Flush pending input.

TCIOFLUSH Flush both pending input and untransmitted output.

TCOFLUSH Flush untransmitted output.

The <termios.h> header shall define the following symbolic constants for use with tcflow():

TCIOFF Transmit a STOP character, intended to suspend input data.

TCION Transmit a START character, intended to restart input data.

TCOOFF Suspend output.

TCOON Restart output.

The <termios.h> header shall define the pid_t type as described in <sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

speed_t cfgetispeed(const struct termios *);
speed_t cfgetospeed(const struct termios *);
int cfsetispeed(struct termios *, speed_t);
int cfsetospeed(struct termios *, speed_t);
int tcdrain(int);
int tcflow(int, int);
int tcflush(int, int);
int tcgetattr(int, struct termios *);
pid_t tcgetsid(int);
int tcsendbreak(int, int);
int tcsetattr(int, int, const struct termios *);

APPLICATION USAGE
The following names are reserved for XSI-conformant systems to use as an extension to the
above; therefore strictly conforming applications shall not use them:

CBAUD EXTB VDSUSP
DEFECHO FLUSHO VLNEXT
ECHOCTL LOBLK VREPRINT
ECHOKE PENDIN VSTATUS
ECHOPRT SWTCH VWERASE
EXTA VDISCARD

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 415

13879

13880

13881

13882

13883

13884

13885

13886

13887

13888

13889

13890

13891

13892

13893

13894

13895

13896

13897

13898

13899

13900

13901

13902

13903

13904

13905

13906

13907

13908

13909

13910

13911

13912

13913

13914

13915

13916

<termios.h> Headers

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>

XSH cfgetispeed(), cfgetospeed(), cfsetispeed(), cfsetospeed(), confstr(), tcdrain(), tcflow(), tcflush(),
tcgetattr(), tcgetsid(), tcsendbreak(), tcsetattr()

XCU Chapter 11 (on page 199), getconf

CHANGE HISTORY
First released in Issue 3.

Included for alignment with the ISO POSIX-1 standard.

Issue 6
The LEGACY symbols IUCLC, OLCUC, and XCASE are removed.

FIPS 151-2 requirements for the symbols CS7, CS8, CSTOPB, PARODD, and PARENB are
reaffirmed.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/19 is applied, changing ECHOK to
ECHOKE in the APPLICATION USAGE section.

Issue 7
Austin Group Interpretation 1003.1-2001 #144 is applied, moving functionality relating to the
IXANY symbol from the XSI option to the Base.

SD5-XBD-ERN-35 is applied, adding the OFDEL output mode.

This reference page is clarified with respect to macros and symbolic constants, and a declaration
for the pid_t type is added.

416 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

13917

13918

13919

13920

13921

13922

13923

13924

13925

13926

13927

13928

13929

13930

13931

13932

13933

13934

13935

13936

13937

13938

13939

13940

Headers <tgmath.h>

NAME
tgmath.h — type-generic macros

SYNOPSIS
#include <tgmath.h>

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The <tgmath.h> header shall include the headers <math.h> and <complex.h> and shall define
several type-generic macros.

Of the functions contained within the <math.h> and <complex.h> headers without an f (float)
or l (long double) suffix, several have one or more parameters whose corresponding real type is

XSI double. For each such function, except modf(), j0(), j1(), jn(), y0(), y1(), and yn(), there shall
be a corresponding type-generic macro. The parameters whose corresponding real type is
double in the function synopsis are generic parameters. Use of the macro invokes a function
whose corresponding real type and type domain are determined by the arguments for the
generic parameters.

Use of the macro invokes a function whose generic parameters have the corresponding real type
determined as follows:

• First, if any argument for generic parameters has type long double, the type determined is
long double.

• Otherwise, if any argument for generic parameters has type double or is of integer type,
the type determined is double.

• Otherwise, the type determined is float.

For each unsuffixed function in the <math.h> header for which there is a function in the
<complex.h> header with the same name except for a c prefix, the corresponding type-generic
macro (for both functions) has the same name as the function in the <math.h> header. The
corresponding type-generic macro for fabs() and cabs() is fabs().

<math.h> Function <complex.h> Function Type-Generic Macro

acos() cacos() acos()
asin() casin() asin()
atan() catan() atan()
acosh() cacosh() acosh()
asinh() casinh() asinh()
atanh() catanh() atanh()
cos() ccos() cos()
sin() csin() sin()
tan() ctan() tan()
cosh() ccosh() cosh()
sinh() csinh() sinh()
tanh() ctanh() tanh()
exp() cexp() exp()
log() clog() log()
pow() cpow() pow()
sqrt() csqrt() sqrt()
fabs() cabs() fabs()

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 417

13941

13942

13943

13944

13945

13946

13947

13948

13949

13950

13951

13952

13953

13954

13955

13956

13957

13958

13959

13960

13961

13962

13963

13964

13965

13966

13967

13968

13969

13970

13971

13972

13973

13974

13975

13976

13977

13978

13979

13980

13981

13982

13983

13984

13985

13986

<tgmath.h> Headers

If at least one argument for a generic parameter is complex, then use of the macro invokes a
complex function; otherwise, use of the macro invokes a real function.

For each unsuffixed function in the <math.h> header without a c-prefixed counterpart in the
XSI <complex.h> header, except for modf(), j0(), j1(), jn(), y0(), y1(), and yn(), the corresponding

type-generic macro has the same name as the function. These type-generic macros are:

atan2()
cbrt()
ceil()
copysign()
erf()
erfc()
exp2()
expm1()
fdim()
floor()

fma()
fmax()
fmin()
fmod()
frexp()
hypot()
ilogb()
ldexp()
lgamma()
llrint()

llround()
log10()
log1p()
log2()
logb()
lrint()
lround()
nearbyint()
nextafter()
nexttoward()

remainder()
remquo()
rint()
round()
scalbn()
scalbln()
tgamma()
trunc()

If all arguments for generic parameters are real, then use of the macro invokes a real function;
otherwise, use of the macro results in undefined behavior.

For each unsuffixed function in the <complex.h> header that is not a c-prefixed counterpart to a
function in the <math.h> header, the corresponding type-generic macro has the same name as
the function. These type-generic macros are:

carg()
cimag()
conj()
cproj()
creal()

Use of the macro with any real or complex argument invokes a complex function.

APPLICATION USAGE
With the declarations:

#include <tgmath.h>
int n;
float f;
double d;
long double ld;
float complex fc;
double complex dc;
long double complex ldc;

functions invoked by use of type-generic macros are shown in the following table:

Macro Use Invokes

exp(n) exp(n), the function
acosh(f) acoshf(f)
sin(d) sin(d), the function
atan(ld) atanl(ld)
log(fc) clogf(fc)
sqrt(dc) csqrt(dc)

418 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

13987

13988

13989

13990

13991

13992

13993

13994

13995

13996

13997

13998

13999

14000

14001

14002

14003

14004

14005

14006

14007

14008

14009

14010

14011

14012

14013

14014

14015

14016

14017

14018

14019

14020

14021

14022

14023

14024

14025

14026

14027

14028

14029

14030

Headers <tgmath.h>

Macro Use Invokes

pow(ldc,f) cpowl(ldc, f)
remainder(n,n) remainder(n, n), the function
nextafter(d,f) nextafter(d, f), the function
nexttoward(f,ld) nexttowardf(f, ld)
copysign(n,ld) copysignl(n, ld)
ceil(fc) Undefined behavior
rint(dc) Undefined behavior
fmax(ldc,ld) Undefined behavior
carg(n) carg(n), the function
cproj(f) cprojf(f)
creal(d) creal(d), the function
cimag(ld) cimagl(ld)
cabs(fc) cabsf(fc)
carg(dc) carg(dc), the function
cproj(ldc) cprojl(ldc)

RATIONALE
Type-generic macros allow calling a function whose type is determined by the argument type, as
is the case for C operators such as ’+’ and ’*’. For example, with a type-generic cos() macro,
the expression cos((float)x) will have type float. This feature enables writing more portably
efficient code and alleviates need for awkward casting and suffixing in the process of porting or
adjusting precision. Generic math functions are a widely appreciated feature of Fortran.

The only arguments that affect the type resolution are the arguments corresponding to the
parameters that have type double in the synopsis. Hence the type of a type-generic call to
nexttoward(), whose second parameter is long double in the synopsis, is determined solely by
the type of the first argument.

The term ‘‘type-generic’’ was chosen over the proposed alternatives of intrinsic and overloading.
The term is more specific than intrinsic, which already is widely used with a more general
meaning, and reflects a closer match to Fortran’s generic functions than to C++ overloading.

The macros are placed in their own header in order not to silently break old programs that
include the <math.h> header; for example, with:

printf ("%e", sin(x))

modf (double, double *) is excluded because no way was seen to make it safe without
complicating the type resolution.

The implementation might, as an extension, endow appropriate ones of the macros that
POSIX.1-2008 specifies only for real arguments with the ability to invoke the complex functions.

POSIX.1-2008 does not prescribe any particular implementation mechanism for generic macros.
It could be implemented simply with built-in macros. The generic macro for sqrt(), for example,
could be implemented with:

#undef sqrt
#define sqrt(x) __BUILTIN_GENERIC_sqrt(x)

Generic macros are designed for a useful level of consistency with C++ overloaded math
functions.

The great majority of existing C programs are expected to be unaffected when the <tgmath.h>
header is included instead of the <math.h> or <complex.h> headers. Generic macros are similar
to the ISO/IEC 9899: 1999 standard library masking macros, though the semantic types of return

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 419

14031

14032

14033

14034

14035

14036

14037

14038

14039

14040

14041

14042

14043

14044

14045

14046

14047

14048

14049

14050

14051

14052

14053

14054

14055

14056

14057

14058

14059

14060

14061

14062

14063

14064

14065

14066

14067

14068

14069

14070

14071

14072

14073

14074

14075

14076

<tgmath.h> Headers

values differ.

The ability to overload on integer as well as floating types would have been useful for some
functions; for example, copysign(). Overloading with different numbers of arguments would
have allowed reusing names; for example, remainder() for remquo(). However, these facilities
would have complicated the specification; and their natural consistent use, such as for a floating
abs() or a two-argument atan(), would have introduced further inconsistencies with the
ISO/IEC 9899: 1999 standard for insufficient benefit.

The ISO C standard in no way limits the implementation’s options for efficiency, including
inlining library functions.

FUTURE DIRECTIONS
None.

SEE ALSO
<math.h>, <complex.h>

XSH cabs(), fabs(), modf()

CHANGE HISTORY
First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #184 is applied, clarifying the functions for which a
corresponding type-generic macro exists with the same name as the function.

420 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

14077

14078

14079

14080

14081

14082

14083

14084

14085

14086

14087

14088

14089

14090

14091

14092

14093

14094

14095

Headers <time.h>

NAME
time.h — time types

SYNOPSIS
#include <time.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 468) to
enable the visibility of these symbols in this header.

The <time.h> header shall define the clock_t, size_t, time_t, types as described in
<sys/types.h>.

CX The <time.h> header shall define the clockid_t and timer_t types as described in <sys/types.h>.

CX The <time.h> header shall define the locale_t type as described in <locale.h>.

CPT The <time.h> header shall define the pid_t type as described in <sys/types.h>.

CX The tag sigevent shall be declared as naming an incomplete structure type, the contents of which
are described in the <signal.h> header.

The <time.h> header shall declare the tm structure, which shall include at least the following
members:

int tm_sec Seconds [0,60].
int tm_min Minutes [0,59].
int tm_hour Hour [0,23].
int tm_mday Day of month [1,31].
int tm_mon Month of year [0,11].
int tm_year Years since 1900.
int tm_wday Day of week [0,6] (Sunday =0).
int tm_yday Day of year [0,365].
int tm_isdst Daylight Savings flag.

The value of tm_isdst shall be positive if Daylight Savings Time is in effect, 0 if Daylight Savings
Time is not in effect, and negative if the information is not available.

CX The <time.h> header shall declare the timespec structure, which shall include at least the
following members:

time_t tv_sec Seconds.
long tv_nsec Nanoseconds.

The <time.h> header shall also declare the itimerspec structure, which shall include at least the
following members:

struct timespec it_interval Timer period.
struct timespec it_value Timer expiration.

The <time.h> header shall define the following macros:

NULL As described in <stddef.h>.

CLOCKS_PER_SEC A number used to convert the value returned by the clock() function into
XSI seconds. The value shall be an expression with type clock_t. The value of

CLOCKS_PER_SEC shall be 1 million on XSI-conformant systems.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 421

14096

14097

14098

14099

14100

14101

14102

14103

14104

14105

14106

14107

14108

14109

14110

14111

14112

14113

14114

14115

14116

14117

14118

14119

14120

14121

14122

14123

14124

14125

14126

14127

14128

14129

14130

14131

14132

14133

14134

14135

14136

<time.h> Headers

However, it may be variable on other systems, and it should not be
assumed that CLOCKS_PER_SEC is a compile-time constant.

CX The <time.h> header shall define the following symbolic constants. The values shall have a type
that is assignment-compatible with clockid_t.

MON CLOCK_MONOTONIC
The identifier for the system-wide monotonic clock, which is defined as a
clock measuring real time, whose value cannot be set via clock_settime()
and which cannot have negative clock jumps. The maximum possible
clock jump shall be implementation-defined.

CPT CLOCK_PROCESS_CPUTIME_ID
The identifier of the CPU-time clock associated with the process making a
clock() or timer*() function call.

CX CLOCK_REALTIME The identifier of the system-wide clock measuring real time.

TCT CLOCK_THREAD_CPUTIME_ID
The identifier of the CPU-time clock associated with the thread making a
clock() or timer*() function call.

The <time.h> header shall define the following symbolic constant:

TIMER_ABSTIME Flag indicating time is absolute. For functions taking timer objects, this
refers to the clock associated with the timer.

XSI The <time.h> header shall provide a declaration or definition for getdate_err. The getdate_err
symbol shall expand to an expression of type int. It is unspecified whether getdate_err is a macro
or an identifier declared with external linkage, and whether or not it is a modifiable lvalue. If a
macro definition is suppressed in order to access an actual object, or a progrm defines an
identifier with the name getdate_err, the behavior is undefined.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

OB char *asctime(const struct tm *);
OB CX char *asctime_r(const struct tm *restrict, char *restrict);

clock_t clock(void);
CPT int clock_getcpuclockid(pid_t, clockid_t *);
CX int clock_getres(clockid_t, struct timespec *);

int clock_gettime(clockid_t, struct timespec *);
int clock_nanosleep(clockid_t, int, const struct timespec *,

struct timespec *);
int clock_settime(clockid_t, const struct timespec *);

OB char *ctime(const time_t *);
OB CX char *ctime_r(const time_t *, char *);

double difftime(time_t, time_t);
XSI struct tm *getdate(const char *);

struct tm *gmtime(const time_t *);
CX struct tm *gmtime_r(const time_t *restrict, struct tm *restrict);

struct tm *localtime(const time_t *);
CX struct tm *localtime_r(const time_t *restrict, struct tm *restrict);

time_t mktime(struct tm *);
CX int nanosleep(const struct timespec *, struct timespec *);

size_t strftime(char *restrict, size_t, const char *restrict,
const struct tm *restrict);

422 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

14137

14138

14139

14140

14141

14142

14143

14144

14145

14146

14147

14148

14149

14150

14151

14152

14153

14154

14155

14156

14157

14158

14159

14160

14161

14162

14163

14164

14165

14166

14167

14168

14169

14170

14171

14172

14173

14174

14175

14176

14177

14178

14179

14180

14181

14182

14183

Headers <time.h>

CX size_t strftime_l(char *restrict, size_t, const char *restrict,
const struct tm *restrict, locale_t);

XSI char *strptime(const char *restrict, const char *restrict,
struct tm *restrict);

time_t time(time_t *);
CX int timer_create(clockid_t, struct sigevent *restrict,

timer_t *restrict);
int timer_delete(timer_t);
int timer_getoverrun(timer_t);
int timer_gettime(timer_t, struct itimerspec *);
int timer_settime(timer_t, int, const struct itimerspec *restrict,

struct itimerspec *restrict);
void tzset(void);

The <time.h> header shall declare the following as variables:

XSI extern int daylight;
extern long timezone;

CX extern char *tzname[];

CX Inclusion of the <time.h> header may make visible all symbols from the <signal.h> header.

APPLICATION USAGE
The range [0,60] for tm_sec allows for the occasional leap second.

tm_year is a signed value; therefore, years before 1900 may be represented.

To obtain the number of clock ticks per second returned by the times() function, applications
should call sysconf (_SC_CLK_TCK).

RATIONALE
The range [0,60] seconds allows for positive or negative leap seconds. The formal definition of
UTC does not permit double leap seconds, so all mention of double leap seconds has been
removed, and the range shortened from the former [0,61] seconds seen in earlier versions of this
standard.

FUTURE DIRECTIONS
None.

SEE ALSO
<locale.h>, <signal.h>, <stddef.h>, <sys/types.h>

XSH Section 2.2 (on page 468), asctime(), clock(), clock_getcpuclockid(), clock_getres(),
clock_nanosleep(), ctime(), difftime(), getdate(), gmtime(), localtime(), mktime(), mq_receive(),
mq_send(), nanosleep(), pthread_getcpuclockid(), pthread_mutex_timedlock(),
pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), sem_timedwait(), strftime(), strptime(),
sysconf(), time(), timer_create(), timer_delete(), timer_getoverrun(), tzset(), utime()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 423

14184

14185

14186

14187

14188

14189

14190

14191

14192

14193

14194

14195

14196

14197

14198

14199

14200

14201

14202

14203

14204

14205

14206

14207

14208

14209

14210

14211

14212

14213

14214

14215

14216

14217

14218

14219

14220

14221

14222

14223

14224

14225

<time.h> Headers

Issue 6
The Open Group Corrigendum U035/6 is applied. In the DESCRIPTION, the types clockid_t
and timer_t have been described.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The POSIX timer-related functions are marked as part of the Timers option.

The symbolic name CLK_TCK is removed. Application usage is added describing how its
equivalent functionality can be obtained using sysconf().

The clock_getcpuclockid() function and manifest constants CLOCK_PROCESS_CPUTIME_ID and
CLOCK_THREAD_CPUTIME_ID are added for alignment with IEEE Std 1003.1d-1999.

The manifest constant CLOCK_MONOTONIC and the clock_nanosleep() function are added for
alignment with IEEE Std 1003.1j-2000.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The range for seconds is changed from [0,61] to [0,60].

• The restrict keyword is added to the prototypes for asctime_r(), gmtime_r(), localtime_r(),
strftime(), strptime(), timer_create(), and timer_settime().

IEEE PASC Interpretation 1003.1 #84 is applied adding the statement that symbols from the
<signal.h> header may be made visible when the <time.h> header is included.

Extensions beyond the ISO C standard are marked.

Issue 7
Austin Group Interpretation 1003.1-2001 #111 is applied.

SD5-XBD-ERN-74 is applied.

The strftime_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

Functionality relating to the Timers option is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants, and declarations
for the locale_t and pid_t types and the sigevent structure are added.

The description of the getdate_err value is expanded.

424 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

14226

14227

14228

14229

14230

14231

14232

14233

14234

14235

14236

14237

14238

14239

14240

14241

14242

14243

14244

14245

14246

14247

14248

14249

14250

14251

14252

Headers <trace.h>

NAME
trace.h — tracing

SYNOPSIS
OB TRC #include <trace.h>

DESCRIPTION
The <trace.h> header shall define the posix_trace_event_info structure, which shall include at
least the following members:

trace_event_id_t posix_event_id
pid_t posix_pid
void *posix_prog_address
pthread_t posix_thread_id
struct timespec posix_timestamp
int posix_truncation_status

The <trace.h> header shall define the posix_trace_status_info structure, which shall include at
least the following members:

int posix_stream_full_status
int posix_stream_overrun_status
int posix_stream_status

OB TRL int posix_log_full_status
int posix_log_overrun_status
int posix_stream_flush_error
int posix_stream_flush_status

The <trace.h> header shall define the following symbolic constants:

POSIX_TRACE_ALL_EVENTS
OB TRL POSIX_TRACE_APPEND
OB TRI POSIX_TRACE_CLOSE_FOR_CHILD
OB TEF POSIX_TRACE_FILTER
OB TRL POSIX_TRACE_FLUSH

POSIX_TRACE_FLUSH_START
POSIX_TRACE_FLUSH_STOP
POSIX_TRACE_FLUSHING
POSIX_TRACE_FULL
POSIX_TRACE_LOOP
POSIX_TRACE_NO_OVERRUN

OB TRL POSIX_TRACE_NOT_FLUSHING
POSIX_TRACE_NOT_FULL

OB TRI POSIX_TRACE_INHERITED
POSIX_TRACE_NOT_TRUNCATED
POSIX_TRACE_OVERFLOW
POSIX_TRACE_OVERRUN
POSIX_TRACE_RESUME
POSIX_TRACE_RUNNING
POSIX_TRACE_START
POSIX_TRACE_STOP
POSIX_TRACE_SUSPENDED
POSIX_TRACE_SYSTEM_EVENTS
POSIX_TRACE_TRUNCATED_READ

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 425

14253

14254

14255

14256

14257

14258

14259

14260

14261

14262

14263

14264

14265

14266

14267

14268

14269

14270

14271

14272

14273

14274

14275

14276

14277

14278

14279

14280

14281

14282

14283

14284

14285

14286

14287

14288

14289

14290

14291

14292

14293

14294

14295

14296

14297

14298

14299

<trace.h> Headers

POSIX_TRACE_TRUNCATED_RECORD
POSIX_TRACE_UNNAMED_USER_EVENT
POSIX_TRACE_UNTIL_FULL
POSIX_TRACE_WOPID_EVENTS

OB TEF The <trace.h> header shall define the size_t, trace_attr_t, trace_event_id_t, trace_event_set_t,
and trace_id_t types as described in <sys/types.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int posix_trace_attr_destroy(trace_attr_t *);
int posix_trace_attr_getclockres(const trace_attr_t *,

struct timespec *);
int posix_trace_attr_getcreatetime(const trace_attr_t *,

struct timespec *);
int posix_trace_attr_getgenversion(const trace_attr_t *, char *);

TRI int posix_trace_attr_getinherited(const trace_attr_t *restrict,
int *restrict);

TRL int posix_trace_attr_getlogfullpolicy(const trace_attr_t *restrict,
int *restrict);

int posix_trace_attr_getlogsize(const trace_attr_t *restrict,
size_t *restrict);

int posix_trace_attr_getmaxdatasize(const trace_attr_t *restrict,
size_t *restrict);

int posix_trace_attr_getmaxsystemeventsize(const trace_attr_t *restrict,
size_t *restrict);

int posix_trace_attr_getmaxusereventsize(const trace_attr_t *restrict,
size_t, size_t *restrict);

int posix_trace_attr_getname(const trace_attr_t *, char *);
int posix_trace_attr_getstreamfullpolicy(const trace_attr_t *restrict,

int *restrict);
int posix_trace_attr_getstreamsize(const trace_attr_t *restrict,

size_t *restrict);
int posix_trace_attr_init(trace_attr_t *);

TRI int posix_trace_attr_setinherited(trace_attr_t *, int);
TRL int posix_trace_attr_setlogfullpolicy(trace_attr_t *, int);

int posix_trace_attr_setlogsize(trace_attr_t *, size_t);
int posix_trace_attr_setmaxdatasize(trace_attr_t *, size_t);
int posix_trace_attr_setname(trace_attr_t *, const char *);
int posix_trace_attr_setstreamfullpolicy(trace_attr_t *, int);
int posix_trace_attr_setstreamsize(trace_attr_t *, size_t);
int posix_trace_clear(trace_id_t);

TRL int posix_trace_close(trace_id_t);
int posix_trace_create(pid_t, const trace_attr_t *restrict,

trace_id_t *restrict);
TRL int posix_trace_create_withlog(pid_t, const trace_attr_t *restrict,

int, trace_id_t *restrict);
void posix_trace_event(trace_event_id_t, const void *restrict, size_t);
int posix_trace_eventid_equal(trace_id_t, trace_event_id_t,

trace_event_id_t);
int posix_trace_eventid_get_name(trace_id_t, trace_event_id_t, char *);
int posix_trace_eventid_open(const char *restrict,

426 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

14300

14301

14302

14303

14304

14305

14306

14307

14308

14309

14310

14311

14312

14313

14314

14315

14316

14317

14318

14319

14320

14321

14322

14323

14324

14325

14326

14327

14328

14329

14330

14331

14332

14333

14334

14335

14336

14337

14338

14339

14340

14341

14342

14343

14344

14345

14346

14347

14348

14349

Headers <trace.h>

trace_event_id_t *restrict);
TEF int posix_trace_eventset_add(trace_event_id_t, trace_event_set_t *);

int posix_trace_eventset_del(trace_event_id_t, trace_event_set_t *);
int posix_trace_eventset_empty(trace_event_set_t *);
int posix_trace_eventset_fill(trace_event_set_t *, int);
int posix_trace_eventset_ismember(trace_event_id_t,

const trace_event_set_t *restrict, int *restrict);
int posix_trace_eventtypelist_getnext_id(trace_id_t,

trace_event_id_t *restrict, int *restrict);
int posix_trace_eventtypelist_rewind(trace_id_t);

TRL int posix_trace_flush(trace_id_t);
int posix_trace_get_attr(trace_id_t, trace_attr_t *);

TEF int posix_trace_get_filter(trace_id_t, trace_event_set_t *);
int posix_trace_get_status(trace_id_t,

struct posix_trace_status_info *);
int posix_trace_getnext_event(trace_id_t,

struct posix_trace_event_info *restrict, void *restrict,
size_t, size_t *restrict, int *restrict);

TRL int posix_trace_open(int, trace_id_t *);
int posix_trace_rewind(trace_id_t);

TEF int posix_trace_set_filter(trace_id_t, const trace_event_set_t *, int);
int posix_trace_shutdown(trace_id_t);
int posix_trace_start(trace_id_t);
int posix_trace_stop(trace_id_t);
int posix_trace_timedgetnext_event(trace_id_t,

struct posix_trace_event_info *restrict, void *restrict,
size_t, size_t *restrict, int *restrict,
const struct timespec *restrict);

TEF int posix_trace_trid_eventid_open(trace_id_t, const char *restrict,
trace_event_id_t *restrict);

int posix_trace_trygetnext_event(trace_id_t,
struct posix_trace_event_info *restrict, void *restrict, size_t,
size_t *restrict, int *restrict);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The <trace.h> header may be removed in a future version.

SEE ALSO
<sys/types.h>

XSH Section 2.11 (on page 529), posix_trace_attr_destroy(), posix_trace_attr_getclockres(),
posix_trace_attr_getinherited(), posix_trace_attr_getlogsize(), posix_trace_clear(), posix_trace_close(),
posix_trace_create(), posix_trace_event(), posix_trace_eventid_equal(), posix_trace_eventset_add(),
posix_trace_eventtypelist_getnext_id(), posix_trace_get_attr(), posix_trace_get_filter(),
posix_trace_getnext_event(), posix_trace_start()

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 427

14350

14351

14352

14353

14354

14355

14356

14357

14358

14359

14360

14361

14362

14363

14364

14365

14366

14367

14368

14369

14370

14371

14372

14373

14374

14375

14376

14377

14378

14379

14380

14381

14382

14383

14384

14385

14386

14387

14388

14389

14390

14391

14392

14393

14394

14395

<trace.h> Headers

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/40 is applied, adding the TRL margin
code to the posix_trace_flush() function, for alignment with the System Interfaces volume of
POSIX.1-2008.

Issue 7
SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t type.

The <trace.h> header is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

428 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

14396

14397

14398

14399

14400

14401

14402

14403

14404

Headers <ulimit.h>

NAME
ulimit.h — ulimit commands

SYNOPSIS
OB XSI #include <ulimit.h>

DESCRIPTION
The <ulimit.h> header shall define the symbolic constants used by the ulimit() function.

Symbolic constants:

UL_GETFSIZE Get maximum file size.

UL_SETFSIZE Set maximum file size.

The following shall be declared as a function and may also be defined as a macro. A function
prototype shall be provided.

long ulimit(int, ...);

APPLICATION USAGE
See ulimit().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH ulimit()

CHANGE HISTORY
First released in Issue 3.

Issue 7
The <ulimit.h> header is marked obsolescent.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 429

14405

14406

14407

14408

14409

14410

14411

14412

14413

14414

14415

14416

14417

14418

14419

14420

14421

14422

14423

14424

14425

14426

14427

14428

<unistd.h> Headers

NAME
unistd.h — standard symbolic constants and types

SYNOPSIS
#include <unistd.h>

DESCRIPTION
The <unistd.h> header defines miscellaneous symbolic constants and types, and declares
miscellaneous functions. The actual values of the constants are unspecified except as shown. The
contents of this header are shown below.

Version Test Macros

The <unistd.h> header shall define the following symbolic constants. The values shall be
suitable for use in #if preprocessing directives.

_POSIX_VERSION
Integer value indicating version of this standard (C-language binding) to which the
implementation conforms. For implementations conforming to POSIX.1-2008, the value
shall be 200809L.

_POSIX2_VERSION
Integer value indicating version of the Shell and Utilities volume of POSIX.1 to which the
implementation conforms. For implementations conforming to POSIX.1-2008, the value
shall be 200809L.

The <unistd.h> header shall define the following symbolic constant only if the implementation
supports the XSI option; see Section 2.1.4 (on page 19). If defined, its value shall be suitable for
use in #if preprocessing directives.

XSI _XOPEN_VERSION
Integer value indicating version of the X/Open Portability Guide to which the
implementation conforms. The value shall be 700.

Constants for Options and Option Groups

The following symbolic constants, if defined in <unistd.h>, shall have a value of −1, 0, or
greater, unless otherwise specified below. The values shall be suitable for use in #if
preprocessing directives.

If a symbolic constant is not defined or is defined with the value −1, the option is not supported
for compilation. If it is defined with a value greater than zero, the option shall always be
supported when the application is executed. If it is defined with the value zero, the option shall
be supported for compilation and might or might not be supported at runtime. See Section 2.1.6
(on page 26) for further information about the conformance requirements of these three
categories of support.

ADV _POSIX_ADVISORY_INFO
The implementation supports the Advisory Information option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported by
sysconf() shall either be −1 or 200809L.

_POSIX_ASYNCHRONOUS_IO
The implementation supports asynchronous input and output. This symbol shall always be
set to the value 200809L.

430 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

14429

14430

14431

14432

14433

14434

14435

14436

14437

14438

14439

14440

14441

14442

14443

14444

14445

14446

14447

14448

14449

14450

14451

14452

14453

14454

14455

14456

14457

14458

14459

14460

14461

14462

14463

14464

14465

14466

14467

14468

14469

14470

Headers <unistd.h>

_POSIX_BARRIERS
The implementation supports barriers. This symbol shall always be set to the value
200809L.

_POSIX_CHOWN_RESTRICTED
The use of chown() and fchown() is restricted to a process with appropriate privileges, and
to changing the group ID of a file only to the effective group ID of the process or to one of
its supplementary group IDs. This symbol shall be defined with a value other than −1.

_POSIX_CLOCK_SELECTION
The implementation supports clock selection. This symbol shall always be set to the value
200809L.

CPT _POSIX_CPUTIME
The implementation supports the Process CPU-Time Clocks option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol
reported by sysconf() shall either be −1 or 200809L.

FSC _POSIX_FSYNC
The implementation supports the File Synchronization option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported by
sysconf() shall either be −1 or 200809L.

_POSIX_IPV6
The implementation supports the IPv6 option. If this symbol is defined in <unistd.h>, it
shall be defined to be −1, 0, or 200809L. The value of this symbol reported by sysconf() shall
either be −1 or 200809L.

_POSIX_JOB_CONTROL
The implementation supports job control. This symbol shall always be set to a value greater
than zero.

_POSIX_MAPPED_FILES
The implementation supports memory mapped Files. This symbol shall always be set to the
value 200809L.

ML _POSIX_MEMLOCK
The implementation supports the Process Memory Locking option. If this symbol is defined
in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported
by sysconf() shall either be −1 or 200809L.

MLR _POSIX_MEMLOCK_RANGE
The implementation supports the Range Memory Locking option. If this symbol is defined
in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported
by sysconf() shall either be −1 or 200809L.

_POSIX_MEMORY_PROTECTION
The implementation supports memory protection. This symbol shall always be set to the
value 200809L.

MSG _POSIX_MESSAGE_PASSING
The implementation supports the Message Passing option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported by
sysconf() shall either be −1 or 200809L.

MON _POSIX_MONOTONIC_CLOCK
The implementation supports the Monotonic Clock option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported by

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 431

14471

14472

14473

14474

14475

14476

14477

14478

14479

14480

14481

14482

14483

14484

14485

14486

14487

14488

14489

14490

14491

14492

14493

14494

14495

14496

14497

14498

14499

14500

14501

14502

14503

14504

14505

14506

14507

14508

14509

14510

14511

14512

14513

14514

14515

14516

<unistd.h> Headers

sysconf() shall either be −1 or 200809L.

_POSIX_NO_TRUNC
Pathname components longer than {NAME_MAX} generate an error. This symbol shall be
defined with a value other than −1.

PIO _POSIX_PRIORITIZED_IO
The implementation supports the Prioritized Input and Output option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol
reported by sysconf() shall either be −1 or 200809L.

PS _POSIX_PRIORITY_SCHEDULING
The implementation supports the Process Scheduling option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported by
sysconf() shall either be −1 or 200809L.

RS _POSIX_RAW_SOCKETS
The implementation supports the Raw Sockets option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported by
sysconf() shall either be −1 or 200809L.

_POSIX_READER_WRITER_LOCKS
The implementation supports read-write locks. This symbol shall always be set to the value
200809L.

_POSIX_REALTIME_SIGNALS
The implementation supports realtime signals. This symbol shall always be set to the value
200809L.

_POSIX_REGEXP
The implementation supports the Regular Expression Handling option. This symbol shall
always be set to a value greater than zero.

_POSIX_SAVED_IDS
Each process has a saved set-user-ID and a saved set-group-ID. This symbol shall always be
set to a value greater than zero.

_POSIX_SEMAPHORES
The implementation supports semaphores. This symbol shall always be set to the value
200809L.

SHM _POSIX_SHARED_MEMORY_OBJECTS
The implementation supports the Shared Memory Objects option. If this symbol is defined
in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported
by sysconf() shall either be −1 or 200809L.

_POSIX_SHELL
The implementation supports the POSIX shell. This symbol shall always be set to a value
greater than zero.

SPN _POSIX_SPAWN
The implementation supports the Spawn option. If this symbol is defined in <unistd.h>, it
shall be defined to be −1, 0, or 200809L. The value of this symbol reported by sysconf() shall
either be −1 or 200809L.

_POSIX_SPIN_LOCKS
The implementation supports spin locks. This symbol shall always be set to the value
200809L.

432 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

14517

14518

14519

14520

14521

14522

14523

14524

14525

14526

14527

14528

14529

14530

14531

14532

14533

14534

14535

14536

14537

14538

14539

14540

14541

14542

14543

14544

14545

14546

14547

14548

14549

14550

14551

14552

14553

14554

14555

14556

14557

14558

14559

14560

14561

Headers <unistd.h>

SS _POSIX_SPORADIC_SERVER
The implementation supports the Process Sporadic Server option. If this symbol is defined
in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported
by sysconf() shall either be −1 or 200809L.

SIO _POSIX_SYNCHRONIZED_IO
The implementation supports the Synchronized Input and Output option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol
reported by sysconf() shall either be −1 or 200809L.

TSA _POSIX_THREAD_ATTR_STACKADDR
The implementation supports the Thread Stack Address Attribute option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol
reported by sysconf() shall either be −1 or 200809L.

TSS _POSIX_THREAD_ATTR_STACKSIZE
The implementation supports the Thread Stack Size Attribute option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol
reported by sysconf() shall either be −1 or 200809L.

TCT _POSIX_THREAD_CPUTIME
The implementation supports the Thread CPU-Time Clocks option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol
reported by sysconf() shall either be −1 or 200809L.

TPI _POSIX_THREAD_PRIO_INHERIT
The implementation supports the Non-Robust Mutex Priority Inheritance option. If this
symbol is defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this
symbol reported by sysconf() shall either be −1 or 200809L.

TPP _POSIX_THREAD_PRIO_PROTECT
The implementation supports the Non-Robust Mutex Priority Protection option. If this
symbol is defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this
symbol reported by sysconf() shall either be −1 or 200809L.

TPS _POSIX_THREAD_PRIORITY_SCHEDULING
The implementation supports the Thread Execution Scheduling option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol
reported by sysconf() shall either be −1 or 200809L.

TSH _POSIX_THREAD_PROCESS_SHARED
The implementation supports the Thread Process-Shared Synchronization option. If this
symbol is defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this
symbol reported by sysconf() shall either be −1 or 200809L.

RPI _POSIX_THREAD_ROBUST_PRIO_INHERIT
The implementation supports the Robust Mutex Priority Inheritance option. If this symbol
is defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol
reported by sysconf() shall either be −1 or 200809L.

RPP _POSIX_THREAD_ROBUST_PRIO_PROTECT
The implementation supports the Robust Mutex Priority Protection option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol
reported by sysconf() shall either be −1 or 200809L.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 433

14562

14563

14564

14565

14566

14567

14568

14569

14570

14571

14572

14573

14574

14575

14576

14577

14578

14579

14580

14581

14582

14583

14584

14585

14586

14587

14588

14589

14590

14591

14592

14593

14594

14595

14596

14597

14598

14599

14600

14601

14602

14603

14604

14605

<unistd.h> Headers

_POSIX_THREAD_SAFE_FUNCTIONS
The implementation supports thread-safe functions. This symbol shall always be set to the
value 200809L.

TSP _POSIX_THREAD_SPORADIC_SERVER
The implementation supports the Thread Sporadic Server option. If this symbol is defined
in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported
by sysconf() shall either be −1 or 200809L.

_POSIX_THREADS
The implementation supports threads. This symbol shall always be set to the value
200809L.

_POSIX_TIMEOUTS
The implementation supports timeouts. This symbol shall always be set to the value
200809L.

_POSIX_TIMERS
The implementation supports timers. This symbol shall always be set to the value 200809L.

OB TRC _POSIX_TRACE
The implementation supports the Trace option. If this symbol is defined in <unistd.h>, it
shall be defined to be −1, 0, or 200809L. The value of this symbol reported by sysconf() shall
either be −1 or 200809L.

OB TEF _POSIX_TRACE_EVENT_FILTER
The implementation supports the Trace Event Filter option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported by
sysconf() shall either be −1 or 200809L.

OB TRI _POSIX_TRACE_INHERIT
The implementation supports the Trace Inherit option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported by
sysconf() shall either be −1 or 200809L.

OB TRL _POSIX_TRACE_LOG
The implementation supports the Trace Log option. If this symbol is defined in <unistd.h>,
it shall be defined to be −1, 0, or 200809L. The value of this symbol reported by sysconf()
shall either be −1 or 200809L.

TYM _POSIX_TYPED_MEMORY_OBJECTS
The implementation supports the Typed Memory Objects option. If this symbol is defined
in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported
by sysconf() shall either be −1 or 200809L.

OB _POSIX_V6_ILP32_OFF32
The implementation provides a C-language compilation environment with 32-bit int, long,
pointer, and off_t types.

OB _POSIX_V6_ILP32_OFFBIG
The implementation provides a C-language compilation environment with 32-bit int, long,
and pointer types and an off_t type using at least 64 bits.

OB _POSIX_V6_LP64_OFF64
The implementation provides a C-language compilation environment with 32-bit int and
64-bit long, pointer, and off_t types.

434 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

14606

14607

14608

14609

14610

14611

14612

14613

14614

14615

14616

14617

14618

14619

14620

14621

14622

14623

14624

14625

14626

14627

14628

14629

14630

14631

14632

14633

14634

14635

14636

14637

14638

14639

14640

14641

14642

14643

14644

14645

14646

14647

14648

14649

Headers <unistd.h>

OB _POSIX_V6_LPBIG_OFFBIG
The implementation provides a C-language compilation environment with an int type
using at least 32 bits and long, pointer, and off_t types using at least 64 bits.

_POSIX_V7_ILP32_OFF32
The implementation provides a C-language compilation environment with 32-bit int, long,
pointer, and off_t types.

_POSIX_V7_ILP32_OFFBIG
The implementation provides a C-language compilation environment with 32-bit int, long,
and pointer types and an off_t type using at least 64 bits.

_POSIX_V7_LP64_OFF64
The implementation provides a C-language compilation environment with 32-bit int and
64-bit long, pointer, and off_t types.

_POSIX_V7_LPBIG_OFFBIG
The implementation provides a C-language compilation environment with an int type
using at least 32 bits and long, pointer, and off_t types using at least 64 bits.

_POSIX2_C_BIND
The implementation supports the C-Language Binding option. This symbol shall always
have the value 200809L.

CD _POSIX2_C_DEV
The implementation supports the C-Language Development Utilities option. If this symbol
is defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol
reported by sysconf() shall either be −1 or 200809L.

_POSIX2_CHAR_TERM
The implementation supports the Terminal Characteristics option. The value of this symbol
reported by sysconf() shall either be −1 or a value greater than zero.

FD _POSIX2_FORT_DEV
The implementation supports the FORTRAN Development Utilities option. If this symbol
is defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol
reported by sysconf() shall either be −1 or 200809L.

FR _POSIX2_FORT_RUN
The implementation supports the FORTRAN Runtime Utilities option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol
reported by sysconf() shall either be −1 or 200809L.

_POSIX2_LOCALEDEF
The implementation supports the creation of locales by the localedef utility. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol
reported by sysconf() shall either be −1 or 200809L.

OB BE _POSIX2_PBS
The implementation supports the Batch Environment Services and Utilities option. If this
symbol is defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this
symbol reported by sysconf() shall either be −1 or 200809L.

OB BE _POSIX2_PBS_ACCOUNTING
The implementation supports the Batch Accounting option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported by
sysconf() shall either be −1 or 200809L.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 435

14650

14651

14652

14653

14654

14655

14656

14657

14658

14659

14660

14661

14662

14663

14664

14665

14666

14667

14668

14669

14670

14671

14672

14673

14674

14675

14676

14677

14678

14679

14680

14681

14682

14683

14684

14685

14686

14687

14688

14689

14690

14691

14692

14693

14694

<unistd.h> Headers

OB BE _POSIX2_PBS_CHECKPOINT
The implementation supports the Batch Checkpoint/Restart option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol
reported by sysconf() shall either be −1 or 200809L.

OB BE _POSIX2_PBS_LOCATE
The implementation supports the Locate Batch Job Request option. If this symbol is defined
in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported
by sysconf() shall either be −1 or 200809L.

OB BE _POSIX2_PBS_MESSAGE
The implementation supports the Batch Job Message Request option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol
reported by sysconf() shall either be −1 or 200809L.

OB BE _POSIX2_PBS_TRACK
The implementation supports the Track Batch Job Request option. If this symbol is defined
in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported
by sysconf() shall either be −1 or 200809L.

SD _POSIX2_SW_DEV
The implementation supports the Software Development Utilities option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol
reported by sysconf() shall either be −1 or 200809L.

UP _POSIX2_UPE
The implementation supports the User Portability Utilities option. If this symbol is defined
in <unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported
by sysconf() shall either be −1 or 200809L.

XSI _XOPEN_CRYPT
The implementation supports the X/Open Encryption Option Group.

_XOPEN_ENH_I18N
The implementation supports the Issue 4, Version 2 Enhanced Internationalization Option
Group. This symbol shall always be set to a value other than −1.

_XOPEN_REALTIME
The implementation supports the X/Open Realtime Option Group.

_XOPEN_REALTIME_THREADS
The implementation supports the X/Open Realtime Threads Option Group.

_XOPEN_SHM
The implementation supports the Issue 4, Version 2 Shared Memory Option Group. This
symbol shall always be set to a value other than −1.

OB XSR _XOPEN_STREAMS
The implementation supports the XSI STREAMS Option Group.

XSI _XOPEN_UNIX
The implementation supports the XSI option.

UU _XOPEN_UUCP
The implementation supports the UUCP Utilities option. If this symbol is defined in
<unistd.h>, it shall be defined to be −1, 0, or 200809L. The value of this symbol reported by
sysconf() shall be either −1 or 200809L.

436 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

14695

14696

14697

14698

14699

14700

14701

14702

14703

14704

14705

14706

14707

14708

14709

14710

14711

14712

14713

14714

14715

14716

14717

14718

14719

14720

14721

14722

14723

14724

14725

14726

14727

14728

14729

14730

14731

14732

14733

14734

14735

14736

14737

14738

Headers <unistd.h>

Execution-Time Symbolic Constants

If any of the following symbolic constants are not defined in the <unistd.h> header, the value
shall vary depending on the file to which it is applied. If defined, they shall have values suitable
for use in #if preprocessing directives.

If any of the following symbolic constants are defined to have value −1 in the <unistd.h> header,
the implementation shall not provide the option on any file; if any are defined to have a value
other than −1 in the <unistd.h> header, the implementation shall provide the option on all
applicable files.

All of the following values, whether defined as symbolic constants in <unistd.h> or not, may be
queried with respect to a specific file using the pathconf() or fpathconf() functions:

_POSIX_ASYNC_IO
Asynchronous input or output operations may be performed for the associated file.

_POSIX_PRIO_IO
Prioritized input or output operations may be performed for the associated file.

_POSIX_SYNC_IO
Synchronized input or output operations may be performed for the associated file.

If the following symbolic constants are defined in the <unistd.h> header, they apply to files and
all paths in all file systems on the implementation:

_POSIX_TIMESTAMP_RESOLUTION
The resolution in nanoseconds for all file timestamps.

_POSIX2_SYMLINKS
Symbolic links can be created.

Constants for Functions

The <unistd.h> header shall define NULL as described in <stddef.h>.

The <unistd.h> header shall define the following symbolic constants for use with the access()
function. The values shall be suitable for use in #if preprocessing directives.

F_OK Test for existence of file.

R_OK Test for read permission.

W_OK Test for write permission.

X_OK Test for execute (search) permission.

The constants F_OK, R_OK, W_OK, and X_OK and the expressions R_OK|W_OK, R_OK|X_OK,
and R_OK|W_OK|X_OK shall all have distinct values.

The <unistd.h> header shall define the following symbolic constants for the confstr() function:

_CS_PATH
This is the value for the PA TH environment variable that finds all standard utilities.

_CS_POSIX_V7_ILP32_OFF32_CFLAGS
If sysconf(_SC_V7_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of initial options to be given to the c99 utility to build an
application using a programming model with 32-bit int, long, pointer, and off_t types.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 437

14739

14740

14741

14742

14743

14744

14745

14746

14747

14748

14749

14750

14751

14752

14753

14754

14755

14756

14757

14758

14759

14760

14761

14762

14763

14764

14765

14766

14767

14768

14769

14770

14771

14772

14773

14774

14775

14776

14777

<unistd.h> Headers

_CS_POSIX_V7_ILP32_OFF32_LDFLAGS
If sysconf(_SC_V7_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of final options to be given to the c99 utility to build an
application using a programming model with 32-bit int, long, pointer, and off_t types.

_CS_POSIX_V7_ILP32_OFF32_LIBS
If sysconf(_SC_V7_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be given to the c99 utility to build an
application using a programming model with 32-bit int, long, pointer, and off_t types.

_CS_POSIX_V7_ILP32_OFFBIG_CFLAGS
If sysconf(_SC_V7_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of initial options to be given to the c99 utility to build an
application using a programming model with 32-bit int, long, and pointer types, and an
off_t type using at least 64 bits.

_CS_POSIX_V7_ILP32_OFFBIG_LDFLAGS
If sysconf(_SC_V7_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of final options to be given to the c99 utility to build an
application using a programming model with 32-bit int, long, and pointer types, and an
off_t type using at least 64 bits.

_CS_POSIX_V7_ILP32_OFFBIG_LIBS
If sysconf(_SC_V7_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be given to the c99 utility to build an
application using a programming model with 32-bit int, long, and pointer types, and an
off_t type using at least 64 bits.

_CS_POSIX_V7_LP64_OFF64_CFLAGS
If sysconf(_SC_V7_LP64_OFF64) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of initial options to be given to the c99 utility to build an
application using a programming model with 32-bit int and 64-bit long, pointer, and off_t
types.

_CS_POSIX_V7_LP64_OFF64_LDFLAGS
If sysconf(_SC_V7_LP64_OFF64) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of final options to be given to the c99 utility to build an
application using a programming model with 32-bit int and 64-bit long, pointer, and off_t
types.

_CS_POSIX_V7_LP64_OFF64_LIBS
If sysconf(_SC_V7_LP64_OFF64) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be given to the c99 utility to build an
application using a programming model with 32-bit int and 64-bit long, pointer, and off_t
types.

_CS_POSIX_V7_LPBIG_OFFBIG_CFLAGS
If sysconf(_SC_V7_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of initial options to be given to the c99 utility to build an
application using a programming model with an int type using at least 32 bits and long,
pointer, and off_t types using at least 64 bits.

_CS_POSIX_V7_LPBIG_OFFBIG_LDFLAGS
If sysconf(_SC_V7_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of final options to be given to the c99 utility to build an
application using a programming model with an int type using at least 32 bits and long,

438 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

14778

14779

14780

14781

14782

14783

14784

14785

14786

14787

14788

14789

14790

14791

14792

14793

14794

14795

14796

14797

14798

14799

14800

14801

14802

14803

14804

14805

14806

14807

14808

14809

14810

14811

14812

14813

14814

14815

14816

14817

14818

14819

14820

14821

14822

14823

14824

Headers <unistd.h>

pointer, and off_t types using at least 64 bits.

_CS_POSIX_V7_LPBIG_OFFBIG_LIBS
If sysconf(_SC_V7_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be given to the c99 utility to build an
application using a programming model with an int type using at least 32 bits and long,
pointer, and off_t types using at least 64 bits.

_CS_POSIX_V7_THREADS_CFLAGS
If sysconf (_SC_POSIX_THREADS) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of initial options to be given to the c99 utility to build a
multi-threaded application. These flags are in addition to those associated with any of the
other _CS_POSIX_V7_*_CFLAGS values used to specify particular type size programing
environments.

_CS_POSIX_V7_THREADS_LDFLAGS
If sysconf (_SC_POSIX_THREADS) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of final options to be given to the c99 utility to build a multi-
threaded application. These flags are in addition to those associated with any of the other
_CS_POSIX_V7_*_LDFLAGS values used to specify particular type size programing
environments.

_CS_POSIX_V7_WIDTH_RESTRICTED_ENVS
This value is a <newline>-separated list of names of programming environments supported
by the implementation in which the widths of the blksize_t, cc_t, mode_t, nfds_t, pid_t,
ptrdiff_t, size_t, speed_t, ssize_t, suseconds_t, tcflag_t, wchar_t, and wint_t types are no
greater than the width of type long. The format of each name shall be suitable for use with
the getconf −v option.

_CS_V7_ENV
This is the value that provides the environment variable information (other than that
provided by _CS_PATH) that is required by the implementation to create a conforming
environment, as described in the implementation’s conformance documentation.

OB The following symbolic constants are reserved for compatibility with Issue 6:

_CS_POSIX_V6_ILP32_OFF32_CFLAGS
_CS_POSIX_V6_ILP32_OFF32_LDFLAGS
_CS_POSIX_V6_ILP32_OFF32_LIBS
_CS_POSIX_V6_ILP32_OFFBIG_CFLAGS
_CS_POSIX_V6_ILP32_OFFBIG_LDFLAGS
_CS_POSIX_V6_ILP32_OFFBIG_LIBS
_CS_POSIX_V6_LP64_OFF64_CFLAGS
_CS_POSIX_V6_LP64_OFF64_LDFLAGS
_CS_POSIX_V6_LP64_OFF64_LIBS
_CS_POSIX_V6_LPBIG_OFFBIG_CFLAGS
_CS_POSIX_V6_LPBIG_OFFBIG_LDFLAGS
_CS_POSIX_V6_LPBIG_OFFBIG_LIBS
_CS_POSIX_V6_WIDTH_RESTRICTED_ENVS
_CS_V6_ENV

The <unistd.h> header shall define SEEK_CUR, SEEK_END, and SEEK_SET as described in
<stdio.h>.

The <unistd.h> header shall define the following symbolic constants as possible values for the

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 439

14825

14826

14827

14828

14829

14830

14831

14832

14833

14834

14835

14836

14837

14838

14839

14840

14841

14842

14843

14844

14845

14846

14847

14848

14849

14850

14851

14852

14853

14854

14855

14856

14857

14858

14859

14860

14861

14862

14863

14864

14865

14866

14867

14868

14869

14870

<unistd.h> Headers

function argument to the lockf() function:

F_LOCK Lock a section for exclusive use.

F_TEST Test section for locks by other processes.

F_TLOCK Test and lock a section for exclusive use.

F_ULOCK Unlock locked sections.

The <unistd.h> header shall define the following symbolic constants for pathconf():

_PC_2_SYMLINKS
_PC_ALLOC_SIZE_MIN
_PC_ASYNC_IO
_PC_CHOWN_RESTRICTED
_PC_FILESIZEBITS
_PC_LINK_MAX
_PC_MAX_CANON
_PC_MAX_INPUT
_PC_NAME_MAX
_PC_NO_TRUNC
_PC_PATH_MAX
_PC_PIPE_BUF
_PC_PRIO_IO
_PC_REC_INCR_XFER_SIZE
_PC_REC_MAX_XFER_SIZE
_PC_REC_MIN_XFER_SIZE
_PC_REC_XFER_ALIGN
_PC_SYMLINK_MAX
_PC_SYNC_IO
_PC_TIMESTAMP_RESOLUTION
_PC_VDISABLE

The <unistd.h> header shall define the following symbolic constants for sysconf():

_SC_2_C_BIND
_SC_2_C_DEV
_SC_2_CHAR_TERM
_SC_2_FORT_DEV
_SC_2_FORT_RUN
_SC_2_LOCALEDEF
_SC_2_PBS
_SC_2_PBS_ACCOUNTING
_SC_2_PBS_CHECKPOINT
_SC_2_PBS_LOCATE
_SC_2_PBS_MESSAGE
_SC_2_PBS_TRACK
_SC_2_SW_DEV
_SC_2_UPE
_SC_2_VERSION
_SC_ADVISORY_INFO
_SC_AIO_LISTIO_MAX
_SC_AIO_MAX
_SC_AIO_PRIO_DELTA_MAX
_SC_ARG_MAX

440 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

14871

14872

14873

14874

14875

14876

14877

14878

14879

14880

14881

14882

14883

14884

14885

14886

14887

14888

14889

14890

14891

14892

14893

14894

14895

14896

14897

14898

14899

14900

14901

14902

14903

14904

14905

14906

14907

14908

14909

14910

14911

14912

14913

14914

14915

14916

14917

14918

Headers <unistd.h>

_SC_ASYNCHRONOUS_IO
_SC_ATEXIT_MAX
_SC_BARRIERS
_SC_BC_BASE_MAX
_SC_BC_DIM_MAX
_SC_BC_SCALE_MAX
_SC_BC_STRING_MAX
_SC_CHILD_MAX
_SC_CLK_TCK
_SC_CLOCK_SELECTION
_SC_COLL_WEIGHTS_MAX
_SC_CPUTIME
_SC_DELAYTIMER_MAX
_SC_EXPR_NEST_MAX
_SC_FSYNC
_SC_GETGR_R_SIZE_MAX
_SC_GETPW_R_SIZE_MAX
_SC_HOST_NAME_MAX
_SC_IOV_MAX
_SC_IPV6
_SC_JOB_CONTROL
_SC_LINE_MAX
_SC_LOGIN_NAME_MAX
_SC_MAPPED_FILES
_SC_MEMLOCK
_SC_MEMLOCK_RANGE
_SC_MEMORY_PROTECTION
_SC_MESSAGE_PASSING
_SC_MONOTONIC_CLOCK
_SC_MQ_OPEN_MAX
_SC_MQ_PRIO_MAX
_SC_NGROUPS_MAX
_SC_OPEN_MAX
_SC_PAGE_SIZE
_SC_PAGESIZE
_SC_PRIORITIZED_IO
_SC_PRIORITY_SCHEDULING
_SC_RAW_SOCKETS
_SC_RE_DUP_MAX
_SC_READER_WRITER_LOCKS
_SC_REALTIME_SIGNALS
_SC_REGEXP
_SC_RTSIG_MAX
_SC_SAVED_IDS
_SC_SEM_NSEMS_MAX
_SC_SEM_VALUE_MAX
_SC_SEMAPHORES
_SC_SHARED_MEMORY_OBJECTS
_SC_SHELL
_SC_SIGQUEUE_MAX
_SC_SPAWN
_SC_SPIN_LOCKS

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 441

14919

14920

14921

14922

14923

14924

14925

14926

14927

14928

14929

14930

14931

14932

14933

14934

14935

14936

14937

14938

14939

14940

14941

14942

14943

14944

14945

14946

14947

14948

14949

14950

14951

14952

14953

14954

14955

14956

14957

14958

14959

14960

14961

14962

14963

14964

14965

14966

14967

14968

14969

14970

<unistd.h> Headers

_SC_SPORADIC_SERVER
_SC_SS_REPL_MAX
_SC_STREAM_MAX
_SC_SYMLOOP_MAX
_SC_SYNCHRONIZED_IO
_SC_THREAD_ATTR_STACKADDR
_SC_THREAD_ATTR_STACKSIZE
_SC_THREAD_CPUTIME
_SC_THREAD_DESTRUCTOR_ITERATIONS
_SC_THREAD_KEYS_MAX
_SC_THREAD_PRIO_INHERIT
_SC_THREAD_PRIO_PROTECT
_SC_THREAD_PRIORITY_SCHEDULING
_SC_THREAD_PROCESS_SHARED
_SC_THREAD_ROBUST_PRIO_INHERIT
_SC_THREAD_ROBUST_PRIO_PROTECT
_SC_THREAD_SAFE_FUNCTIONS
_SC_THREAD_SPORADIC_SERVER
_SC_THREAD_STACK_MIN
_SC_THREAD_THREADS_MAX
_SC_THREADS
_SC_TIMEOUTS
_SC_TIMER_MAX
_SC_TIMERS
_SC_TRACE
_SC_TRACE_EVENT_FILTER
_SC_TRACE_EVENT_NAME_MAX
_SC_TRACE_INHERIT
_SC_TRACE_LOG
_SC_TRACE_NAME_MAX
_SC_TRACE_SYS_MAX
_SC_TRACE_USER_EVENT_MAX
_SC_TTY_NAME_MAX
_SC_TYPED_MEMORY_OBJECTS
_SC_TZNAME_MAX
_SC_V7_ILP32_OFF32
_SC_V7_ILP32_OFFBIG
_SC_V7_LP64_OFF64
_SC_V7_LPBIG_OFFBIG

OB _SC_V6_ILP32_OFF32
_SC_V6_ILP32_OFFBIG
_SC_V6_LP64_OFF64
_SC_V6_LPBIG_OFFBIG
_SC_VERSION
_SC_XOPEN_CRYPT
_SC_XOPEN_ENH_I18N
_SC_XOPEN_REALTIME
_SC_XOPEN_REALTIME_THREADS
_SC_XOPEN_SHM
_SC_XOPEN_STREAMS
_SC_XOPEN_UNIX
_SC_XOPEN_UUCP

442 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

14971

14972

14973

14974

14975

14976

14977

14978

14979

14980

14981

14982

14983

14984

14985

14986

14987

14988

14989

14990

14991

14992

14993

14994

14995

14996

14997

14998

14999

15000

15001

15002

15003

15004

15005

15006

15007

15008

15009

15010

15011

15012

15013

15014

15015

15016

15017

15018

15019

15020

15021

15022

Headers <unistd.h>

_SC_XOPEN_VERSION

The two constants _SC_PAGESIZE and _SC_PAGE_SIZE may be defined to have the same value.

The <unistd.h> header shall define the following symbolic constants for file streams:

STDERR_FILENO File number of stderr; 2.

STDIN_FILENO File number of stdin; 0.

STDOUT_FILENO File number of stdout; 1.

The <unistd.h> header shall define the following symbolic constant for terminal special
character handling:

_POSIX_VDISABLE This symbol shall be defined to be the value of a character that shall
disable terminal special character handling as described in Section 11.2.6
(on page 212). This symbol shall always be set to a value other than −1.

Type Definitions

The <unistd.h> header shall define the size_t, ssize_t, uid_t, gid_t, off_t, and pid_t types as
described in <sys/types.h>.

The <unistd.h> header shall define the intptr_t type as described in <inttypes.h>.

Declarations

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int access(const char *, int);
unsigned alarm(unsigned);
int chdir(const char *);
int chown(const char *, uid_t, gid_t);
int close(int);
size_t confstr(int, char *, size_t);

XSI char *crypt(const char *, const char *);
CX char *ctermid(char *);

int dup(int);
int dup2(int, int);
void _exit(int);

XSI void encrypt(char [64], int);
int execl(const char *, const char *, ...);
int execle(const char *, const char *, ...);
int execlp(const char *, const char *, ...);
int execv(const char *, char *const []);
int execve(const char *, char *const [], char *const []);
int execvp(const char *, char *const []);
int faccessat(int, const char *, int, int);
int fchdir(int);
int fchown(int, uid_t, gid_t);
int fchownat(int, const char *, uid_t, gid_t, int);

SIO int fdatasync(int);
int fexecve(int, char *const [], char *const []);
pid_t fork(void);
long fpathconf(int, int);

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 443

15023

15024

15025

15026

15027

15028

15029

15030

15031

15032

15033

15034

15035

15036

15037

15038

15039

15040

15041

15042

15043

15044

15045

15046

15047

15048

15049

15050

15051

15052

15053

15054

15055

15056

15057

15058

15059

15060

15061

15062

15063

15064

15065

15066

<unistd.h> Headers

FSC int fsync(int);
int ftruncate(int, off_t);
char *getcwd(char *, size_t);
gid_t getegid(void);
uid_t geteuid(void);
gid_t getgid(void);
int getgroups(int, gid_t []);

XSI long gethostid(void);
int gethostname(char *, size_t);
char *getlogin(void);
int getlogin_r(char *, size_t);
int getopt(int, char * const [], const char *);
pid_t getpgid(pid_t);
pid_t getpgrp(void);
pid_t getpid(void);
pid_t getppid(void);
pid_t getsid(pid_t);
uid_t getuid(void);
int isatty(int);
int lchown(const char *, uid_t, gid_t);
int link(const char *, const char *);
int linkat(int, const char *, int, const char *, int);

XSI int lockf(int, int, off_t);
off_t lseek(int, off_t, int);

XSI int nice(int);
long pathconf(const char *, int);
int pause(void);
int pipe(int [2]);
ssize_t pread(int, void *, size_t, off_t);
ssize_t pwrite(int, const void *, size_t, off_t);
ssize_t read(int, void *, size_t);
ssize_t readlink(const char *restrict, char *restrict, size_t);
ssize_t readlinkat(int, const char *restrict, char *restrict, size_t);
int rmdir(const char *);
int setegid(gid_t);
int seteuid(uid_t);
int setgid(gid_t);
int setpgid(pid_t, pid_t);

OB XSI pid_t setpgrp(void);
XSI int setregid(gid_t, gid_t);

int setreuid(uid_t, uid_t);
pid_t setsid(void);
int setuid(uid_t);
unsigned sleep(unsigned);

XSI void swab(const void *restrict, void *restrict, ssize_t);
int symlink(const char *, const char *);
int symlinkat(const char *, int, const char *);

XSI void sync(void);
long sysconf(int);
pid_t tcgetpgrp(int);
int tcsetpgrp(int, pid_t);
int truncate(const char *, off_t);

444 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

15067

15068

15069

15070

15071

15072

15073

15074

15075

15076

15077

15078

15079

15080

15081

15082

15083

15084

15085

15086

15087

15088

15089

15090

15091

15092

15093

15094

15095

15096

15097

15098

15099

15100

15101

15102

15103

15104

15105

15106

15107

15108

15109

15110

15111

15112

15113

15114

15115

15116

15117

15118

Headers <unistd.h>

char *ttyname(int);
int ttyname_r(int, char *, size_t);
int unlink(const char *);
int unlinkat(int, const char *, int);
ssize_t write(int, const void *, size_t);

Implementations may also include the pthread_atfork() prototype as defined in <pthread.h>.

The <unistd.h> header shall declare the following external variables:

extern char *optarg;
extern int opterr, optind, optopt;

APPLICATION USAGE
POSIX.1-2008 only describes the behavior of systems that claim conformance to it. However,
application developers who want to write applications that adapt to other versions of this
standard (or to systems that do not conform to any POSIX standard) may find it useful to code
them so as to conditionally compile different code depending on the value of
_POSIX_VERSION, for example:

#if _POSIX_VERSION >= 200112L
/* Use the newer function that copes with large files. */
off_t pos=ftello(fp);
#else
/* Either this is an old version of POSIX, or _POSIX_VERSION is

not even defined, so use the traditional function. */
long pos=ftell(fp);
#endif

Earlier versions of POSIX.1-2008 and of the Single UNIX Specification can be identified by the
following macros:

POSIX.1-1988 standard
_POSIX_VERSION == 198808L

POSIX.1-1990 standard
_POSIX_VERSION == 199009L

ISO POSIX-1: 1996 standard
_POSIX_VERSION == 199506L

Single UNIX Specification, Version 1
_XOPEN_UNIX and _XOPEN_VERSION == 4

Single UNIX Specification, Version 2
_XOPEN_UNIX and _XOPEN_VERSION == 500

ISO POSIX-1: 2001 and Single UNIX Specification, Version 3
_POSIX_VERSION == 200112L, plus (if the XSI option is supported) _XOPEN_UNIX and
_XOPEN_VERSION == 600

POSIX.1-2008 does not make any attempt to define application binary interaction with the
underlying operating system. However, application developers may find it useful to query
_SC_VERSION at runtime via sysconf() to determine whether the current version of the
operating system supports the necessary functionality as in the following program fragment:

if (sysconf(_SC_VERSION) < 200809L) {
fprintf(stderr, "POSIX.1-2008 system required, terminating \n");
exit(1);

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 445

15119

15120

15121

15122

15123

15124

15125

15126

15127

15128

15129

15130

15131

15132

15133

15134

15135

15136

15137

15138

15139

15140

15141

15142

15143

15144

15145

15146

15147

15148

15149

15150

15151

15152

15153

15154

15155

15156

15157

15158

15159

15160

15161

15162

15163

<unistd.h> Headers

}

New applications should not use _XOPEN_SHM or _XOPEN_ENH_I18N.

RATIONALE
As POSIX.1-2008 evolved, certain options became sufficiently standardized that it was
concluded that simply requiring one of the option choices was simpler than retaining the option.
However, for backwards-compatibility, the option flags (with required constant values) are
retained.

Version Test Macros

The standard developers considered altering the definition of _POSIX_VERSION and removing
_SC_VERSION from the specification of sysconf() since the utility to an application was deemed
by some to be minimal, and since the implementation of the functionality is potentially
problematic. However, they recognized that support for existing application binaries is a
concern to manufacturers, application developers, and the users of implementations conforming
to POSIX.1-2008.

While the example using _SC_VERSION in the APPLICATION USAGE section does not provide
the greatest degree of imaginable utility to the application developer or user, it is arguably better
than a core file or some other equally obscure result. (It is also possible for implementations to
encode and recognize application binaries compiled in various POSIX.1-conforming
environments, and modify the semantics of the underlying system to conform to the
expectations of the application.) For the reasons outlined in the preceding paragraphs and in the
APPLICATION USAGE section, the standard developers elected to retain the _POSIX_VERSION
and _SC_VERSION functionality.

Compile-Time Symbolic Constants for System-Wide Options

POSIX.1-2008 includes support in certain areas for the newly adopted policy governing options
and stubs.

This policy provides flexibility for implementations in how they support options. It also
specifies how conforming applications can adapt to different implementations that support
different sets of options. It allows the following:

1. If an implementation has no interest in supporting an option, it does not have to provide
anything associated with that option beyond the announcement that it does not support
it.

2. An implementation can support a partial or incompatible version of an option (as a non-
standard extension) as long as it does not claim to support the option.

3. An application can determine whether the option is supported. A strictly conforming
application must check this announcement mechanism before first using anything
associated with the option.

There is an important implication of this policy. POSIX.1-2008 cannot dictate the behavior of
interfaces associated with an option when the implementation does not claim to support the
option. In particular, it cannot require that a function associated with an unsupported option
will fail if it does not perform as specified. However, this policy does not prevent a standard
from requiring certain functions to always be present, but that they shall always fail on some
implementations. The setpgid() function in the POSIX.1-1990 standard, for example, is
considered appropriate.

The POSIX standards include various options, and the C-language binding support for an

446 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

15164

15165

15166

15167

15168

15169

15170

15171

15172

15173

15174

15175

15176

15177

15178

15179

15180

15181

15182

15183

15184

15185

15186

15187

15188

15189

15190

15191

15192

15193

15194

15195

15196

15197

15198

15199

15200

15201

15202

15203

15204

15205

15206

15207

Headers <unistd.h>

option implies that the implementation must supply data types and function interfaces. An
application must be able to discover whether the implementation supports each option.

Any application must consider the following three cases for each option:

1. Option never supported.

The implementation advertises at compile time that the option will never be supported.
In this case, it is not necessary for the implementation to supply any of the data types or
function interfaces that are provided only as part of the option. The implementation
might provide data types and functions that are similar to those defined by POSIX.1-2008,
but there is no guarantee for any particular behavior.

2. Option always supported.

The implementation advertises at compile time that the option will always be supported.
In this case, all data types and function interfaces shall be available and shall operate as
specified.

3. Option might or might not be supported.

Some implementations might not provide a mechanism to specify support of options at
compile time. In addition, the implementation might be unable or unwilling to specify
support or non-support at compile time. In either case, any application that might use the
option at runtime must be able to compile and execute. The implementation must
provide, at compile time, all data types and function interfaces that are necessary to allow
this. In this situation, there must be a mechanism that allows the application to query, at
runtime, whether the option is supported. If the application attempts to use the option
when it is not supported, the result is unspecified unless explicitly specified otherwise in
POSIX.1-2008.

FUTURE DIRECTIONS
None.

SEE ALSO
<inttypes.h>, <limits.h>, <stddef.h>, <stdio.h>, <sys/socket.h>, <sys/types.h>, <termios.h>,
<wctype.h>

XSH access(), alarm(), chown(), close(), confstr(), crypt(), ctermid(), dup(), _Exit(), encrypt(), exec ,
fchdir(), fchown(), fdatasync(), fork(), fpathconf(), fsync(), ftruncate(), getcwd(), getegid(),
geteuid(), getgid(), getgroups(), gethostid(), gethostname(), getlogin(), getopt(), getpgid(), getpgrp(),
getpid(), getppid(), getsid(), getuid(), isatty(), lchown(), link(), lockf(), lseek(), nice(), pause(),
pipe(), read(), readlink(), rmdir(), setegid(), seteuid(), setgid(), setpgid(), setpgrp(), setregid(),
setreuid(), setsid(), setuid(), sleep(), swab(), symlink(), sync(), sysconf(), tcgetpgrp(), tcsetpgrp(),
truncate(), ttyname(), unlink(), write()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

The symbolic constants _XOPEN_REALTIME and _XOPEN_REALTIME_THREADS are added.
_POSIX2_C_BIND, _XOPEN_ENH_I18N, and _XOPEN_SHM must now be set to a value other
than −1 by a conforming implementation.

Large File System extensions are added.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 447

15208

15209

15210

15211

15212

15213

15214

15215

15216

15217

15218

15219

15220

15221

15222

15223

15224

15225

15226

15227

15228

15229

15230

15231

15232

15233

15234

15235

15236

15237

15238

15239

15240

15241

15242

15243

15244

15245

15246

15247

15248

15249

15250

15251

<unistd.h> Headers

The type of the argument to sbrk() is changed from int to intptr_t.

XBS constants are added to the list of constants for Options and Option Groups, to the list of
constants for the confstr() function, and to the list of constants to the sysconf() function. These
are all marked EX.

Issue 6
_POSIX2_C_VERSION is removed.

The Open Group Corrigendum U026/4 is applied, adding the prototype for fdatasync().

The Open Group Corrigendum U026/1 is applied, adding the symbols _SC_XOPEN_LEGACY,
_SC_XOPEN_REALTIME, and _SC_XOPEN_REALTIME_THREADS.

The symbols _XOPEN_STREAMS and _SC_XOPEN_STREAMS are added to support the XSI
STREAMS Option Group.

Text in the DESCRIPTION relating to conformance requirements is moved elsewhere in
IEEE Std 1003.1-2001.

The LEGACY symbol _SC_PASS_MAX is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The _CS_POSIX_* and _CS_XBS5_* constants are added for the confstr() function.

• The _SC_XBS5_* constants are added for the sysconf() function.

• The symbolic constants F_ULOCK, F_LOCK, F_TLOCK, and F_TEST are added.

• The uid_t, gid_t, off_t, pid_t, and useconds_t types are mandated.

The gethostname() prototype is added for sockets.

A new section is added for System-Wide Options.

Function prototypes for setegid() and seteuid() are added.

Option symbolic constants are added for _POSIX_ADVISORY_INFO, _POSIX_CPUTIME,
_POSIX_SPAWN, _POSIX_SPORADIC_SERVER, _POSIX_THREAD_CPUTIME,
_POSIX_THREAD_SPORADIC_SERVER, and _POSIX_TIMEOUTS, and pathconf() variables are
added for _PC_ALLOC_SIZE_MIN, _PC_REC_INCR_XFER_SIZE, _PC_REC_MAX_XFER_SIZE,
_PC_REC_MIN_XFER_SIZE, and _PC_REC_XFER_ALIGN for alignment with IEEE Std
1003.1d-1999.

The following are added for alignment with IEEE Std 1003.1j-2000:

• Option symbolic constants _POSIX_BARRIERS, _POSIX_CLOCK_SELECTION,
_POSIX_MONOTONIC_CLOCK, _POSIX_READER_WRITER_LOCKS,
_POSIX_SPIN_LOCKS, and _POSIX_TYPED_MEMORY_OBJECTS

• sysconf() variables _SC_BARRIERS, _SC_CLOCK_SELECTION,
_SC_MONOTONIC_CLOCK, _SC_READER_WRITER_LOCKS, _SC_SPIN_LOCKS, and
_SC_TYPED_MEMORY_OBJECTS

The _SC_XBS5 macros associated with the ISO/IEC 9899: 1990 standard are marked LEGACY,
and new equivalent _SC_V6 macros associated with the ISO/IEC 9899: 1999 standard are
introduced.

The getwd() function is marked LEGACY.

The restrict keyword is added to the prototypes for readlink() and swab().

448 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

15252

15253

15254

15255

15256

15257

15258

15259

15260

15261

15262

15263

15264

15265

15266

15267

15268

15269

15270

15271

15272

15273

15274

15275

15276

15277

15278

15279

15280

15281

15282

15283

15284

15285

15286

15287

15288

15289

15290

15291

15292

Headers <unistd.h>

Constants for options are now harmonized, so when supported they take the year of approval of
IEEE Std 1003.1-2001 as the value.

The following are added for alignment with IEEE Std 1003.1q-2000:

• Optional symbolic constants _POSIX_TRACE, _POSIX_TRACE_EVENT_FILTER,
_POSIX_TRACE_LOG, and _POSIX_TRACE_INHERIT

• The sysconf() symbolic constants _SC_TRACE, _SC_TRACE_EVENT_FILTER,
_SC_TRACE_LOG, and _SC_TRACE_INHERIT

The brk() and sbrk() LEGACY functions are removed.

The Open Group Base Resolution bwg2001-006 is applied, which reworks the XSI versioning
information.

The Open Group Base Resolution bwg2001-008 is applied, changing the namelen parameter for
gethostname() from socklen_t to size_t.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/2 is applied, changing ‘‘Thread Stack
Address Size’’ to ‘‘Thread Stack Size Attribute’’.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/20 is applied, adding the _POSIX_IPV6,
_SC_V6, and _SC_RAW_SOCKETS symbols.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/21 is applied, correcting the description
in ‘‘Constants for Functions’’ for the _CS_POSIX_V6_LP64_OFF64_CFLAGS,
_CS_POSIX_V6_LP64_OFF64_LDFLAGS, and _CS_POSIX_V6_LP64_OFF64_LIBS symbols.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/22 is applied, removing the shading for
the _PC* and _SC* constants, since these are mandatory on all implementations.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/23 is applied, adding the
_PC_SYMLINK_MAX and _SC_SYMLOOP_MAX constants.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/24 is applied, correcting the shading and
margin code for the fsync() function.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/25 is applied, adding the following text to
the APPLICATION USAGE section: ‘‘New applications should not use _XOPEN_SHM or
_XOPEN_ENH_I18N.’’.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/29 is applied, clarifying the requirements
for when constants for Options and Option Groups can be defined or undefined.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/30 is applied, changing the
_V6_ILP32_OFF32, _V6_ILP32_OFFBIG, _V6_LP64_OFF64, and _V6_LPBIG_OFFBIG symbols to
_POSIX_V6_ILP32_OFF32, _POSIX_V6_ILP32_OFFBIG, _POSIX_V6_LP64_OFF64, and
_POSIX_V6_LPBIG_OFFBIG, respectively. This is for consistency with the sysconf() and c99
reference pages.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/31 is applied, adding that the format of
names of programming environments can be obtained using the getconf −v option.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/32 is applied, deleting the
_SC_FILE_LOCKING, _SC_2_C_VERSION, and _SC_XOPEN_XCU_VERSION constants.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/33 is applied, adding
_SC_SS_REPL_MAX, _SC_TRACE_EVENT_NAME_MAX, _SC_TRACE_NAME_MAX,
_SC_TRACE_SYS_MAX, and _SC_TRACE_USER_EVENT_MAX to the list of symbolic constants
for sysconf().

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 449

15293

15294

15295

15296

15297

15298

15299

15300

15301

15302

15303

15304

15305

15306

15307

15308

15309

15310

15311

15312

15313

15314

15315

15316

15317

15318

15319

15320

15321

15322

15323

15324

15325

15326

15327

15328

15329

15330

15331

15332

15333

15334

15335

<unistd.h> Headers

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/34 is applied, updating the prototype for
the symlink() function to match that in the System Interfaces volume of IEEE Std 1003.1-2001.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/35 is applied, adding _PC_2_SYMLINKS
to the symbolic constants list for pathconf(). This corresponds to the definition of
POSIX2_SYMLINKS in the Shell and Utilities volume of IEEE Std 1003.1-2001.

Issue 7
Austin Group Interpretations 1003.1-2001 #026 and #047 are applied.

Austin Group Interpretation 1003.1-2001 #166 is applied to permit an additional compiler flag to
enable threads.

Austin Group Interpretation 1003.1-2001 #178 is applied, clarifying the values allowed for
_POSIX2_CHAR_TERM.

SD5-XBD-ERN-41 is applied, adding the _POSIX2_SYMLINKS constant.

SD5-XBD-ERN-76 and SD5-XBD-ERN-77 are applied.

Symbols to support the UUCP Utilities option are added.

The variables for the supported programming environments are updated to be V7.

The LEGACY and obsolescent symbols are removed.

The faccessat(), fchownat(), fexecve(), linkat(), readlinkat(), symlinkat(), and unlinkat() functions
are added from The Open Group Technical Standard, 2006, Extended API Set Part 2.

The _POSIX_TRACE* constants from the Trace option are marked obsolescent.

The _POSIX2_PBS* constants from the Batch Environment Services and Utilities option are
marked obsolescent.

Functionality relating to the Asynchronous Input and Output, Barriers, Clock Selection, Memory
Mapped Files, Memory Protection, Realtime Signals Extension, Semaphores, Spin Locks,
Threads, Timeouts, and Timers options is moved to the Base.

Functionality relating to the Thread Priority Protection and Thread Priority Inheritance options
is changed to be Non-Robust Mutex or Robust Mutex Priority Protection and Non-Robust Mutex
or Robust Mutex Priority Inheritance, respectively.

This reference page is clarified with respect to macros and symbolic constants.

Changes are made related to support for finegrained timestamps and the
_POSIX_TIMESTAMP_RESOLUTION constant is added.

The _SC_THREAD_ROBUST_PRIO_INHERIT and _SC_THREAD_ROBUST_PRIO_PROTECT
symbolic constants are added.

450 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

15336

15337

15338

15339

15340

15341

15342

15343

15344

15345

15346

15347

15348

15349

15350

15351

15352

15353

15354

15355

15356

15357

15358

15359

15360

15361

15362

15363

15364

15365

15366

15367

Headers <utime.h>

NAME
utime.h — access and modification times structure

SYNOPSIS
OB #include <utime.h>

DESCRIPTION
The <utime.h> header shall declare the utimbuf structure, which shall include the following
members:

time_t actime Access time.
time_t modtime Modification time.

The times shall be measured in seconds since the Epoch.

The <utime.h> header shall define the time_t type as described in <sys/types.h>.

The following shall be declared as a function and may also be defined as a macro. A function
prototype shall be provided.

int utime(const char *, const struct utimbuf *);

APPLICATION USAGE
The utime() function only allows setting file timestamps to the nearest second. Applications
should use the utimensat() function instead. See <sys/stat.h>.

RATIONALE
None.

FUTURE DIRECTIONS
The <utime.h> header may be removed in a future version.

SEE ALSO
<sys/stat.h>, <sys/types.h>

XSH futimens(), utime()

CHANGE HISTORY
First released in Issue 3.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The time_t type is defined.

Issue 7
The <utime.h> header is marked obsolescent.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 451

15368

15369

15370

15371

15372

15373

15374

15375

15376

15377

15378

15379

15380

15381

15382

15383

15384

15385

15386

15387

15388

15389

15390

15391

15392

15393

15394

15395

15396

15397

15398

15399

<utmpx.h> Headers

NAME
utmpx.h — user accounting database definitions

SYNOPSIS
XSI #include <utmpx.h>

DESCRIPTION
The <utmpx.h> header shall define the utmpx structure that shall include at least the following
members:

char ut_user[] User login name.
char ut_id[] Unspecified initialization process identifier.
char ut_line[] Device name.
pid_t ut_pid Process ID.
short ut_type Type of entry.
struct timeval ut_tv Time entry was made.

The <utmpx.h> header shall define the pid_t type through typedef, as described in
<sys/types.h>.

The <utmpx.h> header shall define the timeval structure as described in <sys/time.h>.

Inclusion of the <utmpx.h> header may also make visible all symbols from <sys/time.h>.

The <utmpx.h> header shall define the following symbolic constants as possible values for the
ut_type member of the utmpx structure:

EMPTY No valid user accounting information.

BOOT_TIME Identifies time of system boot.

OLD_TIME Identifies time when system clock changed.

NEW_TIME Identifies time after system clock changed.

USER_PROCESS Identifies a process.

INIT_PROCESS Identifies a process spawned by the init process.

LOGIN_PROCESS Identifies the session leader of a logged-in user.

DEAD_PROCESS Identifies a session leader who has exited.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void endutxent(void);
struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx *);
struct utmpx *getutxline(const struct utmpx *);
struct utmpx *pututxline(const struct utmpx *);
void setutxent(void);

452 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

15400

15401

15402

15403

15404

15405

15406

15407

15408

15409

15410

15411

15412

15413

15414

15415

15416

15417

15418

15419

15420

15421

15422

15423

15424

15425

15426

15427

15428

15429

15430

15431

15432

15433

15434

Headers <utmpx.h>

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/time.h>, <sys/types.h>

XSH endutxent()

CHANGE HISTORY
First released in Issue 4, Version 2.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 453

15435

15436

15437

15438

15439

15440

15441

15442

15443

15444

15445

<wchar.h> Headers

NAME
wchar.h — wide-character handling

SYNOPSIS
#include <wchar.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 468) to
enable the visibility of these symbols in this header.

The <wchar.h> header shall define the following types:

CX FILE As described in <stdio.h>.

CX locale_t As described in <locale.h>.

mbstate_t An object type other than an array type that can hold the conversion state
information necessary to convert between sequences of (possibly multi-byte)

CX characters and wide characters. If a codeset is being used such that an
mbstate_t needs to preserve more than two levels of reserved state, the results
are unspecified.

size_t As described in <stddef.h>.

CX va_list As described in <stdarg.h>.

wchar_t As described in <stddef.h>.

OB XSI wctype_t A scalar type of a data object that can hold values which represent locale-
specific character classification.

wint_t An integer type capable of storing any valid value of wchar_t or WEOF.

The tag tm shall be declared as naming an incomplete structure type, the contents of which are
described in the <time.h> header.

The implementation shall support one or more programming environments in which the width
of wint_t is no greater than the width of type long. The names of these programming
environments can be obtained using the confstr() function or the getconf utility.

The <wchar.h> header shall define the following macros:

WCHAR_MAX As described in <stdint.h>.

WCHAR_MIN As described in <stdint.h>.

WEOF Constant expression of type wint_t that is returned by several WP functions to
indicate end-of-file.

NULL As described in <stddef.h>.

CX Inclusion of the <wchar.h> header may make visible all symbols from the headers <ctype.h>,
<string.h>, <stdarg.h>, <stddef.h>, <stdio.h>, <stdlib.h>, and <time.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

wint_t btowc(int);
wint_t fgetwc(FILE *);
wchar_t *fgetws(wchar_t *restrict, int, FILE *restrict);
wint_t fputwc(wchar_t, FILE *);
int fputws(const wchar_t *restrict, FILE *restrict);

454 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

15446

15447

15448

15449

15450

15451

15452

15453

15454

15455

15456

15457

15458

15459

15460

15461

15462

15463

15464

15465

15466

15467

15468

15469

15470

15471

15472

15473

15474

15475

15476

15477

15478

15479

15480

15481

15482

15483

15484

15485

15486

15487

Headers <wchar.h>

int fwide(FILE *, int);
int fwprintf(FILE *restrict, const wchar_t *restrict, ...);
int fwscanf(FILE *restrict, const wchar_t *restrict, ...);
wint_t getwc(FILE *);
wint_t getwchar(void);

OB XSI int iswalnum(wint_t);
int iswalpha(wint_t);
int iswcntrl(wint_t);
int iswctype(wint_t, wctype_t);
int iswdigit(wint_t);
int iswgraph(wint_t);
int iswlower(wint_t);
int iswprint(wint_t);
int iswpunct(wint_t);
int iswspace(wint_t);
int iswupper(wint_t);
int iswxdigit(wint_t);
size_t mbrlen(const char *restrict, size_t, mbstate_t *restrict);
size_t mbrtowc(wchar_t *restrict, const char *restrict, size_t,

mbstate_t *restrict);
int mbsinit(const mbstate_t *);

CX size_t mbsnrtowcs(wchar_t *restrict, const char **restrict,
size_t, size_t, mbstate_t *restrict);

size_t mbsrtowcs(wchar_t *restrict, const char **restrict, size_t,
mbstate_t *restrict);

CX FILE *open_wmemstream(wchar_t **, size_t *);
wint_t putwc(wchar_t, FILE *);
wint_t putwchar(wchar_t);
int swprintf(wchar_t *restrict, size_t,

const wchar_t *restrict, ...);
int swscanf(const wchar_t *restrict,

const wchar_t *restrict, ...);
OB XSI wint_t towlower(wint_t);

wint_t towupper(wint_t);
wint_t ungetwc(wint_t, FILE *);
int vfwprintf(FILE *restrict, const wchar_t *restrict, va_list);
int vfwscanf(FILE *restrict, const wchar_t *restrict, va_list);
int vswprintf(wchar_t *restrict, size_t,

const wchar_t *restrict, va_list);
int vswscanf(const wchar_t *restrict, const wchar_t *restrict,

va_list);
int vwprintf(const wchar_t *restrict, va_list);
int vwscanf(const wchar_t *restrict, va_list);

CX wchar_t *wcpcpy(wchar_t restrict*, const wchar_t *restrict);
wchar_t *wcpncpy(wchar_t restrict *, const wchar_t *restrict, size_t);
size_t wcrtomb(char *restrict, wchar_t, mbstate_t *restrict);

CX int wcscasecmp(const wchar_t *, const wchar_t *);
int wcscasecmp_l(const wchar_t *, const wchar_t *, locale_t);
wchar_t *wcscat(wchar_t *restrict, const wchar_t *restrict);
wchar_t *wcschr(const wchar_t *, wchar_t);
int wcscmp(const wchar_t *, const wchar_t *);
int wcscoll(const wchar_t *, const wchar_t *);

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 455

15488

15489

15490

15491

15492

15493

15494

15495

15496

15497

15498

15499

15500

15501

15502

15503

15504

15505

15506

15507

15508

15509

15510

15511

15512

15513

15514

15515

15516

15517

15518

15519

15520

15521

15522

15523

15524

15525

15526

15527

15528

15529

15530

15531

15532

15533

15534

15535

15536

15537

15538

15539

<wchar.h> Headers

CX int wcscoll_l(const wchar_t *, const wchar_t *, locale_t);
wchar_t *wcscpy(wchar_t *restrict, const wchar_t *restrict);
size_t wcscspn(const wchar_t *, const wchar_t *);

CX wchar_t *wcsdup(const wchar_t *);
size_t wcsftime(wchar_t *restrict, size_t,

const wchar_t *restrict, const struct tm *restrict);
size_t wcslen(const wchar_t *);

CX int wcsncasecmp(const wchar_t *, const wchar_t *, size_t);
int wcsncasecmp_l(const wchar_t *, const wchar_t *, size_t,

locale_t);
wchar_t *wcsncat(wchar_t *restrict, const wchar_t *restrict, size_t);
int wcsncmp(const wchar_t *, const wchar_t *, size_t);
wchar_t *wcsncpy(wchar_t *restrict, const wchar_t *restrict, size_t);

CX size_t wcsnlen(const wchar_t *, size_t);
size_t wcsnrtombs(char *restrict, const wchar_t **restrict, size_t,

size_t, mbstate_t *restrict);
wchar_t *wcspbrk(const wchar_t *, const wchar_t *);
wchar_t *wcsrchr(const wchar_t *, wchar_t);
size_t wcsrtombs(char *restrict, const wchar_t **restrict,

size_t, mbstate_t *restrict);
size_t wcsspn(const wchar_t *, const wchar_t *);
wchar_t *wcsstr(const wchar_t *restrict, const wchar_t *restrict);
double wcstod(const wchar_t *restrict, wchar_t **restrict);
float wcstof(const wchar_t *restrict, wchar_t **restrict);
wchar_t *wcstok(wchar_t *restrict, const wchar_t *restrict,

wchar_t **restrict);
long wcstol(const wchar_t *restrict, wchar_t **restrict, int);
long double wcstold(const wchar_t *restrict, wchar_t **restrict);
long long wcstoll(const wchar_t *restrict, wchar_t **restrict, int);
unsigned long wcstoul(const wchar_t *restrict, wchar_t **restrict, int);
unsigned long long

wcstoull(const wchar_t *restrict, wchar_t **restrict, int);
XSI int wcswidth(const wchar_t *, size_t);

size_t wcsxfrm(wchar_t *restrict, const wchar_t *restrict, size_t);
CX size_t wcsxfrm_l(wchar_t *restrict, const wchar_t *restrict,

size_t, locale_t);
int wctob(wint_t);

OB XSI wctype_t wctype(const char *);
XSI int wcwidth(wchar_t);

wchar_t *wmemchr(const wchar_t *, wchar_t, size_t);
int wmemcmp(const wchar_t *, const wchar_t *, size_t);
wchar_t *wmemcpy(wchar_t *restrict, const wchar_t *restrict, size_t);
wchar_t *wmemmove(wchar_t *, const wchar_t *, size_t);
wchar_t *wmemset(wchar_t *, wchar_t, size_t);
int wprintf(const wchar_t *restrict, ...);
int wscanf(const wchar_t *restrict, ...);

456 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

15540

15541

15542

15543

15544

15545

15546

15547

15548

15549

15550

15551

15552

15553

15554

15555

15556

15557

15558

15559

15560

15561

15562

15563

15564

15565

15566

15567

15568

15569

15570

15571

15572

15573

15574

15575

15576

15577

15578

15579

15580

15581

15582

15583

15584

15585

Headers <wchar.h>

APPLICATION USAGE
The iswblank() function was a late addition to the ISO C standard and was introduced at the
same time as the ISO C standard introduced <wctype.h>, which contains all of the isw*()
functions. The Open Group Base Specifications had previously aligned with the MSE working
draft and had introduced the rest of the isw*() functions into <wchar.h>. For backwards-
compatibility, the original set of isw*() functions, without iswblank(), are permitted (as part of
the XSI option) in <wchar.h>. For maximum portability, applications should include
<wctype.h> in order to obtain declarations for the isw*() functions. This compatibility has been
made obsolescent.

RATIONALE
In the ISO C standard, the symbols referenced as XSI extensions are in <wctype.h>. Their
presence here is thus an extension.

FUTURE DIRECTIONS
None.

SEE ALSO
<ctype.h>, <locale.h>, <stdarg.h>, <stddef.h>, <stdint.h>, <stdio.h>, <stdlib.h>, <string.h>,
<time.h>, <wctype.h>

XSH Section 2.2 (on page 468), btowc(), confstr(), fgetwc(), fgetws(), fputwc(), fputws(), fwide(),
fwprintf(), fwscanf(), getwc(), getwchar(), iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(),
iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit(), mbrlen(),
mbrtowc(), mbsinit(), mbsrtowcs(), open_memstream(), putwc(), putwchar(), towlower(),
towupper(), ungetwc(), vfwprintf(), vfwscanf(), wcrtomb(), wcscasecmp(), wcscat(), wcschr(),
wcscmp(), wcscoll(), wcscpy(), wcscspn(), wcsdup(), wcsftime(), wcslen(), wcsncat(), wcsncmp(),
wcsncpy(), wcspbrk(), wcsrchr(), wcsrtombs(), wcsspn(), wcsstr(), wcstod(), wcstok(), wcstol(),
wcstoul(), wcswidth(), wcsxfrm(), wctob(), wctype(), wcwidth(), wmemchr(), wmemcmp(),
wmemcpy(), wmemmove(), wmemset()

XCU getconf

CHANGE HISTORY
First released in Issue 4.

Issue 5
Aligned with the ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Issue 6
The Open Group Corrigendum U021/10 is applied. The prototypes for wcswidth() and
wcwidth() are marked as extensions.

The Open Group Corrigendum U028/5 is applied, correcting the prototype for the mbsinit()
function.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• Various function prototypes are updated to add the restrict keyword.

• The functions vfwscanf(), vswscanf(), wcstof(), wcstold(), wcstoll(), and wcstoull() are
added.

The type wctype_t, the isw*(), to*(), and wctype() functions are marked as XSI extensions.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/26 is applied, adding the APPLICATION
USAGE section.

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 457

15586

15587

15588

15589

15590

15591

15592

15593

15594

15595

15596

15597

15598

15599

15600

15601

15602

15603

15604

15605

15606

15607

15608

15609

15610

15611

15612

15613

15614

15615

15616

15617

15618

15619

15620

15621

15622

15623

15624

15625

15626

15627

15628

<wchar.h> Headers

Issue 7
The mbsnrtowcs(), open_wmemstream(), wcpcpy(), wcpncpy(), wcscasecmp(), wcsdup(),
wcsncasecmp(), wcsnlen(), and wscnrtombs() functions are added from The Open Group
Technical Standard, 2006, Extended API Set Part 1.

The wcscasecmp_l(), wcsncasecmp_l(), wcscoll_l(), and wcsxfrm_l() functions are added from The
Open Group Technical Standard, 2006, Extended API Set Part 4.

The wctype_t type, and the isw*, towlower(), and towupper() functions are marked obsolescent in
<wchar.h> since the ISO C standard requires the declarations to be in <wctype.h>.

This reference page is clarified with respect to macros and symbolic constants, and a declaration
for the locale_t type is added.

458 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

15629

15630

15631

15632

15633

15634

15635

15636

15637

15638

Headers <wctype.h>

NAME
wctype.h — wide-character classification and mapping utilities

SYNOPSIS
#include <wctype.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 468) to
enable the visibility of these symbols in this header.

The <wctype.h> header shall define the following types:

wint_t As described in <wchar.h>.

wctrans_t A scalar type that can hold values which represent locale-specific character
mappings.

wctype_t As described in <wchar.h>.

CX The <wctype.h> header shall define the locale_t type as described in <locale.h>.

The <wctype.h> header shall define the following macro:

WEOF As described in <wchar.h>.

For all functions described in this header that accept an argument of type wint_t, the value is
representable as a wchar_t or equals the value of WEOF. If this argument has any other value,
the behavior is undefined.

The behavior of these functions shall be affected by the LC_CTYPE category of the current locale.

CX Inclusion of the <wctype.h> header may make visible all symbols from the headers <ctype.h>,
<stdarg.h>, <stddef.h>, <stdio.h>, <stdlib.h>, <string.h>, <time.h>, and <wchar.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

int iswalnum(wint_t);
CX int iswalnum_l(wint_t, locale_t);

int iswalpha(wint_t);
CX int iswalpha_l(wint_t, locale_t);

int iswblank(wint_t);
CX int iswblank_l(wint_t, locale_t);

int iswcntrl(wint_t);
CX int iswcntrl_l(wint_t, locale_t);

int iswctype(wint_t, wctype_t);
CX int iswctype_l(wint_t, wctype_t, locale_t);

int iswdigit(wint_t);
CX int iswdigit_l(wint_t, locale_t);

int iswgraph(wint_t);
CX int iswgraph_l(wint_t, locale_t);

int iswlower(wint_t);
CX int iswlower_l(wint_t, locale_t);

int iswprint(wint_t);
CX int iswprint_l(wint_t, locale_t);

int iswpunct(wint_t);
CX int iswpunct_l(wint_t, locale_t);

int iswspace(wint_t);

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 459

15639

15640

15641

15642

15643

15644

15645

15646

15647

15648

15649

15650

15651

15652

15653

15654

15655

15656

15657

15658

15659

15660

15661

15662

15663

15664

15665

15666

15667

15668

15669

15670

15671

15672

15673

15674

15675

15676

15677

15678

15679

15680

15681

15682

15683

<wctype.h> Headers

CX int iswspace_l(wint_t, locale_t);
int iswupper(wint_t);

CX int iswupper_l(wint_t, locale_t);
int iswxdigit(wint_t);

CX int iswxdigit_l(wint_t, locale_t);
wint_t towctrans(wint_t, wctrans_t);

CX wint_t towctrans_l(wint_t, wctrans_t, locale_t);
wint_t towlower(wint_t);

CX wint_t towlower_l(wint_t, locale_t);
wint_t towupper(wint_t);

CX wint_t towupper_l(wint_t, locale_t);
wctrans_t wctrans(const char *);

CX wctrans_t wctrans_l(const char *, locale_t);
wctype_t wctype(const char *);

CX wctype_t wctype_l(const char *, locale_t);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<ctype.h>, <locale.h>, <stdarg.h>, <stddef.h>, <stdio.h>, <stdlib.h>, <string.h>, <time.h>,
<wchar.h>

XSH Section 2.2 (on page 468), iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswctype(),
iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit(),
setlocale(), towctrans(), towlower(), towupper(), wctrans(), wctype()

CHANGE HISTORY
First released in Issue 5. Derived from the ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Issue 6
The iswblank() function is added for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
SD5-XBD-ERN-6 is applied.

The *_l() functions are added from The Open Group Technical Standard, 2006, Extended API Set
Part 4.

This reference page is clarified with respect to macros and symbolic constants.

460 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

15684

15685

15686

15687

15688

15689

15690

15691

15692

15693

15694

15695

15696

15697

15698

15699

15700

15701

15702

15703

15704

15705

15706

15707

15708

15709

15710

15711

15712

15713

15714

15715

15716

15717

15718

15719

Headers <wordexp.h>

NAME
wordexp.h — word-expansion types

SYNOPSIS
#include <wordexp.h>

DESCRIPTION
The <wordexp.h> header shall define the structures and symbolic constants used by the
wordexp() and wordfree() functions.

The <wordexp.h> header shall define the wordexp_t structure type, which shall include at least
the following members:

size_t we_wordc Count of words matched by words.
char **we_wordv Pointer to list of expanded words.
size_t we_offs Slots to reserve at the beginning of we_wordv.

The <wordexp.h> header shall define the following symbolic constants for use as flags for the
wordexp() function:

WRDE_APPEND Append words to those previously generated.

WRDE_DOOFFS Number of null pointers to prepend to we_wordv.

WRDE_NOCMD Fail if command substitution is requested.

WRDE_REUSE The pwordexp argument was passed to a previous successful call to
wordexp(), and has not been passed to wordfree(). The result is the same
as if the application had called wordfree() and then called wordexp()
without WRDE_REUSE.

WRDE_SHOWERR Do not redirect stderr to /dev/null.

WRDE_UNDEF Report error on an attempt to expand an undefined shell variable.

The <wordexp.h> header shall define the following symbolic constants as error return values:

WRDE_BADCHAR One of the unquoted characters—<newline>, ’|’, ’&’, ’;’, ’<’, ’>’,
’(’, ’)’, ’{’, ’}’—appears in words in an inappropriate context.

WRDE_BADVAL Reference to undefined shell variable when WRDE_UNDEF is set in flags.

WRDE_CMDSUB Command substitution requested when WRDE_NOCMD was set in flags.

WRDE_NOSPACE Attempt to allocate memory failed.

WRDE_SYNTAX Shell syntax error, such as unbalanced parentheses or unterminated
string.

The <wordexp.h> header shall define the size_t type as described in <stddef.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int wordexp(const char *restrict, wordexp_t *restrict, int);
void wordfree(wordexp_t *);

Vol. 1: Base Definitions, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 461

15720

15721

15722

15723

15724

15725

15726

15727

15728

15729

15730

15731

15732

15733

15734

15735

15736

15737

15738

15739

15740

15741

15742

15743

15744

15745

15746

15747

15748

15749

15750

15751

15752

15753

15754

15755

<wordexp.h> Headers

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<stddef.h>

XSH Section 2.6

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 6
The restrict keyword is added to the prototype for wordexp().

The WRDE_NOSYS constant is marked obsolescent.

Issue 7
The obsolescent WRDE_NOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

462 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 7

15756

15757

15758

15759

15760

15761

15762

15763

15764

15765

15766

15767

15768

15769

15770

15771

15772

Technical Standard

Vol. 2:

System Interfaces, Issue 7

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 463

15773

15774

15775

15776

15777

464 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

Chapter 1

Introduction

The System Interfaces volume of POSIX.1-2008 describes the interfaces offered to application
programs by POSIX-conformant systems.

1.1 Relationship to Other Formal Standards

Great care has been taken to ensure that this volume of POSIX.1-2008 is fully aligned with the
following standards:

ISO C (1999)
ISO/IEC 9899: 1999, Programming Languages — C, including ISO/IEC
9899: 1999/Cor.1: 2001(E), ISO/IEC 9899: 1999/Cor.2: 2004(E), and ISO/IEC
9899: 1999/Cor.3.

Parts of the ISO/IEC 9899: 1999 standard (hereinafter referred to as the ISO C standard) are
referenced to describe requirements also mandated by this volume of POSIX.1-2008. Some
functions and headers included within this volume of POSIX.1-2008 have a version in the ISO C
standard; in this case CX markings are added as appropriate to show where the ISO C standard
has been extended (see Section 1.7.1, on page 7). Any conflict between this volume of
POSIX.1-2008 and the ISO C standard is unintentional.

This volume of POSIX.1-2008 also allows, but does not require, mathematics functions to
support IEEE Std 754-1985 and IEEE Std 854-1987.

1.2 Format of Entries

The entries in Chapter 3 are based on a common format as follows. The only sections relating to
conformance are the SYNOPSIS, DESCRIPTION, RETURN VALUE, and ERRORS sections.

NAME
This section gives the name or names of the entry and briefly states its purpose.

SYNOPSIS
This section summarizes the use of the entry being described. If it is necessary to
include a header to use this function, the names of such headers are shown, for
example:

#include <stdio.h>

DESCRIPTION
This section describes the functionality of the function or header.

RETURN VALUE
This section indicates the possible return values, if any.

If the implementation can detect errors, ‘‘successful completion’’ means that no error

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 465

15778

15779

15780

15781

15782

15783

15784

15785

15786

15787

15788

15789

15790

15791

15792

15793

15794

15795

15796

15797

15798

15799

15800

15801

15802

15803

15804

15805

15806

15807

15808

15809

15810

15811

Format of Entries Introduction

has been detected during execution of the function. If the implementation does detect
an error, the error is indicated.

For functions where no errors are defined, ‘‘successful completion’’ means that if the
implementation checks for errors, no error has been detected. If the implementation can
detect errors, and an error is detected, the indicated return value is returned and errno
may be set.

ERRORS
This section gives the symbolic names of the error values returned by a function or
stored into a variable accessed through the symbol errno if an error occurs.

‘‘No errors are defined’’ means that error values returned by a function or stored into a
variable accessed through the symbol errno, if any, depend on the implementation.

EXAMPLES
This section is informative.

This section gives examples of usage, where appropriate. In the event of conflict
between an example and a normative part of this volume of POSIX.1-2008, the
normative material is to be taken as correct.

APPLICATION USAGE
This section is informative.

This section gives warnings and advice to application developers about the entry. In the
event of conflict between warnings and advice and a normative part of this volume of
POSIX.1-2008, the normative material is to be taken as correct.

RATIONALE
This section is informative.

This section contains historical information concerning the contents of this volume of
POSIX.1-2008 and why features were included or discarded by the standard
developers.

FUTURE DIRECTIONS
This section is informative.

This section provides comments which should be used as a guide to current thinking;
there is not necessarily a commitment to adopt these future directions.

SEE ALSO
This section is informative.

This section gives references to related information.

CHANGE HISTORY
This section is informative.

This section shows the derivation of the entry and any significant changes that have
been made to it.

466 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

15812

15813

15814

15815

15816

15817

15818

15819

15820

15821

15822

15823

15824

15825

15826

15827

15828

15829

15830

15831

15832

15833

15834

15835

15836

15837

15838

15839

15840

15841

15842

15843

15844

15845

15846

15847

15848

Chapter 2

General Information

This chapter covers information that is relevant to all the functions specified in Chapter 3 and
XBD Chapter 13 (on page 219).

2.1 Use and Implementation of Interfaces

2.1.1 Use and Implementation of Functions

Each of the following statements shall apply to all functions unless explicitly stated otherwise in
the detailed descriptions that follow:

1. If an argument to a function has an invalid value (such as a value outside the domain of
the function, or a pointer outside the address space of the program, or a null pointer), the
behavior is undefined.

2. Any function declared in a header may also be implemented as a macro defined in the
header, so a function should not be declared explicitly if its header is included. Any
macro definition of a function can be suppressed locally by enclosing the name of the
function in parentheses, because the name is then not followed by the <left-parenthesis>
that indicates expansion of a macro function name. For the same syntactic reason, it is
permitted to take the address of a function even if it is also defined as a macro. The use of
the C-language #undef construct to remove any such macro definition shall also ensure
that an actual function is referred to.

3. Any invocation of a function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where
necessary, so it is generally safe to use arbitrary expressions as arguments.

4. Provided that a function can be declared without reference to any type defined in a
header, it is also permissible to declare the function explicitly and use it without including
its associated header.

5. If a function that accepts a variable number of arguments is not declared (explicitly or by
including its associated header), the behavior is undefined.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 467

15849

15850

15851

15852

15853

15854

15855

15856

15857

15858

15859

15860

15861

15862

15863

15864

15865

15866

15867

15868

15869

15870

15871

15872

15873

15874

15875

Use and Implementation of Interfaces General Information

2.1.2 Use and Implementation of Macros

Each of the following statements shall apply to all macros unless explicitly stated otherwise:

1. Any definition of an object-like macro in a header shall expand to code that is fully
protected by parentheses where necessary, so that it groups in an arbitrary expression as
if it were a single identifier.

2. All object-like macros listed as expanding to integer constant expressions shall
additionally be suitable for use in #if preprocessing directives.

3. Any definition of a function-like macro in a header shall expand to code that evaluates
each of its arguments exactly once, fully protected by parentheses where necessary, so
that it is generally safe to use arbitrary expressions as arguments.

4. Any definition of a function-like macro in a header can be invoked in an expression
anywhere a function with a compatible return type could be called.

2.2 The Compilation Environment

2.2.1 POSIX.1 Symbols

Certain symbols in this volume of POSIX.1-2008 are defined in headers (see XBD Chapter 13, on
page 219). Some of those headers could also define symbols other than those defined by
POSIX.1-2008, potentially conflicting with symbols used by the application. Also, POSIX.1-2008
defines symbols that are not permitted by other standards to appear in those headers without
some control on the visibility of those symbols.

Symbols called ‘‘feature test macros’’ are used to control the visibility of symbols that might be
included in a header. Implementations, future versions of this standard, and other standards
may define additional feature test macros.

In the compilation of an application that #defines a feature test macro specified by
POSIX.1-2008, no header defined by POSIX.1-2008 shall be included prior to the definition of the
feature test macro. This restriction also applies to any implementation-provided header in
which these feature test macros are used. If the definition of the macro does not precede the
#include, the result is undefined.

Feature test macros shall begin with the <underscore> character (’_’).

2.2.1.1 The _POSIX_C_SOURCE Feature Test Macro

A POSIX-conforming application shall ensure that the feature test macro _POSIX_C_SOURCE is
defined before inclusion of any header.

When an application includes a header described by POSIX.1-2008, and when this feature test
macro is defined to have the value 200809L:

1. All symbols required by POSIX.1-2008 to appear when the header is included shall be
made visible.

468 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

15876

15877

15878

15879

15880

15881

15882

15883

15884

15885

15886

15887

15888

15889

15890

15891

15892

15893

15894

15895

15896

15897

15898

15899

15900

15901

15902

15903

15904

15905

15906

15907

15908

15909

15910

General Information The Compilation Environment

2. Symbols that are explicitly permitted, but not required, by POSIX.1-2008 to appear in that
header (including those in reserved name spaces) may be made visible.

3. Additional symbols not required or explicitly permitted by POSIX.1-2008 to be in that
header shall not be made visible, except when enabled by another feature test macro.

Identifiers in POSIX.1-2008 may only be undefined using the #undef directive as described in
Section 2.1 (on page 467) or Section 2.2.2. These #undef directives shall follow all #include
directives of any header in POSIX.1-2008.

Note: The POSIX.1-1990 standard specified a macro called _POSIX_SOURCE. This has been
superseded by _POSIX_C_SOURCE.

2.2.1.2 The _XOPEN_SOURCE Feature Test Macro

XSI An XSI-conforming application shall ensure that the feature test macro _XOPEN_SOURCE is
defined with the value 700 before inclusion of any header. This is needed to enable the
functionality described in Section 2.2.1.1 (on page 468) and to ensure that the XSI option is
enabled.

Since this volume of POSIX.1-2008 is aligned with the ISO C standard, and since all functionality
enabled by _POSIX_C_SOURCE set equal to 200809L is enabled by _XOPEN_SOURCE set equal
to 700, there should be no need to define _POSIX_C_SOURCE if _XOPEN_SOURCE is so
defined. Therefore, if _XOPEN_SOURCE is set equal to 700 and _POSIX_C_SOURCE is set equal
to 200809L, the behavior is the same as if only _XOPEN_SOURCE is defined and set equal to
700. However, should _POSIX_C_SOURCE be set to a value greater than 200809L, the behavior
is unspecified.

If _XOPEN_SOURCE is defined with the value 700 and _POSIX_C_SOURCE is undefined before
inclusion of any header, then the header may define the _POSIX_C_SOURCE macro with the
value 200809L.

2.2.2 The Name Space

All identifiers in this volume of POSIX.1-2008, except environ, are defined in at least one of the
XSI headers, as shown in XBD Chapter 13 (on page 219). When _XOPEN_SOURCE or

_POSIX_C_SOURCE is defined, each header defines or declares some identifiers, potentially
conflicting with identifiers used by the application. The set of identifiers visible to the
application consists of precisely those identifiers from the header pages of the included headers,
as well as additional identifiers reserved for the implementation. In addition, some headers may
make visible identifiers from other headers as indicated on the relevant header pages.

Implementations may also add members to a structure or union without controlling the
visibility of those members with a feature test macro, as long as a user-defined macro with the
same name cannot interfere with the correct interpretation of the program. The identifiers
reserved for use by the implementation are described below:

1. Each identifier with external linkage described in the header section is reserved for use as
an identifier with external linkage if the header is included.

2. Each macro described in the header section is reserved for any use if the header is
included.

3. Each identifier with file scope described in the header section is reserved for use as an
identifier with file scope in the same name space if the header is included.

The prefixes posix_, POSIX_, and _POSIX_ are reserved for use by POSIX.1-2008 and other

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 469

15911

15912

15913

15914

15915

15916

15917

15918

15919

15920

15921

15922

15923

15924

15925

15926

15927

15928

15929

15930

15931

15932

15933

15934

15935

15936

15937

15938

15939

15940

15941

15942

15943

15944

15945

15946

15947

15948

15949

15950

15951

15952

15953

The Compilation Environment General Information

POSIX standards. Implementations may add symbols to the headers shown in the following
table, provided the identifiers for those symbols either:

1. Begin with the corresponding reserved prefixes in the table, or

2. Have one of the corresponding complete names in the table, or

3. End in the string indicated as a reserved suffix in the table and do not use the reserved
prefixes posix_, POSIX_, or _POSIX_, as long as the reserved suffix is in that part of the
name considered significant by the implementation.

Symbols that use the reserved prefix _POSIX_ may be made visible by implementations in any
header defined by POSIX.1-2008.

470 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

15954

15955

15956

15957

15958

15959

15960

15961

15962

General Information The Compilation Environment

Complete
Header Prefix Suffix Name

<aio.h> aio_, lio_, AIO_, LIO_
<arpa/inet.h> inet_
<ctype.h> to[a-z], is[a-z]
<dlfcn.h> RTLD_
<dirent.h> d_
<fcntl.h> l_

XSI <fmtmsg.h> MM_
<fnmatch.h> FNM_

XSI <ftw.h> FTW
<glob.h> gl_, GLOB_
<grp.h> gr_
<limits.h> _MAX, _MIN

MSG <mqueue.h> mq_, MQ_
XSI <ndbm.h> dbm_, DBM_

<netdb.h> ai_, h_, n_, p_, s_
<net/if.h> if_, IF_
<netinet/in.h> in_, ip_, s_, sin_, INADDR_, IPPROTO_

IP6 in6_, s6_, sin6_, IPV6_
<netinet/tcp.h> TCP_
<nl_types.h> NL_
<poll.h> pd_, ph_, ps_, POLL
<pthread.h> pthread_, PTHREAD_
<pwd.h> pw_
<regex.h> re_, rm_, REG_
<sched.h> sched_, SCHED_
<semaphore.h> sem_, SEM_
<signal.h> sa_, si_, sigev_, sival_, uc_, BUS_, CLD_,

FPE_, ILL_, SA_, SEGV_, SI_, SIGEV_,
XSI ss_, sv_, SS_, TRAP_,
OB XSR POLL_

<stropts.h> bi_, ic_, l_, sl_, str_,
FLUSH[A-Z], I_, S_, SND[A-Z]

<stdint.h> int[0-9a-z_]*_t,
uint[0-9a-z_]*_t

<stdlib.h> str[a-z]
<string.h> str[a-z], mem[a-z], wcs[a-z]

XSI <sys/ipc.h> ipc_, IPC_ key, pad, seq
<sys/mman.h> shm_, MAP_, MCL_, MS_,

PROT_
XSI <sys/msg.h> msg, MSG_[A-Z] msg
XSI <sys/resource.h> rlim_, ru_, PRIO_, RLIMIT_, RUSAGE_

<sys/select.h> fd_, fds_, FD_

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 471

15963

15964

15965

15966

15967

15968

15969

15970

15971

15972

15973

15974

15975

15976

15977

15978

15979

15980

15981

15982

15983

15984

15985

15986

15987

15988

15989

15990

15991

15992

15993

15994

15995

15996

15997

15998

15999

16000

16001

16002

16003

16004

16005

16006

The Compilation Environment General Information

Complete
Header Prefix Suffix Name

XSI <sys/sem.h> sem, SEM_ sem
XSI <sys/shm.h> shm, SHM[A-Z], SHM_[A-Z]

<sys/socket.h> cmsg_, if_, ifc_, ifra_, ifru_,
infu_, l_, msg_, sa_, ss_,

XSI AF_, MSG_, PF_, SCM_,
SHUT_, SO

<sys/stat.h> st_
<sys/statvfs.h> f_, ST_

XSI <sys/time.h> it_, tv_, ITIMER_
<sys/times.h> tms_

XSI <sys/uio.h> iov_ UIO_MAXIOV
<sys/un.h> sun_
<sys/utsname.h> uts_
<sys/wait.h> P_, W[A-Z]

XSI <syslog.h> LOG_
<termios.h> c_, B[0-9], TC
<time.h> tm_

clock_, it_, timer_, tv_,
CLOCK_, TIMER_

XSI <ulimit.h> UL_
<utime.h> utim_

XSI <utmpx.h> ut_ _LVL, _PROCESS,
_TIME

<wchar.h> wcs[a-z]
<wctype.h> is[a-z], to[a-z]
<wordexp.h> we_, WRDE_
ANY header _t

Note: The notation [A−Z] indicates any uppercase letter in the portable character set. The notation
[a−z] indicates any lowercase letter in the portable character set. Commas and spaces in the lists
of prefixes and complete names in the above table are not part of any prefix or complete name.

472 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

16007

16008

16009

16010

16011

16012

16013

16014

16015

16016

16017

16018

16019

16020

16021

16022

16023

16024

16025

16026

16027

16028

16029

16030

16031

16032

16033

16034

16035

16036

16037

16038

General Information The Compilation Environment

If any header in the following table is included, macros with the prefixes shown may be defined.
After the last inclusion of a given header, an application may use identifiers with the
corresponding prefixes for its own purpose, provided their use is preceded by a #undef of the
corresponding macro.

Header Prefix

<errno.h> E[0-9], E[A-Z]
<fcntl.h> F_, O_
<fenv.h> FE_[A-Z]
<inttypes.h> PRI[Xa-z], SCN[Xa-z]
<locale.h> LC_[A-Z]
<math.h> FP_[A-Z]
<netinet/in.h> IMPLINK_, IN_, IP_, IPPORT_, SOCK_,

IP6 IN6_
<signal.h> SIG_, SIG[A-Z],

XSI SV_
CX <stdio.h> SEEK_
OB XSR <stropts.h> M_, MUXID_R[A-Z], STR
XSI <sys/resource.h> RLIM_
XSI <sys/socket.h> CMSG_

<sys/stat.h> S_
XSI <sys/uio.h> IOV_

<termios.h> I, O, V (See below.)
<unistd.h> SEEK_

The following are used to reserve complete names for the <stdint.h> header:

INT[0-9A-Za-z_]*_MIN
INT[0-9A-Za-z_]*_MAX
INT[0-9A-Za-z_]*_C
UINT[0-9A-Za-z_]*_MIN
UINT[0-9A-Za-z_]*_MAX
UINT[0-9A-Za-z_]*_C

Note: The notation [0−9] indicates any digit. The notation [A−Z] indicates any uppercase letter in the
portable character set. The notation [0−9a−z_] indicates any digit, any lowercase letter in the
portable character set, or <underscore>.

XSI The following reserved names are used as exact matches for <termios.h>:

CBAUD EXTB VDSUSP
DEFECHO FLUSHO VLNEXT
ECHOCTL LOBLK VREPRINT
ECHOKE PENDIN VSTATUS
ECHOPRT SWTCH VWERASE
EXTA VDISCARD

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 473

16039

16040

16041

16042

16043

16044

16045

16046

16047

16048

16049

16050

16051

16052

16053

16054

16055

16056

16057

16058

16059

16060

16061

16062

16063

16064

16065

16066

16067

16068

16069

16070

16071

16072

16073

16074

16075

16076

16077

16078

The Compilation Environment General Information

The following identifiers are reserved regardless of the inclusion of headers:

1. With the exception of identifiers beginning with the prefix _POSIX_, all identifiers that
begin with an <underscore> and either an uppercase letter or another <underscore> are
always reserved for any use by the implementation.

2. All identifiers that begin with an <underscore> are always reserved for use as identifiers
with file scope in both the ordinary identifier and tag name spaces.

3. All identifiers in the table below are reserved for use as identifiers with external linkage.
Some of these identifiers do not appear in this volume of POSIX.1-2008, but are reserved for
future use by the ISO C standard.

4. All functions and external identifiers defined in XBD Chapter 13 (on page 219) are reserved
for use as identifiers with external linkage.

5. All the identifiers defined in this volume of POSIX.1-2008 that have external linkage are
always reserved for use as identifiers with external linkage.

Note: The notation [a−z] indicates any lowercase letter in the portable character set. The notation ’*’

indicates any combination of digits, letters in the portable character set, or <underscore>.

No other identifiers are reserved.

474 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

16079

16080

16081

16082

16083

16084

16085

16086

16087

16088

16089

16090

16091

16092

16093

16094

General Information The Compilation Environment

_Exit
abort
abs
acos
acosf
acosh
acoshf
acoshl
acosl
acosl
asctime
asin
asinf
asinh
asinhf
asinhl
asinl
asinl
atan
atan2
atan2f
atan2l
atanf
atanf
atanh
atanh
atanhf
atanhl
atanl
atanl
atexit
atof
atoi
atol
atoll
bsearch
cabs
cabsf
cabsl
cacos
cacosf
cacosh
cacoshf
cacoshl
cacosl
calloc
carg
cargf
cargl
casin
casinf

casinh
casinhf
casinhl
casinl
catan
catanf
catanh
catanh
catanhf
catanhf
catanhl
catanhl
catanl
cbrt
cbrtf
cbrtl
ccos
ccosf
ccosh
ccoshf
ccoshl
ccosl
ceil
ceilf
ceilf
ceill
ceill
cerf
cerfc
cerfcf
cerfcl
cerff
cerfl
cexmp1
cexmp1f
cexmp1l
cexp
cexp2
cexp2f
cexp2l
cexpf
cexpl
cimag
cimagf
cimagl
clearerr
clgamma
clgammaf
clgammal
clock
clog

clog10
clog10f
clog10l
clog1p
clog1pf
clog1pl
clog2
clog2f
clog2l
clogf
clogl
conj
conjf
conjl
copysign
copysignf
copysignl
cos
cosf
cosh
coshf
coshl
cosl
cpow
cpowf
cpowl
cproj
cprojf
cprojl
creal
crealf
creall
csin
csinf
csinh
csinhf
csinhl
csinl
csqrt
csqrtf
csqrtl
ctan
ctanf
ctanl
ctgamma
ctgammaf
ctgammal
ltime
difftime
div
erfcf

erfcl
erff
erfl
errno
exit
exp
exp2
exp2f
exp2l
expf
expl
expm1
expm1f
expm1l
fabs
fabsf
fabsl
fclose
fdim
fdimf
fdiml
feclearexcept
fegetenv
fegetexceptflag
fegetround
feholdexcept
feof
feraiseexcept
ferror
fesetenv
fesetexceptflag
fesetround
fetestexcept
feupdateenv
fflush
fgetc
fgetpos
fgets
fgetwc
fgetws
floor
floorf
floorl
fma
fmaf
fmal
fmax
fmaxf
fmaxl
fmin
fminf

fminl
fmod
fmodf
fmodl
fopen
fprintf
fputc
fputs
fputwc
fputws
fread
free
freopen
frexp
frexpf
frexpl
fscanf
fseek
fsetpos
ftell
fwide
fwprintf
fwrite
fwscanf
getc
getchar
getenv
gets
getwc
getwchar
gmtime
hypotf
hypotl
ilogb
ilogbf
ilogbl
imaxabs
imaxdiv
is[a-z]*
isblank
iswblank
labs
ldexp
ldexpf
ldexpl
ldiv
ldiv
lgammaf
lgammal
llabs
llrint

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 475

16095

16096

16097

16098

16099

16100

16101

16102

16103

16104

16105

16106

16107

16108

16109

16110

16111

16112

16113

16114

16115

16116

16117

16118

16119

16120

16121

16122

16123

16124

16125

16126

16127

16128

16129

16130

16131

16132

16133

16134

16135

16136

16137

16138

16139

16140

16141

16142

16143

16144

16145

The Compilation Environment General Information

llrintf
llrintl
llround
llroundf
llroundl
localeconv
localtime
log
log10
log10f
log10l
log1p
log1pf
log1pl
log2
log2f
log2l
logb
logbf
logbl
logf
logl
longjmp
lrint
lrintf
lrintl
lround
lroundf
lroundl
malloc
mblen
mbrlen
mbrtowc

mbsinit
mbsrtowcs
mbstowcs
mbtowc
mem[a-z]*
mktime
modf
modff
modfl
nan
nanf
nanl
nearbyint
nearbyintf
nearbyintl
nextafterf
nextafterl
nexttoward
nexttowardf
nexttowardl
perror
pow
powf
powl
printf
putc
putchar
puts
putwc
putwchar
qsort
raise
rand

realloc
remainderf
remainderl
remove
remquo
remquof
remquol
rename
rewind
rint
rintf
rintl
round
roundf
roundl
scalbln
scalblnf
scalblnl
scalbn
scalbnf
scalbnl
scanf
setbuf
setjmp
setlocale
setvbuf
signal
sin
sinf
sinh
sinhf
sinhl
sinl

sprintf
sqrt
sqrtf
sqrtl
srand
sscanf
str[a-z]*
strtof
strtoimax
strtold
strtoll
strtoull
strtoumax
swprintf
swscanf
system
tan
tanf
tanh
tanhf
tanhl
tanl
tgamma
tgammaf
tgammal
time
tmpfile
tmpnam
to[a-z]*
trunc
truncf
truncl
ungetc

ungetwc
va_end
vfprintf
vfscanf
vfwprintf
vfwscanf
vprintf
vscanf
vsprintf
vsscanf
vswprintf
vswscanf
vwprintf
vwscanf
wcrtomb
wcs[a-z]*
wcstof
wcstoimax
wcstold
wcstoll
wcstoull
wcstoumax
wctob
wctomb
wctrans
wctype
wcwidth
wmem[a-z]*
wprintf
wscanf

Applications shall not declare or define identifiers with the same name as an identifier reserved
in the same context. Since macro names are replaced whenever found, independent of scope and
name space, macro names matching any of the reserved identifier names shall not be defined by
an application if any associated header is included.

Except that the effect of each inclusion of <assert.h> depends on the definition of NDEBUG,
headers may be included in any order, and each may be included more than once in a given
scope, with no difference in effect from that of being included only once.

If used, the application shall ensure that a header is included outside of any external declaration
or definition, and it shall be first included before the first reference to any type or macro it
defines, or to any function or object it declares. However, if an identifier is declared or defined in
more than one header, the second and subsequent associated headers may be included after the
initial reference to the identifier. Prior to the inclusion of a header, the application shall not
define any macros with names lexically identical to symbols defined by that header.

476 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

16146

16147

16148

16149

16150

16151

16152

16153

16154

16155

16156

16157

16158

16159

16160

16161

16162

16163

16164

16165

16166

16167

16168

16169

16170

16171

16172

16173

16174

16175

16176

16177

16178

16179

16180

16181

16182

16183

16184

16185

16186

16187

16188

16189

16190

16191

General Information Error Numbers

2.3 Error Numbers

Most functions can provide an error number. The means by which each function provides its
error numbers is specified in its description.

Some functions provide the error number in a variable accessed through the symbol errno,
defined by including the <errno.h> header. The value of errno should only be examined when it
is indicated to be valid by a function’s return value. No function in this volume of POSIX.1-2008
shall set errno to zero. For each thread of a process, the value of errno shall not be affected by
function calls or assignments to errno by other threads.

Some functions return an error number directly as the function value. These functions return a
value of zero to indicate success.

If more than one error occurs in processing a function call, any one of the possible errors may be
returned, as the order of detection is undefined.

Implementations may support additional errors not included in this list, may generate errors
included in this list under circumstances other than those described here, or may contain
extensions or limitations that prevent some errors from occurring.

The ERRORS section on each reference page specifies which error conditions shall be detected
by all implementations (‘‘shall fail’’) and which may be optionally detected by an
implementation (‘‘may fail’’). If no error condition is detected, the action requested shall be
successful.

Implementations may generate error numbers listed here under circumstances other than those
described, if and only if all those error conditions can always be treated identically to the error
conditions as described in this volume of POSIX.1-2008. Implementations shall not generate a
different error number from one required by this volume of POSIX.1-2008 for an error condition
described in this volume of POSIX.1-2008, but may generate additional errors unless explicitly
disallowed for a particular function.

Each implementation shall document, in the conformance document, situations in which each of
the optional conditions defined in POSIX.1-2008 is detected. The conformance document may
also contain statements that one or more of the optional error conditions are not detected.

Certain threads-related functions are not allowed to return an error code of [EINTR]. Where this
applies it is stated in the ERRORS section on the individual function pages.

The following macro names identify the possible error numbers, in the context of the functions
specifically defined in this volume of POSIX.1-2008; these general descriptions are more
precisely defined in the ERRORS sections of the functions that return them. Only these macro
names should be used in programs, since the actual value of the error number is unspecified. All
values listed in this section shall be unique, except as noted below. The values for all these
macros shall be found in the <errno.h> header defined in the Base Definitions volume of
POSIX.1-2008. The actual values are unspecified by this volume of POSIX.1-2008.

[E2BIG]
Argument list too long. The sum of the number of bytes used by the new process image’s
argument list and environment list is greater than the system-imposed limit of {ARG_MAX}
bytes.

or:

Lack of space in an output buffer.

or:

Argument is greater than the system-imposed maximum.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 477

16192

16193

16194

16195

16196

16197

16198

16199

16200

16201

16202

16203

16204

16205

16206

16207

16208

16209

16210

16211

16212

16213

16214

16215

16216

16217

16218

16219

16220

16221

16222

16223

16224

16225

16226

16227

16228

16229

16230

16231

16232

16233

16234

16235

16236

Error Numbers General Information

[EACCES]
Permission denied. An attempt was made to access a file in a way forbidden by its file
access permissions.

[EADDRINUSE]
Address in use. The specified address is in use.

[EADDRNOTAVAIL]
Address not available. The specified address is not available from the local system.

[EAFNOSUPPORT]
Address family not supported. The implementation does not support the specified address
family, or the specified address is not a valid address for the address family of the specified
socket.

[EAGAIN]
Resource temporarily unavailable. This is a temporary condition and later calls to the same
routine may complete normally.

[EALREADY]
Connection already in progress. A connection request is already in progress for the specified
socket.

[EBADF]
Bad file descriptor. A file descriptor argument is out of range, refers to no open file, or a
read (write) request is made to a file that is only open for writing (reading).

[EBADMSG]
OB XSR Bad message. During a read(), getmsg(), getpmsg(), or ioctl() I_RECVFD request to a

STREAMS device, a message arrived at the head of the STREAM that is inappropriate for
the function receiving the message.

read() Message waiting to be read on a STREAM is not a data message.

getmsg() or getpmsg()
A file descriptor was received instead of a control message.

ioctl() Control or data information was received instead of a file descriptor when
I_RECVFD was specified.

or:

Bad Message. The implementation has detected a corrupted message.

[EBUSY]
Resource busy. An attempt was made to make use of a system resource that is not currently
available, as it is being used by another process in a manner that would have conflicted
with the request being made by this process.

[ECANCELED]
Operation canceled. The associated asynchronous operation was canceled before
completion.

[ECHILD]
No child process. A wait(), waitid(), or waitpid() function was executed by a process that
had no existing or unwaited-for child process.

[ECONNABORTED]
Connection aborted. The connection has been aborted.

478 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

16237

16238

16239

16240

16241

16242

16243

16244

16245

16246

16247

16248

16249

16250

16251

16252

16253

16254

16255

16256

16257

16258

16259

16260

16261

16262

16263

16264

16265

16266

16267

16268

16269

16270

16271

16272

16273

16274

16275

16276

16277

16278

16279

General Information Error Numbers

[ECONNREFUSED]
Connection refused. An attempt to connect to a socket was refused because there was no
process listening or because the queue of connection requests was full and the underlying
protocol does not support retransmissions.

[ECONNRESET]
Connection reset. The connection was forcibly closed by the peer.

[EDEADLK]
Resource deadlock would occur. An attempt was made to lock a system resource that would
have resulted in a deadlock situation.

[EDESTADDRREQ]
Destination address required. No bind address was established.

[EDOM]
Domain error. An input argument is outside the defined domain of the mathematical
function (defined in the ISO C standard).

[EDQUOT]
Reserved.

[EEXIST]
File exists. An existing file was mentioned in an inappropriate context; for example, as a
new link name in the link() function.

[EFAULT]
Bad address. The system detected an invalid address in attempting to use an argument of a
call. The reliable detection of this error cannot be guaranteed, and when not detected may
result in the generation of a signal, indicating an address violation, which is sent to the
process.

[EFBIG]
File too large. The size of a file would exceed the maximum file size of an implementation
or offset maximum established in the corresponding file description.

[EHOSTUNREACH]
Host is unreachable. The destination host cannot be reached (probably because the host is
down or a remote router cannot reach it).

[EIDRM]
Identifier removed. Returned during XSI interprocess communication if an identifier has
been removed from the system.

[EILSEQ]
Illegal byte sequence. A wide-character code has been detected that does not correspond to
a valid character, or a byte sequence does not form a valid wide-character code (defined in
the ISO C standard).

[EINPROGRESS]
Operation in progress. This code is used to indicate that an asynchronous operation has not
yet completed.

or:

O_NONBLOCK is set for the socket file descriptor and the connection cannot be
immediately established.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 479

16280

16281

16282

16283

16284

16285

16286

16287

16288

16289

16290

16291

16292

16293

16294

16295

16296

16297

16298

16299

16300

16301

16302

16303

16304

16305

16306

16307

16308

16309

16310

16311

16312

16313

16314

16315

16316

16317

16318

16319

16320

16321

16322

Error Numbers General Information

[EINTR]
Interrupted function call. An asynchronous signal was caught by the process during the
execution of an interruptible function. If the signal handler performs a normal return, the
interrupted function call may return this condition (see the Base Definitions volume of
POSIX.1-2008, <signal.h>).

[EINVAL]
Invalid argument. Some invalid argument was supplied; for example, specifying an
undefined signal in a signal() function or a kill() function.

[EIO]
Input/output error. Some physical input or output error has occurred. This error may be
reported on a subsequent operation on the same file descriptor. Any other error-causing
operation on the same file descriptor may cause the [EIO] error indication to be lost.

[EISCONN]
Socket is connected. The specified socket is already connected.

[EISDIR]
Is a directory. An attempt was made to open a directory with write mode specified.

[ELOOP]
Symbolic link loop. A loop exists in symbolic links encountered during pathname
resolution. This error may also be returned if more than {SYMLOOP_MAX} symbolic links
are encountered during pathname resolution.

[EMFILE]
File descriptor value too large or too many open streams. An attempt was made to open a

XSI file descriptor with a value greater than or equal to {OPEN_MAX}, or greater than or equal
to the soft limit RLIMIT_NOFILE for the process (if smaller than {OPEN_MAX}); or an
attempt was made to open more than the maximum number of streams allowed in the
process.

[EMLINK]
Too many links. An attempt was made to have the link count of a single file exceed
{LINK_MAX}.

[EMSGSIZE]
Message too large. A message sent on a transport provider was larger than an internal
message buffer or some other network limit.

or:

Inappropriate message buffer length.

[EMULTIHOP]
Reserved.

[ENAMETOOLONG]
Filename too long. The length of a pathname exceeds {PATH_MAX} and the
implementation considers this to be an error, or a pathname component is longer than
{NAME_MAX}. This error may also occur when pathname substitution, as a result of
encountering a symbolic link during pathname resolution, results in a pathname string the
size of which exceeds {PATH_MAX}.

[ENETDOWN]
Network is down. The local network interface used to reach the destination is down.

480 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

16323

16324

16325

16326

16327

16328

16329

16330

16331

16332

16333

16334

16335

16336

16337

16338

16339

16340

16341

16342

16343

16344

16345

16346

16347

16348

16349

16350

16351

16352

16353

16354

16355

16356

16357

16358

16359

16360

16361

16362

16363

16364

16365

16366

General Information Error Numbers

[ENETRESET]
The connection was aborted by the network.

[ENETUNREACH]
Network unreachable. No route to the network is present.

[ENFILE]
Too many files open in system. Too many files are currently open in the system. The system
has reached its predefined limit for simultaneously open files and temporarily cannot
accept requests to open another one.

[ENOBUFS]
No buffer space available. Insufficient buffer resources were available in the system to
perform the socket operation.

OB XSR [ENODATA]
No message available. No message is available on the STREAM head read queue.

[ENODEV]
No such device. An attempt was made to apply an inappropriate function to a device; for
example, trying to read a write-only device such as a printer.

[ENOENT]
No such file or directory. A component of a specified pathname does not exist, or the
pathname is an empty string.

[ENOEXEC]
Executable file format error. A request is made to execute a file that, although it has
appropriate privileges, is not in the format required by the implementation for executable
files.

[ENOLCK]
No locks available. A system-imposed limit on the number of simultaneous file and record
locks has been reached and no more are currently available.

[ENOLINK]
Reserved.

[ENOMEM]
Not enough space. The new process image requires more memory than is allowed by the
hardware or system-imposed memory management constraints.

[ENOMSG]
No message of the desired type. The message queue does not contain a message of the
required type during XSI interprocess communication.

[ENOPROTOOPT]
Protocol not available. The protocol option specified to setsockopt() is not supported by the
implementation.

[ENOSPC]
No space left on a device. During the write() function on a regular file or when extending a
directory, there is no free space left on the device.

OB XSR [ENOSR]
No STREAM resources. Insufficient STREAMS memory resources are available to perform a
STREAMS-related function. This is a temporary condition; it may be recovered from if other
processes release resources.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 481

16367

16368

16369

16370

16371

16372

16373

16374

16375

16376

16377

16378

16379

16380

16381

16382

16383

16384

16385

16386

16387

16388

16389

16390

16391

16392

16393

16394

16395

16396

16397

16398

16399

16400

16401

16402

16403

16404

16405

16406

16407

16408

16409

16410

Error Numbers General Information

OB XSR [ENOSTR]
Not a STREAM. A STREAM function was attempted on a file descriptor that was not
associated with a STREAMS device.

[ENOSYS]
Function not implemented. An attempt was made to use a function that is not available in
this implementation.

[ENOTCONN]
Socket not connected. The socket is not connected.

[ENOTDIR]
Not a directory. A component of the specified pathname exists, but it is not a directory,
when a directory was expected.

[ENOTEMPTY]
Directory not empty. A directory other than an empty directory was supplied when an
empty directory was expected.

[ENOTRECOVERABLE]
State not recoverable. The state protected by a robust mutex is not recoverable.

[ENOTSOCK]
Not a socket. The file descriptor does not refer to a socket.

[ENOTSUP]
Not supported. The implementation does not support this feature of the Realtime Option
Group.

[ENOTTY]
Inappropriate I/O control operation. A control function has been attempted for a file or
special file for which the operation is inappropriate.

[ENXIO]
No such device or address. Input or output on a special file refers to a device that does not
exist, or makes a request beyond the capabilities of the device. It may also occur when, for
example, a tape drive is not on-line.

[EOPNOTSUPP]
Operation not supported on socket. The type of socket (address family or protocol) does not
support the requested operation. A conforming implementation may assign the same values
for [EOPNOTSUP] and [ENOTSUP].

[EOVERFLOW]
Value too large to be stored in data type. An operation was attempted which would
generate a value that is outside the range of values that can be represented in the relevant
data type or that are allowed for a given data item.

[EOWNERDEAD]
Previous owner died. The owner of a robust mutex terminated while holding the mutex
lock.

[EPERM]
Operation not permitted. An attempt was made to perform an operation limited to
processes with appropriate privileges or to the owner of a file or other resource.

[EPIPE]
Broken pipe. A write was attempted on a socket, pipe, or FIFO for which there is no process
to read the data.

482 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

16411

16412

16413

16414

16415

16416

16417

16418

16419

16420

16421

16422

16423

16424

16425

16426

16427

16428

16429

16430

16431

16432

16433

16434

16435

16436

16437

16438

16439

16440

16441

16442

16443

16444

16445

16446

16447

16448

16449

16450

16451

16452

16453

16454

16455

General Information Error Numbers

[EPROTO]
Protocol error. Some protocol error occurred. This error is device-specific, but is generally
not related to a hardware failure.

[EPROTONOSUPPORT]
Protocol not supported. The protocol is not supported by the address family, or the protocol
is not supported by the implementation.

[EPROTOTYPE]
Protocol wrong type for socket. The socket type is not supported by the protocol.

[ERANGE]
Result too large or too small. The result of the function is too large (overflow) or too small
(underflow) to be represented in the available space (defined in the ISO C standard).

[EROFS]
Read-only file system. An attempt was made to modify a file or directory on a file system
that is read-only.

[ESPIPE]
Invalid seek. An attempt was made to access the file offset associated with a pipe or FIFO.

[ESRCH]
No such process. No process can be found corresponding to that specified by the given
process ID.

[ESTALE]
Reserved.

OB XSR [ETIME]
STREAM ioctl() timeout. The timer set for a STREAMS ioctl() call has expired. The cause of
this error is device-specific and could indicate either a hardware or software failure, or a
timeout value that is too short for the specific operation. The status of the ioctl() operation is
unspecified.

[ETIMEDOUT]
Connection timed out. The connection to a remote machine has timed out. If the connection
timed out during execution of the function that reported this error (as opposed to timing
out prior to the function being called), it is unspecified whether the function has completed
some or all of the documented behavior associated with a successful completion of the
function.

or:

Operation timed out. The time limit associated with the operation was exceeded before the
operation completed.

[ETXTBSY]
Text file busy. An attempt was made to execute a pure-procedure program that is currently
open for writing, or an attempt has been made to open for writing a pure-procedure
program that is being executed.

[EWOULDBLOCK]
Operation would block. An operation on a socket marked as non-blocking has encountered
a situation such as no data available that otherwise would have caused the function to
suspend execution.

A conforming implementation may assign the same values for [EWOULDBLOCK] and
[EAGAIN].

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 483

16456

16457

16458

16459

16460

16461

16462

16463

16464

16465

16466

16467

16468

16469

16470

16471

16472

16473

16474

16475

16476

16477

16478

16479

16480

16481

16482

16483

16484

16485

16486

16487

16488

16489

16490

16491

16492

16493

16494

16495

16496

16497

16498

16499

16500

Error Numbers General Information

[EXDEV]
Improper link. A link to a file on another file system was attempted.

2.3.1 Additional Error Numbers

Additional implementation-defined error numbers may be defined in <errno.h>.

2.4 Signal Concepts

2.4.1 Signal Generation and Delivery

A signal is said to be ‘‘generated’’ for (or sent to) a process or thread when the event that causes
the signal first occurs. Examples of such events include detection of hardware faults, timer
expiration, signals generated via the sigevent structure and terminal activity, as well as
invocations of the kill() and sigqueue() functions. In some circumstances, the same event
generates signals for multiple processes.

At the time of generation, a determination shall be made whether the signal has been generated
for the process or for a specific thread within the process. Signals which are generated by some
action attributable to a particular thread, such as a hardware fault, shall be generated for the
thread that caused the signal to be generated. Signals that are generated in association with a
process ID or process group ID or an asynchronous event, such as terminal activity, shall be
generated for the process.

Each process has an action to be taken in response to each signal defined by the system (see
Section 2.4.3, on page 486). A signal is said to be ‘‘delivered’’ to a process when the appropriate
action for the process and signal is taken. A signal is said to be ‘‘accepted’’ by a process when the
signal is selected and returned by one of the sigwait() functions.

During the time between the generation of a signal and its delivery or acceptance, the signal is
said to be ‘‘pending’’. Ordinarily, this interval cannot be detected by an application. However, a
signal can be ‘‘blocked’’ from delivery to a thread. If the action associated with a blocked signal
is anything other than to ignore the signal, and if that signal is generated for the thread, the
signal shall remain pending until it is unblocked, it is accepted when it is selected and returned
by a call to the sigwait() function, or the action associated with it is set to ignore the signal.
Signals generated for the process shall be delivered to exactly one of those threads within the
process which is in a call to a sigwait() function selecting that signal or has not blocked delivery
of the signal. If there are no threads in a call to a sigwait() function selecting that signal, and if all
threads within the process block delivery of the signal, the signal shall remain pending on the
process until a thread calls a sigwait() function selecting that signal, a thread unblocks delivery
of the signal, or the action associated with the signal is set to ignore the signal. If the action
associated with a blocked signal is to ignore the signal and if that signal is generated for the
process, it is unspecified whether the signal is discarded immediately upon generation or
remains pending.

Each thread has a ‘‘signal mask’’ that defines the set of signals currently blocked from delivery
to it. The signal mask for a thread shall be initialized from that of its parent or creating thread,
or from the corresponding thread in the parent process if the thread was created as the result of a
call to fork(). The pthread_sigmask(), sigaction(), sigprocmask(), and sigsuspend() functions control
the manipulation of the signal mask.

484 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

16501

16502

16503

16504

16505

16506

16507

16508

16509

16510

16511

16512

16513

16514

16515

16516

16517

16518

16519

16520

16521

16522

16523

16524

16525

16526

16527

16528

16529

16530

16531

16532

16533

16534

16535

16536

16537

16538

16539

16540

16541

General Information Signal Concepts

The determination of which action is taken in response to a signal is made at the time the signal
is delivered, allowing for any changes since the time of generation. This determination is
independent of the means by which the signal was originally generated. If a subsequent
occurrence of a pending signal is generated, it is implementation-defined as to whether the
signal is delivered or accepted more than once in circumstances other than those in which
queuing is required. The order in which multiple, simultaneously pending signals outside the
range SIGRTMIN to SIGRTMAX are delivered to or accepted by a process is unspecified.

When any stop signal (SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU) is generated for a process, any
pending SIGCONT signals for that process shall be discarded. Conversely, when SIGCONT is
generated for a process, all pending stop signals for that process shall be discarded. When
SIGCONT is generated for a process that is stopped, the process shall be continued, even if the
SIGCONT signal is blocked or ignored. If SIGCONT is blocked and not ignored, it shall remain
pending until it is either unblocked or a stop signal is generated for the process.

An implementation shall document any condition not specified by this volume of POSIX.1-2008
under which the implementation generates signals.

2.4.2 Realtime Signal Generation and Delivery

This section describes functionality to support realtime signal generation and delivery.

Some signal-generating functions, such as high-resolution timer expiration, asynchronous I/O
completion, interprocess message arrival, and the sigqueue() function, support the specification
of an application-defined value, either explicitly as a parameter to the function or in a sigevent
structure parameter. The sigevent structure is defined in <signal.h> and contains at least the
following members:

Member Type Member Name Description

int sigev_notify Notification type.
int sigev_signo Signal number.
union sigval sigev_value Signal value.
void(*)(union sigval) sigev_notify_function Notification function.
(pthread_attr_t*) sigev_notify_attributes Notification attributes.

The sigev_notify member specifies the notification mechanism to use when an asynchronous
event occurs. This volume of POSIX.1-2008 defines the following values for the sigev_notify
member:

SIGEV_NONE No asynchronous notification shall be delivered when the event of
interest occurs.

SIGEV_SIGNAL The signal specified in sigev_signo shall be generated for the process when
the event of interest occurs. If the implementation supports the Realtime
Signals Extension option and if the SA_SIGINFO flag is set for that signal
number, then the signal shall be queued to the process and the value
specified in sigev_value shall be the si_value component of the generated
signal. If SA_SIGINFO is not set for that signal number, it is unspecified
whether the signal is queued and what value, if any, is sent.

SIGEV_THREAD A notification function shall be called to perform notification.

An implementation may define additional notification mechanisms.

The sigev_signo member specifies the signal to be generated. The sigev_value member is the
application-defined value to be passed to the signal-catching function at the time of the signal

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 485

16542

16543

16544

16545

16546

16547

16548

16549

16550

16551

16552

16553

16554

16555

16556

16557

16558

16559

16560

16561

16562

16563

16564

16565

16566

16567

16568

16569

16570

16571

16572

16573

16574

16575

16576

16577

16578

16579

16580

16581

16582

16583

16584

16585

Signal Concepts General Information

delivery or to be returned at signal acceptance as the si_value member of the siginfo_t structure.

The sigval union is defined in <signal.h> and contains at least the following members:

Member Type Member Name Description

int sival_int Integer signal value.
void* sival_ptr Pointer signal value.

The sival_int member shall be used when the application-defined value is of type int; the
sival_ptr member shall be used when the application-defined value is a pointer.

When a signal is generated by the sigqueue() function or any signal-generating function that
supports the specification of an application-defined value, the signal shall be marked pending
and, if the SA_SIGINFO flag is set for that signal, the signal shall be queued to the process along
with the application-specified signal value. Multiple occurrences of signals so generated are
queued in FIFO order. It is unspecified whether signals so generated are queued when the
SA_SIGINFO flag is not set for that signal.

Signals generated by the kill() function or other events that cause signals to occur, such as
detection of hardware faults, alarm() timer expiration, or terminal activity, and for which the
implementation does not support queuing, shall have no effect on signals already queued for the
same signal number.

When multiple unblocked signals, all in the range SIGRTMIN to SIGRTMAX, are pending, the
behavior shall be as if the implementation delivers the pending unblocked signal with the
lowest signal number within that range. No other ordering of signal delivery is specified.

If, when a pending signal is delivered, there are additional signals queued to that signal number,
the signal shall remain pending. Otherwise, the pending indication shall be reset.

Multi-threaded programs can use an alternate event notification mechanism. When a
notification is processed, and the sigev_notify member of the sigevent structure has the value
SIGEV_THREAD, the function sigev_notify_function is called with parameter sigev_value.

The function shall be executed in an environment as if it were the start_routine for a newly
created thread with thread attributes specified by sigev_notify_attributes. If sigev_notify_attributes
is NULL, the behavior shall be as if the thread were created with the detachstate attribute set to
PTHREAD_CREATE_DETACHED. Supplying an attributes structure with a detachstate attribute
of PTHREAD_CREATE_JOINABLE results in undefined behavior. The signal mask of this
thread is implementation-defined.

2.4.3 Signal Actions

There are three types of action that can be associated with a signal: SIG_DFL, SIG_IGN, or a
pointer to a function. Initially, all signals shall be set to SIG_DFL or SIG_IGN prior to entry of
the main() routine (see the exec functions). The actions prescribed by these values are as follows.

SIG_DFL

Signal-specific default action.

The default actions for the signals defined in this volume of POSIX.1-2008 are specified under
<signal.h>. The default actions for the realtime signals in the range SIGRTMIN to SIGRTMAX
shall be to terminate the process abnormally.

If the default action is to terminate the process abnormally, the process is terminated as if by a
call to _exit(), except that the status made available to wait(), waitid(), and waitpid() indicates

486 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

16586

16587

16588

16589

16590

16591

16592

16593

16594

16595

16596

16597

16598

16599

16600

16601

16602

16603

16604

16605

16606

16607

16608

16609

16610

16611

16612

16613

16614

16615

16616

16617

16618

16619

16620

16621

16622

16623

16624

16625

16626

16627

General Information Signal Concepts

XSI abnormal termination by the signal. If the default action is to terminate the process abnormally
with additional actions, implementation-defined abnormal termination actions, such as creation
of a core file, may also occur.

If the default action is to stop the process, the execution of that process is temporarily
suspended. When a process stops, a SIGCHLD signal shall be generated for its parent process,
unless the parent process has set the SA_NOCLDSTOP flag. While a process is stopped, any
additional signals that are sent to the process shall not be delivered until the process is
continued, except SIGKILL which always terminates the receiving process. A process that is a
member of an orphaned process group shall not be allowed to stop in response to the SIGTSTP,
SIGTTIN, or SIGTTOU signals. In cases where delivery of one of these signals would stop such a
process, the signal shall be discarded.

If the default action is to ignore the signal, delivery of the signal shall have no effect on the
process.

Setting a signal action to SIG_DFL for a signal that is pending, and whose default action is to
ignore the signal (for example, SIGCHLD), shall cause the pending signal to be discarded,
whether or not it is blocked. Any queued values pending shall be discarded and the resources
used to queue them shall be released and returned to the system for other use.

The default action for SIGCONT is to resume execution at the point where the process was
stopped, after first handling any pending unblocked signals.

XSI When a stopped process is continued, a SIGCHLD signal may be generated for its parent
process, unless the parent process has set the SA_NOCLDSTOP flag.

SIG_IGN

Ignore signal.

Delivery of the signal shall have no effect on the process. The behavior of a process is undefined
after it ignores a SIGFPE, SIGILL, SIGSEGV, or SIGBUS signal that was not generated by kill(),
sigqueue(), or raise().

The system shall not allow the action for the signals SIGKILL or SIGSTOP to be set to SIG_IGN.

Setting a signal action to SIG_IGN for a signal that is pending shall cause the pending signal to
be discarded, whether or not it is blocked.

If a process sets the action for the SIGCHLD signal to SIG_IGN, the behavior is unspecified,
XSI except as specified below.

If the action for the SIGCHLD signal is set to SIG_IGN, child processes of the calling processes
shall not be transformed into zombie processes when they terminate. If the calling process
subsequently waits for its children, and the process has no unwaited-for children that were
transformed into zombie processes, it shall block until all of its children terminate, and wait(),
waitid(), and waitpid() shall fail and set errno to [ECHILD].

Any queued values pending shall be discarded and the resources used to queue them shall be
released and made available to queue other signals.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 487

16628

16629

16630

16631

16632

16633

16634

16635

16636

16637

16638

16639

16640

16641

16642

16643

16644

16645

16646

16647

16648

16649

16650

16651

16652

16653

16654

16655

16656

16657

16658

16659

16660

16661

16662

16663

16664

16665

Signal Concepts General Information

Pointer to a Function

Catch signal.

On delivery of the signal, the receiving process is to execute the signal-catching function at the
specified address. After returning from the signal-catching function, the receiving process shall
resume execution at the point at which it was interrupted.

If the SA_SIGINFO flag for the signal is cleared, the signal-catching function shall be entered as
a C-language function call as follows:

void func(int signo);

If the SA_SIGINFO flag for the signal is set, the signal-catching function shall be entered as a C-
language function call as follows:

void func(int signo, siginfo_t *info, void *context);

where func is the specified signal-catching function, signo is the signal number of the signal
being delivered, and info is a pointer to a siginfo_t structure defined in <signal.h> containing at
least the following members:

Member Type Member Name Description

int si_signo Signal number.
int si_code Cause of the signal.
pid_t si_pid Sending process ID.
uid_t si_uid Real user ID of sending process.
void * si_addr Address of faulting instruction.
int si_status Exit value or signal.
union sigval si_value Signal value.

The si_signo member shall contain the signal number. This shall be the same as the signo
parameter. The si_code member shall contain a code identifying the cause of the signal. The
following non-signal-specific values are defined for si_code:

SI_USER The signal was sent by the kill() function. The implementation may set si_code
to SI_USER if the signal was sent by the raise() or abort() functions or any
similar functions provided as implementation extensions.

SI_QUEUE The signal was sent by the sigqueue() function.

SI_TIMER The signal was generated by the expiration of a timer set by timer_settime().

SI_ASYNCIO The signal was generated by the completion of an asynchronous I/O request.

MSG SI_MESGQ The signal was generated by the arrival of a message on an empty message
queue.

Signal-specific values for si_code are also defined, as described in XBD <signal.h>.

If the signal was not generated by one of the functions or events listed above, si_code shall be set
either to one of the signal-specific values described in XBD <signal.h>, or to an implementation-
defined value that is not equal to any of the values defined above.

XSI If si_code is SI_USER or SI_QUEUE, or any value less than or equal to 0, then the signal was
generated by a process and si_pid and si_uid shall be set to the process ID and the real user ID of
the sender, respectively.

In addition, si_addr, si_pid, si_status, and si_uid shall be set for certain signal-specific values of
si_code, as described in XBD <signal.h>.

If si_code is one of SI_QUEUE, SI_TIMER, SI_ASYNCIO, or SI_MESGQ, then si_value shall

488 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

16666

16667

16668

16669

16670

16671

16672

16673

16674

16675

16676

16677

16678

16679

16680

16681

16682

16683

16684

16685

16686

16687

16688

16689

16690

16691

16692

16693

16694

16695

16696

16697

16698

16699

16700

16701

16702

16703

16704

16705

16706

16707

16708

General Information Signal Concepts

contain the application-specified signal value. Otherwise, the contents of si_value are undefined.

The behavior of a process is undefined after it returns normally from a signal-catching function
for a SIGBUS, SIGFPE, SIGILL, or SIGSEGV signal that was not generated by kill(), sigqueue(),
or raise().

The system shall not allow a process to catch the signals SIGKILL and SIGSTOP.

If a process establishes a signal-catching function for the SIGCHLD signal while it has a
terminated child process for which it has not waited, it is unspecified whether a SIGCHLD
signal is generated to indicate that child process.

When signal-catching functions are invoked asynchronously with process execution, the
behavior of some of the functions defined by this volume of POSIX.1-2008 is unspecified if they
are called from a signal-catching function.

The following table defines a set of functions that shall be async-signal-safe. Therefore,
applications can invoke them, without restriction, from signal-catching functions:

_Exit()
_exit()
abort()
accept()
access()
aio_error()
aio_return()
aio_suspend()
alarm()
bind()
cfgetispeed()
cfgetospeed()
cfsetispeed()
cfsetospeed()
chdir()
chmod()
chown()
clock_gettime()
close()
connect()
creat()
dup()
dup2()
execl()
execle()
execv()
execve()
faccessat()
fchmod()
fchmodat()
fchown()
fchownat()
fcntl()
fdatasync()

fexecve()
fork()
fstat()
fstatat()
fsync()
ftruncate()
futimens()
getegid()
geteuid()
getgid()
getgroups()
getpeername()
getpgrp()
getpid()
getppid()
getsockname()
getsockopt()
getuid()
kill()
link()
linkat()
listen()
lseek()
lstat()
mkdir()
mkdirat()
mkfifo()
mkfifoat()
mknod()
mknodat()
open()
openat()
pause()
pipe()

poll()
posix_trace_event()
pselect()
raise()
read()
readlink()
readlinkat()
recv()
recvfrom()
recvmsg()
rename()
renameat()
rmdir()
select()
sem_post()
send()
sendmsg()
sendto()
setgid()
setpgid()
setsid()
setsockopt()
setuid()
shutdown()
sigaction()
sigaddset()
sigdelset()
sigemptyset()
sigfillset()
sigismember()
signal()
sigpause()
sigpending()
sigprocmask()

sigqueue()
sigset()
sigsuspend()
sleep()
sockatmark()
socket()
socketpair()
stat()
symlink()
symlinkat()
tcdrain()
tcflow()
tcflush()
tcgetattr()
tcgetpgrp()
tcsendbreak()
tcsetattr()
tcsetpgrp()
time()
timer_getoverrun()
timer_gettime()
timer_settime()
times()
umask()
uname()
unlink()
unlinkat()
utime()
utimensat()
utimes()
wait()
waitpid()
write()

All functions not in the above table are considered to be unsafe with respect to signals. In the
presence of signals, all functions defined by this volume of POSIX.1-2008 shall behave as defined

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 489

16709

16710

16711

16712

16713

16714

16715

16716

16717

16718

16719

16720

16721

16722

16723

16724

16725

16726

16727

16728

16729

16730

16731

16732

16733

16734

16735

16736

16737

16738

16739

16740

16741

16742

16743

16744

16745

16746

16747

16748

16749

16750

16751

16752

16753

16754

16755

16756

16757

Signal Concepts General Information

when called from or interrupted by a signal-catching function, with a single exception: when a
signal interrupts an unsafe function and the signal-catching function calls an unsafe function,
the behavior is undefined.

Operations which obtain the value of errno and operations which assign a value to errno shall be
async-signal-safe.

When a signal is delivered to a thread, if the action of that signal specifies termination, stop, or
continue, the entire process shall be terminated, stopped, or continued, respectively.

2.4.4 Signal Effects on Other Functions

Signals affect the behavior of certain functions defined by this volume of POSIX.1-2008 if
delivered to a process while it is executing such a function. If the action of the signal is to
terminate the process, the process shall be terminated and the function shall not return. If the
action of the signal is to stop the process, the process shall stop until continued or terminated.
Generation of a SIGCONT signal for the process shall cause the process to be continued, and the
original function shall continue at the point the process was stopped. If the action of the signal is
to invoke a signal-catching function, the signal-catching function shall be invoked; in this case
the original function is said to be ‘‘interrupted’’ by the signal. If the signal-catching function
executes a return statement, the behavior of the interrupted function shall be as described
individually for that function, except as noted for unsafe functions. Signals that are ignored shall
not affect the behavior of any function; signals that are blocked shall not affect the behavior of
any function until they are unblocked and then delivered, except as specified for the sigpending()
and sigwait() functions.

2.5 Standard I/O Streams

CX A stream is associated with an external file (which may be a physical device) or memory buffer
CX by ‘‘opening’’ a file or buffer. This may involve ‘‘creating’’ a new file. Creating an existing file

causes its former contents to be discarded if necessary. If a file can support positioning requests
(such as a disk file, as opposed to a terminal), then a ‘‘file position indicator’’ associated with the
stream is positioned at the start (byte number 0) of the file, unless the file is opened with append
mode, in which case it is implementation-defined whether the file position indicator is initially
positioned at the beginning or end of the file. The file position indicator is maintained by
subsequent reads, writes, and positioning requests, to facilitate an orderly progression through
the file. All input takes place as if bytes were read by successive calls to fgetc(); all output takes
place as if bytes were written by successive calls to fputc().

When a stream is ‘‘unbuffered’’, bytes are intended to appear from the source or at the
destination as soon as possible; otherwise, bytes may be accumulated and transmitted as a
block. When a stream is ‘‘fully buffered’’, bytes are intended to be transmitted as a block when a
buffer is filled. When a stream is ‘‘line buffered’’, bytes are intended to be transmitted as a block
when a <newline> byte is encountered. Furthermore, bytes are intended to be transmitted as a
block when a buffer is filled, when input is requested on an unbuffered stream, or when input is
requested on a line-buffered stream that requires the transmission of bytes. Support for these
characteristics is implementation-defined, and may be affected via setbuf() and setvbuf().

A file may be disassociated from a controlling stream by ‘‘closing’’ the file. Output streams are
flushed (any unwritten buffer contents are transmitted) before the stream is disassociated from
the file. The value of a pointer to a FILE object is unspecified after the associated file is closed
(including the standard streams).

490 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

16758

16759

16760

16761

16762

16763

16764

16765

16766

16767

16768

16769

16770

16771

16772

16773

16774

16775

16776

16777

16778

16779

16780

16781

16782

16783

16784

16785

16786

16787

16788

16789

16790

16791

16792

16793

16794

16795

16796

16797

16798

16799

16800

16801

General Information Standard I/O Streams

A file may be subsequently reopened, by the same or another program execution, and its
contents reclaimed or modified (if it can be repositioned at its start). If the main() function
returns to its original caller, or if the exit() function is called, all open files are closed (hence all
output streams are flushed) before program termination. Other paths to program termination,
such as calling abort(), need not close all files properly.

The address of the FILE object used to control a stream may be significant; a copy of a FILE
object need not necessarily serve in place of the original.

At program start-up, three streams are predefined and need not be opened explicitly: standard
input (for reading conventional input), standard output (for writing conventional output), and
standard error (for writing diagnostic output). When opened, the standard error stream is not
fully buffered; the standard input and standard output streams are fully buffered if and only if
the stream can be determined not to refer to an interactive device.

CX A stream associated with a memory buffer shall have the same operations for text files that a
stream associated with an external file would have. In addition, the stream orientation shall be
determined in exactly the same fashion.

Input and output operations on a stream associated with a memory buffer by a call to
fmemopen() shall be constrained by the implementation to take place within the bounds of the
memory buffer. In the case of a stream opened by open_memstream() or open_wmemstream(), the
memory area shall grow dynamically to accommodate write operations as necessary. For output,
data is moved from the buffer provided by setvbuf() to the memory stream during a flush or
close operation.

2.5.1 Interaction of File Descriptors and Standard I/O Streams

CX This section describes the interaction of file descriptors and standard I/O streams. The
functionality described in this section is an extension to the ISO C standard (and the rest of this
section is not further CX shaded).

An open file description may be accessed through a file descriptor, which is created using
functions such as open() or pipe(), or through a stream, which is created using functions such as
fopen() or popen(). Either a file descriptor or a stream is called a ‘‘handle’’ on the open file
description to which it refers; an open file description may have several handles.

Handles can be created or destroyed by explicit user action, without affecting the underlying
open file description. Some of the ways to create them include fcntl(), dup(), fdopen(), fileno(),
and fork(). They can be destroyed by at least fclose(), close(), and the exec functions.

A file descriptor that is never used in an operation that could affect the file offset (for example,
read(), write(), or lseek()) is not considered a handle for this discussion, but could give rise to
one (for example, as a consequence of fdopen(), dup(), or fork()). This exception does not include
the file descriptor underlying a stream, whether created with fopen() or fdopen(), so long as it is
not used directly by the application to affect the file offset. The read() and write() functions
implicitly affect the file offset; lseek() explicitly affects it.

The result of function calls involving any one handle (the ‘‘active handle’’) is defined elsewhere
in this volume of POSIX.1-2008, but if two or more handles are used, and any one of them is a
stream, the application shall ensure that their actions are coordinated as described below. If this
is not done, the result is undefined.

A handle which is a stream is considered to be closed when either an fclose() or freopen() is
executed on it (the result of freopen() is a new stream, which cannot be a handle on the same
open file description as its previous value), or when the process owning that stream terminates
with exit(), abort(), or due to a signal. A file descriptor is closed by close(), _exit(), or the exec

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 491

16802

16803

16804

16805

16806

16807

16808

16809

16810

16811

16812

16813

16814

16815

16816

16817

16818

16819

16820

16821

16822

16823

16824

16825

16826

16827

16828

16829

16830

16831

16832

16833

16834

16835

16836

16837

16838

16839

16840

16841

16842

16843

16844

16845

16846

16847

Standard I/O Streams General Information

functions when FD_CLOEXEC is set on that file descriptor.

For a handle to become the active handle, the application shall ensure that the actions below are
performed between the last use of the handle (the current active handle) and the first use of the
second handle (the future active handle). The second handle then becomes the active handle. All
activity by the application affecting the file offset on the first handle shall be suspended until it
again becomes the active file handle. (If a stream function has as an underlying function one that
affects the file offset, the stream function shall be considered to affect the file offset.)

The handles need not be in the same process for these rules to apply.

Note that after a fork(), two handles exist where one existed before. The application shall ensure
that, if both handles can ever be accessed, they are both in a state where the other could become
the active handle first. The application shall prepare for a fork() exactly as if it were a change of
active handle. (If the only action performed by one of the processes is one of the exec functions or
_exit() (not exit()), the handle is never accessed in that process.)

For the first handle, the first applicable condition below applies. After the actions required
below are taken, if the handle is still open, the application can close it.

• If it is a file descriptor, no action is required.

• If the only further action to be performed on any handle to this open file descriptor is to
close it, no action need be taken.

• If it is a stream which is unbuffered, no action need be taken.

• If it is a stream which is line buffered, and the last byte written to the stream was a
<newline> (that is, as if a:

putc(’\n’)

was the most recent operation on that stream), no action need be taken.

• If it is a stream which is open for writing or appending (but not also open for reading), the
application shall either perform an fflush(), or the stream shall be closed.

• If the stream is open for reading and it is at the end of the file (feof() is true), no action need
be taken.

• If the stream is open with a mode that allows reading and the underlying open file
description refers to a device that is capable of seeking, the application shall either perform
an fflush(), or the stream shall be closed.

Otherwise, the result is undefined.

For the second handle:

• If any previous active handle has been used by a function that explicitly changed the file
offset, except as required above for the first handle, the application shall perform an lseek()
or fseek() (as appropriate to the type of handle) to an appropriate location.

If the active handle ceases to be accessible before the requirements on the first handle, above,
have been met, the state of the open file description becomes undefined. This might occur
during functions such as a fork() or _exit().

The exec functions make inaccessible all streams that are open at the time they are called,
independent of which streams or file descriptors may be available to the new process image.

When these rules are followed, regardless of the sequence of handles used, implementations
shall ensure that an application, even one consisting of several processes, shall yield correct

492 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

16848

16849

16850

16851

16852

16853

16854

16855

16856

16857

16858

16859

16860

16861

16862

16863

16864

16865

16866

16867

16868

16869

16870

16871

16872

16873

16874

16875

16876

16877

16878

16879

16880

16881

16882

16883

16884

16885

16886

16887

16888

16889

General Information Standard I/O Streams

results: no data shall be lost or duplicated when writing, and all data shall be written in order,
except as requested by seeks. It is implementation-defined whether, and under what conditions,
all input is seen exactly once.

If the rules above are not followed, the result is unspecified.

Each function that operates on a stream is said to have zero or more ‘‘underlying functions’’.
This means that the stream function shares certain traits with the underlying functions, but does
not require that there be any relation between the implementations of the stream function and its
underlying functions.

2.5.2 Stream Orientation and Encoding Rules

For conformance to the ISO/IEC 9899: 1999 standard, the definition of a stream includes an
‘‘orientation’’. After a stream is associated with an external file, but before any operations are
performed on it, the stream is without orientation. Once a wide-character input/output function
has been applied to a stream without orientation, the stream shall become ‘‘wide-oriented’’.
Similarly, once a byte input/output function has been applied to a stream without orientation,
the stream shall become ‘‘byte-oriented’’. Only a call to the freopen() function or the fwide()
function can otherwise alter the orientation of a stream.

A successful call to freopen() shall remove any orientation. The three predefined streams standard
input, standard output, and standard error shall be unoriented at program start-up.

Byte input/output functions cannot be applied to a wide-oriented stream, and wide-character
input/output functions cannot be applied to a byte-oriented stream. The remaining stream
operations shall not affect and shall not be affected by a stream’s orientation, except for the
following additional restriction:

• For wide-oriented streams, after a successful call to a file-positioning function that leaves
the file position indicator prior to the end-of-file, a wide-character output function can
overwrite a partial character; any file contents beyond the byte(s) written are henceforth
undefined.

Each wide-oriented stream has an associated mbstate_t object that stores the current parse state
of the stream. A successful call to fgetpos() shall store a representation of the value of this
mbstate_t object as part of the value of the fpos_t object. A later successful call to fsetpos() using
the same stored fpos_t value shall restore the value of the associated mbstate_t object as well as
the position within the controlled stream.

Implementations that support multiple encoding rules associate an encoding rule with the
stream. The encoding rule shall be determined by the setting of the LC_CTYPE category in the
current locale at the time when the stream becomes wide-oriented. As with the stream’s
orientation, the encoding rule associated with a stream cannot be changed once it has been set,
except by a successful call to freopen() which clears the encoding rule and resets the orientation
to unoriented.

Although wide-oriented streams are conceptually sequences of wide characters, the external file
associated with a wide-oriented stream is a sequence of (possibly multi-byte) characters
generalized as follows:

• Multi-byte encodings within files may contain embedded null bytes (unlike multi-byte
encodings valid for use internal to the program).

• A file need not begin nor end in the initial shift state.

Moreover, the encodings used for characters may differ among files. Both the nature and choice
of such encodings are implementation-defined.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 493

16890

16891

16892

16893

16894

16895

16896

16897

16898

16899

16900

16901

16902

16903

16904

16905

16906

16907

16908

16909

16910

16911

16912

16913

16914

16915

16916

16917

16918

16919

16920

16921

16922

16923

16924

16925

16926

16927

16928

16929

16930

16931

16932

16933

16934

Standard I/O Streams General Information

The wide-character input functions read characters from the stream and convert them to wide
characters as if they were read by successive calls to the fgetwc() function. Each conversion shall
occur as if by a call to the mbrtowc() function, with the conversion state described by the

CX stream’s own mbstate_t object, except the encoding rule associated with the stream is used
instead of the encoding rule implied by the LC_CTYPE category of the current locale.

The wide-character output functions convert wide characters to (possibly multi-byte) characters
and write them to the stream as if they were written by successive calls to the fputwc() function.
Each conversion shall occur as if by a call to the wcrtomb() function, with the conversion state

CX described by the stream’s own mbstate_t object, except the encoding rule associated with the
stream is used instead of the encoding rule implied by the LC_CTYPE category of the current
locale.

An ‘‘encoding error ’’ shall occur if the character sequence presented to the underlying mbrtowc()
function does not form a valid (generalized) character, or if the code value passed to the
underlying wcrtomb() function does not correspond to a valid (generalized) character. The wide-
character input/output functions and the byte input/output functions store the value of the
macro [EILSEQ] in errno if and only if an encoding error occurs.

2.6 STREAMS

OB XSR STREAMS functionality is provided on implementations supporting the XSI STREAMS Option
Group. The functionality described in this section is dependent on support of the XSI STREAMS
option (and the rest of this section is not further shaded for this option).

STREAMS provides a uniform mechanism for implementing networking services and other
character-based I/O. The STREAMS function provides direct access to protocol modules.
STREAMS modules are unspecified objects. Access to STREAMS modules is provided by
interfaces in POSIX.1-2008. Creation of STREAMS modules is outside the scope of
POSIX.1-2008.

A STREAM is typically a full-duplex connection between a process and an open device or
pseudo-device. However, since pipes may be STREAMS-based, a STREAM can be a full-duplex
connection between two processes. The STREAM itself exists entirely within the implementation
and provides a general character I/O function for processes. It optionally includes one or more
intermediate processing modules that are interposed between the process end of the STREAM
(STREAM head) and a device driver at the end of the STREAM (STREAM end).

STREAMS I/O is based on messages. There are three types of message:

• Data messages containing actual data for input or output

• Control data containing instructions for the STREAMS modules and underlying
implementation

• Other messages, which include file descriptors

The interface between the STREAM and the rest of the implementation is provided by a set of
functions at the STREAM head. When a process calls write(), writev(), putmsg(), putpmsg(), or
ioctl(), messages are sent down the STREAM, and read(), readv(), getmsg(), or getpmsg() accepts
data from the STREAM and passes it to a process. Data intended for the device at the
downstream end of the STREAM is packaged into messages and sent downstream, while data
and signals from the device are composed into messages by the device driver and sent upstream
to the STREAM head.

When a STREAMS-based device is opened, a STREAM shall be created that contains the

494 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

16935

16936

16937

16938

16939

16940

16941

16942

16943

16944

16945

16946

16947

16948

16949

16950

16951

16952

16953

16954

16955

16956

16957

16958

16959

16960

16961

16962

16963

16964

16965

16966

16967

16968

16969

16970

16971

16972

16973

16974

16975

16976

16977

16978

General Information STREAMS

STREAM head and the STREAM end (driver). If pipes are STREAMS-based in an
implementation, when a pipe is created, two STREAMS shall be created, each containing a
STREAM head. Other modules are added to the STREAM using ioctl(). New modules are
‘‘pushed’’ onto the STREAM one at a time in last-in, first-out (LIFO) style, as though the
STREAM was a push-down stack.

Priority

Message types are classified according to their queuing priority and may be normal (non-
priority), priority, or high-priority messages. A message belongs to a particular priority band that
determines its ordering when placed on a queue. Normal messages have a priority band of 0
and shall always be placed at the end of the queue following all other messages in the queue.
High-priority messages are always placed at the head of a queue, but shall be discarded if there
is already a high-priority message in the queue. Their priority band shall be ignored; they are
high-priority by virtue of their type. Priority messages have a priority band greater than 0.
Priority messages are always placed after any messages of the same or higher priority. High-
priority and priority messages are used to send control and data information outside the normal
flow of control. By convention, high-priority messages shall not be affected by flow control.
Normal and priority messages have separate flow controls.

Message Parts

A process may access STREAMS messages that contain a data part, control part, or both. The
data part is that information which is transmitted over the communication medium and the
control information is used by the local STREAMS modules. The other types of messages are
used between modules and are not accessible to processes. Messages containing only a data part
are accessible via putmsg(), putpmsg(), getmsg(), getpmsg(), read(), readv(), write(), or writev().
Messages containing a control part with or without a data part are accessible via calls to
putmsg(), putpmsg(), getmsg(), or getpmsg().

2.6.1 Accessing STREAMS

A process accesses STREAMS-based files using the standard functions close(), ioctl(), getmsg(),
getpmsg(), open(), pipe(), poll(), putmsg(), putpmsg(), read(), or write(). Refer to the applicable
function definitions for general properties and errors.

Calls to ioctl() shall perform control functions on the STREAM associated with the file descriptor
fildes. The control functions may be performed by the STREAM head, a STREAMS module, or
the STREAMS driver for the STREAM.

STREAMS modules and drivers can detect errors, sending an error message to the STREAM
head, thus causing subsequent functions to fail and set errno to the value specified in the
message. In addition, STREAMS modules and drivers can elect to fail a particular ioctl() request
alone by sending a negative acknowledgement message to the STREAM head. This shall cause
just the pending ioctl() request to fail and set errno to the value specified in the message.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 495

16979

16980

16981

16982

16983

16984

16985

16986

16987

16988

16989

16990

16991

16992

16993

16994

16995

16996

16997

16998

16999

17000

17001

17002

17003

17004

17005

17006

17007

17008

17009

17010

17011

17012

17013

17014

17015

XSI Interprocess Communication General Information

2.7 XSI Interprocess Communication

XSI This section describes extensions to support interprocess communication. The functionality
described in this section shall be provided on implementations that support the XSI option (and
the rest of this section is not further shaded).

The following message passing, semaphore, and shared memory services form an XSI
interprocess communication facility. Certain aspects of their operation are common, and are
defined as follows.

IPC Functions

msgctl()
msgget()
msgrcv()
msgsnd()

semctl()
semget()
semop()

shmat()
shmctl()
shmdt()
shmget()

Another interprocess communication facility is provided by functions in the Realtime Option
Group; see Section 2.8 (on page 497).

2.7.1 IPC General Description

Each individual shared memory segment, message queue, and semaphore set shall be identified
by a unique positive integer, called, respectively, a shared memory identifier, shmid, a semaphore
identifier, semid, and a message queue identifier, msqid. The identifiers shall be returned by calls
to shmget(), semget(), and msgget(), respectively.

Associated with each identifier is a data structure which contains data related to the operations
which may be or may have been performed; see the Base Definitions volume of POSIX.1-2008,
<sys/shm.h>, <sys/sem.h>, and <sys/msg.h> for their descriptions.

Each of the data structures contains both ownership information and an ipc_perm structure (see
the Base Definitions volume of POSIX.1-2008, <sys/ipc.h>) which are used in conjunction to
determine whether or not read/write (read/alter for semaphores) permissions should be
granted to processes using the IPC facilities. The mode member of the ipc_perm structure acts as
a bit field which determines the permissions.

The values of the bits are given below in octal notation.

Bit Meaning

0400 Read by user.
0200 Write by user.
0040 Read by group.
0020 Write by group.
0004 Read by others.
0002 Write by others.

The name of the ipc_perm structure is shm_perm, sem_perm, or msg_perm, depending on which
service is being used. In each case, read and write/alter permissions shall be granted to a
process if one or more of the following are true ("xxx" is replaced by shm, sem, or msg, as
appropriate):

• The process has appropriate privileges.

• The effective user ID of the process matches xxx_perm.cuid or xxx_perm.uid in the data
structure associated with the IPC identifier, and the appropriate bit of the user field in
xxx_perm.mode is set.

496 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

17016

17017

17018

17019

17020

17021

17022

17023

17024

17025

17026

17027

17028

17029

17030

17031

17032

17033

17034

17035

17036

17037

17038

17039

17040

17041

17042

17043

17044

17045

17046

17047

17048

17049

17050

17051

17052

17053

17054

17055

17056

17057

17058

General Information XSI Interprocess Communication

• The effective user ID of the process does not match xxx_perm.cuid or xxx_perm.uid but the
effective group ID of the process matches xxx_perm.cgid or xxx_perm.gid in the data
structure associated with the IPC identifier, and the appropriate bit of the group field in
xxx_perm.mode is set.

• The effective user ID of the process does not match xxx_perm.cuid or xxx_perm.uid and the
effective group ID of the process does not match xxx_perm.cgid or xxx_perm.gid in the data
structure associated with the IPC identifier, but the appropriate bit of the other field in
xxx_perm.mode is set.

Otherwise, the permission shall be denied.

2.8 Realtime

This section defines functions to support the source portability of applications with realtime
requirements. The presence of some of these functions is dependent on support for
implementation options described in the text.

The specific functional areas included in this section and their scope include the following. Full
definitions of these terms can be found in XBD Chapter 3 (on page 33).

• Semaphores

• Process Memory Locking

• Memory Mapped Files and Shared Memory Objects

• Priority Scheduling

• Realtime Signal Extension

• Timers

• Interprocess Communication

• Synchronized Input and Output

• Asynchronous Input and Output

All the realtime functions defined in this volume of POSIX.1-2008 are portable, although some of
the numeric parameters used by an implementation may have hardware dependencies.

2.8.1 Realtime Signals

See Section 2.4.2 (on page 485).

2.8.2 Asynchronous I/O

An asynchronous I/O control block structure aiocb is used in many asynchronous I/O
functions. It is defined in the Base Definitions volume of POSIX.1-2008, <aio.h> and has at least
the following members:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 497

17059

17060

17061

17062

17063

17064

17065

17066

17067

17068

17069

17070

17071

17072

17073

17074

17075

17076

17077

17078

17079

17080

17081

17082

17083

17084

17085

17086

17087

17088

17089

17090

Realtime General Information

Member Type Member Name Description

int aio_fildes File descriptor.
off_t aio_offset File offset.
volatile void* aio_buf Location of buffer.
size_t aio_nbytes Length of transfer.
int aio_reqprio Request priority offset.
struct sigevent aio_sigevent Signal number and value.
int aio_lio_opcode Operation to be performed.

The aio_fildes element is the file descriptor on which the asynchronous operation is performed.

If O_APPEND is not set for the file descriptor aio_fildes and if aio_fildes is associated with a
device that is capable of seeking, then the requested operation takes place at the absolute
position in the file as given by aio_offset, as if lseek() were called immediately prior to the
operation with an offset argument equal to aio_offset and a whence argument equal to SEEK_SET.
If O_APPEND is set for the file descriptor, or if aio_fildes is associated with a device that is
incapable of seeking, write operations append to the file in the same order as the calls were
made, with the following exception: under implementation-defined circumstances, such as
operation on a multi-processor or when requests of differing priorities are submitted at the same
time, the ordering restriction may be relaxed. Since there is no way for a strictly conforming
application to determine whether this relaxation applies, all strictly conforming applications
which rely on ordering of output shall be written in such a way that they will operate correctly if
the relaxation applies. After a successful call to enqueue an asynchronous I/O operation, the
value of the file offset for the file is unspecified. The aio_nbytes and aio_buf elements are the same
as the nbyte and buf arguments defined by read() and write(), respectively.

If _POSIX_PRIORITIZED_IO and _POSIX_PRIORITY_SCHEDULING are defined, then
asynchronous I/O is queued in priority order, with the priority of each asynchronous operation
based on the current scheduling priority of the calling process. The aio_reqprio member can be
used to lower (but not raise) the asynchronous I/O operation priority and is within the range
zero through {AIO_PRIO_DELTA_MAX}, inclusive. Unless both _POSIX_PRIORITIZED_IO and
_POSIX_PRIORITY_SCHEDULING are defined, the order of processing asynchronous I/O
requests is unspecified. When both _POSIX_PRIORITIZED_IO and
_POSIX_PRIORITY_SCHEDULING are defined, the order of processing of requests submitted
by processes whose schedulers are not SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC is
unspecified. The priority of an asynchronous request is computed as (process scheduling
priority) minus aio_reqprio. The priority assigned to each asynchronous I/O request is an
indication of the desired order of execution of the request relative to other asynchronous I/O
requests for this file. If _POSIX_PRIORITIZED_IO is defined, requests issued with the same
priority to a character special file are processed by the underlying device in FIFO order; the
order of processing of requests of the same priority issued to files that are not character special
files is unspecified. Numerically higher priority values indicate requests of higher priority. The
value of aio_reqprio has no effect on process scheduling priority. When prioritized asynchronous
I/O requests to the same file are blocked waiting for a resource required for that I/O operation,
the higher-priority I/O requests shall be granted the resource before lower-priority I/O requests
are granted the resource. The relative priority of asynchronous I/O and synchronous I/O is
implementation-defined. If _POSIX_PRIORITIZED_IO is defined, the implementation shall
define for which files I/O prioritization is supported.

The aio_sigevent determines how the calling process shall be notified upon I/O completion, as
specified in Section 2.4.1 (on page 484). If aio_sigevent.sigev_notify is SIGEV_NONE, then no
signal shall be posted upon I/O completion, but the error status for the operation and the return
status for the operation shall be set appropriately.

The aio_lio_opcode field is used only by the lio_listio() call. The lio_listio() call allows multiple

498 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

17091

17092

17093

17094

17095

17096

17097

17098

17099

17100

17101

17102

17103

17104

17105

17106

17107

17108

17109

17110

17111

17112

17113

17114

17115

17116

17117

17118

17119

17120

17121

17122

17123

17124

17125

17126

17127

17128

17129

17130

17131

17132

17133

17134

17135

17136

17137

17138

17139

17140

General Information Realtime

asynchronous I/O operations to be submitted at a single time. The function takes as an
argument an array of pointers to aiocb structures. Each aiocb structure indicates the operation to
be performed (read or write) via the aio_lio_opcode field.

The address of the aiocb structure is used as a handle for retrieving the error status and return
status of the asynchronous operation while it is in progress.

The aiocb structure and the data buffers associated with the asynchronous I/O operation are
being used by the system for asynchronous I/O while, and only while, the error status of the
asynchronous operation is equal to [EINPROGRESS]. Applications shall not modify the aiocb
structure while the structure is being used by the system for asynchronous I/O.

The return status of the asynchronous operation is the number of bytes transferred by the I/O
operation. If the error status is set to indicate an error completion, then the return status is set to
the return value that the corresponding read(), write(), or fsync() call would have returned.
When the error status is not equal to [EINPROGRESS], the return status shall reflect the return
status of the corresponding synchronous operation.

2.8.3 Memory Management

2.8.3.1 Memory Locking

MLR Range memory locking operations are defined in terms of pages. Implementations may restrict
the size and alignment of range lockings to be on page-size boundaries. The page size, in bytes,
is the value of the configurable system variable {PAGESIZE}. If an implementation has no
restrictions on size or alignment, it may specify a 1-byte page size.

ML|MLR Memory locking guarantees the residence of portions of the address space. It is implementation-
defined whether locking memory guarantees fixed translation between virtual addresses (as
seen by the process) and physical addresses. Per-process memory locks are not inherited across a
fork(), and all memory locks owned by a process are unlocked upon exec or process termination.
Unmapping of an address range removes any memory locks established on that address range
by this process.

2.8.3.2 Memory Mapped Files

Range memory mapping operations are defined in terms of pages. Implementations may
restrict the size and alignment of range mappings to be on page-size boundaries. The page size,
in bytes, is the value of the configurable system variable {PAGESIZE}. If an implementation has
no restrictions on size or alignment, it may specify a 1-byte page size.

Memory mapped files provide a mechanism that allows a process to access files by directly
incorporating file data into its address space. Once a file is mapped into a process address space,
the data can be manipulated as memory. If more than one process maps a file, its contents are
shared among them. If the mappings allow shared write access, then data written into the
memory object through the address space of one process appears in the address spaces of all
processes that similarly map the same portion of the memory object.

SHM Shared memory objects are named regions of storage that may be independent of the file system
and can be mapped into the address space of one or more processes to allow them to share the
associated memory.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 499

17141

17142

17143

17144

17145

17146

17147

17148

17149

17150

17151

17152

17153

17154

17155

17156

17157

17158

17159

17160

17161

17162

17163

17164

17165

17166

17167

17168

17169

17170

17171

17172

17173

17174

17175

17176

17177

17178

17179

17180

Realtime General Information

SHM An unlink() of a file or shm_unlink() of a shared memory object, while causing the removal of
the name, does not unmap any mappings established for the object. Once the name has been
removed, the contents of the memory object are preserved as long as it is referenced. The
memory object remains referenced as long as a process has the memory object open or has some
area of the memory object mapped.

2.8.3.3 Memory Protection

When an object is mapped, various application accesses to the mapped region may result in
signals. In this context, SIGBUS is used to indicate an error using the mapped object, and
SIGSEGV is used to indicate a protection violation or misuse of an address:

• A mapping may be restricted to disallow some types of access.

• Write attempts to memory that was mapped without write access, or any access to
memory mapped PROT_NONE, shall result in a SIGSEGV signal.

• References to unmapped addresses shall result in a SIGSEGV signal.

• Reference to whole pages within the mapping, but beyond the current length of the object,
shall result in a SIGBUS signal.

• The size of the object is unaffected by access beyond the end of the object (even if a
SIGBUS is not generated).

2.8.3.4 Typed Memory Objects

TYM The functionality described in this section shall be provided on implementations that support
the Typed Memory Objects option (and the rest of this section is not further shaded for this
option).

Implementations may support the Typed Memory Objects option independently of support for
memory mapped files or shared memory objects. Typed memory objects are implementation-
configurable named storage pools accessible from one or more processors in a system, each via
one or more ports, such as backplane buses, LANs, I/O channels, and so on. Each valid
combination of a storage pool and a port is identified through a name that is defined at system
configuration time, in an implementation-defined manner; the name may be independent of the
file system. Using this name, a typed memory object can be opened and mapped into process
address space. For a given storage pool and port, it is necessary to support both dynamic
allocation from the pool as well as mapping at an application-supplied offset within the pool;
when dynamic allocation has been performed, subsequent deallocation must be supported.
Lastly, accessing typed memory objects from different ports requires a method for obtaining the
offset and length of contiguous storage of a region of typed memory (dynamically allocated or
not); this allows typed memory to be shared among processes and/or processors while being
accessed from the desired port.

500 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

17181

17182

17183

17184

17185

17186

17187

17188

17189

17190

17191

17192

17193

17194

17195

17196

17197

17198

17199

17200

17201

17202

17203

17204

17205

17206

17207

17208

17209

17210

17211

17212

17213

17214

17215

General Information Realtime

2.8.4 Process Scheduling

PS The functionality described in this section shall be provided on implementations that support
the Process Scheduling option (and the rest of this section is not further shaded for this option).

Scheduling Policies

The scheduling semantics described in this volume of POSIX.1-2008 are defined in terms of a
conceptual model that contains a set of thread lists. No implementation structures are
necessarily implied by the use of this conceptual model. It is assumed that no time elapses
during operations described using this model, and therefore no simultaneous operations are
possible. This model discusses only processor scheduling for runnable threads, but it should be
noted that greatly enhanced predictability of realtime applications results if the sequencing of
other resources takes processor scheduling policy into account.

There is, conceptually, one thread list for each priority. A runnable thread will be on the thread
list for that thread’s priority. Multiple scheduling policies shall be provided. Each non-empty
thread list is ordered, contains a head as one end of its order, and a tail as the other. The purpose
of a scheduling policy is to define the allowable operations on this set of lists (for example,
moving threads between and within lists).

The POSIX model treats a ‘‘process’’ as an aggregation of system resources, including one or
more threads that may be scheduled by the operating system on the processor(s) it controls.
Although a process has its own set of scheduling attributes, these have an indirect effect (if any)
on the scheduling behavior of individual threads as described below.

Each thread shall be controlled by an associated scheduling policy and priority. These
parameters may be specified by explicit application execution of the pthread_setschedparam()
function. Additionally, the scheduling parameters of a thread (but not its scheduling policy) may
be changed by application execution of the pthread_setschedprio() function.

Each process shall be controlled by an associated scheduling policy and priority. These
parameters may be specified by explicit application execution of the sched_setscheduler() or
sched_setparam() functions.

The effect of the process scheduling attributes on individual threads in the process is dependent
on the scheduling contention scope of the threads (see Section 2.9.4, on page 509):

• For threads with system scheduling contention scope, the process scheduling attributes
shall have no effect on the scheduling attributes or behavior either of the thread or an
underlying kernel scheduling entity dedicated to that thread.

• For threads with process scheduling contention scope, the process scheduling attributes
shall have no effect on the scheduling attributes of the thread. However, any underlying
kernel scheduling entity used by these threads shall at all times behave as specified by the
scheduling attributes of the containing process, and this behavior may affect the
scheduling behavior of the process contention scope threads. For example, a process
contention scope thread with scheduling policy SCHED_FIFO and the system maximum
priority H (the value returned by sched_get_priority_max(SCHED_FIFO)) in a process with
scheduling policy SCHED_RR and system minimum priority L (the value returned by
sched_get_priority_min(SCHED_RR)) shall be subject to timeslicing and to preemption by
any thread with an effective priority higher than L.

Associated with each policy is a priority range. Each policy definition shall specify the minimum
priority range for that policy. The priority ranges for each policy may but need not overlap the
priority ranges of other policies.

A conforming implementation shall select the thread that is defined as being at the head of the

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 501

17216

17217

17218

17219

17220

17221

17222

17223

17224

17225

17226

17227

17228

17229

17230

17231

17232

17233

17234

17235

17236

17237

17238

17239

17240

17241

17242

17243

17244

17245

17246

17247

17248

17249

17250

17251

17252

17253

17254

17255

17256

17257

17258

17259

17260

17261

Realtime General Information

highest priority non-empty thread list to become a running thread, regardless of its associated
policy. This thread is then removed from its thread list.

Four scheduling policies are specifically required. Other implementation-defined scheduling
policies may be defined. The following symbols are defined in the Base Definitions volume of
POSIX.1-2008, <sched.h>:

SCHED_FIFO First in, first out (FIFO) scheduling policy.

SCHED_RR Round robin scheduling policy.

SS SCHED_SPORADIC Sporadic server scheduling policy.

SCHED_OTHER Another scheduling policy.

The values of these symbols shall be distinct.

SCHED_FIFO

Conforming implementations shall include a scheduling policy called the FIFO scheduling
policy.

Threads scheduled under this policy are chosen from a thread list that is ordered by the time its
threads have been on the list without being executed; generally, the head of the list is the thread
that has been on the list the longest time, and the tail is the thread that has been on the list the
shortest time.

Under the SCHED_FIFO policy, the modification of the definitional thread lists is as follows:

1. When a running thread becomes a preempted thread, it becomes the head of the thread
list for its priority.

2. When a blocked thread becomes a runnable thread, it becomes the tail of the thread list
for its priority.

3. When a running thread calls the sched_setscheduler() function, the process specified in the
function call is modified to the specified policy and the priority specified by the param
argument.

4. When a running thread calls the sched_setparam() function, the priority of the process
specified in the function call is modified to the priority specified by the param argument.

5. When a running thread calls the pthread_setschedparam() function, the thread specified in
the function call is modified to the specified policy and the priority specified by the param
argument.

6. When a running thread calls the pthread_setschedprio() function, the thread specified in the
function call is modified to the priority specified by the prio argument.

7. If a thread whose policy or priority has been modified other than by pthread_setschedprio()
is a running thread or is runnable, it then becomes the tail of the thread list for its new
priority.

8. If a thread whose priority has been modified by pthread_setschedprio() is a running thread
or is runnable, the effect on its position in the thread list depends on the direction of the
modification, as follows:

a. If the priority is raised, the thread becomes the tail of the thread list.

b. If the priority is unchanged, the thread does not change position in the thread list.

502 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

17262

17263

17264

17265

17266

17267

17268

17269

17270

17271

17272

17273

17274

17275

17276

17277

17278

17279

17280

17281

17282

17283

17284

17285

17286

17287

17288

17289

17290

17291

17292

17293

17294

17295

17296

17297

17298

17299

17300

17301

General Information Realtime

c. If the priority is lowered, the thread becomes the head of the thread list.

9. When a running thread issues the sched_yield() function, the thread becomes the tail of
the thread list for its priority.

10. At no other time is the position of a thread with this scheduling policy within the thread
lists affected.

For this policy, valid priorities shall be within the range returned by the sched_get_priority_max()
and sched_get_priority_min() functions when SCHED_FIFO is provided as the parameter.
Conforming implementations shall provide a priority range of at least 32 priorities for this
policy.

SCHED_RR

Conforming implementations shall include a scheduling policy called the ‘‘round robin’’
scheduling policy. This policy shall be identical to the SCHED_FIFO policy with the additional
condition that when the implementation detects that a running thread has been executing as a
running thread for a time period of the length returned by the sched_rr_get_interval() function or
longer, the thread shall become the tail of its thread list and the head of that thread list shall be
removed and made a running thread.

The effect of this policy is to ensure that if there are multiple SCHED_RR threads at the same
priority, one of them does not monopolize the processor. An application should not rely only on
the use of SCHED_RR to ensure application progress among multiple threads if the application
includes threads using the SCHED_FIFO policy at the same or higher priority levels or
SCHED_RR threads at a higher priority level.

A thread under this policy that is preempted and subsequently resumes execution as a running
thread completes the unexpired portion of its round robin interval time period.

For this policy, valid priorities shall be within the range returned by the sched_get_priority_max()
and sched_get_priority_min() functions when SCHED_RR is provided as the parameter.
Conforming implementations shall provide a priority range of at least 32 priorities for this
policy.

SCHED_SPORADIC

SS|TSP The functionality described in this section shall be provided on implementations that support
the Process Sporadic Server or Thread Sporadic Server options (and the rest of this section is not
further shaded for these options).

If _POSIX_SPORADIC_SERVER or _POSIX_THREAD_SPORADIC_SERVER is defined, the
implementation shall include a scheduling policy identified by the value SCHED_SPORADIC.

The sporadic server policy is based primarily on two time parameters: the replenishment period
and the available execution capacity. The replenishment period is given by the
sched_ss_repl_period member of the sched_param structure. The available execution capacity is
initialized to the value given by the sched_ss_init_budget member of the same parameter. The
sporadic server policy is identical to the SCHED_FIFO policy with some additional conditions
that cause the thread’s assigned priority to be switched between the values specified by the
sched_priority and sched_ss_low_priority members of the sched_param structure.

The priority assigned to a thread using the sporadic server scheduling policy is determined in
the following manner: if the available execution capacity is greater than zero and the number of
pending replenishment operations is strictly less than sched_ss_max_repl, the thread is assigned
the priority specified by sched_priority; otherwise, the assigned priority shall be
sched_ss_low_priority. If the value of sched_priority is less than or equal to the value of

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 503

17302

17303

17304

17305

17306

17307

17308

17309

17310

17311

17312

17313

17314

17315

17316

17317

17318

17319

17320

17321

17322

17323

17324

17325

17326

17327

17328

17329

17330

17331

17332

17333

17334

17335

17336

17337

17338

17339

17340

17341

17342

17343

17344

17345

17346

Realtime General Information

sched_ss_low_priority, the results are undefined. When active, the thread shall belong to the
thread list corresponding to its assigned priority level, according to the mentioned priority
assignment. The modification of the available execution capacity and, consequently of the
assigned priority, is done as follows:

1. When the thread at the head of the sched_priority list becomes a running thread, its
execution time shall be limited to at most its available execution capacity, plus the
resolution of the execution time clock used for this scheduling policy. This resolution shall
be implementation-defined.

2. Each time the thread is inserted at the tail of the list associated with sched_priority—
because as a blocked thread it became runnable with priority sched_priority or because a
replenishment operation was performed—the time at which this operation is done is
posted as the activation_time.

3. When the running thread with assigned priority equal to sched_priority becomes a
preempted thread, it becomes the head of the thread list for its priority, and the execution
time consumed is subtracted from the available execution capacity. If the available
execution capacity would become negative by this operation, it shall be set to zero.

4. When the running thread with assigned priority equal to sched_priority becomes a blocked
thread, the execution time consumed is subtracted from the available execution capacity,
and a replenishment operation is scheduled, as described in 6 and 7. If the available
execution capacity would become negative by this operation, it shall be set to zero.

5. When the running thread with assigned priority equal to sched_priority reaches the limit
imposed on its execution time, it becomes the tail of the thread list for
sched_ss_low_priority, the execution time consumed is subtracted from the available
execution capacity (which becomes zero), and a replenishment operation is scheduled, as
described in 6 and 7.

6. Each time a replenishment operation is scheduled, the amount of execution capacity to be
replenished, replenish_amount, is set equal to the execution time consumed by the thread
since the activation_time. The replenishment is scheduled to occur at activation_time plus
sched_ss_repl_period. If the scheduled time obtained is before the current time, the
replenishment operation is carried out immediately. Several replenishment operations
may be pending at the same time, each of which will be serviced at its respective
scheduled time. With the above rules, the number of replenishment operations
simultaneously pending for a given thread that is scheduled under the sporadic server
policy shall not be greater than sched_ss_max_repl.

7. A replenishment operation consists of adding the corresponding replenish_amount to the
available execution capacity at the scheduled time. If, as a consequence of this operation,
the execution capacity would become larger than sched_ss_initial_budget, it shall be
rounded down to a value equal to sched_ss_initial_budget. Additionally, if the thread was
runnable or running, and had assigned priority equal to sched_ss_low_priority, then it
becomes the tail of the thread list for sched_priority.

Execution time is defined in XBD Section 3.118 (on page 52).

For this policy, changing the value of a CPU-time clock via clock_settime() shall have no effect on
its behavior.

For this policy, valid priorities shall be within the range returned by the sched_get_priority_min()
and sched_get_priority_max() functions when SCHED_SPORADIC is provided as the parameter.
Conforming implementations shall provide a priority range of at least 32 distinct priorities for
this policy.

504 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

17347

17348

17349

17350

17351

17352

17353

17354

17355

17356

17357

17358

17359

17360

17361

17362

17363

17364

17365

17366

17367

17368

17369

17370

17371

17372

17373

17374

17375

17376

17377

17378

17379

17380

17381

17382

17383

17384

17385

17386

17387

17388

17389

17390

17391

17392

17393

General Information Realtime

If the scheduling policy of the target process is either SCHED_FIFO or SCHED_RR, the
sched_ss_low_priority, sched_ss_repl_period, and sched_ss_init budget members of the param
argument shall have no effect on the scheduling behavior. If the scheduling policy of this process
is not SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC, the effects of these members are
implementation-defined; this case includes the SCHED_OTHER policy.

SCHED_OTHER

Conforming implementations shall include one scheduling policy identified as SCHED_OTHER
(which may execute identically with either the FIFO or round robin scheduling policy). The
effect of scheduling threads with the SCHED_OTHER policy in a system in which other threads

SS are executing under SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC is implementation-
defined.

This policy is defined to allow strictly conforming applications to be able to indicate in a
portable manner that they no longer need a realtime scheduling policy.

For threads executing under this policy, the implementation shall use only priorities within the
range returned by the sched_get_priority_max() and sched_get_priority_min() functions when
SCHED_OTHER is provided as the parameter.

2.8.5 Clocks and Timers

The <time.h> header defines the types and manifest constants used by the timing facility.

Time Value Specification Structures

Many of the timing facility functions accept or return time value specifications. A time value
structure timespec specifies a single time value and includes at least the following members:

Member Type Member Name Description

time_t tv_sec Seconds.
long tv_nsec Nanoseconds.

The tv_nsec member is only valid if greater than or equal to zero, and less than the number of
nanoseconds in a second (1 000 million). The time interval described by this structure is (tv_sec *
109 + tv_nsec) nanoseconds.

A time value structure itimerspec specifies an initial timer value and a repetition interval for use
by the per-process timer functions. This structure includes at least the following members:

Member Type Member Name Description

struct timespec it_interval Timer period.
struct timespec it_value Timer expiration.

If the value described by it_value is non-zero, it indicates the time to or time of the next timer
expiration (for relative and absolute timer values, respectively). If the value described by it_value
is zero, the timer shall be disarmed.

If the value described by it_interval is non-zero, it specifies an interval which shall be used in
reloading the timer when it expires; that is, a periodic timer is specified. If the value described
by it_interval is zero, the timer is disarmed after its next expiration; that is, a one-shot timer is
specified.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 505

17394

17395

17396

17397

17398

17399

17400

17401

17402

17403

17404

17405

17406

17407

17408

17409

17410

17411

17412

17413

17414

17415

17416

17417

17418

17419

17420

17421

17422

17423

17424

17425

17426

17427

17428

17429

17430

17431

17432

Realtime General Information

Timer Event Notification Control Block

Per-process timers may be created that notify the process of timer expirations by queuing a
realtime extended signal. The sigevent structure, defined in the Base Definitions volume of
POSIX.1-2008, <signal.h>, is used in creating such a timer. The sigevent structure contains the
signal number and an application-specific data value which shall be used when notifying the
calling process of timer expiration events.

Manifest Constants

The following constants are defined in the Base Definitions volume of POSIX.1-2008, <time.h>:

CLOCK_REALTIME The identifier for the system-wide realtime clock.

TIMER_ABSTIME Flag indicating time is absolute with respect to the clock associated
with a timer.

MON CLOCK_MONOTONIC The identifier for the system-wide monotonic clock, which is defined
as a clock whose value cannot be set via clock_settime() and which
cannot have backward clock jumps. The maximum possible clock
jump is implementation-defined.

MON The maximum allowable resolution for CLOCK_REALTIME and CLOCK_MONOTONIC clocks
and all time services based on these clocks is represented by {_POSIX_CLOCKRES_MIN} and
shall be defined as 20 ms (1/50 of a second). Implementations may support smaller values of
resolution for these clocks to provide finer granularity time bases. The actual resolution
supported by an implementation for a specific clock is obtained using the clock_getres() function.
If the actual resolution supported for a time service based on one of these clocks differs from the
resolution supported for that clock, the implementation shall document this difference.

MON The minimum allowable maximum value for CLOCK_REALTIME and CLOCK_MONOTONIC
clocks and all absolute time services based on them is the same as that defined by the ISO C
standard for the time_t type. If the maximum value supported by a time service based on one of
these clocks differs from the maximum value supported by that clock, the implementation shall
document this difference.

Execution Time Monitoring

CPT If _POSIX_CPUTIME is defined, process CPU-time clocks shall be supported in addition to the
clocks described in Manifest Constants.

TCT If _POSIX_THREAD_CPUTIME is defined, thread CPU-time clocks shall be supported.

CPT|TCT CPU-time clocks measure execution or CPU time, which is defined in XBD Section 3.118 (on
page 52). The mechanism used to measure execution time is described in XBD Section 4.10 (on
page 110).

CPT If _POSIX_CPUTIME is defined, the following constant of the type clockid_t is defined in
<time.h>:

CLOCK_PROCESS_CPUTIME_ID
When this value of the type clockid_t is used in a clock() or timer*() function call, it is
interpreted as the identifier of the CPU-time clock associated with the process making the
function call.

TCT If _POSIX_THREAD_CPUTIME is defined, the following constant of the type clockid_t is
defined in <time.h>:

506 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

17433

17434

17435

17436

17437

17438

17439

17440

17441

17442

17443

17444

17445

17446

17447

17448

17449

17450

17451

17452

17453

17454

17455

17456

17457

17458

17459

17460

17461

17462

17463

17464

17465

17466

17467

17468

17469

17470

17471

17472

17473

17474

General Information Realtime

CLOCK_THREAD_CPUTIME_ID
When this value of the type clockid_t is used in a clock() or timer*() function call, it is
interpreted as the identifier of the CPU-time clock associated with the thread making the
function call.

2.9 Threads

This section defines functionality to support multiple flows of control, called ‘‘threads’’, within a
process. For the definition of threads, see XBD Section 3.396 (on page 97).

The specific functional areas covered by threads and their scope include:

• Thread management: the creation, control, and termination of multiple flows of control in
the same process under the assumption of a common shared address space

• Synchronization primitives optimized for tightly coupled operation of multiple control
flows in a common, shared address space

2.9.1 Thread-Safety

All functions defined by this volume of POSIX.1-2008 shall be thread-safe, except that the
following functions7 need not be thread-safe.

asctime()
basename()
catgets()
crypt()
ctime()
dbm_clearerr()
dbm_close()
dbm_delete()
dbm_error()
dbm_fetch()
dbm_firstkey()
dbm_nextkey()
dbm_open()
dbm_store()
dirname()
dlerror()
drand48()
encrypt()
endgrent()
endpwent()
endutxent()

ftw()
getc_unlocked()
getchar_unlocked()
getdate()
getenv()
getgrent()
getgrgid()
getgrnam()
gethostent()
getlogin()
getnetbyaddr()
getnetbyname()
getnetent()
getopt()
getprotobyname()
getprotobynumber()
getprotoent()
getpwent()
getpwnam()
getpwuid()
getservbyname()

getservbyport()
getservent()
getutxent()
getutxid()
getutxline()
gmtime()
hcreate()
hdestroy()
hsearch()
inet_ntoa()
l64a()
lgamma()
lgammaf()
lgammal()
localeconv()
localtime()
lrand48()
mrand48()
nftw()
nl_langinfo()
ptsname()

putc_unlocked()
putchar_unlocked()
putenv()
pututxline()
rand()
readdir()
setenv()
setgrent()
setkey()
setpwent()
setutxent()
strerror()
strsignal()
strtok()
system()
ttyname()
unsetenv()
wcstombs()
wctomb()

The ctermid() and tmpnam() functions need not be thread-safe if passed a NULL argument. The
wcrtomb() and wcsrtombs() functions need not be thread-safe if passed a NULL ps argument.

7. The functions in the table are not shaded to denote applicable options. Individual reference pages should be consulted.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 507

17475

17476

17477

17478

17479

17480

17481

17482

17483

17484

17485

17486

17487

17488

17489

17490

17491

17492

17493

17494

17495

17496

17497

17498

17499

17500

17501

17502

17503

17504

17505

17506

17507

17508

17509

17510

17511

17512

17513

Threads General Information

Implementations shall provide internal synchronization as necessary in order to satisfy this
requirement.

Since multi-threaded applications are not allowed to use the environ variable to access or modify
any environment variable while any other thread is concurrently modifying any environment
variable, any function dependent on any environment variable is not thread-safe if another
thread is modifying the environment; see XSH exec (on page 772).

2.9.2 Thread IDs

Although implementations may have thread IDs that are unique in a system, applications
should only assume that thread IDs are usable and unique within a single process. The effect of
calling any of the functions defined in this volume of POSIX.1-2008 and passing as an argument
the thread ID of a thread from another process is unspecified. The lifetime of a thread ID ends
after the thread terminates if it was created with the detachstate attribute set to
PTHREAD_CREATE_DETACHED or if pthread_detach() or pthread_join() has been called for that
thread. A conforming implementation is free to reuse a thread ID after its lifetime has ended. If
an application attempts to use a thread ID whose lifetime has ended, the behavior is undefined.

If a thread is detached, its thread ID is invalid for use as an argument in a call to pthread_detach()
or pthread_join().

2.9.3 Thread Mutexes

A thread that has blocked shall not prevent any unblocked thread that is eligible to use the same
processing resources from eventually making forward progress in its execution. Eligibility for
processing resources is determined by the scheduling policy.

A thread shall become the owner of a mutex, m, when one of the following occurs:

• It returns successfully from pthread_mutex_lock() with m as the mutex argument.

• It returns successfully from pthread_mutex_trylock() with m as the mutex argument.

• It returns successfully from pthread_mutex_timedlock() with m as the mutex argument.

• It returns (successfully or not) from pthread_cond_wait() with m as the mutex argument
(except as explicitly indicated otherwise for certain errors).

• It returns (successfully or not) from pthread_cond_timedwait() with m as the mutex
argument (except as explicitly indicated otherwise for certain errors).

The thread shall remain the owner of m until one of the following occurs:

• It executes pthread_mutex_unlock() with m as the mutex argument

• It blocks in a call to pthread_cond_wait() with m as the mutex argument.

• It blocks in a call to pthread_cond_timedwait() with m as the mutex argument.

The implementation shall behave as if at all times there is at most one owner of any mutex.

A thread that becomes the owner of a mutex is said to have ‘‘acquired’’ the mutex and the mutex
is said to have become ‘‘locked’’; when a thread gives up ownership of a mutex it is said to have
‘‘released’’ the mutex and the mutex is said to have become ‘‘unlocked’’.

A problem can occur if a process terminates while one of its threads holds a mutex lock.
Depending on the mutex type, it might be possible for another thread to unlock the mutex and
recover the state of the mutex. However, it is difficult to perform this recovery reliably.

508 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

17514

17515

17516

17517

17518

17519

17520

17521

17522

17523

17524

17525

17526

17527

17528

17529

17530

17531

17532

17533

17534

17535

17536

17537

17538

17539

17540

17541

17542

17543

17544

17545

17546

17547

17548

17549

17550

17551

17552

17553

General Information Threads

Robust mutexes provide a means to enable the implementation to notify other threads in the
event of a process terminating while one of its threads holds a mutex lock. The next thread that
acquires the mutex is notified about the termination by the return value [EOWNERDEAD] from
the locking function. The notified thread can then attempt to recover the state protected by the
mutex, and if successful mark the state protected by the mutex as consistent by a call to
pthread_mutex_consistent(). If the notified thread is unable to recover the state, it can declare the
state as not recoverable by a call to pthread_mutex_unlock() without a prior call to
pthread_mutex_consistent().

Whether or not the state protected by a mutex can be recovered is dependent solely on the
application using robust mutexes. The robust mutex support provided in the implementation
provides notification only that a mutex owner has terminated while holding a lock, or that the
state of the mutex is not recoverable.

2.9.4 Thread Scheduling

TPS The functionality described in this section shall be provided on implementations that support
the Thread Execution Scheduling option (and the rest of this section is not further shaded for
this option).

Thread Scheduling Attributes

In support of the scheduling function, threads have attributes which are accessed through the
pthread_attr_t thread creation attributes object.

The contentionscope attribute defines the scheduling contention scope of the thread to be either
PTHREAD_SCOPE_PROCESS or PTHREAD_SCOPE_SYSTEM.

The inheritsched attribute specifies whether a newly created thread is to inherit the scheduling
attributes of the creating thread or to have its scheduling values set according to the other
scheduling attributes in the pthread_attr_t object.

The schedpolicy attribute defines the scheduling policy for the thread. The schedparam attribute
defines the scheduling parameters for the thread. The interaction of threads having different
policies within a process is described as part of the definition of those policies.

If the Thread Execution Scheduling option is defined, and the schedpolicy attribute specifies one
of the priority-based policies defined under this option, the schedparam attribute contains the
scheduling priority of the thread. A conforming implementation ensures that the priority value
in schedparam is in the range associated with the scheduling policy when the thread attributes
object is used to create a thread, or when the scheduling attributes of a thread are dynamically
modified. The meaning of the priority value in schedparam is the same as that of priority.

TSP If _POSIX_THREAD_SPORADIC_SERVER is defined, the schedparam attribute supports four
new members that are used for the sporadic server scheduling policy. These members are
sched_ss_low_priority, sched_ss_repl_period, sched_ss_init_budget, and sched_ss_max_repl. The
meaning of these attributes is the same as in the definitions that appear under Section 2.8.4 (on
page 501).

When a process is created, its single thread has a scheduling policy and associated attributes
equal to the policy and attributes of the process. The default scheduling contention scope value
is implementation-defined. The default values of other scheduling attributes are
implementation-defined.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 509

17554

17555

17556

17557

17558

17559

17560

17561

17562

17563

17564

17565

17566

17567

17568

17569

17570

17571

17572

17573

17574

17575

17576

17577

17578

17579

17580

17581

17582

17583

17584

17585

17586

17587

17588

17589

17590

17591

17592

17593

17594

17595

Threads General Information

Thread Scheduling Contention Scope

The scheduling contention scope of a thread defines the set of threads with which the thread
competes for use of the processing resources. The scheduling operation selects at most one
thread to execute on each processor at any point in time and the thread’s scheduling attributes
(for example, priority), whether under process scheduling contention scope or system scheduling
contention scope, are the parameters used to determine the scheduling decision.

The scheduling contention scope, in the context of scheduling a mixed scope environment,
affects threads as follows:

• A thread created with PTHREAD_SCOPE_SYSTEM scheduling contention scope contends
for resources with all other threads in the same scheduling allocation domain relative to
their system scheduling attributes. The system scheduling attributes of a thread created
with PTHREAD_SCOPE_SYSTEM scheduling contention scope are the scheduling
attributes with which the thread was created. The system scheduling attributes of a thread
created with PTHREAD_SCOPE_PROCESS scheduling contention scope are the
implementation-defined mapping into system attribute space of the scheduling attributes
with which the thread was created.

• Threads created with PTHREAD_SCOPE_PROCESS scheduling contention scope contend
directly with other threads within their process that were created with
PTHREAD_SCOPE_PROCESS scheduling contention scope. The contention is resolved
based on the threads’ scheduling attributes and policies. It is unspecified how such threads
are scheduled relative to threads in other processes or threads with
PTHREAD_SCOPE_SYSTEM scheduling contention scope.

• Conforming implementations shall support the PTHREAD_SCOPE_PROCESS scheduling
contention scope, the PTHREAD_SCOPE_SYSTEM scheduling contention scope, or both.

Scheduling Allocation Domain

Implementations shall support scheduling allocation domains containing one or more
processors. It should be noted that the presence of multiple processors does not automatically
indicate a scheduling allocation domain size greater than one. Conforming implementations on
multi-processors may map all or any subset of the CPUs to one or multiple scheduling allocation
domains, and could define these scheduling allocation domains on a per-thread, per-process, or
per-system basis, depending on the types of applications intended to be supported by the
implementation. The scheduling allocation domain is independent of scheduling contention
scope, as the scheduling contention scope merely defines the set of threads with which a thread
contends for processor resources, while scheduling allocation domain defines the set of
processors for which it contends. The semantics of how this contention is resolved among
threads for processors is determined by the scheduling policies of the threads.

The choice of scheduling allocation domain size and the level of application control over
scheduling allocation domains is implementation-defined. Conforming implementations may
change the size of scheduling allocation domains and the binding of threads to scheduling
allocation domains at any time.

For application threads with scheduling allocation domains of size equal to one, the scheduling
rules defined for SCHED_FIFO and SCHED_RR shall be used; see Scheduling Policies (on page
501). All threads with system scheduling contention scope, regardless of the processes in which
they reside, compete for the processor according to their priorities. Threads with process
scheduling contention scope compete only with other threads with process scheduling
contention scope within their process.

For application threads with scheduling allocation domains of size greater than one, the rules

510 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

17596

17597

17598

17599

17600

17601

17602

17603

17604

17605

17606

17607

17608

17609

17610

17611

17612

17613

17614

17615

17616

17617

17618

17619

17620

17621

17622

17623

17624

17625

17626

17627

17628

17629

17630

17631

17632

17633

17634

17635

17636

17637

17638

17639

17640

17641

17642

General Information Threads

TSP defined for SCHED_FIFO, SCHED_RR, and SCHED_SPORADIC shall be used in an
implementation-defined manner. Each thread with system scheduling contention scope
competes for the processors in its scheduling allocation domain in an implementation-defined
manner according to its priority. Threads with process scheduling contention scope are
scheduled relative to other threads within the same scheduling contention scope in the process.

TSP If _POSIX_THREAD_SPORADIC_SERVER is defined, the rules defined for SCHED_SPORADIC
in Scheduling Policies (on page 501) shall be used in an implementation-defined manner for
application threads whose scheduling allocation domain size is greater than one.

Scheduling Documentation

If _POSIX_PRIORITY_SCHEDULING is defined, then any scheduling policies beyond
TSP SCHED_OTHER, SCHED_FIFO, SCHED_RR, and SCHED_SPORADIC, as well as the effects of

the scheduling policies indicated by these other values, and the attributes required in order to
support such a policy, are implementation-defined. Furthermore, the implementation shall
document the effect of all processor scheduling allocation domain values supported for these
policies.

2.9.5 Thread Cancellation

The thread cancellation mechanism allows a thread to terminate the execution of any other
thread in the process in a controlled manner. The target thread (that is, the one that is being
canceled) is allowed to hold cancellation requests pending in a number of ways and to perform
application-specific cleanup processing when the notice of cancellation is acted upon.

Cancellation is controlled by the cancellation control functions. Each thread maintains its own
cancelability state. Cancellation may only occur at cancellation points or when the thread is
asynchronously cancelable.

The thread cancellation mechanism described in this section depends upon programs having set
deferred cancelability state, which is specified as the default. Applications shall also carefully
follow static lexical scoping rules in their execution behavior. For example, use of setjmp(),
return, goto, and so on, to leave user-defined cancellation scopes without doing the necessary
scope pop operation results in undefined behavior.

Use of asynchronous cancelability while holding resources which potentially need to be released
may result in resource loss. Similarly, cancellation scopes may only be safely manipulated
(pushed and popped) when the thread is in the deferred or disabled cancelability states.

2.9.5.1 Cancelability States

The cancelability state of a thread determines the action taken upon receipt of a cancellation
request. The thread may control cancellation in a number of ways.

Each thread maintains its own cancelability state, which may be encoded in two bits:

1. Cancelability-Enable: When cancelability is PTHREAD_CANCEL_DISABLE (as defined
in the Base Definitions volume of POSIX.1-2008, <pthread.h>), cancellation requests
against the target thread are held pending. By default, cancelability is set to
PTHREAD_CANCEL_ENABLE (as defined in <pthread.h>).

2. Cancelability Type: When cancelability is enabled and the cancelability type is
PTHREAD_CANCEL_ASYNCHRONOUS (as defined in <pthread.h>), new or pending
cancellation requests may be acted upon at any time. When cancelability is enabled and
the cancelability type is PTHREAD_CANCEL_DEFERRED (as defined in <pthread.h>),

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 511

17643

17644

17645

17646

17647

17648

17649

17650

17651

17652

17653

17654

17655

17656

17657

17658

17659

17660

17661

17662

17663

17664

17665

17666

17667

17668

17669

17670

17671

17672

17673

17674

17675

17676

17677

17678

17679

17680

17681

17682

17683

17684

17685

Threads General Information

cancellation requests are held pending until a cancellation point (see below) is reached. If
cancelability is disabled, the setting of the cancelability type has no immediate effect as all
cancellation requests are held pending; however, once cancelability is enabled again the
new type is in effect. The cancelability type is PTHREAD_CANCEL_DEFERRED in all
newly created threads including the thread in which main() was first invoked.

2.9.5.2 Cancellation Points

Cancellation points shall occur when a thread is executing the following functions:

accept()
aio_suspend()
clock_nanosleep()
close()
connect()
creat()
fcntl()†
fdatasync()
fsync()
getmsg()
getpmsg()
lockf()††
mq_receive()
mq_send()
mq_timedreceive()
mq_timedsend()
msgrcv()
msgsnd()
msync()

nanosleep()
open()
openat()
pause()
poll()
pread()
pselect()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_join()
pthread_testcancel()
putmsg()
putpmsg()
pwrite()
read()
readv()
recv()
recvfrom()
recvmsg()

select()
sem_timedwait()
sem_wait()
send()
sendmsg()
sendto()
sigsuspend()
sigtimedwait()
sigwait()
sigwaitinfo()
sleep()
system()
tcdrain()
wait()
waitid()
waitpid()
write()
writev()

† When the cmd argument is F_SETLKW.

†† When the function argument is F_LOCK.

512 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

17686

17687

17688

17689

17690

17691

17692

17693

17694

17695

17696

17697

17698

17699

17700

17701

17702

17703

17704

17705

17706

17707

17708

17709

17710

17711

17712

17713

General Information Threads

A cancellation point may also occur when a thread is executing the following functions:

access()
asctime()
asctime_r()
catclose()
catgets()
catopen()
chmod()
chown()
closedir()
closelog()
ctermid()
ctime()
ctime_r()
dbm_close()
dbm_delete()
dbm_fetch()
dbm_nextkey()
dbm_open()
dbm_store()
dlclose()
dlopen()
dprintf()
endgrent()
endhostent()
endnetent()
endprotoent()
endpwent()
endservent()
endutxent()
faccessat()
fchmod()
fchmodat()
fchown()
fchownat()
fclose()
fcntl()†
fflush()
fgetc()
fgetpos()
fgets()
fgetwc()
fgetws()
fmtmsg()
fopen()
fpathconf()

fprintf()
fputc()
fputs()
fputwc()
fputws()
fread()
freopen()
fscanf()
fseek()
fseeko()
fsetpos()
fstat()
fstatat()
ftell()
ftello()
ftw()
futimens()
fwprintf()
fwrite()
fwscanf()
getaddrinfo()
getc()
getc_unlocked()
getchar()
getchar_unlocked()
getcwd()
getdate()
getdelim()
getgrent()
getgrgid()
getgrgid_r()
getgrnam()
getgrnam_r()
gethostent()
gethostid()
gethostname()
getline()
getlogin()
getlogin_r()
getnameinfo()
getnetbyaddr()
getnetbyname()
getnetent()
getopt()††
getprotobyname()

getprotobynumber()
getprotoent()
getpwent()
getpwnam()
getpwnam_r()
getpwuid()
getpwuid_r()
gets()
getservbyname()
getservbyport()
getservent()
getutxent()
getutxid()
getutxline()
getwc()
getwchar()
glob()
iconv_close()
iconv_open()
ioctl()
link()
linkat()
lio_listio()
localtime()
localtime_r()
lockf()
lseek()
lstat()
mkdir()
mkdirat()
mkdtemp()
mkfifo()
mkfifoat()
mknod()
mknodat()
mkstemp()
mktime()
nftw()
opendir()
openlog()
pathconf()
pclose()
perror()
popen()
posix_fadvise()

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 513

17714

17715

17716

17717

17718

17719

17720

17721

17722

17723

17724

17725

17726

17727

17728

17729

17730

17731

17732

17733

17734

17735

17736

17737

17738

17739

17740

17741

17742

17743

17744

17745

17746

17747

17748

17749

17750

17751

17752

17753

17754

17755

17756

17757

17758

17759

Threads General Information

posix_fallocate()
posix_madvise()
posix_openpt()
posix_spawn()
posix_spawnp()
posix_trace_clear()
posix_trace_close()
posix_trace_create()
posix_trace_create_withlog()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()
posix_trace_flush()
posix_trace_get_attr()
posix_trace_get_filter()
posix_trace_get_status()
posix_trace_getnext_event()
posix_trace_open()
posix_trace_rewind()
posix_trace_set_filter()
posix_trace_shutdown()
posix_trace_timedgetnext_event()
posix_typed_mem_open()
printf()
psiginfo()
psignal()
pthread_rwlock_rdlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()
pthread_rwlock_wrlock()

putc()
putc_unlocked()
putchar()
putchar_unlocked()
puts()
pututxline()
putwc()
putwchar()
readdir()
readdir_r()
readlink()
readlinkat()
remove()
rename()
renameat()
rewind()
rewinddir()
scandir()
scanf()
seekdir()
semop()
setgrent()
sethostent()
setnetent()
setprotoent()
setpwent()
setservent()
setutxent()
sigpause()
stat()

strerror()
strerror_r()
strftime()
symlink()
symlinkat()
sync()
syslog()
tmpfile()
tmpnam()
ttyname()
ttyname_r()
tzset()
ungetc()
ungetwc()
unlink()
unlinkat()
utime()
utimensat()
utimes()
vdprintf()
vfprintf()
vfwprintf()
vprintf()
vwprintf()
wcsftime()
wordexp()
wprintf()
wscanf()

An implementation shall not introduce cancellation points into any other functions specified in
this volume of POSIX.1-2008.

The side-effects of acting upon a cancellation request while suspended during a call of a function
are the same as the side-effects that may be seen in a single-threaded program when a call to a
function is interrupted by a signal and the given function returns [EINTR]. Any such side-
effects occur before any cancellation cleanup handlers are called.

Whenever a thread has cancelability enabled and a cancellation request has been made with that
thread as the target, and the thread then calls any function that is a cancellation point (such as
pthread_testcancel() or read()), the cancellation request shall be acted upon before the function
returns. If a thread has cancelability enabled and a cancellation request is made with the thread
as a target while the thread is suspended at a cancellation point, the thread shall be awakened
and the cancellation request shall be acted upon. It is unspecified whether the cancellation
request is acted upon or whether the cancellation request remains pending and the thread
resumes normal execution if:

• The thread is suspended at a cancellation point and the event for which it is waiting occurs

† For any value of the cmd argument.

†† If opterr is non-zero.

514 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

17760

17761

17762

17763

17764

17765

17766

17767

17768

17769

17770

17771

17772

17773

17774

17775

17776

17777

17778

17779

17780

17781

17782

17783

17784

17785

17786

17787

17788

17789

17790

17791

17792

17793

17794

17795

17796

17797

17798

17799

17800

17801

17802

17803

17804

17805

17806

General Information Threads

• A specified timeout expired

before the cancellation request is acted upon.

2.9.5.3 Thread Cancellation Cleanup Handlers

Each thread maintains a list of cancellation cleanup handlers. The programmer uses the
pthread_cleanup_push() and pthread_cleanup_pop() functions to place routines on and remove
routines from this list.

When a cancellation request is acted upon, or when a thread calls pthread_exit(), the thread first
disables cancellation by setting its cancelability state to PTHREAD_CANCEL_DISABLE and its
cancelability type to PTHREAD_CANCEL_DEFERRED. The cancelability state shall remain set
to PTHREAD_CANCEL_DISABLE until the thread has terminated. The behavior is undefined if
a cancellation cleanup handler or thread-specific data destructor routine changes the
cancelability state to PTHREAD_CANCEL_ENABLE.

The routines in the thread’s list of cancellation cleanup handlers are invoked one by one in LIFO
sequence; that is, the last routine pushed onto the list (Last In) is the first to be invoked (First
Out). When the cancellation cleanup handler for a scope is invoked, the storage for that scope
remains valid. If the last cancellation cleanup handler returns, thread-specific data destructors (if
any) associated with thread-specific data keys for which the thread has non-NULL values will
be run, in unspecified order, as described for pthread_key_create().

After all cancellation cleanup handlers and thread-specific data destructors have returned,
thread execution is terminated. If the thread has terminated because of a call to pthread_exit(),
the value_ptr argument is made available to any threads joining with the target. If the thread has
terminated by acting on a cancellation request, a status of PTHREAD_CANCELED is made
available to any threads joining with the target. The symbolic constant PTHREAD_CANCELED
expands to a constant expression of type (void *) whose value matches no pointer to an object in
memory nor the value NULL.

A side-effect of acting upon a cancellation request while in a condition variable wait is that the
mutex is re-acquired before calling the first cancellation cleanup handler. In addition, the thread
is no longer considered to be waiting for the condition and the thread shall not have consumed
any pending condition signals on the condition.

A cancellation cleanup handler cannot exit via longjmp() or siglongjmp().

2.9.5.4 Async-Cancel Safety

The pthread_cancel(), pthread_setcancelstate(), and pthread_setcanceltype() functions are defined to
be async-cancel safe.

No other functions in this volume of POSIX.1-2008 are required to be async-cancel-safe.

2.9.6 Thread Read-Write Locks

Multiple readers, single writer (read-write) locks allow many threads to have simultaneous
read-only access to data while allowing only one thread to have exclusive write access at any
given time. They are typically used to protect data that is read more frequently than it is
changed.

One or more readers acquire read access to the resource by performing a read lock operation on
the associated read-write lock. A writer acquires exclusive write access by performing a write
lock operation. Basically, all readers exclude any writers and a writer excludes all readers and

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 515

17807

17808

17809

17810

17811

17812

17813

17814

17815

17816

17817

17818

17819

17820

17821

17822

17823

17824

17825

17826

17827

17828

17829

17830

17831

17832

17833

17834

17835

17836

17837

17838

17839

17840

17841

17842

17843

17844

17845

17846

17847

17848

Threads General Information

any other writers.

A thread that has blocked on a read-write lock (for example, has not yet returned from a
pthread_rwlock_rdlock() or pthread_rwlock_wrlock() call) shall not prevent any unblocked thread
that is eligible to use the same processing resources from eventually making forward progress in
its execution. Eligibility for processing resources shall be determined by the scheduling policy.

Read-write locks can be used to synchronize threads in the current process and other processes if
they are allocated in memory that is writable and shared among the cooperating processes and
have been initialized for this behavior.

2.9.7 Thread Interactions with Regular File Operations

All of the following functions shall be atomic with respect to each other in the effects specified in
POSIX.1-2008 when they operate on regular files or symbolic links:

chmod()
chown()
close()
creat()
dup2()
fchmod()
fchmodat()
fchown()

fchownat()
fcntl()
fstat()
fstatat()
ftruncate()
lchown()
link()
linkat()

lseek()
lstat()
open()
openat()
pread()
read()
readlink()
readlinkat()

readv()
pwrite()
rename()
renameat()
stat()
symlink()
symlinkat()
truncate()

unlink()
unlinkat()
utime()
utimensat()
utimes()
write()
writev()

If two threads each call one of these functions, each call shall either see all of the specified effects
of the other call, or none of them.

2.9.8 Use of Application-Managed Thread Stacks

An ‘‘application-managed thread stack’’ is a region of memory allocated by the application—for
example, memory returned by the malloc() or mmap() functions—and designated as a stack
through the act of passing the address and size of the stack, respectively, as the stackaddr and
stacksize arguments to pthread_attr_setstack(). Application-managed stacks allow the application
to precisely control the placement and size of a stack.

The application grants to the implementation permanent ownership of and control over the
application-managed stack when the attributes object in which the stack or stackaddr attribute has
been set is used, either by presenting that attribute’s object as the attr argument in a call to
pthread_create() that completes successfully, or by storing a pointer to the attributes object in the
sigev_notify_attributes member of a struct sigevent and passing that struct sigevent to a function
accepting such argument that completes successfully. The application may thereafter utilize the
memory within the stack only within the normal context of stack usage within or properly
synchronized with a thread that has been scheduled by the implementation with stack pointer
value(s) that are within the range of that stack. In particular, the region of memory cannot be
freed, nor can it be later specified as the stack for another thread.

When specifying an attributes object with an application-managed stack through the
sigev_notify_attributes member of a struct sigevent, the results are undefined if the requested
signal is generated multiple times (as for a repeating timer).

Until an attributes object in which the stack or stackaddr attribute has been set is used, the
application retains ownership of and control over the memory allocated to the stack. It may free
or reuse the memory as long as it either deletes the attributes object, or before using the

516 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

17849

17850

17851

17852

17853

17854

17855

17856

17857

17858

17859

17860

17861

17862

17863

17864

17865

17866

17867

17868

17869

17870

17871

17872

17873

17874

17875

17876

17877

17878

17879

17880

17881

17882

17883

17884

17885

17886

17887

17888

17889

17890

17891

General Information Threads

attributes object replaces the stack by making an additional call to pthread_attr_setstack(), that
was used originally to designate the stack. There is no mechanism to retract the reference to an
application-managed stack by an existing attributes object.

Once an attributes object with an application-managed stack has been used, that attributes object
cannot be used again by a subsequent call to pthread_create() or any function accepting a struct
sigevent with sigev_notify_attributes containing a pointer to the attributes object, without
designating an unused application-managed stack by making an additional call to
pthread_attr_setstack().

2.10 Sockets

A socket is an endpoint for communication using the facilities described in this section. A socket
is created with a specific socket type, described in Section 2.10.6 (on page 518), and is associated
with a specific protocol, detailed in Section 2.10.3. A socket is accessed via a file descriptor
obtained when the socket is created.

2.10.1 Address Families

All network protocols are associated with a specific address family. An address family provides
basic services to the protocol implementation to allow it to function within a specific network
environment. These services may include packet fragmentation and reassembly, routing,
addressing, and basic transport. An address family is normally comprised of a number of
protocols, one per socket type. Each protocol is characterized by an abstract socket type. It is not
required that an address family support all socket types. An address family may contain
multiple protocols supporting the same socket abstraction.

Section 2.10.17 (on page 525), Section 2.10.19 (on page 526), and Section 2.10.20 (on page 526),
respectively, describe the use of sockets for local UNIX connections, for Internet protocols based
on IPv4, and for Internet protocols based on IPv6.

2.10.2 Addressing

An address family defines the format of a socket address. All network addresses are described
using a general structure, called a sockaddr, as defined in the Base Definitions volume of
POSIX.1-2008, <sys/socket.h>. However, each address family imposes finer and more specific
structure, generally defining a structure with fields specific to the address family. The field
sa_family in the sockaddr structure contains the address family identifier, specifying the format
of the sa_data area. The size of the sa_data area is unspecified.

2.10.3 Protocols

A protocol supports one of the socket abstractions detailed in Section 2.10.6 (on page 518).
Selecting a protocol involves specifying the address family, socket type, and protocol number to
the socket() function. Certain semantics of the basic socket abstractions are protocol-specific. All
protocols are expected to support the basic model for their particular socket type, but may, in
addition, provide non-standard facilities or extensions to a mechanism.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 517

17892

17893

17894

17895

17896

17897

17898

17899

17900

17901

17902

17903

17904

17905

17906

17907

17908

17909

17910

17911

17912

17913

17914

17915

17916

17917

17918

17919

17920

17921

17922

17923

17924

17925

17926

17927

17928

Sockets General Information

2.10.4 Routing

Sockets provides packet routing facilities. A routing information database is maintained, which
is used in selecting the appropriate network interface when transmitting packets.

2.10.5 Interfaces

Each network interface in a system corresponds to a path through which messages can be sent
and received. A network interface usually has a hardware device associated with it, though
certain interfaces such as the loopback interface, do not.

2.10.6 Socket Types

A socket is created with a specific type, which defines the communication semantics and which
allows the selection of an appropriate communication protocol. Four types are defined:

RS SOCK_DGRAM, SOCK_RAW, SOCK_SEQPACKET, and SOCK_STREAM. Implementations
may specify additional socket types.

The SOCK_STREAM socket type provides reliable, sequenced, full-duplex octet streams
between the socket and a peer to which the socket is connected. A socket of type
SOCK_STREAM must be in a connected state before any data may be sent or received. Record
boundaries are not maintained; data sent on a stream socket using output operations of one size
may be received using input operations of smaller or larger sizes without loss of data. Data may
be buffered; successful return from an output function does not imply that the data has been
delivered to the peer or even transmitted from the local system. If data cannot be successfully
transmitted within a given time then the connection is considered broken, and subsequent
operations shall fail. A SIGPIPE signal is raised if a thread attempts to send data on a broken
stream (one that is no longer connected), except that the signal is suppressed if the
MSG_NOSIGNAL flag is used in calls to send(), sendto(), and sendmsg(). Support for an out-of-
band data transmission facility is protocol-specific.

The SOCK_SEQPACKET socket type is similar to the SOCK_STREAM type, and is also
connection-oriented. The only difference between these types is that record boundaries are
maintained using the SOCK_SEQPACKET type. A record can be sent using one or more output
operations and received using one or more input operations, but a single operation never
transfers parts of more than one record. Record boundaries are visible to the receiver via the
MSG_EOR flag in the received message flags returned by the recvmsg() function. It is protocol-
specific whether a maximum record size is imposed.

The SOCK_DGRAM socket type supports connectionless data transfer which is not necessarily
acknowledged or reliable. Datagrams may be sent to the address specified (possibly multicast or
broadcast) in each output operation, and incoming datagrams may be received from multiple
sources. The source address of each datagram is available when receiving the datagram. An
application may also pre-specify a peer address, in which case calls to output functions that do
not specify a peer address shall send to the pre-specified peer. If a peer has been specified, only
datagrams from that peer shall be received. A datagram must be sent in a single output
operation, and must be received in a single input operation. The maximum size of a datagram is
protocol-specific; with some protocols, the limit is implementation-defined. Output datagrams
may be buffered within the system; thus, a successful return from an output function does not
guarantee that a datagram is actually sent or received. However, implementations should
attempt to detect any errors possible before the return of an output function, reporting any error
by an unsuccessful return value.

518 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

17929

17930

17931

17932

17933

17934

17935

17936

17937

17938

17939

17940

17941

17942

17943

17944

17945

17946

17947

17948

17949

17950

17951

17952

17953

17954

17955

17956

17957

17958

17959

17960

17961

17962

17963

17964

17965

17966

17967

17968

17969

17970

17971

17972

General Information Sockets

RS The SOCK_RAW socket type is similar to the SOCK_DGRAM type. It differs in that it is
normally used with communication providers that underlie those used for the other socket
types. For this reason, the creation of a socket with type SOCK_RAW shall require appropriate
privileges. The format of datagrams sent and received with this socket type generally include
specific protocol headers, and the formats are protocol-specific and implementation-defined.

2.10.7 Socket I/O Mode

The I/O mode of a socket is described by the O_NONBLOCK file status flag which pertains to
the open file description for the socket. This flag is initially off when a socket is created, but may
be set and cleared by the use of the F_SETFL command of the fcntl() function.

When the O_NONBLOCK flag is set, certain functions that would normally block until they are
complete shall return immediately.

The bind() function initiates an address assignment and shall return without blocking when
O_NONBLOCK is set; if the socket address cannot be assigned immediately, bind() shall return
the [EINPROGRESS] error to indicate that the assignment was initiated successfully, but that it
has not yet completed.

The connect() function initiates a connection and shall return without blocking when
O_NONBLOCK is set; it shall return the error [EINPROGRESS] to indicate that the connection
was initiated successfully, but that it has not yet completed.

Data transfer operations (the read(), write(), send(), and recv() functions) shall complete
immediately, transfer only as much as is available, and then return without blocking, or return
an error indicating that no transfer could be made without blocking.

2.10.8 Socket Owner

The owner of a socket is unset when a socket is created. The owner may be set to a process ID or
process group ID using the F_SETOWN command of the fcntl() function.

2.10.9 Socket Queue Limits

The transmit and receive queue sizes for a socket are set when the socket is created. The default
sizes used are both protocol-specific and implementation-defined. The sizes may be changed
using the setsockopt() function.

2.10.10 Pending Error

Errors may occur asynchronously, and be reported to the socket in response to input from the
network protocol. The socket stores the pending error to be reported to a user of the socket at the
next opportunity. The error is returned in response to a subsequent send(), recv(), or getsockopt()
operation on the socket, and the pending error is then cleared.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 519

17973

17974

17975

17976

17977

17978

17979

17980

17981

17982

17983

17984

17985

17986

17987

17988

17989

17990

17991

17992

17993

17994

17995

17996

17997

17998

17999

18000

18001

18002

18003

18004

18005

Sockets General Information

2.10.11 Socket Receive Queue

A socket has a receive queue that buffers data when it is received by the system until it is
removed by a receive call. Depending on the type of the socket and the communication provider,
the receive queue may also contain ancillary data such as the addressing and other protocol data
associated with the normal data in the queue, and may contain out-of-band or expedited data.
The limit on the queue size includes any normal, out-of-band data, datagram source addresses,
and ancillary data in the queue. The description in this section applies to all sockets, even
though some elements cannot be present in some instances.

The contents of a receive buffer are logically structured as a series of data segments with
associated ancillary data and other information. A data segment may contain normal data or
out-of-band data, but never both. A data segment may complete a record if the protocol
supports records (always true for types SOCK_SEQPACKET and SOCK_DGRAM). A record
may be stored as more than one segment; the complete record might never be present in the
receive buffer at one time, as a portion might already have been returned to the application, and
another portion might not yet have been received from the communications provider. A data
segment may contain ancillary protocol data, which is logically associated with the segment.
Ancillary data is received as if it were queued along with the first normal data octet in the
segment (if any). A segment may contain ancillary data only, with no normal or out-of-band
data. For the purposes of this section, a datagram is considered to be a data segment that
terminates a record, and that includes a source address as a special type of ancillary data. Data
segments are placed into the queue as data is delivered to the socket by the protocol. Normal
data segments are placed at the end of the queue as they are delivered. If a new segment
contains the same type of data as the preceding segment and includes no ancillary data, and if
the preceding segment does not terminate a record, the segments are logically merged into a
single segment.

The receive queue is logically terminated if an end-of-file indication has been received or a
connection has been terminated. A segment shall be considered to be terminated if another
segment follows it in the queue, if the segment completes a record, or if an end-of-file or other
connection termination has been reported. The last segment in the receive queue shall also be
considered to be terminated while the socket has a pending error to be reported.

A receive operation shall never return data or ancillary data from more than one segment.

2.10.12 Socket Out-of-Band Data State

The handling of received out-of-band data is protocol-specific. Out-of-band data may be placed
in the socket receive queue, either at the end of the queue or before all normal data in the queue.
In this case, out-of-band data is returned to an application program by a normal receive call.
Out-of-band data may also be queued separately rather than being placed in the socket receive
queue, in which case it shall be returned only in response to a receive call that requests out-of-
band data. It is protocol-specific whether an out-of-band data mark is placed in the receive
queue to demarcate data preceding the out-of-band data and following the out-of-band data. An
out-of-band data mark is logically an empty data segment that cannot be merged with other
segments in the queue. An out-of-band data mark is never returned in response to an input
operation. The sockatmark() function can be used to test whether an out-of-band data mark is the
first element in the queue. If an out-of-band data mark is the first element in the queue when an
input function is called without the MSG_PEEK option, the mark is removed from the queue
and the following data (if any) is processed as if the mark had not been present.

520 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

18006

18007

18008

18009

18010

18011

18012

18013

18014

18015

18016

18017

18018

18019

18020

18021

18022

18023

18024

18025

18026

18027

18028

18029

18030

18031

18032

18033

18034

18035

18036

18037

18038

18039

18040

18041

18042

18043

18044

18045

18046

18047

18048

18049

18050

General Information Sockets

2.10.13 Connection Indication Queue

Sockets that are used to accept incoming connections maintain a queue of outstanding
connection indications. This queue is a list of connections that are awaiting acceptance by the
application; see listen().

2.10.14 Signals

One category of event at the socket interface is the generation of signals. These signals report
protocol events or process errors relating to the state of the socket. The generation or delivery of
a signal does not change the state of the socket, although the generation of the signal may have
been caused by a state change.

The SIGPIPE signal shall be sent to a thread that attempts to send data on a socket that is no
longer able to send (one that is no longer connected), except that the signal is suppressed if the
MSG_NOSIGNAL flag is used in calls to send(), sendto(), and sendmsg(). Regardless of whether
the generation of the signal is suppressed, the send operation shall fail with the [EPIPE] error.

If a socket has an owner, the SIGURG signal is sent to the owner of the socket when it is notified
of expedited or out-of-band data. The socket state at this time is protocol-dependent, and the
status of the socket is specified in Section 2.10.17 (on page 525), Section 2.10.19 (on page 526),
and Section 2.10.20 (on page 526). Depending on the protocol, the expedited data may or may
not have arrived at the time of signal generation.

2.10.15 Asynchronous Errors

If any of the following conditions occur asynchronously for a socket, the corresponding value
listed below shall become the pending error for the socket:

[ECONNABORTED]
The connection was aborted locally.

[ECONNREFUSED]
For a connection-mode socket attempting a non-blocking connection, the attempt to connect
was forcefully rejected. For a connectionless-mode socket, an attempt to deliver a datagram
was forcefully rejected.

[ECONNRESET]
The peer has aborted the connection.

[EHOSTDOWN]
The destination host has been determined to be down or disconnected.

[EHOSTUNREACH]
The destination host is not reachable.

[EMSGSIZE]
For a connectionless-mode socket, the size of a previously sent datagram prevented
delivery.

[ENETDOWN]
The local network connection is not operational.

[ENETRESET]
The connection was aborted by the network.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 521

18051

18052

18053

18054

18055

18056

18057

18058

18059

18060

18061

18062

18063

18064

18065

18066

18067

18068

18069

18070

18071

18072

18073

18074

18075

18076

18077

18078

18079

18080

18081

18082

18083

18084

18085

18086

18087

18088

18089

18090

Sockets General Information

[ENETUNREACH]
The destination network is not reachable.

2.10.16 Use of Options

There are a number of socket options which either specialize the behavior of a socket or provide
useful information. These options may be set at different protocol levels and are always present
at the uppermost ‘‘socket’’ level.

Socket options are manipulated by two functions, getsockopt() and setsockopt(). These functions
allow an application program to customize the behavior and characteristics of a socket to
provide the desired effect.

All of the options have default values. The type and meaning of these values is defined by the
protocol level to which they apply. Instead of using the default values, an application program
may choose to customize one or more of the options. However, in the bulk of cases, the default
values are sufficient for the application.

Some of the options are used to enable or disable certain behavior within the protocol modules
(for example, turn on debugging) while others may be used to set protocol-specific information
(for example, IP time-to-live on all the application’s outgoing packets). As each of the options is
introduced, its effect on the underlying protocol modules is described.

Table 2-1 shows the value for the socket level.

Table 2-1 Value of Level for Socket Options

Name Description

SOL_SOCKET Options are intended for the sockets level.

Table 2-2 (on page 523) lists those options present at the socket level; that is, when the level
parameter of the getsockopt() or setsockopt() function is SOL_SOCKET, the types of the option
value parameters associated with each option, and a brief synopsis of the meaning of the option
value parameter. Unless otherwise noted, each may be examined with getsockopt() and set with
setsockopt() on all types of socket. Options at other protocol levels vary in format and name.

522 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

18091

18092

18093

18094

18095

18096

18097

18098

18099

18100

18101

18102

18103

18104

18105

18106

18107

18108

18109

18110

18111

18112

18113

18114

18115

18116

General Information Sockets

Table 2-2 Socket-Level Options

Option Parameter Type Parameter Meaning

SO_ACCEPTCONN int Non-zero indicates that socket listening is
enabled (getsockopt() only).

SO_BROADCAST int Non-zero requests permission to transmit
broadcast datagrams (SOCK_DGRAM sockets
only).

SO_DEBUG int Non-zero requests debugging in underlying
protocol modules.

SO_DONTROUTE int Non-zero requests bypass of normal routing;
route based on destination address only.

SO_ERROR int Requests and clears pending error information
on the socket (getsockopt() only).

SO_KEEPALIVE int Non-zero requests periodic transmission of
keepalive messages (protocol-specific).

SO_LINGER struct linger Specify actions to be taken for queued, unsent
data on close(): linger on/off and linger time in
seconds.

SO_OOBINLINE int Non-zero requests that out-of-band data be
placed into normal data input queue as received.

SO_RCVBUF int Size of receive buffer (in bytes).
SO_RCVLOWAT int Minimum amount of data to return to

application for input operations (in bytes).
SO_RCVTIMEO struct timeval Timeout value for a socket receive operation.
SO_REUSEADDR int Non-zero requests reuse of local addresses in

bind() (protocol-specific).
SO_SNDBUF int Size of send buffer (in bytes).
SO_SNDLOWAT int Minimum amount of data to send for output

operations (in bytes).
SO_SNDTIMEO struct timeval Timeout value for a socket send operation.
SO_TYPE int Identify socket type (getsockopt() only).

The SO_ACCEPTCONN option is used only on getsockopt(). When this option is specified,
getsockopt() shall report whether socket listening is enabled for the socket. A value of zero shall
indicate that socket listening is disabled; non-zero that it is enabled. SO_ACCEPTCONN has no
default value.

The SO_BROADCAST option requests permission to send broadcast datagrams on the socket.
Support for SO_BROADCAST is protocol-specific. The default for SO_BROADCAST is that the
ability to send broadcast datagrams on a socket is disabled.

The SO_DEBUG option enables debugging in the underlying protocol modules. This can be
useful for tracing the behavior of the underlying protocol modules during normal system
operation. The semantics of the debug reports are implementation-defined. The default value for
SO_DEBUG is for debugging to be turned off.

The SO_DONTROUTE option requests that outgoing messages bypass the standard routing
facilities. The destination must be on a directly-connected network, and messages are directed to
the appropriate network interface according to the destination address. It is protocol-specific
whether this option has any effect and how the outgoing network interface is chosen. Support
for this option with each protocol is implementation-defined.

The SO_ERROR option is used only on getsockopt(). When this option is specified, getsockopt()

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 523

18117

18118

18119

18120

18121

18122

18123

18124

18125

18126

18127

18128

18129

18130

18131

18132

18133

18134

18135

18136

18137

18138

18139

18140

18141

18142

18143

18144

18145

18146

18147

18148

18149

18150

18151

18152

18153

18154

18155

18156

18157

18158

18159

18160

18161

18162

18163

18164

Sockets General Information

shall return any pending error on the socket and clear the error status. It shall return a value of 0
if there is no pending error. SO_ERROR may be used to check for asynchronous errors on
connected connectionless-mode sockets or for other types of asynchronous errors. SO_ERROR
has no default value.

The SO_KEEPALIVE option enables the periodic transmission of messages on a connected
socket. The behavior of this option is protocol-specific. On a connection-mode socket for which a
connection has been established, if SO_KEEPALIVE is enabled and the connected socket fails to
respond to the keep-alive messages, the connection shall be broken. The default value for
SO_KEEPALIVE is zero, specifying that this capability is turned off.

The SO_LINGER option controls the action of the interface when unsent messages are queued
on a socket and a close() is performed. The details of this option are protocol-specific. If
SO_LINGER is enabled, the system shall block the calling thread during close() until it can
transmit the data or until the end of the interval indicated by the l_linger member, whichever
comes first. If SO_LINGER is not specified, and close() is issued, the system handles the call in a
way that allows the calling thread to continue as quickly as possible. The default value for
SO_LINGER is zero, or off, for the l_onoff element of the option value and zero seconds for the
linger time specified by the l_linger element.

The SO_OOBINLINE option is valid only on protocols that support out-of-band data. The
SO_OOBINLINE option requests that out-of-band data be placed in the normal data input
queue as received; it is then accessible using the read() or recv() functions without the
MSG_OOB flag set. The default for SO_OOBINLINE is off; that is, for out-of-band data not to be
placed in the normal data input queue.

The SO_RCVBUF option requests that the buffer space allocated for receive operations on this
socket be set to the value, in bytes, of the option value. Applications may wish to increase buffer
size for high volume connections, or may decrease buffer size to limit the possible backlog of
incoming data. The default value for the SO_RCVBUF option value is implementation-defined,
and may vary by protocol.

The SO_RCVLOWAT option sets the minimum number of bytes to process for socket input
operations. In general, receive calls block until any (non-zero) amount of data is received, then
return the smaller of the amount available or the amount requested. The default value for
SO_RCVLOWAT is 1, and does not affect the general case. If SO_RCVLOWAT is set to a larger
value, blocking receive calls normally wait until they have received the smaller of the low water
mark value or the requested amount. Receive calls may still return less than the low water mark
if an error occurs, a signal is caught, or the type of data next in the receive queue is different
from that returned (for example, out-of-band data). As mentioned previously, the default value
for SO_RCVLOWAT is 1 byte. It is implementation-defined whether the SO_RCVLOWAT option
can be set.

The SO_RCVTIMEO option is an option to set a timeout value for input operations. It accepts a
timeval structure with the number of seconds and microseconds specifying the limit on how
long to wait for an input operation to complete. If a receive operation has blocked for this much
time without receiving additional data, it shall return with a partial count or errno shall be set to
[EAGAIN] or [EWOULDBLOCK] if no data were received. The default for this option is the
value zero, which indicates that a receive operation will not time out. It is implementation-
defined whether the SO_RCVTIMEO option can be set.

The SO_REUSEADDR option indicates that the rules used in validating addresses supplied in a
bind() should allow reuse of local addresses. Operation of this option is protocol-specific. The
default value for SO_REUSEADDR is off; that is, reuse of local addresses is not permitted.

The SO_SNDBUF option requests that the buffer space allocated for send operations on this
socket be set to the value, in bytes, of the option value. The default value for the SO_SNDBUF

524 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

18165

18166

18167

18168

18169

18170

18171

18172

18173

18174

18175

18176

18177

18178

18179

18180

18181

18182

18183

18184

18185

18186

18187

18188

18189

18190

18191

18192

18193

18194

18195

18196

18197

18198

18199

18200

18201

18202

18203

18204

18205

18206

18207

18208

18209

18210

18211

18212

18213

General Information Sockets

option value is implementation-defined, and may vary by protocol.

The SO_SNDLOWAT option sets the minimum number of bytes to process for socket output
operations. Most output operations process all of the data supplied by the call, delivering data to
the protocol for transmission and blocking as necessary for flow control. Non-blocking output
operations process as much data as permitted subject to flow control without blocking, but
process no data if flow control does not allow the smaller of the send low water mark value or
the entire request to be processed. A select() operation testing the ability to write to a socket shall
return true only if the send low water mark could be processed. The default value for
SO_SNDLOWAT is implementation-defined and protocol-specific. It is implementation-defined
whether the SO_SNDLOWAT option can be set.

The SO_SNDTIMEO option is an option to set a timeout value for the amount of time that an
output function shall block because flow control prevents data from being sent. As noted in
Table 2-2 (on page 523), the option value is a timeval structure with the number of seconds and
microseconds specifying the limit on how long to wait for an output operation to complete. If a
send operation has blocked for this much time, it shall return with a partial count or errno set to
[EAGAIN] or [EWOULDBLOCK] if no data were sent. The default for this option is the value
zero, which indicates that a send operation will not time out. It is implementation-defined
whether the SO_SNDTIMEO option can be set.

The SO_TYPE option is used only on getsockopt(). When this option is specified, getsockopt()
shall return the type of the socket (for example, SOCK_STREAM). This option is useful to
servers that inherit sockets on start-up. SO_TYPE has no default value.

2.10.17 Use of Sockets for Local UNIX Connections

Support for UNIX domain sockets is mandatory.

UNIX domain sockets provide process-to-process communication in a single system.

2.10.17.1 Headers

The symbolic constant AF_UNIX defined in the <sys/socket.h> header is used to identify the
UNIX domain address family. The <sys/un.h> header contains other definitions used in
connection with UNIX domain sockets. See XBD Chapter 13 (on page 219).

The sockaddr_storage structure defined in <sys/socket.h> shall be large enough to
accommodate a sockaddr_un structure (see the <sys/un.h> header defined in XBD Chapter 13,
on page 219) and shall be aligned at an appropriate boundary so that pointers to it can be cast as
pointers to sockaddr_un structures and used to access the fields of those structures without
alignment problems. When a sockaddr_storage structure is cast as a sockaddr_un structure, the
ss_family field maps onto the sun_family field.

2.10.18 Use of Sockets over Internet Protocols

When a socket is created in the Internet family with a protocol value of zero, the implementation
shall use the protocol listed below for the type of socket created.

SOCK_STREAM IPPROTO_TCP.

SOCK_DGRAM IPPROTO_UDP.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 525

18214

18215

18216

18217

18218

18219

18220

18221

18222

18223

18224

18225

18226

18227

18228

18229

18230

18231

18232

18233

18234

18235

18236

18237

18238

18239

18240

18241

18242

18243

18244

18245

18246

18247

18248

18249

18250

18251

18252

Sockets General Information

RS SOCK_RAW IPPROTO_RAW.

SOCK_SEQPACKET Unspecified.

RS A raw interface to IP is available by creating an Internet socket of type SOCK_RAW. The default
protocol for type SOCK_RAW shall be identified in the IP header with the value
IPPROTO_RAW. Applications should not use the default protocol when creating a socket with
type SOCK_RAW, but should identify a specific protocol by value. The ICMP control protocol is
accessible from a raw socket by specifying a value of IPPROTO_ICMP for protocol.

2.10.19 Use of Sockets over Internet Protocols Based on IPv4

Support for sockets over Internet protocols based on IPv4 is mandatory.

2.10.19.1 Headers

The symbolic constant AF_INET defined in the <sys/socket.h> header is used to identify the
IPv4 Internet address family. The <netinet/in.h> header contains other definitions used in
connection with IPv4 Internet sockets. See XBD Chapter 13 (on page 219).

The sockaddr_storage structure defined in <sys/socket.h> shall be large enough to
accommodate a sockaddr_in structure (see the <netinet/in.h> header defined in XBD Chapter
13, on page 219) and shall be aligned at an appropriate boundary so that pointers to it can be
cast as pointers to sockaddr_in structures and used to access the fields of those structures
without alignment problems. When a sockaddr_storage structure is cast as a sockaddr_in
structure, the ss_family field maps onto the sin_family field.

2.10.20 Use of Sockets over Internet Protocols Based on IPv6

IP6 This section describes extensions to support sockets over Internet protocols based on IPv6. The
functionality described in this section shall be provided on implementations that support the
IPV6 option (and the rest of this section is not further shaded for this option).

To enable smooth transition from IPv4 to IPv6, the features defined in this section may, in certain
circumstances, also be used in connection with IPv4; see Section 2.10.20.2 (on page 527).

2.10.20.1 Addressing

IPv6 overcomes the addressing limitations of earlier versions by using 128-bit addresses instead
of 32-bit addresses. The IPv6 address architecture is described in RFC 2373.

There are three kinds of IPv6 address:

Unicast
Identifies a single interface.

A unicast address can be global, link-local (designed for use on a single link), or site-local
(designed for systems not connected to the Internet). Link-local and site-local addresses
need not be globally unique.

Anycast
Identifies a set of interfaces such that a packet sent to the address can be delivered to any
member of the set.

An anycast address is similar to a unicast address; the nodes to which an anycast address is

526 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

18253

18254

18255

18256

18257

18258

18259

18260

18261

18262

18263

18264

18265

18266

18267

18268

18269

18270

18271

18272

18273

18274

18275

18276

18277

18278

18279

18280

18281

18282

18283

18284

18285

18286

18287

18288

18289

18290

General Information Sockets

assigned must be explicitly configured to know that it is an anycast address.

Multicast
Identifies a set of interfaces such that a packet sent to the address should be delivered to
every member of the set.

An application can send multicast datagrams by simply specifying an IPv6 multicast
address in the address argument of sendto(). To receive multicast datagrams, an application
must join the multicast group (using setsockopt() with IPV6_JOIN_GROUP) and must bind
to the socket the UDP port on which datagrams will be received. Some applications should
also bind the multicast group address to the socket, to prevent other datagrams destined to
that port from being delivered to the socket.

A multicast address can be global, node-local, link-local, site-local, or organization-local.

The following special IPv6 addresses are defined:

Unspecified
An address that is not assigned to any interface and is used to indicate the absence of an
address.

Loopback
A unicast address that is not assigned to any interface and can be used by a node to send
packets to itself.

Two sets of IPv6 addresses are defined to correspond to IPv4 addresses:

IPv4-compatible addresses
These are assigned to nodes that support IPv6 and can be used when traffic is ‘‘tunneled’’
through IPv4.

IPv4-mapped addresses
These are used to represent IPv4 addresses in IPv6 address format; see Section 2.10.20.2.

Note that the unspecified address and the loopback address must not be treated as
IPv4-compatible addresses.

2.10.20.2 Compatibility with IPv4

The API provides the ability for IPv6 applications to interoperate with applications using IPv4,
by using IPv4-mapped IPv6 addresses. These addresses can be generated automatically by the
getaddrinfo() function when the specified host has only IPv4 addresses.

Applications can use AF_INET6 sockets to open TCP connections to IPv4 nodes, or send UDP
packets to IPv4 nodes, by simply encoding the destination’s IPv4 address as an IPv4-mapped
IPv6 address, and passing that address, within a sockaddr_in6 structure, in the connect(),
sendto(), or sendmsg() function. When applications use AF_INET6 sockets to accept TCP
connections from IPv4 nodes, or receive UDP packets from IPv4 nodes, the system shall return
the peer’s address to the application in the accept(), recvfrom(), recvmsg(), or getpeername()
function using a sockaddr_in6 structure encoded this way. If a node has an IPv4 address, then
the implementation shall allow applications to communicate using that address via an
AF_INET6 socket. In such a case, the address will be represented at the API by the
corresponding IPv4-mapped IPv6 address. Also, the implementation may allow an AF_INET6
socket bound to in6addr_any to receive inbound connections and packets destined to one of the
node’s IPv4 addresses.

An application can use AF_INET6 sockets to bind to a node’s IPv4 address by specifying the
address as an IPv4-mapped IPv6 address in a sockaddr_in6 structure in the bind() function. For
an AF_INET6 socket bound to a node’s IPv4 address, the system shall return the address in the

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 527

18291

18292

18293

18294

18295

18296

18297

18298

18299

18300

18301

18302

18303

18304

18305

18306

18307

18308

18309

18310

18311

18312

18313

18314

18315

18316

18317

18318

18319

18320

18321

18322

18323

18324

18325

18326

18327

18328

18329

18330

18331

18332

18333

18334

18335

Sockets General Information

getsockname() function as an IPv4-mapped IPv6 address in a sockaddr_in6 structure.

2.10.20.3 Interface Identification

Each local interface is assigned a unique positive integer as a numeric index. Indexes start at 1;
zero is not used. There may be gaps so that there is no current interface for a particular positive
index. Each interface also has a unique implementation-defined name.

2.10.20.4 Options

The following options apply at the IPPROTO_IPV6 level:

IPV6_JOIN_GROUP
When set via setsockopt(), it joins the application to a multicast group on an interface
(identified by its index) and addressed by a given multicast address, enabling packets sent
to that address to be read via the socket. If the interface index is specified as zero, the
system selects the interface (for example, by looking up the address in a routing table and
using the resulting interface).

An attempt to read this option using getsockopt() shall result in an [EOPNOTSUPP] error.

The parameter type of this option is a pointer to an ipv6_mreq structure.

IPV6_LEAVE_GROUP
When set via setsockopt(), it removes the application from the multicast group on an
interface (identified by its index) and addressed by a given multicast address.

An attempt to read this option using getsockopt() shall result in an [EOPNOTSUPP] error.

The parameter type of this option is a pointer to an ipv6_mreq structure.

IPV6_MULTICAST_HOPS
The value of this option is the hop limit for outgoing multicast IPv6 packets sent via the
socket. Its possible values are the same as those of IPV6_UNICAST_HOPS. If the
IPV6_MULTICAST_HOPS option is not set, a value of 1 is assumed. This option can be set
via setsockopt() and read via getsockopt().

The parameter type of this option is a pointer to an int. (Default value: 1)

IPV6_MULTICAST_IF
The index of the interface to be used for outgoing multicast packets. It can be set via
setsockopt() and read via getsockopt(). If the interface index is specified as zero, the system
selects the interface (for example, by looking up the address in a routing table and using the
resulting interface).

The parameter type of this option is a pointer to an unsigned int. (Default value: 0)

IPV6_MULTICAST_LOOP
This option controls whether outgoing multicast packets should be delivered back to the
local application when the sending interface is itself a member of the destination multicast
group. If it is set to 1 they are delivered. If it is set to 0 they are not. Other values result in an
[EINVAL] error. This option can be set via setsockopt() and read via getsockopt().

The parameter type of this option is a pointer to an unsigned int which is used as a Boolean
value. (Default value: 1)

IPV6_UNICAST_HOPS
The value of this option is the hop limit for outgoing unicast IPv6 packets sent via the
socket. If the option is not set, or is set to −1, the system selects a default value. Attempts to

528 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

18336

18337

18338

18339

18340

18341

18342

18343

18344

18345

18346

18347

18348

18349

18350

18351

18352

18353

18354

18355

18356

18357

18358

18359

18360

18361

18362

18363

18364

18365

18366

18367

18368

18369

18370

18371

18372

18373

18374

18375

18376

18377

General Information Sockets

set a value less than −1 or greater than 255 shall result in an [EINVAL] error. This option can
be set via setsockopt() and read via getsockopt().

The parameter type of this option is a pointer to an int. (Default value: Unspecified)

IPV6_V6ONLY
This socket option restricts AF_INET6 sockets to IPv6 communications only. AF_INET6
sockets may be used for both IPv4 and IPv6 communications. Some applications may want
to restrict their use of an AF_INET6 socket to IPv6 communications only. For these
applications, the IPv6_V6ONLY socket option is defined. When this option is turned on, the
socket can be used to send and receive IPv6 packets only. This is an IPPROTO_IPV6-level
option.

The parameter type of this option is a pointer to an int which is used as a Boolean value.
(Default value: 0)

An [EOPNOTSUPP] error shall result if IPV6_JOIN_GROUP or IPV6_LEAVE_GROUP is used
with getsockopt().

2.10.20.5 Headers

The symbolic constant AF_INET6 is defined in the <sys/socket.h> header to identify the IPv6
Internet address family. See XBD Chapter 13 (on page 219).

The sockaddr_storage structure defined in <sys/socket.h> shall be large enough to
accommodate a sockaddr_in6 structure (see the <netinet/in.h> header defined in XBD Chapter
13, on page 219) and shall be aligned at an appropriate boundary so that pointers to it can be
cast as pointers to sockaddr_in6 structures and used to access the fields of those structures
without alignment problems. When a sockaddr_storage structure is cast as a sockaddr_in6
structure, the ss_family field maps onto the sin6_family field.

The <netinet/in.h>, <arpa/inet.h>, and <netdb.h> headers contain other definitions used in
connection with IPv6 Internet sockets; see XBD Chapter 13 (on page 219).

2.11 Tracing

OB TRC This section describes extensions to support tracing of user applications. The functionality
described in this section is dependent on support of the Trace option (and the rest of this section
is not further shaded for this option).

The tracing facilities defined in POSIX.1-2008 allow a process to select a set of trace event types,
to activate a trace stream of the selected trace events as they occur in the flow of execution, and
to retrieve the recorded trace events.

The tracing operation relies on three logically different components: the traced process, the
controller process, and the analyzer process. During the execution of the traced process, when a
trace point is reached, a trace event is recorded into the trace streams created for that process in
which the associated trace event type identifier is not being filtered out. The controller process
controls the operation of recording the trace events into the trace stream. It shall be able to:

• Initialize the attributes of a trace stream

• Create the trace stream (for a specified traced process) using those attributes

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 529

18378

18379

18380

18381

18382

18383

18384

18385

18386

18387

18388

18389

18390

18391

18392

18393

18394

18395

18396

18397

18398

18399

18400

18401

18402

18403

18404

18405

18406

18407

18408

18409

18410

18411

18412

18413

18414

18415

18416

Tr acing General Information

• Start and stop tracing for the trace stream

• Filter the type of trace events to be recorded, if the Trace Event Filter option is supported

• Shut a trace stream down

These operations can be done for an active trace stream. The analyzer process retrieves the
traced events either at runtime, when the trace stream has not yet been shut down, but is still
recording trace events; or after opening a trace log that had been previously recorded and shut
down. These three logically different operations can be performed by the same process, or can
be distributed into different processes.

A trace stream identifier can be created by a call to posix_trace_create(),
posix_trace_create_withlog(), or posix_trace_open(). The posix_trace_create() and
posix_trace_create_withlog() functions should be used by a controller process. The
posix_trace_open() should be used by an analyzer process.

The tracing functions can serve different purposes. One purpose is debugging the possibly pre-
instrumented code, while another is post-mortem fault analysis. These two potential uses differ
in that the first requires pre-filtering capabilities to avoid overwhelming the trace stream and
permits focusing on expected information; while the second needs comprehensive trace
capabilities in order to be able to record all types of information.

The events to be traced belong to two classes:

1. User trace events (generated by the application instrumentation)

2. System trace events (generated by the operating system)

The trace interface defines several system trace event types associated with control of and
operation of the trace stream. This small set of system trace events includes the minimum
required to interpret correctly the trace event information present in the stream. Other desirable
system trace events for some particular application profile may be implemented and are
encouraged; for example, process and thread scheduling, signal occurrence, and so on.

Each traced process shall have a mapping of the trace event names to trace event type identifiers
that have been defined for that process. Each active trace stream shall have a mapping that
incorporates all the trace event type identifiers predefined by the trace system plus all the
mappings of trace event names to trace event type identifiers of the processes that are being
traced into that trace stream. These mappings are defined from the instrumented application by
calling the posix_trace_eventid_open() function and from the controller process by calling the
posix_trace_trid_eventid_open() function. For a pre-recorded trace stream, the list of trace event
types is obtained from the pre-recorded trace log.

The last data modification and file status change timestamps of a file associated with an active
trace stream shall be marked for update every time any of the tracing operations modifies that
file.

The last data access timestamp of a file associated with a trace stream shall be marked for
update every time any of the tracing operations causes data to be read from that file.

Results are undefined if the application performs any operation on a file descriptor associated
with an active or pre-recorded trace stream until posix_trace_shutdown() or posix_trace_close() is
called for that trace stream. Results are also undefined if the analyzer process and the traced
process do not share the same programming environment (see c99, Programming Environments
in the Shell and Utilities volume of POSIX.1-2008.

The main purpose of this option is to define a complete set of functions and concepts that allow
a conforming application to be traced from creation to termination, whatever its realtime
constraints and properties.

530 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

18417

18418

18419

18420

18421

18422

18423

18424

18425

18426

18427

18428

18429

18430

18431

18432

18433

18434

18435

18436

18437

18438

18439

18440

18441

18442

18443

18444

18445

18446

18447

18448

18449

18450

18451

18452

18453

18454

18455

18456

18457

18458

18459

18460

18461

18462

General Information Tr acing

2.11.1 Tracing Data Definitions

2.11.1.1 Structures

The <trace.h> header shall define the posix_trace_status_info and posix_trace_event_info structures
described below. Implementations may add extensions to these structures.

posix_trace_status_info Structure

To facilitate control of a trace stream, information about the current state of an active trace
stream can be obtained dynamically. This structure is returned by a call to the
posix_trace_get_status() function.

The posix_trace_status_info structure defined in <trace.h> shall contain at least the following
members:

Member Type Member Name Description

int posix_stream_status The operating mode of the trace stream.
int posix_stream_full_status The full status of the trace stream.
int posix_stream_overrun_status Indicates whether trace events were lost

in the trace stream.

If the Trace Log option is supported in addition to the Trace option, the posix_trace_status_info
structure defined in <trace.h> shall contain at least the following additional members:

Member Type Member Name Description

int posix_stream_flush_status Indicates whether a flush is in progress.
int posix_stream_flush_error Indicates whether any error occurred

during the last flush operation.
int posix_log_overrun_status Indicates whether trace events were lost

in the trace log.
int posix_log_full_status The full status of the trace log.

The posix_stream_status member indicates the operating mode of the trace stream and shall have
one of the following values defined by manifest constants in the <trace.h> header:

POSIX_TRACE_RUNNING
Tracing is in progress; that is, the trace stream is accepting trace events.

POSIX_TRACE_SUSPENDED
The trace stream is not accepting trace events. The tracing operation has not yet started or
has stopped, either following a posix_trace_stop() function call or because the trace resources
are exhausted.

The posix_stream_full_status member indicates the full status of the trace stream, and it shall have
one of the following values defined by manifest constants in the <trace.h> header:

POSIX_TRACE_FULL
The space in the trace stream for trace events is exhausted.

POSIX_TRACE_NOT_FULL
There is still space available in the trace stream.

The combination of the posix_stream_status and posix_stream_full_status members also indicates
the actual status of the stream. The status shall be interpreted as follows:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 531

18463

18464

18465

18466

18467

18468

18469

18470

18471

18472

18473

18474

18475

18476

18477

18478

18479

18480

18481

18482

18483

18484

18485

18486

18487

18488

18489

18490

18491

18492

18493

18494

18495

18496

18497

18498

18499

18500

18501

18502

Tr acing General Information

POSIX_TRACE_RUNNING and POSIX_TRACE_NOT_FULL
This status combination indicates that tracing is in progress, and there is space available for
recording more trace events.

POSIX_TRACE_RUNNING and POSIX_TRACE_FULL
This status combination indicates that tracing is in progress and that the trace stream is full
of trace events. This status combination cannot occur unless the stream-full-policy is set to
POSIX_TRACE_LOOP. The trace stream contains trace events recorded during a moving
time window of prior trace events, and some older trace events may have been overwritten
and thus lost.

POSIX_TRACE_SUSPENDED and POSIX_TRACE_NOT_FULL
This status combination indicates that tracing has not yet been started, has been stopped by
the posix_trace_stop() function, or has been cleared by the posix_trace_clear() function.

POSIX_TRACE_SUSPENDED and POSIX_TRACE_FULL
This status combination indicates that tracing has been stopped by the implementation
because the stream-full-policy attribute was POSIX_TRACE_UNTIL_FULL and trace
resources were exhausted, or that the trace stream was stopped by the function
posix_trace_stop() at a time when trace resources were exhausted.

The posix_stream_overrun_status member indicates whether trace events were lost in the trace
stream, and shall have one of the following values defined by manifest constants in the
<trace.h> header:

POSIX_TRACE_OVERRUN
At least one trace event was lost and thus was not recorded in the trace stream.

POSIX_TRACE_NO_OVERRUN
No trace events were lost.

When the corresponding trace stream is created, the posix_stream_overrun_status member shall be
set to POSIX_TRACE_NO_OVERRUN.

Whenever an overrun occurs, the posix_stream_overrun_status member shall be set to
POSIX_TRACE_OVERRUN.

An overrun occurs when:

• The policy is POSIX_TRACE_LOOP and a recorded trace event is overwritten.

• The policy is POSIX_TRACE_UNTIL_FULL and the trace stream is full when a trace event
is generated.

• If the Trace Log option is supported, the policy is POSIX_TRACE_FLUSH and at least one
trace event is lost while flushing the trace stream to the trace log.

The posix_stream_overrun_status member is reset to zero after its value is read.

If the Trace Log option is supported in addition to the Trace option, the posix_stream_flush_status,
posix_stream_flush_error, posix_log_overrun_status, and posix_log_full_status members are defined
as follows; otherwise, they are undefined.

The posix_stream_flush_status member indicates whether a flush operation is being performed
and shall have one of the following values defined by manifest constants in the header
<trace.h>:

POSIX_TRACE_FLUSHING
The trace stream is currently being flushed to the trace log.

532 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

18503

18504

18505

18506

18507

18508

18509

18510

18511

18512

18513

18514

18515

18516

18517

18518

18519

18520

18521

18522

18523

18524

18525

18526

18527

18528

18529

18530

18531

18532

18533

18534

18535

18536

18537

18538

18539

18540

18541

18542

18543

18544

18545

General Information Tr acing

POSIX_TRACE_NOT_FLUSHING
No flush operation is in progress.

The posix_stream_flush_status member shall be set to POSIX_TRACE_FLUSHING if a flush
operation is in progress either due to a call to the posix_trace_flush() function (explicit or caused
by a trace stream shutdown operation) or because the trace stream has become full with the
stream-full-policy attribute set to POSIX_TRACE_FLUSH. The posix_stream_flush_status member
shall be set to POSIX_TRACE_NOT_FLUSHING if no flush operation is in progress.

The posix_stream_flush_error member shall be set to zero if no error occurred during flushing. If
an error occurred during a previous flushing operation, the posix_stream_flush_error member
shall be set to the value of the first error that occurred. If more than one error occurs while
flushing, error values after the first shall be discarded. The posix_stream_flush_error member is
reset to zero after its value is read.

The posix_log_overrun_status member indicates whether trace events were lost in the trace log,
and shall have one of the following values defined by manifest constants in the <trace.h>
header:

POSIX_TRACE_OVERRUN
At least one trace event was lost.

POSIX_TRACE_NO_OVERRUN
No trace events were lost.

When the corresponding trace stream is created, the posix_log_overrun_status member shall be set
to POSIX_TRACE_NO_OVERRUN. Whenever an overrun occurs, this status shall be set to
POSIX_TRACE_OVERRUN. The posix_log_overrun_status member is reset to zero after its value
is read.

The posix_log_full_status member indicates the full status of the trace log, and it shall have one of
the following values defined by manifest constants in the <trace.h> header:

POSIX_TRACE_FULL
The space in the trace log is exhausted.

POSIX_TRACE_NOT_FULL
There is still space available in the trace log.

The posix_log_full_status member is only meaningful if the log-full-policy attribute is either
POSIX_TRACE_UNTIL_FULL or POSIX_TRACE_LOOP.

For an active trace stream without log, that is created by the posix_trace_create() function, the
posix_log_overrun_status member shall be set to POSIX_TRACE_NO_OVERRUN and the
posix_log_full_status member shall be set to POSIX_TRACE_NOT_FULL.

posix_trace_event_info Structure

The trace event structure posix_trace_event_info contains the information for one recorded
trace event. This structure is returned by the set of functions posix_trace_getnext_event(),
posix_trace_timedgetnext_event(), and posix_trace_trygetnext_event().

The posix_trace_event_info structure defined in <trace.h> shall contain at least the following
members:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 533

18546

18547

18548

18549

18550

18551

18552

18553

18554

18555

18556

18557

18558

18559

18560

18561

18562

18563

18564

18565

18566

18567

18568

18569

18570

18571

18572

18573

18574

18575

18576

18577

18578

18579

18580

18581

18582

18583

18584

18585

Tr acing General Information

Member Type Member Name Description

trace_event_id_t posix_event_id Trace event type identification.
pid_t posix_pid Process ID of the process that generated

the trace event.
void * posix_prog_address Address at which the trace point was

invoked.
int posix_truncation_status Status about the truncation of the data

associated with this trace event.
struct timespec posix_timestamp Time at which the trace event was

generated.

In addition, the posix_trace_event_info structure defined in <trace.h> shall contain the
following additional member:

Member Type Member Name Description

pthread_t posix_thread_id Thread ID of the thread that generated
the trace event.

The posix_event_id member represents the identification of the trace event type and its value is
not directly defined by the user. This identification is returned by a call to one of the following
functions: posix_trace_trid_eventid_open(), posix_trace_eventtypelist_getnext_id(), or
posix_trace_eventid_open(). The name of the trace event type can be obtained by calling
posix_trace_eventid_get_name().

The posix_pid is the process identifier of the traced process which generated the trace event. If
the posix_event_id member is one of the implementation-defined system trace events and that
trace event is not associated with any process, the posix_pid member shall be set to zero.

For a user trace event, the posix_prog_address member is the process mapped address of the point
at which the associated call to the posix_trace_event() function was made. For a system trace
event, if the trace event is caused by a system service explicitly called by the application, the
posix_prog_address member shall be the address of the process at the point where the call to that
system service was made.

The posix_truncation_status member defines whether the data associated with a trace event has
been truncated at the time the trace event was generated, or at the time the trace event was read
from the trace stream, or (if the Trace Log option is supported) from the trace log (see the event
argument from the posix_trace_getnext_event() function). The posix_truncation_status member
shall have one of the following values defined by manifest constants in the <trace.h> header:

POSIX_TRACE_NOT_TRUNCATED
All the traced data is available.

POSIX_TRACE_TRUNCATED_RECORD
Data was truncated at the time the trace event was generated.

POSIX_TRACE_TRUNCATED_READ
Data was truncated at the time the trace event was read from a trace stream or a trace log
because the reader ’s buffer was too small. This truncation status overrides the
POSIX_TRACE_TRUNCATED_RECORD status.

The posix_timestamp member shall be the time at which the trace event was generated. The clock
used is implementation-defined, but the resolution of this clock can be retrieved by a call to the
posix_trace_attr_getclockres() function.

The posix_thread_id member is the identifier of the thread that generated the trace event. If the
posix_event_id member is one of the implementation-defined system trace events and that trace

534 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

18586

18587

18588

18589

18590

18591

18592

18593

18594

18595

18596

18597

18598

18599

18600

18601

18602

18603

18604

18605

18606

18607

18608

18609

18610

18611

18612

18613

18614

18615

18616

18617

18618

18619

18620

18621

18622

18623

18624

18625

18626

18627

18628

18629

18630

18631

General Information Tr acing

event is not associated with any thread, the posix_thread_id member shall be set to zero.

2.11.1.2 Trace Stream Attributes

Trace streams have attributes that compose the posix_trace_attr_t trace stream attributes object.
This object shall contain at least the following attributes:

• The generation-version attribute identifies the origin and version of the trace system.

• The trace-name attribute is a character string defined by the trace controller, and that
identifies the trace stream.

• The creation-time attribute represents the time of the creation of the trace stream.

• The clock-resolution attribute defines the clock resolution of the clock used to generate
timestamps.

• The stream-min-size attribute defines the minimum size in bytes of the trace stream strictly
reserved for the trace events.

• The stream-full-policy attribute defines the policy followed when the trace stream is full; its
value is POSIX_TRACE_LOOP, POSIX_TRACE_UNTIL_FULL, or POSIX_TRACE_FLUSH.

• The max-data-size attribute defines the maximum record size in bytes of a trace event.

In addition, if the Trace option and the Trace Inherit option are both supported, the
posix_trace_attr_t trace stream creation attributes object shall contain at least the following
attributes:

• The inheritance attribute specifies whether a newly created trace stream will inherit tracing
in its parent’s process trace stream. It is either POSIX_TRACE_INHERITED or
POSIX_TRACE_CLOSE_FOR_CHILD.

In addition, if the Trace option and the Trace Log option are both supported, the
posix_trace_attr_t trace stream creation attributes object shall contain at least the following
attribute:

• If the file type corresponding to the trace log supports the POSIX_TRACE_LOOP or the
POSIX_TRACE_UNTIL_FULL policies, the log-max-size attribute defines the maximum
size in bytes of the trace log associated with an active trace stream. Other stream data—for
example, trace attribute values—shall not be included in this size.

• The log-full-policy attribute defines the policy of a trace log associated with an active trace
stream to be POSIX_TRACE_LOOP, POSIX_TRACE_UNTIL_FULL, or
POSIX_TRACE_APPEND.

2.11.2 Trace Event Type Definitions

2.11.2.1 System Trace Event Type Definitions

The following system trace event types, defined in the <trace.h> header, track the invocation of
the trace operations:

• POSIX_TRACE_START shall be associated with a trace start operation.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 535

18632

18633

18634

18635

18636

18637

18638

18639

18640

18641

18642

18643

18644

18645

18646

18647

18648

18649

18650

18651

18652

18653

18654

18655

18656

18657

18658

18659

18660

18661

18662

18663

18664

18665

18666

18667

Tr acing General Information

• POSIX_TRACE_STOP shall be associated with a trace stop operation.

• If the Trace Event Filter option is supported, POSIX_TRACE_FILTER shall be associated
with a trace event type filter change operation.

The following system trace event types, defined in the <trace.h> header, report operational trace
events:

• POSIX_TRACE_OVERFLOW shall mark the beginning of a trace overflow condition.

• POSIX_TRACE_RESUME shall mark the end of a trace overflow condition.

• If the Trace Log option is supported, POSIX_TRACE_FLUSH_START shall mark the
beginning of a flush operation.

• If the Trace Log option is supported, POSIX_TRACE_FLUSH_STOP shall mark the end of
a flush operation.

• If an implementation-defined trace error condition is reported, it shall be marked
POSIX_TRACE_ERROR.

The interpretation of a trace stream or a trace log by a trace analyzer process relies on the
information recorded for each trace event, and also on system trace events that indicate the
invocation of trace control operations and trace system operational trace events.

The POSIX_TRACE_START and POSIX_TRACE_STOP trace events specify the time windows
during which the trace stream is running.

• The POSIX_TRACE_STOP trace event with an associated data that is equal to zero
indicates a call of the function posix_trace_stop().

• The POSIX_TRACE_STOP trace event with an associated data that is different from zero
indicates an automatic stop of the trace stream (see the definition of the
posix_trace_attr_getstreamfullpolicy() function in posix_trace_attr_getinherited()).

The POSIX_TRACE_FILTER trace event indicates that a trace event type filter value changed
while the trace stream was running.

The POSIX_TRACE_ERROR serves to inform the analyzer process that an implementation-
defined internal error of the trace system occurred.

The POSIX_TRACE_OVERFLOW trace event shall be reported with a timestamp equal to the
timestamp of the first trace event overwritten. This is an indication that some generated trace
events have been lost.

The POSIX_TRACE_RESUME trace event shall be reported with a timestamp equal to the
timestamp of the first valid trace event reported after the overflow condition ends and shall be
reported before this first valid trace event. This is an indication that the trace system is reliably
recording trace events after an overflow condition.

Each of these trace event types shall be defined by a constant trace event name and a
trace_event_id_t constant; trace event data is associated with some of these trace events.

If the Trace option is supported and the Trace Event Filter option and the Trace Log option are
not supported, the following predefined system trace events in Table 2-3 (on page 537) shall be
defined:

536 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

18668

18669

18670

18671

18672

18673

18674

18675

18676

18677

18678

18679

18680

18681

18682

18683

18684

18685

18686

18687

18688

18689

18690

18691

18692

18693

18694

18695

18696

18697

18698

18699

18700

18701

18702

18703

18704

18705

18706

General Information Tr acing

Table 2-3 Trace Option: System Trace Events

Associated Data

Event Name Constant Data Type

posix_trace_error POSIX_TRACE_ERROR error

int

posix_trace_start POSIX_TRACE_START None.

posix_trace_stop POSIX_TRACE_STOP auto

int

posix_trace_overflow POSIX_TRACE_OVERFLOW None.

posix_trace_resume POSIX_TRACE_RESUME None.

If the Trace option and the Trace Event Filter option are both supported, and if the Trace Log
option is not supported, the following predefined system trace events in Table 2-4 shall be
defined:

Table 2-4 Trace and Trace Event Filter Options: System Trace Events

Associated Data

Event Name Constant Data Type

posix_trace_error POSIX_TRACE_ERROR error

int

posix_trace_start POSIX_TRACE_START event_filter

trace_event_set_t

posix_trace_stop POSIX_TRACE_STOP auto

int

posix_trace_filter POSIX_TRACE_FILTER old_event_filter
new_event_filter

trace_event_set_t

posix_trace_overflow POSIX_TRACE_OVERFLOW None.

posix_trace_resume POSIX_TRACE_RESUME None.

If the Trace option and the Trace Log option are both supported, and if the Trace Event Filter
option is not supported, the following predefined system trace events in Table 2-5 (on page 538)
shall be defined:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 537

18707

18708

18709

18710

18711

18712

18713

18714

18715

18716

18717

18718

18719

18720

18721

18722

18723

18724

18725

18726

18727

18728

18729

18730

18731

18732

18733

18734

18735

18736

Tr acing General Information

Table 2-5 Trace and Trace Log Options: System Trace Events

Associated Data

Event Name Constant Data Type

posix_trace_error POSIX_TRACE_ERROR error

int

posix_trace_start POSIX_TRACE_START None.

posix_trace_stop POSIX_TRACE_STOP auto

int

posix_trace_overflow POSIX_TRACE_OVERFLOW None.

posix_trace_resume POSIX_TRACE_RESUME None.

posix_trace_flush_start POSIX_TRACE_FLUSH_START None.

posix_trace_flush_stop POSIX_TRACE_FLUSH_STOP None.

If the Trace option, the Trace Event Filter option, and the Trace Log option are all supported, the
following predefined system trace events in Table 2-6 shall be defined:

Table 2-6 Trace, Trace Log, and Trace Event Filter Options: System Trace Events

Associated Data

Event Name Constant Data Type

posix_trace_error POSIX_TRACE_ERROR error

int

posix_trace_start POSIX_TRACE_START event_filter

trace_event_set_t

posix_trace_stop POSIX_TRACE_STOP auto

int

posix_trace_filter POSIX_TRACE_FILTER old_event_filter
new_event_filter

trace_event_set_t

posix_trace_overflow POSIX_TRACE_OVERFLOW None.

posix_trace_resume POSIX_TRACE_RESUME None.

posix_trace_flush_start POSIX_TRACE_FLUSH_START None.

posix_trace_flush_stop POSIX_TRACE_FLUSH_STOP None.

2.11.2.2 User Trace Event Type Definitions

The user trace event POSIX_TRACE_UNNAMED_USEREVENT is defined in the <trace.h>
header. If the limit of per-process user trace event names represented by
{TRACE_USER_EVENT_MAX} has already been reached, this predefined user event shall be
returned when the application tries to register more events than allowed. The data associated
with this trace event is application-defined.

The following predefined user trace event in Table 2-7 (on page 539) shall be defined:

538 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

18737

18738

18739

18740

18741

18742

18743

18744

18745

18746

18747

18748

18749

18750

18751

18752

18753

18754

18755

18756

18757

18758

18759

18760

18761

18762

18763

18764

18765

18766

18767

18768

18769

18770

18771

18772

18773

General Information Tr acing

Table 2-7 Trace Option: User Trace Event

Event Name Constant

posix_trace_unnamed_userevent POSIX_TRACE_UNNAMED_USEREVENT

2.11.3 Trace Functions

The trace interface is built and structured to improve portability through use of trace data of
opaque type. The object-oriented approach for the manipulation of trace attributes and trace
event type identifiers requires definition of many constructor and selector functions which
operate on these opaque types. Also, the trace interface must support several different tracing
roles. To facilitate reading the trace interface, the trace functions are grouped into small
functional sets supporting the three different roles:

• A trace controller process requires functions to set up and customize all the resources
needed to run a trace stream, including:

— Attribute initialization and destruction (posix_trace_attr_init())

— Identification information manipulation (posix_trace_attr_getgenversion())

— Trace system behavior modification (posix_trace_attr_getinherited())

— Trace stream and trace log size set (posix_trace_attr_getmaxusereventsize())

— Trace stream creation, flush, and shutdown (posix_trace_create())

— Trace stream and trace log clear (posix_trace_clear())

— Trace event type identifier manipulation (posix_trace_trid_eventid_open())

— Trace event type identifier list exploration (posix_trace_eventtypelist_getnext_id())

— Trace event type set manipulation (posix_trace_eventset_empty())

— Trace event type filter set (posix_trace_set_filter())

— Trace stream start and stop (posix_trace_start())

— Trace stream information and status read (posix_trace_get_attr())

• A traced process requires functions to instrument trace points:

— Trace event type identifiers definition and trace points insertion (posix_trace_event())

• A trace analyzer process requires functions to retrieve information from a trace stream and
trace log:

— Identification information read (posix_trace_attr_getgenversion())

— Trace system behavior information read (posix_trace_attr_getinherited())

— Trace stream and trace log size get (posix_trace_attr_getmaxusereventsize())

— Trace event type identifier manipulation (posix_trace_trid_eventid_open())

— Trace event type identifier list exploration (posix_trace_eventtypelist_getnext_id())

— Trace log open, rewind, and close (posix_trace_open())

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 539

18774

18775

18776

18777

18778

18779

18780

18781

18782

18783

18784

18785

18786

18787

18788

18789

18790

18791

18792

18793

18794

18795

18796

18797

18798

18799

18800

18801

18802

18803

18804

18805

18806

18807

Tr acing General Information

— Trace stream information and status read (posix_trace_get_attr())

— Trace event read (posix_trace_getnext_event())

2.12 Data Types

2.12.1 Defined Types

All of the data types used by various functions are defined by the implementation. The
following table describes some of these types. Other types referenced in the description of a
function, not mentioned here, can be found in the appropriate header for that function.

Defined Type Description

cc_t Type used for terminal special characters.
clock_t Integer or real-floating type used for processor times, as defined in

the ISO C standard.
clockid_t Used for clock ID type in some timer functions.
dev_t Arithmetic type used for device numbers.
DIR Type representing a directory stream.
div_t Structure type returned by the div() function.
FILE Structure containing information about a file.
glob_t Structure type used in pathname pattern matching.
fpos_t Type containing all information needed to specify uniquely every

position within a file.
gid_t Integer type used for group IDs.
iconv_t Type used for conversion descriptors.
id_t Integer type used as a general identifier; can be used to contain

at least the largest of a pid_t, uid_t, or gid_t.
ino_t Unsigned integer type used for file serial numbers.
key_t Arithmetic type used for XSI interprocess communication.
ldiv_t Structure type returned by the ldiv() function.
mode_t Integer type used for file attributes.
mqd_t Used for message queue descriptors.
nfds_t Integer type used for the number of file descriptors.
nlink_t Integer type used for link counts.
off_t Signed integer type used for file sizes.
pid_t Signed integer type used for process and process group IDs.
pthread_attr_t Used to identify a thread attribute object.
pthread_cond_t Used for condition variables.
pthread_condattr_t Used to identify a condition attribute object.
pthread_key_t Used for thread-specific data keys.
pthread_mutex_t Used for mutexes.
pthread_mutexattr_t Used to identify a mutex attribute object.
pthread_once_t Used for dynamic package initialization.
pthread_rwlock_t Used for read-write locks.
pthread_rwlockattr_t Used for read-write lock attributes.
pthread_t Used to identify a thread.

540 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

18808

18809

18810

18811

18812

18813

18814

18815

18816

18817

18818

18819

18820

18821

18822

18823

18824

18825

18826

18827

18828

18829

18830

18831

18832

18833

18834

18835

18836

18837

18838

18839

18840

18841

18842

18843

18844

18845

18846

18847

18848

18849

General Information Data Types

Defined Type Description

ptrdiff_t Signed integer type of the result of subtracting two pointers.
regex_t Structure type used in regular expression matching.
regmatch_t Structure type used in regular expression matching.
rlim_t Unsigned integer type used for limit values, to which objects of

type int and off_t can be cast without loss of value.
sem_t Type used in performing semaphore operations.
sig_atomic_t Integer type of an object that can be accessed as an atomic

entity, even in the presence of asynchronous interrupts.
sigset_t Integer or structure type of an object used to represent sets

of signals.
size_t Unsigned integer type used for size of objects.
speed_t Type used for terminal baud rates.
ssize_t Signed integer type used for a count of bytes or an error

indication.
suseconds_t Signed integer type used for time in microseconds.
tcflag_t Type used for terminal modes.
time_t Integer or real-floating type used for time in seconds, as defined in

the ISO C standard.
timer_t Used for timer ID returned by the timer_create() function.
uid_t Integer type used for user IDs.
va_list Type used for traversing variable argument lists.
wchar_t Integer type whose range of values can represent distinct codes for

all members of the largest extended character set specified by the
supported locales.

wctype_t Scalar type which represents a character class descriptor.
wint_t Integer type capable of storing any valid value of wchar_t or

WEOF.
wordexp_t Structure type used in word expansion.

2.12.2 The char Type

The type char is defined as a single byte; see XBD Chapter 3 (on page 33) (Byte and Character).

2.12.3 Pointer Types

All function pointer types shall have the same representation as the type pointer to void.
Conversion of a function pointer to void * shall not alter the representation. A void * value
resulting from such a conversion can be converted back to the original function pointer type,
using an explicit cast, without loss of information.

Note: The ISO C standard does not require this, but it is required for POSIX conformance.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 541

18850

18851

18852

18853

18854

18855

18856

18857

18858

18859

18860

18861

18862

18863

18864

18865

18866

18867

18868

18869

18870

18871

18872

18873

18874

18875

18876

18877

18878

18879

18880

18881

18882

18883

18884

18885

18886

General Information

542 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

Chapter 3

System Interfaces

This chapter describes the functions, macros, and external variables to support applications
portability at the C-language source level.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 543

18887

18888

18889

18890

FD_CLR() System Interfaces

NAME
FD_CLR — macros for synchronous I/O multiplexing

SYNOPSIS
#include <sys/select.h>

void FD_CLR(int fd, fd_set *fdset);
int FD_ISSET(int fd, fd_set *fdset);
void FD_SET(int fd, fd_set *fdset);
void FD_ZERO(fd_set *fdset);

DESCRIPTION
Refer to pselect().

544 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

18891

18892

18893

18894

18895

18896

18897

18898

18899

18900

System Interfaces _Exit()

NAME
_Exit, _exit — terminate a process

SYNOPSIS
#include <stdlib.h>

void _Exit(int status);

#include <unistd.h>

void _exit(int status);

DESCRIPTION
CX For _Exit(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The value of status may be 0, EXIT_SUCCESS, EXIT_FAILURE, or any other value, though only
the least significant 8 bits (that is, status & 0377) shall be available to a waiting parent process.

CX The _Exit() and _exit() functions shall be functionally equivalent.

CX The _Exit() and _exit() functions shall not call functions registered with atexit() nor any
CX registered signal handlers. Open streams shall not be flushed. Whether open streams are

closed (without flushing) is implementation-defined. Finally, the calling process shall be
terminated with the consequences described below.

Consequences of Process Termination

CX Process termination caused by any reason shall have the following consequences:

Note: These consequences are all extensions to the ISO C standard and are not further CX shaded.
However, functionality relating to the XSI option is shaded.

• All of the file descriptors, directory streams, conversion descriptors, and message catalog
descriptors open in the calling process shall be closed.

XSI • If the parent process of the calling process is executing a wait(), waitid(), or waitpid(), and
has neither set its SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, it shall be notified
of termination of the calling process and the low-order eight bits (that is, bits 0377) of status
shall be made available to it. If the parent is not waiting, the child’s status shall be made
available to it when the parent subsequently executes wait(), waitid(), or waitpid().

The semantics of the waitid() function shall be equivalent to wait().

XSI • If the parent process of the calling process is not executing a wait(), waitid(), or waitpid(),
and has neither set its SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, the calling
process shall be transformed into a zombie process. A zombie process is an inactive process
and it shall be deleted at some later time when its parent process executes wait(), waitid(),
or waitpid().

XSI The semantics of the waitid() function shall be equivalent to wait().

• Termination of a process does not directly terminate its children. The sending of a SIGHUP
signal as described below indirectly terminates children in some circumstances.

• Either:

If the implementation supports the SIGCHLD signal, a SIGCHLD shall be sent to the
parent process.

Or:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 545

18901

18902

18903

18904

18905

18906

18907

18908

18909

18910

18911

18912

18913

18914

18915

18916

18917

18918

18919

18920

18921

18922

18923

18924

18925

18926

18927

18928

18929

18930

18931

18932

18933

18934

18935

18936

18937

18938

18939

18940

18941

18942

_Exit() System Interfaces

XSI If the parent process has set its SA_NOCLDWAIT flag, or set SIGCHLD to SIG_IGN, the
status shall be discarded, and the lifetime of the calling process shall end immediately. If
SA_NOCLDWAIT is set, it is implementation-defined whether a SIGCHLD signal is sent to
the parent process.

• The parent process ID of all of the existing child processes and zombie processes of the
calling process shall be set to the process ID of an implementation-defined system process.
That is, these processes shall be inherited by a special system process.

XSI • Each attached shared-memory segment is detached and the value of shm_nattch (see
shmget()) in the data structure associated with its shared memory ID shall be decremented
by 1.

XSI • For each semaphore for which the calling process has set a semadj value (see semop()), that
value shall be added to the semval of the specified semaphore.

• If the process is a controlling process, the SIGHUP signal shall be sent to each process in
the foreground process group of the controlling terminal belonging to the calling process.

• If the process is a controlling process, the controlling terminal associated with the session
shall be disassociated from the session, allowing it to be acquired by a new controlling
process.

• If the exit of the process causes a process group to become orphaned, and if any member of
the newly-orphaned process group is stopped, then a SIGHUP signal followed by a
SIGCONT signal shall be sent to each process in the newly-orphaned process group.

• All open named semaphores in the calling process shall be closed as if by appropriate calls
to sem_close().

ML • Any memory locks established by the process via calls to mlockall() or mlock() shall be
removed. If locked pages in the address space of the calling process are also mapped into
the address spaces of other processes and are locked by those processes, the locks
established by the other processes shall be unaffected by the call by this process to _Exit()
or _exit().

• Memory mappings that were created in the process shall be unmapped before the process
is destroyed.

TYM • Any blocks of typed memory that were mapped in the calling process shall be unmapped,
as if munmap() was implicitly called to unmap them.

MSG • All open message queue descriptors in the calling process shall be closed as if by
appropriate calls to mq_close().

• Any outstanding cancelable asynchronous I/O operations may be canceled. Those
asynchronous I/O operations that are not canceled shall complete as if the _Exit() or
_exit() operation had not yet occurred, but any associated signal notifications shall be
suppressed. The _Exit() or _exit() operation may block awaiting such I/O completion.
Whether any I/O is canceled, and which I/O may be canceled upon _Exit() or _exit(), is
implementation-defined.

• Threads terminated by a call to _Exit() or _exit() shall not invoke their cancellation
cleanup handlers or per-thread data destructors.

OB TRC • If the calling process is a trace controller process, any trace streams that were created by
the calling process shall be shut down as described by the posix_trace_shutdown() function,
and mapping of trace event names to trace event type identifiers of any process built for
these trace streams may be deallocated.

546 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

18943

18944

18945

18946

18947

18948

18949

18950

18951

18952

18953

18954

18955

18956

18957

18958

18959

18960

18961

18962

18963

18964

18965

18966

18967

18968

18969

18970

18971

18972

18973

18974

18975

18976

18977

18978

18979

18980

18981

18982

18983

18984

18985

18986

18987

System Interfaces _Exit()

RETURN VALUE
These functions do not return.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Normally applications should use exit() rather than _Exit() or _exit().

RATIONALE

Process Termination

Early proposals drew a distinction between normal and abnormal process termination.
Abnormal termination was caused only by certain signals and resulted in implementation-
defined ‘‘actions’’, as discussed below. Subsequent proposals distinguished three types of
termination: normal termination (as in the current specification), simple abnormal termination, and
abnormal termination with actions. Again the distinction between the two types of abnormal
termination was that they were caused by different signals and that implementation-defined
actions would result in the latter case. Given that these actions were completely implementation-
defined, the early proposals were only saying when the actions could occur and how their
occurrence could be detected, but not what they were. This was of little or no use to conforming
applications, and thus the distinction is not made in this volume of POSIX.1-2008.

The implementation-defined actions usually include, in most historical implementations, the
creation of a file named core in the current working directory of the process. This file contains an
image of the memory of the process, together with descriptive information about the process,
perhaps sufficient to reconstruct the state of the process at the receipt of the signal.

There is a potential security problem in creating a core file if the process was set-user-ID and the
current user is not the owner of the program, if the process was set-group-ID and none of the
user ’s groups match the group of the program, or if the user does not have permission to write
in the current directory. In this situation, an implementation either should not create a core file
or should make it unreadable by the user.

Despite the silence of this volume of POSIX.1-2008 on this feature, applications are advised not
to create files named core because of potential conflicts in many implementations. Some
implementations use a name other than core for the file; for example, by appending the process
ID to the filename.

Terminating a Process

It is important that the consequences of process termination as described occur regardless of
whether the process called _exit() (perhaps indirectly through exit()) or instead was terminated
due to a signal or for some other reason. Note that in the specific case of exit() this means that
the status argument to exit() is treated in the same way as the status argument to _exit().

A language other than C may have other termination primitives than the C-language exit()
function, and programs written in such a language should use its native termination primitives,
but those should have as part of their function the behavior of _exit() as described.
Implementations in languages other than C are outside the scope of this version of this volume
of POSIX.1-2008, however.

As required by the ISO C standard, using return from main() has the same behavior (other than

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 547

18988

18989

18990

18991

18992

18993

18994

18995

18996

18997

18998

18999

19000

19001

19002

19003

19004

19005

19006

19007

19008

19009

19010

19011

19012

19013

19014

19015

19016

19017

19018

19019

19020

19021

19022

19023

19024

19025

19026

19027

19028

19029

19030

19031

_Exit() System Interfaces

with respect to language scope issues) as calling exit() with the returned value. Reaching the end
of the main() function has the same behavior as calling exit(0).

A value of zero (or EXIT_SUCCESS, which is required to be zero) for the argument status
conventionally indicates successful termination. This corresponds to the specification for exit()
in the ISO C standard. The convention is followed by utilities such as make and various shells,
which interpret a zero status from a child process as success. For this reason, applications should
not call exit(0) or _exit(0) when they terminate unsuccessfully; for example, in signal-catching
functions.

Historically, the implementation-defined process that inherits children whose parents have
terminated without waiting on them is called init and has a process ID of 1.

The sending of a SIGHUP to the foreground process group when a controlling process
terminates corresponds to somewhat different historical implementations. In System V, the
kernel sends a SIGHUP on termination of (essentially) a controlling process. In 4.2 BSD, the
kernel does not send SIGHUP in a case like this, but the termination of a controlling process is
usually noticed by a system daemon, which arranges to send a SIGHUP to the foreground
process group with the vhangup() function. However, in 4.2 BSD, due to the behavior of the
shells that support job control, the controlling process is usually a shell with no other processes
in its process group. Thus, a change to make _exit() behave this way in such systems should not
cause problems with existing applications.

The termination of a process may cause a process group to become orphaned in either of two
ways. The connection of a process group to its parent(s) outside of the group depends on both
the parents and their children. Thus, a process group may be orphaned by the termination of the
last connecting parent process outside of the group or by the termination of the last direct
descendant of the parent process(es). In either case, if the termination of a process causes a
process group to become orphaned, processes within the group are disconnected from their job
control shell, which no longer has any information on the existence of the process group.
Stopped processes within the group would languish forever. In order to avoid this problem,
newly orphaned process groups that contain stopped processes are sent a SIGHUP signal and a
SIGCONT signal to indicate that they have been disconnected from their session. The SIGHUP
signal causes the process group members to terminate unless they are catching or ignoring
SIGHUP. Under most circumstances, all of the members of the process group are stopped if any
of them are stopped.

The action of sending a SIGHUP and a SIGCONT signal to members of a newly orphaned
process group is similar to the action of 4.2 BSD, which sends SIGHUP and SIGCONT to each
stopped child of an exiting process. If such children exit in response to the SIGHUP, any
additional descendants receive similar treatment at that time. In this volume of POSIX.1-2008,
the signals are sent to the entire process group at the same time. Also, in this volume of
POSIX.1-2008, but not in 4.2 BSD, stopped processes may be orphaned, but may be members of a
process group that is not orphaned; therefore, the action taken at _exit() must consider processes
other than child processes.

It is possible for a process group to be orphaned by a call to setpgid() or setsid(), as well as by
process termination. This volume of POSIX.1-2008 does not require sending SIGHUP and
SIGCONT in those cases, because, unlike process termination, those cases are not caused
accidentally by applications that are unaware of job control. An implementation can choose to
send SIGHUP and SIGCONT in those cases as an extension; such an extension must be
documented as required in <signal.h>.

The ISO/IEC 9899: 1999 standard adds the _Exit() function that results in immediate program
termination without triggering signals or atexit()-registered functions. In POSIX.1-2008, this is

548 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19032

19033

19034

19035

19036

19037

19038

19039

19040

19041

19042

19043

19044

19045

19046

19047

19048

19049

19050

19051

19052

19053

19054

19055

19056

19057

19058

19059

19060

19061

19062

19063

19064

19065

19066

19067

19068

19069

19070

19071

19072

19073

19074

19075

19076

19077

19078

19079

System Interfaces _Exit()

equivalent to the _exit() function.

FUTURE DIRECTIONS
None.

SEE ALSO
atexit(), exit(), mlock(), mlockall(), mq_close(), munmap(), posix_trace_create(), sem_close(),
semop(), setpgid(), setsid(), shmget(), wait(), waitid()

XBD <stdlib.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Interactions with the SA_NOCLDWAIT flag and SIGCHLD signal are further clarified.

The values of status from exit() are better described.

Issue 6
Extensions beyond the ISO C standard are marked.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding semantics
for typed memory.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The _Exit() function is included.

• The DESCRIPTION is updated.

The description of tracing semantics is added for alignment with IEEE Std 1003.1q-2000.

References to the wait3() function are removed.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/16 is applied, correcting grammar in the
DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #031 is applied, separating these functions from the
exit() function.

Austin Group Interpretation 1003.1-2001 #085 is applied, clarifying the text regarding flushing of
streams and closing of temporary files.

Functionality relating to the Asynchronous Input and Output, Memory Mapped Files, and
Semaphores options is moved to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 549

19080

19081

19082

19083

19084

19085

19086

19087

19088

19089

19090

19091

19092

19093

19094

19095

19096

19097

19098

19099

19100

19101

19102

19103

19104

19105

19106

19107

19108

19109

19110

19111

_longjmp() System Interfaces

NAME
_longjmp, _setjmp — non-local goto

SYNOPSIS
OB XSI #include <setjmp.h>

void _longjmp(jmp_buf env, int val);
int _setjmp(jmp_buf env);

DESCRIPTION
The _longjmp() and _setjmp() functions shall be equivalent to longjmp() and setjmp(),
respectively, with the additional restriction that _longjmp() and _setjmp() shall not manipulate
the signal mask.

If _longjmp() is called even though env was never initialized by a call to _setjmp(), or when the
last such call was in a function that has since returned, the results are undefined.

RETURN VALUE
Refer to longjmp() and setjmp().

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
If _longjmp() is executed and the environment in which _setjmp() was executed no longer exists,
errors can occur. The conditions under which the environment of the _setjmp() no longer exists
include exiting the function that contains the _setjmp() call, and exiting an inner block with
temporary storage. This condition might not be detectable, in which case the _longjmp() occurs
and, if the environment no longer exists, the contents of the temporary storage of an inner block
are unpredictable. This condition might also cause unexpected process termination. If the
function has returned, the results are undefined.

Passing longjmp() a pointer to a buffer not created by setjmp(), passing _longjmp() a pointer to a
buffer not created by _setjmp(), passing siglongjmp() a pointer to a buffer not created by
sigsetjmp(), or passing any of these three functions a buffer that has been modified by the user
can cause all the problems listed above, and more.

The _longjmp() and _setjmp() functions are included to support programs written to historical
system interfaces. New applications should use siglongjmp() and sigsetjmp() respectively.

RATIONALE
None.

FUTURE DIRECTIONS
The _longjmp() and _setjmp() functions may be removed in a future version.

SEE ALSO
longjmp(), setjmp(), siglongjmp(), sigsetjmp()

XBD <setjmp.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

550 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19112

19113

19114

19115

19116

19117

19118

19119

19120

19121

19122

19123

19124

19125

19126

19127

19128

19129

19130

19131

19132

19133

19134

19135

19136

19137

19138

19139

19140

19141

19142

19143

19144

19145

19146

19147

19148

19149

19150

19151

19152

System Interfaces _longjmp()

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The _longjmp() and _setjmp() functions are marked obsolescent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 551

19153

19154

19155

19156

_tolower() System Interfaces

NAME
_tolower — transliterate uppercase characters to lowercase

SYNOPSIS
OB XSI #include <ctype.h>

int _tolower(int c);

DESCRIPTION
The _tolower() macro shall be equivalent to tolower(c) except that the application shall ensure
that the argument c is an uppercase letter.

RETURN VALUE
Upon successful completion, _tolower() shall return the lowercase letter corresponding to the
argument passed.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications should use the tolower() function instead of the obsolescent _tolower() function.

RATIONALE
None.

FUTURE DIRECTIONS
The _tolower() function may be removed in a future version.

SEE ALSO
tolower(), isupper()

XBD Chapter 7 (on page 135), <ctype.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The _tolower() function is marked obsolescent.

552 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19157

19158

19159

19160

19161

19162

19163

19164

19165

19166

19167

19168

19169

19170

19171

19172

19173

19174

19175

19176

19177

19178

19179

19180

19181

19182

19183

19184

19185

19186

System Interfaces _toupper()

NAME
_toupper — transliterate lowercase characters to uppercase

SYNOPSIS
OB XSI #include <ctype.h>

int _toupper(int c);

DESCRIPTION
The _toupper() macro shall be equivalent to toupper() except that the application shall ensure
that the argument c is a lowercase letter.

RETURN VALUE
Upon successful completion, _toupper() shall return the uppercase letter corresponding to the
argument passed.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications should use the toupper() function instead of the obsolescent _toupper() function.

RATIONALE
None.

FUTURE DIRECTIONS
The _toupper() function may be removed in a future version.

SEE ALSO
islower(), toupper()

XBD Chapter 7 (on page 135), <ctype.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The _toupper() function is marked obsolescent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 553

19187

19188

19189

19190

19191

19192

19193

19194

19195

19196

19197

19198

19199

19200

19201

19202

19203

19204

19205

19206

19207

19208

19209

19210

19211

19212

19213

19214

19215

19216

a64l() System Interfaces

NAME
a64l, l64a — convert between a 32-bit integer and a radix-64 ASCII string

SYNOPSIS
XSI #include <stdlib.h>

long a64l(const char *s);
char *l64a(long value);

DESCRIPTION
These functions maintain numbers stored in radix-64 ASCII characters. This is a notation by
which 32-bit integers can be represented by up to six characters; each character represents a digit
in radix-64 notation. If the type long contains more than 32 bits, only the low-order 32 bits shall
be used for these operations.

The characters used to represent digits are ’.’ (dot) for 0, ’/’ for 1, ’0’ through ’9’ for [2,11],
’A’ through ’Z’ for [12,37], and ’a’ through ’z’ for [38,63].

The a64l() function shall take a pointer to a radix-64 representation, in which the first digit is the
least significant, and return the corresponding long value. If the string pointed to by s contains
more than six characters, a64l() shall use the first six. If the first six characters of the string
contain a null terminator, a64l() shall use only characters preceding the null terminator. The
a64l() function shall scan the character string from left to right with the least significant digit on
the left, decoding each character as a 6-bit radix-64 number. If the type long contains more than
32 bits, the resulting value is sign-extended. The behavior of a64l() is unspecified if s is a null
pointer or the string pointed to by s was not generated by a previous call to l64a().

The l64a() function shall take a long argument and return a pointer to the corresponding
radix-64 representation. The behavior of l64a() is unspecified if value is negative.

The value returned by l64a() may be a pointer into a static buffer. Subsequent calls to l64a() may
overwrite the buffer.

The l64a() function need not be thread-safe.

RETURN VALUE
Upon successful completion, a64l() shall return the long value resulting from conversion of the
input string. If a string pointed to by s is an empty string, a64l() shall return 0L.

The l64a() function shall return a pointer to the radix-64 representation. If value is 0L, l64a() shall
return a pointer to an empty string.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
If the type long contains more than 32 bits, the result of a64l(l64a(x)) is x in the low-order 32 bits.

RATIONALE
This is not the same encoding as used by either encoding variant of the uuencode utility.

FUTURE DIRECTIONS
None.

554 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19217

19218

19219

19220

19221

19222

19223

19224

19225

19226

19227

19228

19229

19230

19231

19232

19233

19234

19235

19236

19237

19238

19239

19240

19241

19242

19243

19244

19245

19246

19247

19248

19249

19250

19251

19252

19253

19254

19255

19256

19257

System Interfaces a64l()

SEE ALSO
strtoul()

XBD <stdlib.h>

XCU uuencode

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that the l64a() function need not be reentrant is added to the DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 555

19258

19259

19260

19261

19262

19263

19264

19265

19266

19267

19268

19269

19270

abort() System Interfaces

NAME
abort — generate an abnormal process abort

SYNOPSIS
#include <stdlib.h>

void abort(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The abort() function shall cause abnormal process termination to occur, unless the signal
SIGABRT is being caught and the signal handler does not return.

CX The abnormal termination processing shall include the default actions defined for SIGABRT and
may include an attempt to effect fclose() on all open streams.

The SIGABRT signal shall be sent to the calling process as if by means of raise() with the
argument SIGABRT.

CX The status made available to wait(), waitid(), or waitpid() by abort() shall be that of a process
terminated by the SIGABRT signal. The abort() function shall override blocking or ignoring the
SIGABRT signal.

RETURN VALUE
The abort() function shall not return.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Catching the signal is intended to provide the application developer with a portable means to
abort processing, free from possible interference from any implementation-supplied functions.

RATIONALE
The ISO/IEC 9899: 1999 standard requires the abort() function to be async-signal-safe. Since
POSIX.1-2008 defers to the ISO C standard, this required a change to the DESCRIPTION from
‘‘shall include the effect of fclose()’’ to ‘‘may include an attempt to effect fclose().’’

The revised wording permits some backwards-compatibility and avoids a potential deadlock
situation.

The Open Group Base Resolution bwg2002-003 is applied, removing the following XSI shaded
paragraph from the DESCRIPTION:

‘‘On XSI-conformant systems, in addition the abnormal termination processing shall include the
effect of fclose() on message catalog descriptors.’’

There were several reasons to remove this paragraph:

• No special processing of open message catalogs needs to be performed prior to abnormal
process termination.

• The main reason to specifically mention that abort() includes the effect of fclose() on open
streams is to flush output queued on the stream. Message catalogs in this context are read-
only and, therefore, do not need to be flushed.

556 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19271

19272

19273

19274

19275

19276

19277

19278

19279

19280

19281

19282

19283

19284

19285

19286

19287

19288

19289

19290

19291

19292

19293

19294

19295

19296

19297

19298

19299

19300

19301

19302

19303

19304

19305

19306

19307

19308

19309

19310

19311

19312

19313

System Interfaces abort()

• The effect of fclose() on a message catalog descriptor is unspecified. Message catalog
descriptors are allowed, but not required to be implemented using a file descriptor, but
there is no mention in POSIX.1-2008 of a message catalog descriptor using a standard I/O
stream FILE object as would be expected by fclose().

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), kill(), raise(), signal(), wait(), waitid()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Changes are made to the DESCRIPTION for alignment with the ISO/IEC 9899: 1999 standard.

The Open Group Base Resolution bwg2002-003 is applied.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/10 is applied, changing the
DESCRIPTION of abnormal termination processing and adding to the RATIONALE section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/9 is applied, changing ‘‘implementation-
defined functions’’ to ‘‘implementation-supplied functions’’ in the APPLICATION USAGE
section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 557

19314

19315

19316

19317

19318

19319

19320

19321

19322

19323

19324

19325

19326

19327

19328

19329

19330

19331

19332

19333

abs() System Interfaces

NAME
abs — return an integer absolute value

SYNOPSIS
#include <stdlib.h>

int abs(int i);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The abs() function shall compute the absolute value of its integer operand, i. If the result cannot
be represented, the behavior is undefined.

RETURN VALUE
The abs() function shall return the absolute value of its integer operand.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
In two’s-complement representation, the absolute value of the negative integer with largest
magnitude {INT_MIN} might not be representable.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fabs(), labs()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

558 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19334

19335

19336

19337

19338

19339

19340

19341

19342

19343

19344

19345

19346

19347

19348

19349

19350

19351

19352

19353

19354

19355

19356

19357

19358

19359

19360

19361

19362

19363

19364

System Interfaces accept()

NAME
accept — accept a new connection on a socket

SYNOPSIS
#include <sys/socket.h>

int accept(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len);

DESCRIPTION
The accept() function shall extract the first connection on the queue of pending connections,
create a new socket with the same socket type protocol and address family as the specified
socket, and allocate a new file descriptor for that socket.

The accept() function takes the following arguments:

socket Specifies a socket that was created with socket(), has been bound to an address
with bind(), and has issued a successful call to listen().

address Either a null pointer, or a pointer to a sockaddr structure where the address of
the connecting socket shall be returned.

address_len Points to a socklen_t structure which on input specifies the length of the
supplied sockaddr structure, and on output specifies the length of the stored
address.

If address is not a null pointer, the address of the peer for the accepted connection shall be stored
in the sockaddr structure pointed to by address, and the length of this address shall be stored in
the object pointed to by address_len.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address shall be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound, then the
value stored in the object pointed to by address is unspecified.

If the listen queue is empty of connection requests and O_NONBLOCK is not set on the file
descriptor for the socket, accept() shall block until a connection is present. If the listen() queue is
empty of connection requests and O_NONBLOCK is set on the file descriptor for the socket,
accept() shall fail and set errno to [EAGAIN] or [EWOULDBLOCK].

The accepted socket cannot itself accept more connections. The original socket remains open and
can accept more connections.

RETURN VALUE
Upon successful completion, accept() shall return the non-negative file descriptor of the accepted
socket. Otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The accept() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
O_NONBLOCK is set for the socket file descriptor and no connections are
present to be accepted.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNABORTED]
A connection has been aborted.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 559

19365

19366

19367

19368

19369

19370

19371

19372

19373

19374

19375

19376

19377

19378

19379

19380

19381

19382

19383

19384

19385

19386

19387

19388

19389

19390

19391

19392

19393

19394

19395

19396

19397

19398

19399

19400

19401

19402

19403

19404

19405

19406

accept() System Interfaces

[EINTR] The accept() function was interrupted by a signal that was caught before a
valid connection arrived.

[EINVAL] The socket is not accepting connections.

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum number of file descriptors in the system are already open.

[ENOBUFS] No buffer space is available.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket type of the specified socket does not support accepting
connections.

The accept() function may fail if:

OB XSR [EPROTO] A protocol error has occurred; for example, the STREAMS protocol stack has
not been initialized.

EXAMPLES
None.

APPLICATION USAGE
When a connection is available, select() indicates that the file descriptor for the socket is ready
for reading.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
bind(), connect(), listen(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the accept() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

Austin Group Interpretation 1003.1-2001 #044 is applied, changing the ‘‘may fail’’ [ENOBUFS]
and [ENOMEM] errors to become ‘‘shall fail’’ errors.

Functionality relating to XSI STREAMS is marked obsolescent.

560 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19407

19408

19409

19410

19411

19412

19413

19414

19415

19416

19417

19418

19419

19420

19421

19422

19423

19424

19425

19426

19427

19428

19429

19430

19431

19432

19433

19434

19435

19436

19437

19438

19439

19440

System Interfaces access()

NAME
access, faccessat — determine accessibility of a file relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int access(const char *path, int amode);
int faccessat(int fd, const char *path, int amode, int flag);

DESCRIPTION
The access() function shall check the file named by the pathname pointed to by the path
argument for accessibility according to the bit pattern contained in amode, using the real user ID
in place of the effective user ID and the real group ID in place of the effective group ID.

The value of amode is either the bitwise-inclusive OR of the access permissions to be checked
(R_OK, W_OK, X_OK) or the existence test (F_OK).

If any access permissions are checked, each shall be checked individually, as described in XBD
Section 4.4 (on page 108), except that where that description refers to execute permission for a
process with appropriate privileges, an implementation may indicate success for X_OK even if
execute permission is not granted to any user.

The faccessat() function shall be equivalent to the access() function, except in the case where path
specifies a relative path. In this case the file whose accessibility is to be determined shall be
located relative to the directory associated with the file descriptor fd instead of the current
working directory. If the file descriptor was opened without O_SEARCH, the function shall
check whether directory searches are permitted using the current permissions of the directory
underlying the file descriptor. If the file descriptor was opened with O_SEARCH, the function
shall not perform the check.

If faccessat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to access().

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_EACCESS The checks for accessibility are performed using the effective user and group
IDs instead of the real user and group ID as required in a call to access().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error.

ERRORS
These functions shall fail if:

[EACCES] Permission bits of the file mode do not permit the requested access, or search
permission is denied on a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory, or the path argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 561

19441

19442

19443

19444

19445

19446

19447

19448

19449

19450

19451

19452

19453

19454

19455

19456

19457

19458

19459

19460

19461

19462

19463

19464

19465

19466

19467

19468

19469

19470

19471

19472

19473

19474

19475

19476

19477

19478

19479

19480

19481

19482

19483

19484

access() System Interfaces

that is neither a directory nor a symbolic link to a directory.

[EROFS] Write access is requested for a file on a read-only file system.

The faccessat() function shall fail if:

[EACCES] fd was not opened with O_SEARCH and the permissions of the directory
underlying fd do not permit directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

These functions may fail if:

[EINVAL] The value of the amode argument is invalid.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that is being
executed.

The faccessat() function may fail if:

[EINVAL] The value of the flag argument is not valid.

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES

Testing for the Existence of a File

The following example tests whether a file named myfile exists in the /tmp directory.

#include <unistd.h>
...
int result;
const char *filename = "/tmp/myfile";

result = access (filename, F_OK);

APPLICATION USAGE
Additional values of amode other than the set defined in the description may be valid; for
example, if a system has extended access controls.

The use of the AT_EACCESS value for flag enables functionality not available in access().

RATIONALE
In early proposals, some inadequacies in the access() function led to the creation of an eaccess()
function because:

1. Historical implementations of access() do not test file access correctly when the process’
real user ID is superuser. In particular, they always return zero when testing execute
permissions without regard to whether the file is executable.

562 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19485

19486

19487

19488

19489

19490

19491

19492

19493

19494

19495

19496

19497

19498

19499

19500

19501

19502

19503

19504

19505

19506

19507

19508

19509

19510

19511

19512

19513

19514

19515

19516

19517

19518

19519

19520

19521

19522

19523

System Interfaces access()

2. The superuser has complete access to all files on a system. As a consequence, programs
started by the superuser and switched to the effective user ID with lesser privileges
cannot use access() to test their file access permissions.

However, the historical model of eaccess() does not resolve problem (1), so this volume of
POSIX.1-2008 now allows access() to behave in the desired way because several implementations
have corrected the problem. It was also argued that problem (2) is more easily solved by using
open(), chdir(), or one of the exec functions as appropriate and responding to the error, rather
than creating a new function that would not be as reliable. Therefore, eaccess() is not included in
this volume of POSIX.1-2008.

The sentence concerning appropriate privileges and execute permission bits reflects the two
possibilities implemented by historical implementations when checking superuser access for
X_OK.

New implementations are discouraged from returning X_OK unless at least one execution
permission bit is set.

The purpose of the faccessat() function is to enable the checking of the accessibility of files in
directories other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to access(), resulting in unspecified
behavior. By opening a file descriptor for the target directory and using the faccessat() function it
can be guaranteed that the file tested for accessibility is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), fstatat()

XBD Section 4.4 (on page 108), <fcntl.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

• The [ETXTBSY] optional error condition is added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretations 1003.1-2001 #046 and #143 are applied.

The faccessat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made to allow a directory to be opened for searching.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 563

19524

19525

19526

19527

19528

19529

19530

19531

19532

19533

19534

19535

19536

19537

19538

19539

19540

19541

19542

19543

19544

19545

19546

19547

19548

19549

19550

19551

19552

19553

19554

19555

19556

19557

19558

19559

19560

19561

19562

19563

19564

acos() System Interfaces

NAME
acos, acosf, acosl — arc cosine functions

SYNOPSIS
#include <math.h>

double acos(double x);
float acosf(float x);
long double acosl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the principal value of the arc cosine of their argument x. The
value of x should be in the range [−1,1].

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the arc cosine of x, in the range [0,π]
radians.

MX For finite values of x not in the range [−1,1], a domain error shall occur, and either a NaN (if
supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is +1, +0 shall be returned.

If x is ±Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is finite and is not in the range [−1,1], or is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

564 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19565

19566

19567

19568

19569

19570

19571

19572

19573

19574

19575

19576

19577

19578

19579

19580

19581

19582

19583

19584

19585

19586

19587

19588

19589

19590

19591

19592

19593

19594

19595

19596

19597

19598

19599

19600

19601

19602

19603

19604

System Interfaces acos()

FUTURE DIRECTIONS
None.

SEE ALSO
cos(), feclearexcept(), fetestexcept(), isnan()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The acosf() and acosl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 565

19605

19606

19607

19608

19609

19610

19611

19612

19613

19614

19615

19616

19617

19618

19619

19620

acosh() System Interfaces

NAME
acosh, acoshf, acoshl — inverse hyperbolic cosine functions

SYNOPSIS
#include <math.h>

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the inverse hyperbolic cosine of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the inverse hyperbolic cosine of their
argument.

MX For finite values of x < 1, a domain error shall occur, and either a NaN (if supported), or an
implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is +1, +0 shall be returned.

If x is +Inf, +Inf shall be returned.

If x is −Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is finite and less than +1.0, or is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

566 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19621

19622

19623

19624

19625

19626

19627

19628

19629

19630

19631

19632

19633

19634

19635

19636

19637

19638

19639

19640

19641

19642

19643

19644

19645

19646

19647

19648

19649

19650

19651

19652

19653

19654

19655

19656

19657

19658

19659

19660

System Interfaces acosh()

FUTURE DIRECTIONS
None.

SEE ALSO
cosh(), feclearexcept(), fetestexcept()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The acosh() function is no longer marked as an extension.

The acoshf() and acoshl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 567

19661

19662

19663

19664

19665

19666

19667

19668

19669

19670

19671

19672

19673

19674

19675

19676

19677

acosl() System Interfaces

NAME
acosl — arc cosine functions

SYNOPSIS
#include <math.h>

long double acosl(long double x);

DESCRIPTION
Refer to acos().

568 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19678

19679

19680

19681

19682

19683

19684

System Interfaces aio_cancel()

NAME
aio_cancel — cancel an asynchronous I/O request

SYNOPSIS
#include <aio.h>

int aio_cancel(int fildes, struct aiocb *aiocbp);

DESCRIPTION
The aio_cancel() function shall attempt to cancel one or more asynchronous I/O requests
currently outstanding against file descriptor fildes. The aiocbp argument points to the
asynchronous I/O control block for a particular request to be canceled. If aiocbp is NULL, then
all outstanding cancelable asynchronous I/O requests against fildes shall be canceled.

Normal asynchronous notification shall occur for asynchronous I/O operations that are
successfully canceled. If there are requests that cannot be canceled, then the normal
asynchronous completion process shall take place for those requests when they are completed.

For requested operations that are successfully canceled, the associated error status shall be set to
[ECANCELED] and the return status shall be −1. For requested operations that are not
successfully canceled, the aiocbp shall not be modified by aio_cancel().

If aiocbp is not NULL, then if fildes does not have the same value as the file descriptor with which
the asynchronous operation was initiated, unspecified results occur.

Which operations are cancelable is implementation-defined.

RETURN VALUE
The aio_cancel() function shall return the value AIO_CANCELED if the requested operation(s)
were canceled. The value AIO_NOTCANCELED shall be returned if at least one of the
requested operation(s) cannot be canceled because it is in progress. In this case, the state of the
other operations, if any, referenced in the call to aio_cancel() is not indicated by the return value
of aio_cancel(). The application may determine the state of affairs for these operations by using
aio_error(). The value AIO_ALLDONE is returned if all of the operations have already
completed. Otherwise, the function shall return −1 and set errno to indicate the error.

ERRORS
The aio_cancel() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_read(), aio_write()

XBD <aio.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 569

19685

19686

19687

19688

19689

19690

19691

19692

19693

19694

19695

19696

19697

19698

19699

19700

19701

19702

19703

19704

19705

19706

19707

19708

19709

19710

19711

19712

19713

19714

19715

19716

19717

19718

19719

19720

19721

19722

19723

19724

19725

aio_cancel() System Interfaces

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/10 is applied, removing the words ‘‘to the
calling process’’ in the RETURN VALUE section. The term was unnecessary and precluded
threads.

Issue 7
The aio_cancel() function is moved from the Asynchronous Input and Output option to the Base.

570 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19726

19727

19728

19729

19730

19731

19732

19733

19734

19735

19736

System Interfaces aio_error()

NAME
aio_error — retrieve errors status for an asynchronous I/O operation

SYNOPSIS
#include <aio.h>

int aio_error(const struct aiocb *aiocbp);

DESCRIPTION
The aio_error() function shall return the error status associated with the aiocb structure
referenced by the aiocbp argument. The error status for an asynchronous I/O operation is the

SIO errno value that would be set by the corresponding read(), write(), fdatasync(), or fsync()
operation. If the operation has not yet completed, then the error status shall be equal to
[EINPROGRESS].

If the aiocb structure pointed to by aiocbp is not associated with an operation that has been
scheduled, the results are undefined.

RETURN VALUE
If the asynchronous I/O operation has completed successfully, then 0 shall be returned. If the
asynchronous operation has completed unsuccessfully, then the error status, as described for

SIO read(), write(), fdatasync(), and fsync(), shall be returned. If the asynchronous I/O operation has
not yet completed, then [EINPROGRESS] shall be returned.

If the aio_error() function fails, it shall return −1 and set errno to indicate the error.

ERRORS
The aio_error() function may fail if:

[EINVAL] The aiocbp argument does not refer to an asynchronous operation whose
return status has not yet been retrieved.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel(), aio_fsync(), aio_read(), aio_return(), aio_write(), close(), exec , exit(), fork(), lio_listio(),
lseek(), read()

XBD <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 571

19737

19738

19739

19740

19741

19742

19743

19744

19745

19746

19747

19748

19749

19750

19751

19752

19753

19754

19755

19756

19757

19758

19759

19760

19761

19762

19763

19764

19765

19766

19767

19768

19769

19770

19771

19772

19773

19774

19775

19776

19777

aio_error() System Interfaces

Issue 7
Austin Group Interpretation 1003.1-2001 #045 is applied.

SD5-XSH-ERN-148 is applied.

The aio_error() function is moved from the Asynchronous Input and Output option to the Base.

572 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19778

19779

19780

19781

System Interfaces aio_fsync()

NAME
aio_fsync — asynchronous file synchronization

SYNOPSIS
#include <aio.h>

int aio_fsync(int op, struct aiocb *aiocbp);

DESCRIPTION
The aio_fsync() function shall asynchronously force all I/O operations associated with the file
indicated by the file descriptor aio_fildes member of the aiocb structure referenced by the aiocbp
argument and queued at the time of the call to aio_fsync() to the synchronized I/O completion
state. The function call shall return when the synchronization request has been initiated or
queued to the file or device (even when the data cannot be synchronized immediately).

If op is O_DSYNC, all currently queued I/O operations shall be completed as if by a call to
fdatasync(); that is, as defined for synchronized I/O data integrity completion. If op is O_SYNC,
all currently queued I/O operations shall be completed as if by a call to fsync(); that is, as
defined for synchronized I/O file integrity completion. If the aio_fsync() function fails, or if the
operation queued by aio_fsync() fails, then, as for fsync() and fdatasync(), outstanding I/O
operations are not guaranteed to have been completed.

If aio_fsync() succeeds, then it is only the I/O that was queued at the time of the call to
aio_fsync() that is guaranteed to be forced to the relevant completion state. The completion of
subsequent I/O on the file descriptor is not guaranteed to be completed in a synchronized
fashion.

The aiocbp argument refers to an asynchronous I/O control block. The aiocbp value may be used
as an argument to aio_error() and aio_return() in order to determine the error status and return
status, respectively, of the asynchronous operation while it is proceeding. When the request is
queued, the error status for the operation is [EINPROGRESS]. When all data has been
successfully transferred, the error status shall be reset to reflect the success or failure of the
operation. If the operation does not complete successfully, the error status for the operation shall
be set to indicate the error. The aio_sigevent member determines the asynchronous notification to
occur as specified in Section 2.4.1 (on page 484) when all operations have achieved synchronized
I/O completion. All other members of the structure referenced by aiocbp are ignored. If the
control block referenced by aiocbp becomes an illegal address prior to asynchronous I/O
completion, then the behavior is undefined.

If the aio_fsync() function fails or aiocbp indicates an error condition, data is not guaranteed to
have been successfully transferred.

RETURN VALUE
The aio_fsync() function shall return the value 0 if the I/O operation is successfully queued;
otherwise, the function shall return the value −1 and set errno to indicate the error.

ERRORS
The aio_fsync() function shall fail if:

[EAGAIN] The requested asynchronous operation was not queued due to temporary
resource limitations.

[EBADF] The aio_fildes member of the aiocb structure referenced by the aiocbp argument
is not a valid file descriptor open for writing.

[EINVAL] This implementation does not support synchronized I/O for this file.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 573

19782

19783

19784

19785

19786

19787

19788

19789

19790

19791

19792

19793

19794

19795

19796

19797

19798

19799

19800

19801

19802

19803

19804

19805

19806

19807

19808

19809

19810

19811

19812

19813

19814

19815

19816

19817

19818

19819

19820

19821

19822

19823

19824

19825

aio_fsync() System Interfaces

[EINVAL] A value of op other than O_DSYNC or O_SYNC was specified.

In the event that any of the queued I/O operations fail, aio_fsync() shall return the error
condition defined for read() and write(). The error is returned in the error status for the
asynchronous fsync() operation, which can be retrieved using aio_error().

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fcntl(), fdatasync(), fsync(), open(), read(), write()

XBD <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/11 is applied, removing the words ‘‘to the
calling process’’ in the RETURN VALUE section. The term was unnecessary and precluded
threads.

Issue 7
The aio_fsync() function is moved from the Asynchronous Input and Output option to the Base.

574 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19826

19827

19828

19829

19830

19831

19832

19833

19834

19835

19836

19837

19838

19839

19840

19841

19842

19843

19844

19845

19846

19847

19848

19849

19850

19851

System Interfaces aio_read()

NAME
aio_read — asynchronous read from a file

SYNOPSIS
#include <aio.h>

int aio_read(struct aiocb *aiocbp);

DESCRIPTION
The aio_read() function shall read aiocbp−>aio_nbytes from the file associated with
aiocbp−>aio_fildes into the buffer pointed to by aiocbp−>aio_buf. The function call shall return
when the read request has been initiated or queued to the file or device (even when the data
cannot be delivered immediately).

PIO If prioritized I/O is supported for this file, then the asynchronous operation shall be submitted
at a priority equal to a base scheduling priority minus aiocbp−>aio_reqprio. If Thread Execution
Scheduling is not supported, then the base scheduling priority is that of the calling process;

PIO TPS otherwise, the base scheduling priority is that of the calling thread.

The aiocbp value may be used as an argument to aio_error() and aio_return() in order to
determine the error status and return status, respectively, of the asynchronous operation while it
is proceeding. If an error condition is encountered during queuing, the function call shall return
without having initiated or queued the request. The requested operation takes place at the
absolute position in the file as given by aio_offset, as if lseek() were called immediately prior to
the operation with an offset equal to aio_offset and a whence equal to SEEK_SET. After a
successful call to enqueue an asynchronous I/O operation, the value of the file offset for the file
is unspecified.

The aio_sigevent member specifies the notification which occurs when the request is completed.

The aiocbp−>aio_lio_opcode field shall be ignored by aio_read().

The aiocbp argument points to an aiocb structure. If the buffer pointed to by aiocbp−>aio_buf or
the control block pointed to by aiocbp becomes an illegal address prior to asynchronous I/O
completion, then the behavior is undefined.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

SIO If synchronized I/O is enabled on the file associated with aiocbp−>aio_fildes, the behavior of this
function shall be according to the definitions of synchronized I/O data integrity completion and
synchronized I/O file integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is
outstanding to the address range being changed, the result of that action is undefined.

For regular files, no data transfer shall occur past the offset maximum established in the open
file description associated with aiocbp−>aio_fildes.

RETURN VALUE
The aio_read() function shall return the value zero if the I/O operation is successfully queued;
otherwise, the function shall return the value −1 and set errno to indicate the error.

ERRORS
The aio_read() function shall fail if:

[EAGAIN] The requested asynchronous I/O operation was not queued due to system
resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to
aio_read(), or asynchronously. If any of the conditions below are detected synchronously, the

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 575

19852

19853

19854

19855

19856

19857

19858

19859

19860

19861

19862

19863

19864

19865

19866

19867

19868

19869

19870

19871

19872

19873

19874

19875

19876

19877

19878

19879

19880

19881

19882

19883

19884

19885

19886

19887

19888

19889

19890

19891

19892

19893

19894

19895

aio_read() System Interfaces

aio_read() function shall return −1 and set errno to the corresponding value. If any of the
conditions below are detected asynchronously, the return status of the asynchronous operation
is set to −1, and the error status of the asynchronous operation is set to the corresponding value.

[EBADF] The aiocbp−>aio_fildes argument is not a valid file descriptor open for reading.

[EINVAL] The file offset value implied by aiocbp−>aio_offset would be invalid,
PIO aiocbp−>aio_reqprio is not a valid value, or aiocbp−>aio_nbytes is an invalid

value.

In the case that the aio_read() successfully queues the I/O operation but the operation is
subsequently canceled or encounters an error, the return status of the asynchronous operation is
one of the values normally returned by the read() function call. In addition, the error status of
the asynchronous operation is set to one of the error statuses normally set by the read() function
call, or one of the following values:

[EBADF] The aiocbp−>aio_fildes argument is not a valid file descriptor open for reading.

[ECANCELED] The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel() request.

[EINVAL] The file offset value implied by aiocbp−>aio_offset would be invalid.

The following condition may be detected synchronously or asynchronously:

[EOVERFLOW] The file is a regular file, aiobcp−>aio_nbytes is greater than 0, and the starting
offset in aiobcp−>aio_offset is before the end-of-file and is at or beyond the
offset maximum in the open file description associated with aiocbp−>aio_fildes.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel(), aio_error(), lio_listio(), aio_return(), aio_write(), close(), exec , exit(), fork(), lseek(),
read()

XBD <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

576 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19896

19897

19898

19899

19900

19901

19902

19903

19904

19905

19906

19907

19908

19909

19910

19911

19912

19913

19914

19915

19916

19917

19918

19919

19920

19921

19922

19923

19924

19925

19926

19927

19928

19929

19930

19931

19932

19933

19934

System Interfaces aio_read()

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open
file description. This change is to support large files.

• In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
large files.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/12 is applied, rewording the
DESCRIPTION when prioritized I/O is supported to account for threads, and removing the
words ‘‘to the calling process’’ in the RETURN VALUE section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/13 is applied, updating the [EINVAL]
error, so that detection of an [EINVAL] error for an invalid value of aiocbp−>aio_reqprio is only
required if the Prioritized Input and Output option is supported.

Issue 7
Austin Group Interpretation 1003.1-2001 #082 is applied.

The aio_read() function is moved from the Asynchronous Input and Output option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 577

19935

19936

19937

19938

19939

19940

19941

19942

19943

19944

19945

19946

19947

19948

19949

aio_return() System Interfaces

NAME
aio_return — retrieve return status of an asynchronous I/O operation

SYNOPSIS
#include <aio.h>

ssize_t aio_return(struct aiocb *aiocbp);

DESCRIPTION
The aio_return() function shall return the return status associated with the aiocb structure
referenced by the aiocbp argument. The return status for an asynchronous I/O operation is the
value that would be returned by the corresponding read(), write(), or fsync() function call. If the
error status for the operation is equal to [EINPROGRESS], then the return status for the
operation is undefined. The aio_return() function may be called exactly once to retrieve the
return status of a given asynchronous operation; thereafter, if the same aiocb structure is used in
a call to aio_return() or aio_error(), an error may be returned. When the aiocb structure referred
to by aiocbp is used to submit another asynchronous operation, then aio_return() may be
successfully used to retrieve the return status of that operation.

RETURN VALUE
If the asynchronous I/O operation has completed, then the return status, as described for read(),
write(), and fsync(), shall be returned. If the asynchronous I/O operation has not yet completed,
the results of aio_return() are undefined.

If the aio_return() function fails, it shall return −1 and set errno to indicate the error.

ERRORS
The aio_return() function may fail if:

[EINVAL] The aiocbp argument does not refer to an asynchronous operation whose
return status has not yet been retrieved.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel(), aio_error(), aio_fsync(), aio_read(), aio_write(), close(), exec , exit(), fork(), lio_listio(),
lseek(), read()

XBD <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

The [EINVAL] error condition is made optional. This is for consistency with the DESCRIPTION.

578 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19950

19951

19952

19953

19954

19955

19956

19957

19958

19959

19960

19961

19962

19963

19964

19965

19966

19967

19968

19969

19970

19971

19972

19973

19974

19975

19976

19977

19978

19979

19980

19981

19982

19983

19984

19985

19986

19987

19988

19989

19990

19991

19992

System Interfaces aio_return()

Issue 7
SD5-XSH-ERN-148 is applied.

The aio_return() function is moved from the Asynchronous Input and Output option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 579

19993

19994

19995

aio_suspend() System Interfaces

NAME
aio_suspend — wait for an asynchronous I/O request

SYNOPSIS
#include <aio.h>

int aio_suspend(const struct aiocb *const list[], int nent,
const struct timespec *timeout);

DESCRIPTION
The aio_suspend() function shall suspend the calling thread until at least one of the asynchronous
I/O operations referenced by the list argument has completed, until a signal interrupts the
function, or, if timeout is not NULL, until the time interval specified by timeout has passed. If any
of the aiocb structures in the list correspond to completed asynchronous I/O operations (that is,
the error status for the operation is not equal to [EINPROGRESS]) at the time of the call, the
function shall return without suspending the calling thread. The list argument is an array of
pointers to asynchronous I/O control blocks. The nent argument indicates the number of
elements in the array. Each aiocb structure pointed to has been used in initiating an
asynchronous I/O request via aio_read(), aio_write(), or lio_listio(). This array may contain null
pointers, which are ignored. If this array contains pointers that refer to aiocb structures that have
not been used in submitting asynchronous I/O, the effect is undefined.

If the time interval indicated in the timespec structure pointed to by timeout passes before any of
the I/O operations referenced by list are completed, then aio_suspend() shall return with an error.

MON If the Monotonic Clock option is supported, the clock that shall be used to measure this time
interval shall be the CLOCK_MONOTONIC clock.

RETURN VALUE
If the aio_suspend() function returns after one or more asynchronous I/O operations have
completed, the function shall return zero. Otherwise, the function shall return a value of −1 and
set errno to indicate the error.

The application may determine which asynchronous I/O completed by scanning the associated
error and return status using aio_error() and aio_return(), respectively.

ERRORS
The aio_suspend() function shall fail if:

[EAGAIN] No asynchronous I/O indicated in the list referenced by list completed in the
time interval indicated by timeout.

[EINTR] A signal interrupted the aio_suspend() function. Note that, since each
asynchronous I/O operation may possibly provoke a signal when it
completes, this error return may be caused by the completion of one (or more)
of the very I/O operations being awaited.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

580 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

19996

19997

19998

19999

20000

20001

20002

20003

20004

20005

20006

20007

20008

20009

20010

20011

20012

20013

20014

20015

20016

20017

20018

20019

20020

20021

20022

20023

20024

20025

20026

20027

20028

20029

20030

20031

20032

20033

20034

20035

20036

20037

System Interfaces aio_suspend()

FUTURE DIRECTIONS
None.

SEE ALSO
aio_read(), aio_write(), lio_listio()

XBD <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that the
CLOCK_MONOTONIC clock, if supported, is used.

Issue 7
The aio_suspend() function is moved from the Asynchronous Input and Output option to the
Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 581

20038

20039

20040

20041

20042

20043

20044

20045

20046

20047

20048

20049

20050

20051

20052

20053

aio_write() System Interfaces

NAME
aio_write — asynchronous write to a file

SYNOPSIS
#include <aio.h>

int aio_write(struct aiocb *aiocbp);

DESCRIPTION
The aio_write() function shall write aiocbp−>aio_nbytes to the file associated with
aiocbp−>aio_fildes from the buffer pointed to by aiocbp−>aio_buf. The function shall return when
the write request has been initiated or, at a minimum, queued to the file or device.

PIO If prioritized I/O is supported for this file, then the asynchronous operation shall be submitted
at a priority equal to a base scheduling priority minus aiocbp−>aio_reqprio. If Thread Execution
Scheduling is not supported, then the base scheduling priority is that of the calling process;

PIO TPS otherwise, the base scheduling priority is that of the calling thread.

The aiocbp argument may be used as an argument to aio_error() and aio_return() in order to
determine the error status and return status, respectively, of the asynchronous operation while it
is proceeding.

The aiocbp argument points to an aiocb structure. If the buffer pointed to by aiocbp−>aio_buf or
the control block pointed to by aiocbp becomes an illegal address prior to asynchronous I/O
completion, then the behavior is undefined.

If O_APPEND is not set for the file descriptor aio_fildes, then the requested operation shall take
place at the absolute position in the file as given by aio_offset, as if lseek() were called
immediately prior to the operation with an offset equal to aio_offset and a whence equal to
SEEK_SET. If O_APPEND is set for the file descriptor, write operations append to the file in the
same order as the calls were made. After a successful call to enqueue an asynchronous I/O
operation, the value of the file offset for the file is unspecified.

The aio_sigevent member specifies the notification which occurs when the request is completed.

The aiocbp−>aio_lio_opcode field shall be ignored by aio_write().

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

SIO If synchronized I/O is enabled on the file associated with aiocbp−>aio_fildes, the behavior of this
function shall be according to the definitions of synchronized I/O data integrity completion, and
synchronized I/O file integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is
outstanding to the address range being changed, the result of that action is undefined.

For regular files, no data transfer shall occur past the offset maximum established in the open
file description associated with aiocbp−>aio_fildes.

RETURN VALUE
The aio_write() function shall return the value zero if the I/O operation is successfully queued;
otherwise, the function shall return the value −1 and set errno to indicate the error.

ERRORS
The aio_write() function shall fail if:

[EAGAIN] The requested asynchronous I/O operation was not queued due to system
resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to
aio_write(), or asynchronously. If any of the conditions below are detected synchronously, the

582 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20054

20055

20056

20057

20058

20059

20060

20061

20062

20063

20064

20065

20066

20067

20068

20069

20070

20071

20072

20073

20074

20075

20076

20077

20078

20079

20080

20081

20082

20083

20084

20085

20086

20087

20088

20089

20090

20091

20092

20093

20094

20095

20096

20097

System Interfaces aio_write()

aio_write() function shall return −1 and set errno to the corresponding value. If any of the
conditions below are detected asynchronously, the return status of the asynchronous operation
shall be set to −1, and the error status of the asynchronous operation is set to the corresponding
value.

[EBADF] The aiocbp−>aio_fildes argument is not a valid file descriptor open for writing.

[EINVAL] The file offset value implied by aiocbp−>aio_offset would be invalid,
PIO aiocbp−>aio_reqprio is not a valid value, or aiocbp−>aio_nbytes is an invalid

value.

In the case that the aio_write() successfully queues the I/O operation, the return status of the
asynchronous operation shall be one of the values normally returned by the write() function call.
If the operation is successfully queued but is subsequently canceled or encounters an error, the
error status for the asynchronous operation contains one of the values normally set by the
write() function call, or one of the following:

[EBADF] The aiocbp−>aio_fildes argument is not a valid file descriptor open for writing.

[EINVAL] The file offset value implied by aiocbp−>aio_offset would be invalid.

[ECANCELED] The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel() request.

The following condition may be detected synchronously or asynchronously:

[EFBIG] The file is a regular file, aiobcp−>aio_nbytes is greater than 0, and the starting
offset in aiobcp−>aio_offset is at or beyond the offset maximum in the open file
description associated with aiocbp−>aio_fildes.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel(), aio_error(), aio_read(), aio_return(), close(), exec , exit(), fork(), lio_listio(), lseek(),
write()

XBD <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 583

20098

20099

20100

20101

20102

20103

20104

20105

20106

20107

20108

20109

20110

20111

20112

20113

20114

20115

20116

20117

20118

20119

20120

20121

20122

20123

20124

20125

20126

20127

20128

20129

20130

20131

20132

20133

20134

20135

20136

20137

20138

20139

aio_write() System Interfaces

• In the DESCRIPTION, text is added to indicate that for regular files no data transfer occurs
past the offset maximum established in the open file description associated with
aiocbp−>aio_fildes.

• The [EFBIG] error is added as part of the large file support extensions.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/14 is applied, rewording the
DESCRIPTION when prioritized I/O is supported to account for threads, and removing the
words ‘‘to the calling process’’ in the RETURN VALUE section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/15 is applied, updating the [EINVAL]
error, so that detection of an [EINVAL] error for an invalid value of aiocbp−>aio_reqprio is only
required if the Prioritized Input and Output option is supported.

Issue 7
Austin Group Interpretation 1003.1-2001 #082 is applied.

The aio_write() function is moved from the Asynchronous Input and Output option to the Base.

584 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20140

20141

20142

20143

20144

20145

20146

20147

20148

20149

20150

20151

20152

System Interfaces alarm()

NAME
alarm — schedule an alarm signal

SYNOPSIS
#include <unistd.h>

unsigned alarm(unsigned seconds);

DESCRIPTION
The alarm() function shall cause the system to generate a SIGALRM signal for the process after
the number of realtime seconds specified by seconds have elapsed. Processor scheduling delays
may prevent the process from handling the signal as soon as it is generated.

If seconds is 0, a pending alarm request, if any, is canceled.

Alarm requests are not stacked; only one SIGALRM generation can be scheduled in this manner.
If the SIGALRM signal has not yet been generated, the call shall result in rescheduling the time
at which the SIGALRM signal is generated.

XSI Interactions between alarm() and setitimer() are unspecified.

RETURN VALUE
If there is a previous alarm() request with time remaining, alarm() shall return a non-zero value
that is the number of seconds until the previous request would have generated a SIGALRM
signal. Otherwise, alarm() shall return 0.

ERRORS
The alarm() function is always successful, and no return value is reserved to indicate an error.

EXAMPLES
None.

APPLICATION USAGE
The fork() function clears pending alarms in the child process. A new process image created by
one of the exec functions inherits the time left to an alarm signal in the image of the old process.

Application developers should note that the type of the argument seconds and the return value of
alarm() is unsigned. That means that a Strictly Conforming POSIX System Interfaces
Application cannot pass a value greater than the minimum guaranteed value for {UINT_MAX},
which the ISO C standard sets as 65 535, and any application passing a larger value is restricting
its portability. A different type was considered, but historical implementations, including those
with a 16-bit int type, consistently use either unsigned or int.

Application developers should be aware of possible interactions when the same process uses
both the alarm() and sleep() functions.

RATIONALE
Many historical implementations (including Version 7 and System V) allow an alarm to occur up
to a second early. Other implementations allow alarms up to half a second or one clock tick
early or do not allow them to occur early at all. The latter is considered most appropriate, since it
gives the most predictable behavior, especially since the signal can always be delayed for an
indefinite amount of time due to scheduling. Applications can thus choose the seconds argument
as the minimum amount of time they wish to have elapse before the signal.

The term ‘‘realtime’’ here and elsewhere (sleep(), times()) is intended to mean ‘‘wall clock’’ time
as common English usage, and has nothing to do with ‘‘realtime operating systems’’. It is in
contrast to virtual time, which could be misinterpreted if just time were used.

In some implementations, including 4.3 BSD, very large values of the seconds argument are
silently rounded down to an implementation-specific maximum value. This maximum is large

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 585

20153

20154

20155

20156

20157

20158

20159

20160

20161

20162

20163

20164

20165

20166

20167

20168

20169

20170

20171

20172

20173

20174

20175

20176

20177

20178

20179

20180

20181

20182

20183

20184

20185

20186

20187

20188

20189

20190

20191

20192

20193

20194

20195

20196

20197

alarm() System Interfaces

enough (to the order of several months) that the effect is not noticeable.

There were two possible choices for alarm generation in multi-threaded applications: generation
for the calling thread or generation for the process. The first option would not have been
particularly useful since the alarm state is maintained on a per-process basis and the alarm that
is established by the last invocation of alarm() is the only one that would be active.

Furthermore, allowing generation of an asynchronous signal for a thread would have
introduced an exception to the overall signal model. This requires a compelling reason in order
to be justified.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), exec , fork(), getitimer(), pause(), sigaction(), sleep()

XBD <signal.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to indicate that interactions with the setitimer(), ualarm(),
and usleep() functions are unspecified.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/16 is applied, replacing ‘‘an
implementation-defined maximum value’’ with ‘‘an implementation-specific maximum value’’
in the RATIONALE.

586 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20198

20199

20200

20201

20202

20203

20204

20205

20206

20207

20208

20209

20210

20211

20212

20213

20214

20215

20216

20217

20218

20219

20220

System Interfaces alphasort()

NAME
alphasort, scandir — scan a directory

SYNOPSIS
#include <dirent.h>

int alphasort(const struct dirent **d1, const struct dirent **d2);
int scandir(const char *dir, struct dirent ***namelist,

int (*sel)(const struct dirent *),
int (*compar)(const struct dirent **, const struct dirent **));

DESCRIPTION
The alphasort() function can be used as the comparison function for the scandir() function to sort
the directory entries, d1 and d2, into alphabetical order. Sorting happens as if by calling the
strcoll() function on the d_name element of the dirent structures passed as the two parameters. If
the strcoll() function fails, the return value of alphasort() is unspecified.

The alphasort() function shall not change the setting of errno if successful. Since no return value
is reserved to indicate an error, an application wishing to check for error situations should set
errno to 0, then call alphasort(), then check errno.

The scandir() function shall scan the directory dir, calling the function referenced by sel on each
directory entry. Entries for which the function referenced by sel returns non-zero shall be stored
in strings allocated as if by a call to malloc(), and sorted as if by a call to qsort() with the
comparison function compar, except that compar need not provide total ordering. The strings are
collected in array namelist which shall be allocated as if by a call to malloc(). If sel is a null
pointer, all entries shall be selected. If the comparison function compar does not provide total
ordering, the order in which the directory entries are stored is unspecified.

RETURN VALUE
Upon successful completion, the alphasort() function shall return an integer greater than, equal
to, or less than 0, according to whether the name of the directory entry pointed to by d1 is
lexically greater than, equal to, or less than the directory pointed to by d2 when both are
interpreted as appropriate to the current locale. There is no return value reserved to indicate an
error.

Upon successful completion, the scandir() function shall return the number of entries in the
array and a pointer to the array through the parameter namelist. Otherwise, the scandir()
function shall return −1.

ERRORS
The scandir() function shall fail if:

[EACCES] Search permission is denied for the component of the path prefix of dir or read
permission is denied for dir.

[ELOOP] A loop exists in symbolic links encountered during resolution of the dir
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of dir does not name an existing directory or dir is an empty
string.

[ENOMEM] Insufficient storage space is available.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 587

20221

20222

20223

20224

20225

20226

20227

20228

20229

20230

20231

20232

20233

20234

20235

20236

20237

20238

20239

20240

20241

20242

20243

20244

20245

20246

20247

20248

20249

20250

20251

20252

20253

20254

20255

20256

20257

20258

20259

20260

20261

20262

20263

alphasort() System Interfaces

[ENOTDIR] A component of dir is not a directory.

The scandir() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the dir argument.

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

EXAMPLES
An example to print the files in the current directory:

#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>
...
struct dirent **namelist;
int i,n;

n = scandir(".", &namelist, 0, alphasort);
if (n < 0)

perror("scandir");
else {

for (i = 0; i < n; i++) {
printf("%s\n", namelist[i]->d_name);
free(namelist[i]);
}

}
free(namelist);

...

APPLICATION USAGE
If dir contains filenames that contain characters outside the domain of the collating sequence of
the current locale, the alphasort() function need not provide a total ordering.

The scandir() function may allocate dynamic storage during its operation. If scandir() is forcibly
terminated, such as by longjmp() or siglongjmp() being executed by the function pointed to by sel
or compar, or by an interrupt routine, scandir() does not have a chance to free that storage, so it
remains permanently allocated. A safe way to handle interrupts is to store the fact that an
interrupt has occurred, then wait until scandir() returns to act on the interrupt.

For functions that allocate memory as if by malloc(), the application should release such memory
when it is no longer required by a call to free(). For scandir(), this is namelist (including all of the
individual strings in namelist).

RATIONALE
None.

588 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20264

20265

20266

20267

20268

20269

20270

20271

20272

20273

20274

20275

20276

20277

20278

20279

20280

20281

20282

20283

20284

20285

20286

20287

20288

20289

20290

20291

20292

20293

20294

20295

20296

20297

20298

20299

20300

20301

20302

20303

20304

20305

System Interfaces alphasort()

FUTURE DIRECTIONS
None.

SEE ALSO
qsort(), strcoll()

XBD <dirent.h>

CHANGE HISTORY
First released in Issue 7.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 589

20306

20307

20308

20309

20310

20311

20312

asctime() System Interfaces

NAME
asctime, asctime_r — convert date and time to a string

SYNOPSIS
OB #include <time.h>

char *asctime(const struct tm *timeptr);
OB CX char *asctime_r(const struct tm *restrict tm, char *restrict buf);

DESCRIPTION
CX For asctime(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

The asctime() function shall convert the broken-down time in the structure pointed to by timeptr
into a string in the form:

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm:

char *asctime(const struct tm *timeptr)
{

static char wday_name[7][3] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"

};
static char mon_name[12][3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};
static char result[26];

sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);

return result;
}

However, the behavior is undefined if timeptr−>tm_wday or timeptr−>tm_mon are not within the
normal ranges as defined in <time.h>, or if timeptr−>tm_year exceeds {INT_MAX}−1990, or if the
above algorithm would attempt to generate more than 26 bytes of output (including the
terminating null).

The tm structure is defined in the <time.h> header.

CX The asctime(), ctime(), gmtime(), and localtime() functions shall return values in one of two static
objects: a broken-down time structure and an array of type char. Execution of any of the
functions may overwrite the information returned in either of these objects by any of the other
functions.

The asctime() function need not be thread-safe.

The asctime_r() function shall convert the broken-down time in the structure pointed to by tm
into a string (of the same form as that returned by asctime(), and with the same undefined
behavior when input or output is out of range) that is placed in the user-supplied buffer pointed

590 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20313

20314

20315

20316

20317

20318

20319

20320

20321

20322

20323

20324

20325

20326

20327

20328

20329

20330

20331

20332

20333

20334

20335

20336

20337

20338

20339

20340

20341

20342

20343

20344

20345

20346

20347

20348

20349

20350

20351

20352

20353

20354

20355

20356

20357

System Interfaces asctime()

to by buf (which shall contain at least 26 bytes) and then return buf .

RETURN VALUE
CX Upon successful completion, asctime() shall return a pointer to the string. If the function is

unsuccessful, it shall return NULL.

Upon successful completion, asctime_r() shall return a pointer to a character string containing
the date and time. This string is pointed to by the argument buf . If the function is unsuccessful,
it shall return NULL.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
These functions are included only for compatibility with older implementations. They have
undefined behavior if the resulting string would be too long, so the use of these functions
should be discouraged. On implementations that do not detect output string length overflow, it
is possible to overflow the output buffers in such a way as to cause applications to fail, or
possible system security violations. Also, these functions do not support localized date and time
formats. To avoid these problems, applications should use strftime() to generate strings from
broken-down times.

Values for the broken-down time structure can be obtained by calling gmtime() or localtime().

The asctime_r() function is thread-safe and shall return values in a user-supplied buffer instead
of possibly using a static data area that may be overwritten by each call.

RATIONALE
The standard developers decided to mark the asctime() and asctime_r() functions obsolescent
even though they are in the ISO C standard due to the possibility of buffer overflow. The ISO C
standard also provides the strftime() function which can be used to avoid these problems.

FUTURE DIRECTIONS
These functions may be removed in a future version.

SEE ALSO
clock(), ctime(), difftime(), gmtime(), localtime(), mktime(), strftime(), strptime(), time(), utime()

XBD <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

The asctime_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the asctime() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The asctime_r() function is marked as part of the Thread-Safe Functions option.

Extensions beyond the ISO C standard are marked.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 591

20358

20359

20360

20361

20362

20363

20364

20365

20366

20367

20368

20369

20370

20371

20372

20373

20374

20375

20376

20377

20378

20379

20380

20381

20382

20383

20384

20385

20386

20387

20388

20389

20390

20391

20392

20393

20394

20395

20396

20397

20398

20399

20400

asctime() System Interfaces

its avoidance of possibly using a static data area.

The DESCRIPTION of asctime_r() is updated to describe the format of the string returned.

The restrict keyword is added to the asctime_r() prototype for alignment with the
ISO/IEC 9899: 1999 standard

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/17 is applied, adding the CX extension in
the RETURN VALUE section requiring that if the asctime() function is unsuccessful it returns
NULL.

Issue 7
Austin Group Interpretation 1003.1-2001 #053 is applied, marking these functions obsolescent.

Austin Group Interpretation 1003.1-2001 #156 is applied.

The asctime_r() function is moved from the Thread-Safe Functions option to the Base.

592 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20401

20402

20403

20404

20405

20406

20407

20408

20409

20410

20411

System Interfaces asin()

NAME
asin, asinf, asinl — arc sine function

SYNOPSIS
#include <math.h>

double asin(double x);
float asinf(float x);
long double asinl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the principal value of the arc sine of their argument x. The value
of x should be in the range [−1,1].

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the arc sine of x, in the range
[−π/2,π/2] radians.

MX For finite values of x not in the range [−1,1], a domain error shall occur, and either a NaN (if
supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

If x is subnormal, a range error may occur and x should be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is finite and is not in the range [−1,1], or is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 593

20412

20413

20414

20415

20416

20417

20418

20419

20420

20421

20422

20423

20424

20425

20426

20427

20428

20429

20430

20431

20432

20433

20434

20435

20436

20437

20438

20439

20440

20441

20442

20443

20444

20445

20446

20447

20448

20449

20450

20451

asin() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), sin()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The asinf() and asinl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

594 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20452

20453

20454

20455

20456

20457

20458

20459

20460

20461

20462

20463

20464

20465

20466

20467

20468

20469

20470

20471

20472

20473

20474

System Interfaces asinh()

NAME
asinh, asinhf, asinhl — inverse hyperbolic sine functions

SYNOPSIS
#include <math.h>

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the inverse hyperbolic sine of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the inverse hyperbolic sine of their
argument.

MX If x is NaN, a NaN shall be returned.

If x is ±0, or ±Inf, x shall be returned.

If x is subnormal, a range error may occur and x should be returned.

ERRORS
These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), sinh()

XBD Section 4.19 (on page 116), <math.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 595

20475

20476

20477

20478

20479

20480

20481

20482

20483

20484

20485

20486

20487

20488

20489

20490

20491

20492

20493

20494

20495

20496

20497

20498

20499

20500

20501

20502

20503

20504

20505

20506

20507

20508

20509

20510

20511

20512

20513

20514

20515

asinh() System Interfaces

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The asinh() function is no longer marked as an extension.

The asinhf() and asinhl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

596 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20516

20517

20518

20519

20520

20521

20522

20523

20524

20525

20526

20527

System Interfaces asinl()

NAME
asinl — arc sine function

SYNOPSIS
#include <math.h>

long double asinl(long double x);

DESCRIPTION
Refer to asin().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 597

20528

20529

20530

20531

20532

20533

20534

assert() System Interfaces

NAME
assert — insert program diagnostics

SYNOPSIS
#include <assert.h>

void assert(scalar expression);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The assert() macro shall insert diagnostics into programs; it shall expand to a void expression.
When it is executed, if expression (which shall have a scalar type) is false (that is, compares equal
to 0), assert() shall write information about the particular call that failed on stderr and shall call
abort().

The information written about the call that failed shall include the text of the argument, the
name of the source file, the source file line number, and the name of the enclosing function; the
latter are, respectively, the values of the preprocessing macros _ _FILE_ _ and _ _LINE_ _ and of
the identifier _ _func_ _.

Forcing a definition of the name NDEBUG, either from the compiler command line or with the
preprocessor control statement #define NDEBUG ahead of the #include <assert.h> statement,
shall stop assertions from being compiled into the program.

RETURN VALUE
The assert() macro shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abort(), stdin

XBD <assert.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The prototype for the expression argument to assert() is changed from int to scalar for alignment
with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION of assert() is updated for alignment with the ISO/IEC 9899: 1999 standard.

598 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20535

20536

20537

20538

20539

20540

20541

20542

20543

20544

20545

20546

20547

20548

20549

20550

20551

20552

20553

20554

20555

20556

20557

20558

20559

20560

20561

20562

20563

20564

20565

20566

20567

20568

20569

20570

20571

20572

20573

20574

20575

System Interfaces atan()

NAME
atan, atanf, atanl — arc tangent function

SYNOPSIS
#include <math.h>

double atan(double x);
float atanf(float x);
long double atanl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the principal value of the arc tangent of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the arc tangent of x in the range
[−π/2,π/2] radians.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, ±π/2 shall be returned.

If x is subnormal, a range error may occur and x should be returned.

ERRORS
These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atan2(), feclearexcept(), fetestexcept(), isnan(), tan()

XBD Section 4.19 (on page 116), <math.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 599

20576

20577

20578

20579

20580

20581

20582

20583

20584

20585

20586

20587

20588

20589

20590

20591

20592

20593

20594

20595

20596

20597

20598

20599

20600

20601

20602

20603

20604

20605

20606

20607

20608

20609

20610

20611

20612

20613

20614

20615

20616

20617

atan() System Interfaces

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The atanf() and atanl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

600 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20618

20619

20620

20621

20622

20623

20624

20625

20626

20627

20628

System Interfaces atan2()

NAME
atan2, atan2f, atan2l — arc tangent functions

SYNOPSIS
#include <math.h>

double atan2(double y, double x);
float atan2f(float y, float x);
long double atan2l(long double y, long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the principal value of the arc tangent of y/x, using the signs of
both arguments to determine the quadrant of the return value.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the arc tangent of y/x in the range
[−π,π] radians.

If y is ±0 and x is < 0, ±π shall be returned.

If y is ±0 and x is > 0, ±0 shall be returned.

If y is < 0 and x is ±0, −π/2 shall be returned.

If y is > 0 and x is ±0, π/2 shall be returned.

If x is 0, a pole error shall not occur.

MX If either x or y is NaN, a NaN shall be returned.

If the result underflows, a range error may occur and y/x should be returned.

If y is ±0 and x is −0, ±π shall be returned.

If y is ±0 and x is +0, ±0 shall be returned.

For finite values of ±y > 0, if x is −Inf, ±π shall be returned.

For finite values of ±y > 0, if x is +Inf, ±0 shall be returned.

For finite values of x, if y is ±Inf, ±π/2 shall be returned.

If y is ±Inf and x is −Inf, ±3π/4 shall be returned.

If y is ±Inf and x is +Inf, ±π/4 shall be returned.

If both arguments are 0, a domain error shall not occur.

ERRORS
These functions may fail if:

MX Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 601

20629

20630

20631

20632

20633

20634

20635

20636

20637

20638

20639

20640

20641

20642

20643

20644

20645

20646

20647

20648

20649

20650

20651

20652

20653

20654

20655

20656

20657

20658

20659

20660

20661

20662

20663

20664

20665

20666

20667

20668

atan2() System Interfaces

(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES

Converting Cartesian to Polar Coordinates System

The function below uses atan2() to convert a 2d vector expressed in cartesian coordinates (x,y) to
the polar coordinates (rho,theta). There are other ways to compute the angle theta, using asin()
acos(), or atan(). However, atan2() presents here two advantages:

• The angle’s quadrant is automatically determined.

• The singular cases (0,y) are taken into account.

Finally, this example uses hypot() rather than sqrt() since it is better for special cases; see hypot()
for more information.

#include <math.h>

void
cartesian_to_polar(const double x, const double y,

double *rho, double *theta
)

{
rho = hypot (x,y); / better than sqrt(x*x+y*y) */
*theta = atan2 (y,x);

}

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
acos(), asin(), atan(), feclearexcept(), fetestexcept(), hypot(), isnan(), sqrt(), tan()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The atan2f() and atan2l() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard, and the IEC 60559: 1989 standard
floating-point extensions over the ISO/IEC 9899: 1999 standard are marked.

602 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20669

20670

20671

20672

20673

20674

20675

20676

20677

20678

20679

20680

20681

20682

20683

20684

20685

20686

20687

20688

20689

20690

20691

20692

20693

20694

20695

20696

20697

20698

20699

20700

20701

20702

20703

20704

20705

20706

20707

20708

20709

System Interfaces atan2()

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/18 is applied, adding to the EXAMPLES
section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 603

20710

20711

atanf() System Interfaces

NAME
atanf — arc tangent function

SYNOPSIS
#include <math.h>

float atanf(float x);

DESCRIPTION
Refer to atan().

604 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20712

20713

20714

20715

20716

20717

20718

System Interfaces atanh()

NAME
atanh, atanhf, atanhl — inverse hyperbolic tangent functions

SYNOPSIS
#include <math.h>

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the inverse hyperbolic tangent of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the inverse hyperbolic tangent of their
argument.

If x is ±1, a pole error shall occur, and atanh(), atanhf(), and atanhl() shall return the value of the
macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively, with the same sign as the
correct value of the function.

MX For finite |x|>1, a domain error shall occur, and either a NaN (if supported), or an
implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

If x is subnormal, a range error may occur and x should be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is finite and not in the range [−1,1], or is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The x argument is ±1.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 605

20719

20720

20721

20722

20723

20724

20725

20726

20727

20728

20729

20730

20731

20732

20733

20734

20735

20736

20737

20738

20739

20740

20741

20742

20743

20744

20745

20746

20747

20748

20749

20750

20751

20752

20753

20754

20755

20756

20757

20758

20759

atanh() System Interfaces

These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), tanh()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The atanh() function is no longer marked as an extension.

The atanhf() and atanhl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

606 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20760

20761

20762

20763

20764

20765

20766

20767

20768

20769

20770

20771

20772

20773

20774

20775

20776

20777

20778

20779

20780

20781

20782

20783

20784

20785

20786

20787

20788

20789

System Interfaces atanl()

NAME
atanl — arc tangent function

SYNOPSIS
#include <math.h>

long double atanl(long double x);

DESCRIPTION
Refer to atan().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 607

20790

20791

20792

20793

20794

20795

20796

atexit() System Interfaces

NAME
atexit — register a function to run at process termination

SYNOPSIS
#include <stdlib.h>

int atexit(void (*func)(void));

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The atexit() function shall register the function pointed to by func, to be called without
arguments at normal program termination. At normal program termination, all functions
registered by the atexit() function shall be called, in the reverse order of their registration, except
that a function is called after any previously registered functions that had already been called at
the time it was registered. Normal termination occurs either by a call to exit() or a return from
main().

At least 32 functions can be registered with atexit().

CX After a successful call to any of the exec functions, any functions previously registered by atexit()
shall no longer be registered.

RETURN VALUE
Upon successful completion, atexit() shall return 0; otherwise, it shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The functions registered by a call to atexit() must return to ensure that all registered functions
are called.

The application should call sysconf() to obtain the value of {ATEXIT_MAX}, the number of
functions that can be registered. There is no way for an application to tell how many functions
have already been registered with atexit().

Since the behavior is undefined if the exit() function is called more than once, portable
applications calling atexit() must ensure that the exit() function is not called at normal process
termination when all functions registered by the atexit() function are called.

All functions registered by the atexit() function are called at normal process termination, which
occurs by a call to the exit() function or a return from main() or on the last thread termination,
when the behavior is as if the implementation called exit() with a zero argument at thread
termination time.

If, at normal process termination, a function registered by the atexit() function is called and a
portable application needs to stop further exit() processing, it must call the _exit() function or
the _Exit() function or one of the functions which cause abnormal process termination.

RATIONALE
None.

608 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20797

20798

20799

20800

20801

20802

20803

20804

20805

20806

20807

20808

20809

20810

20811

20812

20813

20814

20815

20816

20817

20818

20819

20820

20821

20822

20823

20824

20825

20826

20827

20828

20829

20830

20831

20832

20833

20834

20835

20836

20837

20838

System Interfaces atexit()

FUTURE DIRECTIONS
None.

SEE ALSO
exec , exit(), sysconf()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 6
Extensions beyond the ISO C standard are marked.

The DESCRIPTION is updated for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/19 is applied, adding further clarification
to the APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 609

20839

20840

20841

20842

20843

20844

20845

20846

20847

20848

20849

20850

atof() System Interfaces

NAME
atof — convert a string to a double-precision number

SYNOPSIS
#include <stdlib.h>

double atof(const char *str);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The call atof (str) shall be equivalent to:

strtod(str,(char **)NULL),

except that the handling of errors may differ. If the value cannot be represented, the behavior is
undefined.

RETURN VALUE
The atof() function shall return the converted value if the value can be represented.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The atof() function is subsumed by strtod() but is retained because it is used extensively in
existing code. If the number is not known to be in range, strtod() should be used because atof()
is not required to perform any error checking.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtod()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

610 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20851

20852

20853

20854

20855

20856

20857

20858

20859

20860

20861

20862

20863

20864

20865

20866

20867

20868

20869

20870

20871

20872

20873

20874

20875

20876

20877

20878

20879

20880

20881

20882

System Interfaces atoi()

NAME
atoi — convert a string to an integer

SYNOPSIS
#include <stdlib.h>

int atoi(const char *str);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The call atoi(str) shall be equivalent to:

(int) strtol(str, (char **)NULL, 10)

except that the handling of errors may differ. If the value cannot be represented, the behavior is
undefined.

RETURN VALUE
The atoi() function shall return the converted value if the value can be represented.

ERRORS
No errors are defined.

EXAMPLES

Converting an Argument

The following example checks for proper usage of the program. If there is an argument and the
decimal conversion of this argument (obtained using atoi()) is greater than 0, then the program
has a valid number of minutes to wait for an event.

#include <stdlib.h>
#include <stdio.h>
...
int minutes_to_event;
...
if (argc < 2 || ((minutes_to_event = atoi (argv[1]))) <= 0) {

fprintf(stderr, "Usage: %s minutes\n", argv[0]); exit(1);
}
...

APPLICATION USAGE
The atoi() function is subsumed by strtol() but is retained because it is used extensively in
existing code. If the number is not known to be in range, strtol() should be used because atoi() is
not required to perform any error checking.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtol()

XBD <stdlib.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 611

20883

20884

20885

20886

20887

20888

20889

20890

20891

20892

20893

20894

20895

20896

20897

20898

20899

20900

20901

20902

20903

20904

20905

20906

20907

20908

20909

20910

20911

20912

20913

20914

20915

20916

20917

20918

20919

20920

20921

20922

20923

20924

atoi() System Interfaces

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

612 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20925

20926

System Interfaces atol()

NAME
atol, atoll — convert a string to a long integer

SYNOPSIS
#include <stdlib.h>

long atol(const char *str);
long long atoll(const char *nptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The call atol(str) shall be equivalent to:

strtol(str, (char **)NULL, 10)

The call atoll(nptr) shall be equivalent to:

strtoll(nptr, (char **)NULL, 10)

except that the handling of errors may differ. If the value cannot be represented, the behavior is
undefined.

RETURN VALUE
These functions shall return the converted value if the value can be represented.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The atol() function is subsumed by strtol() but is retained because it is used extensively in
existing code. If the number is not known to be in range, strtol() should be used because atol() is
not required to perform any error checking.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtol()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The atoll() function is added for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
SD5-XSH-ERN-61 is applied, correcting the DESCRIPTION of atoll().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 613

20927

20928

20929

20930

20931

20932

20933

20934

20935

20936

20937

20938

20939

20940

20941

20942

20943

20944

20945

20946

20947

20948

20949

20950

20951

20952

20953

20954

20955

20956

20957

20958

20959

20960

20961

20962

20963

20964

20965

basename() System Interfaces

NAME
basename — return the last component of a pathname

SYNOPSIS
XSI #include <libgen.h>

char *basename(char *path);

DESCRIPTION
The basename() function shall take the pathname pointed to by path and return a pointer to the
final component of the pathname, deleting any trailing ’/’ characters.

If the string pointed to by path consists entirely of the ’/’ character, basename() shall return a
pointer to the string "/". If the string pointed to by path is exactly "//", it is implementation-
defined whether ’/’ or "//" is returned.

If path is a null pointer or points to an empty string, basename() shall return a pointer to the
string ".".

The basename() function may modify the string pointed to by path, and may return a pointer to
static storage that may then be overwritten by a subsequent call to basename().

The basename() function need not be thread-safe.

RETURN VALUE
The basename() function shall return a pointer to the final component of path.

ERRORS
No errors are defined.

EXAMPLES

Using basename()

The following program fragment returns a pointer to the value lib, which is the base name of
/usr/lib.

#include <libgen.h>
...
char *name = "/usr/lib";
char *base;

base = basename(name);
...

Sample Input and Output Strings for basename()

In the following table, the input string is the value pointed to by path, and the output string is
the return value of the basename() function.

Input String Output String

"/usr/lib" "lib"
"/usr/" "usr"
"/" "/"
"///" "/"
"//usr//lib//" "lib"

614 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

20966

20967

20968

20969

20970

20971

20972

20973

20974

20975

20976

20977

20978

20979

20980

20981

20982

20983

20984

20985

20986

20987

20988

20989

20990

20991

20992

20993

20994

20995

20996

20997

20998

20999

21000

21001

21002

21003

21004

System Interfaces basename()

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dirname()

XBD <libgen.h>

XCU basename

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/20 is applied, changing the
DESCRIPTION to make it clear that the string referenced is the string pointed to by path.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 615

21005

21006

21007

21008

21009

21010

21011

21012

21013

21014

21015

21016

21017

21018

21019

21020

21021

21022

21023

21024

21025

21026

21027

bind() System Interfaces

NAME
bind — bind a name to a socket

SYNOPSIS
#include <sys/socket.h>

int bind(int socket, const struct sockaddr *address,
socklen_t address_len);

DESCRIPTION
The bind() function shall assign a local socket address address to a socket identified by descriptor
socket that has no local socket address assigned. Sockets created with the socket() function are
initially unnamed; they are identified only by their address family.

The bind() function takes the following arguments:

socket Specifies the file descriptor of the socket to be bound.

address Points to a sockaddr structure containing the address to be bound to the
socket. The length and format of the address depend on the address family of
the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

The socket specified by socket may require the process to have appropriate privileges to use the
bind() function.

If the socket address cannot be assigned immediately and O_NONBLOCK is set for the file
descriptor for the socket, bind() shall fail and set errno to [EINPROGRESS], but the assignment
request shall not be aborted, and the assignment shall be completed asynchronously. Subsequent
calls to bind() for the same socket, before the assignment is completed, shall fail and set errno to
[EALREADY].

When the assignment has been performed asynchronously, pselect(), select(), and poll() shall
indicate that the file descriptor for the socket is ready for reading and writing.

RETURN VALUE
Upon successful completion, bind() shall return 0; otherwise, −1 shall be returned and errno set
to indicate the error.

ERRORS
The bind() function shall fail if:

[EADDRINUSE] The specified address is already in use.

[EADDRNOTAVAIL]
The specified address is not available from the local machine.

[EAFNOSUPPORT]
The specified address is not a valid address for the address family of the
specified socket.

[EALREADY] An assignment request is already in progress for the specified socket.

[EBADF] The socket argument is not a valid file descriptor.

[EINPROGRESS] O_NONBLOCK is set for the file descriptor for the socket and the assignment
cannot be immediately performed; the assignment shall be performed
asynchronously.

616 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21028

21029

21030

21031

21032

21033

21034

21035

21036

21037

21038

21039

21040

21041

21042

21043

21044

21045

21046

21047

21048

21049

21050

21051

21052

21053

21054

21055

21056

21057

21058

21059

21060

21061

21062

21063

21064

21065

21066

21067

21068

21069

System Interfaces bind()

[EINVAL] The socket is already bound to an address, and the protocol does not support
binding to a new address; or the socket has been shut down.

[ENOBUFS] Insufficient resources were available to complete the call.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket type of the specified socket does not support binding to an address.

If the address family of the socket is AF_UNIX, then bind() shall fail if:

[EACCES] A component of the path prefix denies search permission, or the requested
name requires writing in a directory with a mode that denies write
permission.

[EDESTADDRREQ] or [EISDIR]
The address argument is a null pointer.

[EIO] An I/O error occurred.

[ELOOP] A loop exists in symbolic links encountered during resolution of the pathname
in address.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of the pathname does not name an existing file or the pathname
is an empty string.

[ENOTDIR] A component of the path prefix of the pathname in address is not a directory, or
the pathname in address contains at least one non-<slash> character and ends
with one or more trailing <slash> characters and the last pathname
component names an existing file that is neither a directory nor a symbolic
link to a directory.

[EROFS] The name would reside on a read-only file system.

The bind() function may fail if:

[EACCES] The specified address is protected and the current user does not have
permission to bind to it.

[EINVAL] The address_len argument is not a valid length for the address family.

[EISCONN] The socket is already connected.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the pathname in address.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 617

21070

21071

21072

21073

21074

21075

21076

21077

21078

21079

21080

21081

21082

21083

21084

21085

21086

21087

21088

21089

21090

21091

21092

21093

21094

21095

21096

21097

21098

21099

21100

21101

21102

21103

21104

bind() System Interfaces

EXAMPLES
The following code segment shows how to create a socket and bind it to a name in the AF_UNIX
domain.

#define MY_SOCK_PATH "/somepath"

int sfd;
struct sockaddr_un my_addr;

sfd = socket(AF_UNIX, SOCK_STREAM, 0);
if (sfd == −1)

/* Handle error */;

memset(&my_addr, ’\0’, sizeof(struct sockaddr_un));
/* Clear structure */

my_addr.sun_family = AF_UNIX;
strncpy(my_addr.sun_path, MY_SOCK_PATH, sizeof(my_addr.sun_path) −1);

if (bind(sfd, (struct sockaddr *) &my_addr,
sizeof(struct sockaddr_un)) == −1)
/* Handle error */;

APPLICATION USAGE
An application program can retrieve the assigned socket name with the getsockname() function.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
connect(), getsockname(), listen(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
Austin Group Interpretation 1003.1-2001 #044 is applied, changing the ‘‘may fail’’ [ENOBUFS]
error to become a ‘‘shall fail’’ error.

Austin Group Interpretation 1003.1-2001 #143 is applied.

SD5-XSH-ERN-185 is applied.

An example is added.

618 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21105

21106

21107

21108

21109

21110

21111

21112

21113

21114

21115

21116

21117

21118

21119

21120

21121

21122

21123

21124

21125

21126

21127

21128

21129

21130

21131

21132

21133

21134

21135

21136

21137

System Interfaces bsearch()

NAME
bsearch — binary search a sorted table

SYNOPSIS
#include <stdlib.h>

void *bsearch(const void *key, const void *base, size_t nel,
size_t width, int (*compar)(const void *, const void *));

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The bsearch() function shall search an array of nel objects, the initial element of which is pointed
to by base, for an element that matches the object pointed to by key. The size of each element in
the array is specified by width. If the nel argument has the value zero, the comparison function
pointed to by compar shall not be called and no match shall be found.

The comparison function pointed to by compar shall be called with two arguments that point to
the key object and to an array element, in that order.

The application shall ensure that the comparison function pointed to by compar does not alter the
contents of the array. The implementation may reorder elements of the array between calls to the
comparison function, but shall not alter the contents of any individual element.

The implementation shall ensure that the first argument is always a pointer to the key.

When the same objects (consisting of width bytes, irrespective of their current positions in the
array) are passed more than once to the comparison function, the results shall be consistent with
one another. That is, the same object shall always compare the same way with the key.

The application shall ensure that the function returns an integer less than, equal to, or greater
than 0 if the key object is considered, respectively, to be less than, to match, or to be greater than
the array element. The application shall ensure that the array consists of all the elements that
compare less than, all the elements that compare equal to, and all the elements that compare
greater than the key object, in that order.

RETURN VALUE
The bsearch() function shall return a pointer to a matching member of the array, or a null pointer
if no match is found. If two or more members compare equal, which member is returned is
unspecified.

ERRORS
No errors are defined.

EXAMPLES
The example below searches a table containing pointers to nodes consisting of a string and its
length. The table is ordered alphabetically on the string in the node pointed to by each entry.

The code fragment below reads in strings and either finds the corresponding node and prints
out the string and its length, or prints an error message.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define TABSIZE 1000

struct node { /* These are stored in the table. */

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 619

21138

21139

21140

21141

21142

21143

21144

21145

21146

21147

21148

21149

21150

21151

21152

21153

21154

21155

21156

21157

21158

21159

21160

21161

21162

21163

21164

21165

21166

21167

21168

21169

21170

21171

21172

21173

21174

21175

21176

21177

21178

21179

21180

21181

bsearch() System Interfaces

char *string;
int length;

};
struct node table[TABSIZE]; /* Table to be searched. */

.

.

.
{

struct node *node_ptr, node;
/* Routine to compare 2 nodes. */
int node_compare(const void *, const void *);
.
.
.
while (scanf("%ms", &node.string) != EOF) {

node_ptr = (struct node *)bsearch((void *)(&node),
(void *)table, TABSIZE,
sizeof(struct node), node_compare);

if (node_ptr != NULL) {
(void)printf("string = %20s, length = %d\n",

node_ptr->string, node_ptr->length);
} else {

(void)printf("not found: %s\n", node.string);
}
free(node.string);

}
}
/*

This routine compares two nodes based on an
alphabetical ordering of the string field.

*/
int
node_compare(const void *node1, const void *node2)
{

return strcoll(((const struct node *)node1)->string,
((const struct node *)node2)->string);

}

APPLICATION USAGE
The pointers to the key and the element at the base of the table should be of type pointer-to-
element.

The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.

In practice, the array is usually sorted according to the comparison function.

RATIONALE
The requirement that the second argument (hereafter referred to as p) to the comparison function
is a pointer to an element of the array implies that for every call all of the following expressions
are non-zero:

((char *)p − (char *(base) % width == 0
(char *)p >= (char *)base

620 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21182

21183

21184

21185

21186

21187

21188

21189

21190

21191

21192

21193

21194

21195

21196

21197

21198

21199

21200

21201

21202

21203

21204

21205

21206

21207

21208

21209

21210

21211

21212

21213

21214

21215

21216

21217

21218

21219

21220

21221

21222

21223

21224

21225

21226

21227

21228

21229

21230

System Interfaces bsearch()

(char *)p < (char *)base + nel * width

FUTURE DIRECTIONS
None.

SEE ALSO
hcreate(), lsearch(), qsort(), tdelete()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/11 is applied, adding to the
DESCRIPTION the last sentence of the first non-shaded paragraph, and the following three
paragraphs. The RATIONALE section is also updated. These changes are for alignment with the
ISO C standard.

Issue 7
The EXAMPLES section is revised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 621

21231

21232

21233

21234

21235

21236

21237

21238

21239

21240

21241

21242

21243

21244

21245

21246

btowc() System Interfaces

NAME
btowc — single byte to wide character conversion

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t btowc(int c);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The btowc() function shall determine whether c constitutes a valid (one-byte) character in the
initial shift state.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The btowc() function shall return WEOF if c has the value EOF or if (unsigned char) c does not
constitute a valid (one-byte) character in the initial shift state. Otherwise, it shall return the
wide-character representation of that character.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wctob()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

622 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21247

21248

21249

21250

21251

21252

21253

21254

21255

21256

21257

21258

21259

21260

21261

21262

21263

21264

21265

21266

21267

21268

21269

21270

21271

21272

21273

21274

21275

21276

21277

21278

21279

System Interfaces cabs()

NAME
cabs, cabsf, cabsl — return a complex absolute value

SYNOPSIS
#include <complex.h>

double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex absolute value (also called norm, modulus, or
magnitude) of z.

RETURN VALUE
These functions shall return the complex absolute value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 623

21280

21281

21282

21283

21284

21285

21286

21287

21288

21289

21290

21291

21292

21293

21294

21295

21296

21297

21298

21299

21300

21301

21302

21303

21304

21305

21306

21307

21308

cacos() System Interfaces

NAME
cacos, cacosf, cacosl — complex arc cosine functions

SYNOPSIS
#include <complex.h>

double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex arc cosine of z, with branch cuts outside the interval
[−1, +1] along the real axis.

RETURN VALUE
These functions shall return the complex arc cosine value, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval [0, π] along the real axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ccos()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

624 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21309

21310

21311

21312

21313

21314

21315

21316

21317

21318

21319

21320

21321

21322

21323

21324

21325

21326

21327

21328

21329

21330

21331

21332

21333

21334

21335

21336

21337

21338

21339

System Interfaces cacosh()

NAME
cacosh, cacoshf, cacoshl — complex arc hyperbolic cosine functions

SYNOPSIS
#include <complex.h>

double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex arc hyperbolic cosine of z, with a branch cut at
values less than 1 along the real axis.

RETURN VALUE
These functions shall return the complex arc hyperbolic cosine value, in the range of a half-strip
of non-negative values along the real axis and in the interval [−iπ, +iπ] along the imaginary axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ccosh()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 625

21340

21341

21342

21343

21344

21345

21346

21347

21348

21349

21350

21351

21352

21353

21354

21355

21356

21357

21358

21359

21360

21361

21362

21363

21364

21365

21366

21367

21368

21369

21370

cacosl() System Interfaces

NAME
cacosl — complex arc cosine functions

SYNOPSIS
#include <complex.h>

long double complex cacosl(long double complex z);

DESCRIPTION
Refer to cacos().

626 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21371

21372

21373

21374

21375

21376

21377

System Interfaces calloc()

NAME
calloc — a memory allocator

SYNOPSIS
#include <stdlib.h>

void *calloc(size_t nelem, size_t elsize);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The calloc() function shall allocate unused space for an array of nelem elements each of whose
size in bytes is elsize. The space shall be initialized to all bits 0.

The order and contiguity of storage allocated by successive calls to calloc() is unspecified. The
pointer returned if the allocation succeeds shall be suitably aligned so that it may be assigned to
a pointer to any type of object and then used to access such an object or an array of such objects
in the space allocated (until the space is explicitly freed or reallocated). Each such allocation shall
yield a pointer to an object disjoint from any other object. The pointer returned shall point to the
start (lowest byte address) of the allocated space. If the space cannot be allocated, a null pointer
shall be returned. If the size of the space requested is 0, the behavior is implementation-defined:
the value returned shall be either a null pointer or a unique pointer.

RETURN VALUE
Upon successful completion with both nelem and elsize non-zero, calloc() shall return a pointer to
the allocated space. If either nelem or elsize is 0, then either a null pointer or a unique pointer
value that can be successfully passed to free() shall be returned. Otherwise, it shall return a null

CX pointer and set errno to indicate the error.

ERRORS
The calloc() function shall fail if:

CX [ENOMEM] Insufficient memory is available.

EXAMPLES
None.

APPLICATION USAGE
There is now no requirement for the implementation to support the inclusion of <malloc.h>.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
free(), malloc(), realloc()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 627

21378

21379

21380

21381

21382

21383

21384

21385

21386

21387

21388

21389

21390

21391

21392

21393

21394

21395

21396

21397

21398

21399

21400

21401

21402

21403

21404

21405

21406

21407

21408

21409

21410

21411

21412

21413

21414

21415

21416

21417

21418

21419

calloc() System Interfaces

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The setting of errno and the [ENOMEM] error condition are mandatory if an insufficient
memory condition occurs.

628 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21420

21421

21422

21423

System Interfaces carg()

NAME
carg, cargf, cargl — complex argument functions

SYNOPSIS
#include <complex.h>

double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the argument (also called phase angle) of z, with a branch cut
along the negative real axis.

RETURN VALUE
These functions shall return the value of the argument in the interval [−π, +π].

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cimag(), conj(), cproj()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 629

21424

21425

21426

21427

21428

21429

21430

21431

21432

21433

21434

21435

21436

21437

21438

21439

21440

21441

21442

21443

21444

21445

21446

21447

21448

21449

21450

21451

21452

21453

casin() System Interfaces

NAME
casin, casinf, casinl — complex arc sine functions

SYNOPSIS
#include <complex.h>

double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex arc sine of z, with branch cuts outside the interval
[−1, +1] along the real axis.

RETURN VALUE
These functions shall return the complex arc sine value, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval [−π/2, +π/2] along the real axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
csin()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

630 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21454

21455

21456

21457

21458

21459

21460

21461

21462

21463

21464

21465

21466

21467

21468

21469

21470

21471

21472

21473

21474

21475

21476

21477

21478

21479

21480

21481

21482

21483

21484

System Interfaces casinh()

NAME
casinh, casinhf, casinhl — complex arc hyperbolic sine functions

SYNOPSIS
#include <complex.h>

double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex arc hyperbolic sine of z, with branch cuts outside the
interval [−i, +i] along the imaginary axis.

RETURN VALUE
These functions shall return the complex arc hyperbolic sine value, in the range of a strip
mathematically unbounded along the real axis and in the interval [−iπ/2, +iπ/2] along the
imaginary axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
csinh()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 631

21485

21486

21487

21488

21489

21490

21491

21492

21493

21494

21495

21496

21497

21498

21499

21500

21501

21502

21503

21504

21505

21506

21507

21508

21509

21510

21511

21512

21513

21514

21515

21516

casinl() System Interfaces

NAME
casinl — complex arc sine functions

SYNOPSIS
#include <complex.h>

long double complex casinl(long double complex z);

DESCRIPTION
Refer to casin().

632 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21517

21518

21519

21520

21521

21522

21523

System Interfaces catan()

NAME
catan, catanf, catanl — complex arc tangent functions

SYNOPSIS
#include <complex.h>

double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex arc tangent of z, with branch cuts outside the
interval [−i, +i] along the imaginary axis.

RETURN VALUE
These functions shall return the complex arc tangent value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [−π/2, +π/2] along the
real axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ctan()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 633

21524

21525

21526

21527

21528

21529

21530

21531

21532

21533

21534

21535

21536

21537

21538

21539

21540

21541

21542

21543

21544

21545

21546

21547

21548

21549

21550

21551

21552

21553

21554

21555

catanh() System Interfaces

NAME
catanh, catanhf, catanhl — complex arc hyperbolic tangent functions

SYNOPSIS
#include <complex.h>

double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex arc hyperbolic tangent of z, with branch cuts outside
the interval [−1, +1] along the real axis.

RETURN VALUE
These functions shall return the complex arc hyperbolic tangent value, in the range of a strip
mathematically unbounded along the real axis and in the interval [−iπ/2, +iπ/2] along the
imaginary axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ctanh()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

634 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21556

21557

21558

21559

21560

21561

21562

21563

21564

21565

21566

21567

21568

21569

21570

21571

21572

21573

21574

21575

21576

21577

21578

21579

21580

21581

21582

21583

21584

21585

21586

21587

System Interfaces catanl()

NAME
catanl — complex arc tangent functions

SYNOPSIS
#include <complex.h>

long double complex catanl(long double complex z);

DESCRIPTION
Refer to catan().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 635

21588

21589

21590

21591

21592

21593

21594

catclose() System Interfaces

NAME
catclose — close a message catalog descriptor

SYNOPSIS
#include <nl_types.h>

int catclose(nl_catd catd);

DESCRIPTION
The catclose() function shall close the message catalog identified by catd. If a file descriptor is
used to implement the type nl_catd, that file descriptor shall be closed.

RETURN VALUE
Upon successful completion, catclose() shall return 0; otherwise, −1 shall be returned, and errno
set to indicate the error.

ERRORS
The catclose() function may fail if:

[EBADF] The catalog descriptor is not valid.

[EINTR] The catclose() function was interrupted by a signal.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catgets(), catopen()

XBD <nl_types.h>

CHANGE HISTORY
First released in Issue 2.

Issue 7
The catclose() function is moved from the XSI option to the Base.

636 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21595

21596

21597

21598

21599

21600

21601

21602

21603

21604

21605

21606

21607

21608

21609

21610

21611

21612

21613

21614

21615

21616

21617

21618

21619

21620

21621

21622

21623

21624

System Interfaces catgets()

NAME
catgets — read a program message

SYNOPSIS
#include <nl_types.h>

char *catgets(nl_catd catd, int set_id, int msg_id, const char *s);

DESCRIPTION
The catgets() function shall attempt to read message msg_id, in set set_id, from the message
catalog identified by catd. The catd argument is a message catalog descriptor returned from an
earlier call to catopen(). The results are undefined if catd is not a value returned by catopen() for
a message catalog still open in the process. The s argument points to a default message string
which shall be returned by catgets() if it cannot retrieve the identified message.

The catgets() function need not be thread-safe.

RETURN VALUE
If the identified message is retrieved successfully, catgets() shall return a pointer to an internal
buffer area containing the null-terminated message string. If the call is unsuccessful for any
reason, s shall be returned and errno shall be set to indicate the error.

ERRORS
The catgets() function shall fail if:

[EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.

[ENOMSG] The message identified by set_id and msg_id is not in the message catalog.

The catgets() function may fail if:

[EBADF] The catd argument is not a valid message catalog descriptor open for reading.

[EBADMSG] The message identified by set_id and msg_id in the specified message catalog
did not satisfy implementation-defined security criteria.

[EINVAL] The message catalog identified by catd is corrupted.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catclose(), catopen()

XBD <nl_types.h>

CHANGE HISTORY
First released in Issue 2.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 637

21625

21626

21627

21628

21629

21630

21631

21632

21633

21634

21635

21636

21637

21638

21639

21640

21641

21642

21643

21644

21645

21646

21647

21648

21649

21650

21651

21652

21653

21654

21655

21656

21657

21658

21659

21660

21661

21662

21663

catgets() System Interfaces

Issue 5
A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

Issue 7
Austin Group Interpretation 1003.1-2001 #044 is applied, changing the ‘‘may fail’’ [EINTR] and
[ENOMSG] errors to become ‘‘shall fail’’ errors, updating the RETURN VALUE section, and
updating the DESCRIPTION to note that: ‘‘The results are undefined if catd is not a value
returned by catopen() for a message catalog still open in the process.

Austin Group Interpretation 1003.1-2001 #148 is applied, adding

The catgets() function is moved from the XSI option to the Base.

638 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21664

21665

21666

21667

21668

21669

21670

21671

21672

21673

21674

System Interfaces catopen()

NAME
catopen — open a message catalog

SYNOPSIS
#include <nl_types.h>

nl_catd catopen(const char *name, int oflag);

DESCRIPTION
The catopen() function shall open a message catalog and return a message catalog descriptor.
The name argument specifies the name of the message catalog to be opened. If name contains a
’/’, then name specifies a complete name for the message catalog. Otherwise, the environment
variable NLSPATH is used with name substituted for the %N conversion specification (see XBD
Chapter 8, on page 173). If NLSPATH exists in the environment when the process starts, then if
the process has appropriate privileges, the behavior of catopen() is undefined. If NLSPATH does
not exist in the environment, or if a message catalog cannot be found in any of the components
specified by NLSPATH, then an implementation-defined default path shall be used. This default
may be affected by the setting of LC_MESSAGES if the value of oflag is NL_CAT_LOCALE, or
the LANG environment variable if oflag is 0.

A message catalog descriptor shall remain valid in a process until that process closes it, or a
successful call to one of the exec functions. A change in the setting of the LC_MESSAGES
category may invalidate existing open catalogs.

If a file descriptor is used to implement message catalog descriptors, the FD_CLOEXEC flag
shall be set; see <fcntl.h>.

If the value of the oflag argument is 0, the LANG environment variable is used to locate the
catalog without regard to the LC_MESSAGES category. If the oflag argument is
NL_CAT_LOCALE, the LC_MESSAGES category is used to locate the message catalog (see XBD
Section 8.2, on page 174).

RETURN VALUE
Upon successful completion, catopen() shall return a message catalog descriptor for use on
subsequent calls to catgets() and catclose(). Otherwise, catopen() shall return (nl_catd) −1 and set
errno to indicate the error.

ERRORS
The catopen() function may fail if:

[EACCES] Search permission is denied for the component of the path prefix of the
message catalog or read permission is denied for the message catalog.

[EMFILE] All file descriptors available to the process are currently open.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

[ENOENT] The message catalog does not exist or the name argument points to an empty
string.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 639

21675

21676

21677

21678

21679

21680

21681

21682

21683

21684

21685

21686

21687

21688

21689

21690

21691

21692

21693

21694

21695

21696

21697

21698

21699

21700

21701

21702

21703

21704

21705

21706

21707

21708

21709

21710

21711

21712

21713

21714

21715

21716

21717

catopen() System Interfaces

[ENOMEM] Insufficient storage space is available.

[ENOTDIR] A component of the path prefix of the message catalog is not a directory, or the
pathname of the message catalog contains at least one non-<slash> character
and ends with one or more trailing <slash> characters and the last pathname
component names an existing file that is neither a directory nor a symbolic
link to a directory.

EXAMPLES
None.

APPLICATION USAGE
Some implementations of catopen() use malloc() to allocate space for internal buffer areas. The
catopen() function may fail if there is insufficient storage space available to accommodate these
buffers.

Conforming applications must assume that message catalog descriptors are not valid after a call
to one of the exec functions.

Application developers should be aware that guidelines for the location of message catalogs
have not yet been developed. Therefore they should take care to avoid conflicting with catalogs
used by other applications and the standard utilities.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catclose(), catgets()

XBD Chapter 8 (on page 173), <fcntl.h>, <nl_types.h>,

CHANGE HISTORY
First released in Issue 2.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The catopen() function is moved from the XSI option to the Base.

640 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21718

21719

21720

21721

21722

21723

21724

21725

21726

21727

21728

21729

21730

21731

21732

21733

21734

21735

21736

21737

21738

21739

21740

21741

21742

21743

21744

21745

21746

21747

System Interfaces cbrt()

NAME
cbrt, cbrtf, cbrtl — cube root functions

SYNOPSIS
#include <math.h>

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the real cube root of their argument x.

RETURN VALUE
Upon successful completion, these functions shall return the cube root of x.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
For some applications, a true cube root function, which returns negative results for negative
arguments, is more appropriate than pow(x, 1.0/3.0), which returns a NaN for x less than 0.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The cbrt() function is no longer marked as an extension.

The cbrtf() and cbrtl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 641

21748

21749

21750

21751

21752

21753

21754

21755

21756

21757

21758

21759

21760

21761

21762

21763

21764

21765

21766

21767

21768

21769

21770

21771

21772

21773

21774

21775

21776

21777

21778

21779

21780

21781

21782

21783

21784

21785

21786

21787

ccos() System Interfaces

NAME
ccos, ccosf, ccosl — complex cosine functions

SYNOPSIS
#include <complex.h>

double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex cosine of z.

RETURN VALUE
These functions shall return the complex cosine value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cacos()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

642 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21788

21789

21790

21791

21792

21793

21794

21795

21796

21797

21798

21799

21800

21801

21802

21803

21804

21805

21806

21807

21808

21809

21810

21811

21812

21813

21814

21815

21816

System Interfaces ccosh()

NAME
ccosh, ccoshf, ccoshl — complex hyperbolic cosine functions

SYNOPSIS
#include <complex.h>

double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex hyperbolic cosine of z.

RETURN VALUE
These functions shall return the complex hyperbolic cosine value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cacosh()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 643

21817

21818

21819

21820

21821

21822

21823

21824

21825

21826

21827

21828

21829

21830

21831

21832

21833

21834

21835

21836

21837

21838

21839

21840

21841

21842

21843

21844

21845

ccosl() System Interfaces

NAME
ccosl — complex cosine functions

SYNOPSIS
#include <complex.h>

long double complex ccosl(long double complex z);

DESCRIPTION
Refer to ccos().

644 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21846

21847

21848

21849

21850

21851

21852

System Interfaces ceil()

NAME
ceil, ceilf, ceill — ceiling value function

SYNOPSIS
#include <math.h>

double ceil(double x);
float ceilf(float x);
long double ceill(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the smallest integral value not less than x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, ceil(), ceilf(), and ceill() shall return the smallest integral value not
less than x, expressed as a type double, float, or long double, respectively.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

XSI If the correct value would cause overflow, a range error shall occur and ceil(), ceilf(), and ceill()
shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

ERRORS
These functions shall fail if:

XSI Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by these functions need not be expressible as an int or long. The
return value should be tested before assigning it to an integer type to avoid the undefined
results of an integer overflow.

The ceil() function can only overflow when the floating-point representation has
DBL_MANT_DIG > DBL_MAX_EXP.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 645

21853

21854

21855

21856

21857

21858

21859

21860

21861

21862

21863

21864

21865

21866

21867

21868

21869

21870

21871

21872

21873

21874

21875

21876

21877

21878

21879

21880

21881

21882

21883

21884

21885

21886

21887

21888

21889

21890

21891

21892

ceil() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), floor(), isnan()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The ceilf() and ceill() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

646 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21893

21894

21895

21896

21897

21898

21899

21900

21901

21902

21903

21904

21905

21906

21907

21908

21909

21910

System Interfaces cexp()

NAME
cexp, cexpf, cexpl — complex exponential functions

SYNOPSIS
#include <complex.h>

double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex exponent of z, defined as ez.

RETURN VALUE
These functions shall return the complex exponential value of z.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clog()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 647

21911

21912

21913

21914

21915

21916

21917

21918

21919

21920

21921

21922

21923

21924

21925

21926

21927

21928

21929

21930

21931

21932

21933

21934

21935

21936

21937

21938

21939

cfgetispeed() System Interfaces

NAME
cfgetispeed — get input baud rate

SYNOPSIS
#include <termios.h>

speed_t cfgetispeed(const struct termios *termios_p);

DESCRIPTION
The cfgetispeed() function shall extract the input baud rate from the termios structure to which
the termios_p argument points.

This function shall return exactly the value in the termios data structure, without interpretation.

RETURN VALUE
Upon successful completion, cfgetispeed() shall return a value of type speed_t representing the
input baud rate.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The term ‘‘baud’’ is used historically here, but is not technically correct. This is properly ‘‘bits per
second’’, which may not be the same as baud. However, the term is used because of the
historical usage and understanding.

The cfgetospeed(), cfgetispeed(), cfsetospeed(), and cfsetispeed() functions do not take arguments as
numbers, but rather as symbolic names. There are two reasons for this:

1. Historically, numbers were not used because of the way the rate was stored in the data
structure. This is retained even though a function is now used.

2. More importantly, only a limited set of possible rates is at all portable, and this constrains
the application to that set.

There is nothing to prevent an implementation accepting as an extension a number (such as 126),
and since the encoding of the Bxxx symbols is not specified, this can be done to avoid
introducing ambiguity.

Setting the input baud rate to zero was a mechanism to allow for split baud rates. Clarifications
in this volume of POSIX.1-2008 have made it possible to determine whether split rates are
supported and to support them without having to treat zero as a special case. Since this
functionality is also confusing, it has been declared obsolescent. The 0 argument referred to is
the literal constant 0, not the symbolic constant B0. This volume of POSIX.1-2008 does not
preclude B0 from being defined as the value 0; in fact, implementations would likely benefit
from the two being equivalent. This volume of POSIX.1-2008 does not fully specify whether the
previous cfsetispeed() value is retained after a tcgetattr() as the actual value or as zero. Therefore,
conforming applications should always set both the input speed and output speed when setting
either.

In historical implementations, the baud rate information is traditionally kept in c_cflag.
Applications should be written to presume that this might be the case (and thus not blindly copy
c_cflag), but not to rely on it in case it is in some other field of the structure. Setting the c_cflag
field absolutely after setting a baud rate is a non-portable action because of this. In general, the

648 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21940

21941

21942

21943

21944

21945

21946

21947

21948

21949

21950

21951

21952

21953

21954

21955

21956

21957

21958

21959

21960

21961

21962

21963

21964

21965

21966

21967

21968

21969

21970

21971

21972

21973

21974

21975

21976

21977

21978

21979

21980

21981

21982

21983

21984

System Interfaces cfgetispeed()

unused parts of the flag fields might be used by the implementation and should not be blindly
copied from the descriptions of one terminal device to another.

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetospeed(), cfsetispeed(), cfsetospeed(), tcgetattr()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 649

21985

21986

21987

21988

21989

21990

21991

21992

21993

cfgetospeed() System Interfaces

NAME
cfgetospeed — get output baud rate

SYNOPSIS
#include <termios.h>

speed_t cfgetospeed(const struct termios *termios_p);

DESCRIPTION
The cfgetospeed() function shall extract the output baud rate from the termios structure to which
the termios_p argument points.

This function shall return exactly the value in the termios data structure, without interpretation.

RETURN VALUE
Upon successful completion, cfgetospeed() shall return a value of type speed_t representing the
output baud rate.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to cfgetispeed().

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetispeed(), cfsetispeed(), cfsetospeed(), tcgetattr()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

650 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

21994

21995

21996

21997

21998

21999

22000

22001

22002

22003

22004

22005

22006

22007

22008

22009

22010

22011

22012

22013

22014

22015

22016

22017

22018

22019

22020

System Interfaces cfsetispeed()

NAME
cfsetispeed — set input baud rate

SYNOPSIS
#include <termios.h>

int cfsetispeed(struct termios *termios_p, speed_t speed);

DESCRIPTION
The cfsetispeed() function shall set the input baud rate stored in the structure pointed to by
termios_p to speed.

There shall be no effect on the baud rates set in the hardware until a subsequent successful call
to tcsetattr() with the same termios structure. Similarly, errors resulting from attempts to set
baud rates not supported by the terminal device need not be detected until the tcsetattr()
function is called.

RETURN VALUE
Upon successful completion, cfsetispeed() shall return 0; otherwise, −1 shall be returned, and
errno may be set to indicate the error.

ERRORS
The cfsetispeed() function may fail if:

[EINVAL] The speed value is not a valid baud rate.

[EINVAL] The value of speed is outside the range of possible speed values as specified in
<termios.h>.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to cfgetispeed().

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetispeed(), cfgetospeed(), cfsetospeed(), tcsetattr()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The optional setting of errno and the [EINVAL] error conditions are added.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 651

22021

22022

22023

22024

22025

22026

22027

22028

22029

22030

22031

22032

22033

22034

22035

22036

22037

22038

22039

22040

22041

22042

22043

22044

22045

22046

22047

22048

22049

22050

22051

22052

22053

22054

22055

22056

22057

cfsetospeed() System Interfaces

NAME
cfsetospeed — set output baud rate

SYNOPSIS
#include <termios.h>

int cfsetospeed(struct termios *termios_p, speed_t speed);

DESCRIPTION
The cfsetospeed() function shall set the output baud rate stored in the structure pointed to by
termios_p to speed.

There shall be no effect on the baud rates set in the hardware until a subsequent successful call
to tcsetattr() with the same termios structure. Similarly, errors resulting from attempts to set
baud rates not supported by the terminal device need not be detected until the tcsetattr()
function is called.

RETURN VALUE
Upon successful completion, cfsetospeed() shall return 0; otherwise, it shall return −1 and errno
may be set to indicate the error.

ERRORS
The cfsetospeed() function may fail if:

[EINVAL] The speed value is not a valid baud rate.

[EINVAL] The value of speed is outside the range of possible speed values as specified in
<termios.h>.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to cfgetispeed().

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetispeed(), cfgetospeed(), cfsetispeed(), tcsetattr()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The optional setting of errno and the [EINVAL] error conditions are added.

652 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

22058

22059

22060

22061

22062

22063

22064

22065

22066

22067

22068

22069

22070

22071

22072

22073

22074

22075

22076

22077

22078

22079

22080

22081

22082

22083

22084

22085

22086

22087

22088

22089

22090

22091

22092

22093

22094

System Interfaces chdir()

NAME
chdir — change working directory

SYNOPSIS
#include <unistd.h>

int chdir(const char *path);

DESCRIPTION
The chdir() function shall cause the directory named by the pathname pointed to by the path
argument to become the current working directory; that is, the starting point for path searches
for pathnames not beginning with ’/’.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned, the current
working directory shall remain unchanged, and errno shall be set to indicate the error.

ERRORS
The chdir() function shall fail if:

[EACCES] Search permission is denied for any component of the pathname.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing directory or path is an empty
string.

[ENOTDIR] A component of the pathname is not a directory.

The chdir() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES

Changing the Current Working Directory

The following example makes the value pointed to by directory, /tmp, the current working
directory.

#include <unistd.h>
...
char *directory = "/tmp";
int ret;

ret = chdir (directory);

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 653

22095

22096

22097

22098

22099

22100

22101

22102

22103

22104

22105

22106

22107

22108

22109

22110

22111

22112

22113

22114

22115

22116

22117

22118

22119

22120

22121

22122

22123

22124

22125

22126

22127

22128

22129

22130

22131

22132

chdir() System Interfaces

APPLICATION USAGE
None.

RATIONALE
The chdir() function only affects the working directory of the current process.

FUTURE DIRECTIONS
None.

SEE ALSO
getcwd()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The APPLICATION USAGE section is added.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

654 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

22133

22134

22135

22136

22137

22138

22139

22140

22141

22142

22143

22144

22145

22146

22147

22148

22149

22150

22151

22152

22153

System Interfaces chmod()

NAME
chmod, fchmodat — change mode of a file relative to directory file descriptor

SYNOPSIS
#include <sys/stat.h>

int chmod(const char *path, mode_t mode);
int fchmodat(int fd, const char *path, mode_t mode, int flag);

DESCRIPTION
XSI The chmod() function shall change S_ISUID, S_ISGID, S_ISVTX, and the file permission bits of

the file named by the pathname pointed to by the path argument to the corresponding bits in the
mode argument. The application shall ensure that the effective user ID of the process matches the
owner of the file or the process has appropriate privileges in order to do this.

XSI S_ISUID, S_ISGID, S_ISVTX, and the file permission bits are described in <sys/stat.h>.

If the calling process does not have appropriate privileges, and if the group ID of the file does
not match the effective group ID or one of the supplementary group IDs and if the file is a
regular file, bit S_ISGID (set-group-ID on execution) in the file’s mode shall be cleared upon
successful return from chmod().

Additional implementation-defined restrictions may cause the S_ISUID and S_ISGID bits in
mode to be ignored.

The effect on file descriptors for files open at the time of a call to chmod() is implementation-
defined.

Upon successful completion, chmod() shall mark for update the last file status change timestamp
of the file.

The fchmodat() function shall be equivalent to the chmod() function except in the case where path
specifies a relative path. In this case the file to be changed is determined relative to the directory
associated with the file descriptor fd instead of the current working directory. If the file
descriptor was opened without O_SEARCH, the function shall check whether directory searches
are permitted using the current permissions of the directory underlying the file descriptor. If the
file descriptor was opened with O_SEARCH, the function shall not perform the check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, then the mode of the symbolic link is changed.

If fchmodat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used. If also flag is zero, the behavior shall be identical to a call to chmod().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, no change to the file mode occurs.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied on a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 655

22154

22155

22156

22157

22158

22159

22160

22161

22162

22163

22164

22165

22166

22167

22168

22169

22170

22171

22172

22173

22174

22175

22176

22177

22178

22179

22180

22181

22182

22183

22184

22185

22186

22187

22188

22189

22190

22191

22192

22193

22194

22195

chmod() System Interfaces

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory, or the path argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

[EPERM] The effective user ID does not match the owner of the file and the process does
not have appropriate privileges.

[EROFS] The named file resides on a read-only file system.

The fchmodat() function shall fail if:

[EACCES] fd was not opened with O_SEARCH and the permissions of the directory
underlying fd do not permit directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

These functions may fail if:

[EINTR] A signal was caught during execution of the function.

[EINVAL] The value of the mode argument is invalid.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

The fchmodat() function may fail if:

[EINVAL] The value of the flag argument is invalid.

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

[EOPNOTSUPP] The AT_SYMLINK_NOFOLLOW bit is set in the flag argument, path names a
symbolic link, and the system does not support changing the mode of a
symbolic link.

EXAMPLES

Setting Read Permissions for User, Group, and Others

The following example sets read permissions for the owner, group, and others.

#include <sys/stat.h>

const char *path;
...
chmod(path, S_IRUSR|S_IRGRP|S_IROTH);

656 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

22196

22197

22198

22199

22200

22201

22202

22203

22204

22205

22206

22207

22208

22209

22210

22211

22212

22213

22214

22215

22216

22217

22218

22219

22220

22221

22222

22223

22224

22225

22226

22227

22228

22229

22230

22231

22232

22233

System Interfaces chmod()

Setting Read, Write, and Execute Permissions for the Owner Only

The following example sets read, write, and execute permissions for the owner, and no
permissions for group and others.

#include <sys/stat.h>

const char *path;
...
chmod(path, S_IRWXU);

Setting Different Permissions for Owner, Group, and Other

The following example sets owner permissions for CHANGEFILE to read, write, and execute,
group permissions to read and execute, and other permissions to read.

#include <sys/stat.h>

#define CHANGEFILE "/etc/myfile"
...
chmod(CHANGEFILE, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH);

Setting and Checking File Permissions

The following example sets the file permission bits for a file named /home/cnd/mod1, then calls
the stat() function to verify the permissions.

#include <sys/types.h>
#include <sys/stat.h>

int status;
struct stat buffer
...
chmod("home/cnd/mod1", S_IRWXU|S_IRWXG|S_IROTH|S_IWOTH);
status = stat("home/cnd/mod1", &buffer;);

APPLICATION USAGE
In order to ensure that the S_ISUID and S_ISGID bits are set, an application requiring this
should use stat() after a successful chmod() to verify this.

Any file descriptors currently open by any process on the file could possibly become invalid if
the mode of the file is changed to a value which would deny access to that process. One
situation where this could occur is on a stateless file system. This behavior will not occur in a
conforming environment.

RATIONALE
This volume of POSIX.1-2008 specifies that the S_ISGID bit is cleared by chmod() on a regular file
under certain conditions. This is specified on the assumption that regular files may be executed,
and the system should prevent users from making executable setgid() files perform with
privileges that the caller does not have. On implementations that support execution of other file
types, the S_ISGID bit should be cleared for those file types under the same circumstances.

Implementations that use the S_ISUID bit to indicate some other function (for example,
mandatory record locking) on non-executable files need not clear this bit on writing. They
should clear the bit for executable files and any other cases where the bit grants special powers
to processes that change the file contents. Similar comments apply to the S_ISGID bit.

The purpose of the fchmodat() function is to enable changing the mode of files in directories

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 657

22234

22235

22236

22237

22238

22239

22240

22241

22242

22243

22244

22245

22246

22247

22248

22249

22250

22251

22252

22253

22254

22255

22256

22257

22258

22259

22260

22261

22262

22263

22264

22265

22266

22267

22268

22269

22270

22271

22272

22273

22274

22275

chmod() System Interfaces

other than the current working directory without exposure to race conditions. Any part of the
path of a file could be changed in parallel to a call to chmod(), resulting in unspecified behavior.
By opening a file descriptor for the target directory and using the fchmodat() function it can be
guaranteed that the changed file is located relative to the desired directory. Some
implementations might allow changing the mode of symbolic links. This is not supported by the
interfaces in the POSIX specification. Systems with such support provide an interface named
lchmod(). To support such implementations fchmodat() has a flag parameter.

FUTURE DIRECTIONS
None.

SEE ALSO
access(), chown(), exec , fstatat(), fstatvfs(), mkdir(), mkfifo(), mknod(), open()

XBD <fcntl.h>, <sys/stat.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [EINVAL] and [EINTR] optional error conditions are added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The fchmodat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

658 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

22276

22277

22278

22279

22280

22281

22282

22283

22284

22285

22286

22287

22288

22289

22290

22291

22292

22293

22294

22295

22296

22297

22298

22299

22300

22301

22302

22303

22304

22305

22306

22307

22308

System Interfaces chown()

NAME
chown, fchownat — change owner and group of a file relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);
int fchownat(int fd, const char *path, uid_t owner, gid_t group,

int flag);

DESCRIPTION
The chown() function shall change the user and group ownership of a file.

The path argument points to a pathname naming a file. The user ID and group ID of the named
file shall be set to the numeric values contained in owner and group, respectively.

Only processes with an effective user ID equal to the user ID of the file or with appropriate
privileges may change the ownership of a file. If _POSIX_CHOWN_RESTRICTED is in effect for
path:

• Changing the user ID is restricted to processes with appropriate privileges.

• Changing the group ID is permitted to a process with an effective user ID equal to the user
ID of the file, but without appropriate privileges, if and only if owner is equal to the file’s
user ID or (uid_t)−1 and group is equal either to the calling process’ effective group ID or to
one of its supplementary group IDs.

If the specified file is a regular file, one or more of the S_IXUSR, S_IXGRP, or S_IXOTH bits of
the file mode are set, and the process does not have appropriate privileges, the set-user-ID
(S_ISUID) and set-group-ID (S_ISGID) bits of the file mode shall be cleared upon successful
return from chown(). If the specified file is a regular file, one or more of the S_IXUSR, S_IXGRP,
or S_IXOTH bits of the file mode are set, and the process has appropriate privileges, it is
implementation-defined whether the set-user-ID and set-group-ID bits are altered. If the chown()
function is successfully invoked on a file that is not a regular file and one or more of the
S_IXUSR, S_IXGRP, or S_IXOTH bits of the file mode are set, the set-user-ID and set-group-ID
bits may be cleared.

If owner or group is specified as (uid_t)−1 or (gid_t)−1, respectively, the corresponding ID of the
file shall not be changed. If both owner and group are −1, the times need not be updated.

Upon successful completion, chown() shall mark for update the last file status change timestamp
of the file.

The fchownat() function shall be equivalent to the chown() and lchown() functions except in the
case where path specifies a relative path. In this case the file to be changed is determined relative
to the directory associated with the file descriptor fd instead of the current working directory. If
the file descriptor was opened without O_SEARCH, the function shall check whether directory
searches are permitted using the current permissions of the directory underlying the file
descriptor. If the file descriptor was opened with O_SEARCH, the function shall not perform the
check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, ownership of the symbolic link is changed.

If fchownat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to chown() or lchown() respectively,

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 659

22309

22310

22311

22312

22313

22314

22315

22316

22317

22318

22319

22320

22321

22322

22323

22324

22325

22326

22327

22328

22329

22330

22331

22332

22333

22334

22335

22336

22337

22338

22339

22340

22341

22342

22343

22344

22345

22346

22347

22348

22349

22350

22351

22352

22353

chown() System Interfaces

depending on whether or not the AT_SYMLINK_NOFOLLOW bit is set in the flag argument.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, no changes are made in the user ID
and group ID of the file.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied on a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory, or the path argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

[EPERM] The effective user ID does not match the owner of the file, or the calling
process does not have appropriate privileges and
_POSIX_CHOWN_RESTRICTED indicates that such privilege is required.

[EROFS] The named file resides on a read-only file system.

The fchownat() function shall fail if:

[EACCES] fd was not opened with O_SEARCH and the permissions of the directory
underlying fd do not permit directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

These functions may fail if:

[EIO] An I/O error occurred while reading or writing to the file system.

[EINTR] The chown() function was interrupted by a signal which was caught.

[EINVAL] The owner or group ID supplied is not a value supported by the
implementation.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

The fchownat() function may fail if:

[EINVAL] The value of the flag argument is not valid.

660 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

22354

22355

22356

22357

22358

22359

22360

22361

22362

22363

22364

22365

22366

22367

22368

22369

22370

22371

22372

22373

22374

22375

22376

22377

22378

22379

22380

22381

22382

22383

22384

22385

22386

22387

22388

22389

22390

22391

22392

System Interfaces chown()

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES
None.

APPLICATION USAGE
Although chown() can be used on some implementations by the file owner to change the owner
and group to any desired values, the only portable use of this function is to change the group of
a file to the effective GID of the calling process or to a member of its group set.

RATIONALE
System III and System V allow a user to give away files; that is, the owner of a file may change
its user ID to anything. This is a serious problem for implementations that are intended to meet
government security regulations. Version 7 and 4.3 BSD permit only the superuser to change the
user ID of a file. Some government agencies (usually not ones concerned directly with security)
find this limitation too confining. This volume of POSIX.1-2008 uses may to permit secure
implementations while not disallowing System V.

System III and System V allow the owner of a file to change the group ID to anything. Version 7
permits only the superuser to change the group ID of a file. 4.3 BSD permits the owner to
change the group ID of a file to its effective group ID or to any of the groups in the list of
supplementary group IDs, but to no others.

The POSIX.1-1990 standard requires that the chown() function invoked by a non-appropriate
privileged process clear the S_ISGID and the S_ISUID bits for regular files, and permits them to
be cleared for other types of files. This is so that changes in accessibility do not accidentally
cause files to become security holes. Unfortunately, requiring these bits to be cleared on non-
executable data files also clears the mandatory file locking bit (shared with S_ISGID), which is
an extension on many implementations (it first appeared in System V). These bits should only be
required to be cleared on regular files that have one or more of their execute bits set.

The purpose of the fchownat() function is to enable changing ownership of files in directories
other than the current working directory without exposure to race conditions. Any part of the
path of a file could be changed in parallel to a call to chown() or lchown(), resulting in
unspecified behavior. By opening a file descriptor for the target directory and using the
fchownat() function it can be guaranteed that the changed file is located relative to the desired
directory.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), fpathconf(), lchown()

XBD <fcntl.h>, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The wording describing the optional dependency on _POSIX_CHOWN_RESTRICTED is
restored.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 661

22393

22394

22395

22396

22397

22398

22399

22400

22401

22402

22403

22404

22405

22406

22407

22408

22409

22410

22411

22412

22413

22414

22415

22416

22417

22418

22419

22420

22421

22422

22423

22424

22425

22426

22427

22428

22429

22430

22431

22432

22433

22434

22435

chown() System Interfaces

• The [EPERM] error is restored as an error dependent on _POSIX_CHOWN_RESTRICTED.
This is since its operand is a pathname and applications should be aware that the error
may not occur for that pathname if the file system does not support
_POSIX_CHOWN_RESTRICTED.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The value for owner of (uid_t)−1 allows the use of −1 by the owner of a file to change the
group ID only. A corresponding change is made for group.

• The [ELOOP] mandatory error condition is added.

• The [EIO] and [EINTR] optional error conditions are added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Clarification is added that the S_ISUID and S_ISGID bits do not need to be cleared when
the process has appropriate privileges.

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The fchownat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

662 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

22436

22437

22438

22439

22440

22441

22442

22443

22444

22445

22446

22447

22448

22449

22450

22451

22452

22453

22454

22455

22456

22457

22458

22459

22460

22461

System Interfaces cimag()

NAME
cimag, cimagf, cimagl — complex imaginary functions

SYNOPSIS
#include <complex.h>

double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the imaginary part of z.

RETURN VALUE
These functions shall return the imaginary part value (as a real).

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
For a variable z of complex type:

z == creal(z) + cimag(z)*I

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), conj(), cproj(), creal()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 663

22462

22463

22464

22465

22466

22467

22468

22469

22470

22471

22472

22473

22474

22475

22476

22477

22478

22479

22480

22481

22482

22483

22484

22485

22486

22487

22488

22489

22490

22491

clearerr() System Interfaces

NAME
clearerr — clear indicators on a stream

SYNOPSIS
#include <stdio.h>

void clearerr(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The clearerr() function shall clear the end-of-file and error indicators for the stream to which
stream points.

RETURN VALUE
The clearerr() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

664 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

22492

22493

22494

22495

22496

22497

22498

22499

22500

22501

22502

22503

22504

22505

22506

22507

22508

22509

22510

22511

22512

22513

22514

22515

22516

22517

22518

System Interfaces clock()

NAME
clock — report CPU time used

SYNOPSIS
#include <time.h>

clock_t clock(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The clock() function shall return the implementation’s best approximation to the processor time
used by the process since the beginning of an implementation-defined era related only to the
process invocation.

RETURN VALUE
To determine the time in seconds, the value returned by clock() should be divided by the value

XSI of the macro CLOCKS_PER_SEC. CLOCKS_PER_SEC is defined to be one million in <time.h>.
If the processor time used is not available or its value cannot be represented, the function shall
return the value (clock_t)−1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
In order to measure the time spent in a program, clock() should be called at the start of the
program and its return value subtracted from the value returned by subsequent calls. The value
returned by clock() is defined for compatibility across systems that have clocks with different
resolutions. The resolution on any particular system need not be to microsecond accuracy.

The value returned by clock() may wrap around on some implementations. For example, on a
machine with 32-bit values for clock_t, it wraps after 2 147 seconds or 36 minutes.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), ctime(), difftime(), gmtime(), localtime(), mktime(), strftime(), strptime(), time(), utime()

XBD <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 665

22519

22520

22521

22522

22523

22524

22525

22526

22527

22528

22529

22530

22531

22532

22533

22534

22535

22536

22537

22538

22539

22540

22541

22542

22543

22544

22545

22546

22547

22548

22549

22550

22551

22552

22553

22554

22555

clock_getcpuclockid() System Interfaces

NAME
clock_getcpuclockid — access a process CPU-time clock (ADVANCED REALTIME)

SYNOPSIS
CPT #include <time.h>

int clock_getcpuclockid(pid_t pid, clockid_t *clock_id);

DESCRIPTION
The clock_getcpuclockid() function shall return the clock ID of the CPU-time clock of the process
specified by pid. If the process described by pid exists and the calling process has permission, the
clock ID of this clock shall be returned in clock_id.

If pid is zero, the clock_getcpuclockid() function shall return the clock ID of the CPU-time clock of
the process making the call, in clock_id.

The conditions under which one process has permission to obtain the CPU-time clock ID of
other processes are implementation-defined.

RETURN VALUE
Upon successful completion, clock_getcpuclockid() shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The clock_getcpuclockid() function shall fail if:

[EPERM] The requesting process does not have permission to access the CPU-time clock
for the process.

The clock_getcpuclockid() function may fail if:

[ESRCH] No process can be found corresponding to the process specified by pid.

EXAMPLES
None.

APPLICATION USAGE
The clock_getcpuclockid() function is part of the Process CPU-Time Clocks option and need not be
provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres(), timer_create()

XBD <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

666 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

22556

22557

22558

22559

22560

22561

22562

22563

22564

22565

22566

22567

22568

22569

22570

22571

22572

22573

22574

22575

22576

22577

22578

22579

22580

22581

22582

22583

22584

22585

22586

22587

22588

22589

22590

22591

22592

System Interfaces clock_getres()

NAME
clock_getres, clock_gettime, clock_settime — clock and timer functions

SYNOPSIS
CX #include <time.h>

int clock_getres(clockid_t clock_id, struct timespec *res);
int clock_gettime(clockid_t clock_id, struct timespec *tp);
int clock_settime(clockid_t clock_id, const struct timespec *tp);

DESCRIPTION
The clock_getres() function shall return the resolution of any clock. Clock resolutions are
implementation-defined and cannot be set by a process. If the argument res is not NULL, the
resolution of the specified clock shall be stored in the location pointed to by res. If res is NULL,
the clock resolution is not returned. If the time argument of clock_settime() is not a multiple of res,
then the value is truncated to a multiple of res.

The clock_gettime() function shall return the current value tp for the specified clock, clock_id.

The clock_settime() function shall set the specified clock, clock_id, to the value specified by tp.
Time values that are between two consecutive non-negative integer multiples of the resolution of
the specified clock shall be truncated down to the smaller multiple of the resolution.

A clock may be system-wide (that is, visible to all processes) or per-process (measuring time that
is meaningful only within a process). All implementations shall support a clock_id of
CLOCK_REALTIME as defined in <time.h>. This clock represents the clock measuring real time
for the system. For this clock, the values returned by clock_gettime() and specified by
clock_settime() represent the amount of time (in seconds and nanoseconds) since the Epoch. An
implementation may also support additional clocks. The interpretation of time values for these
clocks is unspecified.

If the value of the CLOCK_REALTIME clock is set via clock_settime(), the new value of the clock
shall be used to determine the time of expiration for absolute time services based upon the
CLOCK_REALTIME clock. This applies to the time at which armed absolute timers expire. If the
absolute time requested at the invocation of such a time service is before the new value of the
clock, the time service shall expire immediately as if the clock had reached the requested time
normally.

Setting the value of the CLOCK_REALTIME clock via clock_settime() shall have no effect on
threads that are blocked waiting for a relative time service based upon this clock, including the
nanosleep() function; nor on the expiration of relative timers based upon this clock.
Consequently, these time services shall expire when the requested relative interval elapses,
independently of the new or old value of the clock.

MON If the Monotonic Clock option is supported, all implementations shall support a clock_id of
CLOCK_MONOTONIC defined in <time.h>. This clock represents the monotonic clock for the
system. For this clock, the value returned by clock_gettime() represents the amount of time (in
seconds and nanoseconds) since an unspecified point in the past (for example, system start-up
time, or the Epoch). This point does not change after system start-up time. The value of the
CLOCK_MONOTONIC clock cannot be set via clock_settime(). This function shall fail if it is
invoked with a clock_id argument of CLOCK_MONOTONIC.

The effect of setting a clock via clock_settime() on armed per-process timers associated with a
clock other than CLOCK_REALTIME is implementation-defined.

If the value of the CLOCK_REALTIME clock is set via clock_settime(), the new value of the clock
shall be used to determine the time at which the system shall awaken a thread blocked on an

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 667

22593

22594

22595

22596

22597

22598

22599

22600

22601

22602

22603

22604

22605

22606

22607

22608

22609

22610

22611

22612

22613

22614

22615

22616

22617

22618

22619

22620

22621

22622

22623

22624

22625

22626

22627

22628

22629

22630

22631

22632

22633

22634

22635

22636

22637

22638

clock_getres() System Interfaces

absolute clock_nanosleep() call based upon the CLOCK_REALTIME clock. If the absolute time
requested at the invocation of such a time service is before the new value of the clock, the call
shall return immediately as if the clock had reached the requested time normally.

Setting the value of the CLOCK_REALTIME clock via clock_settime() shall have no effect on any
thread that is blocked on a relative clock_nanosleep() call. Consequently, the call shall return
when the requested relative interval elapses, independently of the new or old value of the clock.

Appropriate privileges to set a particular clock are implementation-defined.

CPT If _POSIX_CPUTIME is defined, implementations shall support clock ID values obtained by
invoking clock_getcpuclockid(), which represent the CPU-time clock of a given process.
Implementations shall also support the special clockid_t value
CLOCK_PROCESS_CPUTIME_ID, which represents the CPU-time clock of the calling process
when invoking one of the clock_*() or timer_*() functions. For these clock IDs, the values
returned by clock_gettime() and specified by clock_settime() represent the amount of execution
time of the process associated with the clock. Changing the value of a CPU-time clock via
clock_settime() shall have no effect on the behavior of the sporadic server scheduling policy (see
Scheduling Policies, on page 501).

TCT If _POSIX_THREAD_CPUTIME is defined, implementations shall support clock ID values
obtained by invoking pthread_getcpuclockid(), which represent the CPU-time clock of a given
thread. Implementations shall also support the special clockid_t value
CLOCK_THREAD_CPUTIME_ID, which represents the CPU-time clock of the calling thread
when invoking one of the clock_*() or timer_*() functions. For these clock IDs, the values
returned by clock_gettime() and specified by clock_settime() shall represent the amount of
execution time of the thread associated with the clock. Changing the value of a CPU-time clock
via clock_settime() shall have no effect on the behavior of the sporadic server scheduling policy
(see Scheduling Policies, on page 501).

RETURN VALUE
A return value of 0 shall indicate that the call succeeded. A return value of −1 shall indicate that
an error occurred, and errno shall be set to indicate the error.

ERRORS
The clock_getres(), clock_gettime(), and clock_settime() functions shall fail if:

[EINVAL] The clock_id argument does not specify a known clock.

The clock_settime() function shall fail if:

[EINVAL] The tp argument to clock_settime() is outside the range for the given clock ID.

[EINVAL] The tp argument specified a nanosecond value less than zero or greater than or
equal to 1 000 million.

MON [EINVAL] The value of the clock_id argument is CLOCK_MONOTONIC.

The clock_settime() function may fail if:

[EPERM] The requesting process does not have appropriate privileges to set the
specified clock.

668 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

22639

22640

22641

22642

22643

22644

22645

22646

22647

22648

22649

22650

22651

22652

22653

22654

22655

22656

22657

22658

22659

22660

22661

22662

22663

22664

22665

22666

22667

22668

22669

22670

22671

22672

22673

22674

22675

22676

22677

System Interfaces clock_getres()

EXAMPLES
None.

APPLICATION USAGE
Note that the absolute value of the monotonic clock is meaningless (because its origin is
arbitrary), and thus there is no need to set it. Furthermore, realtime applications can rely on the
fact that the value of this clock is never set and, therefore, that time intervals measured with this
clock will not be affected by calls to clock_settime().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getcpuclockid(), clock_nanosleep(), ctime(), mq_receive(), mq_send(), nanosleep(),
pthread_mutex_timedlock(), sem_timedwait(), time(), timer_create(), timer_getoverrun()

XBD <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Timers option.

The APPLICATION USAGE section is added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Clarification is added of the effect of resetting the clock resolution.

CPU-time clocks and the clock_getcpuclockid() function are added for alignment with IEEE Std
1003.1d-1999.

The following changes are added for alignment with IEEE Std 1003.1j-2000:

• The DESCRIPTION is updated as follows:

— The value returned by clock_gettime() for CLOCK_MONOTONIC is specified.

— The clock_settime() function failing for CLOCK_MONOTONIC is specified.

— The effects of clock_settime() on the clock_nanosleep() function with respect to
CLOCK_REALTIME are specified.

• An [EINVAL] error is added to the ERRORS section, indicating that clock_settime() fails for
CLOCK_MONOTONIC.

• The APPLICATION USAGE section notes that the CLOCK_MONOTONIC clock need not
and shall not be set by clock_settime() since the absolute value of the
CLOCK_MONOTONIC clock is meaningless.

• The clock_nanosleep(), mq_timedreceive(), mq_timedsend(), pthread_mutex_timedlock(),
sem_timedwait(), timer_create(), and timer_settime() functions are added to the SEE ALSO
section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 669

22678

22679

22680

22681

22682

22683

22684

22685

22686

22687

22688

22689

22690

22691

22692

22693

22694

22695

22696

22697

22698

22699

22700

22701

22702

22703

22704

22705

22706

22707

22708

22709

22710

22711

22712

22713

22714

22715

22716

clock_getres() System Interfaces

Issue 7
Functionality relating to the Clock Selection option is moved to the Base.

The clock_getres(), clock_gettime(), and clock_settime() functions are moved from the Timers
option to the Base.

670 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

22717

22718

22719

22720

System Interfaces clock_nanosleep()

NAME
clock_nanosleep — high resolution sleep with specifiable clock

SYNOPSIS
CX #include <time.h>

int clock_nanosleep(clockid_t clock_id, int flags,
const struct timespec *rqtp, struct timespec *rmtp);

DESCRIPTION
If the flag TIMER_ABSTIME is not set in the flags argument, the clock_nanosleep() function shall
cause the current thread to be suspended from execution until either the time interval specified
by the rqtp argument has elapsed, or a signal is delivered to the calling thread and its action is to
invoke a signal-catching function, or the process is terminated. The clock used to measure the
time shall be the clock specified by clock_id.

If the flag TIMER_ABSTIME is set in the flags argument, the clock_nanosleep() function shall
cause the current thread to be suspended from execution until either the time value of the clock
specified by clock_id reaches the absolute time specified by the rqtp argument, or a signal is
delivered to the calling thread and its action is to invoke a signal-catching function, or the
process is terminated. If, at the time of the call, the time value specified by rqtp is less than or
equal to the time value of the specified clock, then clock_nanosleep() shall return immediately
and the calling process shall not be suspended.

The suspension time caused by this function may be longer than requested because the
argument value is rounded up to an integer multiple of the sleep resolution, or because of the
scheduling of other activity by the system. But, except for the case of being interrupted by a
signal, the suspension time for the relative clock_nanosleep() function (that is, with the
TIMER_ABSTIME flag not set) shall not be less than the time interval specified by rqtp, as
measured by the corresponding clock. The suspension for the absolute clock_nanosleep() function
(that is, with the TIMER_ABSTIME flag set) shall be in effect at least until the value of the
corresponding clock reaches the absolute time specified by rqtp, except for the case of being
interrupted by a signal.

The use of the clock_nanosleep() function shall have no effect on the action or blockage of any
signal.

The clock_nanosleep() function shall fail if the clock_id argument refers to the CPU-time clock of
the calling thread. It is unspecified whether clock_id values of other CPU-time clocks are allowed.

RETURN VALUE
If the clock_nanosleep() function returns because the requested time has elapsed, its return value
shall be zero.

If the clock_nanosleep() function returns because it has been interrupted by a signal, it shall
return the corresponding error value. For the relative clock_nanosleep() function, if the rmtp
argument is non-NULL, the timespec structure referenced by it shall be updated to contain the
amount of time remaining in the interval (the requested time minus the time actually slept). If
the rmtp argument is NULL, the remaining time is not returned. The absolute clock_nanosleep()
function has no effect on the structure referenced by rmtp.

If clock_nanosleep() fails, it shall return the corresponding error value.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 671

22721

22722

22723

22724

22725

22726

22727

22728

22729

22730

22731

22732

22733

22734

22735

22736

22737

22738

22739

22740

22741

22742

22743

22744

22745

22746

22747

22748

22749

22750

22751

22752

22753

22754

22755

22756

22757

22758

22759

22760

22761

22762

clock_nanosleep() System Interfaces

ERRORS
The clock_nanosleep() function shall fail if:

[EINTR] The clock_nanosleep() function was interrupted by a signal.

[EINVAL] The rqtp argument specified a nanosecond value less than zero or greater than
or equal to 1 000 million; or the TIMER_ABSTIME flag was specified in flags
and the rqtp argument is outside the range for the clock specified by clock_id;
or the clock_id argument does not specify a known clock, or specifies the CPU-
time clock of the calling thread.

[ENOTSUP] The clock_id argument specifies a clock for which clock_nanosleep() is not
supported, such as a CPU-time clock.

EXAMPLES
None.

APPLICATION USAGE
Calling clock_nanosleep() with the value TIMER_ABSTIME not set in the flags argument and with
a clock_id of CLOCK_REALTIME is equivalent to calling nanosleep() with the same rqtp and rmtp
arguments.

RATIONALE
The nanosleep() function specifies that the system-wide clock CLOCK_REALTIME is used to
measure the elapsed time for this time service. However, with the introduction of the monotonic
clock CLOCK_MONOTONIC a new relative sleep function is needed to allow an application to
take advantage of the special characteristics of this clock.

There are many applications in which a process needs to be suspended and then activated
multiple times in a periodic way; for example, to poll the status of a non-interrupting device or
to refresh a display device. For these cases, it is known that precise periodic activation cannot be
achieved with a relative sleep() or nanosleep() function call. Suppose, for example, a periodic
process that is activated at time T0, executes for a while, and then wants to suspend itself until
time T0+T, the period being T. If this process wants to use the nanosleep() function, it must first
call clock_gettime() to get the current time, then calculate the difference between the current time
and T0+T and, finally, call nanosleep() using the computed interval. However, the process could
be preempted by a different process between the two function calls, and in this case the interval
computed would be wrong; the process would wake up later than desired. This problem would
not occur with the absolute clock_nanosleep() function, since only one function call would be
necessary to suspend the process until the desired time. In other cases, however, a relative sleep
is needed, and that is why both functionalities are required.

Although it is possible to implement periodic processes using the timers interface, this
implementation would require the use of signals, and the reservation of some signal numbers. In
this regard, the reasons for including an absolute version of the clock_nanosleep() function in
POSIX.1-2008 are the same as for the inclusion of the relative nanosleep().

It is also possible to implement precise periodic processes using pthread_cond_timedwait(), in
which an absolute timeout is specified that takes effect if the condition variable involved is never
signaled. However, the use of this interface is unnatural, and involves performing other
operations on mutexes and condition variables that imply an unnecessary overhead.
Furthermore, pthread_cond_timedwait() is not available in implementations that do not support
threads.

Although the interface of the relative and absolute versions of the new high resolution sleep
service is the same clock_nanosleep() function, the rmtp argument is only used in the relative
sleep. This argument is needed in the relative clock_nanosleep() function to reissue the function

672 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

22763

22764

22765

22766

22767

22768

22769

22770

22771

22772

22773

22774

22775

22776

22777

22778

22779

22780

22781

22782

22783

22784

22785

22786

22787

22788

22789

22790

22791

22792

22793

22794

22795

22796

22797

22798

22799

22800

22801

22802

22803

22804

22805

22806

22807

22808

22809

System Interfaces clock_nanosleep()

call if it is interrupted by a signal, but it is not needed in the absolute clock_nanosleep() function
call; if the call is interrupted by a signal, the absolute clock_nanosleep() function can be invoked
again with the same rqtp argument used in the interrupted call.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres(), nanosleep(), pthread_cond_timedwait(), sleep()

XBD <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7
The clock_nanosleep() function is moved from the Clock Selection option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 673

22810

22811

22812

22813

22814

22815

22816

22817

22818

22819

22820

22821

clock_settime() System Interfaces

NAME
clock_settime — clock and timer functions

SYNOPSIS
CX #include <time.h>

int clock_settime(clockid_t clock_id, const struct timespec *tp);

DESCRIPTION
Refer to clock_getres().

674 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

22822

22823

22824

22825

22826

22827

22828

System Interfaces clog()

NAME
clog, clogf, clogl — complex natural logarithm functions

SYNOPSIS
#include <complex.h>

double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex natural (base e) logarithm of z, with a branch cut
along the negative real axis.

RETURN VALUE
These functions shall return the complex natural logarithm value, in the range of a strip
mathematically unbounded along the real axis and in the interval [−iπ, +iπ] along the imaginary
axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cexp()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 675

22829

22830

22831

22832

22833

22834

22835

22836

22837

22838

22839

22840

22841

22842

22843

22844

22845

22846

22847

22848

22849

22850

22851

22852

22853

22854

22855

22856

22857

22858

22859

22860

close() System Interfaces

NAME
close — close a file descriptor

SYNOPSIS
#include <unistd.h>

int close(int fildes);

DESCRIPTION
The close() function shall deallocate the file descriptor indicated by fildes. To deallocate means to
make the file descriptor available for return by subsequent calls to open() or other functions that
allocate file descriptors. All outstanding record locks owned by the process on the file associated
with the file descriptor shall be removed (that is, unlocked).

If close() is interrupted by a signal that is to be caught, it shall return −1 with errno set to [EINTR]
and the state of fildes is unspecified. If an I/O error occurred while reading from or writing to
the file system during close(), it may return −1 with errno set to [EIO]; if this error is returned, the
state of fildes is unspecified.

When all file descriptors associated with a pipe or FIFO special file are closed, any data
remaining in the pipe or FIFO shall be discarded.

When all file descriptors associated with an open file description have been closed, the open file
description shall be freed.

If the link count of the file is 0, when all file descriptors associated with the file are closed, the
space occupied by the file shall be freed and the file shall no longer be accessible.

OB XSR If a STREAMS-based fildes is closed and the calling process was previously registered to receive
a SIGPOLL signal for events associated with that STREAM, the calling process shall be
unregistered for events associated with the STREAM. The last close() for a STREAM shall cause
the STREAM associated with fildes to be dismantled. If O_NONBLOCK is not set and there have
been no signals posted for the STREAM, and if there is data on the module’s write queue, close()
shall wait for an unspecified time (for each module and driver) for any output to drain before
dismantling the STREAM. The time delay can be changed via an I_SETCLTIME ioctl() request. If
the O_NONBLOCK flag is set, or if there are any pending signals, close() shall not wait for
output to drain, and shall dismantle the STREAM immediately.

If the implementation supports STREAMS-based pipes, and fildes is associated with one end of a
pipe, the last close() shall cause a hangup to occur on the other end of the pipe. In addition, if the
other end of the pipe has been named by fattach(), then the last close() shall force the named end
to be detached by fdetach(). If the named end has no open file descriptors associated with it and
gets detached, the STREAM associated with that end shall also be dismantled.

XSI If fildes refers to the master side of a pseudo-terminal, and this is the last close, a SIGHUP signal
shall be sent to the controlling process, if any, for which the slave side of the pseudo-terminal is
the controlling terminal. It is unspecified whether closing the master side of the pseudo-terminal
flushes all queued input and output.

OB XSR If fildes refers to the slave side of a STREAMS-based pseudo-terminal, a zero-length message
may be sent to the master.

When there is an outstanding cancelable asynchronous I/O operation against fildes when close()
is called, that I/O operation may be canceled. An I/O operation that is not canceled completes
as if the close() operation had not yet occurred. All operations that are not canceled shall
complete as if the close() blocked until the operations completed. The close() operation itself
need not block awaiting such I/O completion. Whether any I/O operation is canceled, and
which I/O operation may be canceled upon close(), is implementation-defined.

676 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

22861

22862

22863

22864

22865

22866

22867

22868

22869

22870

22871

22872

22873

22874

22875

22876

22877

22878

22879

22880

22881

22882

22883

22884

22885

22886

22887

22888

22889

22890

22891

22892

22893

22894

22895

22896

22897

22898

22899

22900

22901

22902

22903

22904

22905

22906

System Interfaces close()

SHM If a memory mapped file or a shared memory object remains referenced at the last close (that is,
a process has it mapped), then the entire contents of the memory object shall persist until the

SHM memory object becomes unreferenced. If this is the last close of a memory mapped file or a
shared memory object and the close results in the memory object becoming unreferenced, and
the memory object has been unlinked, then the memory object shall be removed.

If fildes refers to a socket, close() shall cause the socket to be destroyed. If the socket is in
connection-mode, and the SO_LINGER option is set for the socket with non-zero linger time,
and the socket has untransmitted data, then close() shall block for up to the current linger
interval until all data is transmitted.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The close() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINTR] The close() function was interrupted by a signal.

The close() function may fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

EXAMPLES

Reassigning a File Descriptor

The following example closes the file descriptor associated with standard output for the current
process, re-assigns standard output to a new file descriptor, and closes the original file descriptor
to clean up. This example assumes that the file descriptor 0 (which is the descriptor for standard
input) is not closed.

#include <unistd.h>
...
int pfd;
...
close(1);
dup(pfd);
close(pfd);
...

Incidentally, this is exactly what could be achieved using:

dup2(pfd, 1);
close(pfd);

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 677

22907

22908

22909

22910

22911

22912

22913

22914

22915

22916

22917

22918

22919

22920

22921

22922

22923

22924

22925

22926

22927

22928

22929

22930

22931

22932

22933

22934

22935

22936

22937

22938

22939

22940

22941

close() System Interfaces

Closing a File Descriptor

In the following example, close() is used to close a file descriptor after an unsuccessful attempt is
made to associate that file descriptor with a stream.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...
int pfd;
FILE *fpfd;
...
if ((fpfd = fdopen (pfd, "w")) == NULL) {

close(pfd);
unlink(LOCKFILE);
exit(1);

}
...

APPLICATION USAGE
An application that had used the stdio routine fopen() to open a file should use the
corresponding fclose() routine rather than close(). Once a file is closed, the file descriptor no
longer exists, since the integer corresponding to it no longer refers to a file.

RATIONALE
The use of interruptible device close routines should be discouraged to avoid problems with the
implicit closes of file descriptors by exec and exit(). This volume of POSIX.1-2008 only intends to
permit such behavior by specifying the [EINTR] error condition.

Note that the requirement for close() on a socket to block for up to the current linger interval is
not conditional on the O_NONBLOCK setting.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.6 (on page 494), exec , fattach(), fclose(), fdetach(), fopen(), ioctl(), open(), unlink()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Issue 6
The DESCRIPTION related to a STREAMS-based file or pseudo-terminal is marked as part of
the XSI STREAMS Option Group.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] error condition is added as an optional error.

678 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

22942

22943

22944

22945

22946

22947

22948

22949

22950

22951

22952

22953

22954

22955

22956

22957

22958

22959

22960

22961

22962

22963

22964

22965

22966

22967

22968

22969

22970

22971

22972

22973

22974

22975

22976

22977

22978

22979

22980

22981

22982

22983

System Interfaces close()

• The DESCRIPTION is updated to describe the state of the fildes file descriptor as
unspecified if an I/O error occurs and an [EIO] error condition is returned.

Text referring to sockets is added to the DESCRIPTION.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
shared memory objects and memory mapped files (and not typed memory objects) are the types
of memory objects to which the paragraph on last closes applies.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/12 is applied, correcting the XSH shaded
text relating to the master side of a pseudo-terminal. The reason for the change is that the
behavior of pseudo-terminals and regular terminals should be as much alike as possible in this
case; the change achieves that and matches historical behavior.

Issue 7
Functionality relating to the XSI STREAMS option is marked obsolescent.

Functionality relating to the Asynchronous Input and Output and Memory Mapped Files
options is moved to the Base.

Austin Group Interpretation 1003.1-2001 #139 is applied, clarifying that the requirement for
close() on a socket to block for up to the current linger interval is not conditional on the
O_NONBLOCK setting.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 679

22984

22985

22986

22987

22988

22989

22990

22991

22992

22993

22994

22995

22996

22997

22998

22999

23000

closedir() System Interfaces

NAME
closedir — close a directory stream

SYNOPSIS
#include <dirent.h>

int closedir(DIR *dirp);

DESCRIPTION
The closedir() function shall close the directory stream referred to by the argument dirp. Upon
return, the value of dirp may no longer point to an accessible object of the type DIR. If a file
descriptor is used to implement type DIR, that file descriptor shall be closed.

RETURN VALUE
Upon successful completion, closedir() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The closedir() function may fail if:

[EBADF] The dirp argument does not refer to an open directory stream.

[EINTR] The closedir() function was interrupted by a signal.

EXAMPLES

Closing a Directory Stream

The following program fragment demonstrates how the closedir() function is used.

...
DIR *dir;
struct dirent *dp;

...
if ((dir = opendir (".")) == NULL) {

...
}

while ((dp = readdir (dir)) != NULL) {
...

}

closedir(dir);
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dirfd(), fdopendir()

XBD <dirent.h>

680 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23001

23002

23003

23004

23005

23006

23007

23008

23009

23010

23011

23012

23013

23014

23015

23016

23017

23018

23019

23020

23021

23022

23023

23024

23025

23026

23027

23028

23029

23030

23031

23032

23033

23034

23035

23036

23037

23038

23039

23040

System Interfaces closedir()

CHANGE HISTORY
First released in Issue 2.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [EINTR] error condition is added as an optional error condition.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 681

23041

23042

23043

23044

23045

23046

23047

23048

23049

23050

closelog() System Interfaces

NAME
closelog, openlog, setlogmask, syslog — control system log

SYNOPSIS
XSI #include <syslog.h>

void closelog(void);
void openlog(const char *ident, int logopt, int facility);
int setlogmask(int maskpri);
void syslog(int priority, const char *message, ... /* arguments */);

DESCRIPTION
The syslog() function shall send a message to an implementation-defined logging facility, which
may log it in an implementation-defined system log, write it to the system console, forward it to
a list of users, or forward it to the logging facility on another host over the network. The logged
message shall include a message header and a message body. The message header contains at
least a timestamp and a tag string.

The message body is generated from the message and following arguments in the same manner
as if these were arguments to printf(), except that the additional conversion specification %m
shall be recognized; it shall convert no arguments, shall cause the output of the error message
string associated with the value of errno on entry to syslog(), and may be mixed with argument
specifications of the "%n$" form. If a complete conversion specification with the m conversion
specifier character is not just %m, the behavior is undefined. A trailing <newline> may be added
if needed.

Values of the priority argument are formed by OR’ing together a severity-level value and an
optional facility value. If no facility value is specified, the current default facility value is used.

Possible values of severity level include:

LOG_EMERG A panic condition.

LOG_ALERT A condition that should be corrected immediately, such as a corrupted system
database.

LOG_CRIT Critical conditions, such as hard device errors.

LOG_ERR Errors.

LOG_WARNING
Warning messages.

LOG_NOTICE Conditions that are not error conditions, but that may require special
handling.

LOG_INFO Informational messages.

LOG_DEBUG Messages that contain information normally of use only when debugging a
program.

The facility indicates the application or system component generating the message. Possible
facility values include:

LOG_USER Messages generated by arbitrary processes. This is the default facility
identifier if none is specified.

LOG_LOCAL0 Reserved for local use.

682 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23051

23052

23053

23054

23055

23056

23057

23058

23059

23060

23061

23062

23063

23064

23065

23066

23067

23068

23069

23070

23071

23072

23073

23074

23075

23076

23077

23078

23079

23080

23081

23082

23083

23084

23085

23086

23087

23088

23089

23090

23091

System Interfaces closelog()

LOG_LOCAL1 Reserved for local use.

LOG_LOCAL2 Reserved for local use.

LOG_LOCAL3 Reserved for local use.

LOG_LOCAL4 Reserved for local use.

LOG_LOCAL5 Reserved for local use.

LOG_LOCAL6 Reserved for local use.

LOG_LOCAL7 Reserved for local use.

The openlog() function shall set process attributes that affect subsequent calls to syslog(). The
ident argument is a string that is prepended to every message. The logopt argument indicates
logging options. Values for logopt are constructed by a bitwise-inclusive OR of zero or more of
the following:

LOG_PID Log the process ID with each message. This is useful for identifying specific
processes.

LOG_CONS Write messages to the system console if they cannot be sent to the logging
facility. The syslog() function ensures that the process does not acquire the
console as a controlling terminal in the process of writing the message.

LOG_NDELAY Open the connection to the logging facility immediately. Normally the open is
delayed until the first message is logged. This is useful for programs that need
to manage the order in which file descriptors are allocated.

LOG_ODELAY Delay open until syslog() is called.

LOG_NOWAIT Do not wait for child processes that may have been created during the course
of logging the message. This option should be used by processes that enable
notification of child termination using SIGCHLD, since syslog() may
otherwise block waiting for a child whose exit status has already been
collected.

The facility argument encodes a default facility to be assigned to all messages that do not have an
explicit facility already encoded. The initial default facility is LOG_USER.

The openlog() and syslog() functions may allocate a file descriptor. It is not necessary to call
openlog() prior to calling syslog().

The closelog() function shall close any open file descriptors allocated by previous calls to
openlog() or syslog().

The setlogmask() function shall set the log priority mask for the current process to maskpri and
return the previous mask. If the maskpri argument is 0, the current log mask is not modified.
Calls by the current process to syslog() with a priority not set in maskpri shall be rejected. The
default log mask allows all priorities to be logged. A call to openlog() is not required prior to
calling setlogmask().

Symbolic constants for use as values of the logopt, facility, priority, and maskpri arguments are
defined in the <syslog.h> header.

RETURN VALUE
The setlogmask() function shall return the previous log priority mask. The closelog(), openlog(),
and syslog() functions shall not return a value.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 683

23092

23093

23094

23095

23096

23097

23098

23099

23100

23101

23102

23103

23104

23105

23106

23107

23108

23109

23110

23111

23112

23113

23114

23115

23116

23117

23118

23119

23120

23121

23122

23123

23124

23125

23126

23127

23128

23129

23130

23131

23132

closelog() System Interfaces

ERRORS
No errors are defined.

EXAMPLES

Using openlog()

The following example causes subsequent calls to syslog() to log the process ID with each
message, and to write messages to the system console if they cannot be sent to the logging
facility.

#include <syslog.h>

char *ident = "Process demo";
int logopt = LOG_PID | LOG_CONS;
int facility = LOG_USER;
...
openlog(ident, logopt, facility);

Using setlogmask()

The following example causes subsequent calls to syslog() to accept error messages, and to reject
all other messages.

#include <syslog.h>

int result;
int mask = LOG_MASK (LOG_ERR);
...
result = setlogmask(mask);

Using syslog

The following example sends the message "This is a message" to the default logging
facility, marking the message as an error message generated by random processes.

#include <syslog.h>

char *message = "This is a message";
int priority = LOG_ERR | LOG_USER;
...
syslog(priority, message);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf()

XBD <syslog.h>

684 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23133

23134

23135

23136

23137

23138

23139

23140

23141

23142

23143

23144

23145

23146

23147

23148

23149

23150

23151

23152

23153

23154

23155

23156

23157

23158

23159

23160

23161

23162

23163

23164

23165

23166

23167

23168

23169

23170

System Interfaces closelog()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/13 is applied, correcting the EXAMPLES
section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 685

23171

23172

23173

23174

23175

23176

23177

confstr() System Interfaces

NAME
confstr — get configurable variables

SYNOPSIS
#include <unistd.h>

size_t confstr(int name, char *buf, size_t len);

DESCRIPTION
The confstr() function shall return configuration-defined string values. Its use and purpose are
similar to sysconf(), but it is used where string values rather than numeric values are returned.

The name argument represents the system variable to be queried. The implementation shall
support the following name values, defined in <unistd.h>. It may support others:

_CS_PATH
_CS_POSIX_V7_ILP32_OFF32_CFLAGS
_CS_POSIX_V7_ILP32_OFF32_LDFLAGS
_CS_POSIX_V7_ILP32_OFF32_LIBS
_CS_POSIX_V7_ILP32_OFFBIG_CFLAGS
_CS_POSIX_V7_ILP32_OFFBIG_LDFLAGS
_CS_POSIX_V7_ILP32_OFFBIG_LIBS
_CS_POSIX_V7_LP64_OFF64_CFLAGS
_CS_POSIX_V7_LP64_OFF64_LDFLAGS
_CS_POSIX_V7_LP64_OFF64_LIBS
_CS_POSIX_V7_LPBIG_OFFBIG_CFLAGS
_CS_POSIX_V7_LPBIG_OFFBIG_LDFLAGS
_CS_POSIX_V7_LPBIG_OFFBIG_LIBS
_CS_POSIX_V7_THREADS_CFLAGS
_CS_POSIX_V7_THREADS_LDFLAGS
_CS_POSIX_V7_WIDTH_RESTRICTED_ENVS
_CS_V7_ENV

OB _CS_POSIX_V6_ILP32_OFF32_CFLAGS
_CS_POSIX_V6_ILP32_OFF32_LDFLAGS
_CS_POSIX_V6_ILP32_OFF32_LIBS
_CS_POSIX_V6_ILP32_OFFBIG_CFLAGS
_CS_POSIX_V6_ILP32_OFFBIG_LDFLAGS
_CS_POSIX_V6_ILP32_OFFBIG_LIBS
_CS_POSIX_V6_LP64_OFF64_CFLAGS
_CS_POSIX_V6_LP64_OFF64_LDFLAGS
_CS_POSIX_V6_LP64_OFF64_LIBS
_CS_POSIX_V6_LPBIG_OFFBIG_CFLAGS
_CS_POSIX_V6_LPBIG_OFFBIG_LDFLAGS
_CS_POSIX_V6_LPBIG_OFFBIG_LIBS
_CS_POSIX_V6_WIDTH_RESTRICTED_ENVS
_CS_V6_ENV

If len is not 0, and if name has a configuration-defined value, confstr() shall copy that value into
the len-byte buffer pointed to by buf. If the string to be returned is longer than len bytes,
including the terminating null, then confstr() shall truncate the string to len−1 bytes and null-
terminate the result. The application can detect that the string was truncated by comparing the
value returned by confstr() with len.

If len is 0 and buf is a null pointer, then confstr() shall still return the integer value as defined
below, but shall not return a string. If len is 0 but buf is not a null pointer, the result is

686 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23178

23179

23180

23181

23182

23183

23184

23185

23186

23187

23188

23189

23190

23191

23192

23193

23194

23195

23196

23197

23198

23199

23200

23201

23202

23203

23204

23205

23206

23207

23208

23209

23210

23211

23212

23213

23214

23215

23216

23217

23218

23219

23220

23221

23222

23223

23224

23225

System Interfaces confstr()

unspecified.

After a call to:

confstr(_CS_V7_ENV, buf, sizeof(buf))

the string stored in buf will contain the <space>-separated list of variable=value environment
variable pairs required by the implementation to create a conforming environment, as described
in the implementations’ conformance documentation.

If the implementation supports the POSIX shell option, the string stored in buf after a call to:

confstr(_CS_PATH, buf, sizeof(buf))

can be used as a value of the PA TH environment variable that accesses all of the standard
utilities of POSIX.1-2008, if the return value is less than or equal to sizeof (buf).

RETURN VALUE
If name has a configuration-defined value, confstr() shall return the size of buffer that would be
needed to hold the entire configuration-defined value including the terminating null. If this
return value is greater than len, the string returned in buf is truncated.

If name is invalid, confstr() shall return 0 and set errno to indicate the error.

If name does not have a configuration-defined value, confstr() shall return 0 and leave errno
unchanged.

ERRORS
The confstr() function shall fail if:

[EINVAL] The value of the name argument is invalid.

EXAMPLES
None.

APPLICATION USAGE
An application can distinguish between an invalid name parameter value and one that
corresponds to a configurable variable that has no configuration-defined value by checking if
errno is modified. This mirrors the behavior of sysconf().

The original need for this function was to provide a way of finding the configuration-defined
default value for the environment variable PA TH. Since PA TH can be modified by the user to
include directories that could contain utilities replacing the standard utilities in the Shell and
Utilities volume of POSIX.1-2008, applications need a way to determine the system-supplied
PA TH environment variable value that contains the correct search path for the standard utilities.

An application could use:

confstr(name, (char *)NULL, (size_t)0)

to find out how big a buffer is needed for the string value; use malloc() to allocate a buffer to
hold the string; and call confstr() again to get the string. Alternately, it could allocate a fixed,
static buffer that is big enough to hold most answers (perhaps 512 or 1 024 bytes), but then use
malloc() to allocate a larger buffer if it finds that this is too small.

RATIONALE
Application developers can normally determine any configuration variable by means of reading
from the stream opened by a call to:

popen("command -p getconf variable", "r");

The confstr() function with a name argument of _CS_PATH returns a string that can be used as a

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 687

23226

23227

23228

23229

23230

23231

23232

23233

23234

23235

23236

23237

23238

23239

23240

23241

23242

23243

23244

23245

23246

23247

23248

23249

23250

23251

23252

23253

23254

23255

23256

23257

23258

23259

23260

23261

23262

23263

23264

23265

23266

23267

confstr() System Interfaces

PA TH environment variable setting that will reference the standard shell and utilities as
described in the Shell and Utilities volume of POSIX.1-2008.

The confstr() function copies the returned string into a buffer supplied by the application instead
of returning a pointer to a string. This allows a cleaner function in some implementations (such
as those with lightweight threads) and resolves questions about when the application must copy
the string returned.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fpathconf(), sysconf()

XBD <unistd.h>

XCU c99

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 5
A table indicating the permissible values of name is added to the DESCRIPTION. All those
marked EX are new in this version.

Issue 6
The Open Group Corrigendum U033/7 is applied. The return value for the case returning the
size of the buffer now explicitly states that this includes the terminating null.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated with new arguments which can be used to determine
configuration strings for C compiler flags, linker/loader flags, and libraries for each
different supported programming environment. This is a change to support data size
neutrality.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The DESCRIPTION is updated to include text describing how _CS_PATH can be used to
obtain a PA TH to access the standard utilities.

The macros associated with the c89 programming models are marked LEGACY and new
equivalent macros associated with c99 are introduced.

Issue 7
Austin Group Interpretation 1003.1-2001 #047 is applied, adding the _CS_V7_ENV variable.

Austin Group Interpretations 1003.1-2001 #166 is applied to permit an additional compiler flag
to enable threads.

The V6 variables for the supported programming environments are marked obsolescent.

The variables for the supported programming environments are updated to be V7.

The LEGACY variables and obsolescent values are removed.

688 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23268

23269

23270

23271

23272

23273

23274

23275

23276

23277

23278

23279

23280

23281

23282

23283

23284

23285

23286

23287

23288

23289

23290

23291

23292

23293

23294

23295

23296

23297

23298

23299

23300

23301

23302

23303

23304

23305

System Interfaces conj()

NAME
conj, conjf, conjl — complex conjugate functions

SYNOPSIS
#include <complex.h>

double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex conjugate of z, by reversing the sign of its imaginary
part.

RETURN VALUE
These functions return the complex conjugate value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), cimag(), cproj(), creal()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 689

23306

23307

23308

23309

23310

23311

23312

23313

23314

23315

23316

23317

23318

23319

23320

23321

23322

23323

23324

23325

23326

23327

23328

23329

23330

23331

23332

23333

23334

23335

connect() System Interfaces

NAME
connect — connect a socket

SYNOPSIS
#include <sys/socket.h>

int connect(int socket, const struct sockaddr *address,
socklen_t address_len);

DESCRIPTION
The connect() function shall attempt to make a connection on a connection-mode socket or to set
or reset the peer address of a connectionless-mode socket. The function takes the following
arguments:

socket Specifies the file descriptor associated with the socket.

address Points to a sockaddr structure containing the peer address. The length and
format of the address depend on the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

If the socket has not already been bound to a local address, connect() shall bind it to an address
which, unless the socket’s address family is AF_UNIX, is an unused local address.

If the initiating socket is not connection-mode, then connect() shall set the socket’s peer address,
and no connection is made. For SOCK_DGRAM sockets, the peer address identifies where all
datagrams are sent on subsequent send() functions, and limits the remote sender for subsequent
recv() functions. If the sa_family member of address is AF_UNSPEC, the socket’s peer address
shall be reset. Note that despite no connection being made, the term ‘‘connected’’ is used to
describe a connectionless-mode socket for which a peer address has been set.

If the initiating socket is connection-mode, then connect() shall attempt to establish a connection
to the address specified by the address argument. If the connection cannot be established
immediately and O_NONBLOCK is not set for the file descriptor for the socket, connect() shall
block for up to an unspecified timeout interval until the connection is established. If the timeout
interval expires before the connection is established, connect() shall fail and the connection
attempt shall be aborted. If connect() is interrupted by a signal that is caught while blocked
waiting to establish a connection, connect() shall fail and set errno to [EINTR], but the connection
request shall not be aborted, and the connection shall be established asynchronously.

If the connection cannot be established immediately and O_NONBLOCK is set for the file
descriptor for the socket, connect() shall fail and set errno to [EINPROGRESS], but the connection
request shall not be aborted, and the connection shall be established asynchronously. Subsequent
calls to connect() for the same socket, before the connection is established, shall fail and set errno
to [EALREADY].

When the connection has been established asynchronously, pselect(), select(), and poll() shall
indicate that the file descriptor for the socket is ready for writing.

The socket in use may require the process to have appropriate privileges to use the connect()
function.

RETURN VALUE
Upon successful completion, connect() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

690 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23336

23337

23338

23339

23340

23341

23342

23343

23344

23345

23346

23347

23348

23349

23350

23351

23352

23353

23354

23355

23356

23357

23358

23359

23360

23361

23362

23363

23364

23365

23366

23367

23368

23369

23370

23371

23372

23373

23374

23375

23376

23377

23378

System Interfaces connect()

ERRORS
The connect() function shall fail if:

[EADDRNOTAVAIL]
The specified address is not available from the local machine.

[EAFNOSUPPORT]
The specified address is not a valid address for the address family of the
specified socket.

[EALREADY] A connection request is already in progress for the specified socket.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNREFUSED]
The target address was not listening for connections or refused the connection
request.

[EINPROGRESS] O_NONBLOCK is set for the file descriptor for the socket and the connection
cannot be immediately established; the connection shall be established
asynchronously.

[EINTR] The attempt to establish a connection was interrupted by delivery of a signal
that was caught; the connection shall be established asynchronously.

[EISCONN] The specified socket is connection-mode and is already connected.

[ENETUNREACH]
No route to the network is present.

[ENOTSOCK] The socket argument does not refer to a socket.

[EPROTOTYPE] The specified address has a different type than the socket bound to the
specified peer address.

[ETIMEDOUT] The attempt to connect timed out before a connection was made.

If the address family of the socket is AF_UNIX, then connect() shall fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the pathname
in address.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of the pathname does not name an existing file or the pathname
is an empty string.

[ENOTDIR] A component of the path prefix of the pathname in address is not a directory, or
the pathname in address contains at least one non-<slash> character and ends
with one or more trailing <slash> characters and the last pathname
component names an existing file that is neither a directory nor a symbolic
link to a directory.

The connect() function may fail if:

[EACCES] Search permission is denied for a component of the path prefix; or write access
to the named socket is denied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 691

23379

23380

23381

23382

23383

23384

23385

23386

23387

23388

23389

23390

23391

23392

23393

23394

23395

23396

23397

23398

23399

23400

23401

23402

23403

23404

23405

23406

23407

23408

23409

23410

23411

23412

23413

23414

23415

23416

23417

23418

connect() System Interfaces

[EADDRINUSE] Attempt to establish a connection that uses addresses that are already in use.

[ECONNRESET] Remote host reset the connection request.

[EHOSTUNREACH]
The destination host cannot be reached (probably because the host is down or
a remote router cannot reach it).

[EINVAL] The address_len argument is not a valid length for the address family; or
invalid address family in the sockaddr structure.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the pathname in address.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ENETDOWN] The local network interface used to reach the destination is down.

[ENOBUFS] No buffer space is available.

[EOPNOTSUPP] The socket is listening and cannot be connected.

EXAMPLES
None.

APPLICATION USAGE
If connect() fails, the state of the socket is unspecified. Conforming applications should close the
file descriptor and create a new socket before attempting to reconnect.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), bind(), close(), getsockname(), poll(), pselect(), send(), shutdown(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #035 is applied, clarifying the description of connected
sockets.

Austin Group Interpretation 1003.1-2001 #143 is applied.

Austin Group Interpretation 1003.1-2001 #188 is applied, changing the method used to reset a
peer address for a datagram socket.

SD5-XSH-ERN-185 is applied.

692 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23419

23420

23421

23422

23423

23424

23425

23426

23427

23428

23429

23430

23431

23432

23433

23434

23435

23436

23437

23438

23439

23440

23441

23442

23443

23444

23445

23446

23447

23448

23449

23450

23451

23452

23453

23454

23455

23456

23457

System Interfaces copysign()

NAME
copysign, copysignf, copysignl — number manipulation function

SYNOPSIS
#include <math.h>

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall produce a value with the magnitude of x and the sign of y. On
implementations that represent a signed zero but do not treat negative zero consistently in
arithmetic operations, these functions regard the sign of zero as positive.

RETURN VALUE
Upon successful completion, these functions shall return a value with the magnitude of x and
the sign of y.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
signbit()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 693

23458

23459

23460

23461

23462

23463

23464

23465

23466

23467

23468

23469

23470

23471

23472

23473

23474

23475

23476

23477

23478

23479

23480

23481

23482

23483

23484

23485

23486

23487

23488

23489

cos() System Interfaces

NAME
cos, cosf, cosl — cosine function

SYNOPSIS
#include <math.h>

double cos(double x);
float cosf(float x);
long double cosl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the cosine of their argument x, measured in radians.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the cosine of x.

MX If x is NaN, a NaN shall be returned.

If x is ±0, the value 1.0 shall be returned.

If x is ±Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

EXAMPLES

Taking the Cosine of a 45-Degree Angle

#include <math.h>
...
double radians = 45 * M_PI / 180;
double result;
...
result = cos(radians);

APPLICATION USAGE
These functions may lose accuracy when their argument is near an odd multiple of π/2 or is far
from 0.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

694 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23490

23491

23492

23493

23494

23495

23496

23497

23498

23499

23500

23501

23502

23503

23504

23505

23506

23507

23508

23509

23510

23511

23512

23513

23514

23515

23516

23517

23518

23519

23520

23521

23522

23523

23524

23525

23526

23527

23528

23529

23530

23531

System Interfaces cos()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
acos(), feclearexcept(), fetestexcept(), isnan(), sin(), tan()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The cosf() and cosl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 695

23532

23533

23534

23535

23536

23537

23538

23539

23540

23541

23542

23543

23544

23545

23546

23547

23548

23549

cosh() System Interfaces

NAME
cosh, coshf, coshl — hyperbolic cosine functions

SYNOPSIS
#include <math.h>

double cosh(double x);
float coshf(float x);
long double coshl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the hyperbolic cosine of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the hyperbolic cosine of x.

If the correct value would cause overflow, a range error shall occur and cosh(), coshf(), and
coshl() shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL,
respectively.

MX If x is NaN, a NaN shall be returned.

If x is ±0, the value 1.0 shall be returned.

If x is ±Inf, +Inf shall be returned.

ERRORS
These functions shall fail if:

Range Error The result would cause an overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

For IEEE Std 754-1985 double, 710.5 < |x| implies that cosh(x) has overflowed.

RATIONALE
None.

FUTURE DIRECTIONS
None.

696 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23550

23551

23552

23553

23554

23555

23556

23557

23558

23559

23560

23561

23562

23563

23564

23565

23566

23567

23568

23569

23570

23571

23572

23573

23574

23575

23576

23577

23578

23579

23580

23581

23582

23583

23584

23585

23586

23587

23588

23589

23590

System Interfaces cosh()

SEE ALSO
acosh(), feclearexcept(), fetestexcept(), isnan(), sinh(), tanh()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The coshf() and coshl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 697

23591

23592

23593

23594

23595

23596

23597

23598

23599

23600

23601

23602

23603

23604

cosl() System Interfaces

NAME
cosl — cosine function

SYNOPSIS
#include <math.h>

long double cosl(long double x);

DESCRIPTION
Refer to cos().

698 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23605

23606

23607

23608

23609

23610

23611

System Interfaces cpow()

NAME
cpow, cpowf, cpowl — complex power functions

SYNOPSIS
#include <complex.h>

double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);
long double complex cpowl(long double complex x,

long double complex y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex power function xy, with a branch cut for the first
parameter along the negative real axis.

RETURN VALUE
These functions shall return the complex power function value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cabs(), csqrt()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 699

23612

23613

23614

23615

23616

23617

23618

23619

23620

23621

23622

23623

23624

23625

23626

23627

23628

23629

23630

23631

23632

23633

23634

23635

23636

23637

23638

23639

23640

23641

23642

cproj() System Interfaces

NAME
cproj, cprojf, cprojl — complex projection functions

SYNOPSIS
#include <complex.h>

double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute a projection of z onto the Riemann sphere: z projects to z, except
that all complex infinities (even those with one infinite part and one NaN part) project to
positive infinity on the real axis. If z has an infinite part, then cproj(z) shall be equivalent to:

INFINITY + I * copysign(0.0, cimag(z))

RETURN VALUE
These functions shall return the value of the projection onto the Riemann sphere.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Two topologies are commonly used in complex mathematics: the complex plane with its
continuum of infinities, and the Riemann sphere with its single infinity. The complex plane is
better suited for transcendental functions, the Riemann sphere for algebraic functions. The
complex types with their multiplicity of infinities provide a useful (though imperfect) model for
the complex plane. The cproj() function helps model the Riemann sphere by mapping all
infinities to one, and should be used just before any operation, especially comparisons, that
might give spurious results for any of the other infinities. Note that a complex value with one
infinite part and one NaN part is regarded as an infinity, not a NaN, because if one part is
infinite, the complex value is infinite independent of the value of the other part. For the same
reason, cabs() returns an infinity if its argument has an infinite part and a NaN part.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), cimag(), conj(), creal()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

700 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23643

23644

23645

23646

23647

23648

23649

23650

23651

23652

23653

23654

23655

23656

23657

23658

23659

23660

23661

23662

23663

23664

23665

23666

23667

23668

23669

23670

23671

23672

23673

23674

23675

23676

23677

23678

23679

23680

23681

23682

23683

System Interfaces creal()

NAME
creal, crealf, creall — complex real functions

SYNOPSIS
#include <complex.h>

double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the real part of z.

RETURN VALUE
These functions shall return the real part value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
For a variable z of type complex:

z == creal(z) + cimag(z)*I

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), cimag(), conj(), cproj()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 701

23684

23685

23686

23687

23688

23689

23690

23691

23692

23693

23694

23695

23696

23697

23698

23699

23700

23701

23702

23703

23704

23705

23706

23707

23708

23709

23710

23711

23712

23713

creat() System Interfaces

NAME
creat — create a new file or rewrite an existing one

SYNOPSIS
OH #include <sys/stat.h>

#include <fcntl.h>

int creat(const char *path, mode_t mode);

DESCRIPTION
The creat() function shall behave as if it is implemented as follows:

int creat(const char *path, mode_t mode)
{

return open(path, O_WRONLY|O_CREAT|O_TRUNC, mode);
}

RETURN VALUE
Refer to open().

ERRORS
Refer to open().

EXAMPLES

Creating a File

The following example creates the file /tmp/file with read and write permissions for the file
owner and read permission for group and others. The resulting file descriptor is assigned to the
fd variable.

#include <fcntl.h>
...
int fd;
mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
char *filename = "/tmp/file";
...
fd = creat(filename, mode);
...

APPLICATION USAGE
None.

RATIONALE
The creat() function is redundant. Its services are also provided by the open() function. It has
been included primarily for historical purposes since many existing applications depend on it. It
is best considered a part of the C binding rather than a function that should be provided in other
languages.

FUTURE DIRECTIONS
None.

SEE ALSO
mknod(), open()

XBD <fcntl.h>, <sys/stat.h>, <sys/types.h>

702 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23714

23715

23716

23717

23718

23719

23720

23721

23722

23723

23724

23725

23726

23727

23728

23729

23730

23731

23732

23733

23734

23735

23736

23737

23738

23739

23740

23741

23742

23743

23744

23745

23746

23747

23748

23749

23750

23751

23752

23753

23754

System Interfaces creat()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Issue 7
SD5-XSH-ERN-186 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 703

23755

23756

23757

23758

23759

23760

23761

23762

23763

23764

23765

crypt() System Interfaces

NAME
crypt — string encoding function (CRYPT)

SYNOPSIS
XSI #include <unistd.h>

char *crypt(const char *key, const char *salt);

DESCRIPTION
The crypt() function is a string encoding function. The algorithm is implementation-defined.

The key argument points to a string to be encoded. The salt argument shall be a string of at least
two bytes in length not including the null character chosen from the set:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 . /

The first two bytes of this string may be used to perturb the encoding algorithm.

The return value of crypt() points to static data that is overwritten by each call.

The crypt() function need not be thread-safe.

RETURN VALUE
Upon successful completion, crypt() shall return a pointer to the encoded string. The first two
bytes of the returned value shall be those of the salt argument. Otherwise, it shall return a null
pointer and set errno to indicate the error.

ERRORS
The crypt() function shall fail if:

[ENOSYS] The functionality is not supported on this implementation.

EXAMPLES

Encoding Passwords

The following example finds a user database entry matching a particular user name and changes
the current password to a new password. The crypt() function generates an encoded version of
each password. The first call to crypt() produces an encoded version of the old password; that
encoded password is then compared to the password stored in the user database. The second
call to crypt() encodes the new password before it is stored.

The putpwent() function, used in the following example, is not part of POSIX.1-2008.

#include <unistd.h>
#include <pwd.h>
#include <string.h>
#include <stdio.h>
...
int valid_change;
int pfd; /* Integer for file descriptor returned by open(). */
FILE *fpfd; /* File pointer for use in putpwent(). */
struct passwd *p;
char user[100];
char oldpasswd[100];
char newpasswd[100];
char savepasswd[100];

704 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23766

23767

23768

23769

23770

23771

23772

23773

23774

23775

23776

23777

23778

23779

23780

23781

23782

23783

23784

23785

23786

23787

23788

23789

23790

23791

23792

23793

23794

23795

23796

23797

23798

23799

23800

23801

23802

23803

23804

23805

23806

23807

23808

System Interfaces crypt()

...
valid_change = 0;
while ((p = getpwent()) != NULL) {

/* Change entry if found. */
if (strcmp(p->pw_name, user) == 0) {

if (strcmp(p->pw_passwd, crypt(oldpasswd, p->pw_passwd)) == 0) {
strcpy(savepasswd, crypt(newpasswd, user));
p->pw_passwd = savepasswd;
valid_change = 1;

}
else {

fprintf(stderr, "Old password is not valid\n");
}

}
/* Put passwd entry into ptmp. */
putpwent(p, fpfd);

}

APPLICATION USAGE
The values returned by this function need not be portable among XSI-conformant systems.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
encrypt(), setkey()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XSH-ERN-178 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 705

23809

23810

23811

23812

23813

23814

23815

23816

23817

23818

23819

23820

23821

23822

23823

23824

23825

23826

23827

23828

23829

23830

23831

23832

23833

23834

23835

23836

23837

23838

23839

23840

23841

23842

csin() System Interfaces

NAME
csin, csinf, csinl — complex sine functions

SYNOPSIS
#include <complex.h>

double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex sine of z.

RETURN VALUE
These functions shall return the complex sine value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
casin()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

706 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23843

23844

23845

23846

23847

23848

23849

23850

23851

23852

23853

23854

23855

23856

23857

23858

23859

23860

23861

23862

23863

23864

23865

23866

23867

23868

23869

23870

23871

System Interfaces csinh()

NAME
csinh, csinhf, csinhl — complex hyperbolic sine functions

SYNOPSIS
#include <complex.h>

double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex hyperbolic sine of z.

RETURN VALUE
These functions shall return the complex hyperbolic sine value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
casinh()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 707

23872

23873

23874

23875

23876

23877

23878

23879

23880

23881

23882

23883

23884

23885

23886

23887

23888

23889

23890

23891

23892

23893

23894

23895

23896

23897

23898

23899

23900

csinl() System Interfaces

NAME
csinl — complex sine functions

SYNOPSIS
#include <complex.h>

long double complex csinl(long double complex z);

DESCRIPTION
Refer to csin().

708 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23901

23902

23903

23904

23905

23906

23907

System Interfaces csqrt()

NAME
csqrt, csqrtf, csqrtl — complex square root functions

SYNOPSIS
#include <complex.h>

double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex square root of z, with a branch cut along the negative
real axis.

RETURN VALUE
These functions shall return the complex square root value, in the range of the right half-plane
(including the imaginary axis).

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cabs(), cpow()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 709

23908

23909

23910

23911

23912

23913

23914

23915

23916

23917

23918

23919

23920

23921

23922

23923

23924

23925

23926

23927

23928

23929

23930

23931

23932

23933

23934

23935

23936

23937

23938

ctan() System Interfaces

NAME
ctan, ctanf, ctanl — complex tangent functions

SYNOPSIS
#include <complex.h>

double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex tangent of z.

RETURN VALUE
These functions shall return the complex tangent value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catan()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

710 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23939

23940

23941

23942

23943

23944

23945

23946

23947

23948

23949

23950

23951

23952

23953

23954

23955

23956

23957

23958

23959

23960

23961

23962

23963

23964

23965

23966

23967

System Interfaces ctanh()

NAME
ctanh, ctanhf, ctanhl — complex hyperbolic tangent functions

SYNOPSIS
#include <complex.h>

double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complex hyperbolic tangent of z.

RETURN VALUE
These functions shall return the complex hyperbolic tangent value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catanh()

XBD <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 711

23968

23969

23970

23971

23972

23973

23974

23975

23976

23977

23978

23979

23980

23981

23982

23983

23984

23985

23986

23987

23988

23989

23990

23991

23992

23993

23994

23995

23996

ctanl() System Interfaces

NAME
ctanl — complex tangent functions

SYNOPSIS
#include <complex.h>

long double complex ctanl(long double complex z);

DESCRIPTION
Refer to ctan().

712 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

23997

23998

23999

24000

24001

24002

24003

System Interfaces ctermid()

NAME
ctermid — generate a pathname for the controlling terminal

SYNOPSIS
CX #include <stdio.h>

char *ctermid(char *s);

DESCRIPTION
The ctermid() function shall generate a string that, when used as a pathname, refers to the
current controlling terminal for the current process. If ctermid() returns a pathname, access to the
file is not guaranteed.

The ctermid() function need not be thread-safe if called with a NULL parameter.

RETURN VALUE
If s is a null pointer, the string shall be generated in an area that may be static (and therefore may
be overwritten by each call), the address of which shall be returned. Otherwise, s is assumed to
point to a character array of at least L_ctermid bytes; the string is placed in this array and the
value of s shall be returned. The symbolic constant L_ctermid is defined in <stdio.h>, and shall
have a value greater than 0.

The ctermid() function shall return an empty string if the pathname that would refer to the
controlling terminal cannot be determined, or if the function is unsuccessful.

ERRORS
No errors are defined.

EXAMPLES

Determining the Controlling Terminal for the Current Process

The following example returns a pointer to a string that identifies the controlling terminal for the
current process. The pathname for the terminal is stored in the array pointed to by the ptr
argument, which has a size of L_ctermid bytes, as indicated by the term argument.

#include <stdio.h>
...
char term[L_ctermid];
char *ptr;

ptr = ctermid(term);

APPLICATION USAGE
The difference between ctermid() and ttyname() is that ttyname() must be handed a file
descriptor and return a path of the terminal associated with that file descriptor, while ctermid()
returns a string (such as "/dev/tty") that refers to the current controlling terminal if used as a
pathname.

RATIONALE
L_ctermid must be defined appropriately for a given implementation and must be greater than
zero so that array declarations using it are accepted by the compiler. The value includes the
terminating null byte.

Conforming applications that use multiple threads cannot call ctermid() with NULL as the
parameter. If s is not NULL, the ctermid() function generates a string that, when used as a
pathname, refers to the current controlling terminal for the current process. If s is NULL, the
return value of ctermid() is undefined.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 713

24004

24005

24006

24007

24008

24009

24010

24011

24012

24013

24014

24015

24016

24017

24018

24019

24020

24021

24022

24023

24024

24025

24026

24027

24028

24029

24030

24031

24032

24033

24034

24035

24036

24037

24038

24039

24040

24041

24042

24043

24044

24045

24046

ctermid() System Interfaces

There is no additional burden on the programmer—changing to use a hypothetical thread-safe
version of ctermid() along with allocating a buffer is more of a burden than merely allocating a
buffer. Application code should not assume that the returned string is short, as some
implementations have more than two pathname components before reaching a logical device
name.

FUTURE DIRECTIONS
None.

SEE ALSO
ttyname()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #148 is applied, updating the RATIONALE.

714 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

24047

24048

24049

24050

24051

24052

24053

24054

24055

24056

24057

24058

24059

24060

24061

24062

24063

24064

System Interfaces ctime()

NAME
ctime, ctime_r — convert a time value to a date and time string

SYNOPSIS
OB #include <time.h>

char *ctime(const time_t *clock);
OB CX char *ctime_r(const time_t *clock, char *buf);

DESCRIPTION
CX For ctime(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

The ctime() function shall convert the time pointed to by clock, representing time in seconds
since the Epoch, to local time in the form of a string. It shall be equivalent to:

asctime(localtime(clock))

CX The asctime(), ctime(), gmtime(), and localtime() functions shall return values in one of two static
objects: a broken-down time structure and an array of char. Execution of any of the functions
may overwrite the information returned in either of these objects by any of the other functions.

The ctime() function need not be thread-safe.

The ctime_r() function shall convert the calendar time pointed to by clock to local time in exactly
the same form as ctime() and put the string into the array pointed to by buf (which shall be at
least 26 bytes in size) and return buf .

Unlike ctime(), the thread-safe version ctime_r() is not required to set tzname.

RETURN VALUE
The ctime() function shall return the pointer returned by asctime() with that broken-down time
as an argument.

CX Upon successful completion, ctime_r() shall return a pointer to the string pointed to by buf .
When an error is encountered, a null pointer shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
These functions are included only for compatibility with older implementations. They have
undefined behavior if the resulting string would be too long, so the use of these functions
should be discouraged. On implementations that do not detect output string length overflow, it
is possible to overflow the output buffers in such a way as to cause applications to fail, or
possible system security violations. Also, these functions do not support localized date and time
formats. To avoid these problems, applications should use strftime() to generate strings from
broken-down times.

Values for the broken-down time structure can be obtained by calling gmtime() or localtime().

The ctime_r() function is thread-safe and shall return values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

Attempts to use ctime() or ctime_r() for times before the Epoch or for times beyond the year 9999
produce undefined results. Refer to asctime() (on page 590).

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 715

24065

24066

24067

24068

24069

24070

24071

24072

24073

24074

24075

24076

24077

24078

24079

24080

24081

24082

24083

24084

24085

24086

24087

24088

24089

24090

24091

24092

24093

24094

24095

24096

24097

24098

24099

24100

24101

24102

24103

24104

24105

24106

24107

ctime() System Interfaces

RATIONALE
The standard developers decided to mark the ctime() and ctime_r() functions obsolescent even
though they are in the ISO C standard due to the possibility of buffer overflow. The ISO C
standard also provides the strftime() function which can be used to avoid these problems.

FUTURE DIRECTIONS
These functions may be removed in a future version.

SEE ALSO
asctime(), clock(), difftime(), gmtime(), localtime(), mktime(), strftime(), strptime(), time(), utime()

XBD <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

The ctime_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the ctime() function need not be reentrant is added to the DESCRIPTION.

Issue 6
Extensions beyond the ISO C standard are marked.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XSH-ERN-25 is applied, updating the APPLICATION USAGE.

Austin Group Interpretation 1003.1-2001 #053 is applied, marking these functions obsolescent.

The ctime_r() function is moved from the Thread-Safe Functions option to the Base.

716 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

24108

24109

24110

24111

24112

24113

24114

24115

24116

24117

24118

24119

24120

24121

24122

24123

24124

24125

24126

24127

24128

24129

24130

24131

24132

24133

System Interfaces daylight

NAME
daylight — daylight savings time flag

SYNOPSIS
XSI #include <time.h>

extern int daylight;

DESCRIPTION
Refer to tzset().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 717

24134

24135

24136

24137

24138

24139

24140

dbm_clearerr() System Interfaces

NAME
dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey, dbm_nextkey,
dbm_open, dbm_store — database functions

SYNOPSIS
XSI #include <ndbm.h>

int dbm_clearerr(DBM *db);
void dbm_close(DBM *db);
int dbm_delete(DBM *db, datum key);
int dbm_error(DBM *db);
datum dbm_fetch(DBM *db, datum key);
datum dbm_firstkey(DBM *db);
datum dbm_nextkey(DBM *db);
DBM *dbm_open(const char *file, int open_flags, mode_t file_mode);
int dbm_store(DBM *db, datum key, datum content, int store_mode);

DESCRIPTION
These functions create, access, and modify a database.

A datum consists of at least two members, dptr and dsize. The dptr member points to an object
that is dsize bytes in length. Arbitrary binary data, as well as character strings, may be stored in
the object pointed to by dptr.

A database shall be stored in one or two files. When one file is used, the name of the database
file shall be formed by appending the suffix .db to the file argument given to dbm_open(). When
two files are used, the names of the database files shall be formed by appending the suffixes .dir
and .pag respectively to the file argument.

The dbm_open() function shall open a database. The file argument to the function is the
pathname of the database. The open_flags argument has the same meaning as the flags argument
of open() except that a database opened for write-only access opens the files for read and write
access and the behavior of the O_APPEND flag is unspecified. The file_mode argument has the
same meaning as the third argument of open().

The dbm_open() function need not accept pathnames longer than {PATH_MAX}−4 bytes
(including the terminating null), or pathnames with a last component longer than
{NAME_MAX}−4 bytes (excluding the terminating null).

The dbm_close() function shall close a database. The application shall ensure that argument db is
a pointer to a dbm structure that has been returned from a call to dbm_open().

These database functions shall support an internal block size large enough to support
key/content pairs of at least 1 023 bytes.

The dbm_fetch() function shall read a record from a database. The argument db is a pointer to a
database structure that has been returned from a call to dbm_open(). The argument key is a
datum that has been initialized by the application to the value of the key that matches the key of
the record the program is fetching.

The dbm_store() function shall write a record to a database. The argument db is a pointer to a
database structure that has been returned from a call to dbm_open(). The argument key is a
datum that has been initialized by the application to the value of the key that identifies (for
subsequent reading, writing, or deleting) the record the application is writing. The argument
content is a datum that has been initialized by the application to the value of the record the
program is writing. The argument store_mode controls whether dbm_store() replaces any pre-
existing record that has the same key that is specified by the key argument. The application shall

718 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

24141

24142

24143

24144

24145

24146

24147

24148

24149

24150

24151

24152

24153

24154

24155

24156

24157

24158

24159

24160

24161

24162

24163

24164

24165

24166

24167

24168

24169

24170

24171

24172

24173

24174

24175

24176

24177

24178

24179

24180

24181

24182

24183

24184

24185

24186

System Interfaces dbm_clearerr()

set store_mode to either DBM_INSERT or DBM_REPLACE. If the database contains a record that
matches the key argument and store_mode is DBM_REPLACE, the existing record shall be
replaced with the new record. If the database contains a record that matches the key argument
and store_mode is DBM_INSERT, the existing record shall be left unchanged and the new record
ignored. If the database does not contain a record that matches the key argument and store_mode
is either DBM_INSERT or DBM_REPLACE, the new record shall be inserted in the database.

If the sum of a key/content pair exceeds the internal block size, the result is unspecified.
Moreover, the application shall ensure that all key/content pairs that hash together fit on a
single block. The dbm_store() function shall return an error in the event that a disk block fills
with inseparable data.

The dbm_delete() function shall delete a record and its key from the database. The argument db is
a pointer to a database structure that has been returned from a call to dbm_open(). The argument
key is a datum that has been initialized by the application to the value of the key that identifies
the record the program is deleting.

The dbm_firstkey() function shall return the first key in the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

The dbm_nextkey() function shall return the next key in the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open(). The application
shall ensure that the dbm_firstkey() function is called before calling dbm_nextkey(). Subsequent
calls to dbm_nextkey() return the next key until all of the keys in the database have been
returned.

The dbm_error() function shall return the error condition of the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

The dbm_clearerr() function shall clear the error condition of the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

The dptr pointers returned by these functions may point into static storage that may be changed
by subsequent calls.

These functions need not be thread-safe.

RETURN VALUE
The dbm_store() and dbm_delete() functions shall return 0 when they succeed and a negative
value when they fail.

The dbm_store() function shall return 1 if it is called with a flags value of DBM_INSERT and the
function finds an existing record with the same key.

The dbm_error() function shall return 0 if the error condition is not set and return a non-zero
value if the error condition is set.

The return value of dbm_clearerr() is unspecified.

The dbm_firstkey() and dbm_nextkey() functions shall return a key datum. When the end of the
database is reached, the dptr member of the key is a null pointer. If an error is detected, the dptr
member of the key shall be a null pointer and the error condition of the database shall be set.

The dbm_fetch() function shall return a content datum. If no record in the database matches the
key or if an error condition has been detected in the database, the dptr member of the content
shall be a null pointer.

The dbm_open() function shall return a pointer to a database structure. If an error is detected
during the operation, dbm_open() shall return a (DBM *)0.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 719

24187

24188

24189

24190

24191

24192

24193

24194

24195

24196

24197

24198

24199

24200

24201

24202

24203

24204

24205

24206

24207

24208

24209

24210

24211

24212

24213

24214

24215

24216

24217

24218

24219

24220

24221

24222

24223

24224

24225

24226

24227

24228

24229

24230

dbm_clearerr() System Interfaces

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The following code can be used to traverse the database:

for(key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db))

The dbm_* functions provided in this library should not be confused in any way with those of a
general-purpose database management system. These functions do not provide for multiple
search keys per entry, they do not protect against multi-user access (in other words they do not
lock records or files), and they do not provide the many other useful database functions that are
found in more robust database management systems. Creating and updating databases by use of
these functions is relatively slow because of data copies that occur upon hash collisions. These
functions are useful for applications requiring fast lookup of relatively static information that is
to be indexed by a single key.

Note that a strictly conforming application is extremely limited by these functions: since there is
no way to determine that the keys in use do not all hash to the same value (although that would
be rare), a strictly conforming application cannot be guaranteed that it can store more than one
block’s worth of data in the database. As long as a key collision does not occur, additional data
may be stored, but because there is no way to determine whether an error is due to a key
collision or some other error condition (dbm_error() being effectively a Boolean), once an error is
detected, the application is effectively limited to guessing what the error might be if it wishes to
continue using these functions.

The dbm_delete() function need not physically reclaim file space, although it does make it
available for reuse by the database.

After calling dbm_store() or dbm_delete() during a pass through the keys by dbm_firstkey() and
dbm_nextkey(), the application should reset the database by calling dbm_firstkey() before again
calling dbm_nextkey(). The contents of these files are unspecified and may not be portable.

Applications should take care that database pathname arguments specified to dbm_open() are
not prefixes of unrelated files. This might be done, for example, by placing databases in a
separate directory.

Since some implementations use three characters for a suffix and others use four characters for a
suffix, applications should ensure that the maximum portable pathname length passed to
dbm_open() is no greater than {PATH_MAX}−4 bytes, with the last component of the pathname
no greater than {NAME_MAX}−4 bytes.

RATIONALE
Previously the standard required the database to be stored in two files, one file being a directory
containing a bitmap of keys and having .dir as its suffix. The second file containing all data and
having .pag as its suffix. This has been changed not to specify the use of the files and to allow
newer implementations of the Berkeley DB interface using a single file that have evolved while
remaining compatible with the application programming interface. The standard developers
considered removing the specific suffixes altogether but decided to retain them so as not to
pollute the application file name space more than necessary and to allow for portable backups of
the database.

720 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

24231

24232

24233

24234

24235

24236

24237

24238

24239

24240

24241

24242

24243

24244

24245

24246

24247

24248

24249

24250

24251

24252

24253

24254

24255

24256

24257

24258

24259

24260

24261

24262

24263

24264

24265

24266

24267

24268

24269

24270

24271

24272

24273

24274

System Interfaces dbm_clearerr()

FUTURE DIRECTIONS
None.

SEE ALSO
open()

XBD <ndbm.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #042 is applied so that the DESCRIPTION permits
newer implementations of the Berkeley DB interface.

Austin Group Interpretation 1003.1-2001 #156 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 721

24275

24276

24277

24278

24279

24280

24281

24282

24283

24284

24285

24286

24287

24288

24289

24290

24291

24292

difftime() System Interfaces

NAME
difftime — compute the difference between two calendar time values

SYNOPSIS
#include <time.h>

double difftime(time_t time1, time_t time0);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The difftime() function shall compute the difference between two calendar times (as returned by
time()): time1− time0.

RETURN VALUE
The difftime() function shall return the difference expressed in seconds as a type double.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), gmtime(), localtime(), mktime(), strftime(), strptime(), time(), utime()

XBD <time.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

722 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

24293

24294

24295

24296

24297

24298

24299

24300

24301

24302

24303

24304

24305

24306

24307

24308

24309

24310

24311

24312

24313

24314

24315

24316

24317

24318

24319

24320

System Interfaces dirfd()

NAME
dirfd — extract the file descriptor used by a DIR stream

SYNOPSIS
#include <dirent.h>

int dirfd(DIR *dirp);

DESCRIPTION
The dirfd() function shall return a file descriptor referring to the same directory as the dirp
argument. This file descriptor shall be closed by a call to closedir(). If any attempt is made to
close the file descriptor, or to modify the state of the associated description, other than by means
of closedir(), readdir(), readdir_r(), or rewinddir(), the behavior is undefined.

RETURN VALUE
Upon successful completion, the dirfd() function shall return an integer which contains a file
descriptor for the stream pointed to by dirp. Otherwise, it shall return −1 and may set errno to
indicate the error.

ERRORS
The dirfd() function may fail if:

[EINVAL] The dirp argument does not refer to a valid directory stream.

[ENOTSUP] The implementation does not support the association of a file descriptor with
a directory.

EXAMPLES
None.

APPLICATION USAGE
The dirfd() function is intended to be a mechanism by which an application may obtain a file
descriptor to use for the fchdir() function.

RATIONALE
This interface was introduced because the Base Definitions volume of POSIX.1-2008 does not
make public the DIR data structure. Applications tend to use the fchdir() function on the file
descriptor returned by this interface, and this has proven useful for security reasons; in
particular, it is a better technique than others where directory names might change.

The description uses the term ‘‘a file descriptor’’ rather than ‘‘the file descriptor’’. The
implication intended is that an implementation that does not use an fd for diropen() could still
open() the directory to implement the dirfd() function. Such a descriptor must be closed later
during a call to closedir().

An implementation that does not support file descriptors referring to directories may fail with
[ENOTSUP].

If it is necessary to allocate an fd to be returned by dirfd(), it should be done at the time of a call
to opendir().

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), fchdir(), fdopendir(), fileno(), open(), readdir()

XBD <dirent.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 723

24321

24322

24323

24324

24325

24326

24327

24328

24329

24330

24331

24332

24333

24334

24335

24336

24337

24338

24339

24340

24341

24342

24343

24344

24345

24346

24347

24348

24349

24350

24351

24352

24353

24354

24355

24356

24357

24358

24359

24360

24361

24362

dirfd() System Interfaces

CHANGE HISTORY
First released in Issue 7.

724 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

24363

24364

System Interfaces dirname()

NAME
dirname — report the parent directory name of a file pathname

SYNOPSIS
XSI #include <libgen.h>

char *dirname(char *path);

DESCRIPTION
The dirname() function shall take a pointer to a character string that contains a pathname, and
return a pointer to a string that is a pathname of the parent directory of that file. Trailing ’/’
characters in the path are not counted as part of the path.

If path does not contain a ’/’, then dirname() shall return a pointer to the string ".". If path is a
null pointer or points to an empty string, dirname() shall return a pointer to the string ".".

The dirname() function need not be thread-safe.

RETURN VALUE
The dirname() function shall return a pointer to a string that is the parent directory of path. If
path is a null pointer or points to an empty string, a pointer to a string "." is returned.

The dirname() function may modify the string pointed to by path, and may return a pointer to
static storage that may then be overwritten by subsequent calls to dirname().

ERRORS
No errors are defined.

EXAMPLES
The following code fragment reads a pathname, changes the current working directory to the
parent directory, and opens the file.

char *path = NULL, *pathcopy;
size_t buflen = 0;
ssize_t linelen = 0;
int fd;

linelen = getline(&path, &buflen, stdin);

path[linelen-1] = 0;
pathcopy = strdup(path);
if (chdir(dirname(pathcopy)) < 0) {

...
}
if ((fd = open(basename(path), O_RDONLY)) >= 0) {

...
close (fd);

}
...
free (pathcopy);
free (path);

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 725

24365

24366

24367

24368

24369

24370

24371

24372

24373

24374

24375

24376

24377

24378

24379

24380

24381

24382

24383

24384

24385

24386

24387

24388

24389

24390

24391

24392

24393

24394

24395

24396

24397

24398

24399

24400

24401

24402

24403

dirname() System Interfaces

Sample Input and Output Strings for dirname()

In the following table, the input string is the value pointed to by path, and the output string is
the return value of the dirname() function.

Input String Output String

"/usr/lib" "/usr"
"/usr/" "/"
"usr" "."
"/" "/"
"." "."
".." "."

APPLICATION USAGE
The dirname() and basename() functions together yield a complete pathname. The expression
dirname(path) obtains the pathname of the directory where basename(path) is found.

Since the meaning of the leading "//" is implementation-defined, dirname("//foo) may return
either "//" or ’/’ (but nothing else).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
basename()

XBD <libgen.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The EXAMPLES section is revised.

726 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

24404

24405

24406

24407

24408

24409

24410

24411

24412

24413

24414

24415

24416

24417

24418

24419

24420

24421

24422

24423

24424

24425

24426

24427

24428

24429

24430

24431

24432

24433

24434

24435

System Interfaces div()

NAME
div — compute the quotient and remainder of an integer division

SYNOPSIS
#include <stdlib.h>

div_t div(int numer, int denom);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The div() function shall compute the quotient and remainder of the division of the numerator
numer by the denominator denom. If the division is inexact, the resulting quotient is the integer
of lesser magnitude that is the nearest to the algebraic quotient. If the result cannot be
represented, the behavior is undefined; otherwise, quot*denom+rem shall equal numer.

RETURN VALUE
The div() function shall return a structure of type div_t, comprising both the quotient and the
remainder. The structure includes the following members, in any order:

int quot; /* quotient */
int rem; /* remainder */

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ldiv()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 727

24436

24437

24438

24439

24440

24441

24442

24443

24444

24445

24446

24447

24448

24449

24450

24451

24452

24453

24454

24455

24456

24457

24458

24459

24460

24461

24462

24463

24464

24465

24466

24467

24468

dlclose() System Interfaces

NAME
dlclose — close a dlopen() object

SYNOPSIS
#include <dlfcn.h>

int dlclose(void *handle);

DESCRIPTION
The dlclose() function shall inform the system that the object referenced by a handle returned
from a previous dlopen() invocation is no longer needed by the application.

The use of dlclose() reflects a statement of intent on the part of the process, but does not create
any requirement upon the implementation, such as removal of the code or symbols referenced
by handle. Once an object has been closed using dlclose() an application should assume that its
symbols are no longer available to dlsym(). All objects loaded automatically as a result of
invoking dlopen() on the referenced object shall also be closed if this is the last reference to it.

Although a dlclose() operation is not required to remove structures from an address space,
neither is an implementation prohibited from doing so. The only restriction on such a removal is
that no object shall be removed to which references have been relocated, until or unless all such
references are removed. For instance, an object that had been loaded with a dlopen() operation
specifying the RTLD_GLOBAL flag might provide a target for dynamic relocations performed in
the processing of other objects—in such environments, an application may assume that no
relocation, once made, shall be undone or remade unless the object requiring the relocation has
itself been removed.

RETURN VALUE
If the referenced object was successfully closed, dlclose() shall return 0. If the object could not be
closed, or if handle does not refer to an open object, dlclose() shall return a non-zero value. More
detailed diagnostic information shall be available through dlerror().

ERRORS
No errors are defined.

EXAMPLES
The following example illustrates use of dlopen() and dlclose():

...
/* Open a dynamic library and then close it ... */

#include <dlfcn.h>
void *mylib;
int eret;

mylib = dlopen("mylib.so", RTLD_LOCAL | RTLD_LAZY);
...
eret = dlclose(mylib);
...

APPLICATION USAGE
A conforming application should employ a handle returned from a dlopen() invocation only
within a given scope bracketed by the dlopen() and dlclose() operations. Implementations are
free to use reference counting or other techniques such that multiple calls to dlopen() referencing
the same object may return the same object for handle. Implementations are also free to reuse a
handle. For these reasons, the value of a handle must be treated as an opaque object by the
application, used only in calls to dlsym() and dlclose().

728 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

24469

24470

24471

24472

24473

24474

24475

24476

24477

24478

24479

24480

24481

24482

24483

24484

24485

24486

24487

24488

24489

24490

24491

24492

24493

24494

24495

24496

24497

24498

24499

24500

24501

24502

24503

24504

24505

24506

24507

24508

24509

24510

24511

24512

24513

System Interfaces dlclose()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dlerror(), dlopen(), dlsym()

XBD <dlfcn.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The DESCRIPTION is updated to say that the referenced object is closed ‘‘if this is the last
reference to it’’.

Issue 7
The dlopen() function is moved from the XSI option to Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 729

24514

24515

24516

24517

24518

24519

24520

24521

24522

24523

24524

24525

24526

24527

dlerror() System Interfaces

NAME
dlerror — get diagnostic information

SYNOPSIS
#include <dlfcn.h>

char *dlerror(void);

DESCRIPTION
The dlerror() function shall return a null-terminated character string (with no trailing
<newline>) that describes the last error that occurred during dynamic linking processing. If no
dynamic linking errors have occurred since the last invocation of dlerror(), dlerror() shall return
NULL. Thus, invoking dlerror() a second time, immediately following a prior invocation, shall
result in NULL being returned.

The dlerror() function need not be thread-safe.

RETURN VALUE
If successful, dlerror() shall return a null-terminated character string; otherwise, NULL shall be
returned.

ERRORS
No errors are defined.

EXAMPLES
The following example prints out the last dynamic linking error:

...
#include <dlfcn.h>

char *errstr;

errstr = dlerror();
if (errstr != NULL)
printf ("A dynamic linking error occurred: (%s)\n", errstr);
...

APPLICATION USAGE
The messages returned by dlerror() may reside in a static buffer that is overwritten on each call
to dlerror(). Application code should not write to this buffer. Programs wishing to preserve an
error message should make their own copies of that message. Depending on the application
environment with respect to asynchronous execution events, such as signals or other
asynchronous computation sharing the address space, conforming applications should use a
critical section to retrieve the error pointer and buffer.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dlclose(), dlopen(), dlsym()

XBD <dlfcn.h>

CHANGE HISTORY
First released in Issue 5.

730 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

24528

24529

24530

24531

24532

24533

24534

24535

24536

24537

24538

24539

24540

24541

24542

24543

24544

24545

24546

24547

24548

24549

24550

24551

24552

24553

24554

24555

24556

24557

24558

24559

24560

24561

24562

24563

24564

24565

24566

24567

24568

24569

System Interfaces dlerror()

Issue 6
A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The dlerror() function is moved from the XSI option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 731

24570

24571

24572

24573

24574

dlopen() System Interfaces

NAME
dlopen — gain access to an executable object file

SYNOPSIS
#include <dlfcn.h>

void *dlopen(const char *file, int mode);

DESCRIPTION
The dlopen() function shall make an executable object file specified by file available to the calling
program. The class of files eligible for this operation and the manner of their construction are
implementation-defined, though typically such files are executable objects such as shared
libraries, relocatable files, or programs. Note that some implementations permit the construction
of dependencies between such objects that are embedded within files. In such cases, a dlopen()
operation shall load such dependencies in addition to the object referenced by file.
Implementations may also impose specific constraints on the construction of programs that can
employ dlopen() and its related services.

A successful dlopen() shall return a handle which the caller may use on subsequent calls to
dlsym() and dlclose(). The value of this handle should not be interpreted in any way by the caller.

The file argument is used to construct a pathname to the object file. If file contains a <slash>
character, the file argument is used as the pathname for the file. Otherwise, file is used in an
implementation-defined manner to yield a pathname.

If the value of file is 0, dlopen() shall provide a handle on a global symbol object. This object shall
provide access to the symbols from an ordered set of objects consisting of the original program
image file, together with any objects loaded at program start-up as specified by that process
image file (for example, shared libraries), and the set of objects loaded using a dlopen() operation
together with the RTLD_GLOBAL flag. As the latter set of objects can change during execution,
the set identified by handle can also change dynamically.

Only a single copy of an object file is brought into the address space, even if dlopen() is invoked
multiple times in reference to the file, and even if different pathnames are used to reference the
file.

The mode parameter describes how dlopen() shall operate upon file with respect to the processing
of relocations and the scope of visibility of the symbols provided within file. When an object is
brought into the address space of a process, it may contain references to symbols whose
addresses are not known until the object is loaded. These references shall be relocated before the
symbols can be accessed. The mode parameter governs when these relocations take place and
may have the following values:

RTLD_LAZY Relocations shall be performed at an implementation-defined time,
ranging from the time of the dlopen() call until the first reference to a
given symbol occurs. Specifying RTLD_LAZY should improve
performance on implementations supporting dynamic symbol binding as
a process may not reference all of the functions in any given object. And,
for systems supporting dynamic symbol resolution for normal process
execution, this behavior mimics the normal handling of process
execution.

RTLD_NOW All necessary relocations shall be performed when the object is first
loaded. This may waste some processing if relocations are performed for
functions that are never referenced. This behavior may be useful for
applications that need to know as soon as an object is loaded that all
symbols referenced during execution are available.

732 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

24575

24576

24577

24578

24579

24580

24581

24582

24583

24584

24585

24586

24587

24588

24589

24590

24591

24592

24593

24594

24595

24596

24597

24598

24599

24600

24601

24602

24603

24604

24605

24606

24607

24608

24609

24610

24611

24612

24613

24614

24615

24616

24617

24618

24619

24620

24621

System Interfaces dlopen()

Any object loaded by dlopen() that requires relocations against global symbols can reference the
symbols in the original process image file, any objects loaded at program start-up, from the
object itself as well as any other object included in the same dlopen() invocation, and any objects
that were loaded in any dlopen() invocation and which specified the RTLD_GLOBAL flag. To
determine the scope of visibility for the symbols loaded with a dlopen() invocation, the mode
parameter should be a bitwise-inclusive OR with one of the following values:

RTLD_GLOBAL The object’s symbols shall be made available for the relocation processing
of any other object. In addition, symbol lookup using dlopen(0, mode) and
an associated dlsym() allows objects loaded with this mode to be searched.

RTLD_LOCAL The object’s symbols shall not be made available for the relocation
processing of any other object.

If neither RTLD_GLOBAL nor RTLD_LOCAL are specified, then the default behavior is
unspecified.

If a file is specified in multiple dlopen() invocations, mode is interpreted at each invocation. Note,
however, that once RTLD_NOW has been specified all relocations shall have been completed
rendering further RTLD_NOW operations redundant and any further RTLD_LAZY operations
irrelevant. Similarly, note that once RTLD_GLOBAL has been specified the object shall maintain
the RTLD_GLOBAL status regardless of any previous or future specification of RTLD_LOCAL,
as long as the object remains in the address space (see dlclose()).

Symbols introduced into a program through calls to dlopen() may be used in relocation activities.
Symbols so introduced may duplicate symbols already defined by the program or previous
dlopen() operations. To resolve the ambiguities such a situation might present, the resolution of a
symbol reference to symbol definition is based on a symbol resolution order. Two such
resolution orders are defined: load or dependency ordering. Load order establishes an ordering
among symbol definitions, such that the definition first loaded (including definitions from the
image file and any dependent objects loaded with it) has priority over objects added later (via
dlopen()). Load ordering is used in relocation processing. Dependency ordering uses a breadth-
first order starting with a given object, then all of its dependencies, then any dependents of
those, iterating until all dependencies are satisfied. With the exception of the global symbol
object obtained via a dlopen() operation on a file of 0, dependency ordering is used by the
dlsym() function. Load ordering is used in dlsym() operations upon the global symbol object.

When an object is first made accessible via dlopen() it and its dependent objects are added in
dependency order. Once all the objects are added, relocations are performed using load order.
Note that if an object or its dependencies had been previously loaded, the load and dependency
orders may yield different resolutions.

The symbols introduced by dlopen() operations and available through dlsym() are at a minimum
those which are exported as symbols of global scope by the object. Typically such symbols shall
be those that were specified in (for example) C source code as having extern linkage. The precise
manner in which an implementation constructs the set of exported symbols for a dlopen() object
is specified by that implementation.

RETURN VALUE
If file cannot be found, cannot be opened for reading, is not of an appropriate object format for
processing by dlopen(), or if an error occurs during the process of loading file or relocating its
symbolic references, dlopen() shall return NULL. More detailed diagnostic information shall be
available through dlerror().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 733

24622

24623

24624

24625

24626

24627

24628

24629

24630

24631

24632

24633

24634

24635

24636

24637

24638

24639

24640

24641

24642

24643

24644

24645

24646

24647

24648

24649

24650

24651

24652

24653

24654

24655

24656

24657

24658

24659

24660

24661

24662

24663

24664

24665

24666

dlopen() System Interfaces

ERRORS
No errors are defined.

EXAMPLES
Refer to dlsym() (on page 735).

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dlclose(), dlerror(), dlsym()

XBD <dlfcn.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/21 is applied, changing the default
behavior in the DESCRIPTION when neither RTLD_GLOBAL nor RTLD_LOCAL are specified
from implementation-defined to unspecified.

Issue 7
The dlopen() function is moved from the XSI option to the Base.

The EXAMPLES section is updated to refer to dlsym().

734 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

24667

24668

24669

24670

24671

24672

24673

24674

24675

24676

24677

24678

24679

24680

24681

24682

24683

24684

24685

24686

24687

24688

System Interfaces dlsym()

NAME
dlsym — obtain the address of a symbol from a dlopen() object

SYNOPSIS
#include <dlfcn.h>

void *dlsym(void *restrict handle, const char *restrict name);

DESCRIPTION
The dlsym() function shall obtain the address of a symbol defined within an object made
accessible through a dlopen() call. The handle argument is the value returned from a call to
dlopen() (and which has not since been released via a call to dlclose()), and name is the symbol’s
name as a character string.

The dlsym() function shall search for the named symbol in all objects loaded automatically as a
result of loading the object referenced by handle (see dlopen()). Load ordering is used in dlsym()
operations upon the global symbol object. The symbol resolution algorithm used shall be
dependency order as described in dlopen().

The RTLD_DEFAULT and RTLD_NEXT flags are reserved for future use.

RETURN VALUE
If handle does not refer to a valid object opened by dlopen(), or if the named symbol cannot be
found within any of the objects associated with handle, dlsym() shall return NULL. More
detailed diagnostic information shall be available through dlerror().

ERRORS
No errors are defined.

EXAMPLES
The following example shows how dlopen() and dlsym() can be used to access either function or
data objects. For simplicity, error checking has been omitted.

void *handle;
int *iptr, (*fptr)(int);

/* open the needed object */
handle = dlopen("/usr/home/me/libfoo.so", RTLD_LOCAL | RTLD_LAZY);

/* find the address of function and data objects */
*(void **)(&fptr) = dlsym(handle, "my_function");
iptr = (int *)dlsym(handle, "my_object");

/* invoke function, passing value of integer as a parameter */
(*fptr)(*iptr);

APPLICATION USAGE
Special purpose values for handle are reserved for future use. These values and their meanings
are:

RTLD_DEFAULT The symbol lookup happens in the normal global scope; that is, a search for a
symbol using this handle would find the same definition as a direct use of this
symbol in the program code.

RTLD_NEXT Specifies the next object after this one that defines name. This one refers to the
object containing the invocation of dlsym(). The next object is the one found
upon the application of a load order symbol resolution algorithm (see
dlopen()). The next object is either one of global scope (because it was
introduced as part of the original process image or because it was added with
a dlopen() operation including the RTLD_GLOBAL flag), or is an object that

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 735

24689

24690

24691

24692

24693

24694

24695

24696

24697

24698

24699

24700

24701

24702

24703

24704

24705

24706

24707

24708

24709

24710

24711

24712

24713

24714

24715

24716

24717

24718

24719

24720

24721

24722

24723

24724

24725

24726

24727

24728

24729

24730

24731

24732

24733

dlsym() System Interfaces

was included in the same dlopen() operation that loaded this one.

The RTLD_NEXT flag is useful to navigate an intentionally created hierarchy
of multiply-defined symbols created through interposition. For example, if a
program wished to create an implementation of malloc() that embedded some
statistics gathering about memory allocations, such an implementation could
use the real malloc() definition to perform the memory allocation—and itself
only embed the necessary logic to implement the statistics gathering function.

RATIONALE
The ISO C standard does not require that pointers to functions can be cast back and forth to
pointers to data. However, POSIX-conforming implementations are required to support this, as
noted in Section 2.12.3 (on page 541). The result of converting a pointer to a function into a
pointer to another data type (except void *) is still undefined, however.

Note that compilers conforming to the ISO C standard are required to generate a warning if a
conversion from a void * pointer to a function pointer is attempted as in:

fptr = (int (*)(int))dlsym(handle, "my_function");

FUTURE DIRECTIONS
None.

SEE ALSO
dlclose(), dlerror(), dlopen()

XBD <dlfcn.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The restrict keyword is added to the dlsym() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The RTLD_DEFAULT and RTLD_NEXT flags are reserved for future use.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/14 is applied, correcting an example, and
adding text to the RATIONALE describing issues related to conversion of pointers to functions
and back again.

Issue 7
The dlsym() function is moved from the XSI option to the Base.

736 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

24734

24735

24736

24737

24738

24739

24740

24741

24742

24743

24744

24745

24746

24747

24748

24749

24750

24751

24752

24753

24754

24755

24756

24757

24758

24759

24760

24761

24762

24763

24764

System Interfaces dprintf()

NAME
dprintf — print formatted output

SYNOPSIS
CX #include <stdio.h>

int dprintf(int fildes, const char *restrict format, ...);

DESCRIPTION
Refer to fprintf().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 737

24765

24766

24767

24768

24769

24770

24771

drand48() System Interfaces

NAME
drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, seed48, srand48 — generate
uniformly distributed pseudo-random numbers

SYNOPSIS
XSI #include <stdlib.h>

double drand48(void);
double erand48(unsigned short xsubi[3]);
long jrand48(unsigned short xsubi[3]);
void lcong48(unsigned short param[7]);
long lrand48(void);
long mrand48(void);
long nrand48(unsigned short xsubi[3]);
unsigned short *seed48(unsigned short seed16v[3]);
void srand48(long seedval);

DESCRIPTION
This family of functions shall generate pseudo-random numbers using a linear congruential
algorithm and 48-bit integer arithmetic.

The drand48() and erand48() functions shall return non-negative, double-precision, floating-
point values, uniformly distributed over the interval [0.0,1.0).

The lrand48() and nrand48() functions shall return non-negative, long integers, uniformly
distributed over the interval [0,231).

The mrand48() and jrand48() functions shall return signed long integers uniformly distributed
over the interval [−231,231).

The srand48(), seed48(), and lcong48() functions are initialization entry points, one of which
should be invoked before either drand48(), lrand48(), or mrand48() is called. (Although it is not
recommended practice, constant default initializer values shall be supplied automatically if
drand48(), lrand48(), or mrand48() is called without a prior call to an initialization entry point.)
The erand48(), nrand48(), and jrand48() functions do not require an initialization entry point to
be called first.

All the routines work by generating a sequence of 48-bit integer values, X i , according to the
linear congruential formula:

Xn+1 = (aXn + c)mod m n ≥ 0

The parameter m = 248; hence 48-bit integer arithmetic is performed. Unless lcong48() is invoked,
the multiplier value a and the addend value c are given by:

a = 5DEECE66D 16 = 273673163155 8

c = B 16 = 13 8

The value returned by any of the drand48(), erand48(), jrand48(), lrand48(), mrand48(), or
nrand48() functions is computed by first generating the next 48-bit X i in the sequence. Then the
appropriate number of bits, according to the type of data item to be returned, are copied from
the high-order (leftmost) bits of X i and transformed into the returned value.

The drand48(), lrand48(), and mrand48() functions store the last 48-bit X i generated in an
internal buffer; that is why the application shall ensure that these are initialized prior to being
invoked. The erand48(), nrand48(), and jrand48() functions require the calling program to

738 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

24772

24773

24774

24775

24776

24777

24778

24779

24780

24781

24782

24783

24784

24785

24786

24787

24788

24789

24790

24791

24792

24793

24794

24795

24796

24797

24798

24799

24800

24801

24802

24803

24804

24805

24806

24807

24808

24809

24810

24811

24812

24813

24814

System Interfaces drand48()

provide storage for the successive X i values in the array specified as an argument when the
functions are invoked. That is why these routines do not have to be initialized; the calling
program merely has to place the desired initial value of X i into the array and pass it as an
argument. By using different arguments, erand48(), nrand48(), and jrand48() allow separate
modules of a large program to generate several independent streams of pseudo-random numbers;
that is, the sequence of numbers in each stream shall not depend upon how many times the
routines are called to generate numbers for the other streams.

The initializer function srand48() sets the high-order 32 bits of X i to the low-order 32 bits
contained in its argument. The low-order 16 bits of X i are set to the arbitrary value 330E16.

The initializer function seed48() sets the value of X i to the 48-bit value specified in the argument
array. The low-order 16 bits of X i are set to the low-order 16 bits of seed16v[0]. The mid-order 16
bits of X i are set to the low-order 16 bits of seed16v[1]. The high-order 16 bits of X i are set to the
low-order 16 bits of seed16v[2]. In addition, the previous value of X i is copied into a 48-bit
internal buffer, used only by seed48(), and a pointer to this buffer is the value returned by
seed48(). This returned pointer, which can just be ignored if not needed, is useful if a program is
to be restarted from a given point at some future time—use the pointer to get at and store the
last X i value, and then use this value to reinitialize via seed48() when the program is restarted.

The initializer function lcong48() allows the user to specify the initial X i , the multiplier value a,
and the addend value c. Argument array elements param[0-2] specify X i , param[3-5] specify the
multiplier a, and param[6] specifies the 16-bit addend c. After lcong48() is called, a subsequent
call to either srand48() or seed48() shall restore the standard multiplier and addend values, a and
c, specified above.

The drand48(), lrand48(), and mrand48() functions need not be thread-safe.

RETURN VALUE
As described in the DESCRIPTION above.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
rand()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A note indicating that the drand48(), lrand48(), and mrand48() functions need not be reentrant is
added to the DESCRIPTION.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 739

24815

24816

24817

24818

24819

24820

24821

24822

24823

24824

24825

24826

24827

24828

24829

24830

24831

24832

24833

24834

24835

24836

24837

24838

24839

24840

24841

24842

24843

24844

24845

24846

24847

24848

24849

24850

24851

24852

24853

24854

24855

24856

24857

drand48() System Interfaces

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

740 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

24858

24859

24860

24861

System Interfaces dup()

NAME
dup, dup2 — duplicate an open file descriptor

SYNOPSIS
#include <unistd.h>

int dup(int fildes);
int dup2(int fildes, int fildes2);

DESCRIPTION
The dup() function provides an alternative interface to the service provided by fcntl() using the
F_DUPFD command. The call dup(fildes) shall be equivalent to:

fcntl(fildes, F_DUPFD, 0);

The dup2() function shall cause the file descriptor fildes2 to refer to the same open file
description as the file descriptor fildes and to share any locks, and shall return fildes2. If fildes2 is
already a valid open file descriptor, it shall be closed first, unless fildes is equal to fildes2 in which
case dup2() shall return fildes2 without closing it. If the close operation fails to close fildes2,
dup2() shall return −1 without changing the open file description to which fildes2 refers. If fildes
is not a valid file descriptor, dup2() shall return −1 and shall not close fildes2. If fildes2 is less than
0 or greater than or equal to {OPEN_MAX}, dup2() shall return −1 with errno set to [EBADF].

Upon successful completion, if fildes is not equal to fildes2, the FD_CLOEXEC flag associated
with fildes2 shall be cleared. If fildes is equal to fildes2, the FD_CLOEXEC flag associated with
fildes2 shall not be changed.

TYM If fildes refers to a typed memory object, the result of the dup2() function is unspecified.

RETURN VALUE
Upon successful completion a non-negative integer, namely the file descriptor, shall be returned;
otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The dup() function shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[EMFILE] All file descriptors available to the process are currently open.

The dup2() function shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor or the argument fildes2 is
negative or greater than or equal to {OPEN_MAX}.

[EINTR] The dup2() function was interrupted by a signal.

The dup2() function may fail if:

[EIO] An I/O error occurred while attempting to close fildes2.

EXAMPLES

Redirecting Standard Output to a File

The following example closes standard output for the current processes, re-assigns standard
output to go to the file referenced by pfd, and closes the original file descriptor to clean up.

#include <unistd.h>
...
int pfd;
...

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 741

24862

24863

24864

24865

24866

24867

24868

24869

24870

24871

24872

24873

24874

24875

24876

24877

24878

24879

24880

24881

24882

24883

24884

24885

24886

24887

24888

24889

24890

24891

24892

24893

24894

24895

24896

24897

24898

24899

24900

24901

24902

24903

dup() System Interfaces

close(1);
dup(pfd);
close(pfd);
...

Redirecting Error Messages

The following example redirects messages from stderr to stdout.

#include <unistd.h>
...
dup2(1, 2);
...

APPLICATION USAGE
None.

RATIONALE
The dup() and dup2() functions are redundant. Their services are also provided by the fcntl()
function. They have been included in this volume of POSIX.1-2008 primarily for historical
reasons, since many existing applications use them.

The dup2() function is not marked obsolescent because it presents a type-safe version of
functionality provided in a type-unsafe version by fcntl(). It is used in the POSIX Ada binding.

The dup2() function is not intended for use in critical regions as a synchronization mechanism.

In the description of [EBADF], the case of fildes being out of range is covered by the given case of
fildes not being valid. The descriptions for fildes and fildes2 are different because the only kind of
invalidity that is relevant for fildes2 is whether it is out of range; that is, it does not matter
whether fildes2 refers to an open file when the dup2() call is made.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), fcntl(), open()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
SD5-XSH-ERN-187 is applied.

742 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

24904

24905

24906

24907

24908

24909

24910

24911

24912

24913

24914

24915

24916

24917

24918

24919

24920

24921

24922

24923

24924

24925

24926

24927

24928

24929

24930

24931

24932

24933

24934

24935

System Interfaces duplocale()

NAME
duplocale — duplicate a locale object

SYNOPSIS
CX #include <locale.h>

locale_t duplocale(locale_t locobj);

DESCRIPTION
The duplocale() function shall create a duplicate copy of the locale object referenced by the locobj
argument.

RETURN VALUE
Upon successful completion, the duplocale() function shall return a handle for a new locale
object. Otherwise, duplocale() shall return (locale_t)0 and set errno to indicate the error.

ERRORS
The duplocale() function shall fail if:

[ENOMEM] There is not enough memory available to create the locale object or load the
locale data.

The duplocale() function may fail if:

[EINVAL] locobj is not a handle for a locale object.

EXAMPLES

Constructing an Altered Version of an Existing Locale Object

The following example shows a code fragment to create a slightly altered version of an existing
locale object. The function takes a locale object and a locale name and it replaces the LC_TIME
category data in the locale object with that from the named locale.

#include <locale.h>
...

locale_t
with_changed_lc_time (locale_t obj, const char *name)
{

locale_t retval = duplocale (obj);
if (retval != (locale_t) 0)
{

locale_t changed = newlocale (LC_TIME_MASK, name, retval);
if (changed == (locale_t) 0)

/* An error occurred. Free all allocated resources. */
freelocale (retval);

retval = changed;
}
return retval; }

}

APPLICATION USAGE
The use of the duplocale() function is recommended for situations where a locale object is being
used in multiple places, and it is possible that the lifetime of the locale object might end before
all uses are finished. Another reason to duplicate a locale object is if a slightly modified form is
needed. This can be achieved by a call to newlocale() following the duplocale() call.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 743

24936

24937

24938

24939

24940

24941

24942

24943

24944

24945

24946

24947

24948

24949

24950

24951

24952

24953

24954

24955

24956

24957

24958

24959

24960

24961

24962

24963

24964

24965

24966

24967

24968

24969

24970

24971

24972

24973

24974

24975

24976

24977

24978

duplocale() System Interfaces

As with the newlocale() function, handles for locale objects created by the duplocale() function
should be released by a corresponding call to freelocale().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
freelocale(), newlocale(), uselocale()

XBD <locale.h>

CHANGE HISTORY
First released in Issue 7.

744 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

24979

24980

24981

24982

24983

24984

24985

24986

24987

24988

24989

System Interfaces encrypt()

NAME
encrypt — encoding function (CRYPT)

SYNOPSIS
XSI #include <unistd.h>

void encrypt(char block[64], int edflag);

DESCRIPTION
The encrypt() function shall provide access to an implementation-defined encoding algorithm.
The key generated by setkey() is used to encrypt the string block with encrypt().

The block argument to encrypt() shall be an array of length 64 bytes containing only the bytes
with values of 0 and 1. The array is modified in place to a similar array using the key set by
setkey(). If edflag is 0, the argument is encoded. If edflag is 1, the argument may be decoded (see
the APPLICATION USAGE section); if the argument is not decoded, errno shall be set to
[ENOSYS].

The encrypt() function shall not change the setting of errno if successful. An application wishing
to check for error situations should set errno to 0 before calling encrypt(). If errno is non-zero on
return, an error has occurred.

The encrypt() function need not be thread-safe.

RETURN VALUE
The encrypt() function shall not return a value.

ERRORS
The encrypt() function shall fail if:

[ENOSYS] The functionality is not supported on this implementation.

EXAMPLES
None.

APPLICATION USAGE
Historical implementations of the encrypt() function used a rather primitive encoding algorithm.

In some environments, decoding might not be implemented. This is related to some Government
restrictions on encryption and decryption routines. Historical practice has been to ship a
different version of the encryption library without the decryption feature in the routines
supplied. Thus the exported version of encrypt() does encoding but not decoding.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
crypt(), setkey()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 745

24990

24991

24992

24993

24994

24995

24996

24997

24998

24999

25000

25001

25002

25003

25004

25005

25006

25007

25008

25009

25010

25011

25012

25013

25014

25015

25016

25017

25018

25019

25020

25021

25022

25023

25024

25025

25026

25027

25028

encrypt() System Interfaces

Issue 5
A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

746 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25029

25030

25031

25032

25033

25034

System Interfaces endgrent()

NAME
endgrent, getgrent, setgrent — group database entry functions

SYNOPSIS
XSI #include <grp.h>

void endgrent(void);
struct group *getgrent(void);
void setgrent(void);

DESCRIPTION
The getgrent() function shall return a pointer to a structure containing the broken-out fields of an
entry in the group database. When first called, getgrent() shall return a pointer to a group
structure containing the first entry in the group database. Thereafter, it shall return a pointer to a
group structure containing the next group structure in the group database, so successive calls
may be used to search the entire database.

An implementation that provides extended security controls may impose further
implementation-defined restrictions on accessing the group database. In particular, the system
may deny the existence of some or all of the group database entries associated with groups other
than those groups associated with the caller and may omit users other than the caller from the
list of members of groups in database entries that are returned.

The setgrent() function shall rewind the group database to allow repeated searches.

The endgrent() function may be called to close the group database when processing is complete.

These functions need not be thread-safe.

RETURN VALUE
When first called, getgrent() shall return a pointer to the first group structure in the group
database. Upon subsequent calls it shall return the next group structure in the group database.
The getgrent() function shall return a null pointer on end-of-file or an error and errno may be set
to indicate the error.

The return value may point to a static area which is overwritten by a subsequent call to
getgrgid(), getgrnam(), or getgrent().

ERRORS
The getgrent() function may fail if:

[EINTR] A signal was caught during the operation.

[EIO] An I/O error has occurred.

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

EXAMPLES
None.

APPLICATION USAGE
These functions are provided due to their historical usage. Applications should avoid
dependencies on fields in the group database, whether the database is a single file, or where in
the file system name space the database resides. Applications should use getgrnam() and
getgrgid() whenever possible because it avoids these dependencies.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 747

25035

25036

25037

25038

25039

25040

25041

25042

25043

25044

25045

25046

25047

25048

25049

25050

25051

25052

25053

25054

25055

25056

25057

25058

25059

25060

25061

25062

25063

25064

25065

25066

25067

25068

25069

25070

25071

25072

25073

25074

25075

endgrent() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endpwent(), getgrgid(), getgrnam(), getlogin()

XBD <grp.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

748 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25076

25077

25078

25079

25080

25081

25082

25083

25084

25085

25086

25087

25088

25089

25090

25091

25092

25093

25094

System Interfaces endhostent()

NAME
endhostent, gethostent, sethostent — network host database functions

SYNOPSIS
#include <netdb.h>

void endhostent(void);
struct hostent *gethostent(void);
void sethostent(int stayopen);

DESCRIPTION
These functions shall retrieve information about hosts. This information is considered to be
stored in a database that can be accessed sequentially or randomly. The implementation of this
database is unspecified.

Note: In many cases this database is implemented by the Domain Name System, as documented in
RFC 1034, RFC 1035, and RFC 1886.

The sethostent() function shall open a connection to the database and set the next entry for
retrieval to the first entry in the database. If the stayopen argument is non-zero, the connection
shall not be closed by a call to gethostent(), and the implementation may maintain an open file
descriptor.

The gethostent() function shall read the next entry in the database, opening and closing a
connection to the database as necessary.

Entries shall be returned in hostent structures.

The endhostent() function shall close the connection to the database, releasing any open file
descriptor.

These functions need not be thread-safe.

RETURN VALUE
Upon successful completion, the gethostent() function shall return a pointer to a hostent
structure if the requested entry was found, and a null pointer if the end of the database was
reached or the requested entry was not found.

ERRORS
No errors are defined for endhostent(), gethostent(), and sethostent().

EXAMPLES
None.

APPLICATION USAGE
The gethostent() function may return pointers to static data, which may be overwritten by
subsequent calls to any of these functions.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endservent()

XBD <netdb.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 749

25095

25096

25097

25098

25099

25100

25101

25102

25103

25104

25105

25106

25107

25108

25109

25110

25111

25112

25113

25114

25115

25116

25117

25118

25119

25120

25121

25122

25123

25124

25125

25126

25127

25128

25129

25130

25131

25132

25133

25134

25135

endhostent() System Interfaces

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

750 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25136

25137

25138

25139

System Interfaces endnetent()

NAME
endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent — network database functions

SYNOPSIS
#include <netdb.h>

void endnetent(void);
struct netent *getnetbyaddr(uint32_t net, int type);
struct netent *getnetbyname(const char *name);
struct netent *getnetent(void);
void setnetent(int stayopen);

DESCRIPTION
These functions shall retrieve information about networks. This information is considered to be
stored in a database that can be accessed sequentially or randomly. The implementation of this
database is unspecified.

The setnetent() function shall open and rewind the database. If the stayopen argument is non-
zero, the connection to the net database shall not be closed after each call to getnetent() (either
directly, or indirectly through one of the other getnet*() functions), and the implementation may
maintain an open file descriptor to the database.

The getnetent() function shall read the next entry of the database, opening and closing a
connection to the database as necessary.

The getnetbyaddr() function shall search the database from the beginning, and find the first entry
for which the address family specified by type matches the n_addrtype member and the network
number net matches the n_net member, opening and closing a connection to the database as
necessary. The net argument shall be the network number in host byte order.

The getnetbyname() function shall search the database from the beginning and find the first entry
for which the network name specified by name matches the n_name member, opening and
closing a connection to the database as necessary.

The getnetbyaddr(), getnetbyname(), and getnetent() functions shall each return a pointer to a
netent structure, the members of which shall contain the fields of an entry in the network
database.

The endnetent() function shall close the database, releasing any open file descriptor.

These functions need not be thread-safe.

RETURN VALUE
Upon successful completion, getnetbyaddr(), getnetbyname(), and getnetent() shall return a
pointer to a netent structure if the requested entry was found, and a null pointer if the end of the
database was reached or the requested entry was not found. Otherwise, a null pointer shall be
returned.

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 751

25140

25141

25142

25143

25144

25145

25146

25147

25148

25149

25150

25151

25152

25153

25154

25155

25156

25157

25158

25159

25160

25161

25162

25163

25164

25165

25166

25167

25168

25169

25170

25171

25172

25173

25174

25175

25176

25177

endnetent() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The getnetbyaddr(), getnetbyname(), and getnetent() functions may return pointers to static data,
which may be overwritten by subsequent calls to any of these functions.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <netdb.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

752 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25178

25179

25180

25181

25182

25183

25184

25185

25186

25187

25188

25189

25190

25191

25192

System Interfaces endprotoent()

NAME
endprotoent, getprotobyname, getprotobynumber, getprotoent, setprotoent — network protocol
database functions

SYNOPSIS
#include <netdb.h>

void endprotoent(void);
struct protoent *getprotobyname(const char *name);
struct protoent *getprotobynumber(int proto);
struct protoent *getprotoent(void);
void setprotoent(int stayopen);

DESCRIPTION
These functions shall retrieve information about protocols. This information is considered to be
stored in a database that can be accessed sequentially or randomly. The implementation of this
database is unspecified.

The setprotoent() function shall open a connection to the database, and set the next entry to the
first entry. If the stayopen argument is non-zero, the connection to the network protocol database
shall not be closed after each call to getprotoent() (either directly, or indirectly through one of the
other getproto*() functions), and the implementation may maintain an open file descriptor for
the database.

The getprotobyname() function shall search the database from the beginning and find the first
entry for which the protocol name specified by name matches the p_name member, opening and
closing a connection to the database as necessary.

The getprotobynumber() function shall search the database from the beginning and find the first
entry for which the protocol number specified by proto matches the p_proto member, opening
and closing a connection to the database as necessary.

The getprotoent() function shall read the next entry of the database, opening and closing a
connection to the database as necessary.

The getprotobyname(), getprotobynumber(), and getprotoent() functions shall each return a pointer
to a protoent structure, the members of which shall contain the fields of an entry in the network
protocol database.

The endprotoent() function shall close the connection to the database, releasing any open file
descriptor.

These functions need not be thread-safe.

RETURN VALUE
Upon successful completion, getprotobyname(), getprotobynumber(), and getprotoent() return a
pointer to a protoent structure if the requested entry was found, and a null pointer if the end of
the database was reached or the requested entry was not found. Otherwise, a null pointer is
returned.

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 753

25193

25194

25195

25196

25197

25198

25199

25200

25201

25202

25203

25204

25205

25206

25207

25208

25209

25210

25211

25212

25213

25214

25215

25216

25217

25218

25219

25220

25221

25222

25223

25224

25225

25226

25227

25228

25229

25230

25231

25232

endprotoent() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The getprotobyname(), getprotobynumber(), and getprotoent() functions may return pointers to
static data, which may be overwritten by subsequent calls to any of these functions.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <netdb.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

754 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25233

25234

25235

25236

25237

25238

25239

25240

25241

25242

25243

25244

25245

25246

25247

System Interfaces endpwent()

NAME
endpwent, getpwent, setpwent — user database functions

SYNOPSIS
XSI #include <pwd.h>

void endpwent(void);
struct passwd *getpwent(void);
void setpwent(void);

DESCRIPTION
These functions shall retrieve information about users.

The getpwent() function shall return a pointer to a structure containing the broken-out fields of
an entry in the user database. Each entry in the user database contains a passwd structure. When
first called, getpwent() shall return a pointer to a passwd structure containing the first entry in
the user database. Thereafter, it shall return a pointer to a passwd structure containing the next
entry in the user database. Successive calls can be used to search the entire user database.

If an end-of-file or an error is encountered on reading, getpwent() shall return a null pointer.

An implementation that provides extended security controls may impose further
implementation-defined restrictions on accessing the user database. In particular, the system
may deny the existence of some or all of the user database entries associated with users other
than the caller.

The setpwent() function effectively rewinds the user database to allow repeated searches.

The endpwent() function may be called to close the user database when processing is complete.

These functions need not be thread-safe.

RETURN VALUE
The getpwent() function shall return a null pointer on end-of-file or error.

ERRORS
These functions may fail if:

[EIO] An I/O error has occurred.

In addition, getpwent() and setpwent() may fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The return value may point to a static area which is overwritten by a subsequent call to
getpwuid(), getpwnam(), or getpwent().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 755

25248

25249

25250

25251

25252

25253

25254

25255

25256

25257

25258

25259

25260

25261

25262

25263

25264

25265

25266

25267

25268

25269

25270

25271

25272

25273

25274

25275

25276

25277

25278

25279

endpwent() System Interfaces

EXAMPLES

Searching the User Database

The following example uses the getpwent() function to get successive entries in the user
database, returning a pointer to a passwd structure that contains information about each user.
The call to endpwent() closes the user database and cleans up.

#include <pwd.h>
#include <stdio.h>

void printname(uid_t uid)
{

struct passwd *pwd;

setpwent();
while((pwd = getpwent()) != NULL) {

if (pwd->pw_uid == uid) {
printf("name=%s\n",pwd->pw_name);
break;

}
}
endpwent();

}

APPLICATION USAGE
These functions are provided due to their historical usage. Applications should avoid
dependencies on fields in the password database, whether the database is a single file, or where
in the file system name space the database resides. Applications should use getpwuid()
whenever possible because it avoids these dependencies.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endgrent(), getlogin(), getpwnam(), getpwuid()

XBD <pwd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

756 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25280

25281

25282

25283

25284

25285

25286

25287

25288

25289

25290

25291

25292

25293

25294

25295

25296

25297

25298

25299

25300

25301

25302

25303

25304

25305

25306

25307

25308

25309

25310

25311

25312

25313

25314

25315

25316

25317

25318

25319

System Interfaces endpwent()

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The EXAMPLES section is revised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 757

25320

25321

25322

25323

endservent() System Interfaces

NAME
endservent, getservbyname, getservbyport, getservent, setservent — network services database
functions

SYNOPSIS
#include <netdb.h>

void endservent(void);
struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);
struct servent *getservent(void);
void setservent(int stayopen);

DESCRIPTION
These functions shall retrieve information about network services. This information is
considered to be stored in a database that can be accessed sequentially or randomly. The
implementation of this database is unspecified.

The setservent() function shall open a connection to the database, and set the next entry to the
first entry. If the stayopen argument is non-zero, the net database shall not be closed after each
call to the getservent() function (either directly, or indirectly through one of the other getserv*()
functions), and the implementation may maintain an open file descriptor for the database.

The getservent() function shall read the next entry of the database, opening and closing a
connection to the database as necessary.

The getservbyname() function shall search the database from the beginning and find the first
entry for which the service name specified by name matches the s_name member and the protocol
name specified by proto matches the s_proto member, opening and closing a connection to the
database as necessary. If proto is a null pointer, any value of the s_proto member shall be
matched.

The getservbyport() function shall search the database from the beginning and find the first entry
for which the port specified by port matches the s_port member and the protocol name specified
by proto matches the s_proto member, opening and closing a connection to the database as
necessary. If proto is a null pointer, any value of the s_proto member shall be matched. The port
argument shall be a value obtained by converting a uint16_t in network byte order to int.

The getservbyname(), getservbyport(), and getservent() functions shall each return a pointer to a
servent structure, the members of which shall contain the fields of an entry in the network
services database.

The endservent() function shall close the database, releasing any open file descriptor.

These functions need not be thread-safe.

RETURN VALUE
Upon successful completion, getservbyname(), getservbyport(), and getservent() return a pointer to
a servent structure if the requested entry was found, and a null pointer if the end of the database
was reached or the requested entry was not found. Otherwise, a null pointer is returned.

ERRORS
No errors are defined.

758 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25324

25325

25326

25327

25328

25329

25330

25331

25332

25333

25334

25335

25336

25337

25338

25339

25340

25341

25342

25343

25344

25345

25346

25347

25348

25349

25350

25351

25352

25353

25354

25355

25356

25357

25358

25359

25360

25361

25362

25363

25364

System Interfaces endservent()

EXAMPLES
None.

APPLICATION USAGE
The port argument of getservbyport() need not be compatible with the port values of all address
families.

The getservbyname(), getservbyport(), and getservent() functions may return pointers to static
data, which may be overwritten by subsequent calls to any of these functions.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endhostent(), endprotoent(), htonl(), inet_addr()

XBD <netdb.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XBD-ERN-14 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 759

25365

25366

25367

25368

25369

25370

25371

25372

25373

25374

25375

25376

25377

25378

25379

25380

25381

25382

25383

endutxent() System Interfaces

NAME
endutxent, getutxent, getutxid, getutxline, pututxline, setutxent — user accounting database
functions

SYNOPSIS
XSI #include <utmpx.h>

void endutxent(void);
struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx *id);
struct utmpx *getutxline(const struct utmpx *line);
struct utmpx *pututxline(const struct utmpx *utmpx);
void setutxent(void);

DESCRIPTION
These functions shall provide access to the user accounting database.

The getutxent() function shall read the next entry from the user accounting database. If the
database is not already open, it shall open it. If it reaches the end of the database, it shall fail.

The getutxid() function shall search forward from the current point in the database. If the
ut_type value of the utmpx structure pointed to by id is BOOT_TIME, OLD_TIME, or
NEW_TIME, then it shall stop when it finds an entry with a matching ut_type value. If the
ut_type value is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS,
then it shall stop when it finds an entry whose type is one of these four and whose ut_id member
matches the ut_id member of the utmpx structure pointed to by id. If the end of the database is
reached without a match, getutxid() shall fail.

The getutxline() function shall search forward from the current point in the database until it
finds an entry of the type LOGIN_PROCESS or USER_PROCESS which also has a ut_line value
matching that in the utmpx structure pointed to by line. If the end of the database is reached
without a match, getutxline() shall fail.

The getutxid() or getutxline() function may cache data. For this reason, to use getutxline() to
search for multiple occurrences, the application shall zero out the static data after each success,
or getutxline() may return a pointer to the same utmpx structure.

There is one exception to the rule about clearing the structure before further reads are done. The
implicit read done by pututxline() (if it finds that it is not already at the correct place in the user
accounting database) shall not modify the static structure returned by getutxent(), getutxid(), or
getutxline(), if the application has modified this structure and passed the pointer back to
pututxline().

For all entries that match a request, the ut_type member indicates the type of the entry. Other
members of the entry shall contain meaningful data based on the value of the ut_type member as
follows:

760 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25384

25385

25386

25387

25388

25389

25390

25391

25392

25393

25394

25395

25396

25397

25398

25399

25400

25401

25402

25403

25404

25405

25406

25407

25408

25409

25410

25411

25412

25413

25414

25415

25416

25417

25418

25419

25420

System Interfaces endutxent()

ut_type Member Other Members with Meaningful Data

EMPTY No others
BOOT_TIME ut_tv
OLD_TIME ut_tv
NEW_TIME ut_tv
USER_PROCESS ut_id, ut_user (login name of the user), ut_line, ut_pid, ut_tv
INIT_PROCESS ut_id, ut_pid, ut_tv
LOGIN_PROCESS ut_id, ut_user (implementation-defined name of the login

process), ut_pid, ut_tv
DEAD_PROCESS ut_id, ut_pid, ut_tv

An implementation that provides extended security controls may impose implementation-
defined restrictions on accessing the user accounting database. In particular, the system may
deny the existence of some or all of the user accounting database entries associated with users
other than the caller.

If the process has appropriate privileges, the pututxline() function shall write out the structure
into the user accounting database. It shall use getutxid() to search for a record that satisfies the
request. If this search succeeds, then the entry shall be replaced. Otherwise, a new entry shall be
made at the end of the user accounting database.

The endutxent() function shall close the user accounting database.

The setutxent() function shall reset the input to the beginning of the database. This should be
done before each search for a new entry if it is desired that the entire database be examined.

These functions need not be thread-safe.

RETURN VALUE
Upon successful completion, getutxent(), getutxid(), and getutxline() shall return a pointer to a
utmpx structure containing a copy of the requested entry in the user accounting database.
Otherwise, a null pointer shall be returned.

The return value may point to a static area which is overwritten by a subsequent call to
getutxid() or getutxline().

Upon successful completion, pututxline() shall return a pointer to a utmpx structure containing a
copy of the entry added to the user accounting database. Otherwise, a null pointer shall be
returned.

The endutxent() and setutxent() functions shall not return a value.

ERRORS
No errors are defined for the endutxent(), getutxent(), getutxid(), getutxline(), and setutxent()
functions.

The pututxline() function may fail if:

[EPERM] The process does not have appropriate privileges.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 761

25421

25422

25423

25424

25425

25426

25427

25428

25429

25430

25431

25432

25433

25434

25435

25436

25437

25438

25439

25440

25441

25442

25443

25444

25445

25446

25447

25448

25449

25450

25451

25452

25453

25454

25455

25456

25457

endutxent() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The sizes of the arrays in the structure can be found using the sizeof operator.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <utmpx.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

762 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25458

25459

25460

25461

25462

25463

25464

25465

25466

25467

25468

25469

25470

25471

25472

25473

25474

25475

25476

25477

25478

System Interfaces environ

NAME
environ — array of character pointers to the environment strings

SYNOPSIS
extern char **environ;

DESCRIPTION
Refer to exec and XBD Chapter 8 (on page 173).

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 763

25479

25480

25481

25482

25483

25484

erand48() System Interfaces

NAME
erand48 — generate uniformly distributed pseudo-random numbers

SYNOPSIS
XSI #include <stdlib.h>

double erand48(unsigned short xsubi[3]);

DESCRIPTION
Refer to drand48().

764 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25485

25486

25487

25488

25489

25490

25491

System Interfaces erf()

NAME
erf, erff, erfl — error functions

SYNOPSIS
#include <math.h>

double erf(double x);
float erff(float x);
long double erfl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the error function of their argument x, defined as:

2

√ π

x

0
∫ e−t2

dt

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the value of the error function.

MX If x is NaN, a NaN shall be returned.

If x is ±0, ±0 shall be returned.

If x is ±Inf, ±1 shall be returned.

If x is subnormal, a range error may occur, and 2 * x/sqrt(π) should be returned.

ERRORS
These functions may fail if:

MX Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES

Computing the Probability for a Normal Variate

This example shows how to use erf() to compute the probability that a normal variate assumes a
value in the range [x1,x2] with x1≤x2.

This example uses the constant M_SQRT1_2 which is part of the XSI option.

#include <math.h>

double
Phi(const double x1, const double x2)
{

return (erf(x2*M_SQRT1_2) − erf(x1*M_SQRT1_2)) / 2;

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 765

25492

25493

25494

25495

25496

25497

25498

25499

25500

25501

25502

25503

25504

25505

25506

25507

25508

25509

25510

25511

25512

25513

25514

25515

25516

25517

25518

25519

25520

25521

25522

25523

25524

25525

25526

25527

25528

25529

25530

25531

erf() System Interfaces

}

APPLICATION USAGE
Underflow occurs when |x| < DBL_MIN * (sqrt(π)/2).

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
erfc(), feclearexcept(), fetestexcept(), isnan()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The erf() function is no longer marked as an extension.

The erfc() function is split out onto its own reference page.

The erff() and erfl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/22 is applied, adding the example to the
EXAMPLES section.

766 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25532

25533

25534

25535

25536

25537

25538

25539

25540

25541

25542

25543

25544

25545

25546

25547

25548

25549

25550

25551

25552

25553

25554

25555

25556

25557

25558

System Interfaces erfc()

NAME
erfc, erfcf, erfcl — complementary error functions

SYNOPSIS
#include <math.h>

double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the complementary error function 1.0 − erf (x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the value of the complementary error
function.

If the correct value would cause underflow and is not representable, a range error may occur
MX and either 0.0 (if representable), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, +1 shall be returned.

If x is −Inf, +2 shall be returned.

If x is +Inf, +0 shall be returned.

If the correct value would cause underflow and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
The erfc() function is provided because of the extreme loss of relative accuracy if erf (x) is called
for large x and the result subtracted from 1.0.

Note for IEEE Std 754-1985 double, 26.55 < x implies erfc(x) has underflowed.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 767

25559

25560

25561

25562

25563

25564

25565

25566

25567

25568

25569

25570

25571

25572

25573

25574

25575

25576

25577

25578

25579

25580

25581

25582

25583

25584

25585

25586

25587

25588

25589

25590

25591

25592

25593

25594

25595

25596

25597

25598

25599

25600

erfc() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
erf(), feclearexcept(), fetestexcept(), isnan()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The erfc() function is no longer marked as an extension.

These functions are split out from the erf() reference page.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

768 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25601

25602

25603

25604

25605

25606

25607

25608

25609

25610

25611

25612

25613

25614

25615

25616

25617

25618

25619

System Interfaces erff()

NAME
erff, erfl — error functions

SYNOPSIS
#include <math.h>

float erff(float x);
long double erfl(long double x);

DESCRIPTION
Refer to erf().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 769

25620

25621

25622

25623

25624

25625

25626

25627

errno System Interfaces

NAME
errno — error return value

SYNOPSIS
#include <errno.h>

DESCRIPTION
The lvalue errno is used by many functions to return error values.

Many functions provide an error number in errno, which has type int and is defined in
<errno.h>. The value of errno shall be defined only after a call to a function for which it is
explicitly stated to be set and until it is changed by the next function call or if the application
assigns it a value. The value of errno should only be examined when it is indicated to be valid by
a function’s return value. Applications shall obtain the definition of errno by the inclusion of
<errno.h>. No function in this volume of POSIX.1-2008 shall set errno to 0. The setting of errno
after a successful call to a function is unspecified unless the description of that function specifies
that errno shall not be modified.

It is unspecified whether errno is a macro or an identifier declared with external linkage. If a
macro definition is suppressed in order to access an actual object, or a program defines an
identifier with the name errno, the behavior is undefined.

The symbolic values stored in errno are documented in the ERRORS sections on all relevant
pages.

RETURN VALUE
None.

ERRORS
None.

EXAMPLES
None.

APPLICATION USAGE
Previously both POSIX and X/Open documents were more restrictive than the ISO C standard
in that they required errno to be defined as an external variable, whereas the ISO C standard
required only that errno be defined as a modifiable lvalue with type int.

An application that needs to examine the value of errno to determine the error should set it to 0
before a function call, then inspect it before a subsequent function call.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.3

XBD <errno.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The following sentence is deleted from the DESCRIPTION: ‘‘The value of errno is 0 at program
start-up, but is never set to 0 by any XSI function’’.

770 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25628

25629

25630

25631

25632

25633

25634

25635

25636

25637

25638

25639

25640

25641

25642

25643

25644

25645

25646

25647

25648

25649

25650

25651

25652

25653

25654

25655

25656

25657

25658

25659

25660

25661

25662

25663

25664

25665

25666

25667

25668

25669

25670

System Interfaces errno

The DESCRIPTION also no longer states that conforming implementations may support the
declaration:

extern int errno;

Issue 6
Obsolescent text regarding defining errno as:

extern int errno

is removed.

Text regarding no function setting errno to zero to indicate an error is changed to no function
shall set errno to zero. This is for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/23 is applied, adding text to the
DESCRIPTION stating that the setting of errno after a successful call to a function is unspecified
unless the description of the function requires that it will not be modified.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 771

25671

25672

25673

25674

25675

25676

25677

25678

25679

25680

25681

25682

exec System Interfaces

NAME
environ, execl, execle, execlp, execv, execve, execvp, fexecve — execute a file

SYNOPSIS
#include <unistd.h>

extern char **environ;
int execl(const char *path, const char *arg0, ... /*, (char *)0 */);
int execle(const char *path, const char *arg0, ... /*,

(char *)0, char *const envp[]*/);
int execlp(const char *file, const char *arg0, ... /*, (char *)0 */);
int execv(const char *path, char *const argv[]);
int execve(const char *path, char *const argv[], char *const envp[]);
int execvp(const char *file, char *const argv[]);
int fexecve(int fd, char *const argv[], char *const envp[]);

DESCRIPTION
The exec family of functions shall replace the current process image with a new process image.
The new image shall be constructed from a regular, executable file called the new process image
file. There shall be no return from a successful exec, because the calling process image is overlaid
by the new process image.

The fexecve() function shall be equivalent to the execve() function except that the file to be
executed is determined by the file descriptor fd instead of a pathname. The file offset of fd is
ignored.

When a C-language program is executed as a result of a call to one of the exec family of
functions, it shall be entered as a C-language function call as follows:

int main (int argc, char *argv[]);

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the following variable:

extern char **environ;

is initialized as a pointer to an array of character pointers to the environment strings. The argv
and environ arrays are each terminated by a null pointer. The null pointer terminating the argv
array is not counted in argc.

Conforming multi-threaded applications shall not use the environ variable to access or modify
any environment variable while any other thread is concurrently modifying any environment
variable. A call to any function dependent on any environment variable shall be considered a
use of the environ variable to access that environment variable.

The arguments specified by a program with one of the exec functions shall be passed on to the
new process image in the corresponding main() arguments.

The argument path points to a pathname that identifies the new process image file.

The argument file is used to construct a pathname that identifies the new process image file. If
the file argument contains a <slash> character, the file argument shall be used as the pathname
for this file. Otherwise, the path prefix for this file is obtained by a search of the directories
passed as the environment variable PA TH (see XBD Chapter 8, on page 173). If this environment
variable is not present, the results of the search are implementation-defined.

There are two distinct ways in which the contents of the process image file may cause the
execution to fail, distinguished by the setting of errno to either [ENOEXEC] or [EINVAL] (see the
ERRORS section). In the cases where the other members of the exec family of functions would

772 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25683

25684

25685

25686

25687

25688

25689

25690

25691

25692

25693

25694

25695

25696

25697

25698

25699

25700

25701

25702

25703

25704

25705

25706

25707

25708

25709

25710

25711

25712

25713

25714

25715

25716

25717

25718

25719

25720

25721

25722

25723

25724

25725

25726

25727

System Interfaces exec

fail and set errno to [ENOEXEC], the execlp() and execvp() functions shall execute a command
interpreter and the environment of the executed command shall be as if the process invoked the
sh utility using execl() as follows:

execl(<shell path>, arg0, file, arg1, ..., (char *)0);

where <shell path> is an unspecified pathname for the sh utility, file is the process image file, and
for execvp(), where arg0, arg1, and so on correspond to the values passed to execvp() in argv[0],
argv[1], and so on.

The arguments represented by arg0, . . . are pointers to null-terminated character strings. These
strings shall constitute the argument list available to the new process image. The list is
terminated by a null pointer. The argument arg0 should point to a filename that is associated
with the process being started by one of the exec functions.

The argument argv is an array of character pointers to null-terminated strings. The application
shall ensure that the last member of this array is a null pointer. These strings shall constitute the
argument list available to the new process image. The value in argv[0] should point to a filename
that is associated with the process being started by one of the exec functions.

The argument envp is an array of character pointers to null-terminated strings. These strings
shall constitute the environment for the new process image. The envp array is terminated by a
null pointer.

For those forms not containing an envp pointer (execl(), execv(), execlp(), and execvp()), the
environment for the new process image shall be taken from the external variable environ in the
calling process.

The number of bytes available for the new process’ combined argument and environment lists is
{ARG_MAX}. It is implementation-defined whether null terminators, pointers, and/or any
alignment bytes are included in this total.

File descriptors open in the calling process image shall remain open in the new process image,
except for those whose close-on-exec flag FD_CLOEXEC is set. For those file descriptors that
remain open, all attributes of the open file description remain unchanged. For any file descriptor
that is closed for this reason, file locks are removed as a result of the close as described in close().
Locks that are not removed by closing of file descriptors remain unchanged.

If file descriptors 0, 1, and 2 would otherwise be closed after a successful call to one of the exec
family of functions, and the new process image file has the set-user-ID or set-group-ID file mode

XSI bits set, and the ST_NOSUID bit is not set for the file system containing the new process image
file, implementations may open an unspecified file for each of these file descriptors in the new
process image.

Directory streams open in the calling process image shall be closed in the new process image.

The state of the floating-point environment in the initial thread of the new process image shall
be set to the default.

The state of conversion descriptors and message catalog descriptors in the new process image is
undefined.

For the new process image, the equivalent of:

setlocale(LC_ALL, "C")

shall be executed at start-up.

Signals set to the default action (SIG_DFL) in the calling process image shall be set to the default
action in the new process image. Except for SIGCHLD, signals set to be ignored (SIG_IGN) by

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 773

25728

25729

25730

25731

25732

25733

25734

25735

25736

25737

25738

25739

25740

25741

25742

25743

25744

25745

25746

25747

25748

25749

25750

25751

25752

25753

25754

25755

25756

25757

25758

25759

25760

25761

25762

25763

25764

25765

25766

25767

25768

25769

25770

25771

exec System Interfaces

the calling process image shall be set to be ignored by the new process image. Signals set to be
caught by the calling process image shall be set to the default action in the new process image
(see <signal.h>).

If the SIGCHLD signal is set to be ignored by the calling process image, it is unspecified whether
the SIGCHLD signal is set to be ignored or to the default action in the new process image.

XSI After a successful call to any of the exec functions, alternate signal stacks are not preserved and
the SA_ONSTACK flag shall be cleared for all signals.

After a successful call to any of the exec functions, any functions previously registered by the
atexit() or pthread_atfork() functions are no longer registered.

XSI If the ST_NOSUID bit is set for the file system containing the new process image file, then the
effective user ID, effective group ID, saved set-user-ID, and saved set-group-ID are unchanged
in the new process image. Otherwise, if the set-user-ID mode bit of the new process image file is
set, the effective user ID of the new process image shall be set to the user ID of the new process
image file. Similarly, if the set-group-ID mode bit of the new process image file is set, the
effective group ID of the new process image shall be set to the group ID of the new process
image file. The real user ID, real group ID, and supplementary group IDs of the new process
image shall remain the same as those of the calling process image. The effective user ID and
effective group ID of the new process image shall be saved (as the saved set-user-ID and the
saved set-group-ID) for use by setuid().

XSI Any shared memory segments attached to the calling process image shall not be attached to the
new process image.

Any named semaphores open in the calling process shall be closed as if by appropriate calls to
sem_close().

TYM Any blocks of typed memory that were mapped in the calling process are unmapped, as if
munmap() was implicitly called to unmap them.

ML Memory locks established by the calling process via calls to mlockall() or mlock() shall be
removed. If locked pages in the address space of the calling process are also mapped into the
address spaces of other processes and are locked by those processes, the locks established by the
other processes shall be unaffected by the call by this process to the exec function. If the exec
function fails, the effect on memory locks is unspecified.

Memory mappings created in the process are unmapped before the address space is rebuilt for
the new process image.

SS When the calling process image does not use the SCHED_FIFO, SCHED_RR, or
SCHED_SPORADIC scheduling policies, the scheduling policy and parameters of the new
process image and the initial thread in that new process image are implementation-defined.

PS When the calling process image uses the SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC
scheduling policies, the process policy and scheduling parameter settings shall not be changed

TPS by a call to an exec function. The initial thread in the new process image shall inherit the process
scheduling policy and parameters. It shall have the default system contention scope, but shall
inherit its allocation domain from the calling process image.

Per-process timers created by the calling process shall be deleted before replacing the current
process image with the new process image.

MSG All open message queue descriptors in the calling process shall be closed, as described in
mq_close().

Any outstanding asynchronous I/O operations may be canceled. Those asynchronous I/O

774 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25772

25773

25774

25775

25776

25777

25778

25779

25780

25781

25782

25783

25784

25785

25786

25787

25788

25789

25790

25791

25792

25793

25794

25795

25796

25797

25798

25799

25800

25801

25802

25803

25804

25805

25806

25807

25808

25809

25810

25811

25812

25813

25814

25815

25816

System Interfaces exec

operations that are not canceled shall complete as if the exec function had not yet occurred, but
any associated signal notifications shall be suppressed. It is unspecified whether the exec
function itself blocks awaiting such I/O completion. In no event, however, shall the new process
image created by the exec function be affected by the presence of outstanding asynchronous I/O
operations at the time the exec function is called. Whether any I/O is canceled, and which I/O
may be canceled upon exec, is implementation-defined.

CPT The new process image shall inherit the CPU-time clock of the calling process image. This
inheritance means that the process CPU-time clock of the process being exec-ed shall not be
reinitialized or altered as a result of the exec function other than to reflect the time spent by the
process executing the exec function itself.

TCT The initial value of the CPU-time clock of the initial thread of the new process image shall be set
to zero.

OB TRC If the calling process is being traced, the new process image shall continue to be traced into the
same trace stream as the original process image, but the new process image shall not inherit the
mapping of trace event names to trace event type identifiers that was defined by calls to the
posix_trace_eventid_open() or the posix_trace_trid_eventid_open() functions in the calling process
image.

If the calling process is a trace controller process, any trace streams that were created by the
calling process shall be shut down as described in the posix_trace_shutdown() function.

The thread ID of the initial thread in the new process image is unspecified.

The size and location of the stack on which the initial thread in the new process image runs is
unspecified.

The initial thread in the new process image shall have its cancellation type set to
PTHREAD_CANCEL_DEFERRED and its cancellation state set to
PTHREAD_CANCEL_ENABLED.

The initial thread in the new process image shall have all thread-specific data values set to
NULL and all thread-specific data keys shall be removed by the call to exec without running
destructors.

The initial thread in the new process image shall be joinable, as if created with the detachstate
attribute set to PTHREAD_CREATE_JOINABLE.

The new process shall inherit at least the following attributes from the calling process image:

XSI • Nice value (see nice())

XSI • semadj values (see semop())

• Process ID

• Parent process ID

• Process group ID

• Session membership

• Real user ID

• Real group ID

• Supplementary group IDs

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 775

25817

25818

25819

25820

25821

25822

25823

25824

25825

25826

25827

25828

25829

25830

25831

25832

25833

25834

25835

25836

25837

25838

25839

25840

25841

25842

25843

25844

25845

25846

25847

25848

25849

25850

25851

25852

25853

25854

25855

25856

exec System Interfaces

• Time left until an alarm clock signal (see alarm())

• Current working directory

• Root directory

• File mode creation mask (see umask())

XSI • File size limit (see getrlimit() and setrlimit())

• Process signal mask (see pthread_sigmask())

• Pending signal (see sigpending())

• tms_utime, tms_stime, tms_cutime, and tms_cstime (see times())

XSI • Resource limits

• Controlling terminal

XSI • Interval timers

The initial thread of the new process shall inherit at least the following attributes from the
calling thread:

• Signal mask (see sigprocmask() and pthread_sigmask())

• Pending signals (see sigpending())

All other process attributes defined in this volume of POSIX.1-2008 shall be inherited in the new
process image from the old process image. All other thread attributes defined in this volume of
POSIX.1-2008 shall be inherited in the initial thread in the new process image from the calling
thread in the old process image. The inheritance of process or thread attributes not defined by
this volume of POSIX.1-2008 is implementation-defined.

A call to any exec function from a process with more than one thread shall result in all threads
being terminated and the new executable image being loaded and executed. No destructor
functions or cleanup handlers shall be called.

Upon successful completion, the exec functions shall mark for update the last data access
timestamp of the file. If an exec function failed but was able to locate the process image file,
whether the last data access timestamp is marked for update is unspecified. Should the exec
function succeed, the process image file shall be considered to have been opened with open().
The corresponding close() shall be considered to occur at a time after this open, but before
process termination or successful completion of a subsequent call to one of the exec functions,
posix_spawn(), or posix_spawnp(). The argv[] and envp[] arrays of pointers and the strings to
which those arrays point shall not be modified by a call to one of the exec functions, except as a
consequence of replacing the process image.

XSI The saved resource limits in the new process image are set to be a copy of the process’
corresponding hard and soft limits.

RETURN VALUE
If one of the exec functions returns to the calling process image, an error has occurred; the return
value shall be −1, and errno shall be set to indicate the error.

ERRORS
The exec functions shall fail if:

[E2BIG] The number of bytes used by the new process image’s argument list and
environment list is greater than the system-imposed limit of {ARG_MAX}
bytes.

776 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25857

25858

25859

25860

25861

25862

25863

25864

25865

25866

25867

25868

25869

25870

25871

25872

25873

25874

25875

25876

25877

25878

25879

25880

25881

25882

25883

25884

25885

25886

25887

25888

25889

25890

25891

25892

25893

25894

25895

25896

25897

25898

System Interfaces exec

[EACCES] Search permission is denied for a directory listed in the new process image
file’s path prefix, or the new process image file denies execution permission,
or the new process image file is not a regular file and the implementation does
not support execution of files of its type.

[EINVAL] The new process image file has appropriate privileges and has a recognized
executable binary format, but the system does not support execution of a file
with this format.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path or file
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path or file does not name an existing file or path or file is an
empty string.

[ENOTDIR] A component of the new process image file’s path prefix is not a directory, or
the new process image file’s pathname contains at least one non-<slash>
character and ends with one or more trailing <slash> characters and the last
pathname component names an existing file that is neither a directory nor a
symbolic link to a directory.

The exec functions, except for execlp() and execvp(), shall fail if:

[ENOEXEC] The new process image file has the appropriate access permission but has an
unrecognized format.

The fexecve() function shall fail if:

[EBADF] The fd argument is not a valid file descriptor open for executing.

The exec functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path or file argument.

[ENAMETOOLONG]
The length of the path argument or the length of the pathname constructed
from the file argument exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ENOMEM] The new process image requires more memory than is allowed by the
hardware or system-imposed memory management constraints.

[ETXTBSY] The new process image file is a pure procedure (shared text) file that is
currently open for writing by some process.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 777

25899

25900

25901

25902

25903

25904

25905

25906

25907

25908

25909

25910

25911

25912

25913

25914

25915

25916

25917

25918

25919

25920

25921

25922

25923

25924

25925

25926

25927

25928

25929

25930

25931

25932

25933

exec System Interfaces

EXAMPLES

Using execl()

The following example executes the ls command, specifying the pathname of the executable
(/bin/ls) and using arguments supplied directly to the command to produce single-column
output.

#include <unistd.h>

int ret;
...
ret = execl ("/bin/ls", "ls", "-1", (char *)0);

Using execle()

The following example is similar to Using execl(). In addition, it specifies the environment for
the new process image using the env argument.

#include <unistd.h>

int ret;
char *env[] = { "HOME=/usr/home", "LOGNAME=home", (char *)0 };
...
ret = execle ("/bin/ls", "ls", "-l", (char *)0, env);

Using execlp()

The following example searches for the location of the ls command among the directories
specified by the PA TH environment variable.

#include <unistd.h>

int ret;
...
ret = execlp ("ls", "ls", "-l", (char *)0);

Using execv()

The following example passes arguments to the ls command in the cmd array.

#include <unistd.h>

int ret;
char *cmd[] = { "ls", "-l", (char *)0 };
...
ret = execv ("/bin/ls", cmd);

778 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

25934

25935

25936

25937

25938

25939

25940

25941

25942

25943

25944

25945

25946

25947

25948

25949

25950

25951

25952

25953

25954

25955

25956

25957

25958

25959

25960

25961

25962

25963

25964

System Interfaces exec

Using execve()

The following example passes arguments to the ls command in the cmd array, and specifies the
environment for the new process image using the env argument.

#include <unistd.h>

int ret;
char *cmd[] = { "ls", "-l", (char *)0 };
char *env[] = { "HOME=/usr/home", "LOGNAME=home", (char *)0 };
...
ret = execve ("/bin/ls", cmd, env);

Using execvp()

The following example searches for the location of the ls command among the directories
specified by the PA TH environment variable, and passes arguments to the ls command in the
cmd array.

#include <unistd.h>

int ret;
char *cmd[] = { "ls", "-l", (char *)0 };
...
ret = execvp ("ls", cmd);

APPLICATION USAGE
As the state of conversion descriptors and message catalog descriptors in the new process image
is undefined, conforming applications should not rely on their use and should close them prior
to calling one of the exec functions.

Applications that require other than the default POSIX locale should call setlocale() with the
appropriate parameters to establish the locale of the new process.

The environ array should not be accessed directly by the application.

The new process might be invoked in a non-conforming environment if the envp array does not
contain implementation-defined variables required by the implementation to provide a
conforming environment. See the _CS_V7_ENV entry in <unistd.h> and confstr() for details.

Applications should not depend on file descriptors 0, 1, and 2 being closed after an exec. A
future version may allow these file descriptors to be automatically opened for any process.

If an application wants to perform a checksum test of the file being executed before executing it,
the file will need to be opened with read permission to perform the checksum test.

Since execute permission is checked by fexecve(), the file description fd need not have been
opened with the O_EXEC flag. However, if the file to be executed denies read and write
permission for the process preparing to do the exec, the only way to provide the fd to fexecve()
will be to use the O_EXEC flag when opening fd. In this case, the application will not be able to
perform a checksum test since it will not be able to read the contents of the file.

Note that when a file descriptor is opened with O_RDONLY, O_RDWR, or O_WRONLY mode,
the file descriptor can be used to read, read and write, or write the file, respectively, even if the
mode of the file changes after the file was opened. Using the O_EXEC open mode is different;
fexecve() will ignore the mode that was used when the file descriptor was opened and the exec
will fail if the mode of the file associated with fd does not grant execute permission to the calling
process at the time fexecve() is called.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 779

25965

25966

25967

25968

25969

25970

25971

25972

25973

25974

25975

25976

25977

25978

25979

25980

25981

25982

25983

25984

25985

25986

25987

25988

25989

25990

25991

25992

25993

25994

25995

25996

25997

25998

25999

26000

26001

26002

26003

26004

26005

26006

26007

exec System Interfaces

RATIONALE
Early proposals required that the value of argc passed to main() be ‘‘one or greater ’’. This was
driven by the same requirement in drafts of the ISO C standard. In fact, historical
implementations have passed a value of zero when no arguments are supplied to the caller of
the exec functions. This requirement was removed from the ISO C standard and subsequently
removed from this volume of POSIX.1-2008 as well. The wording, in particular the use of the
word should, requires a Strictly Conforming POSIX Application to pass at least one argument to
the exec function, thus guaranteeing that argc be one or greater when invoked by such an
application. In fact, this is good practice, since many existing applications reference argv[0]
without first checking the value of argc.

The requirement on a Strictly Conforming POSIX Application also states that the value passed as
the first argument be a filename associated with the process being started. Although some
existing applications pass a pathname rather than a filename in some circumstances, a filename
is more generally useful, since the common usage of argv[0] is in printing diagnostics. In some
cases the filename passed is not the actual filename of the file; for example, many
implementations of the login utility use a convention of prefixing a <hyphen> (’−’) to the actual
filename, which indicates to the command interpreter being invoked that it is a ‘‘login shell’’.

Historically, there have been two ways that implementations can exec shell scripts.

One common historical implementation is that the execl(), execv(), execle(), and execve()
functions return an [ENOEXEC] error for any file not recognizable as executable, including a
shell script. When the execlp() and execvp() functions encounter such a file, they assume the file
to be a shell script and invoke a known command interpreter to interpret such files. This is now
required by POSIX.1-2008. These implementations of execvp() and execlp() only give the
[ENOEXEC] error in the rare case of a problem with the command interpreter ’s executable file.
Because of these implementations, the [ENOEXEC] error is not mentioned for execlp() or
execvp(), although implementations can still give it.

Another way that some historical implementations handle shell scripts is by recognizing the first
two bytes of the file as the character string "#!" and using the remainder of the first line of the
file as the name of the command interpreter to execute.

One potential source of confusion noted by the standard developers is over how the contents of
a process image file affect the behavior of the exec family of functions. The following is a
description of the actions taken:

1. If the process image file is a valid executable (in a format that is executable and valid and
having appropriate privileges) for this system, then the system executes the file.

2. If the process image file has appropriate privileges and is in a format that is executable
but not valid for this system (such as a recognized binary for another architecture), then
this is an error and errno is set to [EINVAL] (see later RATIONALE on [EINVAL]).

3. If the process image file has appropriate privileges but is not otherwise recognized:

a. If this is a call to execlp() or execvp(), then they invoke a command interpreter
assuming that the process image file is a shell script.

b. If this is not a call to execlp() or execvp(), then an error occurs and errno is set to
[ENOEXEC].

Applications that do not require to access their arguments may use the form:

main(void)

as specified in the ISO C standard. However, the implementation will always provide the two

780 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

26008

26009

26010

26011

26012

26013

26014

26015

26016

26017

26018

26019

26020

26021

26022

26023

26024

26025

26026

26027

26028

26029

26030

26031

26032

26033

26034

26035

26036

26037

26038

26039

26040

26041

26042

26043

26044

26045

26046

26047

26048

26049

26050

26051

26052

System Interfaces exec

arguments argc and argv, even if they are not used.

Some implementations provide a third argument to main() called envp. This is defined as a
pointer to the environment. The ISO C standard specifies invoking main() with two arguments,
so implementations must support applications written this way. Since this volume of
POSIX.1-2008 defines the global variable environ, which is also provided by historical
implementations and can be used anywhere that envp could be used, there is no functional need
for the envp argument. Applications should use the getenv() function rather than accessing the
environment directly via either envp or environ. Implementations are required to support the
two-argument calling sequence, but this does not prohibit an implementation from supporting
envp as an optional third argument.

This volume of POSIX.1-2008 specifies that signals set to SIG_IGN remain set to SIG_IGN, and
that the new process image inherits the signal mask of the thread that called exec in the old
process image. This is consistent with historical implementations, and it permits some useful
functionality, such as the nohup command. However, it should be noted that many existing
applications wrongly assume that they start with certain signals set to the default action and/or
unblocked. In particular, applications written with a simpler signal model that does not include
blocking of signals, such as the one in the ISO C standard, may not behave properly if invoked
with some signals blocked. Therefore, it is best not to block or ignore signals across execs without
explicit reason to do so, and especially not to block signals across execs of arbitrary (not closely
co-operating) programs.

The exec functions always save the value of the effective user ID and effective group ID of the
process at the completion of the exec, whether or not the set-user-ID or the set-group-ID bit of
the process image file is set.

The statement about argv[] and envp[] being constants is included to make explicit to future
writers of language bindings that these objects are completely constant. Due to a limitation of
the ISO C standard, it is not possible to state that idea in standard C. Specifying two levels of
const−qualification for the argv[] and envp[] parameters for the exec functions may seem to be the
natural choice, given that these functions do not modify either the array of pointers or the
characters to which the function points, but this would disallow existing correct code. Instead,
only the array of pointers is noted as constant. The table of assignment compatibility for dst=src
derived from the ISO C standard summarizes the compatibility:

dst: char *[] const char *[] char *const[] const char *const[]

src:
char *[] VALID — VALID —
const char *[] — VALID — VALID
char * const [] — — VALID —
const char *const[] — — — VALID

Since all existing code has a source type matching the first row, the column that gives the most
valid combinations is the third column. The only other possibility is the fourth column, but
using it would require a cast on the argv or envp arguments. It is unfortunate that the fourth
column cannot be used, because the declaration a non-expert would naturally use would be that
in the second row.

The ISO C standard and this volume of POSIX.1-2008 do not conflict on the use of environ, but
some historical implementations of environ may cause a conflict. As long as environ is treated in
the same way as an entry point (for example, fork()), it conforms to both standards. A library can
contain fork(), but if there is a user-provided fork(), that fork() is given precedence and no
problem ensues. The situation is similar for environ: the definition in this volume of
POSIX.1-2008 is to be used if there is no user-provided environ to take precedence. At least three

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 781

26053

26054

26055

26056

26057

26058

26059

26060

26061

26062

26063

26064

26065

26066

26067

26068

26069

26070

26071

26072

26073

26074

26075

26076

26077

26078

26079

26080

26081

26082

26083

26084

26085

26086

26087

26088

26089

26090

26091

26092

26093

26094

26095

26096

26097

26098

26099

26100

exec System Interfaces

implementations are known to exist that solve this problem.

[E2BIG] The limit {ARG_MAX} applies not just to the size of the argument list, but to
the sum of that and the size of the environment list.

[EFAULT] Some historical systems return [EFAULT] rather than [ENOEXEC] when the
new process image file is corrupted. They are non-conforming.

[EINVAL] This error condition was added to POSIX.1-2008 to allow an implementation
to detect executable files generated for different architectures, and indicate this
situation to the application. Historical implementations of shells, execvp(), and
execlp() that encounter an [ENOEXEC] error will execute a shell on the
assumption that the file is a shell script. This will not produce the desired
effect when the file is a valid executable for a different architecture. An
implementation may now choose to avoid this problem by returning
[EINVAL] when a valid executable for a different architecture is encountered.
Some historical implementations return [EINVAL] to indicate that the path
argument contains a character with the high order bit set. The standard
developers chose to deviate from historical practice for the following reasons:

1. The new utilization of [EINVAL] will provide some measure of utility
to the user community.

2. Historical use of [EINVAL] is not acceptable in an internationalized
operating environment.

[ENAMETOOLONG]
Since the file pathname may be constructed by taking elements in the PA TH
variable and putting them together with the filename, the
[ENAMETOOLONG] error condition could also be reached this way.

[ETXTBSY] System V returns this error when the executable file is currently open for
writing by some process. This volume of POSIX.1-2008 neither requires nor
prohibits this behavior.

Other systems (such as System V) may return [EINTR] from exec. This is not addressed by this
volume of POSIX.1-2008, but implementations may have a window between the call to exec and
the time that a signal could cause one of the exec calls to return with [EINTR].

An explicit statement regarding the floating-point environment (as defined in the <fenv.h>
header) was added to make it clear that the floating-point environment is set to its default when
a call to one of the exec functions succeeds. The requirements for inheritance or setting to the
default for other process and thread start-up functions is covered by more generic statements in
their descriptions and can be summarized as follows:

posix_spawn() Set to default.

fork() Inherit.

pthread_create() Inherit.

The purpose of the fexecve() function is to enable executing a file which has been verified to be
the intended file. It is possible to actively check the file by reading from the file descriptor and be
sure that the file is not exchanged for another between the reading and the execution.
Alternatively, an function like openat() can be used to open a file which has been found by
reading the content of a directory using readdir().

782 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

26101

26102

26103

26104

26105

26106

26107

26108

26109

26110

26111

26112

26113

26114

26115

26116

26117

26118

26119

26120

26121

26122

26123

26124

26125

26126

26127

26128

26129

26130

26131

26132

26133

26134

26135

26136

26137

26138

26139

26140

26141

26142

26143

System Interfaces exec

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), atexit(), chmod(), close(), confstr(), exit(), fcntl(), fork(), fstatvfs(), getenv(), getitimer(),
getrlimit(), mknod(), mmap(), nice(), open(), posix_spawn(), posix_trace_create(),
posix_trace_event(), posix_trace_eventid_equal(), pthread_atfork(), pthread_sigmask(), putenv(),
readdir(), semop(), setlocale(), shmat(), sigaction(), sigaltstack(), sigpending(), system(), times(),
ulimit(), umask()

XBD Chapter 8 (on page 173), <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, behavior is defined for when the process image file is not a valid
executable.

• In this version, _POSIX_SAVED_IDS is mandated, thus the effective user ID and effective
group ID of the new process image shall be saved (as the saved set-user-ID and the saved
set-group-ID) for use by the setuid() function.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

• The [ETXTBSY] optional error condition is added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [EINVAL] mandatory error condition is added.

• The [ELOOP] optional error condition is added.

The description of CPU-time clock semantics is added for alignment with IEEE Std 1003.1d-1999.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding semantics
for typed memory.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The description of tracing semantics is added for alignment with IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #132 is applied.

The DESCRIPTION is updated to make it explicit that the floating-point environment in the new
process image is set to the default.

The DESCRIPTION and RATIONALE are updated to include clarifications of how the contents
of a process image file affect the behavior of the exec functions.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/15 is applied, adding a new paragraph to
the DESCRIPTION and text to the end of the APPLICATION USAGE section. This change

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 783

26144

26145

26146

26147

26148

26149

26150

26151

26152

26153

26154

26155

26156

26157

26158

26159

26160

26161

26162

26163

26164

26165

26166

26167

26168

26169

26170

26171

26172

26173

26174

26175

26176

26177

26178

26179

26180

26181

26182

26183

26184

exec System Interfaces

addresses a security concern, where implementations may want to reopen file descriptors 0, 1,
and 2 for programs with the set-user-id or set-group-id file mode bits calling the exec family of
functions.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/24 is applied, applying changes to the
DESCRIPTION, addressing which attributes are inherited by threads, and behavioral
requirements for threads attributes.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/25 is applied, updating text in the
RATIONALE from ‘‘the process signal mask be unchanged across an exec’’ to ‘‘the new process
image inherits the signal mask of the thread that called exec in the old process image’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #047 is applied, adding the description of _CS_V7_ENV
to the APPLICATION USAGE.

Austin Group Interpretation 1003.1-2001 #143 is applied.

The fexecve() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Functionality relating to the Asynchronous Input and Output, Memory Mapped Files, Threads,
and Timers options is moved to the Base.

Changes are made related to support for finegrained timestamps.

784 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

26185

26186

26187

26188

26189

26190

26191

26192

26193

26194

26195

26196

26197

26198

26199

26200

26201

26202

System Interfaces exit()

NAME
exit — terminate a process

SYNOPSIS
#include <stdlib.h>

void exit(int status);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

CX The value of status may be 0, EXIT_SUCCESS, EXIT_FAILURE, or any other value, though only
the least significant 8 bits (that is, status & 0377) shall be available to a waiting parent process.

The exit() function shall first call all functions registered by atexit(), in the reverse order of their
registration, except that a function is called after any previously registered functions that had
already been called at the time it was registered. Each function is called as many times as it was
registered. If, during the call to any such function, a call to the longjmp() function is made that
would terminate the call to the registered function, the behavior is undefined.

If a function registered by a call to atexit() fails to return, the remaining registered functions shall
not be called and the rest of the exit() processing shall not be completed. If exit() is called more
than once, the behavior is undefined.

The exit() function shall then flush all open streams with unwritten buffered data and close all
CX open streams. Finally, the process shall be terminated with the same consequences as described

in Consequences of Process Termination (on page 545).

RETURN VALUE
The exit() function does not return.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
See _Exit().

FUTURE DIRECTIONS
None.

SEE ALSO
_Exit(), atexit(), exec , longjmp(), tmpfile()

XBD <stdlib.h>

CHANGE HISTORY

Issue 7
Austin Group Interpretation 1003.1-2001 #031 is applied, separating the _Exit() and _exit()
functions from the exit() function.

Austin Group Interpretation 1003.1-2001 #085 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 785

26203

26204

26205

26206

26207

26208

26209

26210

26211

26212

26213

26214

26215

26216

26217

26218

26219

26220

26221

26222

26223

26224

26225

26226

26227

26228

26229

26230

26231

26232

26233

26234

26235

26236

26237

26238

26239

26240

26241

26242

26243

26244

exp() System Interfaces

NAME
exp, expf, expl — exponential function

SYNOPSIS
#include <math.h>

double exp(double x);
float expf(float x);
long double expl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the base-e exponential of x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the exponential value of x.

If the correct value would cause overflow, a range error shall occur and exp(), expf(), and expl()
shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

If the correct value would cause underflow, and is not representable, a range error may occur,
MX and either 0.0 (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, 1 shall be returned.

If x is −Inf, +0 shall be returned.

If x is +Inf, x shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

786 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

26245

26246

26247

26248

26249

26250

26251

26252

26253

26254

26255

26256

26257

26258

26259

26260

26261

26262

26263

26264

26265

26266

26267

26268

26269

26270

26271

26272

26273

26274

26275

26276

26277

26278

26279

26280

26281

26282

26283

26284

26285

System Interfaces exp()

EXAMPLES

Computing the Density of the Standard Normal Distribution

This function shows an implementation for the density of the standard normal distribution
using exp(). This example uses the constant M_PI which is part of the XSI option.

#include <math.h>

double
normal_density (double x)
{

return exp(−x*x/2) / sqrt (2*M_PI);
}

APPLICATION USAGE
Note that for IEEE Std 754-1985 double, 709.8 < x implies exp(x) has overflowed. The value
x< −708.4 implies exp(x) has underflowed.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), log()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The expf() and expl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/26 is applied, adding the example to the
EXAMPLES section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 787

26286

26287

26288

26289

26290

26291

26292

26293

26294

26295

26296

26297

26298

26299

26300

26301

26302

26303

26304

26305

26306

26307

26308

26309

26310

26311

26312

26313

26314

26315

26316

26317

26318

26319

26320

exp2() System Interfaces

NAME
exp2, exp2f, exp2l — exponential base 2 functions

SYNOPSIS
#include <math.h>

double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the base-2 exponential of x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return 2x.

If the correct value would cause overflow, a range error shall occur and exp2(), exp2f(), and
exp2l() shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL,
respectively.

If the correct value would cause underflow, and is not representable, a range error may occur,
MX and either 0.0 (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, 1 shall be returned.

If x is −Inf, +0 shall be returned.

If x is +Inf, x shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

788 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

26321

26322

26323

26324

26325

26326

26327

26328

26329

26330

26331

26332

26333

26334

26335

26336

26337

26338

26339

26340

26341

26342

26343

26344

26345

26346

26347

26348

26349

26350

26351

26352

26353

26354

26355

26356

26357

26358

26359

26360

26361

26362

System Interfaces exp2()

EXAMPLES
None.

APPLICATION USAGE
For IEEE Std 754-1985 double, 1024 <= x implies exp2(x) has overflowed. The value x< −1022
implies exp(x) has underflowed.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), isnan(), log()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 789

26363

26364

26365

26366

26367

26368

26369

26370

26371

26372

26373

26374

26375

26376

26377

26378

expm1() System Interfaces

NAME
expm1, expm1f, expm1l — compute exponential functions

SYNOPSIS
#include <math.h>

double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute ex−1.0.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions return ex−1.0.

If the correct value would cause overflow, a range error shall occur and expm1(), expm1f(), and
expm1l() shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL,
respectively.

MX If x is NaN, a NaN shall be returned.

If x is ±0, ±0 shall be returned.

If x is −Inf, −1 shall be returned.

If x is +Inf, x shall be returned.

If x is subnormal, a range error may occur and x should be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

790 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

26379

26380

26381

26382

26383

26384

26385

26386

26387

26388

26389

26390

26391

26392

26393

26394

26395

26396

26397

26398

26399

26400

26401

26402

26403

26404

26405

26406

26407

26408

26409

26410

26411

26412

26413

26414

26415

26416

26417

System Interfaces expm1()

EXAMPLES
None.

APPLICATION USAGE
The value of expm1(x) may be more accurate than exp(x)−1.0 for small values of x.

The expm1() and log1p() functions are useful for financial calculations of ((1+x)n−1)/x, namely:

expm1(n * log1p(x))/x

when x is very small (for example, when calculating small daily interest rates). These functions
also simplify writing accurate inverse hyperbolic functions.

For IEEE Std 754-1985 double, 709.8 < x implies expm1(x) has overflowed.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), ilogb(), log1p()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The expm1f() and expm1l() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The expm1() function is no longer marked as an extension.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 791

26418

26419

26420

26421

26422

26423

26424

26425

26426

26427

26428

26429

26430

26431

26432

26433

26434

26435

26436

26437

26438

26439

26440

26441

26442

26443

26444

26445

26446

26447

fabs() System Interfaces

NAME
fabs, fabsf, fabsl — absolute value function

SYNOPSIS
#include <math.h>

double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the absolute value of their argument x,|x|.

RETURN VALUE
Upon successful completion, these functions shall return the absolute value of x.

MX If x is NaN, a NaN shall be returned.

If x is ±0, +0 shall be returned.

If x is ±Inf, +Inf shall be returned.

ERRORS
No errors are defined.

EXAMPLES

Computing the 1-Norm of a Floating-Point Vector

This example shows the use of fabs() to compute the 1-norm of a vector defined as follows:

norm1(v) = |v[0]| + |v[1]| + ... + |v[n−1]|

where |x| denotes the absolute value of x, n denotes the vector’s dimension v[i] denotes the i-th
component of v (0≤i<n).

#include <math.h>

double
norm1(const double v[], const int n)
{

int i;
double n1_v; /* 1-norm of v */

n1_v = 0;
for (i=0; i<n; i++) {

n1_v += fabs (v[i]);
}

return n1_v;
}

APPLICATION USAGE
None.

792 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

26448

26449

26450

26451

26452

26453

26454

26455

26456

26457

26458

26459

26460

26461

26462

26463

26464

26465

26466

26467

26468

26469

26470

26471

26472

26473

26474

26475

26476

26477

26478

26479

26480

26481

26482

26483

26484

26485

26486

System Interfaces fabs()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan()

XBD <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The fabsf() and fabsl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/27 is applied, adding the example to the
EXAMPLES section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 793

26487

26488

26489

26490

26491

26492

26493

26494

26495

26496

26497

26498

26499

26500

26501

26502

26503

26504

26505

26506

faccessat() System Interfaces

NAME
faccessat — determine accessibility of a file relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int faccessat(int fd, const char *path, int amode, int flag);

DESCRIPTION
Refer to access().

794 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

26507

26508

26509

26510

26511

26512

26513

System Interfaces fattach()

NAME
fattach — attach a STREAMS-based file descriptor to a file in the file system name space
(STREAMS)

SYNOPSIS
OB XSR #include <stropts.h>

int fattach(int fildes, const char *path);

DESCRIPTION
The fattach() function shall attach a STREAMS-based file descriptor to a file, effectively
associating a pathname with fildes. The application shall ensure that the fildes argument is a
valid open file descriptor associated with a STREAMS file. The path argument points to a
pathname of an existing file. The application shall have appropriate privileges or be the owner
of the file named by path and have write permission. A successful call to fattach() shall cause all
pathnames that name the file named by path to name the STREAMS file associated with fildes,
until the STREAMS file is detached from the file. A STREAMS file can be attached to more than
one file and can have several pathnames associated with it.

The attributes of the named STREAMS file shall be initialized as follows: the permissions, user
ID, group ID, and times are set to those of the file named by path, the number of links is set to 1,
and the size and device identifier are set to those of the STREAMS file associated with fildes. If
any attributes of the named STREAMS file are subsequently changed (for example, by chmod()),
neither the attributes of the underlying file nor the attributes of the STREAMS file to which fildes
refers shall be affected.

File descriptors referring to the underlying file, opened prior to an fattach() call, shall continue to
refer to the underlying file.

RETURN VALUE
Upon successful completion, fattach() shall return 0. Otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The fattach() function shall fail if:

[EACCES] Search permission is denied for a component of the path prefix, or the process
is the owner of path but does not have write permissions on the file named by
path.

[EBADF] The fildes argument is not a valid open file descriptor.

[EBUSY] The file named by path is currently a mount point or has a STREAMS file
attached to it.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory, or the path argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 795

26514

26515

26516

26517

26518

26519

26520

26521

26522

26523

26524

26525

26526

26527

26528

26529

26530

26531

26532

26533

26534

26535

26536

26537

26538

26539

26540

26541

26542

26543

26544

26545

26546

26547

26548

26549

26550

26551

26552

26553

26554

26555

26556

fattach() System Interfaces

[EPERM] The effective user ID of the process is not the owner of the file named by path
and the process does not have appropriate privileges.

The fattach() function may fail if:

[EINVAL] The fildes argument does not refer to a STREAMS file.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[EXDEV] A link to a file on another file system was attempted.

EXAMPLES

Attaching a File Descriptor to a File

In the following example, fd refers to an open STREAMS file. The call to fattach() associates this
STREAM with the file /tmp/named-STREAM, such that any future calls to open /tmp/named-
STREAM, prior to breaking the attachment via a call to fdetach(), will instead create a new file
handle referring to the STREAMS file associated with fd.

#include <stropts.h>
...

int fd;
char *filename = "/tmp/named-STREAM";
int ret;

ret = fattach(fd, filename);

APPLICATION USAGE
The fattach() function behaves similarly to the traditional mount() function in the way a file is
temporarily replaced by the root directory of the mounted file system. In the case of fattach(), the
replaced file need not be a directory and the replacing file is a STREAMS file.

RATIONALE
The file attributes of a file which has been the subject of an fattach() call are specifically set
because of an artifact of the original implementation. The internal mechanism was the same as
for the mount() function. Since mount() is typically only applied to directories, the effects when
applied to a regular file are a little surprising, especially as regards the link count which rigidly
remains one, even if there were several links originally and despite the fact that all original links
refer to the STREAM as long as the fattach() remains in effect.

FUTURE DIRECTIONS
The fattach() function may be removed in a future version.

SEE ALSO
fdetach(), isastream()

XBD <stropts.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

796 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

26557

26558

26559

26560

26561

26562

26563

26564

26565

26566

26567

26568

26569

26570

26571

26572

26573

26574

26575

26576

26577

26578

26579

26580

26581

26582

26583

26584

26585

26586

26587

26588

26589

26590

26591

26592

26593

26594

26595

26596

26597

System Interfaces fattach()

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The [EXDEV] error is added to the list of optional errors in the ERRORS section.

Issue 6
This function is marked as part of the XSI STREAMS Option Group.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The fattach() function is marked obsolescent.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 797

26598

26599

26600

26601

26602

26603

26604

26605

26606

26607

26608

26609

26610

fchdir() System Interfaces

NAME
fchdir — change working directory

SYNOPSIS
#include <unistd.h>

int fchdir(int fildes);

DESCRIPTION
The fchdir() function shall be equivalent to chdir() except that the directory that is to be the new
current working directory is specified by the file descriptor fildes.

A conforming application can obtain a file descriptor for a file of type directory using open(),
provided that the file status flags and access modes do not contain O_WRONLY or O_RDWR.

RETURN VALUE
Upon successful completion, fchdir() shall return 0. Otherwise, it shall return −1 and set errno to
indicate the error. On failure the current working directory shall remain unchanged.

ERRORS
The fchdir() function shall fail if:

[EACCES] Search permission is denied for the directory referenced by fildes.

[EBADF] The fildes argument is not an open file descriptor.

[ENOTDIR] The open file descriptor fildes does not refer to a directory.

The fchdir() may fail if:

[EINTR] A signal was caught during the execution of fchdir().

[EIO] An I/O error occurred while reading from or writing to the file system.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chdir(), dirfd()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The fchdir() function is moved from the XSI option to the Base.

798 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

26611

26612

26613

26614

26615

26616

26617

26618

26619

26620

26621

26622

26623

26624

26625

26626

26627

26628

26629

26630

26631

26632

26633

26634

26635

26636

26637

26638

26639

26640

26641

26642

26643

26644

26645

26646

26647

26648

System Interfaces fchmod()

NAME
fchmod — change mode of a file

SYNOPSIS
#include <sys/stat.h>

int fchmod(int fildes, mode_t mode);

DESCRIPTION
The fchmod() function shall be equivalent to chmod() except that the file whose permissions are
changed is specified by the file descriptor fildes.

SHM If fildes references a shared memory object, the fchmod() function need only affect the S_IRUSR,
S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits.

TYM If fildes references a typed memory object, the behavior of fchmod() is unspecified.

If fildes refers to a socket, the behavior of fchmod() is unspecified.

OB XSR If fildes refers to a STREAM (which is fattach()-ed into the file system name space) the call
returns successfully, doing nothing.

RETURN VALUE
Upon successful completion, fchmod() shall return 0. Otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The fchmod() function shall fail if:

[EBADF] The fildes argument is not an open file descriptor.

[EPERM] The effective user ID does not match the owner of the file and the process does
not have appropriate privileges.

[EROFS] The file referred to by fildes resides on a read-only file system.

The fchmod() function may fail if:

XSI [EINTR] The fchmod() function was interrupted by a signal.

XSI [EINVAL] The value of the mode argument is invalid.

[EINVAL] The fildes argument refers to a pipe and the implementation disallows
execution of fchmod() on a pipe.

EXAMPLES

Changing the Current Permissions for a File

The following example shows how to change the permissions for a file named /home/cnd/mod1
so that the owner and group have read/write/execute permissions, but the world only has
read/write permissions.

#include <sys/stat.h>
#include <fcntl.h>

mode_t mode;
int fildes;
...
fildes = open("/home/cnd/mod1", O_RDWR);
fchmod(fildes, S_IRWXU | S_IRWXG | S_IROTH | S_IWOTH);

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 799

26649

26650

26651

26652

26653

26654

26655

26656

26657

26658

26659

26660

26661

26662

26663

26664

26665

26666

26667

26668

26669

26670

26671

26672

26673

26674

26675

26676

26677

26678

26679

26680

26681

26682

26683

26684

26685

26686

26687

26688

fchmod() System Interfaces

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), chown(), creat(), fcntl(), fstatat(), fstatvfs(), mknod(), open(), read(), write()

XBD <sys/stat.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE and aligned with fchmod() in the POSIX
Realtime Extension. Specifically, the second paragraph of the DESCRIPTION is added and a
second instance of [EINVAL] is defined in the list of optional errors.

Issue 6
The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by stating that fchmod()
behavior is unspecified for typed memory objects.

800 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

26689

26690

26691

26692

26693

26694

26695

26696

26697

26698

26699

26700

26701

26702

26703

26704

26705

26706

System Interfaces fchmodat()

NAME
fchmodat — change mode of a file relative to directory file descriptor

SYNOPSIS
#include <sys/stat.h>

int fchmodat(int fd, const char *path, mode_t mode, int flag);

DESCRIPTION
Refer to chmod().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 801

26707

26708

26709

26710

26711

26712

26713

fchown() System Interfaces

NAME
fchown — change owner and group of a file

SYNOPSIS
#include <unistd.h>

int fchown(int fildes, uid_t owner, gid_t group);

DESCRIPTION
The fchown() function shall be equivalent to chown() except that the file whose owner and group
are changed is specified by the file descriptor fildes.

RETURN VALUE
Upon successful completion, fchown() shall return 0. Otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The fchown() function shall fail if:

[EBADF] The fildes argument is not an open file descriptor.

[EPERM] The effective user ID does not match the owner of the file or the process does
not have appropriate privileges and _POSIX_CHOWN_RESTRICTED
indicates that such privilege is required.

[EROFS] The file referred to by fildes resides on a read-only file system.

The fchown() function may fail if:

[EINVAL] The owner or group ID is not a value supported by the implementation. The
OB XSR fildes argument refers to a pipe or socket or an fattach()-ed STREAM and the

implementation disallows execution of fchown() on a pipe.

[EIO] A physical I/O error has occurred.

[EINTR] The fchown() function was interrupted by a signal which was caught.

EXAMPLES

Changing the Current Owner of a File

The following example shows how to change the owner of a file named /home/cnd/mod1 to
‘‘jones’’ and the group to ‘‘cnd’’.

The numeric value for the user ID is obtained by extracting the user ID from the user database
entry associated with ‘‘jones’’. Similarly, the numeric value for the group ID is obtained by
extracting the group ID from the group database entry associated with ‘‘cnd’’. This example
assumes the calling program has appropriate privileges.

#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <pwd.h>
#include <grp.h>

struct passwd *pwd;
struct group *grp;
int fildes;
...
fildes = open("/home/cnd/mod1", O_RDWR);
pwd = getpwnam("jones");

802 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

26714

26715

26716

26717

26718

26719

26720

26721

26722

26723

26724

26725

26726

26727

26728

26729

26730

26731

26732

26733

26734

26735

26736

26737

26738

26739

26740

26741

26742

26743

26744

26745

26746

26747

26748

26749

26750

26751

26752

26753

26754

26755

26756

System Interfaces fchown()

grp = getgrnam("cnd");
fchown(fildes, pwd->pw_uid, grp->gr_gid);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chown()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The following changes were made to align with the IEEE P1003.1a draft standard:

• Clarification is added that a call to fchown() may not be allowed on a pipe.

The fchown() function is defined as mandatory.

Issue 7
Functionality relating to XSI STREAMS is marked obsolescent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 803

26757

26758

26759

26760

26761

26762

26763

26764

26765

26766

26767

26768

26769

26770

26771

26772

26773

26774

26775

26776

26777

fchownat() System Interfaces

NAME
fchownat — change owner and group of a file relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int fchownat(int fd, const char *path, uid_t owner, gid_t group,
int flag);

DESCRIPTION
Refer to chown().

804 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

26778

26779

26780

26781

26782

26783

26784

26785

System Interfaces fclose()

NAME
fclose — close a stream

SYNOPSIS
#include <stdio.h>

int fclose(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fclose() function shall cause the stream pointed to by stream to be flushed and the associated
file to be closed. Any unwritten buffered data for the stream shall be written to the file; any
unread buffered data shall be discarded. Whether or not the call succeeds, the stream shall be
disassociated from the file and any buffer set by the setbuf() or setvbuf() function shall be
disassociated from the stream. If the associated buffer was automatically allocated, it shall be
deallocated.

CX If the file is not already at EOF, and the file is one capable of seeking, the file offset of the
underlying open file description shall be adjusted so that the next operation on the open file
description deals with the byte after the last one read from or written to the stream being closed.

The fclose() function shall mark for update the last data modification and last file status change
timestamps of the underlying file, if the stream was writable, and if buffered data remains that
has not yet been written to the file. The fclose() function shall perform the equivalent of a close()
on the file descriptor that is associated with the stream pointed to by stream.

After the call to fclose(), any use of stream results in undefined behavior.

RETURN VALUE
CX Upon successful completion, fclose() shall return 0; otherwise, it shall return EOF and set errno

to indicate the error.

ERRORS
The fclose() function shall fail if:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the write operation.

CX [EBADF] The file descriptor underlying stream is not valid.

CX [EFBIG] An attempt was made to write a file that exceeds the maximum file size.

XSI [EFBIG] An attempt was made to write a file that exceeds the file size limit of the
process.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

CX [EINTR] The fclose() function was interrupted by a signal.

CX [EIO] The process is a member of a background process group attempting to write to
its controlling terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU, and the process group of the process is orphaned. This
error may also be returned under implementation-defined conditions.

CX [ENOMEM] The underlying stream was created by open_memstream() or
open_wmemstream() and insufficient memory is available.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 805

26786

26787

26788

26789

26790

26791

26792

26793

26794

26795

26796

26797

26798

26799

26800

26801

26802

26803

26804

26805

26806

26807

26808

26809

26810

26811

26812

26813

26814

26815

26816

26817

26818

26819

26820

26821

26822

26823

26824

26825

26826

26827

26828

fclose() System Interfaces

CX [ENOSPC] There was no free space remaining on the device containing the file or in the
buffer used by the fmemopen() function.

CX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal shall also be sent to the thread.

The fclose() function may fail if:

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), fmemopen(), fopen(), getrlimit(), open_memstream(), ulimit()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EFBIG] error is added as part of the large file support extensions.

• The [ENXIO] optional error condition is added.

The DESCRIPTION is updated to note that the stream and any buffer are disassociated whether
or not the call succeeds. This is for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/28 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #002 is applied, clarifying the interaction of file
descriptors and streams.

The [ENOSPC] error condition is updated and the [ENOMEM] error is added from The Open
Group Technical Standard, 2006, Extended API Set Part 1.

Changes are made related to support for finegrained timestamps.

806 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

26829

26830

26831

26832

26833

26834

26835

26836

26837

26838

26839

26840

26841

26842

26843

26844

26845

26846

26847

26848

26849

26850

26851

26852

26853

26854

26855

26856

26857

26858

26859

26860

26861

26862

26863

26864

26865

26866

26867

System Interfaces fcntl()

NAME
fcntl — file control

SYNOPSIS
#include <fcntl.h>

int fcntl(int fildes, int cmd, ...);

DESCRIPTION
The fcntl() function shall perform the operations described below on open files. The fildes
argument is a file descriptor.

The available values for cmd are defined in <fcntl.h> and are as follows:

F_DUPFD Return a new file descriptor which shall be the lowest numbered
available (that is, not already open) file descriptor greater than or equal to
the third argument, arg, taken as an integer of type int. The new file
descriptor shall refer to the same open file description as the original file
descriptor, and shall share any locks. The FD_CLOEXEC flag associated
with the new file descriptor shall be cleared to keep the file open across
calls to one of the exec functions.

F_DUPFD_CLOEXEC
Like F_DUPFD, but the FD_CLOEXEC flag associated with the new file
descriptor shall be set.

F_GETFD Get the file descriptor flags defined in <fcntl.h> that are associated with
the file descriptor fildes. File descriptor flags are associated with a single
file descriptor and do not affect other file descriptors that refer to the
same file.

F_SETFD Set the file descriptor flags defined in <fcntl.h>, that are associated with
fildes, to the third argument, arg, taken as type int. If the FD_CLOEXEC
flag in the third argument is 0, the file descriptor shall remain open across
the exec functions; otherwise, the file descriptor shall be closed upon
successful execution of one of the exec functions.

F_GETFL Get the file status flags and file access modes, defined in <fcntl.h>, for the
file description associated with fildes. The file access modes can be
extracted from the return value using the mask O_ACCMODE, which is
defined in <fcntl.h>. File status flags and file access modes are associated
with the file description and do not affect other file descriptors that refer
to the same file with different open file descriptions. The flags returned
may include non-standard file status flags which the application did not
set, provided that these additional flags do not alter the behavior of a
conforming application.

F_SETFL Set the file status flags, defined in <fcntl.h>, for the file description
associated with fildes from the corresponding bits in the third argument,
arg, taken as type int. Bits corresponding to the file access mode and the
file creation flags, as defined in <fcntl.h>, that are set in arg shall be
ignored. If any bits in arg other than those mentioned here are changed by
the application, the result is unspecified.

F_GETOWN If fildes refers to a socket, get the process or process group ID specified to
receive SIGURG signals when out-of-band data is available. Positive
values indicate a process ID; negative values, other than −1, indicate a
process group ID. If fildes does not refer to a socket, the results are

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 807

26868

26869

26870

26871

26872

26873

26874

26875

26876

26877

26878

26879

26880

26881

26882

26883

26884

26885

26886

26887

26888

26889

26890

26891

26892

26893

26894

26895

26896

26897

26898

26899

26900

26901

26902

26903

26904

26905

26906

26907

26908

26909

26910

26911

26912

26913

26914

fcntl() System Interfaces

unspecified.

F_SETOWN If fildes refers to a socket, set the process or process group ID specified to
receive SIGURG signals when out-of-band data is available, using the
value of the third argument, arg, taken as type int. Positive values
indicate a process ID; negative values, other than −1, indicate a process
group ID. If fildes does not refer to a socket, the results are unspecified.

The following values for cmd are available for advisory record locking. Record locking shall be
supported for regular files, and may be supported for other files.

F_GETLK Get the first lock which blocks the lock description pointed to by the third
argument, arg, taken as a pointer to type struct flock, defined in
<fcntl.h>. The information retrieved shall overwrite the information
passed to fcntl() in the structure flock. If no lock is found that would
prevent this lock from being created, then the structure shall be left
unchanged except for the lock type which shall be set to F_UNLCK.

F_SETLK Set or clear a file segment lock according to the lock description pointed
to by the third argument, arg, taken as a pointer to type struct flock,
defined in <fcntl.h>. F_SETLK can establish shared (or read) locks
(F_RDLCK) or exclusive (or write) locks (F_WRLCK), as well as to
remove either type of lock (F_UNLCK). F_RDLCK, F_WRLCK, and
F_UNLCK are defined in <fcntl.h>. If a shared or exclusive lock cannot
be set, fcntl() shall return immediately with a return value of −1.

F_SETLKW This command shall be equivalent to F_SETLK except that if a shared or
exclusive lock is blocked by other locks, the thread shall wait until the
request can be satisfied. If a signal that is to be caught is received while
fcntl() is waiting for a region, fcntl() shall be interrupted. Upon return
from the signal handler, fcntl() shall return −1 with errno set to [EINTR],
and the lock operation shall not be done.

Additional implementation-defined values for cmd may be defined in <fcntl.h>. Their names
shall start with F_.

When a shared lock is set on a segment of a file, other processes shall be able to set shared locks
on that segment or a portion of it. A shared lock prevents any other process from setting an
exclusive lock on any portion of the protected area. A request for a shared lock shall fail if the
file descriptor was not opened with read access.

An exclusive lock shall prevent any other process from setting a shared lock or an exclusive lock
on any portion of the protected area. A request for an exclusive lock shall fail if the file
descriptor was not opened with write access.

The structure flock describes the type (l_type), starting offset (l_whence), relative offset (l_start),
size (l_len), and process ID (l_pid) of the segment of the file to be affected.

The value of l_whence is SEEK_SET, SEEK_CUR, or SEEK_END, to indicate that the relative
offset l_start bytes shall be measured from the start of the file, current position, or end of the file,
respectively. The value of l_len is the number of consecutive bytes to be locked. The value of l_len
may be negative (where the definition of off_t permits negative values of l_len). The l_pid field
is only used with F_GETLK to return the process ID of the process holding a blocking lock. After
a successful F_GETLK request, when a blocking lock is found, the values returned in the flock
structure shall be as follows:

808 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

26915

26916

26917

26918

26919

26920

26921

26922

26923

26924

26925

26926

26927

26928

26929

26930

26931

26932

26933

26934

26935

26936

26937

26938

26939

26940

26941

26942

26943

26944

26945

26946

26947

26948

26949

26950

26951

26952

26953

26954

26955

26956

26957

26958

26959

System Interfaces fcntl()

l_type Type of blocking lock found.

l_whence SEEK_SET.

l_start Start of the blocking lock.

l_len Length of the blocking lock.

l_pid Process ID of the process that holds the blocking lock.

If the command is F_SETLKW and the process must wait for another process to release a lock,
then the range of bytes to be locked shall be determined before the fcntl() function blocks. If the
file size or file descriptor seek offset change while fcntl() is blocked, this shall not affect the
range of bytes locked.

If l_len is positive, the area affected shall start at l_start and end at l_start+l_len−1. If l_len is
negative, the area affected shall start at l_start+l_len and end at l_start−1. Locks may start and
extend beyond the current end of a file, but shall not extend before the beginning of the file. A
lock shall be set to extend to the largest possible value of the file offset for that file by setting
l_len to 0. If such a lock also has l_start set to 0 and l_whence is set to SEEK_SET, the whole file
shall be locked.

There shall be at most one type of lock set for each byte in the file. Before a successful return
from an F_SETLK or an F_SETLKW request when the calling process has previously existing
locks on bytes in the region specified by the request, the previous lock type for each byte in the
specified region shall be replaced by the new lock type. As specified above under the
descriptions of shared locks and exclusive locks, an F_SETLK or an F_SETLKW request
(respectively) shall fail or block when another process has existing locks on bytes in the specified
region and the type of any of those locks conflicts with the type specified in the request.

All locks associated with a file for a given process shall be removed when a file descriptor for
that file is closed by that process or the process holding that file descriptor terminates. Locks are
not inherited by a child process.

A potential for deadlock occurs if a process controlling a locked region is put to sleep by
attempting to lock the locked region of another process. If the system detects that sleeping until
a locked region is unlocked would cause a deadlock, fcntl() shall fail with an [EDEADLK] error.

An unlock (F_UNLCK) request in which l_len is non-zero and the offset of the last byte of the
requested segment is the maximum value for an object of type off_t, when the process has an
existing lock in which l_len is 0 and which includes the last byte of the requested segment, shall
be treated as a request to unlock from the start of the requested segment with an l_len equal to 0.
Otherwise, an unlock (F_UNLCK) request shall attempt to unlock only the requested segment.

SHM When the file descriptor fildes refers to a shared memory object, the behavior of fcntl() shall be
the same as for a regular file except the effect of the following values for the argument cmd shall
be unspecified: F_SETFL, F_GETLK, F_SETLK, and F_SETLKW.

TYM If fildes refers to a typed memory object, the result of the fcntl() function is unspecified.

RETURN VALUE
Upon successful completion, the value returned shall depend on cmd as follows:

F_DUPFD A new file descriptor.

F_DUPFD_CLOEXEC
A new file descriptor.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 809

26960

26961

26962

26963

26964

26965

26966

26967

26968

26969

26970

26971

26972

26973

26974

26975

26976

26977

26978

26979

26980

26981

26982

26983

26984

26985

26986

26987

26988

26989

26990

26991

26992

26993

26994

26995

26996

26997

26998

26999

27000

27001

fcntl() System Interfaces

F_GETFD Value of flags defined in <fcntl.h>. The return value shall not be negative.

F_SETFD Value other than −1.

F_GETFL Value of file status flags and access modes. The return value is not negative.

F_SETFL Value other than −1.

F_GETLK Value other than −1.

F_SETLK Value other than −1.

F_SETLKW Value other than −1.

F_GETOWN Value of the socket owner process or process group; this will not be −1.

F_SETOWN Value other than −1.

Otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The fcntl() function shall fail if:

[EACCES] or [EAGAIN]
The cmd argument is F_SETLK; the type of lock (l_type) is a shared (F_RDLCK)
or exclusive (F_WRLCK) lock and the segment of a file to be locked is already
exclusive-locked by another process, or the type is an exclusive lock and some
portion of the segment of a file to be locked is already shared-locked or
exclusive-locked by another process.

[EBADF] The fildes argument is not a valid open file descriptor, or the argument cmd is
F_SETLK or F_SETLKW, the type of lock, l_type, is a shared lock (F_RDLCK),
and fildes is not a valid file descriptor open for reading, or the type of lock,
l_type, is an exclusive lock (F_WRLCK), and fildes is not a valid file descriptor
open for writing.

[EINTR] The cmd argument is F_SETLKW and the function was interrupted by a signal.

[EINVAL] The cmd argument is invalid, or the cmd argument is F_DUPFD or
F_DUPFD_CLOEXEC and arg is negative or greater than or equal to
{OPEN_MAX}, or the cmd argument is F_GETLK, F_SETLK, or F_SETLKW
and the data pointed to by arg is not valid, or fildes refers to a file that does not
support locking.

[EMFILE] The argument cmd is F_DUPFD or F_DUPFD_CLOEXEC and all file
descriptors available to the process are currently open, or no file descriptors
greater than or equal to arg are available.

[ENOLCK] The argument cmd is F_SETLK or F_SETLKW and satisfying the lock or unlock
request would result in the number of locked regions in the system exceeding
a system-imposed limit.

[EOVERFLOW] One of the values to be returned cannot be represented correctly.

[EOVERFLOW] The cmd argument is F_GETLK, F_SETLK, or F_SETLKW and the smallest or,
if l_len is non-zero, the largest offset of any byte in the requested segment
cannot be represented correctly in an object of type off_t.

810 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27002

27003

27004

27005

27006

27007

27008

27009

27010

27011

27012

27013

27014

27015

27016

27017

27018

27019

27020

27021

27022

27023

27024

27025

27026

27027

27028

27029

27030

27031

27032

27033

27034

27035

27036

27037

27038

27039

27040

System Interfaces fcntl()

The fcntl() function may fail if:

[EDEADLK] The cmd argument is F_SETLKW, the lock is blocked by a lock from another
process, and putting the calling process to sleep to wait for that lock to become
free would cause a deadlock.

EXAMPLES

Locking and Unlocking a File

The following example demonstrates how to place a lock on bytes 100 to 109 of a file and then
later remove it. F_SETLK is used to perform a non-blocking lock request so that the process does
not have to wait if an incompatible lock is held by another process; instead the process can take
some other action.

#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{

int fd;
struct flock fl;

fd = open("testfile", O_RDWR);
if (fd == -1)

/* Handle error */;

/* Make a non-blocking request to place a write lock
on bytes 100-109 of testfile */

fl.l_type = F_WRLCK;
fl.l_whence = SEEK_SET;
fl.l_start = 100;
fl.l_len = 10;

if (fcntl(fd, F_SETLK, &fl) == −1) {
if (errno == EACCES || errno == EAGAIN) {

printf("Already locked by another process\n");

/* We can’t get the lock at the moment */

} else {
/* Handle unexpected error */;

}
} else { /* Lock was granted... */

/* Perform I/O on bytes 100 to 109 of file */

/* Unlock the locked bytes */

fl.l_type = F_UNLCK;
fl.l_whence = SEEK_SET;
fl.l_start = 100;
fl.l_len = 10;
if (fcntl(fd, F_SETLK, &fl) == −1)

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 811

27041

27042

27043

27044

27045

27046

27047

27048

27049

27050

27051

27052

27053

27054

27055

27056

27057

27058

27059

27060

27061

27062

27063

27064

27065

27066

27067

27068

27069

27070

27071

27072

27073

27074

27075

27076

27077

27078

27079

27080

27081

27082

27083

27084

fcntl() System Interfaces

/* Handle error */;
}
exit(EXIT_SUCCESS);

} /* main */

Setting the Close-on-Exec Flag

The following example demonstrates how to set the close-on-exec flag for the file descriptor fd.

#include <unistd.h>
#include <fcntl.h>
...

int flags;

flags = fcntl(fd, F_GETFD);
if (flags == −1)

/* Handle error */;
flags |= FD_CLOEXEC;
if (fcntl(fd, F_SETFD, flags) == −1)

/* Handle error */;"

APPLICATION USAGE
The arg values to F_GETFD, F_SETFD, F_GETFL, and F_SETFL all represent flag values to allow
for future growth. Applications using these functions should do a read-modify-write operation
on them, rather than assuming that only the values defined by this volume of POSIX.1-2008 are
valid. It is a common error to forget this, particularly in the case of F_SETFD. Some
implementations set additional file status flags to advise the application of default behavior,
even though the application did not request these flags.

RATIONALE
The ellipsis in the SYNOPSIS is the syntax specified by the ISO C standard for a variable number
of arguments. It is used because System V uses pointers for the implementation of file locking
functions.

This volume of POSIX.1-2008 permits concurrent read and write access to file data using the
fcntl() function; this is a change from the 1984 /usr/group standard and early proposals.
Without concurrency controls, this feature may not be fully utilized without occasional loss of
data.

Data losses occur in several ways. One case occurs when several processes try to update the
same record, without sequencing controls; several updates may occur in parallel and the last
writer ‘‘wins’’. Another case is a bit-tree or other internal list-based database that is undergoing
reorganization. Without exclusive use to the tree segment by the updating process, other reading
processes chance getting lost in the database when the index blocks are split, condensed,
inserted, or deleted. While fcntl() is useful for many applications, it is not intended to be overly
general and does not handle the bit-tree example well.

This facility is only required for regular files because it is not appropriate for many devices such
as terminals and network connections.

Since fcntl() works with ‘‘any file descriptor associated with that file, however it is obtained’’,
the file descriptor may have been inherited through a fork() or exec operation and thus may
affect a file that another process also has open.

The use of the open file description to identify what to lock requires extra calls and presents
problems if several processes are sharing an open file description, but there are too many

812 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27085

27086

27087

27088

27089

27090

27091

27092

27093

27094

27095

27096

27097

27098

27099

27100

27101

27102

27103

27104

27105

27106

27107

27108

27109

27110

27111

27112

27113

27114

27115

27116

27117

27118

27119

27120

27121

27122

27123

27124

27125

27126

27127

27128

27129

System Interfaces fcntl()

implementations of the existing mechanism for this volume of POSIX.1-2008 to use different
specifications.

Another consequence of this model is that closing any file descriptor for a given file (whether or
not it is the same open file description that created the lock) causes the locks on that file to be
relinquished for that process. Equivalently, any close for any file/process pair relinquishes the
locks owned on that file for that process. But note that while an open file description may be
shared through fork(), locks are not inherited through fork(). Yet locks may be inherited through
one of the exec functions.

The identification of a machine in a network environment is outside the scope of this volume of
POSIX.1-2008. Thus, an l_sysid member, such as found in System V, is not included in the locking
structure.

Changing of lock types can result in a previously locked region being split into smaller regions.

Mandatory locking was a major feature of the 1984 /usr/group standard.

For advisory file record locking to be effective, all processes that have access to a file must
cooperate and use the advisory mechanism before doing I/O on the file. Enforcement-mode
record locking is important when it cannot be assumed that all processes are cooperating. For
example, if one user uses an editor to update a file at the same time that a second user executes
another process that updates the same file and if only one of the two processes is using advisory
locking, the processes are not cooperating. Enforcement-mode record locking would protect
against accidental collisions.

Secondly, advisory record locking requires a process using locking to bracket each I/O operation
with lock (or test) and unlock operations. With enforcement-mode file and record locking, a
process can lock the file once and unlock when all I/O operations have been completed.
Enforcement-mode record locking provides a base that can be enhanced; for example, with
sharable locks. That is, the mechanism could be enhanced to allow a process to lock a file so
other processes could read it, but none of them could write it.

Mandatory locks were omitted for several reasons:

1. Mandatory lock setting was done by multiplexing the set-group-ID bit in most
implementations; this was confusing, at best.

2. The relationship to file truncation as supported in 4.2 BSD was not well specified.

3. Any publicly readable file could be locked by anyone. Many historical implementations
keep the password database in a publicly readable file. A malicious user could thus
prohibit logins. Another possibility would be to hold open a long-distance telephone line.

4. Some demand-paged historical implementations offer memory mapped files, and
enforcement cannot be done on that type of file.

Since sleeping on a region is interrupted with any signal, alarm() may be used to provide a
timeout facility in applications requiring it. This is useful in deadlock detection. Since
implementation of full deadlock detection is not always feasible, the [EDEADLK] error was
made optional.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 813

27130

27131

27132

27133

27134

27135

27136

27137

27138

27139

27140

27141

27142

27143

27144

27145

27146

27147

27148

27149

27150

27151

27152

27153

27154

27155

27156

27157

27158

27159

27160

27161

27162

27163

27164

27165

27166

27167

27168

27169

27170

fcntl() System Interfaces

SEE ALSO
alarm(), close(), exec , open(), sigaction()

XBD <fcntl.h>, <signal.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the DESCRIPTION, sentences describing behavior when l_len is negative are now
mandated, and the description of unlock (F_UNLOCK) when l_len is non-negative is
mandated.

• In the ERRORS section, the [EINVAL] error condition has the case mandated when the cmd
is invalid, and two [EOVERFLOW] error conditions are added.

The F_GETOWN and F_SETOWN values are added for sockets.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Clarification is added that the extent of the bytes locked is determined prior to the
blocking action.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
fcntl() results are unspecified for typed memory objects.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/29 is applied, adding the example to the
EXAMPLES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #150 is applied, clarifying the file status flags returned
when cmd is F_GETFL.

Austin Group Interpretation 1003.1-2001 #171 is applied, adding support to set the
FD_CLOEXEC flag atomically at open(), and adding the F_DUPFD_CLOEXEC flag.

The optional <unistd.h> header is removed from this function, since <fcntl.h> now defines
SEEK_SET, SEEK_CUR, and SEEK_END as part of the Base.

814 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27171

27172

27173

27174

27175

27176

27177

27178

27179

27180

27181

27182

27183

27184

27185

27186

27187

27188

27189

27190

27191

27192

27193

27194

27195

27196

27197

27198

27199

27200

27201

27202

27203

27204

27205

27206

27207

System Interfaces fdatasync()

NAME
fdatasync — synchronize the data of a file (REALTIME)

SYNOPSIS
SIO #include <unistd.h>

int fdatasync(int fildes);

DESCRIPTION
The fdatasync() function shall force all currently queued I/O operations associated with the file
indicated by file descriptor fildes to the synchronized I/O completion state.

The functionality shall be equivalent to fsync() with the symbol _POSIX_SYNCHRONIZED_IO
defined, with the exception that all I/O operations shall be completed as defined for
synchronized I/O data integrity completion.

RETURN VALUE
If successful, the fdatasync() function shall return the value 0; otherwise, the function shall return
the value −1 and set errno to indicate the error. If the fdatasync() function fails, outstanding I/O
operations are not guaranteed to have been completed.

ERRORS
The fdatasync() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor open for writing.

[EINVAL] This implementation does not support synchronized I/O for this file.

In the event that any of the queued I/O operations fail, fdatasync() shall return the error
conditions defined for read() and write().

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_fsync(), fcntl(), fsync(), open(), read(), write()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Synchronized Input and Output option.

The fdatasync() function is marked as part of the Synchronized Input and Output option.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 815

27208

27209

27210

27211

27212

27213

27214

27215

27216

27217

27218

27219

27220

27221

27222

27223

27224

27225

27226

27227

27228

27229

27230

27231

27232

27233

27234

27235

27236

27237

27238

27239

27240

27241

27242

27243

27244

27245

fdetach() System Interfaces

NAME
fdetach — detach a name from a STREAMS-based file descriptor (STREAMS)

SYNOPSIS
OB XSR #include <stropts.h>

int fdetach(const char *path);

DESCRIPTION
The fdetach() function shall detach a STREAMS-based file from the file to which it was attached
by a previous call to fattach(). The path argument points to the pathname of the attached
STREAMS file. The process shall have appropriate privileges or be the owner of the file. A
successful call to fdetach() shall cause all pathnames that named the attached STREAMS file to
again name the file to which the STREAMS file was attached. All subsequent operations on path
shall operate on the underlying file and not on the STREAMS file.

All open file descriptions established while the STREAMS file was attached to the file referenced
by path shall still refer to the STREAMS file after the fdetach() has taken effect.

If there are no open file descriptors or other references to the STREAMS file, then a successful
call to fdetach() shall be equivalent to performing the last close() on the attached file.

RETURN VALUE
Upon successful completion, fdetach() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The fdetach() function shall fail if:

[EACCES] Search permission is denied on a component of the path prefix.

[EINVAL] The path argument names a file that is not currently attached.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory, or the path argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

[EPERM] The effective user ID is not the owner of path and the process does not have
appropriate privileges.

The fdetach() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

816 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27246

27247

27248

27249

27250

27251

27252

27253

27254

27255

27256

27257

27258

27259

27260

27261

27262

27263

27264

27265

27266

27267

27268

27269

27270

27271

27272

27273

27274

27275

27276

27277

27278

27279

27280

27281

27282

27283

27284

27285

27286

System Interfaces fdetach()

EXAMPLES

Detaching a File

The following example detaches the STREAMS-based file /tmp/named-STREAM from the file to
which it was attached by a previous, successful call to fattach(). Subsequent calls to open this
file refer to the underlying file, not to the STREAMS file.

#include <stropts.h>
...

char *filename = "/tmp/named-STREAM";
int ret;

ret = fdetach(filename);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The fdetach() function may be removed in a future version.

SEE ALSO
fattach()

XBD <stropts.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The fdetach() function is marked obsolescent.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 817

27287

27288

27289

27290

27291

27292

27293

27294

27295

27296

27297

27298

27299

27300

27301

27302

27303

27304

27305

27306

27307

27308

27309

27310

27311

27312

27313

27314

27315

27316

27317

27318

fdim() System Interfaces

NAME
fdim, fdimf, fdiml — compute positive difference between two floating-point numbers

SYNOPSIS
#include <math.h>

double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall determine the positive difference between their arguments. If x is greater
than y, x−y is returned. If x is less than or equal to y, +0 is returned.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the positive difference value.

If x−y is positive and overflows, a range error shall occur and fdim(), fdimf(), and fdiml() shall
return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

XSI If x−y is positive and underflows, a range error may occur, and either (x−y) (if representable), or
0.0 (if supported), or an implementation-defined value shall be returned.

MX If x or y is NaN, a NaN shall be returned.

ERRORS
The fdim() function shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

The fdim() function may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

818 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27319

27320

27321

27322

27323

27324

27325

27326

27327

27328

27329

27330

27331

27332

27333

27334

27335

27336

27337

27338

27339

27340

27341

27342

27343

27344

27345

27346

27347

27348

27349

27350

27351

27352

27353

27354

27355

System Interfaces fdim()

EXAMPLES
None.

APPLICATION USAGE
On implementations supporting IEEE Std 754-1985, x−y cannot underflow, and hence the 0.0
return value is shaded as an extension for implementations supporting the XSI option rather
than an MX extension.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), fmax(), fmin()

Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 819

27356

27357

27358

27359

27360

27361

27362

27363

27364

27365

27366

27367

27368

27369

27370

27371

27372

fdopen() System Interfaces

NAME
fdopen — associate a stream with a file descriptor

SYNOPSIS
CX #include <stdio.h>

FILE *fdopen(int fildes, const char *mode);

DESCRIPTION
The fdopen() function shall associate a stream with a file descriptor.

The mode argument is a character string having one of the following values:

r or rb Open a file for reading.

w or wb Open a file for writing.

a or ab Open a file for writing at end-of-file.

r+ or rb+ or r+b Open a file for update (reading and writing).

w+ or wb+ or w+b Open a file for update (reading and writing).

a+ or ab+ or a+b Open a file for update (reading and writing) at end-of-file.

The meaning of these flags is exactly as specified in fopen(), except that modes beginning with w
shall not cause truncation of the file.

Additional values for the mode argument may be supported by an implementation.

The application shall ensure that the mode of the stream as expressed by the mode argument is
allowed by the file access mode of the open file description to which fildes refers. The file
position indicator associated with the new stream is set to the position indicated by the file offset
associated with the file descriptor.

The error and end-of-file indicators for the stream shall be cleared. The fdopen() function may
cause the last data access timestamp of the underlying file to be marked for update.

SHM If fildes refers to a shared memory object, the result of the fdopen() function is unspecified.

TYM If fildes refers to a typed memory object, the result of the fdopen() function is unspecified.

The fdopen() function shall preserve the offset maximum previously set for the open file
description corresponding to fildes.

RETURN VALUE
Upon successful completion, fdopen() shall return a pointer to a stream; otherwise, a null pointer
shall be returned and errno set to indicate the error.

ERRORS
The fdopen() function shall fail if:

[EMFILE] {STREAM_MAX} streams are currently open in the calling process.

The fdopen() function may fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The mode argument is not a valid mode.

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

820 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27373

27374

27375

27376

27377

27378

27379

27380

27381

27382

27383

27384

27385

27386

27387

27388

27389

27390

27391

27392

27393

27394

27395

27396

27397

27398

27399

27400

27401

27402

27403

27404

27405

27406

27407

27408

27409

System Interfaces fdopen()

[ENOMEM] Insufficient space to allocate a buffer.

EXAMPLES
None.

APPLICATION USAGE
File descriptors are obtained from calls like open(), dup(), creat(), or pipe(), which open files but
do not return streams.

RATIONALE
The file descriptor may have been obtained from open(), creat(), pipe(), dup(), fcntl(), or socket();
inherited through fork(), posix_spawn(), or exec; or perhaps obtained by other means.

The meanings of the mode arguments of fdopen() and fopen() differ. With fdopen(), open for write
(w or w+) does not truncate, and append (a or a+) cannot create for writing. The mode argument
formats that include a b are allowed for consistency with the ISO C standard function fopen().
The b has no effect on the resulting stream. Although not explicitly required by this volume of
POSIX.1-2008, a good implementation of append (a) mode would cause the O_APPEND flag to
be set.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5.1 (on page 491), fclose(), fmemopen(), fopen(), open(), open_memstream(),
posix_spawn(), socket()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the use and setting of the mode argument are changed to include
binary streams.

• In the DESCRIPTION, text is added for large file support to indicate setting of the offset
maximum in the open file description.

• All errors identified in the ERRORS section are added.

• In the DESCRIPTION, text is added that the fdopen() function may cause st_atime to be
updated.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Clarification is added that it is the responsibility of the application to ensure that the mode
is compatible with the open file descriptor.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
fdopen() results are unspecified for typed memory objects.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 821

27410

27411

27412

27413

27414

27415

27416

27417

27418

27419

27420

27421

27422

27423

27424

27425

27426

27427

27428

27429

27430

27431

27432

27433

27434

27435

27436

27437

27438

27439

27440

27441

27442

27443

27444

27445

27446

27447

27448

27449

27450

fdopen() System Interfaces

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/30 is applied, making corrections to the
RATIONALE.

Issue 7
SD5-XSH-ERN-149 is applied, adding the {STREAM_MAX} [EMFILE] error condition.

Changes are made related to support for finegrained timestamps.

822 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27451

27452

27453

27454

27455

System Interfaces fdopendir()

NAME
fdopendir, opendir — open directory associated with file descriptor

SYNOPSIS
#include <dirent.h>

DIR *fdopendir(int fd);
DIR *opendir(const char *dirname);

DESCRIPTION
The fdopendir() function shall be equivalent to the opendir() function except that the directory is
specified by a file descriptor rather than by a name. The file offset associated with the file
descriptor at the time of the call determines which entries are returned.

Upon successful return from fdopendir(), the file descriptor is under the control of the system,
and if any attempt is made to close the file descriptor, or to modify the state of the associated
description, other than by means of closedir(), readdir(), readdir_r(), or rewinddir(), the behavior
is undefined. Upon calling closedir() the file descriptor shall be closed.

It is unspecified whether the FD_CLOEXEC flag will be set on the file descriptor by a successful
call to fdopendir().

The opendir() function shall open a directory stream corresponding to the directory named by
the dirname argument. The directory stream is positioned at the first entry. If the type DIR is
implemented using a file descriptor, applications shall only be able to open up to a total of
{OPEN_MAX} files and directories.

If the type DIR is implemented using a file descriptor, the descriptor shall be obtained as if the
O_DIRECTORY flag was passed to open().

RETURN VALUE
Upon successful completion, these functions shall return a pointer to an object of type DIR.
Otherwise, these functions shall return a null pointer and set errno to indicate the error.

ERRORS
The fdopendir() function shall fail if:

[EBADF] The fd argument is not a valid file descriptor open for reading.

[ENOTDIR] The descriptor fd is not associated with a directory.

The opendir() function shall fail if:

[EACCES] Search permission is denied for the component of the path prefix of dirname or
read permission is denied for dirname.

[ELOOP] A loop exists in symbolic links encountered during resolution of the dirname
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of dirname does not name an existing directory or dirname is an
empty string.

[ENOTDIR] A component of dirname is not a directory.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 823

27456

27457

27458

27459

27460

27461

27462

27463

27464

27465

27466

27467

27468

27469

27470

27471

27472

27473

27474

27475

27476

27477

27478

27479

27480

27481

27482

27483

27484

27485

27486

27487

27488

27489

27490

27491

27492

27493

27494

fdopendir() System Interfaces

The opendir() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the dirname argument.

[EMFILE] All file descriptors available to the process are currently open.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

EXAMPLES

Open a Directory Stream

The following program fragment demonstrates how the opendir() function is used.

#include <dirent.h>
...

DIR *dir;
struct dirent *dp;

...
if ((dir = opendir (".")) == NULL) {

perror ("Cannot open .");
exit (1);

}

while ((dp = readdir (dir)) != NULL) {
...

Find And Open a File

The following program searches through a given directory looking for files whose name does
not begin with a dot and whose size is larger than 1 MiB.

#include <stdio.h>
#include <dirent.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

struct stat statbuf;
DIR *d;
struct dirent *dp;
int dfd, ffd;

if ((d = fdopendir((dfd = open("./tmp", O_RDONLY)))) == NULL) {
fprintf(stderr, "Cannot open ./tmp directory\n");
exit(1);

824 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27495

27496

27497

27498

27499

27500

27501

27502

27503

27504

27505

27506

27507

27508

27509

27510

27511

27512

27513

27514

27515

27516

27517

27518

27519

27520

27521

27522

27523

27524

27525

27526

27527

27528

27529

27530

27531

27532

27533

27534

27535

27536

27537

System Interfaces fdopendir()

}
while ((dp = readdir(d)) != NULL) {

if (dp->d_name[0] == ’.’)
continue;

/* there is a possible race condition here as the file
* could be renamed between the readdir and the open */
if ((ffd = openat(dfd, dp->d_name, O_RDONLY)) == -1) {

perror(dp->d_name);
continue;

}
if (fstat(ffd, &statbuf) == 0 && statbuf.st_size > (1024*1024)) {

/* found it ... */
printf("%s: %jdK\n", dp->d_name,

(intmax_t)(statbuf.st_size / 1024));
}
close(ffd);

}
closedir(d); // note this implicitly closes dfd
return 0;

}

APPLICATION USAGE
The opendir() function should be used in conjunction with readdir(), closedir(), and rewinddir() to
examine the contents of the directory (see the EXAMPLES section in readdir()). This method is
recommended for portability.

RATIONALE
The purpose of the fdopendir() function is to enable opening files in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to opendir(), resulting in unspecified behavior.

Based on historical implementations, the rules about file descriptors apply to directory streams
as well. However, this volume of POSIX.1-2008 does not mandate that the directory stream be
implemented using file descriptors. The description of closedir() clarifies that if a file descriptor
is used for the directory stream, it is mandatory that closedir() deallocate the file descriptor.
When a file descriptor is used to implement the directory stream, it behaves as if the
FD_CLOEXEC had been set for the file descriptor.

The directory entries for dot and dot-dot are optional. This volume of POSIX.1-2008 does not
provide a way to test a priori for their existence because an application that is portable must be
written to look for (and usually ignore) those entries. Writing code that presumes that they are
the first two entries does not always work, as many implementations permit them to be other
than the first two entries, with a ‘‘normal’’ entry preceding them. There is negligible value in
providing a way to determine what the implementation does because the code to deal with dot
and dot-dot must be written in any case and because such a flag would add to the list of those
flags (which has proven in itself to be objectionable) and might be abused.

Since the structure and buffer allocation, if any, for directory operations are defined by the
implementation, this volume of POSIX.1-2008 imposes no portability requirements for erroneous
program constructs, erroneous data, or the use of unspecified values such as the use or
referencing of a dirp value or a dirent structure value after a directory stream has been closed or
after a fork() or one of the exec function calls.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 825

27538

27539

27540

27541

27542

27543

27544

27545

27546

27547

27548

27549

27550

27551

27552

27553

27554

27555

27556

27557

27558

27559

27560

27561

27562

27563

27564

27565

27566

27567

27568

27569

27570

27571

27572

27573

27574

27575

27576

27577

27578

27579

27580

27581

27582

27583

27584

fdopendir() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), dirfd(), fstatat(), open(), readdir(), rewinddir(), symlink()

XBD <dirent.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 2.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The fdopendir() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

An additional example is added.

826 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27585

27586

27587

27588

27589

27590

27591

27592

27593

27594

27595

27596

27597

27598

27599

27600

27601

27602

27603

27604

27605

27606

27607

27608

System Interfaces feclearexcept()

NAME
feclearexcept — clear floating-point exception

SYNOPSIS
#include <fenv.h>

int feclearexcept(int excepts);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The feclearexcept() function shall attempt to clear the supported floating-point exceptions
represented by excepts.

RETURN VALUE
If the argument is zero or if all the specified exceptions were successfully cleared, feclearexcept()
shall return zero. Otherwise, it shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fegetexceptflag(), feraiseexcept(), fetestexcept()

XBD <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 827

27609

27610

27611

27612

27613

27614

27615

27616

27617

27618

27619

27620

27621

27622

27623

27624

27625

27626

27627

27628

27629

27630

27631

27632

27633

27634

27635

27636

27637

27638

fegetenv() System Interfaces

NAME
fegetenv, fesetenv — get and set current floating-point environment

SYNOPSIS
#include <fenv.h>

int fegetenv(fenv_t *envp);
int fesetenv(const fenv_t *envp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fegetenv() function shall attempt to store the current floating-point environment in the object
pointed to by envp.

The fesetenv() function shall attempt to establish the floating-point environment represented by
the object pointed to by envp. The argument envp shall point to an object set by a call to
fegetenv() or feholdexcept(), or equal a floating-point environment macro. The fesetenv() function
does not raise floating-point exceptions, but only installs the state of the floating-point status
flags represented through its argument.

RETURN VALUE
If the representation was successfully stored, fegetenv() shall return zero. Otherwise, it shall
return a non-zero value. If the environment was successfully established, fesetenv() shall return
zero. Otherwise, it shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feholdexcept(), feupdateenv()

XBD <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

828 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27639

27640

27641

27642

27643

27644

27645

27646

27647

27648

27649

27650

27651

27652

27653

27654

27655

27656

27657

27658

27659

27660

27661

27662

27663

27664

27665

27666

27667

27668

27669

27670

27671

27672

27673

27674

27675

System Interfaces fegetexceptflag()

NAME
fegetexceptflag, fesetexceptflag — get and set floating-point status flags

SYNOPSIS
#include <fenv.h>

int fegetexceptflag(fexcept_t *flagp, int excepts);
int fesetexceptflag(const fexcept_t *flagp, int excepts);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fegetexceptflag() function shall attempt to store an implementation-defined representation of
the states of the floating-point status flags indicated by the argument excepts in the object
pointed to by the argument flagp.

The fesetexceptflag() function shall attempt to set the floating-point status flags indicated by the
argument excepts to the states stored in the object pointed to by flagp. The value pointed to by
flagp shall have been set by a previous call to fegetexceptflag() whose second argument
represented at least those floating-point exceptions represented by the argument excepts. This
function does not raise floating-point exceptions, but only sets the state of the flags.

RETURN VALUE
If the representation was successfully stored, fegetexceptflag() shall return zero. Otherwise, it
shall return a non-zero value. If the excepts argument is zero or if all the specified exceptions
were successfully set, fesetexceptflag() shall return zero. Otherwise, it shall return a non-zero
value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), feraiseexcept(), fetestexcept()

XBD <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 829

27676

27677

27678

27679

27680

27681

27682

27683

27684

27685

27686

27687

27688

27689

27690

27691

27692

27693

27694

27695

27696

27697

27698

27699

27700

27701

27702

27703

27704

27705

27706

27707

27708

27709

27710

27711

27712

27713

27714

fegetround() System Interfaces

NAME
fegetround, fesetround — get and set current rounding direction

SYNOPSIS
#include <fenv.h>

int fegetround(void);
int fesetround(int round);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fegetround() function shall get the current rounding direction.

The fesetround() function shall establish the rounding direction represented by its argument
round. If the argument is not equal to the value of a rounding direction macro, the rounding
direction is not changed.

RETURN VALUE
The fegetround() function shall return the value of the rounding direction macro representing the
current rounding direction or a negative value if there is no such rounding direction macro or
the current rounding direction is not determinable.

The fesetround() function shall return a zero value if and only if the requested rounding direction
was established.

ERRORS
No errors are defined.

EXAMPLES
The following example saves, sets, and restores the rounding direction, reporting an error and
aborting if setting the rounding direction fails:

#include <fenv.h>
#include <assert.h>
void f(int round_dir)
{

#pragma STDC FENV_ACCESS ON
int save_round;
int setround_ok;
save_round = fegetround();
setround_ok = fesetround(round_dir);
assert(setround_ok == 0);
/* ... */
fesetround(save_round);
/* ... */

}

APPLICATION USAGE
None.

RATIONALE
None.

830 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27715

27716

27717

27718

27719

27720

27721

27722

27723

27724

27725

27726

27727

27728

27729

27730

27731

27732

27733

27734

27735

27736

27737

27738

27739

27740

27741

27742

27743

27744

27745

27746

27747

27748

27749

27750

27751

27752

27753

27754

27755

27756

27757

System Interfaces fegetround()

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 831

27758

27759

27760

27761

27762

27763

27764

feholdexcept() System Interfaces

NAME
feholdexcept — save current floating-point environment

SYNOPSIS
#include <fenv.h>

int feholdexcept(fenv_t *envp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The feholdexcept() function shall save the current floating-point environment in the object
pointed to by envp, clear the floating-point status flags, and then install a non-stop (continue on
floating-point exceptions) mode, if available, for all floating-point exceptions.

RETURN VALUE
The feholdexcept() function shall return zero if and only if non-stop floating-point exception
handling was successfully installed.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The feholdexcept() function should be effective on typical IEC 60559: 1989 standard
implementations which have the default non-stop mode and at least one other mode for trap
handling or aborting. If the implementation provides only the non-stop mode, then installing the
non-stop mode is trivial.

FUTURE DIRECTIONS
None.

SEE ALSO
fegetenv(), feupdateenv()

XBD <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

832 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27765

27766

27767

27768

27769

27770

27771

27772

27773

27774

27775

27776

27777

27778

27779

27780

27781

27782

27783

27784

27785

27786

27787

27788

27789

27790

27791

27792

27793

27794

27795

27796

27797

System Interfaces feof()

NAME
feof — test end-of-file indicator on a stream

SYNOPSIS
#include <stdio.h>

int feof(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The feof() function shall test the end-of-file indicator for the stream pointed to by stream.

RETURN VALUE
The feof() function shall return non-zero if and only if the end-of-file indicator is set for stream.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearerr(), ferror(), fopen()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 833

27798

27799

27800

27801

27802

27803

27804

27805

27806

27807

27808

27809

27810

27811

27812

27813

27814

27815

27816

27817

27818

27819

27820

27821

27822

27823

27824

feraiseexcept() System Interfaces

NAME
feraiseexcept — raise floating-point exception

SYNOPSIS
#include <fenv.h>

int feraiseexcept(int excepts);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The feraiseexcept() function shall attempt to raise the supported floating-point exceptions
represented by the argument excepts. The order in which these floating-point exceptions are
raised is unspecified. Whether the feraiseexcept() function additionally raises the inexact floating-
point exception whenever it raises the overflow or underflow floating-point exception is
implementation-defined.

RETURN VALUE
If the argument is zero or if all the specified exceptions were successfully raised, feraiseexcept()
shall return zero. Otherwise, it shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The effect is intended to be similar to that of floating-point exceptions raised by arithmetic
operations. Hence, enabled traps for floating-point exceptions raised by this function are taken.

RATIONALE
Raising overflow or underflow is allowed to also raise inexact because on some architectures the
only practical way to raise an exception is to execute an instruction that has the exception as a
side-effect. The function is not restricted to accept only valid coincident expressions for atomic
operations, so the function can be used to raise exceptions accrued over several operations.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fegetexceptflag(), fetestexcept()

XBD <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

834 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27825

27826

27827

27828

27829

27830

27831

27832

27833

27834

27835

27836

27837

27838

27839

27840

27841

27842

27843

27844

27845

27846

27847

27848

27849

27850

27851

27852

27853

27854

27855

27856

27857

27858

27859

27860

27861

System Interfaces ferror()

NAME
ferror — test error indicator on a stream

SYNOPSIS
#include <stdio.h>

int ferror(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The ferror() function shall test the error indicator for the stream pointed to by stream.

RETURN VALUE
The ferror() function shall return non-zero if and only if the error indicator is set for stream.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearerr(), feof(), fopen()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 835

27862

27863

27864

27865

27866

27867

27868

27869

27870

27871

27872

27873

27874

27875

27876

27877

27878

27879

27880

27881

27882

27883

27884

27885

27886

27887

27888

fesetenv() System Interfaces

NAME
fesetenv — set current floating-point environment

SYNOPSIS
#include <fenv.h>

int fesetenv(const fenv_t *envp);

DESCRIPTION
Refer to fegetenv().

836 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27889

27890

27891

27892

27893

27894

27895

System Interfaces fesetexceptflag()

NAME
fesetexceptflag — set floating-point status flags

SYNOPSIS
#include <fenv.h>

int fesetexceptflag(const fexcept_t *flagp, int excepts);

DESCRIPTION
Refer to fegetexceptflag().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 837

27896

27897

27898

27899

27900

27901

27902

fesetround() System Interfaces

NAME
fesetround — set current rounding direction

SYNOPSIS
#include <fenv.h>

int fesetround(int round);

DESCRIPTION
Refer to fegetround().

838 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27903

27904

27905

27906

27907

27908

27909

System Interfaces fetestexcept()

NAME
fetestexcept — test floating-point exception flags

SYNOPSIS
#include <fenv.h>

int fetestexcept(int excepts);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fetestexcept() function shall determine which of a specified subset of the floating-point
exception flags are currently set. The excepts argument specifies the floating-point status flags to
be queried.

RETURN VALUE
The fetestexcept() function shall return the value of the bitwise-inclusive OR of the floating-point
exception macros corresponding to the currently set floating-point exceptions included in
excepts.

ERRORS
No errors are defined.

EXAMPLES
The following example calls function f() if an invalid exception is set, and then function g() if an
overflow exception is set:

#include <fenv.h>
/* ... */
{

#pragma STDC FENV_ACCESS ON
int set_excepts;
feclearexcept(FE_INVALID | FE_OVERFLOW);
// maybe raise exceptions
set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);
if (set_excepts & FE_INVALID) f();
if (set_excepts & FE_OVERFLOW) g();
/* ... */

}

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fegetexceptflag(), feraiseexcept()

XBD <fenv.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 839

27910

27911

27912

27913

27914

27915

27916

27917

27918

27919

27920

27921

27922

27923

27924

27925

27926

27927

27928

27929

27930

27931

27932

27933

27934

27935

27936

27937

27938

27939

27940

27941

27942

27943

27944

27945

27946

27947

27948

27949

27950

27951

fetestexcept() System Interfaces

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

840 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27952

27953

System Interfaces feupdateenv()

NAME
feupdateenv — update floating-point environment

SYNOPSIS
#include <fenv.h>

int feupdateenv(const fenv_t *envp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The feupdateenv() function shall attempt to save the currently raised floating-point exceptions in
its automatic storage, attempt to install the floating-point environment represented by the object
pointed to by envp, and then attempt to raise the saved floating-point exceptions. The argument
envp shall point to an object set by a call to feholdexcept() or fegetenv(), or equal a floating-point
environment macro.

RETURN VALUE
The feupdateenv() function shall return a zero value if and only if all the required actions were
successfully carried out.

ERRORS
No errors are defined.

EXAMPLES
The following example shows sample code to hide spurious underflow floating-point
exceptions:

#include <fenv.h>
double f(double x)
{

#pragma STDC FENV_ACCESS ON
double result;
fenv_t save_env;
feholdexcept(&save_env);
// compute result
if (/* test spurious underflow */)
feclearexcept(FE_UNDERFLOW);
feupdateenv(&save_env);
return result;

}

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fegetenv(), feholdexcept()

XBD <fenv.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 841

27954

27955

27956

27957

27958

27959

27960

27961

27962

27963

27964

27965

27966

27967

27968

27969

27970

27971

27972

27973

27974

27975

27976

27977

27978

27979

27980

27981

27982

27983

27984

27985

27986

27987

27988

27989

27990

27991

27992

27993

27994

27995

27996

27997

feupdateenv() System Interfaces

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

842 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

27998

27999

28000

System Interfaces fexecve

NAME
fexecve — execute a file

SYNOPSIS
#include <unistd.h>

int fexecve(int fd, char *const argv[], char *const envp[]);

DESCRIPTION
Refer to exec .

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 843

28001

28002

28003

28004

28005

28006

28007

fflush() System Interfaces

NAME
fflush — flush a stream

SYNOPSIS
#include <stdio.h>

int fflush(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

If stream points to an output stream or an update stream in which the most recent operation was
CX not input, fflush() shall cause any unwritten data for that stream to be written to the file, and the

last data modification and last file status change timestamps of the underlying file shall be
marked for update.

If stream is a null pointer, fflush() shall perform this flushing action on all streams for which the
behavior is defined above.

CX For a stream open for reading, if the file is not already at EOF, and the file is one capable of
seeking, the file offset of the underlying open file description shall be adjusted so that the next
operation on the open file description deals with the byte after the last one read from or written
to the stream being flushed.

RETURN VALUE
Upon successful completion, fflush() shall return 0; otherwise, it shall set the error indicator for

CX the stream, return EOF, and set errno to indicate the error.

ERRORS
The fflush() function shall fail if:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the write operation.

CX [EBADF] The file descriptor underlying stream is not valid.

CX [EFBIG] An attempt was made to write a file that exceeds the maximum file size.

XSI [EFBIG] An attempt was made to write a file that exceeds the file size limit of the
process.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

CX [EINTR] The fflush() function was interrupted by a signal.

CX [EIO] The process is a member of a background process group attempting to write to
its controlling terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU, and the process group of the process is orphaned. This
error may also be returned under implementation-defined conditions.

CX [ENOMEM] The underlying stream was created by open_memstream() or
open_wmemstream() and insufficient memory is available.

CX [ENOSPC] There was no free space remaining on the device containing the file or in the
buffer used by the fmemopen() function.

844 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

28008

28009

28010

28011

28012

28013

28014

28015

28016

28017

28018

28019

28020

28021

28022

28023

28024

28025

28026

28027

28028

28029

28030

28031

28032

28033

28034

28035

28036

28037

28038

28039

28040

28041

28042

28043

28044

28045

28046

28047

28048

System Interfaces fflush()

CX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal shall also be sent to the thread.

The fflush() function may fail if:

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES

Sending Prompts to Standard Output

The following example uses printf() calls to print a series of prompts for information the user
must enter from standard input. The fflush() calls force the output to standard output. The
fflush() function is used because standard output is usually buffered and the prompt may not
immediately be printed on the output or terminal. The getline() function calls read strings from
standard input and place the results in variables, for use later in the program.

char *user;
char *oldpasswd;
char *newpasswd;
ssize_t llen;
size_t blen;
struct termios term;
tcflag_t saveflag;

printf("User name: ");
fflush(stdout);
blen = 0;
llen = getline(&user, &blen, stdin);
user[llen-1] = 0;
tcgetattr(fileno(stdin), &term);
saveflag = term.c_lflag;
term.c_lflag &= ˜ECHO;
tcsetattr(fileno(stdin), TCSANOW, &term);
printf("Old password: ");
fflush(stdout);
blen = 0;
llen = getline(&oldpasswd, &blen, stdin);
oldpasswd[llen-1] = 0;

printf("\nNew password: ");
fflush(stdout);
blen = 0;
llen = getline(&newpasswd, &blen, stdin);
newpasswd[llen-1] = 0;
term.c_lflag = saveflag;
tcsetattr(fileno(stdin), TCSANOW, &term);
free(user);
free(oldpasswd);
free(newpasswd);

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 845

28049

28050

28051

28052

28053

28054

28055

28056

28057

28058

28059

28060

28061

28062

28063

28064

28065

28066

28067

28068

28069

28070

28071

28072

28073

28074

28075

28076

28077

28078

28079

28080

28081

28082

28083

28084

28085

28086

28087

28088

28089

28090

28091

fflush() System Interfaces

APPLICATION USAGE
None.

RATIONALE
Data buffered by the system may make determining the validity of the position of the current
file descriptor impractical. Thus, enforcing the repositioning of the file descriptor after fflush()
on streams open for read() is not mandated by POSIX.1-2008.

FUTURE DIRECTIONS
None.

SEE ALSO
fmemopen(), getrlimit(), open_memstream(), ulimit()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EFBIG] error is added as part of the large file support extensions.

• The [ENXIO] optional error condition is added.

The RETURN VALUE section is updated to note that the error indicator shall be set for the
stream. This is for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/31 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #002 is applied, clarifying the interaction of file
descriptors and streams.

The [ENOSPC] error condition is updated and the [ENOMEM] error is added from The Open
Group Technical Standard, 2006, Extended API Set Part 1.

The EXAMPLES section is revised.

Changes are made related to support for finegrained timestamps.

846 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

28092

28093

28094

28095

28096

28097

28098

28099

28100

28101

28102

28103

28104

28105

28106

28107

28108

28109

28110

28111

28112

28113

28114

28115

28116

28117

28118

28119

28120

28121

28122

28123

28124

System Interfaces ffs()

NAME
ffs — find first set bit

SYNOPSIS
XSI #include <strings.h>

int ffs(int i);

DESCRIPTION
The ffs() function shall find the first bit set (beginning with the least significant bit) in i, and
return the index of that bit. Bits are numbered starting at one (the least significant bit).

RETURN VALUE
The ffs() function shall return the index of the first bit set. If i is 0, then ffs() shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <strings.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 847

28125

28126

28127

28128

28129

28130

28131

28132

28133

28134

28135

28136

28137

28138

28139

28140

28141

28142

28143

28144

28145

28146

28147

28148

28149

28150

fgetc() System Interfaces

NAME
fgetc — get a byte from a stream

SYNOPSIS
#include <stdio.h>

int fgetc(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

If the end-of-file indicator for the input stream pointed to by stream is not set and a next byte is
present, the fgetc() function shall obtain the next byte as an unsigned char converted to an int,
from the input stream pointed to by stream, and advance the associated file position indicator for
the stream (if defined). Since fgetc() operates on bytes, reading a character consisting of multiple
bytes (or ‘‘a multi-byte character’’) may require multiple calls to fgetc().

CX The fgetc() function may mark the last data access timestamp of the file associated with stream
for update. The last data access timestamp shall be marked for update by the first successful
execution of fgetc(), fgets(), fread(), fscanf(), getc(), getchar(), getdelim(), getline(), gets(), or
scanf() using stream that returns data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, fgetc() shall return the next byte from the input stream pointed to
by stream. If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the
end-of-file indicator for the stream shall be set and fgetc() shall return EOF. If a read error occurs,

CX the error indicator for the stream shall be set, fgetc() shall return EOF, and shall set errno to
indicate the error.

ERRORS
The fgetc() function shall fail if data needs to be read and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the fgetc() operation.

CX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for
reading.

CX [EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EIO] A physical I/O error has occurred, or the process is in a background process
group attempting to read from its controlling terminal, and either the process
is ignoring or blocking the SIGTTIN signal or the process group is orphaned.
This error may also be generated for implementation-defined reasons.

CX [EOVERFLOW] The file is a regular file and an attempt was made to read at or beyond the
offset maximum associated with the corresponding stream.

The fgetc() function may fail if:

CX [ENOMEM] Insufficient storage space is available.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

848 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

28151

28152

28153

28154

28155

28156

28157

28158

28159

28160

28161

28162

28163

28164

28165

28166

28167

28168

28169

28170

28171

28172

28173

28174

28175

28176

28177

28178

28179

28180

28181

28182

28183

28184

28185

28186

28187

28188

28189

28190

28191

28192

System Interfaces fgetc()

EXAMPLES
None.

APPLICATION USAGE
If the integer value returned by fgetc() is stored into a variable of type char and then compared
against the integer constant EOF, the comparison may never succeed, because sign-extension of
a variable of type char on widening to integer is implementation-defined.

The ferror() or feof() functions must be used to distinguish between an error condition and an
end-of-file condition.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feof(), ferror(), fgets(), fread(), fscanf(), getchar(), getc(), gets(), ungetc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] and [EOVERFLOW] mandatory error conditions are added.

• The [ENOMEM] and [ENXIO] optional error conditions are added.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The DESCRIPTION is updated to clarify the behavior when the end-of-file indicator for the
input stream is not set.

• The RETURN VALUE section is updated to note that the error indicator shall be set for the
stream.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/32 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #051 is applied, updating the list of functions that mark
the last data access timestamp for update.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 849

28193

28194

28195

28196

28197

28198

28199

28200

28201

28202

28203

28204

28205

28206

28207

28208

28209

28210

28211

28212

28213

28214

28215

28216

28217

28218

28219

28220

28221

28222

28223

28224

28225

28226

28227

28228

fgetpos() System Interfaces

NAME
fgetpos — get current file position information

SYNOPSIS
#include <stdio.h>

int fgetpos(FILE *restrict stream, fpos_t *restrict pos);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fgetpos() function shall store the current values of the parse state (if any) and file position
indicator for the stream pointed to by stream in the object pointed to by pos. The value stored
contains unspecified information usable by fsetpos() for repositioning the stream to its position
at the time of the call to fgetpos().

RETURN VALUE
Upon successful completion, fgetpos() shall return 0; otherwise, it shall return a non-zero value
and set errno to indicate the error.

ERRORS
The fgetpos() function shall fail if:

CX [EOVERFLOW] The current value of the file position cannot be represented correctly in an
object of type fpos_t.

The fgetpos() function may fail if:

CX [EBADF] The file descriptor underlying stream is not valid.

CX [ESPIPE] The file descriptor underlying stream is associated with a pipe, FIFO, or socket.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), ftell(), rewind(), ungetc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Issue 5
Large File Summit extensions are added.

850 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

28229

28230

28231

28232

28233

28234

28235

28236

28237

28238

28239

28240

28241

28242

28243

28244

28245

28246

28247

28248

28249

28250

28251

28252

28253

28254

28255

28256

28257

28258

28259

28260

28261

28262

28263

28264

28265

28266

System Interfaces fgetpos()

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EBADF] and [ESPIPE] optional error conditions are added.

An additional [ESPIPE] error condition is added for sockets.

The prototype for fgetpos() is changed for alignment with the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 851

28267

28268

28269

28270

28271

28272

28273

fgets() System Interfaces

NAME
fgets — get a string from a stream

SYNOPSIS
#include <stdio.h>

char *fgets(char *restrict s, int n, FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fgets() function shall read bytes from stream into the array pointed to by s, until n−1 bytes
are read, or a <newline> is read and transferred to s, or an end-of-file condition is encountered.
The string is then terminated with a null byte.

CX The fgets() function may mark the last data access timestamp of the file associated with stream
for update. The last data access timestamp shall be marked for update by the first successful
execution of fgetc(), fgets(), fread(), fscanf(), getc(), getchar(), getdelim(), getline(), gets(), or
scanf() using stream that returns data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, fgets() shall return s. If the stream is at end-of-file, the end-of-file
indicator for the stream shall be set and fgets() shall return a null pointer. If a read error occurs,

CX the error indicator for the stream shall be set, fgets() shall return a null pointer, and shall set
errno to indicate the error.

ERRORS
Refer to fgetc().

EXAMPLES

Reading Input

The following example uses fgets() to read each line of input. {LINE_MAX}, which defines the
maximum size of the input line, is defined in the <limits.h> header.

#include <stdio.h>
...
char line[LINE_MAX];
...
while (fgets(line, LINE_MAX, fp) != NULL) {
...
}
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

852 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

28274

28275

28276

28277

28278

28279

28280

28281

28282

28283

28284

28285

28286

28287

28288

28289

28290

28291

28292

28293

28294

28295

28296

28297

28298

28299

28300

28301

28302

28303

28304

28305

28306

28307

28308

28309

28310

28311

28312

28313

28314

System Interfaces fgets()

SEE ALSO
fgetc(), fopen(), fread(), fscanf(), getc(), getchar(), getdelim(), gets(), ungetc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The prototype for fgets() is changed for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #051 is applied, updating the list of functions that mark
the last data access timestamp for update.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 853

28315

28316

28317

28318

28319

28320

28321

28322

28323

28324

28325

fgetwc() System Interfaces

NAME
fgetwc — get a wide-character code from a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t fgetwc(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fgetwc() function shall obtain the next character (if present) from the input stream pointed to
by stream, convert that to the corresponding wide-character code, and advance the associated file
position indicator for the stream (if defined).

If an error occurs, the resulting value of the file position indicator for the stream is unspecified.

CX The fgetwc() function may mark the last data access timestamp of the file associated with stream
for update. The last data access timestamp shall be marked for update by the first successful
execution of fgetwc(), fgetws(), fwscanf(), getwc(), getwchar(), vfwscanf(), vwscanf(), or wscanf()
using stream that returns data not supplied by a prior call to ungetwc().

RETURN VALUE
Upon successful completion, the fgetwc() function shall return the wide-character code of the
character read from the input stream pointed to by stream converted to a type wint_t. If the end-
of-file indicator for the stream is set, or if the stream is at end-of-file, the end-of-file indicator for
the stream shall be set and fgetwc() shall return WEOF. If a read error occurs, the error indicator

CX for the stream shall be set, fgetwc() shall return WEOF, and shall set errno to indicate the error. If
an encoding error occurs, the error indicator for the stream shall be set, fgetwc() shall return
WEOF, and shall set errno to indicate the error.

ERRORS
The fgetwc() function shall fail if data needs to be read and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the fgetwc() operation.

CX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for
reading.

[EILSEQ] The data obtained from the input stream does not form a valid character.

CX [EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EIO] A physical I/O error has occurred, or the process is in a background process
group attempting to read from its controlling terminal, and either the process
is ignoring or blocking the SIGTTIN signal or the process group is orphaned.
This error may also be generated for implementation-defined reasons.

CX [EOVERFLOW] The file is a regular file and an attempt was made to read at or beyond the
offset maximum associated with the corresponding stream.

854 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

28326

28327

28328

28329

28330

28331

28332

28333

28334

28335

28336

28337

28338

28339

28340

28341

28342

28343

28344

28345

28346

28347

28348

28349

28350

28351

28352

28353

28354

28355

28356

28357

28358

28359

28360

28361

28362

28363

28364

28365

28366

System Interfaces fgetwc()

The fgetwc() function may fail if:

CX [ENOMEM] Insufficient storage space is available.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
The ferror() or feof() functions must be used to distinguish between an error condition and an
end-of-file condition.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feof(), ferror(), fopen()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] and [EOVERFLOW] mandatory error conditions are added.

• The [ENOMEM] and [ENXIO] optional error conditions are added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/33 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN VALUE section.

Changes are made related to support for finegrained timestamps.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 855

28367

28368

28369

28370

28371

28372

28373

28374

28375

28376

28377

28378

28379

28380

28381

28382

28383

28384

28385

28386

28387

28388

28389

28390

28391

28392

28393

28394

28395

28396

28397

28398

28399

fgetws() System Interfaces

NAME
fgetws — get a wide-character string from a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wchar_t *fgetws(wchar_t *restrict ws, int n,
FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fgetws() function shall read characters from the stream, convert these to the corresponding
wide-character codes, place them in the wchar_t array pointed to by ws, until n−1 characters are
read, or a <newline> is read, converted, and transferred to ws, or an end-of-file condition is
encountered. The wide-character string, ws, shall then be terminated with a null wide-character
code.

If an error occurs, the resulting value of the file position indicator for the stream is unspecified.

CX The fgetws() function may mark the last data access timestamp of the file associated with stream
for update. The last data access timestamp shall be marked for update by the first successful
execution of fgetwc(), fgetws(), fwscanf(), getwc(), getwchar(), vfwscanf(), vwscanf(), or wscanf()
using stream that returns data not supplied by a prior call to ungetwc().

RETURN VALUE
Upon successful completion, fgetws() shall return ws. If the end-of-file indicator for the stream is
set, or if the stream is at end-of-file, the end-of-file indicator for the stream shall be set and
fgetws() shall return a null pointer. If a read error occurs, the error indicator for the stream shall

CX be set, fgetws() shall return a null pointer, and shall set errno to indicate the error.

ERRORS
Refer to fgetwc().

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), fread()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

856 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

28400

28401

28402

28403

28404

28405

28406

28407

28408

28409

28410

28411

28412

28413

28414

28415

28416

28417

28418

28419

28420

28421

28422

28423

28424

28425

28426

28427

28428

28429

28430

28431

28432

28433

28434

28435

28436

28437

28438

28439

28440

System Interfaces fgetws()

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

Issue 6
Extensions beyond the ISO C standard are marked.

The prototype for fgetws() is changed for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN VALUE section.

Changes are made related to support for finegrained timestamps.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 857

28441

28442

28443

28444

28445

28446

28447

28448

fileno() System Interfaces

NAME
fileno — map a stream pointer to a file descriptor

SYNOPSIS
CX #include <stdio.h>

int fileno(FILE *stream);

DESCRIPTION
The fileno() function shall return the integer file descriptor associated with the stream pointed to
by stream.

RETURN VALUE
Upon successful completion, fileno() shall return the integer value of the file descriptor
associated with stream. Otherwise, the value −1 shall be returned and errno set to indicate the
error.

ERRORS
The fileno() function may fail if:

[EBADF] The stream argument is not a valid stream, or the stream is not associated with
a file.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Without some specification of which file descriptors are associated with these streams, it is
impossible for an application to set up the streams for another application it starts with fork()
and exec. In particular, it would not be possible to write a portable version of the sh command
interpreter (although there may be other constraints that would prevent that portability).

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5.1 (on page 491), dirfd(), fdopen(), fopen(), stdin

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EBADF] optional error condition is added.

Issue 7
SD5-XBD-ERN-99 is applied, changing the definition of the [EBADF] error.

858 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

28449

28450

28451

28452

28453

28454

28455

28456

28457

28458

28459

28460

28461

28462

28463

28464

28465

28466

28467

28468

28469

28470

28471

28472

28473

28474

28475

28476

28477

28478

28479

28480

28481

28482

28483

28484

28485

28486

System Interfaces flockfile()

NAME
flockfile, ftrylockfile, funlockfile — stdio locking functions

SYNOPSIS
CX #include <stdio.h>

void flockfile(FILE *file);
int ftrylockfile(FILE *file);
void funlockfile(FILE *file);

DESCRIPTION
These functions shall provide for explicit application-level locking of stdio (FILE *) objects.
These functions can be used by a thread to delineate a sequence of I/O statements that are
executed as a unit.

The flockfile() function shall acquire for a thread ownership of a (FILE *) object.

The ftrylockfile() function shall acquire for a thread ownership of a (FILE *) object if the object is
available; ftrylockfile() is a non-blocking version of flockfile().

The funlockfile() function shall relinquish the ownership granted to the thread. The behavior is
undefined if a thread other than the current owner calls the funlockfile() function.

The functions shall behave as if there is a lock count associated with each (FILE *) object. This
count is implicitly initialized to zero when the (FILE *) object is created. The (FILE *) object is
unlocked when the count is zero. When the count is positive, a single thread owns the (FILE *)
object. When the flockfile() function is called, if the count is zero or if the count is positive and
the caller owns the (FILE *) object, the count shall be incremented. Otherwise, the calling thread
shall be suspended, waiting for the count to return to zero. Each call to funlockfile() shall
decrement the count. This allows matching calls to flockfile() (or successful calls to ftrylockfile())
and funlockfile() to be nested.

All functions that reference (FILE *) objects shall behave as if they use flockfile() and funlockfile()
internally to obtain ownership of these (FILE *) objects.

RETURN VALUE
None for flockfile() and funlockfile().

The ftrylockfile() function shall return zero for success and non-zero to indicate that the lock
cannot be acquired.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in XBD
Section 3.285 (on page 79).

RATIONALE
The flockfile() and funlockfile() functions provide an orthogonal mutual-exclusion lock for each
FILE. The ftrylockfile() function provides a non-blocking attempt to acquire a file lock,
analogous to pthread_mutex_trylock().

These locks behave as if they are the same as those used internally by stdio for thread-safety.
This both provides thread-safety of these functions without requiring a second level of internal
locking and allows functions in stdio to be implemented in terms of other stdio functions.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 859

28487

28488

28489

28490

28491

28492

28493

28494

28495

28496

28497

28498

28499

28500

28501

28502

28503

28504

28505

28506

28507

28508

28509

28510

28511

28512

28513

28514

28515

28516

28517

28518

28519

28520

28521

28522

28523

28524

28525

28526

28527

28528

28529

28530

flockfile() System Interfaces

Application developers and implementors should be aware that there are potential deadlock
problems on FILE objects. For example, the line-buffered flushing semantics of stdio (requested
via {_IOLBF}) require that certain input operations sometimes cause the buffered contents of
implementation-defined line-buffered output streams to be flushed. If two threads each hold the
lock on the other’s FILE, deadlock ensues. This type of deadlock can be avoided by acquiring
FILE locks in a consistent order. In particular, the line-buffered output stream deadlock can
typically be avoided by acquiring locks on input streams before locks on output streams if a
thread would be acquiring both.

In summary, threads sharing stdio streams with other threads can use flockfile() and funlockfile()
to cause sequences of I/O performed by a single thread to be kept bundled. The only case where
the use of flockfile() and funlockfile() is required is to provide a scope protecting uses of the
*_unlocked functions/macros. This moves the cost/performance tradeoff to the optimal point.

FUTURE DIRECTIONS
None.

SEE ALSO
getc_unlocked()

XBD Section 3.285 (on page 79), <stdio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
These functions are marked as part of the Thread-Safe Functions option.

Issue 7
The flockfile(), ftrylockfile(), and funlockfile() functions are moved from the Thread-Safe Functions
option to the Base.

860 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

28531

28532

28533

28534

28535

28536

28537

28538

28539

28540

28541

28542

28543

28544

28545

28546

28547

28548

28549

28550

28551

28552

28553

28554

System Interfaces floor()

NAME
floor, floorf, floorl — floor function

SYNOPSIS
#include <math.h>

double floor(double x);
float floorf(float x);
long double floorl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the largest integral value not greater than x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the largest integral value not greater
than x, expressed as a double, float, or long double, as appropriate for the return type of the
function.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

XSI If the correct value would cause overflow, a range error shall occur and floor(), floorf(), and
floorl() shall return the value of the macro −HUGE_VAL, −HUGE_VALF, and −HUGE_VALL,
respectively.

ERRORS
These functions shall fail if:

XSI Range Error The result would cause an overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by these functions might not be expressible as an int or long. The
return value should be tested before assigning it to an integer type to avoid the undefined
results of an integer overflow.

The floor() function can only overflow when the floating-point representation has
DBL_MANT_DIG > DBL_MAX_EXP.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 861

28555

28556

28557

28558

28559

28560

28561

28562

28563

28564

28565

28566

28567

28568

28569

28570

28571

28572

28573

28574

28575

28576

28577

28578

28579

28580

28581

28582

28583

28584

28585

28586

28587

28588

28589

28590

28591

28592

28593

28594

28595

28596

floor() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ceil(), feclearexcept(), fetestexcept(), isnan()

Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The floorf() and floorl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

862 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

28597

28598

28599

28600

28601

28602

28603

28604

28605

28606

28607

28608

28609

28610

28611

28612

28613

28614

System Interfaces fma()

NAME
fma, fmaf, fmal — floating-point multiply-add

SYNOPSIS
#include <math.h>

double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute (x * y) + z, rounded as one ternary operation: they shall compute
the value (as if) to infinite precision and round once to the result format, according to the
rounding mode characterized by the value of FLT_ROUNDS.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return (x * y) + z, rounded as one ternary
operation.

MX If the result overflows or underflows, a range error may occur. On systems that support the IEC
60559 Floating-Point option, if the result overflows a range error shall occur.

If x or y are NaN, a NaN shall be returned.

If x multiplied by y is an exact infinity and z is also an infinity but with the opposite sign, a
domain error shall occur, and either a NaN (if supported), or an implementation-defined value
shall be returned.

If one of x and y is infinite, the other is zero, and z is not a NaN, a domain error shall occur, and
either a NaN (if supported), or an implementation-defined value shall be returned.

If one of x and y is infinite, the other is zero, and z is a NaN, a NaN shall be returned and a
domain error may occur.

If x*y is not 0*Inf nor Inf*0 and z is a NaN, a NaN shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The value of x*y+z is invalid, or the value x*y is invalid and z is not a NaN.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

MX Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 863

28615

28616

28617

28618

28619

28620

28621

28622

28623

28624

28625

28626

28627

28628

28629

28630

28631

28632

28633

28634

28635

28636

28637

28638

28639

28640

28641

28642

28643

28644

28645

28646

28647

28648

28649

28650

28651

28652

28653

28654

28655

28656

28657

28658

fma() System Interfaces

These functions may fail if:

MX Domain Error The value x*y is invalid and z is a NaN.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
In many cases, clever use of floating (fused) multiply-add leads to much improved code; but its
unexpected use by the compiler can undermine carefully written code. The FP_CONTRACT
macro can be used to disallow use of floating multiply-add; and the fma() function guarantees
its use where desired. Many current machines provide hardware floating multiply-add
instructions; software implementation can be used for others.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #57 (SD5-XSH-ERN-69) is applied,
adding a ‘‘may fail’’ range error for non-MX systems.

864 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

28659

28660

28661

28662

28663

28664

28665

28666

28667

28668

28669

28670

28671

28672

28673

28674

28675

28676

28677

28678

28679

28680

28681

28682

28683

28684

28685

28686

28687

28688

28689

28690

28691

28692

28693

28694

28695

System Interfaces fmax()

NAME
fmax, fmaxf, fmaxl — determine maximum numeric value of two floating-point numbers

SYNOPSIS
#include <math.h>

double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

MX These functions shall determine the maximum numeric value of their arguments. NaN
arguments shall be treated as missing data: if one argument is a NaN and the other numeric,
then these functions shall choose the numeric value.

RETURN VALUE
Upon successful completion, these functions shall return the maximum numeric value of their
arguments.

MX If just one argument is a NaN, the other argument shall be returned.

If x and y are NaN, a NaN shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fdim(), fmin()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #007 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 865

28696

28697

28698

28699

28700

28701

28702

28703

28704

28705

28706

28707

28708

28709

28710

28711

28712

28713

28714

28715

28716

28717

28718

28719

28720

28721

28722

28723

28724

28725

28726

28727

28728

28729

28730

28731

fmemopen() System Interfaces

NAME
fmemopen — open a memory buffer stream

SYNOPSIS
CX #include <stdio.h>

FILE *fmemopen(void *restrict buf, size_t size,
const char *restrict mode);

DESCRIPTION
The fmemopen() function shall associate the buffer given by the buf and size arguments with a
stream. The buf argument shall be either a null pointer or point to a buffer that is at least size
bytes long.

The mode argument is a character string having one of the following values:

r or rb Open the stream for reading.

w or wb Open the stream for writing.

a or ab Append; open the stream for writing at the first null byte.

r+ or rb+ or r+b Open the stream for update (reading and writing).

w+ or wb+ or w+b Open the stream for update (reading and writing). Truncate the buffer
contents.

a+ or ab+ or a+b Append; open the stream for update (reading and writing); the initial
position is at the first null byte.

The character ’b’ shall have no effect.

If a null pointer is specified as the buf argument, fmemopen() shall allocate size bytes of memory
as if by a call to malloc(). This buffer shall be automatically freed when the stream is closed.
Because this feature is only useful when the stream is opened for updating (because there is no
way to get a pointer to the buffer) the fmemopen() call may fail if the mode argument does not
include a ’+’.

The stream maintains a current position in the buffer. This position is initially set to either the
beginning of the buffer (for r and w modes) or to the first null byte in the buffer (for a modes). If
no null byte is found in append mode, the initial position is set to one byte after the end of the
buffer.

If buf is a null pointer, the initial position shall always be set to the beginning of the buffer.

The stream also maintains the size of the current buffer contents. For modes r and r+ the size is
set to the value given by the size argument. For modes w and w+ the initial size is zero and for
modes a and a+ the initial size is either the position of the first null byte in the buffer or the value
of the size argument if no null byte is found.

A read operation on the stream cannot advance the current buffer position beyond the current
buffer size. Reaching the buffer size in a read operation counts as ‘‘end-of-file’’. Null bytes in the
buffer have no special meaning for reads. The read operation starts at the current buffer position
of the stream.

A write operation starts either at the current position of the stream (if mode has not specified
’a’ as the first character) or at the current size of the stream (if mode had ’a’ as the first
character). If the current position at the end of the write is larger than the current buffer size, the
current buffer size is set to the current position. A write operation on the stream cannot advance
the current buffer size beyond the size given in the size argument.

866 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

28732

28733

28734

28735

28736

28737

28738

28739

28740

28741

28742

28743

28744

28745

28746

28747

28748

28749

28750

28751

28752

28753

28754

28755

28756

28757

28758

28759

28760

28761

28762

28763

28764

28765

28766

28767

28768

28769

28770

28771

28772

28773

28774

System Interfaces fmemopen()

When a stream open for writing is flushed or closed, a null byte is written at the current position
or at the end of the buffer, depending on the size of the contents. If a stream open for update is
flushed or closed and the last write has advanced the current buffer size, a null byte is written at
the end of the buffer if it fits.

An attempt to seek a memory buffer stream to a negative position or to a position larger than the
buffer size given in the size argument shall fail.

RETURN VALUE
Upon successful completion, fmemopen() shall return a pointer to the object controlling the
stream. Otherwise, a null pointer shall be returned, and errno shall be set to indicate the error.

ERRORS
The fmemopen() function shall fail if:

[EINVAL] The size argument specifies a buffer size of zero.

The fmemopen() function may fail if:

[EINVAL] The value of the mode argument is not valid.

[EINVAL] The buf argument is a null pointer and the mode argument does not include a
’+’ character.

[ENOMEM] The buf argument is a null pointer and the allocation of a buffer of length size
has failed.

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

EXAMPLES

#include <stdio.h>
#include <string.h>

static char buffer[] = "foobar";

int
main (void)
{

int ch;
FILE *stream;

stream = fmemopen(buffer, strlen (buffer), "r");
if (stream == NULL)

/* handle error */;

while ((ch = fgetc(stream)) != EOF)
printf("Got %c\n", ch);

fclose(stream);
return (0);

}

This program produces the following output:

Got f
Got o
Got o
Got b
Got a
Got r

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 867

28775

28776

28777

28778

28779

28780

28781

28782

28783

28784

28785

28786

28787

28788

28789

28790

28791

28792

28793

28794

28795

28796

28797

28798

28799

28800

28801

28802

28803

28804

28805

28806

28807

28808

28809

28810

28811

28812

28813

28814

28815

28816

28817

fmemopen() System Interfaces

APPLICATION USAGE
None.

RATIONALE
This interface has been introduced to eliminate many of the errors encountered in the
construction of strings, notably overflowing of strings. This interface prevents overflow.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopen(), fopen(), freopen(), malloc(), open_memstream()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 7.

868 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

28818

28819

28820

28821

28822

28823

28824

28825

28826

28827

28828

28829

System Interfaces fmin()

NAME
fmin, fminf, fminl — determine minimum numeric value of two floating-point numbers

SYNOPSIS
#include <math.h>

double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

MX These functions shall determine the minimum numeric value of their arguments. NaN
arguments shall be treated as missing data: if one argument is a NaN and the other numeric,
then these functions shall choose the numeric value.

RETURN VALUE
Upon successful completion, these functions shall return the minimum numeric value of their
arguments.

MX If just one argument is a NaN, the other argument shall be returned.

If x and y are NaN, a NaN shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fdim(), fmax()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #008 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 869

28830

28831

28832

28833

28834

28835

28836

28837

28838

28839

28840

28841

28842

28843

28844

28845

28846

28847

28848

28849

28850

28851

28852

28853

28854

28855

28856

28857

28858

28859

28860

28861

28862

28863

28864

28865

fmod() System Interfaces

NAME
fmod, fmodf, fmodl — floating-point remainder value function

SYNOPSIS
#include <math.h>

double fmod(double x, double y);
float fmodf(float x, float y);
long double fmodl(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall return the floating-point remainder of the division of x by y.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
These functions shall return the value x−i*y, for some integer i such that, if y is non-zero, the
result has the same sign as x and magnitude less than the magnitude of y.

If the correct value would cause underflow, and is not representable, a range error may occur,
MX and either 0.0 (if supported), or an implementation-defined value shall be returned.

MX If x or y is NaN, a NaN shall be returned.

If y is zero, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

If x is infinite, a domain error shall occur, and either a NaN (if supported), or an
implementation-defined value shall be returned.

If x is ±0 and y is not zero, ±0 shall be returned.

If x is not infinite and y is ±Inf, x shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is infinite or y is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

870 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

28866

28867

28868

28869

28870

28871

28872

28873

28874

28875

28876

28877

28878

28879

28880

28881

28882

28883

28884

28885

28886

28887

28888

28889

28890

28891

28892

28893

28894

28895

28896

28897

28898

28899

28900

28901

28902

28903

28904

28905

28906

28907

28908

System Interfaces fmod()

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan()

Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The behavior for when the y argument is zero is now defined.

The fmodf() and fmodl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 871

28909

28910

28911

28912

28913

28914

28915

28916

28917

28918

28919

28920

28921

28922

28923

28924

28925

28926

28927

28928

28929

28930

28931

28932

28933

fmtmsg() System Interfaces

NAME
fmtmsg — display a message in the specified format on standard error and/or a system console

SYNOPSIS
XSI #include <fmtmsg.h>

int fmtmsg(long classification, const char *label, int severity,
const char *text, const char *action, const char *tag);

DESCRIPTION
The fmtmsg() function shall display messages in a specified format instead of the traditional
printf() function.

Based on a message’s classification component, fmtmsg() shall write a formatted message either
to standard error, to the console, or to both.

A formatted message consists of up to five components as defined below. The component
classification is not part of a message displayed to the user, but defines the source of the message
and directs the display of the formatted message.

classification Contains the sum of identifying values constructed from the constants defined
below. Any one identifier from a subclass may be used in combination with a
single identifier from a different subclass. Two or more identifiers from the
same subclass should not be used together, with the exception of identifiers
from the display subclass. (Both display subclass identifiers may be used so
that messages can be displayed to both standard error and the system
console.)

Major Classifications
Identifies the source of the condition. Identifiers are: MM_HARD
(hardware), MM_SOFT (software), and MM_FIRM (firmware).

Message Source Subclassifications
Identifies the type of software in which the problem is detected.
Identifiers are: MM_APPL (application), MM_UTIL (utility), and
MM_OPSYS (operating system).

Display Subclassifications
Indicates where the message is to be displayed. Identifiers are:
MM_PRINT to display the message on the standard error stream,
MM_CONSOLE to display the message on the system console. One or
both identifiers may be used.

Status Subclassifications
Indicates whether the application can recover from the condition.
Identifiers are: MM_RECOVER (recoverable) and MM_NRECOV (non-
recoverable).

An additional identifier, MM_NULLMC, indicates that no classification
component is supplied for the message.

label Identifies the source of the message. The format is two fields separated by a
<colon>. The first field is up to 10 bytes, the second is up to 14 bytes.

severity Indicates the seriousness of the condition. Identifiers for the levels of severity
are:

872 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

28934

28935

28936

28937

28938

28939

28940

28941

28942

28943

28944

28945

28946

28947

28948

28949

28950

28951

28952

28953

28954

28955

28956

28957

28958

28959

28960

28961

28962

28963

28964

28965

28966

28967

28968

28969

28970

28971

28972

28973

28974

28975

28976

System Interfaces fmtmsg()

MM_HALT Indicates that the application has encountered a severe fault
and is halting. Produces the string "HALT".

MM_ERROR Indicates that the application has detected a fault. Produces
the string "ERROR".

MM_WARNING Indicates a condition that is out of the ordinary, that might
be a problem, and should be watched. Produces the string
"WARNING".

MM_INFO Provides information about a condition that is not in error.
Produces the string "INFO".

MM_NOSEV Indicates that no severity level is supplied for the message.

text Describes the error condition that produced the message. The character string
is not limited to a specific size. If the character string is empty, then the text
produced is unspecified.

action Describes the first step to be taken in the error-recovery process. The fmtmsg()
function precedes the action string with the prefix: "TO FIX:". The action
string is not limited to a specific size.

tag An identifier that references on-line documentation for the message.
Suggested usage is that tag includes the label and a unique identifying number.
A sample tag is "XSI:cat:146".

The MSGVERB environment variable (for message verbosity) shall determine for fmtmsg()
which message components it is to select when writing messages to standard error. The value of
MSGVERB shall be a <colon>-separated list of optional keywords. Valid keywords are: label,
severity, text, action, and tag. If MSGVERB contains a keyword for a component and the
component’s value is not the component’s null value, fmtmsg() shall include that component in
the message when writing the message to standard error. If MSGVERB does not include a
keyword for a message component, that component shall not be included in the display of the
message. The keywords may appear in any order. If MSGVERB is not defined, if its value is the
null string, if its value is not of the correct format, or if it contains keywords other than the valid
ones listed above, fmtmsg() shall select all components.

MSGVERB shall determine which components are selected for display to standard error. All
message components shall be included in console messages.

RETURN VALUE
The fmtmsg() function shall return one of the following values:

MM_OK The function succeeded.

MM_NOTOK The function failed completely.

MM_NOMSG The function was unable to generate a message on standard error, but
otherwise succeeded.

MM_NOCON The function was unable to generate a console message, but otherwise
succeeded.

ERRORS
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 873

28977

28978

28979

28980

28981

28982

28983

28984

28985

28986

28987

28988

28989

28990

28991

28992

28993

28994

28995

28996

28997

28998

28999

29000

29001

29002

29003

29004

29005

29006

29007

29008

29009

29010

29011

29012

29013

29014

29015

29016

29017

fmtmsg() System Interfaces

EXAMPLES

1. The following example of fmtmsg():

fmtmsg(MM_PRINT, "XSI:cat", MM_ERROR, "illegal option",
"refer to cat in user’s reference manual", "XSI:cat:001")

produces a complete message in the specified message format:

XSI:cat: ERROR: illegal option
TO FIX: refer to cat in user’s reference manual XSI:cat:001

2. When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

and Example 1 is used, fmtmsg() produces:

ERROR: illegal option
TO FIX: refer to cat in user’s reference manual

APPLICATION USAGE
One or more message components may be systematically omitted from messages generated by
an application by using the null value of the argument for that component.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf()

XBD <fmtmsg.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

874 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

29018

29019

29020

29021

29022

29023

29024

29025

29026

29027

29028

29029

29030

29031

29032

29033

29034

29035

29036

29037

29038

29039

29040

29041

29042

29043

System Interfaces fnmatch()

NAME
fnmatch — match a filename or a pathname

SYNOPSIS
#include <fnmatch.h>

int fnmatch(const char *pattern, const char *string, int flags);

DESCRIPTION
The fnmatch() function shall match patterns as described in XCU Section 2.13.1 (on page 2332)
and Section 2.13.2 (on page 2332). It checks the string specified by the string argument to see if it
matches the pattern specified by the pattern argument.

The flags argument shall modify the interpretation of pattern and string. It is the bitwise-
inclusive OR of zero or more of the flags defined in <fnmatch.h>. If the FNM_PATHNAME flag
is set in flags, then a <slash> character (’/’) in string shall be explicitly matched by a <slash> in
pattern; it shall not be matched by either the <asterisk> or <question-mark> special characters,
nor by a bracket expression. If the FNM_PATHNAME flag is not set, the <slash> character shall
be treated as an ordinary character.

If FNM_NOESCAPE is not set in flags, a <backslash> character in pattern followed by any other
character shall match that second character in string. In particular, "\\" shall match a
<backslash> in string. If FNM_NOESCAPE is set, a <backslash> character shall be treated as an
ordinary character.

If FNM_PERIOD is set in flags, then a leading <period> (’.’) in string shall match a <period> in
pattern; as described by rule 2 in XCU Section 2.13.3 (on page 2333) where the location of
‘‘leading’’ is indicated by the value of FNM_PATHNAME:

• If FNM_PATHNAME is set, a <period> is ‘‘leading’’ if it is the first character in string or if
it immediately follows a <slash>.

• If FNM_PATHNAME is not set, a <period> is ‘‘leading’’ only if it is the first character of
string.

If FNM_PERIOD is not set, then no special restrictions are placed on matching a period.

RETURN VALUE
If string matches the pattern specified by pattern, then fnmatch() shall return 0. If there is no
match, fnmatch() shall return FNM_NOMATCH, which is defined in <fnmatch.h>. If an error
occurs, fnmatch() shall return another non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The fnmatch() function has two major uses. It could be used by an application or utility that
needs to read a directory and apply a pattern against each entry. The find utility is an example of
this. It can also be used by the pax utility to process its pattern operands, or by applications that
need to match strings in a similar manner.

The name fnmatch() is intended to imply filename match, rather than pathname match. The
default action of this function is to match filenames, rather than pathnames, since it gives no
special significance to the <slash> character. With the FNM_PATHNAME flag, fnmatch() does
match pathnames, but without tilde expansion, parameter expansion, or special treatment for a
<period> at the beginning of a filename.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 875

29044

29045

29046

29047

29048

29049

29050

29051

29052

29053

29054

29055

29056

29057

29058

29059

29060

29061

29062

29063

29064

29065

29066

29067

29068

29069

29070

29071

29072

29073

29074

29075

29076

29077

29078

29079

29080

29081

29082

29083

29084

29085

29086

29087

29088

fnmatch() System Interfaces

RATIONALE
This function replaced the REG_FILENAME flag of regcomp() in early proposals of this volume
of POSIX.1-2008. It provides virtually the same functionality as the regcomp() and regexec()
functions using the REG_FILENAME and REG_FSLASH flags (the REG_FSLASH flag was
proposed for regcomp(), and would have had the opposite effect from FNM_PATHNAME), but
with a simpler function and less system overhead.

FUTURE DIRECTIONS
None.

SEE ALSO
glob(), Section 2.6

XBD <fnmatch.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 5
Moved from POSIX2 C-language Binding to BASE.

876 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

29089

29090

29091

29092

29093

29094

29095

29096

29097

29098

29099

29100

29101

29102

29103

System Interfaces fopen()

NAME
fopen — open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char *restrict filename, const char *restrict mode);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fopen() function shall open the file whose pathname is the string pointed to by filename, and
associates a stream with it.

The mode argument points to a string. If the string is one of the following, the file shall be opened
in the indicated mode. Otherwise, the behavior is undefined.

r or rb Open file for reading.

w or wb Tr uncate to zero length or create file for writing.

a or ab Append; open or create file for writing at end-of-file.

r+ or rb+ or r+b Open file for update (reading and writing).

w+ or wb+ or w+b Tr uncate to zero length or create file for update.

a+ or ab+ or a+b Append; open or create file for update, writing at end-of-file.

CX The character ’b’ shall have no effect, but is allowed for ISO C standard conformance. Opening
a file with read mode (r as the first character in the mode argument) shall fail if the file does not
exist or cannot be read.

Opening a file with append mode (a as the first character in the mode argument) shall cause all
subsequent writes to the file to be forced to the then current end-of-file, regardless of intervening
calls to fseek().

When a file is opened with update mode (’+’ as the second or third character in the mode
argument), both input and output may be performed on the associated stream. However, the
application shall ensure that output is not directly followed by input without an intervening call
to fflush() or to a file positioning function (fseek(), fsetpos(), or rewind()), and input is not directly
followed by output without an intervening call to a file positioning function, unless the input
operation encounters end-of-file.

When opened, a stream is fully buffered if and only if it can be determined not to refer to an
interactive device. The error and end-of-file indicators for the stream shall be cleared.

CX If mode is w, wb, a, ab, w+, wb+, w+b, a+, ab+, or a+b, and the file did not previously exist, upon
successful completion, fopen() shall mark for update the last data access, last data modification,
and last file status change timestamps of the file and the last file status change and last data
modification timestamps of the parent directory.

If mode is w, wb, a, ab, w+, wb+, w+b, a+, ab+, or a+b, and the file did not previously exist, the
fopen() function shall create a file as if it called the creat() function with a value appropriate for
the path argument interpreted from filename and a value of S_IRUSR | S_IWUSR | S_IRGRP |
S_IWGRP | S_IROTH | S_IWOTH for the mode argument.

If mode is w, wb, w+, wb+, or w+b, and the file did previously exist, upon successful completion,
fopen() shall mark for update the last data modification and last file status change timestamps of

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 877

29104

29105

29106

29107

29108

29109

29110

29111

29112

29113

29114

29115

29116

29117

29118

29119

29120

29121

29122

29123

29124

29125

29126

29127

29128

29129

29130

29131

29132

29133

29134

29135

29136

29137

29138

29139

29140

29141

29142

29143

29144

29145

29146

fopen() System Interfaces

the file.

XSI After a successful call to the fopen() function, the orientation of the stream shall be cleared, the
encoding rule shall be cleared, and the associated mbstate_t object shall be set to describe an
initial conversion state.

CX The file descriptor associated with the opened stream shall be allocated and opened as if by a
call to open() with the following flags:

fopen() Mode open() Flags

r or rb O_RDONLY
w or wb O_WRONLY|O_CREAT|O_TRUNC
a or ab O_WRONLY|O_CREAT|O_APPEND
r+ or rb+ or r+b O_RDWR
w+ or wb+ or w+b O_RDWR|O_CREAT|O_TRUNC
a+ or ab+ or a+b O_RDWR|O_CREAT|O_APPEND

RETURN VALUE
Upon successful completion, fopen() shall return a pointer to the object controlling the stream.

CX Otherwise, a null pointer shall be returned, and errno shall be set to indicate the error.

ERRORS
The fopen() function shall fail if:

CX [EACCES] Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by mode are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be
created.

CX [EINTR] A signal was caught during fopen().

CX [EISDIR] The named file is a directory and mode requires write access.

CX [ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

CX [EMFILE] All file descriptors available to the process are currently open.

CX [EMFILE] {STREAM_MAX} streams are currently open in the calling process.

CX [ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

CX [ENFILE] The maximum allowable number of files is currently open in the system.

CX [ENOENT] A component of filename does not name an existing file or filename is an empty
string.

CX [ENOSPC] The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and the file was to be created.

CX [ENOTDIR] A component of the path prefix is not a directory, or the filename argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

878 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

29147

29148

29149

29150

29151

29152

29153

29154

29155

29156

29157

29158

29159

29160

29161

29162

29163

29164

29165

29166

29167

29168

29169

29170

29171

29172

29173

29174

29175

29176

29177

29178

29179

29180

29181

29182

29183

29184

29185

29186

29187

System Interfaces fopen()

CX [ENXIO] The named file is a character special or block special file, and the device
associated with this special file does not exist.

CX [EOVERFLOW] The named file is a regular file and the size of the file cannot be represented
correctly in an object of type off_t.

CX [EROFS] The named file resides on a read-only file system and mode requires write
access.

The fopen() function may fail if:

CX [EINVAL] The value of the mode argument is not valid.

CX [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

CX [EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

CX [ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

CX [ENOMEM] Insufficient storage space is available.

CX [ETXTBSY] The file is a pure procedure (shared text) file that is being executed and mode
requires write access.

EXAMPLES

Opening a File

The following example tries to open the file named file for reading. The fopen() function returns
a file pointer that is used in subsequent fgets() and fclose() calls. If the program cannot open the
file, it just ignores it.

#include <stdio.h>
...
FILE *fp;
...
void rgrep(const char *file)
{
...

if ((fp = fopen(file, "r")) == NULL)
return;

...
}

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
creat(), fclose(), fdopen(), fmemopen(), freopen(), open_memstream()

XBD <stdio.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 879

29188

29189

29190

29191

29192

29193

29194

29195

29196

29197

29198

29199

29200

29201

29202

29203

29204

29205

29206

29207

29208

29209

29210

29211

29212

29213

29214

29215

29216

29217

29218

29219

29220

29221

29222

29223

29224

29225

29226

29227

29228

fopen() System Interfaces

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open
file description. This change is to support large files.

• In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
large files.

• The [ELOOP] mandatory error condition is added.

• The [EINVAL], [EMFILE], [ENAMETOOLONG], [ENOMEM], and [ETXTBSY] optional
error conditions are added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The prototype for fopen() is updated.

• The DESCRIPTION is updated to note that if the argument mode points to a string other
than those listed, then the behavior is undefined.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #025 is applied, clarifying the file creation mode.

Austin Group Interpretation 1003.1-2001 #143 is applied.

Austin Group Interpretation 1003.1-2001 #159 is applied, clarifying requirements for the flags set
on the open file description.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-149 is applied, changing the {STREAM_MAX} [EMFILE] error condition from a
‘‘may fail’’ to a ‘‘shall fail’’.

Changes are made related to support for finegrained timestamps.

880 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

29229

29230

29231

29232

29233

29234

29235

29236

29237

29238

29239

29240

29241

29242

29243

29244

29245

29246

29247

29248

29249

29250

29251

29252

29253

29254

29255

29256

29257

29258

29259

System Interfaces fork()

NAME
fork — create a new process

SYNOPSIS
#include <unistd.h>

pid_t fork(void);

DESCRIPTION
The fork() function shall create a new process. The new process (child process) shall be an exact
copy of the calling process (parent process) except as detailed below:

• The child process shall have a unique process ID.

• The child process ID also shall not match any active process group ID.

• The child process shall have a different parent process ID, which shall be the process ID of
the calling process.

• The child process shall have its own copy of the parent’s file descriptors. Each of the
child’s file descriptors shall refer to the same open file description with the corresponding
file descriptor of the parent.

• The child process shall have its own copy of the parent’s open directory streams. Each
open directory stream in the child process may share directory stream positioning with the
corresponding directory stream of the parent.

• The child process shall have its own copy of the parent’s message catalog descriptors.

• The child process values of tms_utime, tms_stime, tms_cutime, and tms_cstime shall be set to
0.

• The time left until an alarm clock signal shall be reset to zero, and the alarm, if any, shall be
canceled; see alarm().

XSI • All semadj values shall be cleared.

• File locks set by the parent process shall not be inherited by the child process.

• The set of signals pending for the child process shall be initialized to the empty set.

XSI • Interval timers shall be reset in the child process.

• Any semaphores that are open in the parent process shall also be open in the child process.

ML • The child process shall not inherit any address space memory locks established by the
parent process via calls to mlockall() or mlock().

• Memory mappings created in the parent shall be retained in the child process.
MAP_PRIVATE mappings inherited from the parent shall also be MAP_PRIVATE
mappings in the child, and any modifications to the data in these mappings made by the
parent prior to calling fork() shall be visible to the child. Any modifications to the data in
MAP_PRIVATE mappings made by the parent after fork() returns shall be visible only to
the parent. Modifications to the data in MAP_PRIVATE mappings made by the child shall
be visible only to the child.

PS • For the SCHED_FIFO and SCHED_RR scheduling policies, the child process shall inherit
the policy and priority settings of the parent process during a fork() function. For other
scheduling policies, the policy and priority settings on fork() are implementation-defined.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 881

29260

29261

29262

29263

29264

29265

29266

29267

29268

29269

29270

29271

29272

29273

29274

29275

29276

29277

29278

29279

29280

29281

29282

29283

29284

29285

29286

29287

29288

29289

29290

29291

29292

29293

29294

29295

29296

29297

29298

29299

fork() System Interfaces

• Per-process timers created by the parent shall not be inherited by the child process.

MSG • The child process shall have its own copy of the message queue descriptors of the parent.
Each of the message descriptors of the child shall refer to the same open message queue
description as the corresponding message descriptor of the parent.

• No asynchronous input or asynchronous output operations shall be inherited by the child
process. Any use of asynchronous control blocks created by the parent produces undefined
behavior.

• A process shall be created with a single thread. If a multi-threaded process calls fork(), the
new process shall contain a replica of the calling thread and its entire address space,
possibly including the states of mutexes and other resources. Consequently, to avoid
errors, the child process may only execute async-signal-safe operations until such time as
one of the exec functions is called. Fork handlers may be established by means of the
pthread_atfork() function in order to maintain application invariants across fork() calls.

When the application calls fork() from a signal handler and any of the fork handlers
registered by pthread_atfork() calls a function that is not async-signal-safe, the behavior is
undefined.

OB TRC TRI • If the Trace option and the Trace Inherit option are both supported:

If the calling process was being traced in a trace stream that had its inheritance policy set
to POSIX_TRACE_INHERITED, the child process shall be traced into that trace stream,
and the child process shall inherit the parent’s mapping of trace event names to trace event
type identifiers. If the trace stream in which the calling process was being traced had its
inheritance policy set to POSIX_TRACE_CLOSE_FOR_CHILD, the child process shall not
be traced into that trace stream. The inheritance policy is set by a call to the
posix_trace_attr_setinherited() function.

OB TRC • If the Trace option is supported, but the Trace Inherit option is not supported:

The child process shall not be traced into any of the trace streams of its parent process.

OB TRC • If the Trace option is supported, the child process of a trace controller process shall not
control the trace streams controlled by its parent process.

CPT • The initial value of the CPU-time clock of the child process shall be set to zero.

TCT • The initial value of the CPU-time clock of the single thread of the child process shall be set
to zero.

All other process characteristics defined by POSIX.1-2008 shall be the same in the parent and
child processes. The inheritance of process characteristics not defined by POSIX.1-2008 is
unspecified by POSIX.1-2008.

After fork(), both the parent and the child processes shall be capable of executing independently
before either one terminates.

RETURN VALUE
Upon successful completion, fork() shall return 0 to the child process and shall return the
process ID of the child process to the parent process. Both processes shall continue to execute
from the fork() function. Otherwise, −1 shall be returned to the parent process, no child process
shall be created, and errno shall be set to indicate the error.

882 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

29300

29301

29302

29303

29304

29305

29306

29307

29308

29309

29310

29311

29312

29313

29314

29315

29316

29317

29318

29319

29320

29321

29322

29323

29324

29325

29326

29327

29328

29329

29330

29331

29332

29333

29334

29335

29336

29337

29338

29339

29340

System Interfaces fork()

ERRORS
The fork() function shall fail if:

[EAGAIN] The system lacked the necessary resources to create another process, or the
system-imposed limit on the total number of processes under execution
system-wide or by a single user {CHILD_MAX} would be exceeded.

The fork() function may fail if:

[ENOMEM] Insufficient storage space is available.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Many historical implementations have timing windows where a signal sent to a process group
(for example, an interactive SIGINT) just prior to or during execution of fork() is delivered to the
parent following the fork() but not to the child because the fork() code clears the child’s set of
pending signals. This volume of POSIX.1-2008 does not require, or even permit, this behavior.
However, it is pragmatic to expect that problems of this nature may continue to exist in
implementations that appear to conform to this volume of POSIX.1-2008 and pass available
verification suites. This behavior is only a consequence of the implementation failing to make
the interval between signal generation and delivery totally invisible. From the application’s
perspective, a fork() call should appear atomic. A signal that is generated prior to the fork()
should be delivered prior to the fork(). A signal sent to the process group after the fork() should
be delivered to both parent and child. The implementation may actually initialize internal data
structures corresponding to the child’s set of pending signals to include signals sent to the
process group during the fork(). Since the fork() call can be considered as atomic from the
application’s perspective, the set would be initialized as empty and such signals would have
arrived after the fork(); see also <signal.h>.

One approach that has been suggested to address the problem of signal inheritance across fork()
is to add an [EINTR] error, which would be returned when a signal is detected during the call.
While this is preferable to losing signals, it was not considered an optimal solution. Although it
is not recommended for this purpose, such an error would be an allowable extension for an
implementation.

The [ENOMEM] error value is reserved for those implementations that detect and distinguish
such a condition. This condition occurs when an implementation detects that there is not enough
memory to create the process. This is intended to be returned when [EAGAIN] is inappropriate
because there can never be enough memory (either primary or secondary storage) to perform
the operation. Since fork() duplicates an existing process, this must be a condition where there is
sufficient memory for one such process, but not for two. Many historical implementations
actually return [ENOMEM] due to temporary lack of memory, a case that is not generally
distinct from [EAGAIN] from the perspective of a conforming application.

Part of the reason for including the optional error [ENOMEM] is because the SVID specifies it
and it should be reserved for the error condition specified there. The condition is not applicable
on many implementations.

IEEE Std 1003.1-1988 neglected to require concurrent execution of the parent and child of fork().
A system that single-threads processes was clearly not intended and is considered an
unacceptable ‘‘toy implementation’’ of this volume of POSIX.1-2008. The only objection
anticipated to the phrase ‘‘executing independently’’ is testability, but this assertion should be

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 883

29341

29342

29343

29344

29345

29346

29347

29348

29349

29350

29351

29352

29353

29354

29355

29356

29357

29358

29359

29360

29361

29362

29363

29364

29365

29366

29367

29368

29369

29370

29371

29372

29373

29374

29375

29376

29377

29378

29379

29380

29381

29382

29383

29384

29385

29386

29387

fork() System Interfaces

testable. Such tests require that both the parent and child can block on a detectable action of the
other, such as a write to a pipe or a signal. An interactive exchange of such actions should be
possible for the system to conform to the intent of this volume of POSIX.1-2008.

The [EAGAIN] error exists to warn applications that such a condition might occur. Whether it
occurs or not is not in any practical sense under the control of the application because the
condition is usually a consequence of the user’s use of the system, not of the application’s code.
Thus, no application can or should rely upon its occurrence under any circumstances, nor
should the exact semantics of what concept of ‘‘user ’’ is used be of concern to the application
developer. Validation writers should be cognizant of this limitation.

There are two reasons why POSIX programmers call fork(). One reason is to create a new thread
of control within the same program (which was originally only possible in POSIX by creating a
new process); the other is to create a new process running a different program. In the latter case,
the call to fork() is soon followed by a call to one of the exec functions.

The general problem with making fork() work in a multi-threaded world is what to do with all
of the threads. There are two alternatives. One is to copy all of the threads into the new process.
This causes the programmer or implementation to deal with threads that are suspended on
system calls or that might be about to execute system calls that should not be executed in the
new process. The other alternative is to copy only the thread that calls fork(). This creates the
difficulty that the state of process-local resources is usually held in process memory. If a thread
that is not calling fork() holds a resource, that resource is never released in the child process
because the thread whose job it is to release the resource does not exist in the child process.

When a programmer is writing a multi-threaded program, the first described use of fork(),
creating new threads in the same program, is provided by the pthread_create() function. The
fork() function is thus used only to run new programs, and the effects of calling functions that
require certain resources between the call to fork() and the call to an exec function are undefined.

The addition of the forkall() function to the standard was considered and rejected. The forkall()
function lets all the threads in the parent be duplicated in the child. This essentially duplicates
the state of the parent in the child. This allows threads in the child to continue processing and
allows locks and the state to be preserved without explicit pthread_atfork() code. The calling
process has to ensure that the threads processing state that is shared between the parent and
child (that is, file descriptors or MAP_SHARED memory) behaves properly after forkall(). For
example, if a thread is reading a file descriptor in the parent when forkall() is called, then two
threads (one in the parent and one in the child) are reading the file descriptor after the forkall().
If this is not desired behavior, the parent process has to synchronize with such threads before
calling forkall().

While the fork() function is async-signal-safe, there is no way for an implementation to
determine whether the fork handlers established by pthread_atfork() are async-signal-safe. The
fork handlers may attempt to execute portions of the implementation that are not async-signal-
safe, such as those that are protected by mutexes, leading to a deadlock condition. It is therefore
undefined for the fork handlers to execute functions that are not async-signal-safe when fork() is
called from a signal handler.

When forkall() is called, threads, other than the calling thread, that are in functions that can
return with an [EINTR] error may have those functions return [EINTR] if the implementation
cannot ensure that the function behaves correctly in the parent and child. In particular,
pthread_cond_wait() and pthread_cond_timedwait() need to return in order to ensure that the
condition has not changed. These functions can be awakened by a spurious condition wakeup
rather than returning [EINTR].

884 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

29388

29389

29390

29391

29392

29393

29394

29395

29396

29397

29398

29399

29400

29401

29402

29403

29404

29405

29406

29407

29408

29409

29410

29411

29412

29413

29414

29415

29416

29417

29418

29419

29420

29421

29422

29423

29424

29425

29426

29427

29428

29429

29430

29431

29432

29433

29434

System Interfaces fork()

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), exec , fcntl(), posix_trace_attr_getinherited(), posix_trace_eventid_equal(), pthread_atfork(),
semop(), signal(), times()

XBD Section 4.11 (on page 110), <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is changed for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The effect of fork() on a pending alarm call in the child process is clarified.

The description of CPU-time clock semantics is added for alignment with IEEE Std 1003.1d-1999.

The description of tracing semantics is added for alignment with IEEE Std 1003.1q-2000.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/17 is applied, adding text to the
DESCRIPTION and RATIONALE relating to fork handlers registered by the pthread_atfork()
function and async-signal safety.

Issue 7
Austin Group Interpretation 1003.1-2001 #080 is applied, clarifying the status of asynchronous
input and asynchronous output operations and asynchronous control lists in the DESCRIPTION.

Functionality relating to the Asynchronous Input and Output, Memory Mapped Files, Timers,
and Threads options is moved to the Base.

Functionality relating to message catalog descriptors is moved from the XSI option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 885

29435

29436

29437

29438

29439

29440

29441

29442

29443

29444

29445

29446

29447

29448

29449

29450

29451

29452

29453

29454

29455

29456

29457

29458

29459

29460

29461

29462

29463

29464

fpathconf() System Interfaces

NAME
fpathconf, pathconf — get configurable pathname variables

SYNOPSIS
#include <unistd.h>

long fpathconf(int fildes, int name);
long pathconf(const char *path, int name);

DESCRIPTION
The fpathconf() and pathconf() functions shall determine the current value of a configurable limit
or option (variable) that is associated with a file or directory.

For pathconf(), the path argument points to the pathname of a file or directory.

For fpathconf(), the fildes argument is an open file descriptor.

The name argument represents the variable to be queried relative to that file or directory.
Implementations shall support all of the variables listed in the following table and may support
others. The variables in the following table come from <limits.h> or <unistd.h> and the
symbolic constants, defined in <unistd.h>, are the corresponding values used for name.

Variable Value of name Requirements

{FILESIZEBITS} _PC_FILESIZEBITS 3, 4
{LINK_MAX} _PC_LINK_MAX 1
{MAX_CANON} _PC_MAX_CANON 2
{MAX_INPUT} _PC_MAX_INPUT 2
{NAME_MAX} _PC_NAME_MAX 3, 4
{PATH_MAX} _PC_PATH_MAX 4, 5
{PIPE_BUF} _PC_PIPE_BUF 6
{POSIX2_SYMLINKS} _PC_2_SYMLINKS 4
{POSIX_ALLOC_SIZE_MIN} _PC_ALLOC_SIZE_MIN 10
{POSIX_REC_INCR_XFER_SIZE} _PC_REC_INCR_XFER_SIZE 10
{POSIX_REC_MAX_XFER_SIZE} _PC_REC_MAX_XFER_SIZE 10
{POSIX_REC_MIN_XFER_SIZE} _PC_REC_MIN_XFER_SIZE 10
{POSIX_REC_XFER_ALIGN} _PC_REC_XFER_ALIGN 10
{SYMLINK_MAX} _PC_SYMLINK_MAX 4, 9
_POSIX_CHOWN_RESTRICTED _PC_CHOWN_RESTRICTED 7
_POSIX_NO_TRUNC _PC_NO_TRUNC 3, 4
_POSIX_VDISABLE _PC_VDISABLE 2
_POSIX_ASYNC_IO _PC_ASYNC_IO 8
_POSIX_PRIO_IO _PC_PRIO_IO 8
_POSIX_SYNC_IO _PC_SYNC_IO 8
_POSIX_TIMESTAMP_RESOLUTION _PC_TIMESTAMP_RESOLUTION 1

Requirements

1. If path or fildes refers to a directory, the value returned shall apply to the directory itself.

2. If path or fildes does not refer to a terminal file, it is unspecified whether an
implementation supports an association of the variable name with the specified file.

3. If path or fildes refers to a directory, the value returned shall apply to filenames within the
directory.

886 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

29465

29466

29467

29468

29469

29470

29471

29472

29473

29474

29475

29476

29477

29478

29479

29480

29481

29482

29483

29484

29485

29486

29487

29488

29489

29490

29491

29492

29493

29494

29495

29496

29497

29498

29499

29500

29501

29502

29503

29504

29505

29506

29507

System Interfaces fpathconf()

4. If path or fildes does not refer to a directory, it is unspecified whether an implementation
supports an association of the variable name with the specified file.

5. If path or fildes refers to a directory, the value returned shall be the maximum length of a
relative pathname when the specified directory is the working directory.

6. If path refers to a FIFO, or fildes refers to a pipe or FIFO, the value returned shall apply to
the referenced object. If path or fildes refers to a directory, the value returned shall apply to
any FIFO that exists or can be created within the directory. If path or fildes refers to any
other type of file, it is unspecified whether an implementation supports an association of
the variable name with the specified file.

7. If path or fildes refers to a directory, the value returned shall apply to any files, other than
directories, that exist or can be created within the directory.

8. If path or fildes refers to a directory, it is unspecified whether an implementation supports
an association of the variable name with the specified file.

9. If path or fildes refers to a directory, the value returned shall be the maximum length of the
string that a symbolic link in that directory can contain.

10. If path or fildes des does not refer to a regular file, it is unspecified whether an
implementation supports an association of the variable name with the specified file. If an
implementation supports such an association for other than a regular file, the value
returned is unspecified.

RETURN VALUE
If name is an invalid value, both pathconf() and fpathconf() shall return −1 and set errno to
indicate the error.

If the variable corresponding to name is described in <limits.h> as a maximum or minimum
value and the variable has no limit for the path or file descriptor, both pathconf() and fpathconf()
shall return −1 without changing errno. Note that indefinite limits do not imply infinite limits;
see <limits.h>.

If the implementation needs to use path to determine the value of name and the implementation
does not support the association of name with the file specified by path, or if the process did not
have appropriate privileges to query the file specified by path, or path does not exist, pathconf()
shall return −1 and set errno to indicate the error.

If the implementation needs to use fildes to determine the value of name and the implementation
does not support the association of name with the file specified by fildes, or if fildes is an invalid
file descriptor, fpathconf() shall return −1 and set errno to indicate the error.

Otherwise, pathconf() or fpathconf() shall return the current variable value for the file or
directory without changing errno. The value returned shall not be more restrictive than the
corresponding value available to the application when it was compiled with the
implementation’s <limits.h> or <unistd.h>.

If the variable corresponding to name is dependent on an unsupported option, the results are
unspecified.

ERRORS
The pathconf() function shall fail if:

[EINVAL] The value of name is not valid.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 887

29508

29509

29510

29511

29512

29513

29514

29515

29516

29517

29518

29519

29520

29521

29522

29523

29524

29525

29526

29527

29528

29529

29530

29531

29532

29533

29534

29535

29536

29537

29538

29539

29540

29541

29542

29543

29544

29545

29546

29547

29548

29549

fpathconf() System Interfaces

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[EOVERFLOW] The value of name is _PC_TIMESTAMP_RESOLUTION and the resolution is
larger than {LONG_MAX}.

The pathconf() function may fail if:

[EACCES] Search permission is denied for a component of the path prefix.

[EINVAL] The implementation does not support an association of the variable name with
the specified file.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory, or the path argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

The fpathconf() function shall fail if:

[EINVAL] The value of name is not valid.

[EOVERFLOW] The value of name is _PC_TIMESTAMP_RESOLUTION and the resolution is
larger than {LONG_MAX}.

The fpathconf() function may fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The implementation does not support an association of the variable name with
the specified file.

EXAMPLES
None.

APPLICATION USAGE
Application developers should check whether an option, such as _POSIX_ADVISORY_INFO, is
supported prior to obtaining and using values for related variables such as
{POSIX_ALLOC_SIZE_MIN}.

RATIONALE
The pathconf() function was proposed immediately after the sysconf() function when it was
realized that some configurable values may differ across file system, directory, or device
boundaries.

For example, {NAME_MAX} frequently changes between System V and BSD-based file systems;
System V uses a maximum of 14, BSD 255. On an implementation that provides both types of file
systems, an application would be forced to limit all pathname components to 14 bytes, as this

888 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

29550

29551

29552

29553

29554

29555

29556

29557

29558

29559

29560

29561

29562

29563

29564

29565

29566

29567

29568

29569

29570

29571

29572

29573

29574

29575

29576

29577

29578

29579

29580

29581

29582

29583

29584

29585

29586

29587

29588

29589

29590

29591

System Interfaces fpathconf()

would be the value specified in <limits.h> on such a system.

Therefore, various useful values can be queried on any pathname or file descriptor, assuming
that appropriate privileges are in place.

The value returned for the variable {PATH_MAX} indicates the longest relative pathname that
could be given if the specified directory is the current working directory of the process. A
process may not always be able to generate a name that long and use it if a subdirectory in the
pathname crosses into a more restrictive file system. Note that implementations are allowed to
accept pathnames longer than {PATH_MAX} bytes long, but are not allowed to return
pathnames longer than this unless the user specifies a larger buffer using a function that
provides a buffer size argument.

The value returned for the variable _POSIX_CHOWN_RESTRICTED also applies to directories
that do not have file systems mounted on them. The value may change when crossing a mount
point, so applications that need to know should check for each directory. (An even easier check
is to try the chown() function and look for an error in case it happens.)

Unlike the values returned by sysconf(), the pathname-oriented variables are potentially more
volatile and are not guaranteed to remain constant throughout the lifetime of the process. For
example, in between two calls to pathconf(), the file system in question may have been
unmounted and remounted with different characteristics.

Also note that most of the errors are optional. If one of the variables always has the same value
on an implementation, the implementation need not look at path or fildes to return that value and
is, therefore, not required to detect any of the errors except the meaning of [EINVAL] that
indicates that the value of name is not valid for that variable.

If the value of any of the limits is unspecified (logically infinite), they will not be defined in
<limits.h> and the pathconf() and fpathconf() functions return −1 without changing errno. This
can be distinguished from the case of giving an unrecognized name argument because errno is set
to [EINVAL] in this case.

Since −1 is a valid return value for the pathconf() and fpathconf() functions, applications should
set errno to zero before calling them and check errno only if the return value is −1.

For the case of {SYMLINK_MAX}, since both pathconf() and open() follow symbolic links, there
is no way that path or fildes could refer to a symbolic link.

It was the intention of IEEE Std 1003.1d-1999 that the following variables:

{POSIX_ALLOC_SIZE_MIN}
{POSIX_REC_INCR_XFER_SIZE}
{POSIX_REC_MAX_XFER_SIZE}
{POSIX_REC_MIN_XFER_SIZE}
{POSIX_REC_XFER_ALIGN}

only applied to regular files, but Note 10 also permits implementation of the advisory semantics
on other file types unique to an implementation (for example, a character special device).

The [EOVERFLOW] error for _PC_TIMESTAMP_RESOLUTION cannot occur on POSIX-
compliant file systems because POSIX requires a timestamp resolution no larger than one
second. Even on 32-bit systems, this can be represented without overflow.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 889

29592

29593

29594

29595

29596

29597

29598

29599

29600

29601

29602

29603

29604

29605

29606

29607

29608

29609

29610

29611

29612

29613

29614

29615

29616

29617

29618

29619

29620

29621

29622

29623

29624

29625

29626

29627

29628

29629

29630

29631

29632

fpathconf() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
chown(), confstr(), sysconf()

XBD <limits.h>, <unistd.h>

XCU getconf

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to include {FILESIZEBITS}.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The _PC_SYMLINK_MAX entry is added to the table in the DESCRIPTION.

The following pathconf() variables and their associated names are added for alignment with
IEEE Std 1003.1d-1999:

{POSIX_ALLOC_SIZE_MIN}
{POSIX_REC_INCR_XFER_SIZE}
{POSIX_REC_MAX_XFER_SIZE}
{POSIX_REC_MIN_XFER_SIZE}
{POSIX_REC_XFER_ALIGN}

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/18 is applied, changing the fourth
paragraph of the DESCRIPTION and removing shading and margin markers from the table.
This change is needed since implementations are required to support all of these symbols.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/34 is applied, adding the table entry for
POSIX2_SYMLINKS in the DESCRIPTION.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/35 is applied, updating the
DESCRIPTION and RATIONALE sections to clarify behavior for the following variables:

{POSIX_ALLOC_SIZE_MIN}
{POSIX_REC_INCR_XFER_SIZE}
{POSIX_REC_MAX_XFER_SIZE}
{POSIX_REC_MIN_XFER_SIZE}
{POSIX_REC_XFER_ALIGN}

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/36 is applied, updating the RETURN
VALUE and APPLICATION USAGE sections to state that the results are unspecified if a variable
is dependent on an unsupported option, and advising application developers to check for

890 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

29633

29634

29635

29636

29637

29638

29639

29640

29641

29642

29643

29644

29645

29646

29647

29648

29649

29650

29651

29652

29653

29654

29655

29656

29657

29658

29659

29660

29661

29662

29663

29664

29665

29666

29667

29668

29669

29670

29671

29672

29673

System Interfaces fpathconf()

supported options prior to obtaining and using such values.

Issue 7
Austin Group Interpretations 1003.1-2001 #143 and #160 are applied.

Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 891

29674

29675

29676

29677

29678

29679

fpclassify() System Interfaces

NAME
fpclassify — classify real floating type

SYNOPSIS
#include <math.h>

int fpclassify(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fpclassify() macro shall classify its argument value as NaN, infinite, normal, subnormal,
zero, or into another implementation-defined category. First, an argument represented in a
format wider than its semantic type is converted to its semantic type. Then classification is based
on the type of the argument.

RETURN VALUE
The fpclassify() macro shall return the value of the number classification macro appropriate to
the value of its argument.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isfinite(), isinf(), isnan(), isnormal(), signbit()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

892 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

29680

29681

29682

29683

29684

29685

29686

29687

29688

29689

29690

29691

29692

29693

29694

29695

29696

29697

29698

29699

29700

29701

29702

29703

29704

29705

29706

29707

29708

29709

29710

System Interfaces fprintf()

NAME
dprintf, fprintf, printf, snprintf, sprintf — print formatted output

SYNOPSIS
#include <stdio.h>

CX int dprintf(int fildes, const char *restrict format, ...);
int fprintf(FILE *restrict stream, const char *restrict format, ...);
int printf(const char *restrict format, ...);
int snprintf(char *restrict s, size_t n,

const char *restrict format, ...);
int sprintf(char *restrict s, const char *restrict format, ...);

DESCRIPTION
CX Excluding dprintf(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

The fprintf() function shall place output on the named output stream. The printf() function shall
place output on the standard output stream stdout. The sprintf() function shall place output
followed by the null byte, ’\0’, in consecutive bytes starting at *s; it is the user’s responsibility
to ensure that enough space is available.

CX The dprintf() function shall be equivalent to the fprintf() function, except that dprintf() shall
write output to the file associated with the file descriptor specified by the fildes argument rather
than place output on a stream.

The snprintf() function shall be equivalent to sprintf(), with the addition of the n argument
which states the size of the buffer referred to by s. If n is zero, nothing shall be written and s
may be a null pointer. Otherwise, output bytes beyond the n-1st shall be discarded instead of
being written to the array, and a null byte is written at the end of the bytes actually written into
the array.

If copying takes place between objects that overlap as a result of a call to sprintf() or snprintf(),
the results are undefined.

Each of these functions converts, formats, and prints its arguments under control of the format.
The format is a character string, beginning and ending in its initial shift state, if any. The format is
composed of zero or more directives: ordinary characters, which are simply copied to the output
stream, and conversion specifications, each of which shall result in the fetching of zero or more
arguments. The results are undefined if there are insufficient arguments for the format. If the
format is exhausted while arguments remain, the excess arguments shall be evaluated but are
otherwise ignored.

CX Conversions can be applied to the nth argument after the format in the argument list, rather than
to the next unused argument. In this case, the conversion specifier character % (see below) is
replaced by the sequence "%n$", where n is a decimal integer in the range [1,{NL_ARGMAX}],
giving the position of the argument in the argument list. This feature provides for the definition
of format strings that select arguments in an order appropriate to specific languages (see the
EXAMPLES section).

The format can contain either numbered argument conversion specifications (that is, "%n$" and
"*m$"), or unnumbered argument conversion specifications (that is, % and *), but not both. The
only exception to this is that %% can be mixed with the "%n$" form. The results of mixing
numbered and unnumbered argument specifications in a format string are undefined. When
numbered argument specifications are used, specifying the Nth argument requires that all the
leading arguments, from the first to the (N−1)th, are specified in the format string.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 893

29711

29712

29713

29714

29715

29716

29717

29718

29719

29720

29721

29722

29723

29724

29725

29726

29727

29728

29729

29730

29731

29732

29733

29734

29735

29736

29737

29738

29739

29740

29741

29742

29743

29744

29745

29746

29747

29748

29749

29750

29751

29752

29753

29754

29755

29756

29757

fprintf() System Interfaces

In format strings containing the "%n$" form of conversion specification, numbered arguments
in the argument list can be referenced from the format string as many times as required.

In format strings containing the % form of conversion specification, each conversion specification
uses the first unused argument in the argument list.

CX All forms of the fprintf() functions allow for the insertion of a language-dependent radix
character in the output string. The radix character is defined in the process’ locale (category
LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
radix character shall default to a <period> (’.’).

CX Each conversion specification is introduced by the ’%’ character or by the character sequence
"%n$", after which the following appear in sequence:

• Zero or more flags (in any order), which modify the meaning of the conversion
specification.

• An optional minimum field width. If the converted value has fewer bytes than the field
width, it shall be padded with <space> characters by default on the left; it shall be padded
on the right if the left-adjustment flag (’−’), described below, is given to the field width.
The field width takes the form of an <asterisk> (’*’), described below, or a decimal
integer.

• An optional precision that gives the minimum number of digits to appear for the d, i, o, u,
x, and X conversion specifiers; the number of digits to appear after the radix character for
the a, A, e, E, f, and F conversion specifiers; the maximum number of significant digits for
the g and G conversion specifiers; or the maximum number of bytes to be printed from a

XSI string in the s and S conversion specifiers. The precision takes the form of a <period>
(’.’) followed either by an <asterisk> (’*’), described below, or an optional decimal digit
string, where a null digit string is treated as zero. If a precision appears with any other
conversion specifier, the behavior is undefined.

• An optional length modifier that specifies the size of the argument.

• A conversion specifier character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an <asterisk> (’*’). In this case an
argument of type int supplies the field width or precision. Applications shall ensure that
arguments specifying field width, or precision, or both appear in that order before the argument,
if any, to be converted. A negative field width is taken as a ’−’ flag followed by a positive field

CX width. A negative precision is taken as if the precision were omitted. In format strings
containing the "%n$" form of a conversion specification, a field width or precision may be
indicated by the sequence "*m$", where m is a decimal integer in the range [1,{NL_ARGMAX}]
giving the position in the argument list (after the format argument) of an integer argument
containing the field width or precision, for example:

printf("%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The flag characters and their meanings are:

CX ’ (The <apostrophe>.) The integer portion of the result of a decimal conversion (%i, %d,
%u, %f, %F, %g, or %G) shall be formatted with thousands’ grouping characters. For
other conversions the behavior is undefined. The non-monetary grouping character is
used.

− The result of the conversion shall be left-justified within the field. The conversion is
right-justified if this flag is not specified.

894 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

29758

29759

29760

29761

29762

29763

29764

29765

29766

29767

29768

29769

29770

29771

29772

29773

29774

29775

29776

29777

29778

29779

29780

29781

29782

29783

29784

29785

29786

29787

29788

29789

29790

29791

29792

29793

29794

29795

29796

29797

29798

29799

29800

29801

System Interfaces fprintf()

+ The result of a signed conversion shall always begin with a sign (’+’ or ’−’). The
conversion shall begin with a sign only when a negative value is converted if this flag is
not specified.

<space> If the first character of a signed conversion is not a sign or if a signed conversion results
in no characters, a <space> shall be prefixed to the result. This means that if the
<space> and ’+’ flags both appear, the <space> flag shall be ignored.

Specifies that the value is to be converted to an alternative form. For o conversion, it
increases the precision (if necessary) to force the first digit of the result to be zero. For x
or X conversion specifiers, a non-zero result shall have 0x (or 0X) prefixed to it. For a, A,
e, E, f, F, g, and G conversion specifiers, the result shall always contain a radix
character, even if no digits follow the radix character. Without this flag, a radix
character appears in the result of these conversions only if a digit follows it. For g and G
conversion specifiers, trailing zeros shall not be removed from the result as they
normally are. For other conversion specifiers, the behavior is undefined.

0 For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversion specifiers, leading zeros
(following any indication of sign or base) are used to pad to the field width rather than
performing space padding, except when converting an infinity or NaN. If the ’0’ and
’−’ flags both appear, the ’0’ flag is ignored. For d, i, o, u, x, and X conversion

CX specifiers, if a precision is specified, the ’0’ flag shall be ignored. If the ’0’ and
<apostrophe> flags both appear, the grouping characters are inserted before zero
padding. For other conversions, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed char
or unsigned char argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to signed char or unsigned char
before printing); or that a following n conversion specifier applies to a pointer to a
signed char argument.

h Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short or
unsigned short argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to short or unsigned short before
printing); or that a following n conversion specifier applies to a pointer to a short
argument.

l (ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long or
unsigned long argument; that a following n conversion specifier applies to a pointer to
a long argument; that a following c conversion specifier applies to a wint_t argument;
that a following s conversion specifier applies to a pointer to a wchar_t argument; or
has no effect on a following a, A, e, E, f, F, g, or G conversion specifier.

ll (ell-ell)
Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long long
or unsigned long long argument; or that a following n conversion specifier applies to a
pointer to a long long argument.

j Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t
or uintmax_t argument; or that a following n conversion specifier applies to a pointer
to an intmax_t argument.

z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size_t or the
corresponding signed integer type argument; or that a following n conversion specifier
applies to a pointer to a signed integer type corresponding to a size_t argument.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 895

29802

29803

29804

29805

29806

29807

29808

29809

29810

29811

29812

29813

29814

29815

29816

29817

29818

29819

29820

29821

29822

29823

29824

29825

29826

29827

29828

29829

29830

29831

29832

29833

29834

29835

29836

29837

29838

29839

29840

29841

29842

29843

29844

29845

29846

29847

29848

fprintf() System Interfaces

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t or
the corresponding unsigned type argument; or that a following n conversion specifier
applies to a pointer to a ptrdiff_t argument.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a long
double argument.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The conversion specifiers and their meanings are:

d, i The int argument shall be converted to a signed decimal in the style "[−]dddd". The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it shall be expanded with leading zeros.
The default precision is 1. The result of converting zero with an explicit precision of
zero shall be no characters.

o The unsigned argument shall be converted to unsigned octal format in the style
"dddd". The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it shall be expanded with leading
zeros. The default precision is 1. The result of converting zero with an explicit precision
of zero shall be no characters.

u The unsigned argument shall be converted to unsigned decimal format in the style
"dddd". The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it shall be expanded with leading
zeros. The default precision is 1. The result of converting zero with an explicit precision
of zero shall be no characters.

x The unsigned argument shall be converted to unsigned hexadecimal format in the style
"dddd"; the letters "abcdef" are used. The precision specifies the minimum number
of digits to appear; if the value being converted can be represented in fewer digits, it
shall be expanded with leading zeros. The default precision is 1. The result of
converting zero with an explicit precision of zero shall be no characters.

X Equivalent to the x conversion specifier, except that letters "ABCDEF" are used instead
of "abcdef".

f, F The double argument shall be converted to decimal notation in the style
"[−]ddd.ddd", where the number of digits after the radix character is equal to the
precision specification. If the precision is missing, it shall be taken as 6; if the precision
is explicitly zero and no ’#’ flag is present, no radix character shall appear. If a radix
character appears, at least one digit appears before it. The low-order digit shall be
rounded in an implementation-defined manner.

A double argument representing an infinity shall be converted in one of the styles
"[−]inf" or "[−]infinity"; which style is implementation-defined. A double
argument representing a NaN shall be converted in one of the styles "[−]nan(n-
char-sequence)" or "[−]nan"; which style, and the meaning of any n-char-sequence,
is implementation-defined. The F conversion specifier produces "INF", "INFINITY",
or "NAN" instead of "inf", "infinity", or "nan", respectively.

e, E The double argument shall be converted in the style "[−]d.ddde±dd", where there is
one digit before the radix character (which is non-zero if the argument is non-zero) and
the number of digits after it is equal to the precision; if the precision is missing, it shall
be taken as 6; if the precision is zero and no ’#’ flag is present, no radix character shall

896 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

29849

29850

29851

29852

29853

29854

29855

29856

29857

29858

29859

29860

29861

29862

29863

29864

29865

29866

29867

29868

29869

29870

29871

29872

29873

29874

29875

29876

29877

29878

29879

29880

29881

29882

29883

29884

29885

29886

29887

29888

29889

29890

29891

29892

29893

29894

System Interfaces fprintf()

appear. The low-order digit shall be rounded in an implementation-defined manner.
The E conversion specifier shall produce a number with ’E’ instead of ’e’
introducing the exponent. The exponent shall always contain at least two digits. If the
value is zero, the exponent shall be zero.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

g, G The double argument representing a floating-point number shall be converted in the
style f or e (or in the style F or E in the case of a G conversion specifier), depending on
the value converted and the precision. Let P equal the precision if non-zero, 6 if the
precision is omitted, or 1 if the precision is zero. Then, if a conversion with style E
would have an exponent of X:

— If P>X≥−4, the conversion shall be with style f (or F) and precision P−(X+1).

— Otherwise, the conversion shall be with style e (or E) and precision P−1.

Finally, unless the ’#’ flag is used, any trailing zeros shall be removed from the
fractional portion of the result and the decimal-point character shall be removed if there
is no fractional portion remaining.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

a, A A double argument representing a floating-point number shall be converted in the
style "[−]0xh.hhhhp±d", where there is one hexadecimal digit (which shall be non-
zero if the argument is a normalized floating-point number and is otherwise
unspecified) before the decimal-point character and the number of hexadecimal digits
after it is equal to the precision; if the precision is missing and FLT_RADIX is a power
of 2, then the precision shall be sufficient for an exact representation of the value; if the
precision is missing and FLT_RADIX is not a power of 2, then the precision shall be
sufficient to distinguish values of type double, except that trailing zeros may be
omitted; if the precision is zero and the ’#’ flag is not specified, no decimal-point
character shall appear. The letters "abcdef" shall be used for a conversion and the
letters "ABCDEF" for A conversion. The A conversion specifier produces a number with
’X’ and ’P’ instead of ’x’ and ’p’. The exponent shall always contain at least one
digit, and only as many more digits as necessary to represent the decimal exponent of
2. If the value is zero, the exponent shall be zero.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

c The int argument shall be converted to an unsigned char, and the resulting byte shall
be written.

If an l (ell) qualifier is present, the wint_t argument shall be converted as if by an ls
conversion specification with no precision and an argument that points to a two-
element array of type wchar_t, the first element of which contains the wint_t argument
to the ls conversion specification and the second element contains a null wide
character.

s The argument shall be a pointer to an array of char. Bytes from the array shall be
written up to (but not including) any terminating null byte. If the precision is specified,
no more than that many bytes shall be written. If the precision is not specified or is
greater than the size of the array, the application shall ensure that the array contains a
null byte.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 897

29895

29896

29897

29898

29899

29900

29901

29902

29903

29904

29905

29906

29907

29908

29909

29910

29911

29912

29913

29914

29915

29916

29917

29918

29919

29920

29921

29922

29923

29924

29925

29926

29927

29928

29929

29930

29931

29932

29933

29934

29935

29936

29937

29938

29939

29940

fprintf() System Interfaces

If an l (ell) qualifier is present, the argument shall be a pointer to an array of type
wchar_t. Wide characters from the array shall be converted to characters (each as if by
a call to the wcrtomb() function, with the conversion state described by an mbstate_t
object initialized to zero before the first wide character is converted) up to and
including a terminating null wide character. The resulting characters shall be written
up to (but not including) the terminating null character (byte). If no precision is
specified, the application shall ensure that the array contains a null wide character. If a
precision is specified, no more than that many characters (bytes) shall be written
(including shift sequences, if any), and the array shall contain a null wide character if,
to equal the character sequence length given by the precision, the function would need
to access a wide character one past the end of the array. In no case shall a partial
character be written.

p The argument shall be a pointer to void. The value of the pointer is converted to a
sequence of printable characters, in an implementation-defined manner.

n The argument shall be a pointer to an integer into which is written the number of bytes
written to the output so far by this call to one of the fprintf() functions. No argument is
converted.

XSI C Equivalent to lc.

XSI S Equivalent to ls.

% Print a ’%’ character; no argument is converted. The complete conversion specification
shall be %%.

If a conversion specification does not match one of the above forms, the behavior is undefined. If
any argument is not the correct type for the corresponding conversion specification, the
behavior is undefined.

In no case shall a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field shall be expanded to contain the conversion
result. Characters generated by fprintf() and printf() are printed as if fputc() had been called.

For the a and A conversion specifiers, if FLT_RADIX is a power of 2, the value shall be correctly
rounded to a hexadecimal floating number with the given precision.

For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly
representable in the given precision, the result should be one of the two adjacent numbers in
hexadecimal floating style with the given precision, with the extra stipulation that the error
should have a correct sign for the current rounding direction.

For the e, E, f, F, g, and G conversion specifiers, if the number of significant decimal digits is at
most DECIMAL_DIG, then the result should be correctly rounded. If the number of significant
decimal digits is more than DECIMAL_DIG but the source value is exactly representable with
DECIMAL_DIG digits, then the result should be an exact representation with trailing zeros.
Otherwise, the source value is bounded by two adjacent decimal strings L < U, both having
DECIMAL_DIG significant digits; the value of the resultant decimal string D should satisfy L <=
D <= U, with the extra stipulation that the error should have a correct sign for the current
rounding direction.

CX The last data modification and last file status change timestamps of the file shall be marked for
update:

1. Between the call to a successful execution of fprintf() or printf() and the next successful
completion of a call to fflush() or fclose() on the same stream or a call to exit() or abort()

898 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

29941

29942

29943

29944

29945

29946

29947

29948

29949

29950

29951

29952

29953

29954

29955

29956

29957

29958

29959

29960

29961

29962

29963

29964

29965

29966

29967

29968

29969

29970

29971

29972

29973

29974

29975

29976

29977

29978

29979

29980

29981

29982

29983

29984

29985

System Interfaces fprintf()

2. Upon successful completion of a call to dprintf()

RETURN VALUE
CX Upon successful completion, the dprintf(), fprintf(), and printf() functions shall return the

number of bytes transmitted.

Upon successful completion, the sprintf() function shall return the number of bytes written to s,
excluding the terminating null byte.

Upon successful completion, the snprintf() function shall return the number of bytes that would
be written to s had n been sufficiently large excluding the terminating null byte.

CX If an output error was encountered, these functions shall return a negative value and set errno to
indicate the error.

If the value of n is zero on a call to snprintf(), nothing shall be written, the number of bytes that
would have been written had n been sufficiently large excluding the terminating null shall be
returned, and s may be a null pointer.

ERRORS
CX For the conditions under which dprintf(), fprintf(), and printf() fail and may fail, refer to fputc()

or fputwc().

In addition, all forms of fprintf() shall fail if:

CX [EILSEQ] A wide-character code that does not correspond to a valid character has been
detected.

In addition, all forms of fprintf() may fail if:

CX [EINVAL] There are insufficient arguments.

The dprintf() function may fail if:

[EBADF] The fildes argument is not a valid file descriptor.

CX The dprintf(), fprintf(), and printf() functions may fail if:

CX [ENOMEM] Insufficient storage space is available.

The snprintf() function shall fail if:

CX [EOVERFLOW] The value of n is greater than {INT_MAX} or the number of bytes needed to
hold the output excluding the terminating null is greater than {INT_MAX}.

EXAMPLES

Printing Language-Independent Date and Time

The following statement can be used to print date and time using a language-independent
format:

printf(format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the following string:

"%s, %s %d, %d:%.2d\n"

This example would produce the following message:

Sunday, July 3, 10:02

For German usage, format could be a pointer to the following string:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 899

29986

29987

29988

29989

29990

29991

29992

29993

29994

29995

29996

29997

29998

29999

30000

30001

30002

30003

30004

30005

30006

30007

30008

30009

30010

30011

30012

30013

30014

30015

30016

30017

30018

30019

30020

30021

30022

30023

fprintf() System Interfaces

"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

This definition of format would produce the following message:

Sonntag, 3. Juli, 10:02

Printing File Information

The following example prints information about the type, permissions, and number of links of a
specific file in a directory.

The first two calls to printf() use data decoded from a previous stat() call. The user-defined
strperm() function shall return a string similar to the one at the beginning of the output for the
following command:

ls −l

The next call to printf() outputs the owner’s name if it is found using getpwuid(); the getpwuid()
function shall return a passwd structure from which the name of the user is extracted. If the user
name is not found, the program instead prints out the numeric value of the user ID.

The next call prints out the group name if it is found using getgrgid(); getgrgid() is very similar
to getpwuid() except that it shall return group information based on the group number. Once
again, if the group is not found, the program prints the numeric value of the group for the entry.

The final call to printf() prints the size of the file.

#include <stdio.h>
#include <sys/types.h>
#include <pwd.h>
#include <grp.h>

char *strperm (mode_t);
...
struct stat statbuf;
struct passwd *pwd;
struct group *grp;
...
printf("%10.10s", strperm (statbuf.st_mode));
printf("%4d", statbuf.st_nlink);

if ((pwd = getpwuid(statbuf.st_uid)) != NULL)
printf(" %−8.8s", pwd->pw_name);

else
printf(" %−8ld", (long) statbuf.st_uid);

if ((grp = getgrgid(statbuf.st_gid)) != NULL)
printf(" %−8.8s", grp->gr_name);

else
printf(" %−8ld", (long) statbuf.st_gid);

printf("%9jd", (intmax_t) statbuf.st_size);
...

900 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

30024

30025

30026

30027

30028

30029

30030

30031

30032

30033

30034

30035

30036

30037

30038

30039

30040

30041

30042

30043

30044

30045

30046

30047

30048

30049

30050

30051

30052

30053

30054

30055

30056

30057

30058

30059

30060

30061

30062

System Interfaces fprintf()

Printing a Localized Date String

The following example gets a localized date string. The nl_langinfo() function shall return the
localized date string, which specifies the order and layout of the date. The strftime() function
takes this information and, using the tm structure for values, places the date and time
information into datestring. The printf() function then outputs datestring and the name of the
entry.

#include <stdio.h>
#include <time.h>
#include <langinfo.h>
...
struct dirent *dp;
struct tm *tm;
char datestring[256];
...
strftime(datestring, sizeof(datestring), nl_langinfo (D_T_FMT), tm);

printf(" %s %s\n", datestring, dp->d_name);
...

Printing Error Information

The following example uses fprintf() to write error information to standard error.

In the first group of calls, the program tries to open the password lock file named LOCKFILE. If
the file already exists, this is an error, as indicated by the O_EXCL flag on the open() function. If
the call fails, the program assumes that someone else is updating the password file, and the
program exits.

The next group of calls saves a new password file as the current password file by creating a link
between LOCKFILE and the new password file PASSWDFILE.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>

#define LOCKFILE "/etc/ptmp"
#define PASSWDFILE "/etc/passwd"
...
int pfd;
...
if ((pfd = open(LOCKFILE, O_WRONLY | O_CREAT | O_EXCL,

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == −1)
{

fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
exit(1);

}
...
if (link(LOCKFILE,PASSWDFILE) == -1) {

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 901

30063

30064

30065

30066

30067

30068

30069

30070

30071

30072

30073

30074

30075

30076

30077

30078

30079

30080

30081

30082

30083

30084

30085

30086

30087

30088

30089

30090

30091

30092

30093

30094

30095

30096

30097

30098

30099

30100

30101

30102

30103

30104

30105

30106

30107

30108

fprintf() System Interfaces

fprintf(stderr, "Link error: %s\n", strerror(errno));
exit(1);

}
...

Printing Usage Information

The following example checks to make sure the program has the necessary arguments, and uses
fprintf() to print usage information if the expected number of arguments is not present.

#include <stdio.h>
#include <stdlib.h>
...
char *Options = "hdbtl";
...
if (argc < 2) {

fprintf(stderr, "Usage: %s -%s <file\n", argv[0], Options); exit(1);
}
...

Formatting a Decimal String

The following example prints a key and data pair on stdout. Note use of the <asterisk> (’*’) in
the format string; this ensures the correct number of decimal places for the element based on the
number of elements requested.

#include <stdio.h>
...
long i;
char *keystr;
int elementlen, len;
...
while (len < elementlen) {
...

printf("%s Element%0*ld\n", keystr, elementlen, i);
...
}

Creating a Filename

The following example creates a filename using information from a previous getpwnam()
function that returned the HOME directory of the user.

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
...
char filename[PATH_MAX+1];
struct passwd *pw;
...
sprintf(filename, "%s/%d.out", pw->pw_dir, getpid());
...

902 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

30109

30110

30111

30112

30113

30114

30115

30116

30117

30118

30119

30120

30121

30122

30123

30124

30125

30126

30127

30128

30129

30130

30131

30132

30133

30134

30135

30136

30137

30138

30139

30140

30141

30142

30143

30144

30145

30146

30147

30148

30149

30150

30151

System Interfaces fprintf()

Reporting an Event

The following example loops until an event has timed out. The pause() function waits forever
unless it receives a signal. The fprintf() statement should never occur due to the possible return
values of pause().

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
...
while (!event_complete) {
...

if (pause() != −1 || errno != EINTR)
fprintf(stderr, "pause: unknown error: %s\n", strerror(errno));

}
...

Printing Monetary Information

The following example uses strfmon() to convert a number and store it as a formatted monetary
string named convbuf . If the first number is printed, the program prints the format and the
description; otherwise, it just prints the number.

#include <monetary.h>
#include <stdio.h>
...
struct tblfmt {

char *format;
char *description;

};

struct tblfmt table[] = {
{ "%n", "default formatting" },
{ "%11n", "right align within an 11 character field" },
{ "%#5n", "aligned columns for values up to 99999" },
{ "%=*#5n", "specify a fill character" },
{ "%=0#5n", "fill characters do not use grouping" },
{ "%ˆ#5n", "disable the grouping separator" },
{ "%ˆ#5.0n", "round off to whole units" },
{ "%ˆ#5.4n", "increase the precision" },
{ "%(#5n", "use an alternative pos/neg style" },
{ "%!(#5n", "disable the currency symbol" },

};
...
float input[3];
int i, j;
char convbuf[100];
...
strfmon(convbuf, sizeof(convbuf), table[i].format, input[j]);

if (j == 0) {
printf("%s%s%s\n", table[i].format,

convbuf, table[i].description);

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 903

30152

30153

30154

30155

30156

30157

30158

30159

30160

30161

30162

30163

30164

30165

30166

30167

30168

30169

30170

30171

30172

30173

30174

30175

30176

30177

30178

30179

30180

30181

30182

30183

30184

30185

30186

30187

30188

30189

30190

30191

30192

30193

30194

30195

30196

30197

30198

fprintf() System Interfaces

}
else {

printf("%s\n", convbuf);
}
...

Printing Wide Characters

The following example prints a series of wide characters. Suppose that "L‘@‘" expands to three
bytes:

wchar_t wz [3] = L"@@"; // Zero-terminated
wchar_t wn [3] = L"@@@"; // Unterminated

fprintf (stdout,"%ls", wz); // Outputs 6 bytes
fprintf (stdout,"%ls", wn); // Undefined because wn has no terminator
fprintf (stdout,"%4ls", wz); // Outputs 3 bytes
fprintf (stdout,"%4ls", wn); // Outputs 3 bytes; no terminator needed
fprintf (stdout,"%9ls", wz); // Outputs 6 bytes
fprintf (stdout,"%9ls", wn); // Outputs 9 bytes; no terminator needed
fprintf (stdout,"%10ls", wz); // Outputs 6 bytes
fprintf (stdout,"%10ls", wn); // Undefined because wn has no terminator

In the last line of the example, after processing three characters, nine bytes have been output.
The fourth character must then be examined to determine whether it converts to one byte or
more. If it converts to more than one byte, the output is only nine bytes. Since there is no fourth
character in the array, the behavior is undefined.

APPLICATION USAGE
If the application calling fprintf() has any objects of type wint_t or wchar_t, it must also include
the <wchar.h> header to have these objects defined.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fputc(), fscanf(), setlocale(), strfmon(), wcrtomb()

XBD Chapter 7 (on page 135), <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the l (ell) qualifier can
now be used with c and s conversion specifiers.

The snprintf() function is new in Issue 5.

Issue 6
Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

904 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

30199

30200

30201

30202

30203

30204

30205

30206

30207

30208

30209

30210

30211

30212

30213

30214

30215

30216

30217

30218

30219

30220

30221

30222

30223

30224

30225

30226

30227

30228

30229

30230

30231

30232

30233

30234

30235

30236

30237

30238

30239

System Interfaces fprintf()

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The prototypes for fprintf(), printf(), snprintf(), and sprintf() are updated, and the XSI
shading is removed from snprintf().

• The description of snprintf() is aligned with the ISO C standard. Note that this supersedes
the snprintf() description in The Open Group Base Resolution bwg98-006, which changed
the behavior from Issue 5.

• The DESCRIPTION is updated.

The DESCRIPTION is updated to use the terms ‘‘conversion specifier’’ and ‘‘conversion
specification’’ consistently.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

An example of printing wide characters is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #161 is applied, updating the DESCRIPTION of the 0
flag.

Austin Group Interpretation 1003.1-2001 #170 is applied.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #68 (SD5-XSH-ERN-70) is applied,
revising the description of g and G.

SD5-XSH-ERN-174 is applied.

The dprintf() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

Functionality relating to the %n$ form of conversion specification and the <apostrophe> flag is
moved from the XSI option to the Base.

Changes are made related to support for finegrained timestamps.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 905

30240

30241

30242

30243

30244

30245

30246

30247

30248

30249

30250

30251

30252

30253

30254

30255

30256

30257

30258

30259

30260

30261

30262

fputc() System Interfaces

NAME
fputc — put a byte on a stream

SYNOPSIS
#include <stdio.h>

int fputc(int c, FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fputc() function shall write the byte specified by c (converted to an unsigned char) to the
output stream pointed to by stream, at the position indicated by the associated file-position
indicator for the stream (if defined), and shall advance the indicator appropriately. If the file
cannot support positioning requests, or if the stream was opened with append mode, the byte
shall be appended to the output stream.

CX The last data modification and last file status change timestamps of the file shall be marked for
update between the successful execution of fputc() and the next successful completion of a call
to fflush() or fclose() on the same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputc() shall return the value it has written. Otherwise, it shall

CX return EOF, the error indicator for the stream shall be set, and errno shall be set to indicate the
error.

ERRORS
The fputc() function shall fail if either the stream is unbuffered or the stream’s buffer needs to be
flushed, and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the write operation.

CX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for
writing.

CX [EFBIG] An attempt was made to write to a file that exceeds the maximum file size.

XSI [EFBIG] An attempt was made to write to a file that exceeds the file size limit of the
process.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum.

CX [EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EIO] A physical I/O error has occurred, or the process is a member of a background
process group attempting to write to its controlling terminal, TOSTOP is set,
the process is neither ignoring nor blocking SIGTTOU, and the process group
of the process is orphaned. This error may also be returned under
implementation-defined conditions.

CX [ENOSPC] There was no free space remaining on the device containing the file.

CX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal shall also be sent to the thread.

906 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

30263

30264

30265

30266

30267

30268

30269

30270

30271

30272

30273

30274

30275

30276

30277

30278

30279

30280

30281

30282

30283

30284

30285

30286

30287

30288

30289

30290

30291

30292

30293

30294

30295

30296

30297

30298

30299

30300

30301

30302

30303

30304

30305

System Interfaces fputc()

The fputc() function may fail if:

CX [ENOMEM] Insufficient storage space is available.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ferror(), fopen(), getrlimit(), putc(), puts(), setbuf(), ulimit()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] and [EFBIG] mandatory error conditions are added.

• The [ENOMEM] and [ENXIO] optional error conditions are added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/37 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

Issue 7
Changes are made related to support for finegrained timestamps.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 907

30306

30307

30308

30309

30310

30311

30312

30313

30314

30315

30316

30317

30318

30319

30320

30321

30322

30323

30324

30325

30326

30327

30328

30329

30330

30331

30332

30333

30334

30335

fputs() System Interfaces

NAME
fputs — put a string on a stream

SYNOPSIS
#include <stdio.h>

int fputs(const char *restrict s, FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fputs() function shall write the null-terminated string pointed to by s to the stream pointed
to by stream. The terminating null byte shall not be written.

CX The last data modification and last file status change timestamps of the file shall be marked for
update between the successful execution of fputs() and the next successful completion of a call
to fflush() or fclose() on the same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputs() shall return a non-negative number. Otherwise, it shall

CX return EOF, set an error indicator for the stream, and set errno to indicate the error.

ERRORS
Refer to fputc().

EXAMPLES

Printing to Standard Output

The following example gets the current time, converts it to a string using localtime() and
asctime(), and prints it to standard output using fputs(). It then prints the number of minutes to
an event for which it is waiting.

#include <time.h>
#include <stdio.h>
...
time_t now;
int minutes_to_event;
...
time(&now);
printf("The time is ");
fputs(asctime(localtime(&now)), stdout);
printf("There are still %d minutes to the event.\n",

minutes_to_event);
...

APPLICATION USAGE
The puts() function appends a <newline> while fputs() does not.

RATIONALE
None.

FUTURE DIRECTIONS
None.

908 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

30336

30337

30338

30339

30340

30341

30342

30343

30344

30345

30346

30347

30348

30349

30350

30351

30352

30353

30354

30355

30356

30357

30358

30359

30360

30361

30362

30363

30364

30365

30366

30367

30368

30369

30370

30371

30372

30373

30374

30375

30376

30377

System Interfaces fputs()

SEE ALSO
fopen(), putc(), puts()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The fputs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Changes are made related to support for finegrained timestamps.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 909

30378

30379

30380

30381

30382

30383

30384

30385

30386

30387

fputwc() System Interfaces

NAME
fputwc — put a wide-character code on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t fputwc(wchar_t wc, FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fputwc() function shall write the character corresponding to the wide-character code wc to
the output stream pointed to by stream, at the position indicated by the associated file-position
indicator for the stream (if defined), and advances the indicator appropriately. If the file cannot
support positioning requests, or if the stream was opened with append mode, the character is
appended to the output stream. If an error occurs while writing the character, the shift state of
the output file is left in an undefined state.

CX The last data modification and last file status change timestamps of the file shall be marked for
update between the successful execution of fputwc() and the next successful completion of a call
to fflush() or fclose() on the same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputwc() shall return wc. Otherwise, it shall return WEOF, the error

CX indicator for the stream shall be set, and errno shall be set to indicate the error.

ERRORS
The fputwc() function shall fail if either the stream is unbuffered or data in the stream’s buffer
needs to be written, and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and
the thread would be delayed in the write operation.

CX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for
writing.

CX [EFBIG] An attempt was made to write to a file that exceeds the maximum file size or
the file size limit of the process.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

[EILSEQ] The wide-character code wc does not correspond to a valid character.

CX [EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EIO] A physical I/O error has occurred, or the process is a member of a background
process group attempting to write to its controlling terminal, TOSTOP is set,
the process is neither ignoring nor blocking SIGTTOU, and the process group
of the process is orphaned. This error may also be returned under
implementation-defined conditions.

CX [ENOSPC] There was no free space remaining on the device containing the file.

910 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

30388

30389

30390

30391

30392

30393

30394

30395

30396

30397

30398

30399

30400

30401

30402

30403

30404

30405

30406

30407

30408

30409

30410

30411

30412

30413

30414

30415

30416

30417

30418

30419

30420

30421

30422

30423

30424

30425

30426

30427

30428

30429

System Interfaces fputwc()

CX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal shall also be sent to the thread.

The fputwc() function may fail if:

CX [ENOMEM] Insufficient storage space is available.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ferror(), fopen(), setbuf(), ulimit()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the type of argument wc
is changed from wint_t to wchar_t.

The Optional Header (OH) marking is removed from <stdio.h>.

Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EFBIG] and [EIO] mandatory error conditions are added.

• The [ENOMEM] and [ENXIO] optional error conditions are added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/38 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

Issue 7
Changes are made related to support for finegrained timestamps.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 911

30430

30431

30432

30433

30434

30435

30436

30437

30438

30439

30440

30441

30442

30443

30444

30445

30446

30447

30448

30449

30450

30451

30452

30453

30454

30455

30456

30457

30458

30459

30460

30461

30462

30463

30464

fputws() System Interfaces

NAME
fputws — put a wide-character string on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fputws(const wchar_t *restrict ws, FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fputws() function shall write a character string corresponding to the (null-terminated) wide-
character string pointed to by ws to the stream pointed to by stream. No character corresponding
to the terminating null wide-character code shall be written.

CX The last data modification and last file status change timestamps of the file shall be marked for
update between the successful execution of fputws() and the next successful completion of a call
to fflush() or fclose() on the same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputws() shall return a non-negative number. Otherwise, it shall

CX return −1, set an error indicator for the stream, and set errno to indicate the error.

ERRORS
Refer to fputwc().

EXAMPLES
None.

APPLICATION USAGE
The fputws() function does not append a <newline>.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

Issue 6
Extensions beyond the ISO C standard are marked.

The fputws() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Changes are made related to support for finegrained timestamps.

912 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

30465

30466

30467

30468

30469

30470

30471

30472

30473

30474

30475

30476

30477

30478

30479

30480

30481

30482

30483

30484

30485

30486

30487

30488

30489

30490

30491

30492

30493

30494

30495

30496

30497

30498

30499

30500

30501

30502

30503

30504

30505

System Interfaces fread()

NAME
fread — binary input

SYNOPSIS
#include <stdio.h>

size_t fread(void *restrict ptr, size_t size, size_t nitems,
FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fread() function shall read into the array pointed to by ptr up to nitems elements whose size
is specified by size in bytes, from the stream pointed to by stream. For each object, size calls shall
be made to the fgetc() function and the results stored, in the order read, in an array of unsigned
char exactly overlaying the object. The file position indicator for the stream (if defined) shall be
advanced by the number of bytes successfully read. If an error occurs, the resulting value of the
file position indicator for the stream is unspecified. If a partial element is read, its value is
unspecified.

CX The fread() function may mark the last data access timestamp of the file associated with stream
for update. The last data access timestamp shall be marked for update by the first successful
execution of fgetc(), fgets(), fread(), fscanf(), getc(), getchar(), getdelim(), getline(), gets(), or
scanf() using stream that returns data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, fread() shall return the number of elements successfully read which
is less than nitems only if a read error or end-of-file is encountered. If size or nitems is 0, fread()
shall return 0 and the contents of the array and the state of the stream remain unchanged.

CX Otherwise, if a read error occurs, the error indicator for the stream shall be set, and errno shall
be set to indicate the error.

ERRORS
Refer to fgetc().

EXAMPLES

Reading from a Stream

The following example reads a single element from the fp stream into the array pointed to by
buf .

#include <stdio.h>
...
size_t bytes_read;
char buf[100];
FILE *fp;
...
bytes_read = fread(buf, sizeof(buf), 1, fp);
...

APPLICATION USAGE
The ferror() or feof() functions must be used to distinguish between an error condition and an
end-of-file condition.

Because of possible differences in element length and byte ordering, files written using fwrite()

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 913

30506

30507

30508

30509

30510

30511

30512

30513

30514

30515

30516

30517

30518

30519

30520

30521

30522

30523

30524

30525

30526

30527

30528

30529

30530

30531

30532

30533

30534

30535

30536

30537

30538

30539

30540

30541

30542

30543

30544

30545

30546

30547

30548

30549

30550

fread() System Interfaces

are application-dependent, and possibly cannot be read using fread() by a different application
or by the same application on a different processor.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feof(), ferror(), fgetc(), fopen(), fscanf(), getc(), gets()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The fread() prototype is updated.

• The DESCRIPTION is updated to describe how the bytes from a call to fgetc() are stored.

Issue 7
Changes are made related to support for finegrained timestamps.

914 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

30551

30552

30553

30554

30555

30556

30557

30558

30559

30560

30561

30562

30563

30564

30565

30566

30567

30568

System Interfaces free()

NAME
free — free allocated memory

SYNOPSIS
#include <stdlib.h>

void free(void *ptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The free() function shall cause the space pointed to by ptr to be deallocated; that is, made
available for further allocation. If ptr is a null pointer, no action shall occur. Otherwise, if the
argument does not match a pointer earlier returned by a function in POSIX.1-2008 that allocates
memory as if by malloc(), or if the space has been deallocated by a call to free() or realloc(), the
behavior is undefined.

Any use of a pointer that refers to freed space results in undefined behavior.

RETURN VALUE
The free() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
There is now no requirement for the implementation to support the inclusion of <malloc.h>.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
calloc(), malloc(), posix_memalign(), realloc()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Reference to the valloc() function is removed.

Issue 7
The DESCRIPTION is updated to clarify that if the pointer returned is not by a function that
allocates memory as if by malloc(), then the behavior is undefined.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 915

30569

30570

30571

30572

30573

30574

30575

30576

30577

30578

30579

30580

30581

30582

30583

30584

30585

30586

30587

30588

30589

30590

30591

30592

30593

30594

30595

30596

30597

30598

30599

30600

30601

30602

30603

30604

30605

freeaddrinfo() System Interfaces

NAME
freeaddrinfo, getaddrinfo — get address information

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

void freeaddrinfo(struct addrinfo *ai);
int getaddrinfo(const char *restrict nodename,

const char *restrict servname,
const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

DESCRIPTION
The freeaddrinfo() function shall free one or more addrinfo structures returned by getaddrinfo(),
along with any additional storage associated with those structures. If the ai_next field of the
structure is not null, the entire list of structures shall be freed. The freeaddrinfo() function shall
support the freeing of arbitrary sublists of an addrinfo list originally returned by getaddrinfo().

The getaddrinfo() function shall translate the name of a service location (for example, a host
name) and/or a service name and shall return a set of socket addresses and associated
information to be used in creating a socket with which to address the specified service.

Note: In many cases it is implemented by the Domain Name System, as documented in RFC 1034,
RFC 1035, and RFC 1886.

The freeaddrinfo() and getaddrinfo() functions shall be thread-safe.

The nodename and servname arguments are either null pointers or pointers to null-terminated
strings. One or both of these two arguments shall be supplied by the application as a non-null
pointer.

The format of a valid name depends on the address family or families. If a specific family is not
given and the name could be interpreted as valid within multiple supported families, the
implementation shall attempt to resolve the name in all supported families and, in absence of
errors, one or more results shall be returned.

If the nodename argument is not null, it can be a descriptive name or can be an address string. If
IP6 the specified address family is AF_INET, AF_INET6, or AF_UNSPEC, valid descriptive names

include host names. If the specified address family is AF_INET or AF_UNSPEC, address strings
using Internet standard dot notation as specified in inet_addr() are valid.

IP6 If the specified address family is AF_INET6 or AF_UNSPEC, standard IPv6 text forms described
in inet_ntop() are valid.

If nodename is not null, the requested service location is named by nodename; otherwise, the
requested service location is local to the caller.

If servname is null, the call shall return network-level addresses for the specified nodename. If
servname is not null, it is a null-terminated character string identifying the requested service.
This can be either a descriptive name or a numeric representation suitable for use with the

IP6 address family or families. If the specified address family is AF_INET, AF_INET6, or
AF_UNSPEC, the service can be specified as a string specifying a decimal port number.

If the hints argument is not null, it refers to a structure containing input values that directs the
operation by providing options and by limiting the returned information to a specific socket
type, address family, and/or protocol, as described below. In this hints structure every member
other than ai_flags, ai_family, ai_socktype, and ai_protocol shall be set to zero or a null pointer. A
value of AF_UNSPEC for ai_family means that the caller shall accept any address family. A value

916 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

30606

30607

30608

30609

30610

30611

30612

30613

30614

30615

30616

30617

30618

30619

30620

30621

30622

30623

30624

30625

30626

30627

30628

30629

30630

30631

30632

30633

30634

30635

30636

30637

30638

30639

30640

30641

30642

30643

30644

30645

30646

30647

30648

30649

30650

30651

System Interfaces freeaddrinfo()

of zero for ai_socktype means that the caller shall accept any socket type. A value of zero for
ai_protocol means that the caller shall accept any protocol. If hints is a null pointer, the behavior
shall be as if it referred to a structure containing the value zero for the ai_flags, ai_socktype, and
ai_protocol fields, and AF_UNSPEC for the ai_family field.

The ai_flags field to which the hints parameter points shall be set to zero or be the bitwise-
inclusive OR of one or more of the values AI_PASSIVE, AI_CANONNAME,
AI_NUMERICHOST, AI_NUMERICSERV, AI_V4MAPPED, AI_ALL, and AI_ADDRCONFIG.

If the AI_PASSIVE flag is specified, the returned address information shall be suitable for use in
binding a socket for accepting incoming connections for the specified service. In this case, if the
nodename argument is null, then the IP address portion of the socket address structure shall be
set to INADDR_ANY for an IPv4 address or IN6ADDR_ANY_INIT for an IPv6 address. If the
AI_PASSIVE flag is not specified, the returned address information shall be suitable for a call to
connect() (for a connection-mode protocol) or for a call to connect(), sendto(), or sendmsg() (for a
connectionless protocol). In this case, if the nodename argument is null, then the IP address
portion of the socket address structure shall be set to the loopback address. The AI_PASSIVE
flag shall be ignored if the nodename argument is not null.

If the AI_CANONNAME flag is specified and the nodename argument is not null, the function
shall attempt to determine the canonical name corresponding to nodename (for example, if
nodename is an alias or shorthand notation for a complete name).

Note: Since different implementations use different conceptual models, the terms ‘‘canonical name’’
and ‘‘alias’’ cannot be precisely defined for the general case. However, Domain Name System
implementations are expected to interpret them as they are used in RFC 1034.

A numeric host address string is not a ‘‘name’’, and thus does not have a ‘‘canonical name’’
form; no address to host name translation is performed. See below for handling of the case
where a canonical name cannot be obtained.

If the AI_NUMERICHOST flag is specified, then a non-null nodename string supplied shall be a
numeric host address string. Otherwise, an [EAI_NONAME] error is returned. This flag shall
prevent any type of name resolution service (for example, the DNS) from being invoked.

If the AI_NUMERICSERV flag is specified, then a non-null servname string supplied shall be a
numeric port string. Otherwise, an [EAI_NONAME] error shall be returned. This flag shall
prevent any type of name resolution service (for example, NIS+) from being invoked.

IP6 If the AI_V4MAPPED flag is specified along with an ai_family of AF_INET6, then getaddrinfo()
shall return IPv4-mapped IPv6 addresses on finding no matching IPv6 addresses (ai_addrlen
shall be 16). The AI_V4MAPPED flag shall be ignored unless ai_family equals AF_INET6. If the
AI_ALL flag is used with the AI_V4MAPPED flag, then getaddrinfo() shall return all matching
IPv6 and IPv4 addresses. The AI_ALL flag without the AI_V4MAPPED flag is ignored.

If the AI_ADDRCONFIG flag is specified, IPv4 addresses shall be returned only if an IPv4
IP6 address is configured on the local system, and IPv6 addresses shall be returned only if an IPv6

address is configured on the local system.

The ai_socktype field to which argument hints points specifies the socket type for the service, as
defined in socket(). If a specific socket type is not given (for example, a value of zero) and the
service name could be interpreted as valid with multiple supported socket types, the
implementation shall attempt to resolve the service name for all supported socket types and, in
the absence of errors, all possible results shall be returned. A non-zero socket type value shall
limit the returned information to values with the specified socket type.

If the ai_family field to which hints points has the value AF_UNSPEC, addresses shall be
returned for use with any address family that can be used with the specified nodename and/or

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 917

30652

30653

30654

30655

30656

30657

30658

30659

30660

30661

30662

30663

30664

30665

30666

30667

30668

30669

30670

30671

30672

30673

30674

30675

30676

30677

30678

30679

30680

30681

30682

30683

30684

30685

30686

30687

30688

30689

30690

30691

30692

30693

30694

30695

30696

30697

30698

freeaddrinfo() System Interfaces

servname. Otherwise, addresses shall be returned for use only with the specified address family.
If ai_family is not AF_UNSPEC and ai_protocol is not zero, then addresses shall be returned for
use only with the specified address family and protocol; the value of ai_protocol shall be
interpreted as in a call to the socket() function with the corresponding values of ai_family and
ai_protocol.

RETURN VALUE
A zero return value for getaddrinfo() indicates successful completion; a non-zero return value
indicates failure. The possible values for the failures are listed in the ERRORS section.

Upon successful return of getaddrinfo(), the location to which res points shall refer to a linked list
of addrinfo structures, each of which shall specify a socket address and information for use in
creating a socket with which to use that socket address. The list shall include at least one
addrinfo structure. The ai_next field of each structure contains a pointer to the next structure on
the list, or a null pointer if it is the last structure on the list. Each structure on the list shall
include values for use with a call to the socket() function, and a socket address for use with the
connect() function or, if the AI_PASSIVE flag was specified, for use with the bind() function. The
fields ai_family, ai_socktype, and ai_protocol shall be usable as the arguments to the socket()
function to create a socket suitable for use with the returned address. The fields ai_addr and
ai_addrlen are usable as the arguments to the connect() or bind() functions with such a socket,
according to the AI_PASSIVE flag.

If nodename is not null, and if requested by the AI_CANONNAME flag, the ai_canonname field of
the first returned addrinfo structure shall point to a null-terminated string containing the
canonical name corresponding to the input nodename; if the canonical name is not available, then
ai_canonname shall refer to the nodename argument or a string with the same contents. The
contents of the ai_flags field of the returned structures are undefined.

All fields in socket address structures returned by getaddrinfo() that are not filled in through an
explicit argument (for example, sin6_flowinfo) shall be set to zero.

Note: This makes it easier to compare socket address structures.

ERRORS
The getaddrinfo() function shall fail and return the corresponding error value if:

[EAI_AGAIN] The name could not be resolved at this time. Future attempts may succeed.

[EAI_BADFLAGS]
The flags parameter had an invalid value.

[EAI_FAIL] A non-recoverable error occurred when attempting to resolve the name.

[EAI_FAMILY] The address family was not recognized.

[EAI_MEMORY] There was a memory allocation failure when trying to allocate storage for the
return value.

[EAI_NONAME] The name does not resolve for the supplied parameters.

Neither nodename nor servname were supplied. At least one of these shall be
supplied.

[EAI_SERVICE] The service passed was not recognized for the specified socket type.

[EAI_SOCKTYPE]
The intended socket type was not recognized.

918 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

30699

30700

30701

30702

30703

30704

30705

30706

30707

30708

30709

30710

30711

30712

30713

30714

30715

30716

30717

30718

30719

30720

30721

30722

30723

30724

30725

30726

30727

30728

30729

30730

30731

30732

30733

30734

30735

30736

30737

30738

30739

30740

System Interfaces freeaddrinfo()

[EAI_SYSTEM] A system error occurred; the error code can be found in errno.

EXAMPLES
The following (incomplete) program demonstrates the use of getaddrinfo() to obtain the socket
address structure(s) for the service named in the program’s command-line argument. The
program then loops through each of the address structures attempting to create and bind a
socket to the address, until it performs a successful bind().

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/socket.h>
#include <netdb.h>

int
main(int argc, char *argv[])
{

struct addrinfo *result, *rp;
int sfd, s;

if (argc != 2) {
fprintf(stderr, "Usage: %s port\n", argv[0]);
exit(EXIT_FAILURE);

}

struct addrinfo hints = {};
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_flags = AI_PASSIVE;
hints.ai_protocol = 0;

s = getaddrinfo(NULL, argv[1], &hints, &result);
if (s != 0) {

fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
exit(EXIT_FAILURE);

}

/* getaddrinfo() returns a list of address structures.
Try each address until a successful bind().
If socket(2) (or bind(2)) fails, close the socket
and try the next address. */

for (rp = result; rp != NULL; rp = rp->ai_next) {
sfd = socket(rp->ai_family, rp->ai_socktype,

rp->ai_protocol);
if (sfd == -1)

continue;

if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0)
break; /* Success */

close(sfd);
}

if (rp == NULL) { /* No address succeeded */
fprintf(stderr, "Could not bind\n");

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 919

30741

30742

30743

30744

30745

30746

30747

30748

30749

30750

30751

30752

30753

30754

30755

30756

30757

30758

30759

30760

30761

30762

30763

30764

30765

30766

30767

30768

30769

30770

30771

30772

30773

30774

30775

30776

30777

30778

30779

30780

30781

30782

30783

30784

30785

30786

freeaddrinfo() System Interfaces

exit(EXIT_FAILURE);
}

freeaddrinfo(result); /* No longer needed */

/* ... use socket bound to sfd ... */
}

APPLICATION USAGE
If the caller handles only TCP and not UDP, for example, then the ai_protocol member of the hints
structure should be set to IPPROTO_TCP when getaddrinfo() is called.

If the caller handles only IPv4 and not IPv6, then the ai_family member of the hints structure
should be set to AF_INET when getaddrinfo() is called.

The term ‘‘canonical name’’ is misleading; it is taken from the Domain Name System (RFC 2181).
It should be noted that the canonical name is a result of alias processing, and not necessarily a
unique attribute of a host, address, or set of addresses. See RFC 2181 for more discussion of this
in the Domain Name System context.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
connect(), endservent(), gai_strerror(), getnameinfo(), socket()

XBD <netdb.h>, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the getaddrinfo() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/19 is applied, adding three notes to the
DESCRIPTION and adding text to the APPLICATION USAGE related to the term ‘‘canonical
name’’. A reference to RFC 2181 is also added to the Informative References.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/20 is applied, making changes for
alignment with IPv6. These include the following:

• Adding AI_V4MAPPED, AI_ALL, and AI_ADDRCONFIG to the allowed values for the
ai_flags field

• Adding a description of AI_ADDRCONFIG

• Adding a description of the consequences of ignoring the AI_PASSIVE flag.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/39 is applied, changing ‘‘corresponding
value’’ to ‘‘corresponding error value’’ in the ERRORS section.

Issue 7
Austin Group Interpretation 1003.1-2001 #013 is applied.

Austin Group Interpretation 1003.1-2001 #146 is applied, updating the DESCRIPTION.

An example is added.

920 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

30787

30788

30789

30790

30791

30792

30793

30794

30795

30796

30797

30798

30799

30800

30801

30802

30803

30804

30805

30806

30807

30808

30809

30810

30811

30812

30813

30814

30815

30816

30817

30818

30819

30820

30821

30822

30823

30824

30825

30826

System Interfaces freelocale()

NAME
freelocale — free resources allocated for a locale object

SYNOPSIS
CX #include <locale.h>

void freelocale(locale_t locobj);

DESCRIPTION
The freelocale() function shall cause the resources allocated for a locale object returned by a call
to the newlocale() or duplocale() functions to be released.

Any use of a locale object that has been freed results in undefined behavior.

RETURN VALUE
None.

ERRORS
None.

EXAMPLES

Freeing Up a Locale Object

The following example shows a code fragment to free a locale object created by newlocale():

#include <locale.h>
...

/* Every locale object allocated with newlocale() should be
* freed using freelocale():
*/

locale_t loc;

/* Get the locale. */

loc = newlocale (LC_CTYPE_MASK | LC_TIME_MASK, "locname", NULL);

/* ... Use the locale object ... */
...

/* Free the locale object resources. */
freelocale (loc);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
duplocale(), newlocale(), uselocale()

XBD <locale.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 921

30827

30828

30829

30830

30831

30832

30833

30834

30835

30836

30837

30838

30839

30840

30841

30842

30843

30844

30845

30846

30847

30848

30849

30850

30851

30852

30853

30854

30855

30856

30857

30858

30859

30860

30861

30862

30863

freelocale() System Interfaces

CHANGE HISTORY
First released in Issue 7.

922 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

30864

30865

System Interfaces freopen()

NAME
freopen — open a stream

SYNOPSIS
#include <stdio.h>

FILE *freopen(const char *restrict filename, const char *restrict mode,
FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The freopen() function shall first attempt to flush the stream associated with stream as if by a call
to fflush(stream). Failure to flush the stream successfully shall be ignored. If filename is not a null
pointer, freopen() shall close any file descriptor associated with stream. Failure to close the file
descriptor successfully shall be ignored. The error and end-of-file indicators for the stream shall
be cleared.

The freopen() function shall open the file whose pathname is the string pointed to by filename
and associate the stream pointed to by stream with it. The mode argument shall be used just as in
fopen().

The original stream shall be closed regardless of whether the subsequent open succeeds.

If filename is a null pointer, the freopen() function shall attempt to change the mode of the stream
to that specified by mode, as if the name of the file currently associated with the stream had been
used. In this case, the file descriptor associated with the stream need not be closed if the call to
freopen() succeeds. It is implementation-defined which changes of mode are permitted (if any),
and under what circumstances.

XSI After a successful call to the freopen() function, the orientation of the stream shall be cleared, the
encoding rule shall be cleared, and the associated mbstate_t object shall be set to describe an
initial conversion state.

CX If filename is not a null pointer, or if filename is a null pointer and the specified mode change
necessitates the file descriptor associated with the stream to be closed and reopened, the file
descriptor associated with the reopened stream shall be allocated and opened as if by a call to
open() with the following flags:

freopen() Mode open() Flags

r or rb O_RDONLY
w or wb O_WRONLY|O_CREAT|O_TRUNC
a or ab O_WRONLY|O_CREAT|O_APPEND
r+ or rb+ or r+b O_RDWR
w+ or wb+ or w+b O_RDWR|O_CREAT|O_TRUNC
a+ or ab+ or a+b O_RDWR|O_CREAT|O_APPEND

RETURN VALUE
Upon successful completion, freopen() shall return the value of stream. Otherwise, a null pointer

CX shall be returned, and errno shall be set to indicate the error.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 923

30866

30867

30868

30869

30870

30871

30872

30873

30874

30875

30876

30877

30878

30879

30880

30881

30882

30883

30884

30885

30886

30887

30888

30889

30890

30891

30892

30893

30894

30895

30896

30897

30898

30899

30900

30901

30902

30903

30904

30905

30906

freopen() System Interfaces

ERRORS
The freopen() function shall fail if:

CX [EACCES] Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by mode are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be
created.

CX [EBADF] The file descriptor underlying the stream is not a valid file descriptor when
filename is a null pointer.

CX [EINTR] A signal was caught during freopen().

CX [EISDIR] The named file is a directory and mode requires write access.

CX [ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

CX [EMFILE] All file descriptors available to the process are currently open.

CX [ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

CX [ENFILE] The maximum allowable number of files is currently open in the system.

CX [ENOENT] A component of filename does not name an existing file or filename is an empty
string.

CX [ENOSPC] The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and it was to be created.

CX [ENOTDIR] A component of the path prefix is not a directory, or the filename argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

CX [ENXIO] The named file is a character special or block special file, and the device
associated with this special file does not exist.

CX [EOVERFLOW] The named file is a regular file and the size of the file cannot be represented
correctly in an object of type off_t.

CX [EROFS] The named file resides on a read-only file system and mode requires write
access.

The freopen() function may fail if:

CX [EBADF] The mode with which the file descriptor underlying the stream was opened
does not support the requested mode when filename is a null pointer.

CX [EINVAL] The value of the mode argument is not valid.

CX [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

CX [ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

924 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

30907

30908

30909

30910

30911

30912

30913

30914

30915

30916

30917

30918

30919

30920

30921

30922

30923

30924

30925

30926

30927

30928

30929

30930

30931

30932

30933

30934

30935

30936

30937

30938

30939

30940

30941

30942

30943

30944

30945

30946

System Interfaces freopen()

CX [ENOMEM] Insufficient storage space is available.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

CX [ETXTBSY] The file is a pure procedure (shared text) file that is being executed and mode
requires write access.

EXAMPLES

Directing Standard Output to a File

The following example logs all standard output to the /tmp/logfile file.

#include <stdio.h>
...
FILE *fp;
...
fp = freopen ("/tmp/logfile", "a+", stdout);
...

APPLICATION USAGE
The freopen() function is typically used to attach the pre-opened streams associated with stdin,
stdout, and stderr to other files.

Since implementations are not required to support any stream mode changes when the filename
argument is NULL, portable applications cannot rely on the use of freopen() to change the stream
mode, and use of this feature is discouraged. The feature was originally added to the ISO C
standard in order to facilitate changing stdin and stdout to binary mode. Since a ’b’ character in
the mode has no effect on POSIX systems, this use of the feature is unnecessary in POSIX
applications. However, even though the ’b’ is ignored, a successful call to freopen(NULL, "wb",
stdout) does have an effect. In particular, for regular files it truncates the file and sets the file-
position indicator for the stream to the start of the file. It is possible that these side-effects are an
unintended consequence of the way the feature is specified in the ISO/IEC 9899: 1999 standard,
but unless or until the ISO C standard is changed, applications which successfully call
freopen(NULL, "wb", stdout) will behave in unexpected ways on conforming systems in situations
such as:

{ appl file1; appl file2; } > file3

which will result in file3 containing only the output from the second invocation of appl.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fclose(), fdopen(), fflush(), fmemopen(), fopen(), mbsinit(), open(), open_memstream()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 925

30947

30948

30949

30950

30951

30952

30953

30954

30955

30956

30957

30958

30959

30960

30961

30962

30963

30964

30965

30966

30967

30968

30969

30970

30971

30972

30973

30974

30975

30976

30977

30978

30979

30980

30981

30982

30983

30984

30985

30986

freopen() System Interfaces

Issue 5
The DESCRIPTION is updated to indicate that the orientation of the stream is cleared and the
conversion state of the stream is set to an initial conversion state by a successful call to the
freopen() function.

Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open
file description. This change is to support large files.

• In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
large files.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

• The [EINVAL], [ENOMEM], [ENXIO], and [ETXTBSY] optional error conditions are added.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The freopen() prototype is updated.

• The DESCRIPTION is updated.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

The DESCRIPTION is updated regarding failure to close, changing the ‘‘file’’ to ‘‘file descriptor’’.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/40 is applied, adding the following
sentence to the DESCRIPTION: ‘‘In this case, the file descriptor associated with the stream need
not be closed if the call to freopen() succeeds.’’.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/41 is applied, adding an mandatory
[EBADF] error, and an optional [EBADF] error to the ERRORS section.

Issue 7
Austin Group Interpretation 1003.1-2001 #043 is applied, clarifying that the freopen() function
allocates a file descriptor as per open().

Austin Group Interpretation 1003.1-2001 #143 is applied.

Austin Group Interpretation 1003.1-2001 #159 is applied, clarifying requirements for the flags set
on the open file description.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-150 and SD5-XSH-ERN-219 are applied.

926 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

30987

30988

30989

30990

30991

30992

30993

30994

30995

30996

30997

30998

30999

31000

31001

31002

31003

31004

31005

31006

31007

31008

31009

31010

31011

31012

31013

31014

31015

31016

31017

31018

31019

31020

31021

System Interfaces frexp()

NAME
frexp, frexpf, frexpl — extract mantissa and exponent from a double precision number

SYNOPSIS
#include <math.h>

double frexp(double num, int *exp);
float frexpf(float num, int *exp);
long double frexpl(long double num, int *exp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall break a floating-point number num into a normalized fraction and an
integral power of 2. The integer exponent shall be stored in the int object pointed to by exp.

RETURN VALUE
For finite arguments, these functions shall return the value x, such that x has a magnitude in the
interval [½,1) or 0, and num equals x times 2 raised to the power *exp.

MX If num is NaN, a NaN shall be returned, and the value of *exp is unspecified.

If num is ±0, ±0 shall be returned, and the value of *exp shall be 0.

If num is ±Inf, num shall be returned, and the value of *exp is unspecified.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan(), ldexp(), modf()

XBD <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 927

31022

31023

31024

31025

31026

31027

31028

31029

31030

31031

31032

31033

31034

31035

31036

31037

31038

31039

31040

31041

31042

31043

31044

31045

31046

31047

31048

31049

31050

31051

31052

31053

31054

31055

31056

31057

31058

frexp() System Interfaces

Issue 6
The frexpf() and frexpl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

928 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

31059

31060

31061

31062

31063

31064

31065

System Interfaces fscanf()

NAME
fscanf, scanf, sscanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int fscanf(FILE *restrict stream, const char *restrict format, ...);
int scanf(const char *restrict format, ...);
int sscanf(const char *restrict s, const char *restrict format, ...);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fscanf() function shall read from the named input stream. The scanf() function shall read
from the standard input stream stdin. The sscanf() function shall read from the string s. Each
function reads bytes, interprets them according to a format, and stores the results in its
arguments. Each expects, as arguments, a control string format described below, and a set of
pointer arguments indicating where the converted input should be stored. The result is
undefined if there are insufficient arguments for the format. If the format is exhausted while
arguments remain, the excess arguments shall be evaluated but otherwise ignored.

CX Conversions can be applied to the nth argument after the format in the argument list, rather than
to the next unused argument. In this case, the conversion specifier character % (see below) is
replaced by the sequence "%n$", where n is a decimal integer in the range [1,{NL_ARGMAX}].
This feature provides for the definition of format strings that select arguments in an order
appropriate to specific languages. In format strings containing the "%n$" form of conversion
specifications, it is unspecified whether numbered arguments in the argument list can be
referenced from the format string more than once.

The format can contain either form of a conversion specification—that is, % or "%n$"—but the
two forms cannot be mixed within a single format string. The only exception to this is that %% or
%* can be mixed with the "%n$" form. When numbered argument specifications are used,
specifying the Nth argument requires that all the leading arguments, from the first to the
(N−1)th, are pointers.

The fscanf() function in all its forms shall allow detection of a language-dependent radix
character in the input string. The radix character is defined in the locale of the process (category
LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
radix character shall default to a <period> (’.’).

The format is a character string, beginning and ending in its initial shift state, if any, composed
of zero or more directives. Each directive is composed of one of the following: one or more
white-space characters (<space>, <tab>, <newline>, <vertical-tab>, or <form-feed>); an ordinary
character (neither ’%’ nor a white-space character); or a conversion specification. Each

CX conversion specification is introduced by the character ’%’ or the character sequence "%n$",
after which the following appear in sequence:

• An optional assignment-suppressing character ’*’.

• An optional non-zero decimal integer that specifies the maximum field width.

CX • An optional assignment-allocation character ’m’.

• An option length modifier that specifies the size of the receiving object.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 929

31066

31067

31068

31069

31070

31071

31072

31073

31074

31075

31076

31077

31078

31079

31080

31081

31082

31083

31084

31085

31086

31087

31088

31089

31090

31091

31092

31093

31094

31095

31096

31097

31098

31099

31100

31101

31102

31103

31104

31105

31106

31107

31108

31109

fscanf() System Interfaces

• A conversion specifier character that specifies the type of conversion to be applied. The valid
conversion specifiers are described below.

The fscanf() functions shall execute each directive of the format in turn. If a directive fails, as
detailed below, the function shall return. Failures are described as input failures (due to the
unavailability of input bytes) or matching failures (due to inappropriate input).

A directive composed of one or more white-space characters shall be executed by reading input
until no more valid input can be read, or up to the first byte which is not a white-space character,
which remains unread.

A directive that is an ordinary character shall be executed as follows: the next byte shall be read
from the input and compared with the byte that comprises the directive; if the comparison
shows that they are not equivalent, the directive shall fail, and the differing and subsequent
bytes shall remain unread. Similarly, if end-of-file, an encoding error, or a read error prevents a
character from being read, the directive shall fail.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each conversion character. A conversion specification shall be executed in
the following steps.

Input white-space characters (as specified by isspace()) shall be skipped, unless the conversion
specification includes a [, c, C, or n conversion specifier.

An item shall be read from the input, unless the conversion specification includes an n
conversion specifier. An input item shall be defined as the longest sequence of input bytes (up to
any specified maximum field width, which may be measured in characters or bytes dependent
on the conversion specifier) which is an initial subsequence of a matching sequence. The first
byte, if any, after the input item shall remain unread. If the length of the input item is 0, the
execution of the conversion specification shall fail; this condition is a matching failure, unless
end-of-file, an encoding error, or a read error prevented input from the stream, in which case it is
an input failure.

Except in the case of a % conversion specifier, the input item (or, in the case of a %n conversion
specification, the count of input bytes) shall be converted to a type appropriate to the conversion
character. If the input item is not a matching sequence, the execution of the conversion
specification fails; this condition is a matching failure. Unless assignment suppression was
indicated by a ’*’, the result of the conversion shall be placed in the object pointed to by the
first argument following the format argument that has not already received a conversion result if

CX the conversion specification is introduced by %, or in the nth argument if introduced by the
character sequence "%n$". If this object does not have an appropriate type, or if the result of the
conversion cannot be represented in the space provided, the behavior is undefined.

CX The %c, %s, and %[conversion specifiers shall accept an optional assignment-allocation
character ’m’, which shall cause a memory buffer to be allocated to hold the string converted
including a terminating null character. In such a case, the argument corresponding to the
conversion specifier should be a reference to a pointer variable that will receive a pointer to the
allocated buffer. The system shall allocate a buffer as if malloc() had been called. The application
shall be responsible for freeing the memory after usage. If there is insufficient memory to
allocate a buffer, the function shall set errno to [ENOMEM] and a conversion error shall result. If
the function returns EOF, any memory successfully allocated for parameters using assignment-
allocation character ’m’ by this call shall be freed before the function returns.

930 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

31110

31111

31112

31113

31114

31115

31116

31117

31118

31119

31120

31121

31122

31123

31124

31125

31126

31127

31128

31129

31130

31131

31132

31133

31134

31135

31136

31137

31138

31139

31140

31141

31142

31143

31144

31145

31146

31147

31148

31149

31150

31151

31152

31153

System Interfaces fscanf()

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to signed char or unsigned char.

h Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to short or unsigned short.

l (ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to long or unsigned long; that a following a, A, e, E, f, F,
g, or G conversion specifier applies to an argument with type pointer to double; or that
a following c, s, or [conversion specifier applies to an argument with type pointer to

CX wchar_t. If the ’m’ assignment-allocation character is specified, the conversion
applies to an argument with the type pointer to a pointer to wchar_t.

ll (ell-ell)
Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to long long or unsigned long long.

j Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to intmax_t or uintmax_t.

z Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to size_t or the corresponding signed integer type.

t Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to ptrdiff_t or the corresponding unsigned type.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an
argument with type pointer to long double.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The following conversion specifiers are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of strtol() with the value 10 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of strtol() with 0 for the base argument. In the absence of a size
modifier, the application shall ensure that the corresponding argument is a pointer to
int.

o Matches an optionally signed octal integer, whose format is the same as expected for
the subject sequence of strtoul() with the value 8 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to unsigned.

u Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of strtoul() with the value 10 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to unsigned.

x Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of strtoul() with the value 16 for the base argument. In
the absence of a size modifier, the application shall ensure that the corresponding

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 931

31154

31155

31156

31157

31158

31159

31160

31161

31162

31163

31164

31165

31166

31167

31168

31169

31170

31171

31172

31173

31174

31175

31176

31177

31178

31179

31180

31181

31182

31183

31184

31185

31186

31187

31188

31189

31190

31191

31192

31193

31194

31195

31196

31197

fscanf() System Interfaces

argument is a pointer to unsigned.

a, e, f, g
Matches an optionally signed floating-point number, infinity, or NaN, whose format is
the same as expected for the subject sequence of strtod(). In the absence of a size
modifier, the application shall ensure that the corresponding argument is a pointer to
float.

If the fprintf() family of functions generates character string representations for infinity
and NaN (a symbolic entity encoded in floating-point format) to support
IEEE Std 754-1985, the fscanf() family of functions shall recognize them as input.

s Matches a sequence of bytes that are not white-space characters. If the ’m’ assignment-
allocation character is not specified, the application shall ensure that the corresponding
argument is a pointer to the initial byte of an array of char, signed char, or unsigned
char large enough to accept the sequence and a terminating null character code, which

CX shall be added automatically. Otherwise, the application shall ensure that the
corresponding argument is a pointer to a pointer to a char.

If an l (ell) qualifier is present, the input is a sequence of characters that begins in the
initial shift state. Each character shall be converted to a wide character as if by a call to
the mbrtowc() function, with the conversion state described by an mbstate_t object
initialized to zero before the first character is converted. If the ’m’ assignment-
allocation character is not specified, the application shall ensure that the corresponding
argument is a pointer to an array of wchar_t large enough to accept the sequence and

CX the terminating null wide character, which shall be added automatically. Otherwise,
the application shall ensure that the corresponding argument is a pointer to a pointer to
a wchar_t.

[Matches a non-empty sequence of bytes from a set of expected bytes (the scanset). The
normal skip over white-space characters shall be suppressed in this case. If the ’m’
assignment-allocation character is not specified, the application shall ensure that the
corresponding argument is a pointer to the initial byte of an array of char, signed char,
or unsigned char large enough to accept the sequence and a terminating null byte,

CX which shall be added automatically. Otherwise, the application shall ensure that the
corresponding argument is a pointer to a pointer to a char.

If an l (ell) qualifier is present, the input is a sequence of characters that begins in the
initial shift state. Each character in the sequence shall be converted to a wide character
as if by a call to the mbrtowc() function, with the conversion state described by an
mbstate_t object initialized to zero before the first character is converted. If the ’m’
assignment-allocation character is not specified, the application shall ensure that the
corresponding argument is a pointer to an array of wchar_t large enough to accept the

CX sequence and the terminating null wide character, which shall be added automatically.
Otherwise, the application shall ensure that the corresponding argument is a pointer to
a pointer to a wchar_t.

The conversion specification includes all subsequent bytes in the format string up to
and including the matching <right-square-bracket> (’]’). The bytes between the
square brackets (the scanlist) comprise the scanset, unless the byte after the <left-
square-bracket> is a <circumflex> (’ˆ’), in which case the scanset contains all bytes
that do not appear in the scanlist between the <circumflex> and the <right-square-
bracket>. If the conversion specification begins with "[]" or "[ˆ]", the <right-
square-bracket> is included in the scanlist and the next <right-square-bracket> is the
matching <right-square-bracket> that ends the conversion specification; otherwise, the

932 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

31198

31199

31200

31201

31202

31203

31204

31205

31206

31207

31208

31209

31210

31211

31212

31213

31214

31215

31216

31217

31218

31219

31220

31221

31222

31223

31224

31225

31226

31227

31228

31229

31230

31231

31232

31233

31234

31235

31236

31237

31238

31239

31240

31241

31242

31243

31244

31245

System Interfaces fscanf()

first <right-square-bracket> is the one that ends the conversion specification. If a ’−’ is
in the scanlist and is not the first character, nor the second where the first character is a
’ˆ’, nor the last character, the behavior is implementation-defined.

c Matches a sequence of bytes of the number specified by the field width (1 if no field
width is present in the conversion specification). No null byte is added. The normal
skip over white-space characters shall be suppressed in this case. If the ’m’
assignment-allocation character is not specified, the application shall ensure that the
corresponding argument is a pointer to the initial byte of an array of char, signed char,

CX or unsigned char large enough to accept the sequence. Otherwise, the application
shall ensure that the corresponding argument is a pointer to a pointer to a char.

If an l (ell) qualifier is present, the input shall be a sequence of characters that begins in
the initial shift state. Each character in the sequence is converted to a wide character as
if by a call to the mbrtowc() function, with the conversion state described by an
mbstate_t object initialized to zero before the first character is converted. No null wide
character is added. If the ’m’ assignment-allocation character is not specified, the
application shall ensure that the corresponding argument is a pointer to an array of

CX wchar_t large enough to accept the resulting sequence of wide characters. Otherwise,
the application shall ensure that the corresponding argument is a pointer to a pointer to
a wchar_t.

p Matches an implementation-defined set of sequences, which shall be the same as the set
of sequences that is produced by the %p conversion specification of the corresponding
fprintf() functions. The application shall ensure that the corresponding argument is a
pointer to a pointer to void. The interpretation of the input item is implementation-
defined. If the input item is a value converted earlier during the same program
execution, the pointer that results shall compare equal to that value; otherwise, the
behavior of the %p conversion specification is undefined.

n No input is consumed. The application shall ensure that the corresponding argument is
a pointer to the integer into which shall be written the number of bytes read from the
input so far by this call to the fscanf() functions. Execution of a %n conversion
specification shall not increment the assignment count returned at the completion of
execution of the function. No argument shall be converted, but one shall be consumed.
If the conversion specification includes an assignment-suppressing character or a field
width, the behavior is undefined.

XSI C Equivalent to lc.

XSI S Equivalent to ls.

% Matches a single ’%’ character; no conversion or assignment occurs. The complete
conversion specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers A, E, F, G, and X are also valid and shall be equivalent to a, e, f, g, and
x, respectively.

If end-of-file is encountered during input, conversion shall be terminated. If end-of-file occurs
before any bytes matching the current conversion specification (except for %n) have been read
(other than leading white-space characters, where permitted), execution of the current
conversion specification shall terminate with an input failure. Otherwise, unless execution of the
current conversion specification is terminated with a matching failure, execution of the
following conversion specification (if any) shall be terminated with an input failure.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 933

31246

31247

31248

31249

31250

31251

31252

31253

31254

31255

31256

31257

31258

31259

31260

31261

31262

31263

31264

31265

31266

31267

31268

31269

31270

31271

31272

31273

31274

31275

31276

31277

31278

31279

31280

31281

31282

31283

31284

31285

31286

31287

31288

31289

31290

31291

fscanf() System Interfaces

Reaching the end of the string in sscanf() shall be equivalent to encountering end-of-file for
fscanf().

If conversion terminates on a conflicting input, the offending input is left unread in the input.
Any trailing white space (including <newline> characters) shall be left unread unless matched
by a conversion specification. The success of literal matches and suppressed assignments is only
directly determinable via the %n conversion specification.

CX The fscanf() and scanf() functions may mark the last data access timestamp of the file associated
with stream for update. The last data access timestamp shall be marked for update by the first
successful execution of fgetc(), fgets(), fread(), getc(), getchar(), getdelim(), getline(), gets(),
fscanf(), or scanf() using stream that returns data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, these functions shall return the number of successfully matched
and assigned input items; this number can be zero in the event of an early matching failure. If
the input ends before the first matching failure or conversion, EOF shall be returned. If any

CX error occurs, EOF shall be returned, and errno shall be set to indicate the error. If a read error
occurs, the error indicator for the stream shall be set.

ERRORS
For the conditions under which the fscanf() functions fail and may fail, refer to fgetc() or
fgetwc().

In addition, the fscanf() function shall fail if:

CX [EILSEQ] Input byte sequence does not form a valid character.

[ENOMEM] Insufficient storage space is available.

In addition, the fscanf() function may fail if:

CX [EINVAL] There are insufficient arguments.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E−1 Hamster

assigns to n the value 3, to i the value 25, to x the value 5.432, and name contains the string
"Hamster".

The call:

int i; float x; char name[50];
(void) scanf("%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

assigns 56 to i, 789.0 to x, skips 0123, and places the string "56\0" in name. The next call to
getchar() shall return the character ’a’.

934 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

31292

31293

31294

31295

31296

31297

31298

31299

31300

31301

31302

31303

31304

31305

31306

31307

31308

31309

31310

31311

31312

31313

31314

31315

31316

31317

31318

31319

31320

31321

31322

31323

31324

31325

31326

31327

31328

31329

31330

System Interfaces fscanf()

Reading Data into an Array

The following call uses fscanf() to read three floating-point numbers from standard input into
the input array.

float input[3]; fscanf (stdin, "%f %f %f", input, input+1, input+2);

APPLICATION USAGE
If the application calling fscanf() has any objects of type wint_t or wchar_t, it must also include
the <wchar.h> header to have these objects defined.

For functions that allocate memory as if by malloc(), the application should release such memory
when it is no longer required by a call to free(). For fscanf(), this is memory allocated via use of
the ’m’ assignment-allocation character.

RATIONALE
This function is aligned with the ISO/IEC 9899: 1999 standard, and in doing so a few ‘‘obvious’’
things were not included. Specifically, the set of characters allowed in a scanset is limited to
single-byte characters. In other similar places, multi-byte characters have been permitted, but
for alignment with the ISO/IEC 9899: 1999 standard, it has not been done here. Applications
needing this could use the corresponding wide-character functions to achieve the desired
results.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf(), getc(), setlocale(), strtod(), strtol(), strtoul(), wcrtomb()

XBD Chapter 7 (on page 135), <langinfo.h>, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the l (ell) qualifier is
now defined for the c, s, and [conversion specifiers.

The DESCRIPTION is updated to indicate that if infinity and NaN can be generated by the
fprintf() family of functions, then they are recognized by the fscanf() family.

Issue 6
The Open Group Corrigenda U021/7 and U028/10 are applied. These correct several
occurrences of ‘‘characters’’ in the text which have been replaced with the term ‘‘bytes’’.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The prototypes for fscanf(), scanf(), and sscanf() are updated.

• The DESCRIPTION is updated.

• The hh, ll, j, t, and z length modifiers are added.

• The a, A, and F conversion characters are added.

The DESCRIPTION is updated to use the terms ‘‘conversion specifier’’ and ‘‘conversion
specification’’ consistently.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 935

31331

31332

31333

31334

31335

31336

31337

31338

31339

31340

31341

31342

31343

31344

31345

31346

31347

31348

31349

31350

31351

31352

31353

31354

31355

31356

31357

31358

31359

31360

31361

31362

31363

31364

31365

31366

31367

31368

31369

31370

fscanf() System Interfaces

Issue 7
Austin Group Interpretation 1003.1-2001 #170 is applied.

SD5-XSH-ERN-9 is applied, correcting fscanf() to scanf() in the DESCRIPTION.

SD5-XSH-ERN-132 is applied, adding the assignment-allocation character ’m’.

Functionality relating to the %n$ form of conversion specification is moved from the XSI option
to the Base.

Changes are made related to support for finegrained timestamps.

The APPLICATION USAGE section is updated to clarify that memory is allocated as if by
malloc().

936 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

31371

31372

31373

31374

31375

31376

31377

31378

31379

System Interfaces fseek()

NAME
fseek, fseeko — reposition a file-position indicator in a stream

SYNOPSIS
#include <stdio.h>

int fseek(FILE *stream, long offset, int whence);
CX int fseeko(FILE *stream, off_t offset, int whence);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fseek() function shall set the file-position indicator for the stream pointed to by stream. If a
read or write error occurs, the error indicator for the stream shall be set and fseek() fails.

The new position, measured in bytes from the beginning of the file, shall be obtained by adding
offset to the position specified by whence. The specified point is the beginning of the file for
SEEK_SET, the current value of the file-position indicator for SEEK_CUR, or end-of-file for
SEEK_END.

If the stream is to be used with wide-character input/output functions, the application shall
ensure that offset is either 0 or a value returned by an earlier call to ftell() on the same stream and
whence is SEEK_SET.

A successful call to fseek() shall clear the end-of-file indicator for the stream and undo any effects
of ungetc() and ungetwc() on the same stream. After an fseek() call, the next operation on an
update stream may be either input or output.

CX If the most recent operation, other than ftell(), on a given stream is fflush(), the file offset in the
underlying open file description shall be adjusted to reflect the location specified by fseek().

The fseek() function shall allow the file-position indicator to be set beyond the end of existing
data in the file. If data is later written at this point, subsequent reads of data in the gap shall
return bytes with the value 0 until data is actually written into the gap.

The behavior of fseek() on devices which are incapable of seeking is implementation-defined.
The value of the file offset associated with such a device is undefined.

If the stream is writable and buffered data had not been written to the underlying file, fseek()
shall cause the unwritten data to be written to the file and shall mark the last data modification
and last file status change timestamps of the file for update.

In a locale with state-dependent encoding, whether fseek() restores the stream’s shift state is
implementation-defined.

The fseeko() function shall be equivalent to the fseek() function except that the offset argument is
of type off_t.

RETURN VALUE
CX The fseek() and fseeko() functions shall return 0 if they succeed.

CX Otherwise, they shall return −1 and set errno to indicate the error.

ERRORS
CXCX The fseek() and fseeko() functions shall fail if, either the stream is unbuffered or the stream’s

buffer needed to be flushed, and the call to fseek() or fseeko() causes an underlying lseek() or
write() to be invoked, and:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 937

31380

31381

31382

31383

31384

31385

31386

31387

31388

31389

31390

31391

31392

31393

31394

31395

31396

31397

31398

31399

31400

31401

31402

31403

31404

31405

31406

31407

31408

31409

31410

31411

31412

31413

31414

31415

31416

31417

31418

31419

31420

31421

31422

fseek() System Interfaces

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the thread would be
delayed in the write operation.

CX [EBADF] The file descriptor underlying the stream file is not open for writing or the
stream’s buffer needed to be flushed and the file is not open.

CX [EFBIG] An attempt was made to write a file that exceeds the maximum file size.

XSI [EFBIG] An attempt was made to write a file that exceeds the file size limit of the
process.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

CX [EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EINVAL] The whence argument is invalid. The resulting file-position indicator would be
set to a negative value.

CX [EIO] A physical I/O error has occurred, or the process is a member of a background
process group attempting to perform a write() to its controlling terminal,
TOSTOP is set, the process is neither ignoring nor blocking SIGTTOU, and the
process group of the process is orphaned. This error may also be returned
under implementation-defined conditions.

CX [ENOSPC] There was no free space remaining on the device containing the file.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

CX [EOVERFLOW] For fseek(), the resulting file offset would be a value which cannot be
represented correctly in an object of type long.

CX [EOVERFLOW] For fseeko(), the resulting file offset would be a value which cannot be
represented correctly in an object of type off_t.

CX [EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading
by any process; a SIGPIPE signal shall also be sent to the thread.

CX [ESPIPE] The file descriptor underlying stream is associated with a pipe or FIFO.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), fsetpos(), ftell(), getrlimit(), lseek(), rewind(), ulimit(), ungetc(), write()

XBD <stdio.h>

938 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

31423

31424

31425

31426

31427

31428

31429

31430

31431

31432

31433

31434

31435

31436

31437

31438

31439

31440

31441

31442

31443

31444

31445

31446

31447

31448

31449

31450

31451

31452

31453

31454

31455

31456

31457

31458

31459

31460

31461

System Interfaces fseek()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The fseeko() function is added.

• The [EFBIG], [EOVERFLOW], and [ENXIO] mandatory error conditions are added.

The following change is incorporated for alignment with the FIPS requirements:

• The [EINTR] error is no longer an indication that the implementation does not report
partial transfers.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The DESCRIPTION is updated to explicitly state that fseek() sets the file-position indicator, and
then on error the error indicator is set and fseek() fails. This is for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/42 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

Issue 7
Changes are made related to support for finegrained timestamps.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 939

31462

31463

31464

31465

31466

31467

31468

31469

31470

31471

31472

31473

31474

31475

31476

31477

31478

31479

31480

31481

31482

31483

31484

31485

fsetpos() System Interfaces

NAME
fsetpos — set current file position

SYNOPSIS
#include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fsetpos() function shall set the file position and state indicators for the stream pointed to by
stream according to the value of the object pointed to by pos, which the application shall ensure is
a value obtained from an earlier call to fgetpos() on the same stream. If a read or write error
occurs, the error indicator for the stream shall be set and fsetpos() fails.

A successful call to the fsetpos() function shall clear the end-of-file indicator for the stream and
undo any effects of ungetc() on the same stream. After an fsetpos() call, the next operation on an
update stream may be either input or output.

CX The behavior of fsetpos() on devices which are incapable of seeking is implementation-defined.
The value of the file offset associated with such a device is undefined.

RETURN VALUE
The fsetpos() function shall return 0 if it succeeds; otherwise, it shall return a non-zero value and
set errno to indicate the error.

ERRORS
CX The fsetpos() function shall fail if, either the stream is unbuffered or the stream’s buffer needed to

be flushed, and the call to fsetpos() causes an underlying lseek() or write() to be invoked, and:

CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the thread would be
delayed in the write operation.

CX [EBADF] The file descriptor underlying the stream file is not open for writing or the
stream’s buffer needed to be flushed and the file is not open.

CX [EFBIG] An attempt was made to write a file that exceeds the maximum file size.

XSI [EFBIG] An attempt was made to write a file that exceeds the file size limit of the
process.

CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

CX [EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

CX [EIO] A physical I/O error has occurred, or the process is a member of a background
process group attempting to perform a write() to its controlling terminal,
TOSTOP is set, the process is neither ignoring nor blocking SIGTTOU, and the
process group of the process is orphaned. This error may also be returned
under implementation-defined conditions.

CX [ENOSPC] There was no free space remaining on the device containing the file.

CX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

940 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

31486

31487

31488

31489

31490

31491

31492

31493

31494

31495

31496

31497

31498

31499

31500

31501

31502

31503

31504

31505

31506

31507

31508

31509

31510

31511

31512

31513

31514

31515

31516

31517

31518

31519

31520

31521

31522

31523

31524

31525

31526

31527

31528

System Interfaces fsetpos()

CX [EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading
by any process; a SIGPIPE signal shall also be sent to the thread.

CX [ESPIPE] The file descriptor underlying stream is associated with a pipe or FIFO.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), ftell(), lseek(), rewind(), ungetc(), write()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Issue 6
Extensions beyond the ISO C standard are marked.

An additional [ESPIPE] error condition is added for sockets.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The DESCRIPTION is updated to clarify that the error indicator is set for the stream on a read or
write error. This is for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/21 is applied, deleting an erroneous
[EINVAL] error case from the ERRORS section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/43 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

Issue 7
SD5-XSH-ERN-220 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 941

31529

31530

31531

31532

31533

31534

31535

31536

31537

31538

31539

31540

31541

31542

31543

31544

31545

31546

31547

31548

31549

31550

31551

31552

31553

31554

31555

31556

31557

fstat() System Interfaces

NAME
fstat — get file status

SYNOPSIS
#include <sys/stat.h>

int fstat(int fildes, struct stat *buf);

DESCRIPTION
The fstat() function shall obtain information about an open file associated with the file
descriptor fildes, and shall write it to the area pointed to by buf .

SHM If fildes references a shared memory object, the implementation shall update in the stat structure
pointed to by the buf argument the st_uid, st_gid, st_size, and st_mode fields, and only the
S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be
valid. The implementation may update other fields and flags.

TYM If fildes references a typed memory object, the implementation shall update in the stat structure
pointed to by the buf argument the st_uid, st_gid, st_size, and st_mode fields, and only the
S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be
valid. The implementation may update other fields and flags.

The buf argument is a pointer to a stat structure, as defined in <sys/stat.h>, into which
information is placed concerning the file.

For all other file types defined in this volume of POSIX.1-2008, the structure members st_mode,
st_ino, st_dev, st_uid, st_gid, st_atim, st_ctim, and st_mtim shall have meaningful values and the
value of the st_nlink member shall be set to the number of links to the file.

An implementation that provides additional or alternative file access control mechanisms may,
under implementation-defined conditions, cause fstat() to fail.

The fstat() function shall update any time-related fields (as described in XBD Section 4.8, on
page 109), before writing into the stat structure.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The fstat() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EIO] An I/O error occurred while reading from the file system.

[EOVERFLOW] The file size in bytes or the number of blocks allocated to the file or the file
serial number cannot be represented correctly in the structure pointed to by
buf .

The fstat() function may fail if:

[EOVERFLOW] One of the values is too large to store into the structure pointed to by the buf
argument.

942 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

31558

31559

31560

31561

31562

31563

31564

31565

31566

31567

31568

31569

31570

31571

31572

31573

31574

31575

31576

31577

31578

31579

31580

31581

31582

31583

31584

31585

31586

31587

31588

31589

31590

31591

31592

31593

31594

31595

System Interfaces fstat()

EXAMPLES

Obtaining File Status Information

The following example shows how to obtain file status information for a file named
/home/cnd/mod1. The structure variable buffer is defined for the stat structure. The
/home/cnd/mod1 file is opened with read/write privileges and is passed to the open file
descriptor fildes.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

struct stat buffer;
int status;
...
fildes = open("/home/cnd/mod1", O_RDWR);
status = fstat(fildes, &buffer);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fstatat()

XBD Section 4.8 (on page 109), <sys/stat.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [EIO] mandatory error condition is added.

• The [EOVERFLOW] mandatory error condition is added. This change is to support large
files.

• The [EOVERFLOW] optional error condition is added.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
shared memory object semantics apply to typed memory objects.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 943

31596

31597

31598

31599

31600

31601

31602

31603

31604

31605

31606

31607

31608

31609

31610

31611

31612

31613

31614

31615

31616

31617

31618

31619

31620

31621

31622

31623

31624

31625

31626

31627

31628

31629

31630

31631

31632

31633

31634

31635

31636

fstat() System Interfaces

Issue 7
XSH-SD5-ERN-161 is applied, updating the DESCRIPTION to clarify to which file types st_nlink
applies.

Changes are made related to support for finegrained timestamps.

944 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

31637

31638

31639

31640

System Interfaces fstatat()

NAME
fstatat, lstat, stat — get file status

SYNOPSIS
#include <sys/stat.h>

int fstatat(int fd, const char *restrict path,
struct stat *restrict buf, int flag);

int lstat(const char *restrict path, struct stat *restrict buf);
int stat(const char *restrict path, struct stat *restrict buf);

DESCRIPTION
The stat() function shall obtain information about the named file and write it to the area pointed
to by the buf argument. The path argument points to a pathname naming a file. Read, write, or
execute permission of the named file is not required. An implementation that provides
additional or alternate file access control mechanisms may, under implementation-defined
conditions, cause stat() to fail. In particular, the system may deny the existence of the file
specified by path.

If the named file is a symbolic link, the stat() function shall continue pathname resolution using
the contents of the symbolic link, and shall return information pertaining to the resulting file if
the file exists.

The buf argument is a pointer to a stat structure, as defined in the <sys/stat.h> header, into
which information is placed concerning the file.

The stat() function shall update any time-related fields (as described in XBD Section 4.8, on page
109), before writing into the stat structure.

SHM If the named file is a shared memory object, the implementation shall update in the stat structure
pointed to by the buf argument the st_uid, st_gid, st_size, and st_mode fields, and only the
S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be
valid. The implementation may update other fields and flags.

TYM If the named file is a typed memory object, the implementation shall update in the stat structure
pointed to by the buf argument the st_uid, st_gid, st_size, and st_mode fields, and only the
S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be
valid. The implementation may update other fields and flags.

For all other file types defined in this volume of POSIX.1-2008, the structure members st_mode,
st_ino, st_dev, st_uid, st_gid, st_atim, st_ctim, and st_mtim shall have meaningful values and the
value of the member st_nlink shall be set to the number of links to the file.

The lstat() function shall be equivalent to stat(), except when path refers to a symbolic link. In
that case lstat() shall return information about the link, while stat() shall return information
about the file the link references.

For symbolic links, the st_mode member shall contain meaningful information when used with
the file type macros. The file mode bits in st_mode are unspecified. The structure members st_ino,
st_dev, st_uid, st_gid, st_atim, st_ctim, and st_mtim shall have meaningful values and the value of
the st_nlink member shall be set to the number of (hard) links to the symbolic link. The value of
the st_size member shall be set to the length of the pathname contained in the symbolic link not
including any terminating null byte.

The fstatat() function shall be equivalent to the stat() or lstat() function, depending on the value
of flag (see below), except in the case where path specifies a relative path. In this case the status
shall be retrieved from a file relative to the directory associated with the file descriptor fd instead
of the current working directory. If the file descriptor was opened without O_SEARCH, the

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 945

31641

31642

31643

31644

31645

31646

31647

31648

31649

31650

31651

31652

31653

31654

31655

31656

31657

31658

31659

31660

31661

31662

31663

31664

31665

31666

31667

31668

31669

31670

31671

31672

31673

31674

31675

31676

31677

31678

31679

31680

31681

31682

31683

31684

31685

31686

fstatat() System Interfaces

function shall check whether directory searches are permitted using the current permissions of
the directory underlying the file descriptor. If the file descriptor was opened with O_SEARCH,
the function shall not perform the check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, the status of the symbolic link is returned.

If fstatat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to stat() or lstat() respectively,
depending on whether or not the AT_SYMLINK_NOFOLLOW bit is set in flag.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied for a component of the path prefix.

[EIO] An error occurred while reading from the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory, or the path argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

[EOVERFLOW] The file size in bytes or the number of blocks allocated to the file or the file
serial number cannot be represented correctly in the structure pointed to by
buf .

The fstatat() function shall fail if:

[EACCES] fd was not opened with O_SEARCH and the permissions of the directory
underlying fd do not permit directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

946 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

31687

31688

31689

31690

31691

31692

31693

31694

31695

31696

31697

31698

31699

31700

31701

31702

31703

31704

31705

31706

31707

31708

31709

31710

31711

31712

31713

31714

31715

31716

31717

31718

31719

31720

31721

31722

31723

31724

31725

31726

31727

System Interfaces fstatat()

[EOVERFLOW] A value to be stored would overflow one of the members of the stat structure.

The fstatat() function may fail if:

[EINVAL] The value of the flag argument is not valid.

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES

Obtaining File Status Information

The following example shows how to obtain file status information for a file named
/home/cnd/mod1. The structure variable buffer is defined for the stat structure.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

struct stat buffer;
int status;
...
status = stat("/home/cnd/mod1", &buffer);

Getting Directory Information

The following example fragment gets status information for each entry in a directory. The call to
the stat() function stores file information in the stat structure pointed to by statbuf . The lines
that follow the stat() call format the fields in the stat structure for presentation to the user of the
program.

#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>
#include <pwd.h>
#include <grp.h>
#include <time.h>
#include <locale.h>
#include <langinfo.h>
#include <stdio.h>
#include <stdint.h>

struct dirent *dp;
struct stat statbuf;
struct passwd *pwd;
struct group *grp;
struct tm *tm;
char datestring[256];
...
/* Loop through directory entries. */
while ((dp = readdir(dir)) != NULL) {

/* Get entry’s information. */
if (stat(dp->d_name, &statbuf) == -1)

continue;

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 947

31728

31729

31730

31731

31732

31733

31734

31735

31736

31737

31738

31739

31740

31741

31742

31743

31744

31745

31746

31747

31748

31749

31750

31751

31752

31753

31754

31755

31756

31757

31758

31759

31760

31761

31762

31763

31764

31765

31766

31767

31768

31769

31770

fstatat() System Interfaces

/* Print out type, permissions, and number of links. */
printf("%10.10s", sperm (statbuf.st_mode));
printf("%4d", statbuf.st_nlink);

/* Print out owner’s name if it is found using getpwuid(). */
if ((pwd = getpwuid(statbuf.st_uid)) != NULL)

printf(" %-8.8s", pwd->pw_name);
else

printf(" %-8d", statbuf.st_uid);

/* Print out group name if it is found using getgrgid(). */
if ((grp = getgrgid(statbuf.st_gid)) != NULL)

printf(" %-8.8s", grp->gr_name);
else

printf(" %-8d", statbuf.st_gid);

/* Print size of file. */
printf(" %9jd", (intmax_t)statbuf.st_size);

tm = localtime(&statbuf.st_mtime);

/* Get localized date string. */
strftime(datestring, sizeof(datestring), nl_langinfo(D_T_FMT), tm);

printf(" %s %s\n", datestring, dp->d_name);
}

Obtaining Symbolic Link Status Information

The following example shows how to obtain status information for a symbolic link named
/modules/pass1. The structure variable buffer is defined for the stat structure. If the path
argument specified the filename for the file pointed to by the symbolic link (/home/cnd/mod1),
the results of calling the function would be the same as those returned by a call to the stat()
function.

#include <sys/stat.h>

struct stat buffer;
int status;
...
status = lstat("/modules/pass1", &buffer);

APPLICATION USAGE
None.

RATIONALE
The intent of the paragraph describing ‘‘additional or alternate file access control mechanisms’’
is to allow a secure implementation where a process with a label that does not dominate the
file’s label cannot perform a stat() function. This is not related to read permission; a process with
a label that dominates the file’s label does not need read permission. An implementation that
supports write-up operations could fail fstat() function calls even though it has a valid file
descriptor open for writing.

The lstat() function is not required to update the time-related fields if the named file is not a
symbolic link. While the st_uid, st_gid, st_atim, st_mtim, and st_ctim members of the stat structure
may apply to a symbolic link, they are not required to do so. No functions in POSIX.1-2008 are
required to maintain any of these time fields.

948 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

31771

31772

31773

31774

31775

31776

31777

31778

31779

31780

31781

31782

31783

31784

31785

31786

31787

31788

31789

31790

31791

31792

31793

31794

31795

31796

31797

31798

31799

31800

31801

31802

31803

31804

31805

31806

31807

31808

31809

31810

31811

31812

31813

31814

System Interfaces fstatat()

The purpose of the fstatat() function is to obtain the status of files in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to stat(), resulting in unspecified behavior. By opening a
file descriptor for the target directory and using the fstatat() function it can be guaranteed that
the file for which status is returned is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
access(), chmod(), fdopendir(), fstat(), mknod(), readlink(), symlink()

XBD Section 4.8 (on page 109), <fcntl.h>, <sys/stat.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [EIO] mandatory error condition is added.

• The [ELOOP] mandatory error condition is added.

• The [EOVERFLOW] mandatory error condition is added. This change is to support large
files.

• The [ENAMETOOLONG] and the second [EOVERFLOW] optional error conditions are
added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Details are added regarding the treatment of symbolic links.

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the stat() prototype for alignment with the ISO/IEC 9899: 1999
standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

XSH-SD5-ERN-161 is applied, updating the DESCRIPTION to clarify to which file types st_nlink
applies.

The fstatat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made related to support for finegrained timestamps.

The lstat() function is now required to return meaningful data for symbolic links in all stat

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 949

31815

31816

31817

31818

31819

31820

31821

31822

31823

31824

31825

31826

31827

31828

31829

31830

31831

31832

31833

31834

31835

31836

31837

31838

31839

31840

31841

31842

31843

31844

31845

31846

31847

31848

31849

31850

31851

31852

31853

31854

31855

fstatat() System Interfaces

structure fields, except for the permission bits of st_mode.

Changes are made to allow a directory to be opened for searching.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

950 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

31856

31857

31858

31859

System Interfaces fstatvfs()

NAME
fstatvfs, statvfs — get file system information

SYNOPSIS
#include <sys/statvfs.h>

int fstatvfs(int fildes, struct statvfs *buf);
int statvfs(const char *restrict path, struct statvfs *restrict buf);

DESCRIPTION
The fstatvfs() function shall obtain information about the file system containing the file
referenced by fildes.

The statvfs() function shall obtain information about the file system containing the file named by
path.

For both functions, the buf argument is a pointer to a statvfs structure that shall be filled. Read,
write, or execute permission of the named file is not required.

The following flags can be returned in the f_flag member:

ST_RDONLY Read-only file system.

ST_NOSUID Setuid/setgid bits ignored by exec.

It is unspecified whether all members of the statvfs structure have meaningful values on all file
systems.

RETURN VALUE
Upon successful completion, statvfs() shall return 0. Otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The fstatvfs() and statvfs() functions shall fail if:

[EIO] An I/O error occurred while reading the file system.

[EINTR] A signal was caught during execution of the function.

[EOVERFLOW] One of the values to be returned cannot be represented correctly in the
structure pointed to by buf .

The fstatvfs() function shall fail if:

[EBADF] The fildes argument is not an open file descriptor.

The statvfs() function shall fail if:

[EACCES] Search permission is denied on a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory, or the path argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 951

31860

31861

31862

31863

31864

31865

31866

31867

31868

31869

31870

31871

31872

31873

31874

31875

31876

31877

31878

31879

31880

31881

31882

31883

31884

31885

31886

31887

31888

31889

31890

31891

31892

31893

31894

31895

31896

31897

31898

31899

fstatvfs() System Interfaces

The statvfs() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES

Obtaining File System Information Using fstatvfs()

The following example shows how to obtain file system information for the file system upon
which the file named /home/cnd/mod1 resides, using the fstatvfs() function. The
/home/cnd/mod1 file is opened with read/write privileges and the open file descriptor is passed
to the fstatvfs() function.

#include <sys/statvfs.h>
#include <fcntl.h>

struct statvfs buffer;
int status;
...
fildes = open("/home/cnd/mod1", O_RDWR);
status = fstatvfs(fildes, &buffer);

Obtaining File System Information Using statvfs()

The following example shows how to obtain file system information for the file system upon
which the file named /home/cnd/mod1 resides, using the statvfs() function.

#include <sys/statvfs.h>

struct statvfs buffer;
int status;
...
status = statvfs("/home/cnd/mod1", &buffer);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), chown(), creat(), dup(), exec , fcntl(), link(), mknod(), open(), pipe(), read(), time(),
unlink(), utime(), write()

XBD <sys/statvfs.h>

952 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

31900

31901

31902

31903

31904

31905

31906

31907

31908

31909

31910

31911

31912

31913

31914

31915

31916

31917

31918

31919

31920

31921

31922

31923

31924

31925

31926

31927

31928

31929

31930

31931

31932

31933

31934

31935

31936

31937

System Interfaces fstatvfs()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Large File Summit extensions are added.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the statvfs() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

SD5-XSH-ERN-68 is applied, correcting the EXAMPLES section.

The fstatvfs() and statvfs() functions are moved from the XSI option to the Base.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 953

31938

31939

31940

31941

31942

31943

31944

31945

31946

31947

31948

31949

31950

31951

31952

31953

31954

fsync() System Interfaces

NAME
fsync — synchronize changes to a file

SYNOPSIS
FSC #include <unistd.h>

int fsync(int fildes);

DESCRIPTION
The fsync() function shall request that all data for the open file descriptor named by fildes is to be
transferred to the storage device associated with the file described by fildes. The nature of the
transfer is implementation-defined. The fsync() function shall not return until the system has
completed that action or until an error is detected.

SIO If _POSIX_SYNCHRONIZED_IO is defined, the fsync() function shall force all currently queued
I/O operations associated with the file indicated by file descriptor fildes to the synchronized I/O
completion state. All I/O operations shall be completed as defined for synchronized I/O file
integrity completion.

RETURN VALUE
Upon successful completion, fsync() shall return 0. Otherwise, −1 shall be returned and errno set
to indicate the error. If the fsync() function fails, outstanding I/O operations are not guaranteed
to have been completed.

ERRORS
The fsync() function shall fail if:

[EBADF] The fildes argument is not a valid descriptor.

[EINTR] The fsync() function was interrupted by a signal.

[EINVAL] The fildes argument does not refer to a file on which this operation is possible.

[EIO] An I/O error occurred while reading from or writing to the file system.

In the event that any of the queued I/O operations fail, fsync() shall return the error conditions
defined for read() and write().

EXAMPLES
None.

APPLICATION USAGE
The fsync() function should be used by programs which require modifications to a file to be
completed before continuing; for example, a program which contains a simple transaction
facility might use it to ensure that all modifications to a file or files caused by a transaction are
recorded.

RATIONALE
The fsync() function is intended to force a physical write of data from the buffer cache, and to
assure that after a system crash or other failure that all data up to the time of the fsync() call is
recorded on the disk. Since the concepts of ‘‘buffer cache’’, ‘‘system crash’’, ‘‘physical write’’, and
‘‘non-volatile storage’’ are not defined here, the wording has to be more abstract.

If _POSIX_SYNCHRONIZED_IO is not defined, the wording relies heavily on the conformance
document to tell the user what can be expected from the system. It is explicitly intended that a
null implementation is permitted. This could be valid in the case where the system cannot assure
non-volatile storage under any circumstances or when the system is highly fault-tolerant and the
functionality is not required. In the middle ground between these extremes, fsync() might or
might not actually cause data to be written where it is safe from a power failure. The

954 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

31955

31956

31957

31958

31959

31960

31961

31962

31963

31964

31965

31966

31967

31968

31969

31970

31971

31972

31973

31974

31975

31976

31977

31978

31979

31980

31981

31982

31983

31984

31985

31986

31987

31988

31989

31990

31991

31992

31993

31994

31995

31996

31997

31998

System Interfaces fsync()

conformance document should identify at least that one configuration exists (and how to obtain
that configuration) where this can be assured for at least some files that the user can select to use
for critical data. It is not intended that an exhaustive list is required, but rather sufficient
information is provided so that if critical data needs to be saved, the user can determine how the
system is to be configured to allow the data to be written to non-volatile storage.

It is reasonable to assert that the key aspects of fsync() are unreasonable to test in a test suite.
That does not make the function any less valuable, just more difficult to test. A formal
conformance test should probably force a system crash (power shutdown) during the test for
this condition, but it needs to be done in such a way that automated testing does not require this
to be done except when a formal record of the results is being made. It would also not be
unreasonable to omit testing for fsync(), allowing it to be treated as a quality-of-implementation
issue.

FUTURE DIRECTIONS
None.

SEE ALSO
sync()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
Aligned with fsync() in the POSIX Realtime Extension. Specifically, the DESCRIPTION and
RETURN VALUE sections are much expanded, and the ERRORS section is updated to indicate
that fsync() can return the error conditions defined for read() and write().

Issue 6
This function is marked as part of the File Synchronization option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EINVAL] and [EIO] mandatory error conditions are added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/44 is applied, applying an editorial
rewording of the DESCRIPTION. No change in meaning is intended.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 955

31999

32000

32001

32002

32003

32004

32005

32006

32007

32008

32009

32010

32011

32012

32013

32014

32015

32016

32017

32018

32019

32020

32021

32022

32023

32024

32025

32026

32027

32028

ftell() System Interfaces

NAME
ftell, ftello — return a file offset in a stream

SYNOPSIS
#include <stdio.h>

long ftell(FILE *stream);
CX off_t ftello(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The ftell() function shall obtain the current value of the file-position indicator for the stream
pointed to by stream.

CX The ftello() function shall be equivalent to ftell(), except that the return value is of type off_t.

RETURN VALUE
CX Upon successful completion, ftell() and ftello() shall return the current value of the file-position

indicator for the stream measured in bytes from the beginning of the file.

CX Otherwise, ftell() and ftello() shall return −1, cast to long and off_t respectively, and set errno to
indicate the error.

ERRORS
CX The ftell() and ftello() functions shall fail if:

CX [EBADF] The file descriptor underlying stream is not an open file descriptor.

CX [EOVERFLOW] For ftell(), the current file offset cannot be represented correctly in an object of
type long.

CX [EOVERFLOW] For ftello(), the current file offset cannot be represented correctly in an object
of type off_t.

CX [ESPIPE] The file descriptor underlying stream is associated with a pipe or FIFO.

The ftell() function may fail if:

CX [ESPIPE] The file descriptor underlying stream is associated with a socket.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fgetpos(), fopen(), fseek(), lseek()

XBD <stdio.h>

956 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

32029

32030

32031

32032

32033

32034

32035

32036

32037

32038

32039

32040

32041

32042

32043

32044

32045

32046

32047

32048

32049

32050

32051

32052

32053

32054

32055

32056

32057

32058

32059

32060

32061

32062

32063

32064

32065

32066

32067

System Interfaces ftell()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The ftello() function is added.

• The [EOVERFLOW] error conditions are added.

An additional [ESPIPE] error condition is added for sockets.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 957

32068

32069

32070

32071

32072

32073

32074

32075

32076

32077

32078

ftok() System Interfaces

NAME
ftok — generate an IPC key

SYNOPSIS
XSI #include <sys/ipc.h>

key_t ftok(const char *path, int id);

DESCRIPTION
The ftok() function shall return a key based on path and id that is usable in subsequent calls to
msgget(), semget(), and shmget(). The application shall ensure that the path argument is the
pathname of an existing file that the process is able to stat().

The ftok() function shall return the same key value for all paths that name the same file, when
called with the same id value, and return different key values when called with different id
values or with paths that name different files existing on the same file system at the same time. It
is unspecified whether ftok() shall return the same key value when called again after the file
named by path is removed and recreated with the same name.

Only the low-order 8-bits of id are significant. The behavior of ftok() is unspecified if these bits
are 0.

RETURN VALUE
Upon successful completion, ftok() shall return a key. Otherwise, ftok() shall return (key_t)−1
and set errno to indicate the error.

ERRORS
The ftok() function shall fail if:

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory, or the path argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

The ftok() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

958 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

32079

32080

32081

32082

32083

32084

32085

32086

32087

32088

32089

32090

32091

32092

32093

32094

32095

32096

32097

32098

32099

32100

32101

32102

32103

32104

32105

32106

32107

32108

32109

32110

32111

32112

32113

32114

32115

32116

System Interfaces ftok()

EXAMPLES

Getting an IPC Key

The following example gets a unique key that can be used by the IPC functions semget(),
msgget(), and shmget(). The key returned by ftok() for this example is based on the ID value S
and the pathname /tmp.

#include <sys/ipc.h>
...
key_t key;
char *path = "/tmp";
int id = ’S’;

key = ftok(path, id);

Saving an IPC Key

The following example gets a unique key based on the pathname /tmp and the ID value a. It
also assigns the value of the resulting key to the semkey variable so that it will be available to a
later call to semget(), msgget(), or shmget().

#include <sys/ipc.h>
...
key_t semkey;

if ((semkey = ftok("/tmp", ’a’)) == (key_t) -1) {
perror("IPC error: ftok"); exit(1);

}

APPLICATION USAGE
For maximum portability, id should be a single-byte character.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
msgget(), semget(), shmget()

XBD <sys/ipc.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 959

32117

32118

32119

32120

32121

32122

32123

32124

32125

32126

32127

32128

32129

32130

32131

32132

32133

32134

32135

32136

32137

32138

32139

32140

32141

32142

32143

32144

32145

32146

32147

32148

32149

32150

32151

32152

32153

32154

ftok() System Interfaces

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

960 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

32155

32156

32157

32158

System Interfaces ftruncate()

NAME
ftruncate — truncate a file to a specified length

SYNOPSIS
#include <unistd.h>

int ftruncate(int fildes, off_t length);

DESCRIPTION
If fildes is not a valid file descriptor open for writing, the ftruncate() function shall fail.

If fildes refers to a regular file, the ftruncate() function shall cause the size of the file to be
truncated to length. If the size of the file previously exceeded length, the extra data shall no
longer be available to reads on the file. If the file previously was smaller than this size,
ftruncate() shall increase the size of the file. If the file size is increased, the extended area shall
appear as if it were zero-filled. The value of the seek pointer shall not be modified by a call to
ftruncate().

Upon successful completion, if fildes refers to a regular file, ftruncate() shall mark for update the
last data modification and last file status change timestamps of the file and the S_ISUID and
S_ISGID bits of the file mode may be cleared. If the ftruncate() function is unsuccessful, the file is
unaffected.

XSI If the request would cause the file size to exceed the soft file size limit for the process, the
request shall fail and the implementation shall generate the SIGXFSZ signal for the thread.

If fildes refers to a directory, ftruncate() shall fail.

If fildes refers to any other file type, except a shared memory object, the result is unspecified.

SHM If fildes refers to a shared memory object, ftruncate() shall set the size of the shared memory
object to length.

SHM If the effect of ftruncate() is to decrease the size of a memory mapped file or a shared memory
object and whole pages beyond the new end were previously mapped, then the whole pages
beyond the new end shall be discarded.

References to discarded pages shall result in the generation of a SIGBUS signal.

If the effect of ftruncate() is to increase the size of a memory object, it is unspecified whether the
contents of any mapped pages between the old end-of-file and the new are flushed to the
underlying object.

RETURN VALUE
Upon successful completion, ftruncate() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The ftruncate() function shall fail if:

[EINTR] A signal was caught during execution.

[EINVAL] The length argument was less than 0.

[EFBIG] or [EINVAL]
The length argument was greater than the maximum file size.

[EFBIG] The file is a regular file and length is greater than the offset maximum
established in the open file description associated with fildes.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 961

32159

32160

32161

32162

32163

32164

32165

32166

32167

32168

32169

32170

32171

32172

32173

32174

32175

32176

32177

32178

32179

32180

32181

32182

32183

32184

32185

32186

32187

32188

32189

32190

32191

32192

32193

32194

32195

32196

32197

32198

32199

ftruncate() System Interfaces

[EIO] An I/O error occurred while reading from or writing to a file system.

[EBADF] or [EINVAL]
The fildes argument is not a file descriptor open for writing.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
open(), truncate()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE and aligned with ftruncate() in the POSIX
Realtime Extension. Specifically, the DESCRIPTION is extensively reworded and [EROFS] is
added to the list of mandatory errors that can be returned by ftruncate().

Large File Summit extensions are added.

Issue 6
The truncate() function is split out into a separate reference page.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is changed to indicate that if the file size is changed, and if the file is a
regular file, the S_ISUID and S_ISGID bits in the file mode may be cleared.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The DESCRIPTION text is updated.

XSI-conformant systems are required to increase the size of the file if the file was previously
smaller than the size requested.

Issue 7
Austin Group Interpretation 1003.1-2001 #056 is applied, revising the ERRORS section (although
the [EINVAL] ‘‘may fail’’ error was subsequently removed during review of the XSI option).

Functionality relating to the Memory Protection and Memory Mapped Files options is moved to
the Base.

The DESCRIPTION is updated so that a call to ftruncate() when the file is smaller than the size
requested will increase the size of the file. Previously, non-XSI-conforming implementations
were allowed to increase the size of the file or fail.

Changes are made related to support for finegrained timestamps.

962 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

32200

32201

32202

32203

32204

32205

32206

32207

32208

32209

32210

32211

32212

32213

32214

32215

32216

32217

32218

32219

32220

32221

32222

32223

32224

32225

32226

32227

32228

32229

32230

32231

32232

32233

32234

32235

32236

32237

32238

32239

System Interfaces ftrylockfile()

NAME
ftrylockfile — stdio locking functions

SYNOPSIS
CX #include <stdio.h>

int ftrylockfile(FILE *file);

DESCRIPTION
Refer to flockfile().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 963

32240

32241

32242

32243

32244

32245

32246

ftw() System Interfaces

NAME
ftw — traverse (walk) a file tree

SYNOPSIS
OB XSI #include <ftw.h>

int ftw(const char *path, int (*fn)(const char *,
const struct stat *ptr, int flag), int ndirs);

DESCRIPTION
The ftw() function shall recursively descend the directory hierarchy rooted in path. For each
object in the hierarchy, ftw() shall call the function pointed to by fn, passing it a pointer to a null-
terminated character string containing the name of the object, a pointer to a stat structure
containing information about the object, filled in as if stat() or lstat() had been called to retrieve
the information. Possible values of the integer, defined in the <ftw.h> header, are:

FTW_D For a directory.

FTW_DNR For a directory that cannot be read.

FTW_F For a file.

FTW_SL For a symbolic link (but see also FTW_NS below).

FTW_NS For an object other than a symbolic link on which stat() could not successfully be
executed. If the object is a symbolic link and stat() failed, it is unspecified whether
ftw() passes FTW_SL or FTW_NS to the user-supplied function.

If the integer is FTW_DNR, descendants of that directory shall not be processed. If the integer is
FTW_NS, the stat structure contains undefined values. An example of an object that would
cause FTW_NS to be passed to the function pointed to by fn would be a file in a directory with
read but without execute (search) permission.

The ftw() function shall visit a directory before visiting any of its descendants.

The ftw() function shall use at most one file descriptor for each level in the tree.

The argument ndirs should be in the range [1,{OPEN_MAX}].

The tree traversal shall continue until either the tree is exhausted, an invocation of fn returns a
non-zero value, or some error, other than [EACCES], is detected within ftw().

The ndirs argument shall specify the maximum number of directory streams or file descriptors
or both available for use by ftw() while traversing the tree. When ftw() returns it shall close any
directory streams and file descriptors it uses not counting any opened by the application-
supplied fn function.

The results are unspecified if the application-supplied fn function does not preserve the current
working directory.

The ftw() function need not be thread-safe.

RETURN VALUE
If the tree is exhausted, ftw() shall return 0. If the function pointed to by fn returns a non-zero
value, ftw() shall stop its tree traversal and return whatever value was returned by the function
pointed to by fn. If ftw() detects an error, it shall return −1 and set errno to indicate the error.

If ftw() encounters an error other than [EACCES] (see FTW_DNR and FTW_NS above), it shall
return −1 and set errno to indicate the error. The external variable errno may contain any error
value that is possible when a directory is opened or when one of the stat functions is executed on

964 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

32247

32248

32249

32250

32251

32252

32253

32254

32255

32256

32257

32258

32259

32260

32261

32262

32263

32264

32265

32266

32267

32268

32269

32270

32271

32272

32273

32274

32275

32276

32277

32278

32279

32280

32281

32282

32283

32284

32285

32286

32287

32288

System Interfaces ftw()

a directory or file.

ERRORS
The ftw() function shall fail if:

[EACCES] Search permission is denied for any component of path or read permission is
denied for path.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of path is not a directory.

[EOVERFLOW] A field in the stat structure cannot be represented correctly in the current
programming environment for one or more files found in the file hierarchy.

The ftw() function may fail if:

[EINVAL] The value of the ndirs argument is invalid.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

In addition, if the function pointed to by fn encounters system errors, errno may be set
accordingly.

EXAMPLES

Walking a Directory Structure

The following example walks the current directory structure, calling the fn function for every
directory entry, using at most 10 file descriptors:

#include <ftw.h>
...
if (ftw(".", fn, 10) != 0) {

perror("ftw"); exit(2);
}

APPLICATION USAGE
The ftw() function may allocate dynamic storage during its operation. If ftw() is forcibly
terminated, such as by longjmp() or siglongjmp() being executed by the function pointed to by fn
or an interrupt routine, ftw() does not have a chance to free that storage, so it remains
permanently allocated. A safe way to handle interrupts is to store the fact that an interrupt has
occurred, and arrange to have the function pointed to by fn return a non-zero value at its next
invocation.

Applications should use the nftw() function instead of the obsolescent ftw() function.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 965

32289

32290

32291

32292

32293

32294

32295

32296

32297

32298

32299

32300

32301

32302

32303

32304

32305

32306

32307

32308

32309

32310

32311

32312

32313

32314

32315

32316

32317

32318

32319

32320

32321

32322

32323

32324

32325

32326

32327

32328

ftw() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
The ftw() function may be removed in a future version.

SEE ALSO
fdopendir(), fstatat(), longjmp(), nftw(), siglongjmp()

XBD <ftw.h>, <sys/stat.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
UX codings in the DESCRIPTION, RETURN VALUE, and ERRORS sections are changed to EX.

Issue 6
The ERRORS section is updated as follows:

• The wording of the mandatory [ELOOP] error condition is updated.

• A second optional [ELOOP] error condition is added.

• The [EOVERFLOW] mandatory error condition is added.

A note is added to the DESCRIPTION indicating that this function need not be reentrant, and
that the results are unspecified if the application-supplied fn function does not preserve the
current working directory.

Issue 7
Austin Group Interpretations 1003.1-2001 #143 and #156 are applied.

SD5-XBD-ERN-61 is applied.

The ftw() function ia marked obsolescent.

966 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

32329

32330

32331

32332

32333

32334

32335

32336

32337

32338

32339

32340

32341

32342

32343

32344

32345

32346

32347

32348

32349

32350

32351

System Interfaces funlockfile()

NAME
funlockfile — stdio locking functions

SYNOPSIS
CX #include <stdio.h>

void funlockfile(FILE *file);

DESCRIPTION
Refer to flockfile().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 967

32352

32353

32354

32355

32356

32357

32358

futimens() System Interfaces

NAME
futimens, utimensat, utimes — set file access and modification times

SYNOPSIS
#include <sys/stat.h>

int futimens(int fd, const struct timespec times[2]);
int utimensat(int fd, const char *path, const struct timespec times[2],

int flag);

XSI #include <sys/time.h>

int utimes(const char *path, const struct timeval times[2]);

DESCRIPTION
The futimens() and utimensat() functions shall set the access and modification times of a file to
the values of the times argument. The futimens() function changes the times of the file associated
with the file descriptor fd. The utimensat() function changes the times of the file pointed to by
the path argument, relative to the directory associated with the file descriptor fd. Both functions
allow time specifications accurate to the nanosecond.

For futimens() and utimensat(), the times argument is an array of two timespec structures. The
first array member represents the date and time of last access, and the second member
represents the date and time of last modification. The times in the timespec structure are
measured in seconds and nanoseconds since the Epoch. The file’s relevant timestamp shall be set
to the greatest value supported by the file system that is not greater than the specified time.

If the tv_nsec field of a timespec structure has the special value UTIME_NOW, the file’s relevant
timestamp shall be set to the greatest value supported by the file system that is not greater than
the current time. If the tv_nsec field has the special value UTIME_OMIT, the file’s relevant
timestamp shall not be changed. In either case, the tv_sec field shall be ignored.

If the times argument is a null pointer, both the access and modification timestamps shall be set
to the greatest value supported by the file system that is not greater than the current time. If
utimensat() is passed a relative path in the path argument, the file to be used shall be relative to
the directory associated with the file descriptor fd instead of the current working directory. If the
file descriptor was opened without O_SEARCH, the function shall check whether directory
searches are permitted using the current permissions of the directory underlying the file
descriptor. If the file descriptor was opened with O_SEARCH, the function shall not perform the
check.

If utimensat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory shall be used.

Only a process with the effective user ID equal to the user ID of the file, or with write access to
the file, or with appropriate privileges may use futimens() or utimensat() with a null pointer as
the times argument or with both tv_nsec fields set to the special value UTIME_NOW. Only a
process with the effective user ID equal to the user ID of the file or with appropriate privileges
may use futimens() or utimensat() with a non-null times argument that does not have both
tv_nsec fields set to UTIME_NOW and does not have both tv_nsec fields set to UTIME_OMIT. If
both tv_nsec fields are set to UTIME_OMIT, no ownership or permissions check shall be
performed for the file, but other error conditions may still be detected (including [EACCES]
errors related to the path prefix).

Values for the flag argument of utimensat() are constructed by a bitwise-inclusive OR of flags
from the following list, defined in <fcntl.h>:

968 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

32359

32360

32361

32362

32363

32364

32365

32366

32367

32368

32369

32370

32371

32372

32373

32374

32375

32376

32377

32378

32379

32380

32381

32382

32383

32384

32385

32386

32387

32388

32389

32390

32391

32392

32393

32394

32395

32396

32397

32398

32399

32400

32401

32402

32403

System Interfaces futimens()

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, then the access and modification times of the symbolic link
are changed.

Upon completion, futimens() and utimensat() shall mark the last file status change timestamp for
update.

The utimes() function shall be equivalent to the utimensat() function with the special value
AT_FDCWD as the fd argument and the flag argument set to zero, except that the times argument
is a timeval structure rather than a timespec structure, and accuracy is only to the microsecond,
not nanosecond, and rounding towards the nearest second may occur.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, the file times shall not be affected.

ERRORS
These functions shall fail if:

[EACCES] The times argument is a null pointer, or both tv_nsec values are UTIME_NOW,
and the effective user ID of the process does not match the owner of the file
and write access is denied.

[EINVAL] Either of the times argument structures specified a tv_nsec value that was
neither UTIME_NOW nor UTIME_OMIT, and was a value less than zero or
greater than or equal to 1 000 million.

[EINVAL] A new file timestamp would be a value whose tv_sec component is not a value
supported by the file system.

[EPERM] The times argument is not a null pointer, does not have both tv_nsec fields set
to UTIME_NOW, does not have both tv_nsec fields set to UTIME_OMIT, the
calling process’ effective user ID has write access to the file but does not match
the owner of the file, and the calling process does not have appropriate
privileges.

[EROFS] The file system containing the file is read-only.

The futimens() function shall fail if:

[EBADF] The fd argument is not a valid file descriptor.

The utimensat() function shall fail if:

[EACCES] fd was not opened with O_SEARCH and the permissions of the directory
underlying fd do not permit directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

The utimensat() and utimes() functions shall fail if:

[EACCES] Search permission is denied by a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 969

32404

32405

32406

32407

32408

32409

32410

32411

32412

32413

32414

32415

32416

32417

32418

32419

32420

32421

32422

32423

32424

32425

32426

32427

32428

32429

32430

32431

32432

32433

32434

32435

32436

32437

32438

32439

32440

32441

32442

32443

32444

futimens() System Interfaces

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory, or the path argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

The utimensat() and utimes() functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

The utimensat() function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The purpose of the utimensat() function is to set the access and modification time of files in
directories other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to utimes(), resulting in unspecified
behavior. By opening a file descriptor for the target directory and using the utimensat() function
it can be guaranteed that the changed file is located relative to the desired directory.

The standard developers considered including a special case for the permissions required by
utimensat() when one tv_nsec field is UTIME_NOW and the other is UTIME_OMIT. One
possibility would be to include this case in with the cases where times is a null pointer or both
fields are UTIME_NOW, where the call is allowed if the process has write permission for the file.
However, associating write permission with an update to just the last data access timestamp
(which is normally updated by read()) did not seem appropriate. The other possibility would be
to specify that this one case is allowed if the process has read permission, but this was felt to be
too great a departure from the utime() and utimes() functions on which utimensat() is based. If
an application needs to set the last data access timestamp to the current time for a file on which
it has read permission but is not the owner, it can do so by opening the file, reading one or more
bytes (or reading a directory entry, if the file is a directory), and then closing it.

FUTURE DIRECTIONS
None.

SEE ALSO
read(), utime()

XBD <fcntl.h>, <sys/stat.h>, <sys/time.h>

970 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

32445

32446

32447

32448

32449

32450

32451

32452

32453

32454

32455

32456

32457

32458

32459

32460

32461

32462

32463

32464

32465

32466

32467

32468

32469

32470

32471

32472

32473

32474

32475

32476

32477

32478

32479

32480

32481

32482

32483

32484

32485

System Interfaces futimens()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
This function is marked LEGACY.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The LEGACY marking is removed.

The utimensat() function (renamed from futimesat()) is added from The Open Group Technical
Standard, 2006, Extended API Set Part 2, and changed to allow modifying a symbolic link by
adding a flag argument.

The futimens() function is added.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 971

32486

32487

32488

32489

32490

32491

32492

32493

32494

32495

32496

32497

32498

32499

32500

32501

32502

32503

32504

32505

fwide() System Interfaces

NAME
fwide — set stream orientation

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fwide(FILE *stream, int mode);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fwide() function shall determine the orientation of the stream pointed to by stream. If mode is
greater than zero, the function first attempts to make the stream wide-oriented. If mode is less
than zero, the function first attempts to make the stream byte-oriented. Otherwise, mode is zero
and the function does not alter the orientation of the stream.

If the orientation of the stream has already been determined, fwide() shall not change it.

CX Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call fwide(), then check errno, and if it is non-zero, assume
an error has occurred.

RETURN VALUE
The fwide() function shall return a value greater than zero if, after the call, the stream has wide-
orientation, a value less than zero if the stream has byte-orientation, or zero if the stream has no
orientation.

ERRORS
The fwide() function may fail if:

CX [EBADF] The stream argument is not a valid stream.

EXAMPLES
None.

APPLICATION USAGE
A call to fwide() with mode set to zero can be used to determine the current orientation of a
stream.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
Extensions beyond the ISO C standard are marked.

972 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

32506

32507

32508

32509

32510

32511

32512

32513

32514

32515

32516

32517

32518

32519

32520

32521

32522

32523

32524

32525

32526

32527

32528

32529

32530

32531

32532

32533

32534

32535

32536

32537

32538

32539

32540

32541

32542

32543

32544

32545

32546

System Interfaces fwprintf()

NAME
fwprintf, swprintf, wprintf — print formatted wide-character output

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fwprintf(FILE *restrict stream, const wchar_t *restrict format, ...);
int swprintf(wchar_t *restrict ws, size_t n,

const wchar_t *restrict format, ...);
int wprintf(const wchar_t *restrict format, ...);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fwprintf() function shall place output on the named output stream. The wprintf() function
shall place output on the standard output stream stdout. The swprintf() function shall place
output followed by the null wide character in consecutive wide characters starting at *ws; no
more than n wide characters shall be written, including a terminating null wide character, which
is always added (unless n is zero).

Each of these functions shall convert, format, and print its arguments under control of the format
wide-character string. The format is composed of zero or more directives: ordinary wide-characters,
which are simply copied to the output stream, and conversion specifications, each of which results
in the fetching of zero or more arguments. The results are undefined if there are insufficient
arguments for the format. If the format is exhausted while arguments remain, the excess
arguments are evaluated but are otherwise ignored.

CX Conversions can be applied to the nth argument after the format in the argument list, rather than
to the next unused argument. In this case, the conversion specifier wide character % (see below)
is replaced by the sequence "%n$", where n is a decimal integer in the range
[1,{NL_ARGMAX}], giving the position of the argument in the argument list. This feature
provides for the definition of format wide-character strings that select arguments in an order
appropriate to specific languages (see the EXAMPLES section).

The format can contain either numbered argument specifications (that is, "%n$" and "*m$"), or
unnumbered argument conversion specifications (that is, % and *), but not both. The only
exception to this is that %% can be mixed with the "%n$" form. The results of mixing numbered
and unnumbered argument specifications in a format wide-character string are undefined. When
numbered argument specifications are used, specifying the Nth argument requires that all the
leading arguments, from the first to the (N−1)th, are specified in the format wide-character string.

In format wide-character strings containing the "%n$" form of conversion specification,
numbered arguments in the argument list can be referenced from the format wide-character
string as many times as required.

In format wide-character strings containing the % form of conversion specification, each
argument in the argument list shall be used exactly once.

CX All forms of the fwprintf() function allow for the insertion of a locale-dependent radix character
in the output string, output as a wide-character value. The radix character is defined in the
locale of the process (category LC_NUMERIC). In the POSIX locale, or in a locale where the
radix character is not defined, the radix character shall default to a <period> (’.’).

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 973

32547

32548

32549

32550

32551

32552

32553

32554

32555

32556

32557

32558

32559

32560

32561

32562

32563

32564

32565

32566

32567

32568

32569

32570

32571

32572

32573

32574

32575

32576

32577

32578

32579

32580

32581

32582

32583

32584

32585

32586

32587

32588

32589

32590

32591

fwprintf() System Interfaces

CX Each conversion specification is introduced by the ’%’ wide character or by the wide-character
sequence "%n$", after which the following appear in sequence:

• Zero or more flags (in any order), which modify the meaning of the conversion
specification.

• An optional minimum field width. If the converted value has fewer wide characters than
the field width, it shall be padded with <space> characters by default on the left; it shall be
padded on the right, if the left-adjustment flag (’−’), described below, is given to the field
width. The field width takes the form of an <asterisk> (’*’), described below, or a decimal
integer.

• An optional precision that gives the minimum number of digits to appear for the d, i, o, u,
x, and X conversion specifiers; the number of digits to appear after the radix character for
the a, A, e, E, f, and F conversion specifiers; the maximum number of significant digits for
the g and G conversion specifiers; or the maximum number of wide characters to be
printed from a string in the s conversion specifiers. The precision takes the form of a
<period> (’.’) followed either by an <asterisk> (’*’), described below, or an optional
decimal digit string, where a null digit string is treated as 0. If a precision appears with any
other conversion wide character, the behavior is undefined.

• An optional length modifier that specifies the size of the argument.

• A conversion specifier wide character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an <asterisk> (’*’). In this case an
argument of type int supplies the field width or precision. Applications shall ensure that
arguments specifying field width, or precision, or both appear in that order before the argument,
if any, to be converted. A negative field width is taken as a ’−’ flag followed by a positive field

CX width. A negative precision is taken as if the precision were omitted. In format wide-character
strings containing the "%n$" form of a conversion specification, a field width or precision may
be indicated by the sequence "*m$", where m is a decimal integer in the range
[1,{NL_ARGMAX}] giving the position in the argument list (after the format argument) of an
integer argument containing the field width or precision, for example:

wprintf(L"%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The flag wide characters and their meanings are:

CX ’ (The <apostrophe>.) The integer portion of the result of a decimal conversion (%i, %d,
%u, %f, %F, %g, or %G) shall be formatted with thousands’ grouping wide characters. For
other conversions, the behavior is undefined. The numeric grouping wide character is
used.

− The result of the conversion shall be left-justified within the field. The conversion shall
be right-justified if this flag is not specified.

+ The result of a signed conversion shall always begin with a sign (’+’ or ’−’). The
conversion shall begin with a sign only when a negative value is converted if this flag is
not specified.

<space> If the first wide character of a signed conversion is not a sign, or if a signed conversion
results in no wide characters, a <space> shall be prefixed to the result. This means that
if the <space> and ’+’ flags both appear, the <space> flag shall be ignored.

Specifies that the value is to be converted to an alternative form. For o conversion, it
increases the precision (if necessary) to force the first digit of the result to be 0. For x or
X conversion specifiers, a non-zero result shall have 0x (or 0X) prefixed to it. For a, A, e,

974 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

32592

32593

32594

32595

32596

32597

32598

32599

32600

32601

32602

32603

32604

32605

32606

32607

32608

32609

32610

32611

32612

32613

32614

32615

32616

32617

32618

32619

32620

32621

32622

32623

32624

32625

32626

32627

32628

32629

32630

32631

32632

32633

32634

32635

32636

System Interfaces fwprintf()

E, f, F, g, and G conversion specifiers, the result shall always contain a radix character,
even if no digits follow it. Without this flag, a radix character appears in the result of
these conversions only if a digit follows it. For g and G conversion specifiers, trailing
zeros shall not be removed from the result as they normally are. For other conversion
specifiers, the behavior is undefined.

0 For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversion specifiers, leading zeros
(following any indication of sign or base) are used to pad to the field width rather than
performing space padding, except when converting an infinity or NaN. If the ’0’ and
’−’ flags both appear, the ’0’ flag shall be ignored. For d, i, o, u, x, and X conversion

CX specifiers, if a precision is specified, the ’0’ flag shall be ignored. If the ’0’ and
<apostrophe> flags both appear, the grouping wide characters are inserted before zero
padding. For other conversions, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed char
or unsigned char argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to signed char or unsigned char
before printing); or that a following n conversion specifier applies to a pointer to a
signed char argument.

h Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short or
unsigned short argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to short or unsigned short before
printing); or that a following n conversion specifier applies to a pointer to a short
argument.

l (ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long or
unsigned long argument; that a following n conversion specifier applies to a pointer to
a long argument; that a following c conversion specifier applies to a wint_t argument;
that a following s conversion specifier applies to a pointer to a wchar_t argument; or
has no effect on a following a, A, e, E, f, F, g, or G conversion specifier.

ll (ell-ell)
Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long long
or unsigned long long argument; or that a following n conversion specifier applies to a
pointer to a long long argument.

j Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t
or uintmax_t argument; or that a following n conversion specifier applies to a pointer
to an intmax_t argument.

z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size_t or the
corresponding signed integer type argument; or that a following n conversion specifier
applies to a pointer to a signed integer type corresponding to a size_t argument.

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t or
the corresponding unsigned type argument; or that a following n conversion specifier
applies to a pointer to a ptrdiff_t argument.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a long
double argument.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 975

32637

32638

32639

32640

32641

32642

32643

32644

32645

32646

32647

32648

32649

32650

32651

32652

32653

32654

32655

32656

32657

32658

32659

32660

32661

32662

32663

32664

32665

32666

32667

32668

32669

32670

32671

32672

32673

32674

32675

32676

32677

32678

32679

fwprintf() System Interfaces

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The conversion specifiers and their meanings are:

d, i The int argument shall be converted to a signed decimal in the style "[−]dddd". The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it shall be expanded with leading zeros.
The default precision shall be 1. The result of converting zero with an explicit precision
of zero shall be no wide characters.

o The unsigned argument shall be converted to unsigned octal format in the style
"dddd". The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it shall be expanded with leading
zeros. The default precision shall be 1. The result of converting zero with an explicit
precision of zero shall be no wide characters.

u The unsigned argument shall be converted to unsigned decimal format in the style
"dddd". The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it shall be expanded with leading
zeros. The default precision shall be 1. The result of converting zero with an explicit
precision of zero shall be no wide characters.

x The unsigned argument shall be converted to unsigned hexadecimal format in the style
"dddd"; the letters "abcdef" are used. The precision specifies the minimum number
of digits to appear; if the value being converted can be represented in fewer digits, it
shall be expanded with leading zeros. The default precision shall be 1. The result of
converting zero with an explicit precision of zero shall be no wide characters.

X Equivalent to the x conversion specifier, except that letters "ABCDEF" are used instead
of "abcdef".

f, F The double argument shall be converted to decimal notation in the style
"[−]ddd.ddd", where the number of digits after the radix character shall be equal to
the precision specification. If the precision is missing, it shall be taken as 6; if the
precision is explicitly zero and no ’#’ flag is present, no radix character shall appear. If
a radix character appears, at least one digit shall appear before it. The value shall be
rounded in an implementation-defined manner to the appropriate number of digits.

A double argument representing an infinity shall be converted in one of the styles
"[−]inf" or "[−]infinity"; which style is implementation-defined. A double
argument representing a NaN shall be converted in one of the styles "[−]nan" or
"[−]nan(n-char-sequence)"; which style, and the meaning of any n-char-sequence,
is implementation-defined. The F conversion specifier produces "INF", "INFINITY",
or "NAN" instead of "inf", "infinity", or "nan", respectively.

e, E The double argument shall be converted in the style "[−]d.ddde±dd", where there
shall be one digit before the radix character (which is non-zero if the argument is non-
zero) and the number of digits after it shall be equal to the precision; if the precision is
missing, it shall be taken as 6; if the precision is zero and no ’#’ flag is present, no
radix character shall appear. The value shall be rounded in an implementation-defined
manner to the appropriate number of digits. The E conversion wide character shall
produce a number with ’E’ instead of ’e’ introducing the exponent. The exponent
shall always contain at least two digits. If the value is zero, the exponent shall be zero.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

976 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

32680

32681

32682

32683

32684

32685

32686

32687

32688

32689

32690

32691

32692

32693

32694

32695

32696

32697

32698

32699

32700

32701

32702

32703

32704

32705

32706

32707

32708

32709

32710

32711

32712

32713

32714

32715

32716

32717

32718

32719

32720

32721

32722

32723

32724

32725

32726

System Interfaces fwprintf()

g, G The double argument representing a floating-point number shall be converted in the
style f or e (or in the style F or E in the case of a G conversion specifier), depending on
the value converted and the precision. Let P equal the precision if non-zero, 6 if the
precision is omitted, or 1 if the precision is zero. Then, if a conversion with style E
would have an exponent of X:

— If P>X≥−4, the conversion shall be with style f (or F) and precision P−(X+1).

— Otherwise, the conversion shall be with style e (or E) and precision P−1.

Finally, unless the ’#’ flag is used, any trailing zeros shall be removed from the
fractional portion of the result and the decimal-point character shall be removed if there
is no fractional portion remaining.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

a, A A double argument representing a floating-point number shall be converted in the
style "[−]0xh.hhhhp±d", where there shall be one hexadecimal digit (which is non-
zero if the argument is a normalized floating-point number and is otherwise
unspecified) before the decimal-point wide character and the number of hexadecimal
digits after it shall be equal to the precision; if the precision is missing and FLT_RADIX
is a power of 2, then the precision shall be sufficient for an exact representation of the
value; if the precision is missing and FLT_RADIX is not a power of 2, then the precision
shall be sufficient to distinguish values of type double, except that trailing zeros may
be omitted; if the precision is zero and the ’#’ flag is not specified, no decimal-point
wide character shall appear. The letters "abcdef" are used for a conversion and the
letters "ABCDEF" for A conversion. The A conversion specifier produces a number with
’X’ and ’P’ instead of ’x’ and ’p’. The exponent shall always contain at least one
digit, and only as many more digits as necessary to represent the decimal exponent of
2. If the value is zero, the exponent shall be zero.

A double argument representing an infinity or NaN shall be converted in the style of
an f or F conversion specifier.

c If no l (ell) qualifier is present, the int argument shall be converted to a wide character
as if by calling the btowc() function and the resulting wide character shall be written.
Otherwise, the wint_t argument shall be converted to wchar_t, and written.

s If no l (ell) qualifier is present, the application shall ensure that the argument is a
pointer to a character array containing a character sequence beginning in the initial
shift state. Characters from the array shall be converted as if by repeated calls to the
mbrtowc() function, with the conversion state described by an mbstate_t object
initialized to zero before the first character is converted, and written up to (but not
including) the terminating null wide character. If the precision is specified, no more
than that many wide characters shall be written. If the precision is not specified, or is
greater than the size of the array, the application shall ensure that the array contains a
null wide character.

If an l (ell) qualifier is present, the application shall ensure that the argument is a
pointer to an array of type wchar_t. Wide characters from the array shall be written up
to (but not including) a terminating null wide character. If no precision is specified, or
is greater than the size of the array, the application shall ensure that the array contains a
null wide character. If a precision is specified, no more than that many wide characters
shall be written.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 977

32727

32728

32729

32730

32731

32732

32733

32734

32735

32736

32737

32738

32739

32740

32741

32742

32743

32744

32745

32746

32747

32748

32749

32750

32751

32752

32753

32754

32755

32756

32757

32758

32759

32760

32761

32762

32763

32764

32765

32766

32767

32768

32769

32770

32771

32772

fwprintf() System Interfaces

p The application shall ensure that the argument is a pointer to void. The value of the
pointer shall be converted to a sequence of printable wide characters in an
implementation-defined manner.

n The application shall ensure that the argument is a pointer to an integer into which is
written the number of wide characters written to the output so far by this call to one of
the fwprintf() functions. No argument shall be converted, but one shall be consumed. If
the conversion specification includes any flags, a field width, or a precision, the
behavior is undefined.

XSI C Equivalent to lc.

XSI S Equivalent to ls.

% Output a ’%’ wide character; no argument shall be converted. The entire conversion
specification shall be %%.

If a conversion specification does not match one of the above forms, the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field shall be expanded to contain the conversion
result. Characters generated by fwprintf() and wprintf() shall be printed as if fputwc() had been
called.

For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly
representable in the given precision, the result should be one of the two adjacent numbers in
hexadecimal floating style with the given precision, with the extra stipulation that the error
should have a correct sign for the current rounding direction.

For e, E, f, F, g, and G conversion specifiers, if the number of significant decimal digits is at
most DECIMAL_DIG, then the result should be correctly rounded. If the number of significant
decimal digits is more than DECIMAL_DIG but the source value is exactly representable with
DECIMAL_DIG digits, then the result should be an exact representation with trailing zeros.
Otherwise, the source value is bounded by two adjacent decimal strings L < U, both having
DECIMAL_DIG significant digits; the value of the resultant decimal string D should satisfy L <=
D <= U, with the extra stipulation that the error should have a correct sign for the current
rounding direction.

CX The last data modification and last file status change timestamps of the file shall be marked for
update between the call to a successful execution of fwprintf() or wprintf() and the next
successful completion of a call to fflush() or fclose() on the same stream, or a call to exit() or
abort().

RETURN VALUE
Upon successful completion, these functions shall return the number of wide characters
transmitted, excluding the terminating null wide character in the case of swprintf(), or a negative

CX value if an output error was encountered, and set errno to indicate the error.

If n or more wide characters were requested to be written, swprintf() shall return a negative
CX value, and set errno to indicate the error.

ERRORS
For the conditions under which fwprintf() and wprintf() fail and may fail, refer to fputwc().

In addition, all forms of fwprintf() shall fail if:

CX [EILSEQ] A wide-character code that does not correspond to a valid character has been
detected.

978 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

32773

32774

32775

32776

32777

32778

32779

32780

32781

32782

32783

32784

32785

32786

32787

32788

32789

32790

32791

32792

32793

32794

32795

32796

32797

32798

32799

32800

32801

32802

32803

32804

32805

32806

32807

32808

32809

32810

32811

32812

32813

32814

32815

32816

System Interfaces fwprintf()

In addition, all forms of fwprintf() may fail if:

CX [EINVAL] There are insufficient arguments.

In addition, fwprintf() and wprintf() may fail if:

CX [ENOMEM] Insufficient storage space is available.

The swprintf() shall fail if:

CX [EOVERFLOW] The value of n is greater than {INT_MAX} or the number of bytes needed to
hold the output excluding the terminating null is greater than {INT_MAX}.

EXAMPLES
To print the language-independent date and time format, the following statement could be used:

wprintf(format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the wide-character string:

L"%s, %s %d, %d:%.2d\n"

producing the message:

Sunday, July 3, 10:02

whereas for German usage, format could be a pointer to the wide-character string:

L"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

producing the message:

Sonntag, 3. Juli, 10:02

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
btowc(), fputwc(), fwscanf(), mbrtowc(), setlocale()

XBD Chapter 7 (on page 135), <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The Open Group Corrigendum U040/1 is applied to the RETURN VALUE section, describing
the case if n or more wide characters are requested to be written using swprintf().

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The prototypes for fwprintf(), swprintf(), and wprintf() are updated.

• The DESCRIPTION is updated.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 979

32817

32818

32819

32820

32821

32822

32823

32824

32825

32826

32827

32828

32829

32830

32831

32832

32833

32834

32835

32836

32837

32838

32839

32840

32841

32842

32843

32844

32845

32846

32847

32848

32849

32850

32851

32852

32853

fwprintf() System Interfaces

• The hh, ll, j, t, and z length modifiers are added.

• The a, A, and F conversion characters are added.

• XSI shading is removed from the description of character string representations of infinity
and NaN floating-point values.

The DESCRIPTION is updated to use the terms ‘‘conversion specifier’’ and ‘‘conversion
specification’’ consistently.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

Issue 7
Austin Group Interpretation 1003.1-2001 #161 is applied, updating the DESCRIPTION of the 0
flag.

Austin Group Interpretation 1003.1-2001 #170 is applied.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #68 (SD5-XSH-ERN-70) is applied,
revising the description of g and G.

Functionality relating to the "%n$" form of conversion specification and the <apostrophe> flag
is moved from the XSI option to the Base.

The [EOVERFLOW] error is added for swprintf().

Changes are made related to support for finegrained timestamps.

980 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

32854

32855

32856

32857

32858

32859

32860

32861

32862

32863

32864

32865

32866

32867

32868

32869

32870

System Interfaces fwrite()

NAME
fwrite — binary output

SYNOPSIS
#include <stdio.h>

size_t fwrite(const void *restrict ptr, size_t size, size_t nitems,
FILE *restrict stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fwrite() function shall write, from the array pointed to by ptr, up to nitems elements whose
size is specified by size, to the stream pointed to by stream. For each object, size calls shall be
made to the fputc() function, taking the values (in order) from an array of unsigned char exactly
overlaying the object. The file-position indicator for the stream (if defined) shall be advanced by
the number of bytes successfully written. If an error occurs, the resulting value of the file-
position indicator for the stream is unspecified.

CX The last data modification and last file status change timestamps of the file shall be marked for
update between the successful execution of fwrite() and the next successful completion of a call
to fflush() or fclose() on the same stream, or a call to exit() or abort().

RETURN VALUE
The fwrite() function shall return the number of elements successfully written, which may be
less than nitems if a write error is encountered. If size or nitems is 0, fwrite() shall return 0 and the
state of the stream remains unchanged. Otherwise, if a write error occurs, the error indicator for

CX the stream shall be set, and errno shall be set to indicate the error.

ERRORS
Refer to fputc().

EXAMPLES
None.

APPLICATION USAGE
Because of possible differences in element length and byte ordering, files written using fwrite()
are application-dependent, and possibly cannot be read using fread() by a different application
or by the same application on a different processor.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ferror(), fopen(), fprintf(), putc(), puts(), write()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 981

32871

32872

32873

32874

32875

32876

32877

32878

32879

32880

32881

32882

32883

32884

32885

32886

32887

32888

32889

32890

32891

32892

32893

32894

32895

32896

32897

32898

32899

32900

32901

32902

32903

32904

32905

32906

32907

32908

32909

32910

32911

fwrite() System Interfaces

Issue 6
Extensions beyond the ISO C standard are marked.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The fwrite() prototype is updated.

• The DESCRIPTION is updated to clarify how the data is written out using fputc().

Issue 7
Changes are made related to support for finegrained timestamps.

982 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

32912

32913

32914

32915

32916

32917

32918

System Interfaces fwscanf()

NAME
fwscanf, swscanf, wscanf — convert formatted wide-character input

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fwscanf(FILE *restrict stream, const wchar_t *restrict format, ...);
int swscanf(const wchar_t *restrict ws,

const wchar_t *restrict format, ...);
int wscanf(const wchar_t *restrict format, ...);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The fwscanf() function shall read from the named input stream. The wscanf() function shall read
from the standard input stream stdin. The swscanf() function shall read from the wide-character
string ws. Each function reads wide characters, interprets them according to a format, and stores
the results in its arguments. Each expects, as arguments, a control wide-character string format
described below, and a set of pointer arguments indicating where the converted input should be
stored. The result is undefined if there are insufficient arguments for the format. If the format is
exhausted while arguments remain, the excess arguments are evaluated but are otherwise
ignored.

CX Conversions can be applied to the nth argument after the format in the argument list, rather than
to the next unused argument. In this case, the conversion specifier wide character % (see below)
is replaced by the sequence "%n$", where n is a decimal integer in the range
[1,{NL_ARGMAX}]. This feature provides for the definition of format wide-character strings that
select arguments in an order appropriate to specific languages. In format wide-character strings
containing the "%n$" form of conversion specifications, it is unspecified whether numbered
arguments in the argument list can be referenced from the format wide-character string more
than once.

The format can contain either form of a conversion specification—that is, % or "%n$"— but the
two forms cannot normally be mixed within a single format wide-character string. The only
exception to this is that %% or %* can be mixed with the "%n$" form. When numbered argument
specifications are used, specifying the Nth argument requires that all the leading arguments,
from the first to the (N−1)th, are pointers.

The fwscanf() function in all its forms allows for detection of a language-dependent radix
character in the input string, encoded as a wide-character value. The radix character is defined
in the locale of the process (category LC_NUMERIC). In the POSIX locale, or in a locale where
the radix character is not defined, the radix character shall default to a <period> (’.’).

The format is a wide-character string composed of zero or more directives. Each directive is
composed of one of the following: one or more white-space wide characters (<space>, <tab>,
<newline>, <vertical-tab>, or <form-feed>); an ordinary wide character (neither ’%’ nor a
white-space character); or a conversion specification.

CX Each conversion specification is introduced by the ’%’ or by the character sequence "%n$",
after which the following appear in sequence:

• An optional assignment-suppressing character ’*’.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 983

32919

32920

32921

32922

32923

32924

32925

32926

32927

32928

32929

32930

32931

32932

32933

32934

32935

32936

32937

32938

32939

32940

32941

32942

32943

32944

32945

32946

32947

32948

32949

32950

32951

32952

32953

32954

32955

32956

32957

32958

32959

32960

32961

32962

32963

fwscanf() System Interfaces

• An optional non-zero decimal integer that specifies the maximum field width.

CX • An optional assignment-allocation character ’m’.

• An optional length modifier that specifies the size of the receiving object.

• A conversion specifier wide character that specifies the type of conversion to be applied.
The valid conversion specifiers are described below.

The fwscanf() functions shall execute each directive of the format in turn. If a directive fails, as
detailed below, the function shall return. Failures are described as input failures (due to the
unavailability of input bytes) or matching failures (due to inappropriate input).

A directive composed of one or more white-space wide characters is executed by reading input
until no more valid input can be read, or up to the first wide character which is not a white-
space wide character, which remains unread.

A directive that is an ordinary wide character shall be executed as follows. The next wide
character is read from the input and compared with the wide character that comprises the
directive; if the comparison shows that they are not equivalent, the directive shall fail, and the
differing and subsequent wide characters remain unread. Similarly, if end-of-file, an encoding
error, or a read error prevents a wide character from being read, the directive shall fail.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each conversion wide character. A conversion specification is executed in
the following steps.

Input white-space wide characters (as specified by iswspace()) shall be skipped, unless the
conversion specification includes a [, c, or n conversion specifier.

An item shall be read from the input, unless the conversion specification includes an n
conversion specifier wide character. An input item is defined as the longest sequence of input
wide characters, not exceeding any specified field width, which is an initial subsequence of a
matching sequence. The first wide character, if any, after the input item shall remain unread. If
the length of the input item is zero, the execution of the conversion specification shall fail; this
condition is a matching failure, unless end-of-file, an encoding error, or a read error prevented
input from the stream, in which case it is an input failure.

Except in the case of a % conversion specifier, the input item (or, in the case of a %n conversion
specification, the count of input wide characters) shall be converted to a type appropriate to the
conversion wide character. If the input item is not a matching sequence, the execution of the
conversion specification shall fail; this condition is a matching failure. Unless assignment
suppression was indicated by a ’*’, the result of the conversion shall be placed in the object
pointed to by the first argument following the format argument that has not already received a

CX conversion result if the conversion specification is introduced by %, or in the nth argument if
introduced by the wide-character sequence "%n$". If this object does not have an appropriate
type, or if the result of the conversion cannot be represented in the space provided, the behavior
is undefined.

CX The %c, %s, and %[conversion specifiers shall accept an optional assignment-allocation
character ’m’, which shall cause a memory buffer to be allocated to hold the wide-character
string converted including a terminating null wide character. In such a case, the argument
corresponding to the conversion specifier should be a reference to a pointer value that will
receive a pointer to the allocated buffer. The system shall allocate a buffer as if malloc() had been
called. The application shall be responsible for freeing the memory after usage. If there is
insufficient memory to allocate a buffer, the function shall set errno to [ENOMEM] and a
conversion error shall result. If the function returns EOF, any memory successfully allocated for

984 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

32964

32965

32966

32967

32968

32969

32970

32971

32972

32973

32974

32975

32976

32977

32978

32979

32980

32981

32982

32983

32984

32985

32986

32987

32988

32989

32990

32991

32992

32993

32994

32995

32996

32997

32998

32999

33000

33001

33002

33003

33004

33005

33006

33007

33008

33009

System Interfaces fwscanf()

parameters using assignment-allocation character ’m’ by this call shall be freed before the
function returns.

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to signed char or unsigned char.

h Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to short or unsigned short.

l (ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to long or unsigned long; that a following a, A, e, E, f, F,
g, or G conversion specifier applies to an argument with type pointer to double; or that
a following c, s, or [conversion specifier applies to an argument with type pointer to

CX wchar_t. If the ’m’ assignment-allocation character is specified, the conversion
applies to an argument with the type pointer to a pointer to wchar_t.

ll (ell-ell)
Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to long long or unsigned long long.

j Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to intmax_t or uintmax_t.

z Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to size_t or the corresponding signed integer type.

t Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an
argument with type pointer to ptrdiff_t or the corresponding unsigned type.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an
argument with type pointer to long double.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The following conversion specifier wide characters are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of wcstol() with the value 10 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of wcstol() with 0 for the base argument. In the absence of a size
modifier, the application shall ensure that the corresponding argument is a pointer to
int.

o Matches an optionally signed octal integer, whose format is the same as expected for
the subject sequence of wcstoul() with the value 8 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to unsigned.

u Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of wcstoul() with the value 10 for the base argument. In the absence
of a size modifier, the application shall ensure that the corresponding argument is a
pointer to unsigned.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 985

33010

33011

33012

33013

33014

33015

33016

33017

33018

33019

33020

33021

33022

33023

33024

33025

33026

33027

33028

33029

33030

33031

33032

33033

33034

33035

33036

33037

33038

33039

33040

33041

33042

33043

33044

33045

33046

33047

33048

33049

33050

33051

33052

fwscanf() System Interfaces

x Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of wcstoul() with the value 16 for the base argument.
In the absence of a size modifier, the application shall ensure that the corresponding
argument is a pointer to unsigned.

a, e, f, g
Matches an optionally signed floating-point number, infinity, or NaN whose format is
the same as expected for the subject sequence of wcstod(). In the absence of a size
modifier, the application shall ensure that the corresponding argument is a pointer to
float.

If the fwprintf() family of functions generates character string representations for
infinity and NaN (a symbolic entity encoded in floating-point format) to support
IEEE Std 754-1985, the fwscanf() family of functions shall recognize them as input.

s Matches a sequence of non-white-space wide characters. If no l (ell) qualifier is present,
characters from the input field shall be converted as if by repeated calls to the
wcrtomb() function, with the conversion state described by an mbstate_t object
initialized to zero before the first wide character is converted. If the ’m’ assignment-
allocation character is not specified, the application shall ensure that the corresponding
argument is a pointer to a character array large enough to accept the sequence and the

CX terminating null character, which shall be added automatically. Otherwise, the
application shall ensure that the corresponding argument is a pointer to a pointer to a
wchar_t.

If the l (ell) qualifier is present and the ’m’ assignment-allocation character is not
specified, the application shall ensure that the corresponding argument is a pointer to
an array of wchar_t large enough to accept the sequence and the terminating null wide

CX character, which shall be added automatically. If the l (ell) qualifier is present and the
’m’ assignment-allocation character is present, the application shall ensure that the
corresponding argument is a pointer to a pointer to a wchar_t.

[Matches a non-empty sequence of wide characters from a set of expected wide
characters (the scanset). If no l (ell) qualifier is present, wide characters from the input
field shall be converted as if by repeated calls to the wcrtomb() function, with the
conversion state described by an mbstate_t object initialized to zero before the first
wide character is converted. If the ’m’ assignment-allocation character is not specified,
the application shall ensure that the corresponding argument is a pointer to a character
array large enough to accept the sequence and the terminating null character, which

CX shall be added automatically. Otherwise, the application shall ensure that the
corresponding argument is a pointer to a pointer to a wchar_t.

If an l (ell) qualifier is present and the ’m’ assignment-allocation character is not
specified, the application shall ensure that the corresponding argument is a pointer to
an array of wchar_t large enough to accept the sequence and the terminating null wide

CX character. If an l (ell) qualifier is present and the ’m’ assignment-allocation character
is specified, the application shall ensure that the corresponding argument is a pointer to
a pointer to a wchar_t.

The conversion specification includes all subsequent wide characters in the format
string up to and including the matching <right-square-bracket> (’]’). The wide
characters between the square brackets (the scanlist) comprise the scanset, unless the
wide character after the <left-square-bracket> is a <circumflex> (’ˆ’), in which case
the scanset contains all wide characters that do not appear in the scanlist between the
<circumflex> and the <right-square-bracket>. If the conversion specification begins

986 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

33053

33054

33055

33056

33057

33058

33059

33060

33061

33062

33063

33064

33065

33066

33067

33068

33069

33070

33071

33072

33073

33074

33075

33076

33077

33078

33079

33080

33081

33082

33083

33084

33085

33086

33087

33088

33089

33090

33091

33092

33093

33094

33095

33096

33097

33098

33099

33100

System Interfaces fwscanf()

with "[]" or "[ˆ]", the <right-square-bracket> is included in the scanlist and the
next <right-square-bracket> is the matching <right-square-bracket> that ends the
conversion specification; otherwise, the first <right-square-bracket> is the one that ends
the conversion specification. If a ’−’ is in the scanlist and is not the first wide character,
nor the second where the first wide character is a ’ˆ’, nor the last wide character, the
behavior is implementation-defined.

c Matches a sequence of wide characters of exactly the number specified by the field
width (1 if no field width is present in the conversion specification).

If no l (ell) length modifier is present, characters from the input field shall be converted
as if by repeated calls to the wcrtomb() function, with the conversion state described by
an mbstate_t object initialized to zero before the first wide character is converted. No
null character is added. If the ’m’ assignment-allocation character is not specified, the
application shall ensure that the corresponding argument is a pointer to the initial

CX element of a character array large enough to accept the sequence. Otherwise, the
application shall ensure that the corresponding argument is a pointer to a pointer to a
char.

No null wide character is added. If an l (ell) length modifier is present and the ’m’
assignment-allocation character is not specified, the application shall ensure that the
corresponding argument shall be a pointer to the initial element of an array of wchar_t

CX large enough to accept the sequence. If an l (ell) qualifier is present and the ’m’
assignment-allocation character is specified, the application shall ensure that the
corresponding argument is a pointer to a pointer to a wchar_t.

p Matches an implementation-defined set of sequences, which shall be the same as the set
of sequences that is produced by the %p conversion specification of the corresponding
fwprintf() functions. The application shall ensure that the corresponding argument is a
pointer to a pointer to void. The interpretation of the input item is implementation-
defined. If the input item is a value converted earlier during the same program
execution, the pointer that results shall compare equal to that value; otherwise, the
behavior of the %p conversion is undefined.

n No input is consumed. The application shall ensure that the corresponding argument is
a pointer to the integer into which is to be written the number of wide characters read
from the input so far by this call to the fwscanf() functions. Execution of a %n
conversion specification shall not increment the assignment count returned at the
completion of execution of the function. No argument shall be converted, but one shall
be consumed. If the conversion specification includes an assignment-suppressing wide
character or a field width, the behavior is undefined.

XSI C Equivalent to lc.

XSI S Equivalent to ls.

% Matches a single ’%’ wide character; no conversion or assignment shall occur. The
complete conversion specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers A, E, F, G, and X are also valid and shall be equivalent to, respectively,
a, e, f, g, and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before
any wide characters matching the current conversion specification (except for %n) have been
read (other than leading white-space, where permitted), execution of the current conversion

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 987

33101

33102

33103

33104

33105

33106

33107

33108

33109

33110

33111

33112

33113

33114

33115

33116

33117

33118

33119

33120

33121

33122

33123

33124

33125

33126

33127

33128

33129

33130

33131

33132

33133

33134

33135

33136

33137

33138

33139

33140

33141

33142

33143

33144

33145

33146

fwscanf() System Interfaces

specification shall terminate with an input failure. Otherwise, unless execution of the current
conversion specification is terminated with a matching failure, execution of the following
conversion specification (if any) shall be terminated with an input failure.

Reaching the end of the string in swscanf() shall be equivalent to encountering end-of-file for
fwscanf().

If conversion terminates on a conflicting input, the offending input shall be left unread in the
input. Any trailing white space (including <newline>) shall be left unread unless matched by a
conversion specification. The success of literal matches and suppressed assignments is only
directly determinable via the %n conversion specification.

CX The fwscanf() and wscanf() functions may mark the last data access timestamp of the file
associated with stream for update. The last data access timestamp shall be marked for update by
the first successful execution of fgetwc(), fgetws(), fwscanf(), getwc(), getwchar(), vfwscanf(),
vwscanf(), or wscanf() using stream that returns data not supplied by a prior call to ungetwc().

RETURN VALUE
Upon successful completion, these functions shall return the number of successfully matched
and assigned input items; this number can be zero in the event of an early matching failure. If
the input ends before the first matching failure or conversion, EOF shall be returned. If any

CX error occurs, EOF shall be returned, and errno shall be set to indicate the error. If a read error
occurs, the error indicator for the stream shall be set.

ERRORS
For the conditions under which the fwscanf() functions shall fail and may fail, refer to fgetwc().

In addition, the fwscanf() function shall fail if:

CX [EILSEQ] Input byte sequence does not form a valid character.

[ENOMEM] Insufficient storage space is available.

In addition, the fwscanf() function may fail if:

CX [EINVAL] There are insufficient arguments.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = wscanf(L"%d%f%s", &i, &x, name);

with the input line:

25 54.32E−1 Hamster

assigns to n the value 3, to i the value 25, to x the value 5.432, and name contains the string
"Hamster".

The call:

int i; float x; char name[50];
(void) wscanf(L"%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

assigns 56 to i, 789.0 to x, skips 0123, and places the string "56\0" in name. The next call to
getchar() shall return the character ’a’.

988 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

33147

33148

33149

33150

33151

33152

33153

33154

33155

33156

33157

33158

33159

33160

33161

33162

33163

33164

33165

33166

33167

33168

33169

33170

33171

33172

33173

33174

33175

33176

33177

33178

33179

33180

33181

33182

33183

33184

33185

33186

33187

System Interfaces fwscanf()

APPLICATION USAGE
In format strings containing the ’%’ form of conversion specifications, each argument in the
argument list is used exactly once.

For functions that allocate memory as if by malloc(), the application should release such memory
when it is no longer required by a call to free(). For fwscanf(), this is memory allocated via use of
the ’m’ assignment-allocation character.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getwc(), fwprintf(), setlocale(), wcstod(), wcstol(), wcstoul(), wcrtomb()

XBD Chapter 7 (on page 135), <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The prototypes for fwscanf() and swscanf() are updated.

• The DESCRIPTION is updated.

• The hh, ll, j, t, and z length modifiers are added.

• The a, A, and F conversion characters are added.

The DESCRIPTION is updated to use the terms ‘‘conversion specifier’’ and ‘‘conversion
specification’’ consistently.

Issue 7
Austin Group Interpretation 1003.1-2001 #170 is applied.

SD5-XSH-ERN-132 is applied, adding the assignment-allocation character ’m’.

Functionality relating to the "%n$" form of conversion specification is moved from the XSI
option to the Base.

Changes are made related to support for finegrained timestamps.

The APPLICATION USAGE section is updated to clarify that memory is allocated as if by
malloc().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 989

33188

33189

33190

33191

33192

33193

33194

33195

33196

33197

33198

33199

33200

33201

33202

33203

33204

33205

33206

33207

33208

33209

33210

33211

33212

33213

33214

33215

33216

33217

33218

33219

33220

gai_strerror() System Interfaces

NAME
gai_strerror — address and name information error description

SYNOPSIS
#include <netdb.h>

const char *gai_strerror(int ecode);

DESCRIPTION
The gai_strerror() function shall return a text string describing an error value for the getaddrinfo()
and getnameinfo() functions listed in the <netdb.h> header.

When the ecode argument is one of the following values listed in the <netdb.h> header:

[EAI_AGAIN]
[EAI_BADFLAGS]
[EAI_FAIL]
[EAI_FAMILY]
[EAI_MEMORY]

[EAI_NONAME]
[EAI_OVERFLOW]
[EAI_SERVICE]
[EAI_SOCKTYPE]
[EAI_SYSTEM]

the function return value shall point to a string describing the error. If the argument is not one
of those values, the function shall return a pointer to a string whose contents indicate an
unknown error.

RETURN VALUE
Upon successful completion, gai_strerror() shall return a pointer to an implementation-defined
string.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
freeaddrinfo()

XBD <netdb.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The Open Group Base Resolution bwg2001-009 is applied, which changes the return type from
char * to const char *. This is for coordination with the IPnG Working Group.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/22 is applied, adding the
[EAI_OVERFLOW] error code.

990 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

33221

33222

33223

33224

33225

33226

33227

33228

33229

33230

33231

33232

33233

33234

33235

33236

33237

33238

33239

33240

33241

33242

33243

33244

33245

33246

33247

33248

33249

33250

33251

33252

33253

33254

33255

33256

33257

33258

33259

System Interfaces getaddrinfo()

NAME
getaddrinfo — get address information

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *restrict nodename,
const char *restrict servname,
const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

DESCRIPTION
Refer to freeaddrinfo().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 991

33260

33261

33262

33263

33264

33265

33266

33267

33268

33269

33270

getc() System Interfaces

NAME
getc — get a byte from a stream

SYNOPSIS
#include <stdio.h>

int getc(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The getc() function shall be equivalent to fgetc(), except that if it is implemented as a macro it
may evaluate stream more than once, so the argument should never be an expression with side-
effects.

RETURN VALUE
Refer to fgetc().

ERRORS
Refer to fgetc().

EXAMPLES
None.

APPLICATION USAGE
If the integer value returned by getc() is stored into a variable of type char and then compared
against the integer constant EOF, the comparison may never succeed, because sign-extension of
a variable of type char on widening to integer is implementation-defined.

Since it may be implemented as a macro, getc() may treat incorrectly a stream argument with
side-effects. In particular, getc(* f ++) does not necessarily work as expected. Therefore, use of this
function should be preceded by "#undef getc" in such situations; fgetc() could also be used.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fgetc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

992 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

33271

33272

33273

33274

33275

33276

33277

33278

33279

33280

33281

33282

33283

33284

33285

33286

33287

33288

33289

33290

33291

33292

33293

33294

33295

33296

33297

33298

33299

33300

33301

33302

33303

33304

System Interfaces getc_unlocked()

NAME
getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked — stdio with explicit client
locking

SYNOPSIS
CX #include <stdio.h>

int getc_unlocked(FILE *stream);
int getchar_unlocked(void);
int putc_unlocked(int c, FILE *stream);
int putchar_unlocked(int c);

DESCRIPTION
Versions of the functions getc(), getchar(), putc(), and putchar() respectively named
getc_unlocked(), getchar_unlocked(), putc_unlocked(), and putchar_unlocked() shall be provided
which are functionally equivalent to the original versions, with the exception that they are not
required to be implemented in a thread-safe manner. They may only safely be used within a
scope protected by flockfile() (or ftrylockfile()) and funlockfile(). These functions may safely be
used in a multi-threaded program if and only if they are called while the invoking thread owns
the (FILE *) object, as is the case after a successful call to the flockfile() or ftrylockfile() functions.

RETURN VALUE
See getc(), getchar(), putc(), and putchar().

ERRORS
See getc(), getchar(), putc(), and putchar().

EXAMPLES
None.

APPLICATION USAGE
Since they may be implemented as macros, getc_unlocked() and putc_unlocked() may treat
incorrectly a stream argument with side-effects. In particular, getc_unlocked(*f++) and
putc_unlocked(*f++) do not necessarily work as expected. Therefore, use of these functions in
such situations should be preceded by the following statement as appropriate:

#undef getc_unlocked
#undef putc_unlocked

RATIONALE
Some I/O functions are typically implemented as macros for performance reasons (for example,
putc() and getc()). For safety, they need to be synchronized, but it is often too expensive to
synchronize on every character. Nevertheless, it was felt that the safety concerns were more
important; consequently, the getc(), getchar(), putc(), and putchar() functions are required to be
thread-safe. However, unlocked versions are also provided with names that clearly indicate the
unsafe nature of their operation but can be used to exploit their higher performance. These
unlocked versions can be safely used only within explicitly locked program regions, using
exported locking primitives. In particular, a sequence such as:

flockfile(fileptr);
putc_unlocked(’1’, fileptr);
putc_unlocked(’\n’, fileptr);
fprintf(fileptr, "Line 2\n");
funlockfile(fileptr);

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 993

33305

33306

33307

33308

33309

33310

33311

33312

33313

33314

33315

33316

33317

33318

33319

33320

33321

33322

33323

33324

33325

33326

33327

33328

33329

33330

33331

33332

33333

33334

33335

33336

33337

33338

33339

33340

33341

33342

33343

33344

33345

33346

33347

33348

getc_unlocked() System Interfaces

is permissible, and results in the text sequence:

1
Line 2

being printed without being interspersed with output from other threads.

It would be wrong to have the standard names such as getc(), putc(), and so on, map to the
‘‘faster, but unsafe’’ rather than the ‘‘slower, but safe’’ versions. In either case, you would still
want to inspect all uses of getc(), putc(), and so on, by hand when converting existing code.
Choosing the safe bindings as the default, at least, results in correct code and maintains the
‘‘atomicity at the function’’ invariant. To do otherwise would introduce gratuitous
synchronization errors into converted code. Other routines that modify the stdio (FILE *)
structures or buffers are also safely synchronized.

Note that there is no need for functions of the form getc_locked(), putc_locked(), and so on, since
this is the functionality of getc(), putc(), et al. It would be inappropriate to use a feature test
macro to switch a macro definition of getc() between getc_locked() and getc_unlocked(), since the
ISO C standard requires an actual function to exist, a function whose behavior could not be
changed by the feature test macro. Also, providing both the xxx_locked() and xxx_unlocked()
forms leads to the confusion of whether the suffix describes the behavior of the function or the
circumstances under which it should be used.

Three additional routines, flockfile(), ftrylockfile(), and funlockfile() (which may be macros), are
provided to allow the user to delineate a sequence of I/O statements that are executed
synchronously.

The ungetc() function is infrequently called relative to the other functions/macros so no
unlocked variation is needed.

FUTURE DIRECTIONS
None.

SEE ALSO
getc(), getchar(), putc(), putchar()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
These functions are marked as part of the Thread-Safe Functions option.

The Open Group Corrigendum U030/2 is applied, adding APPLICATION USAGE describing
how applications should be written to avoid the case when the functions are implemented as
macros.

Issue 7
The getc_unlocked(), getchar_unlocked(), putc_unlocked(), and putchar_unlocked() functions are
moved from the Thread-Safe Functions option to the Base.

994 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

33349

33350

33351

33352

33353

33354

33355

33356

33357

33358

33359

33360

33361

33362

33363

33364

33365

33366

33367

33368

33369

33370

33371

33372

33373

33374

33375

33376

33377

33378

33379

33380

33381

33382

33383

33384

33385

33386

System Interfaces getchar()

NAME
getchar — get a byte from a stdin stream

SYNOPSIS
#include <stdio.h>

int getchar(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The getchar() function shall be equivalent to getc(stdin).

RETURN VALUE
Refer to fgetc().

ERRORS
Refer to fgetc().

EXAMPLES
None.

APPLICATION USAGE
If the integer value returned by getchar() is stored into a variable of type char and then
compared against the integer constant EOF, the comparison may never succeed, because sign-
extension of a variable of type char on widening to integer is implementation-defined.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 995

33387

33388

33389

33390

33391

33392

33393

33394

33395

33396

33397

33398

33399

33400

33401

33402

33403

33404

33405

33406

33407

33408

33409

33410

33411

33412

33413

33414

33415

getchar_unlocked() System Interfaces

NAME
getchar_unlocked — stdio with explicit client locking

SYNOPSIS
CX #include <stdio.h>

int getchar_unlocked(void);

DESCRIPTION
Refer to getc_unlocked().

996 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

33416

33417

33418

33419

33420

33421

33422

System Interfaces getcwd()

NAME
getcwd — get the pathname of the current working directory

SYNOPSIS
#include <unistd.h>

char *getcwd(char *buf, size_t size);

DESCRIPTION
The getcwd() function shall place an absolute pathname of the current working directory in the
array pointed to by buf, and return buf. The pathname shall contain no components that are dot
or dot-dot, or are symbolic links.

If there are multiple pathnames that getcwd() could place in the array pointed to by buf, one
beginning with a single <slash> character and one or more beginning with two <slash>
characters, then getcwd() shall place the pathname beginning with a single <slash> character in
the array. The pathname shall not contain any unnecessary <slash> characters after the leading
one or two <slash> characters.

The size argument is the size in bytes of the character array pointed to by the buf argument. If buf
is a null pointer, the behavior of getcwd() is unspecified.

RETURN VALUE
Upon successful completion, getcwd() shall return the buf argument. Otherwise, getcwd() shall
return a null pointer and set errno to indicate the error. The contents of the array pointed to by
buf are then undefined.

ERRORS
The getcwd() function shall fail if:

[EINVAL] The size argument is 0.

[ERANGE] The size argument is greater than 0, but is smaller than the length of the string
+1.

The getcwd() function may fail if:

[EACCES] Search permission was denied for the current directory, or read or search
permission was denied for a directory above the current directory in the file
hierarchy.

[ENOMEM] Insufficient storage space is available.

EXAMPLES
The following example uses {PATH_MAX} as the initial buffer size (unless it is indeterminate or
very large), and calls getcwd() with progressively larger buffers until it does not give an
[ERANGE] error.

#include <stdlib.h>
#include <errno.h>
#include <unistd.h>

...

long path_max;
size_t size;
char *buf;
char *ptr;

path_max = pathconf(".", _PC_PATH_MAX);
if (path_max == -1)

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 997

33423

33424

33425

33426

33427

33428

33429

33430

33431

33432

33433

33434

33435

33436

33437

33438

33439

33440

33441

33442

33443

33444

33445

33446

33447

33448

33449

33450

33451

33452

33453

33454

33455

33456

33457

33458

33459

33460

33461

33462

33463

33464

33465

33466

getcwd() System Interfaces

size = 1024;
else if (path_max > 10240)

size = 10240;
else

size = path_max;

for (buf = ptr = NULL; ptr == NULL; size *= 2)
{

if ((buf = realloc(buf, size)) == NULL)
{

... handle error ...
}

ptr = getcwd(buf, size);
if (ptr == NULL && errno != ERANGE)
{

... handle error ...
}

}
free (buf);

APPLICATION USAGE
If the pathname obtained from getcwd() is longer than {PATH_MAX} bytes, it could produce an
[ENAMETOOLONG] error if passed to chdir(). Therefore, in order to return to that directory it
may be necessary to break the pathname into sections shorter than {PATH_MAX} bytes and call
chdir() on each section in turn (the first section being an absolute pathname and subsequent
sections being relative pathnames). A simpler way to handle saving and restoring the working
directory when it may be deeper than {PATH_MAX} bytes in the file hierarchy is to use a file
descriptor and fchdir(), rather than getcwd() and chdir(). However, the two methods do have
some differences. The fchdir() approach causes the program to restore a working directory even
if it has been renamed in the meantime, whereas the chdir() approach restores to a directory with
the same name as the original, even if the directories were renamed in the meantime. Since the
fchdir() approach does not access parent directories, it can succeed when getcwd() would fail
due to permissions problems. In applications conforming to earlier versions of this standard, it
was not possible to use the fchdir() approach when the working directory is searchable but not
readable, as the only way to open a directory was with O_RDONLY, whereas the getcwd()
approach can succeed in this case.

RATIONALE
Having getcwd() take no arguments and instead use the malloc() function to produce space for
the returned argument was considered. The advantage is that getcwd() knows how big the
working directory pathname is and can allocate an appropriate amount of space. But the
programmer would have to use the free() function to free the resulting object, or each use of
getcwd() would further reduce the available memory. Finally, getcwd() is taken from the SVID
where it has the two arguments used in this volume of POSIX.1-2008.

The older function getwd() was rejected for use in this context because it had only a buffer
argument and no size argument, and thus had no way to prevent overwriting the buffer, except
to depend on the programmer to provide a large enough buffer.

On some implementations, if buf is a null pointer, getcwd() may obtain size bytes of memory
using malloc(). In this case, the pointer returned by getcwd() may be used as the argument in a
subsequent call to free(). Invoking getcwd() with buf as a null pointer is not recommended in
conforming applications.

998 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

33467

33468

33469

33470

33471

33472

33473

33474

33475

33476

33477

33478

33479

33480

33481

33482

33483

33484

33485

33486

33487

33488

33489

33490

33491

33492

33493

33494

33495

33496

33497

33498

33499

33500

33501

33502

33503

33504

33505

33506

33507

33508

33509

33510

33511

33512

33513

33514

System Interfaces getcwd()

Earlier implementations of getcwd() sometimes generated pathnames like
"../../../subdirname" internally, using them to explore the path of ancestor directories
back to the root. If one of these internal pathnames exceeded {PATH_MAX} in length, the
implementation could fail with errno set to [ENAMETOOLONG]. This is no longer allowed.

If a program is operating in a directory where some (grand)parent directory does not permit
reading, getcwd() may fail, as in most implementations it must read the directory to determine
the name of the file. This can occur if search, but not read, permission is granted in an
intermediate directory, or if the program is placed in that directory by some more privileged
process (for example, login). Including the [EACCES] error condition makes the reporting of the
error consistent and warns the application developer that getcwd() can fail for reasons beyond
the control of the application developer or user. Some implementations can avoid this
occurrence (for example, by implementing getcwd() using pwd, where pwd is a set-user-root
process), thus the error was made optional. Since this volume of POSIX.1-2008 permits the
addition of other errors, this would be a common addition and yet one that applications could
not be expected to deal with without this addition.

FUTURE DIRECTIONS
None.

SEE ALSO
malloc()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [ENOMEM] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #140 is applied, changing the text for consistency with
the pwd utility, adding text to address the case where the current directory is deeper in the file
hierarchy than {PATH_MAX} bytes, and adding the requirements relating to pathnames
beginning with two <slash> characters.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 999

33515

33516

33517

33518

33519

33520

33521

33522

33523

33524

33525

33526

33527

33528

33529

33530

33531

33532

33533

33534

33535

33536

33537

33538

33539

33540

33541

33542

33543

33544

33545

getdate() System Interfaces

NAME
getdate — convert user format date and time

SYNOPSIS
XSI #include <time.h>

struct tm *getdate(const char *string);

DESCRIPTION
The getdate() function shall convert a string representation of a date or time into a broken-down
time.

The external variable or macro getdate_err, which has type int, is used by getdate() to return error
values. It is unspecified whether getdate_err is a macro or an identifier declared with external
linkage, and whether or not it is a modifiable lvalue. If a macro definition is suppressed in order
to access an actual object, or a program defines an identifier with the name getdate_err, the
behavior is undefined.

Templates are used to parse and interpret the input string. The templates are contained in a text
file identified by the environment variable DATEMSK. The DATEMSK variable should be set to
indicate the full pathname of the file that contains the templates. The first line in the template
that matches the input specification is used for interpretation and conversion into the internal
time format.

The following conversion specifications shall be supported:

%% Equivalent to %.

%a Abbreviated weekday name.

%A Full weekday name.

%b Abbreviated month name.

%B Full month name.

%c Locale’s appropriate date and time representation.

%C Century number [00,99]; leading zeros are permitted but not required.

%d Day of month [01,31]; the leading 0 is optional.

%D Date as %m/%d/%y.

%e Equivalent to %d.

%h Abbreviated month name.

%H Hour [00,23].

%I Hour [01,12].

%m Month number [01,12].

%M Minute [00,59].

%n Equivalent to <newline>.

%p Locale’s equivalent of either AM or PM.

%r The locale’s appropriate representation of time in AM and PM notation. In the POSIX
locale, this shall be equivalent to %I:%M:%S %p.

1000 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

33546

33547

33548

33549

33550

33551

33552

33553

33554

33555

33556

33557

33558

33559

33560

33561

33562

33563

33564

33565

33566

33567

33568

33569

33570

33571

33572

33573

33574

33575

33576

33577

33578

33579

33580

33581

33582

33583

System Interfaces getdate()

%R Time as %H:%M.

%S Seconds [00,60]. The range goes to 60 (rather than stopping at 59) to allow positive leap
seconds to be expressed. Since leap seconds cannot be predicted by any algorithm, leap
second data must come from some external source.

%t Equivalent to <tab>.

%T Time as %H:%M:%S.

%w Weekday number (Sunday = [0,6]).

%x Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year within century. When a century is not otherwise specified, values in the range
[69,99] shall refer to years 1969 to 1999 inclusive, and values in the range [00,68] shall
refer to years 2000 to 2068 inclusive.

Note: It is expected that in a future version of this standard the default century inferred
from a 2-digit year will change. (This would apply to all commands accepting a
2-digit year as input.)

%Y Year as "ccyy" (for example, 2001).

%Z Timezone name or no characters if no timezone exists. If the timezone supplied by %Z is
not the timezone that getdate() expects, an invalid input specification error shall result.
The getdate() function calculates an expected timezone based on information supplied
to the function (such as the hour, day, and month).

The match between the template and input specification performed by getdate() shall be case-
insensitive.

The month and weekday names can consist of any combination of upper and lowercase letters.
The process can request that the input date or time specification be in a specific language by
setting the LC_TIME category (see setlocale()).

Leading zeros are not necessary for the descriptors that allow leading zeros. However, at most
two digits are allowed for those descriptors, including leading zeros. Extra white space in either
the template file or in string shall be ignored.

The results are undefined if the conversion specifications %c, %x, and %X include unsupported
conversion specifications.

The following rules apply for converting the input specification into the internal format:

• If %Z is being scanned, then getdate() shall initialize the broken-down time to be the current
time in the scanned timezone. Otherwise, it shall initialize the broken-down time based on
the current local time as if localtime() had been called.

• If only the weekday is given, the day chosen shall be the day, starting with today and
moving into the future, which first matches the named day.

• If only the month (and no year) is given, the month chosen shall be the month, starting
with the current month and moving into the future, which first matches the named month.
The first day of the month shall be assumed if no day is given.

• If no hour, minute, and second are given, the current hour, minute, and second shall be
assumed.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1001

33584

33585

33586

33587

33588

33589

33590

33591

33592

33593

33594

33595

33596

33597

33598

33599

33600

33601

33602

33603

33604

33605

33606

33607

33608

33609

33610

33611

33612

33613

33614

33615

33616

33617

33618

33619

33620

33621

33622

33623

33624

getdate() System Interfaces

• If no date is given, the hour chosen shall be the hour, starting with the current hour and
moving into the future, which first matches the named hour.

If a conversion specification in the DATEMSK file does not correspond to one of the conversion
specifications above, the behavior is unspecified.

The getdate() function need not be thread-safe.

RETURN VALUE
Upon successful completion, getdate() shall return a pointer to a struct tm. Otherwise, it shall
return a null pointer and set getdate_err to indicate the error.

ERRORS
The getdate() function shall fail in the following cases, setting getdate_err to the value shown in
the list below. Any changes to errno are unspecified.

1. The DATEMSK environment variable is null or undefined.

2. The template file cannot be opened for reading.

3. Failed to get file status information.

4. The template file is not a regular file.

5. An I/O error is encountered while reading the template file.

6. Memory allocation failed (not enough memory available).

7. There is no line in the template that matches the input.

8. Invalid input specification. For example, February 31; or a time is specified that cannot be
represented in a time_t (representing the time in seconds since the Epoch).

EXAMPLES

1. The following example shows the possible contents of a template:

%m
%A %B %d, %Y, %H:%M:%S
%A
%B
%m/%d/%y %I %p
%d,%m,%Y %H:%M
at %A the %dst of %B in %Y
run job at %I %p,%B %dnd
%A den %d. %B %Y %H.%M Uhr

2. The following are examples of valid input specifications for the template in Example 1:

getdate("10/1/87 4 PM");
getdate("Friday");
getdate("Friday September 18, 1987, 10:30:30");
getdate("24,9,1986 10:30");
getdate("at monday the 1st of december in 1986");
getdate("run job at 3 PM, december 2nd");

If the LC_TIME category is set to a German locale that includes freitag as a weekday name
and oktober as a month name, the following would be valid:

getdate("freitag den 10. oktober 1986 10.30 Uhr");

1002 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

33625

33626

33627

33628

33629

33630

33631

33632

33633

33634

33635

33636

33637

33638

33639

33640

33641

33642

33643

33644

33645

33646

33647

33648

33649

33650

33651

33652

33653

33654

33655

33656

33657

33658

33659

33660

33661

33662

33663

33664

33665

System Interfaces getdate()

3. The following example shows how local date and time specification can be defined in the
template:

Invocation Line in Template

getdate("11/27/86") %m/%d/%y
getdate("27.11.86") %d.%m.%y
getdate("86-11-27") %y-%m-%d
getdate("Friday 12:00:00") %A %H:%M:%S

4. The following examples help to illustrate the above rules assuming that the current date
is Mon Sep 22 12:19:47 EDT 1986 and the LC_TIME category is set to the default C locale:

Input Line in Template Date

Mon %a Mon Sep 22 12:19:47 EDT 1986
Sun %a Sun Sep 28 12:19:47 EDT 1986
Fri %a Fri Sep 26 12:19:47 EDT 1986
September %B Mon Sep 1 12:19:47 EDT 1986
January %B Thu Jan 1 12:19:47 EST 1987
December %B Mon Dec 1 12:19:47 EST 1986
Sep Mon %b %a Mon Sep 1 12:19:47 EDT 1986
Jan Fri %b %a Fri Jan 2 12:19:47 EST 1987
Dec Mon %b %a Mon Dec 1 12:19:47 EST 1986
Jan Wed 1989 %b %a %Y Wed Jan 4 12:19:47 EST 1989
Fri 9 %a %H Fri Sep 26 09:00:00 EDT 1986
Feb 10:30 %b %H:%S Sun Feb 1 10:00:30 EST 1987
10:30 %H:%M Tue Sep 23 10:30:00 EDT 1986
13:30 %H:%M Mon Sep 22 13:30:00 EDT 1986

APPLICATION USAGE
Although historical versions of getdate() did not require that <time.h> declare the external
variable getdate_err, this volume of POSIX.1-2008 does require it. The standard developers
encourage applications to remove declarations of getdate_err and instead incorporate the
declaration by including <time.h>.

Applications should use %Y (4-digit years) in preference to %y (2-digit years).

RATIONALE
In standard locales, the conversion specifications %c, %x, and %X do not include unsupported
conversion specifiers and so the text regarding results being undefined is not a problem in that
case.

FUTURE DIRECTIONS
None.

SEE ALSO
ctime(), localtime(), setlocale(), strftime(), times()

XBD <time.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1003

33666

33667

33668

33669

33670

33671

33672

33673

33674

33675

33676

33677

33678

33679

33680

33681

33682

33683

33684

33685

33686

33687

33688

33689

33690

33691

33692

33693

33694

33695

33696

33697

33698

33699

33700

33701

33702

33703

33704

33705

33706

getdate() System Interfaces

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The last paragraph of the DESCRIPTION is added.

The %C conversion specification is added, and the exact meaning of the %y conversion
specification is clarified in the DESCRIPTION.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

The %R conversion specification is changed to follow historical practice.

Issue 6
The DESCRIPTION is updated to refer to ‘‘seconds since the Epoch’’ rather than ‘‘seconds since
00:00:00 UTC (Coordinated Universal Time), January 1 1970’’ for consistency with other time
functions.

The description of %S is updated so that the valid range is [00,60] rather than [00,61].

The DESCRIPTION is updated to refer to conversion specifications instead of field descriptors
for consistency with other functions.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The description of the getdate_err value is expanded.

1004 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

33707

33708

33709

33710

33711

33712

33713

33714

33715

33716

33717

33718

33719

33720

33721

33722

33723

System Interfaces getdelim()

NAME
getdelim, getline — read a delimited record from stream

SYNOPSIS
CX #include <stdio.h>

ssize_t getdelim(char **restrict lineptr, size_t *restrict n,
int delimiter, FILE *restrict stream);

ssize_t getline(char **restrict lineptr, size_t *restrict n,
FILE *restrict stream);

DESCRIPTION
The getdelim() function shall read from stream until it encounters a character matching the
delimiter character. The delimiter argument is an int, the value of which the application shall
ensure is a character representable as an unsigned char of equal value that terminates the read
process. If the delimiter argument has any other value, the behavior is undefined.

The application shall ensure that *lineptr is a valid argument that could be passed to the free()
function. If *n is non-zero, the application shall ensure that *lineptr either points to an object of
size at least *n bytes, or is a null pointer.

The size of the object pointed to by *lineptr shall be increased to fit the incoming line, if it isn’t
already large enough, including room for the delimiter and a terminating NUL. The characters
read, including any delimiter, shall be stored in the string pointed to by the lineptr argument,
and a terminating NUL added when the delimiter or end of file is encountered.

The getline() function shall be equivalent to the getdelim() function with the delimiter character
equal to the <newline> character.

The getdelim() and getline() functions may mark the last data access timestamp of the file
associated with stream for update. The last data access timestamp shall be marked for update by
the first successful execution of fgetc(), fgets(), fread(), fscanf(), getc(), getchar(), getdelim(),
getline(), gets(), or scanf() using stream that returns data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, the getline() and getdelim() functions shall return the number of
characters written into the buffer, including the delimiter character if one was encountered
before EOF, but excluding the terminating NUL character. If no characters were read, and the
end-of-file indicator for the stream is set, or if the stream is at end-of-file, the end-of-file indicator
for the stream shall be set and the function shall return −1. If an error occurs, the error indicator
for the stream shall be set, and the function shall return −1 and set errno to indicate the error.

ERRORS
For the conditions under which the getdelim() and getline() functions shall fail and may fail, refer
to fgetc().

In addition, these functions shall fail if:

[EINVAL] lineptr or n is a null pointer.

[ENOMEM] Insufficient memory is available.

These functions may fail if:

[EOVERFLOW] More than {SSIZE_MAX} characters were read without encountering the
delimiter character.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1005

33724

33725

33726

33727

33728

33729

33730

33731

33732

33733

33734

33735

33736

33737

33738

33739

33740

33741

33742

33743

33744

33745

33746

33747

33748

33749

33750

33751

33752

33753

33754

33755

33756

33757

33758

33759

33760

33761

33762

33763

33764

33765

getdelim() System Interfaces

EXAMPLES

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
char *line = NULL;
size_t len = 0;
ssize_t read;
fp = fopen("/etc/motd", "r");
if (fp == NULL)

exit(1);
while ((read = getline(&line, &len, fp)) != -1) {

printf("Retrieved line of length %zu :\n", read);
printf("%s", line);

}
if (ferror(fp)) {

/* handle error */
}
free(line);
fclose(fp);
return 0;

}

APPLICATION USAGE
Setting *lineptr to a null pointer and *n to zero are allowed and a recommended way to start
parsing a file.

The ferror() or feof() functions should be used to distinguish between an error condition and an
end-of-file condition.

Although a NUL terminator is always supplied after the line, note that strlen(*lineptr) will be
smaller than the return value if the line contains embedded NUL characters.

RATIONALE
These functions are widely used to solve the problem that the fgets() function has with long
lines. The functions automatically enlarge the target buffers if needed. These are especially
useful since they reduce code needed for applications.

FUTURE DIRECTIONS
None.

SEE ALSO
fgetc(), fgets(), free()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 7.

1006 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

33766

33767

33768

33769

33770

33771

33772

33773

33774

33775

33776

33777

33778

33779

33780

33781

33782

33783

33784

33785

33786

33787

33788

33789

33790

33791

33792

33793

33794

33795

33796

33797

33798

33799

33800

33801

33802

33803

33804

33805

33806

System Interfaces getegid()

NAME
getegid — get the effective group ID

SYNOPSIS
#include <unistd.h>

gid_t getegid(void);

DESCRIPTION
The getegid() function shall return the effective group ID of the calling process.

RETURN VALUE
The getegid() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
geteuid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), setuid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1007

33807

33808

33809

33810

33811

33812

33813

33814

33815

33816

33817

33818

33819

33820

33821

33822

33823

33824

33825

33826

33827

33828

33829

33830

33831

33832

33833

33834

33835

33836

33837

33838

getenv() System Interfaces

NAME
getenv — get value of an environment variable

SYNOPSIS
#include <stdlib.h>

char *getenv(const char *name);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The getenv() function shall search the environment of the calling process (see XBD Chapter 8, on
page 173) for the environment variable name if it exists and return a pointer to the value of the
environment variable. If the specified environment variable cannot be found, a null pointer shall
be returned. The application shall ensure that it does not modify the string pointed to by the
getenv() function.

CX The string pointed to may be overwritten by a subsequent call to getenv(), setenv(), unsetenv(),
XSI or putenv() but shall not be overwritten by a call to any other function in this volume of

POSIX.1-2008.

CX If the application modifies environ or the pointers to which it points, the behavior of getenv() is
undefined.

The getenv() function need not be thread-safe.

RETURN VALUE
Upon successful completion, getenv() shall return a pointer to a string containing the value for
the specified name. If the specified name cannot be found in the environment of the calling
process, a null pointer shall be returned.

ERRORS
No errors are defined.

EXAMPLES

Getting the Value of an Environment Variable

The following example gets the value of the HOME environment variable.

#include <stdlib.h>
...
const char *name = "HOME";
char *value;

value = getenv(name);

APPLICATION USAGE
None.

RATIONALE
The clearenv() function was considered but rejected. The putenv() function has now been
included for alignment with the Single UNIX Specification.

The getenv() function is inherently not thread-safe because it returns a value pointing to static
data.

Conforming applications are required not to modify environ directly, but to use only the
functions described here to manipulate the process environment as an abstract object. Thus, the

1008 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

33839

33840

33841

33842

33843

33844

33845

33846

33847

33848

33849

33850

33851

33852

33853

33854

33855

33856

33857

33858

33859

33860

33861

33862

33863

33864

33865

33866

33867

33868

33869

33870

33871

33872

33873

33874

33875

33876

33877

33878

33879

33880

33881

System Interfaces getenv()

implementation of the environment access functions has complete control over the data
structure used to represent the environment (subject to the requirement that environ be
maintained as a list of strings with embedded <equals-sign> characters for applications that
wish to scan the environment). This constraint allows the implementation to properly manage
the memory it allocates, either by using allocated storage for all variables (copying them on the
first invocation of setenv() or unsetenv()), or keeping track of which strings are currently in
allocated space and which are not, via a separate table or some other means. This enables the
implementation to free any allocated space used by strings (and perhaps the pointers to them)
stored in environ when unsetenv() is called. A C runtime start-up procedure (that which invokes
main() and perhaps initializes environ) can also initialize a flag indicating that none of the
environment has yet been copied to allocated storage, or that the separate table has not yet been
initialized.

In fact, for higher performance of getenv(), the implementation could also maintain a separate
copy of the environment in a data structure that could be searched much more quickly (such as
an indexed hash table, or a binary tree), and update both it and the linear list at environ when
setenv() or unsetenv() is invoked.

Performance of getenv() can be important for applications which have large numbers of
environment variables. Typically, applications like this use the environment as a resource
database of user-configurable parameters. The fact that these variables are in the user’s shell
environment usually means that any other program that uses environment variables (such as ls,
which attempts to use COLUMNS), or really almost any utility (LANG, LC_ALL, and so on) is
similarly slowed down by the linear search through the variables.

An implementation that maintains separate data structures, or even one that manages the
memory it consumes, is not currently required as it was thought it would reduce consensus
among implementors who do not want to change their historical implementations.

FUTURE DIRECTIONS
A future version may add one or more functions to access and modify the environment in a
thread-safe manner.

SEE ALSO
exec , putenv(), setenv(), unsetenv()

XBD Chapter 8 (on page 173), <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
The following changes were made to align with the IEEE P1003.1a draft standard:

• References added to the new setenv() and unsetenv() functions.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #062 is applied, clarifying that a call to putenv() may
also cause the string to be overwritten.

Austin Group Interpretation 1003.1-2001 #148 is applied, adding the FUTURE DIRECTIONS.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1009

33882

33883

33884

33885

33886

33887

33888

33889

33890

33891

33892

33893

33894

33895

33896

33897

33898

33899

33900

33901

33902

33903

33904

33905

33906

33907

33908

33909

33910

33911

33912

33913

33914

33915

33916

33917

33918

33919

33920

33921

33922

33923

33924

33925

33926

getenv() System Interfaces

Austin Group Interpretation 1003.1-2001 #156 is applied.

1010 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

33927

System Interfaces geteuid()

NAME
geteuid — get the effective user ID

SYNOPSIS
#include <unistd.h>

uid_t geteuid(void);

DESCRIPTION
The geteuid() function shall return the effective user ID of the calling process.

RETURN VALUE
The geteuid() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), setuid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1011

33928

33929

33930

33931

33932

33933

33934

33935

33936

33937

33938

33939

33940

33941

33942

33943

33944

33945

33946

33947

33948

33949

33950

33951

33952

33953

33954

33955

33956

33957

33958

33959

getgid() System Interfaces

NAME
getgid — get the real group ID

SYNOPSIS
#include <unistd.h>

gid_t getgid(void);

DESCRIPTION
The getgid() function shall return the real group ID of the calling process.

RETURN VALUE
The getgid() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), geteuid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), setuid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

1012 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

33960

33961

33962

33963

33964

33965

33966

33967

33968

33969

33970

33971

33972

33973

33974

33975

33976

33977

33978

33979

33980

33981

33982

33983

33984

33985

33986

33987

33988

33989

33990

33991

System Interfaces getgrent()

NAME
getgrent — get the group database entry

SYNOPSIS
XSI #include <grp.h>

struct group *getgrent(void);

DESCRIPTION
Refer to endgrent().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1013

33992

33993

33994

33995

33996

33997

33998

getgrgid() System Interfaces

NAME
getgrgid, getgrgid_r — get group database entry for a group ID

SYNOPSIS
#include <grp.h>

struct group *getgrgid(gid_t gid);
int getgrgid_r(gid_t gid, struct group *grp, char *buffer,

size_t bufsize, struct group **result);

DESCRIPTION
The getgrgid() function shall search the group database for an entry with a matching gid.

The getgrgid() function need not be thread-safe.

The getgrgid_r() function shall update the group structure pointed to by grp and store a pointer
to that structure at the location pointed to by result. The structure shall contain an entry from
the group database with a matching gid. Storage referenced by the group structure is allocated
from the memory provided with the buffer parameter, which is bufsize bytes in size. A call to
sysconf (_SC_GETGR_R_SIZE_MAX) returns either −1 without changing errno or an initial value
suggested for the size of this buffer. A null pointer shall be returned at the location pointed to
by result on error or if the requested entry is not found.

RETURN VALUE
Upon successful completion, getgrgid() shall return a pointer to a struct group with the structure
defined in <grp.h> with a matching entry if one is found. The getgrgid() function shall return a
null pointer if either the requested entry was not found, or an error occurred. On error, errno
shall be set to indicate the error.

The return value may point to a static area which is overwritten by a subsequent call to
getgrent(), getgrgid(), or getgrnam().

If successful, the getgrgid_r() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The getgrgid() and getgrgid_r() functions may fail if:

[EIO] An I/O error has occurred.

[EINTR] A signal was caught during getgrgid().

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The getgrgid_r() function may fail if:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting group structure.

1014 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

33999

34000

34001

34002

34003

34004

34005

34006

34007

34008

34009

34010

34011

34012

34013

34014

34015

34016

34017

34018

34019

34020

34021

34022

34023

34024

34025

34026

34027

34028

34029

34030

34031

34032

34033

System Interfaces getgrgid()

EXAMPLES
Note that sysconf (_SC_GETGR_R_SIZE_MAX) may return −1 if there is no hard limit on the size
of the buffer needed to store all the groups returned. This example shows how an application
can allocate a buffer of sufficient size to work with getgrid_r().

long int initlen = sysconf(_SC_GETGR_R_SIZE_MAX);
size_t len;
if (initlen == −1)

/* Default initial length. */
len = 1024;

else
len = (size_t) initlen;

struct group result;
struct group *resultp;
char *buffer = malloc(len);
if (buffer == NULL)

...handle error...
int e;
while ((e = getgrgid_r(42, &result, buffer, len, &resultp)) == ERANGE)

{
size_t newlen = 2 * len;
if (newlen < len)

...handle error...
len = newlen;
char *newbuffer = realloc(buffer, len);
if (newbuffer == NULL)

...handle error...
buffer = newbuffer;
}

if (e != 0)
...handle error...

free (buffer);

Finding an Entry in the Group Database

The following example uses getgrgid() to search the group database for a group ID that was
previously stored in a stat structure, then prints out the group name if it is found. If the group is
not found, the program prints the numeric value of the group for the entry.

#include <sys/types.h>
#include <grp.h>
#include <stdio.h>
...
struct stat statbuf;
struct group *grp;
...
if ((grp = getgrgid(statbuf.st_gid)) != NULL)

printf(" %-8.8s", grp->gr_name);
else

printf(" %-8d", statbuf.st_gid);
...

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1015

34034

34035

34036

34037

34038

34039

34040

34041

34042

34043

34044

34045

34046

34047

34048

34049

34050

34051

34052

34053

34054

34055

34056

34057

34058

34059

34060

34061

34062

34063

34064

34065

34066

34067

34068

34069

34070

34071

34072

34073

34074

34075

34076

34077

34078

34079

34080

getgrgid() System Interfaces

APPLICATION USAGE
Applications wishing to check for error situations should set errno to 0 before calling getgrgid().
If errno is set on return, an error occurred.

The getgrgid_r() function is thread-safe and shall return values in a user-supplied buffer instead
of possibly using a static data area that may be overwritten by each call.

Portable applications should take into account that it is usual for an implementation to return −1
from sysconf() indicating that there is no maximum for _SC_GETGR_R_SIZE_MAX.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endgrent(), getgrnam(), sysconf()

XBD <grp.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from System V Release 2.0.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getgrgid_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getgrgid() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The getgrgid_r() function is marked as part of the Thread-Safe Functions option.

The Open Group Corrigendum U028/3 is applied, correcting text in the DESCRIPTION
describing matching the gid.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the RETURN VALUE section, the requirement to set errno on error is added.

• The [EIO], [EINTR], [EMFILE], and [ENFILE] optional error conditions are added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

IEEE PASC Interpretation 1003.1 #116 is applied, changing the description of the size of the
buffer from bufsize characters to bytes.

1016 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

34081

34082

34083

34084

34085

34086

34087

34088

34089

34090

34091

34092

34093

34094

34095

34096

34097

34098

34099

34100

34101

34102

34103

34104

34105

34106

34107

34108

34109

34110

34111

34112

34113

34114

34115

34116

34117

34118

34119

System Interfaces getgrgid()

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied.

The getgrgid_r() function is moved from the Thread-Safe Functions option to the Base.

A minor addition is made to the EXAMPLES section, reminding the application developer to
free memory allocated as if by malloc().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1017

34120

34121

34122

34123

34124

34125

34126

getgrnam() System Interfaces

NAME
getgrnam, getgrnam_r — search group database for a name

SYNOPSIS
#include <grp.h>

struct group *getgrnam(const char *name);
int getgrnam_r(const char *name, struct group *grp, char *buffer,

size_t bufsize, struct group **result);

DESCRIPTION
The getgrnam() function shall search the group database for an entry with a matching name.

The getgrnam() function need not be thread-safe.

The getgrnam_r() function shall update the group structure pointed to by grp and store a pointer
to that structure at the location pointed to by result. The structure shall contain an entry from
the group database with a matching name. Storage referenced by the group structure is allocated
from the memory provided with the buffer parameter, which is bufsize bytes in size. A call to
sysconf (_SC_GETGR_R_SIZE_MAX) returns either −1 without changing errno or an initial value
suggested for the size of this buffer. A null pointer is returned at the location pointed to by result
on error or if the requested entry is not found.

RETURN VALUE
The getgrnam() function shall return a pointer to a struct group with the structure defined in
<grp.h> with a matching entry if one is found. The getgrnam() function shall return a null
pointer if either the requested entry was not found, or an error occurred. On error, errno shall be
set to indicate the error.

The return value may point to a static area which is overwritten by a subsequent call to
getgrent(), getgrgid(), or getgrnam().

The getgrnam_r() function shall return zero on success or if the requested entry was not found
and no error has occurred. If any error has occurred, an error number shall be returned to
indicate the error.

ERRORS
The getgrnam() and getgrnam_r() functions may fail if:

[EIO] An I/O error has occurred.

[EINTR] A signal was caught during getgrnam().

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The getgrnam_r() function may fail if:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting group structure.

1018 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

34127

34128

34129

34130

34131

34132

34133

34134

34135

34136

34137

34138

34139

34140

34141

34142

34143

34144

34145

34146

34147

34148

34149

34150

34151

34152

34153

34154

34155

34156

34157

34158

34159

34160

34161

34162

System Interfaces getgrnam()

EXAMPLES
Note that sysconf (_SC_GETGR_R_SIZE_MAX) may return −1 if there is no hard limit on the size
of the buffer needed to store all the groups returned. This example shows how an application
can allocate a buffer of sufficient size to work with getgrnam_r().

long int initlen = sysconf(_SC_GETGR_R_SIZE_MAX);
size_t len;
if (initlen == −1)

/* Default initial length. */
len = 1024;

else
len = (size_t) initlen;

struct group result;
struct group *resultp;
char *buffer = malloc(len);
if (buffer == NULL)

...handle error...
int e;
while ((e = getgrnam_r("somegroup", &result, buffer, len, &resultp))

== ERANGE)
{
size_t newlen = 2 * len;
if (newlen < len)

...handle error...
len = newlen;
char *newbuffer = realloc(buffer, len);
if (newbuffer == NULL)

...handle error...
buffer = newbuffer;
}

if (e != 0)
...handle error...

free (buffer);

APPLICATION USAGE
Applications wishing to check for error situations should set errno to 0 before calling getgrnam().
If errno is set on return, an error occurred.

The getgrnam_r() function is thread-safe and shall return values in a user-supplied buffer instead
of possibly using a static data area that may be overwritten by each call.

Portable applications should take into account that it is usual for an implementation to return −1
from sysconf() indicating that there is no maximum for _SC_GETGR_R_SIZE_MAX.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endgrent(), getgrgid(), sysconf()

XBD <grp.h>, <sys/types.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1019

34163

34164

34165

34166

34167

34168

34169

34170

34171

34172

34173

34174

34175

34176

34177

34178

34179

34180

34181

34182

34183

34184

34185

34186

34187

34188

34189

34190

34191

34192

34193

34194

34195

34196

34197

34198

34199

34200

34201

34202

34203

34204

34205

34206

34207

34208

getgrnam() System Interfaces

CHANGE HISTORY
First released in Issue 1. Derived from System V Release 2.0.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getgrnam_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getgrnam() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The getgrnam_r() function is marked as part of the Thread-Safe Functions option.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the RETURN VALUE section, the requirement to set errno on error is added.

• The [EIO], [EINTR], [EMFILE], and [ENFILE] optional error conditions are added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

IEEE PASC Interpretation 1003.1 #116 is applied, changing the description of the size of the
buffer from bufsize characters to bytes.

Issue 7
Austin Group Interpretation 1003.1-2001 #081 is applied, clarifying the RETURN VALUE section.

Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied.

The getgrnam_r() function is moved from the Thread-Safe Functions option to the Base.

A minor addition is made to the EXAMPLES section, reminding the application developer to
free memory allocated as if by malloc().

1020 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

34209

34210

34211

34212

34213

34214

34215

34216

34217

34218

34219

34220

34221

34222

34223

34224

34225

34226

34227

34228

34229

34230

34231

34232

34233

34234

34235

34236

34237

34238

34239

System Interfaces getgroups()

NAME
getgroups — get supplementary group IDs

SYNOPSIS
#include <unistd.h>

int getgroups(int gidsetsize, gid_t grouplist[]);

DESCRIPTION
The getgroups() function shall fill in the array grouplist with the current supplementary group
IDs of the calling process. It is implementation-defined whether getgroups() also returns the
effective group ID in the grouplist array.

The gidsetsize argument specifies the number of elements in the array grouplist. The actual
number of group IDs stored in the array shall be returned. The values of array entries with
indices greater than or equal to the value returned are undefined.

If gidsetsize is 0, getgroups() shall return the number of group IDs that it would otherwise return
without modifying the array pointed to by grouplist.

If the effective group ID of the process is returned with the supplementary group IDs, the value
returned shall always be greater than or equal to one and less than or equal to the value of
{NGROUPS_MAX}+1.

RETURN VALUE
Upon successful completion, the number of supplementary group IDs shall be returned. A
return value of −1 indicates failure and errno shall be set to indicate the error.

ERRORS
The getgroups() function shall fail if:

[EINVAL] The gidsetsize argument is non-zero and less than the number of group IDs
that would have been returned.

EXAMPLES

Getting the Supplementary Group IDs of the Calling Process

The following example places the current supplementary group IDs of the calling process into
the group array.

#include <sys/types.h>
#include <unistd.h>
...
gid_t *group;
int nogroups;
long ngroups_max;

ngroups_max = sysconf(_SC_NGROUPS_MAX) + 1;
group = (gid_t *)malloc(ngroups_max *sizeof(gid_t));

ngroups = getgroups(ngroups_max, group);

APPLICATION USAGE
None.

RATIONALE
The related function setgroups() is a privileged operation and therefore is not covered by this
volume of POSIX.1-2008.

As implied by the definition of supplementary groups, the effective group ID may appear in the

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1021

34240

34241

34242

34243

34244

34245

34246

34247

34248

34249

34250

34251

34252

34253

34254

34255

34256

34257

34258

34259

34260

34261

34262

34263

34264

34265

34266

34267

34268

34269

34270

34271

34272

34273

34274

34275

34276

34277

34278

34279

34280

34281

34282

getgroups() System Interfaces

array returned by getgroups() or it may be returned only by getegid(). Duplication may exist, but
the application needs to call getegid() to be sure of getting all of the information. Various
implementation variations and administrative sequences cause the set of groups appearing in
the result of getgroups() to vary in order and as to whether the effective group ID is included,
even when the set of groups is the same (in the mathematical sense of ‘‘set’’). (The history of a
process and its parents could affect the details of the result.)

Application developers should note that {NGROUPS_MAX} is not necessarily a constant on all
implementations.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), setgid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• A return value of 0 is not permitted, because {NGROUPS_MAX} cannot be 0. This is a FIPS
requirement.

The following changes were made to align with the IEEE P1003.1a draft standard:

• An explanation is added that the effective group ID may be included in the supplementary
group list.

1022 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

34283

34284

34285

34286

34287

34288

34289

34290

34291

34292

34293

34294

34295

34296

34297

34298

34299

34300

34301

34302

34303

34304

34305

34306

34307

34308

34309

34310

34311

34312

System Interfaces gethostent()

NAME
gethostent — network host database functions

SYNOPSIS
#include <netdb.h>

struct hostent *gethostent(void);

DESCRIPTION
Refer to endhostent().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1023

34313

34314

34315

34316

34317

34318

34319

gethostid() System Interfaces

NAME
gethostid — get an identifier for the current host

SYNOPSIS
XSI #include <unistd.h>

long gethostid(void);

DESCRIPTION
The gethostid() function shall retrieve a 32-bit identifier for the current host.

RETURN VALUE
Upon successful completion, gethostid() shall return an identifier for the current host.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This volume of POSIX.1-2008 does not define the domain in which the return value is unique.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
initstate()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

1024 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

34320

34321

34322

34323

34324

34325

34326

34327

34328

34329

34330

34331

34332

34333

34334

34335

34336

34337

34338

34339

34340

34341

34342

34343

34344

34345

System Interfaces gethostname()

NAME
gethostname — get name of current host

SYNOPSIS
#include <unistd.h>

int gethostname(char *name, size_t namelen);

DESCRIPTION
The gethostname() function shall return the standard host name for the current machine. The
namelen argument shall specify the size of the array pointed to by the name argument. The
returned name shall be null-terminated, except that if namelen is an insufficient length to hold
the host name, then the returned name shall be truncated and it is unspecified whether the
returned name is null-terminated.

Host names are limited to {HOST_NAME_MAX} bytes.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
gethostid(), uname()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The Open Group Base Resolution bwg2001-008 is applied, changing the namelen parameter from
socklen_t to size_t.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1025

34346

34347

34348

34349

34350

34351

34352

34353

34354

34355

34356

34357

34358

34359

34360

34361

34362

34363

34364

34365

34366

34367

34368

34369

34370

34371

34372

34373

34374

34375

34376

getitimer() System Interfaces

NAME
getitimer, setitimer — get and set value of interval timer

SYNOPSIS
OB XSI #include <sys/time.h>

int getitimer(int which, struct itimerval *value);
int setitimer(int which, const struct itimerval *restrict value,

struct itimerval *restrict ovalue);

DESCRIPTION
The getitimer() function shall store the current value of the timer specified by which into the
structure pointed to by value. The setitimer() function shall set the timer specified by which to the
value specified in the structure pointed to by value, and if ovalue is not a null pointer, store the
previous value of the timer in the structure pointed to by ovalue.

A timer value is defined by the itimerval structure, specified in <sys/time.h>. If it_value is non-
zero, it shall indicate the time to the next timer expiration. If it_interval is non-zero, it shall
specify a value to be used in reloading it_value when the timer expires. Setting it_value to 0 shall
disable a timer, regardless of the value of it_interval. Setting it_interval to 0 shall disable a timer
after its next expiration (assuming it_value is non-zero).

Implementations may place limitations on the granularity of timer values. For each interval
timer, if the requested timer value requires a finer granularity than the implementation supports,
the actual timer value shall be rounded up to the next supported value.

An XSI-conforming implementation provides each process with at least three interval timers,
which are indicated by the which argument:

ITIMER_PROF Decrements both in process virtual time and when the system is running
on behalf of the process. It is designed to be used by interpreters in
statistically profiling the execution of interpreted programs. Each time the
ITIMER_PROF timer expires, the SIGPROF signal is delivered.

ITIMER_REAL Decrements in real time. A SIGALRM signal is delivered when this timer
expires.

ITIMER_VIRTUAL Decrements in process virtual time. It runs only when the process is
executing. A SIGVTALRM signal is delivered when it expires.

The interaction between setitimer() and alarm() or sleep() is unspecified.

RETURN VALUE
Upon successful completion, getitimer() or setitimer() shall return 0; otherwise, −1 shall be
returned and errno set to indicate the error.

ERRORS
The setitimer() function shall fail if:

[EINVAL] The value argument is not in canonical form. (In canonical form, the number of
microseconds is a non-negative integer less than 1 000 000 and the number of
seconds is a non-negative integer.)

The getitimer() and setitimer() functions may fail if:

[EINVAL] The which argument is not recognized.

1026 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

34377

34378

34379

34380

34381

34382

34383

34384

34385

34386

34387

34388

34389

34390

34391

34392

34393

34394

34395

34396

34397

34398

34399

34400

34401

34402

34403

34404

34405

34406

34407

34408

34409

34410

34411

34412

34413

34414

34415

34416

34417

System Interfaces getitimer()

EXAMPLES
None.

APPLICATION USAGE
Applications should use the timer_gettime() and timer_settime() functions instead of the
obsolescent getitimer() and setitimer() functions, respectively.

RATIONALE
None.

FUTURE DIRECTIONS
The getitimer() and setitimer() functions may be removed in a future version.

SEE ALSO
alarm(), exec , sleep(), timer_getoverrun()

XBD <signal.h>, <sys/time.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The restrict keyword is added to the setitimer() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
The getitimer() and setitimer() functions are marked obsolescent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1027

34418

34419

34420

34421

34422

34423

34424

34425

34426

34427

34428

34429

34430

34431

34432

34433

34434

34435

34436

34437

34438

getline() System Interfaces

NAME
getline — read a delimited record from stream

SYNOPSIS
CX #include <stdio.h>

ssize_t getline(char **restrict lineptr, size_t *restrict n,
FILE *restrict stream);

DESCRIPTION
Refer to getdelim().

1028 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

34439

34440

34441

34442

34443

34444

34445

34446

System Interfaces getlogin()

NAME
getlogin, getlogin_r — get login name

SYNOPSIS
#include <unistd.h>

char *getlogin(void);
int getlogin_r(char *name, size_t namesize);

DESCRIPTION
The getlogin() function shall return a pointer to a string containing the user name associated by
the login activity with the controlling terminal of the current process. If getlogin() returns a non-
null pointer, then that pointer points to the name that the user logged in under, even if there are
several login names with the same user ID.

The getlogin() function need not be thread-safe.

The getlogin_r() function shall put the name associated by the login activity with the controlling
terminal of the current process in the character array pointed to by name. The array is namesize
characters long and should have space for the name and the terminating null character. The
maximum size of the login name is {LOGIN_NAME_MAX}.

If getlogin_r() is successful, name points to the name the user used at login, even if there are
several login names with the same user ID.

RETURN VALUE
Upon successful completion, getlogin() shall return a pointer to the login name or a null pointer
if the user’s login name cannot be found. Otherwise, it shall return a null pointer and set errno to
indicate the error.

The return value from getlogin() may point to static data whose content is overwritten by each
call.

If successful, the getlogin_r() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
These functions may fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

[ENXIO] The calling process has no controlling terminal.

The getlogin_r() function may fail if:

[ERANGE] The value of namesize is smaller than the length of the string to be returned
including the terminating null character.

EXAMPLES

Getting the User Login Name

The following example calls the getlogin() function to obtain the name of the user associated
with the calling process, and passes this information to the getpwnam() function to get the
associated user database information.

#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1029

34447

34448

34449

34450

34451

34452

34453

34454

34455

34456

34457

34458

34459

34460

34461

34462

34463

34464

34465

34466

34467

34468

34469

34470

34471

34472

34473

34474

34475

34476

34477

34478

34479

34480

34481

34482

34483

34484

34485

34486

34487

34488

getlogin() System Interfaces

#include <stdio.h>
...
char *lgn;
struct passwd *pw;
...
if ((lgn = getlogin()) == NULL || (pw = getpwnam(lgn)) == NULL) {

fprintf(stderr, "Get of user information failed.\n"); exit(1);
}

APPLICATION USAGE
Three names associated with the current process can be determined: getpwuid(geteuid()) shall
return the name associated with the effective user ID of the process; getlogin() shall return the
name associated with the current login activity; and getpwuid(getuid()) shall return the name
associated with the real user ID of the process.

The getlogin_r() function is thread-safe and returns values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

RATIONALE
The getlogin() function returns a pointer to the user’s login name. The same user ID may be
shared by several login names. If it is desired to get the user database entry that is used during
login, the result of getlogin() should be used to provide the argument to the getpwnam()
function. (This might be used to determine the user’s login shell, particularly where a single user
has multiple login shells with distinct login names, but the same user ID.)

The information provided by the cuserid() function, which was originally defined in the
POSIX.1-1988 standard and subsequently removed, can be obtained by the following:

getpwuid(geteuid())

while the information provided by historical implementations of cuserid() can be obtained by:

getpwuid(getuid())

The thread-safe version of this function places the user name in a user-supplied buffer and
returns a non-zero value if it fails. The non-thread-safe version may return the name in a static
data area that may be overwritten by each call.

FUTURE DIRECTIONS
None.

SEE ALSO
getpwnam(), getpwuid(), geteuid(), getuid()

XBD <limits.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from System V Release 2.0.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getlogin_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getlogin() function need not be reentrant is added to the
DESCRIPTION.

1030 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

34489

34490

34491

34492

34493

34494

34495

34496

34497

34498

34499

34500

34501

34502

34503

34504

34505

34506

34507

34508

34509

34510

34511

34512

34513

34514

34515

34516

34517

34518

34519

34520

34521

34522

34523

34524

34525

34526

34527

34528

34529

34530

System Interfaces getlogin()

Issue 6
The getlogin_r() function is marked as part of the Thread-Safe Functions option.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE section, the requirement to set errno on error is added.

• The [EMFILE], [ENFILE], and [ENXIO] optional error conditions are added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The getlogin_r() function is moved from the Thread-Safe Functions option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1031

34531

34532

34533

34534

34535

34536

34537

34538

34539

34540

34541

34542

34543

getmsg() System Interfaces

NAME
getmsg, getpmsg — receive next message from a STREAMS file (STREAMS)

SYNOPSIS
OB XSR #include <stropts.h>

int getmsg(int fildes, struct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, int *restrict flagsp);

int getpmsg(int fildes, struct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, int *restrict bandp,
int *restrict flagsp);

DESCRIPTION
The getmsg() function shall retrieve the contents of a message located at the head of the
STREAM head read queue associated with a STREAMS file and place the contents into one or
more buffers. The message contains either a data part, a control part, or both. The data and
control parts of the message shall be placed into separate buffers, as described below. The
semantics of each part are defined by the originator of the message.

The getpmsg() function shall be equivalent to getmsg(), except that it provides finer control over
the priority of the messages received. Except where noted, all requirements on getmsg() also
pertain to getpmsg().

The fildes argument specifies a file descriptor referencing a STREAMS-based file.

The ctlptr and dataptr arguments each point to a strbuf structure, in which the buf member points
to a buffer in which the data or control information is to be placed, and the maxlen member
indicates the maximum number of bytes this buffer can hold. On return, the len member shall
contain the number of bytes of data or control information actually received. The len member
shall be set to 0 if there is a zero-length control or data part and len shall be set to −1 if no data or
control information is present in the message.

When getmsg() is called, flagsp should point to an integer that indicates the type of message the
process is able to receive. This is described further below.

The ctlptr argument is used to hold the control part of the message, and dataptr is used to hold
the data part of the message. If ctlptr (or dataptr) is a null pointer or the maxlen member is −1, the
control (or data) part of the message shall not be processed and shall be left on the STREAM
head read queue, and if the ctlptr (or dataptr) is not a null pointer, len shall be set to −1. If the
maxlen member is set to 0 and there is a zero-length control (or data) part, that zero-length part
shall be removed from the read queue and len shall be set to 0. If the maxlen member is set to 0
and there are more than 0 bytes of control (or data) information, that information shall be left on
the read queue and len shall be set to 0. If the maxlen member in ctlptr (or dataptr) is less than the
control (or data) part of the message, maxlen bytes shall be retrieved. In this case, the remainder
of the message shall be left on the STREAM head read queue and a non-zero return value shall
be provided.

By default, getmsg() shall process the first available message on the STREAM head read queue.
However, a process may choose to retrieve only high-priority messages by setting the integer
pointed to by flagsp to RS_HIPRI. In this case, getmsg() shall only process the next message if it is
a high-priority message. When the integer pointed to by flagsp is 0, any available message shall
be retrieved. In this case, on return, the integer pointed to by flagsp shall be set to RS_HIPRI if a
high-priority message was retrieved, or 0 otherwise.

For getpmsg(), the flags are different. The flagsp argument points to a bitmask with the following
mutually-exclusive flags defined: MSG_HIPRI, MSG_BAND, and MSG_ANY. Like getmsg(),

1032 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

34544

34545

34546

34547

34548

34549

34550

34551

34552

34553

34554

34555

34556

34557

34558

34559

34560

34561

34562

34563

34564

34565

34566

34567

34568

34569

34570

34571

34572

34573

34574

34575

34576

34577

34578

34579

34580

34581

34582

34583

34584

34585

34586

34587

34588

34589

System Interfaces getmsg()

getpmsg() shall process the first available message on the STREAM head read queue. A process
may choose to retrieve only high-priority messages by setting the integer pointed to by flagsp to
MSG_HIPRI and the integer pointed to by bandp to 0. In this case, getpmsg() shall only process
the next message if it is a high-priority message. In a similar manner, a process may choose to
retrieve a message from a particular priority band by setting the integer pointed to by flagsp to
MSG_BAND and the integer pointed to by bandp to the priority band of interest. In this case,
getpmsg() shall only process the next message if it is in a priority band equal to, or greater than,
the integer pointed to by bandp, or if it is a high-priority message. If a process wants to get the
first message off the queue, the integer pointed to by flagsp should be set to MSG_ANY and the
integer pointed to by bandp should be set to 0. On return, if the message retrieved was a high-
priority message, the integer pointed to by flagsp shall be set to MSG_HIPRI and the integer
pointed to by bandp shall be set to 0. Otherwise, the integer pointed to by flagsp shall be set to
MSG_BAND and the integer pointed to by bandp shall be set to the priority band of the message.

If O_NONBLOCK is not set, getmsg() and getpmsg() shall block until a message of the type
specified by flagsp is available at the front of the STREAM head read queue. If O_NONBLOCK is
set and a message of the specified type is not present at the front of the read queue, getmsg() and
getpmsg() shall fail and set errno to [EAGAIN].

If a hangup occurs on the STREAM from which messages are retrieved, getmsg() and getpmsg()
shall continue to operate normally, as described above, until the STREAM head read queue is
empty. Thereafter, they shall return 0 in the len members of ctlptr and dataptr.

RETURN VALUE
Upon successful completion, getmsg() and getpmsg() shall return a non-negative value. A value
of 0 indicates that a full message was read successfully. A return value of MORECTL indicates
that more control information is waiting for retrieval. A return value of MOREDATA indicates
that more data is waiting for retrieval. A return value of the bitwise-logical OR of MORECTL
and MOREDATA indicates that both types of information remain. Subsequent getmsg() and
getpmsg() calls shall retrieve the remainder of the message. However, if a message of higher
priority has come in on the STREAM head read queue, the next call to getmsg() or getpmsg()
shall retrieve that higher-priority message before retrieving the remainder of the previous
message.

If the high priority control part of the message is consumed, the message shall be placed back on
the queue as a normal message of band 0. Subsequent getmsg() and getpmsg() calls shall retrieve
the remainder of the message. If, however, a priority message arrives or already exists on the
STREAM head, the subsequent call to getmsg() or getpmsg() shall retrieve the higher-priority
message before retrieving the remainder of the message that was put back.

Upon failure, getmsg() and getpmsg() shall return −1 and set errno to indicate the error.

ERRORS
The getmsg() and getpmsg() functions shall fail if:

[EAGAIN] The O_NONBLOCK flag is set and no messages are available.

[EBADF] The fildes argument is not a valid file descriptor open for reading.

[EBADMSG] The queued message to be read is not valid for getmsg() or getpmsg() or a
pending file descriptor is at the STREAM head.

[EINTR] A signal was caught during getmsg() or getpmsg().

[EINVAL] An illegal value was specified by flagsp, or the STREAM or multiplexer
referenced by fildes is linked (directly or indirectly) downstream from a
multiplexer.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1033

34590

34591

34592

34593

34594

34595

34596

34597

34598

34599

34600

34601

34602

34603

34604

34605

34606

34607

34608

34609

34610

34611

34612

34613

34614

34615

34616

34617

34618

34619

34620

34621

34622

34623

34624

34625

34626

34627

34628

34629

34630

34631

34632

34633

34634

34635

getmsg() System Interfaces

[ENOSTR] A STREAM is not associated with fildes.

In addition, getmsg() and getpmsg() shall fail if the STREAM head had processed an
asynchronous error before the call. In this case, the value of errno does not reflect the result of
getmsg() or getpmsg() but reflects the prior error.

EXAMPLES

Getting Any Message

In the following example, the value of fd is assumed to refer to an open STREAMS file. The call
to getmsg() retrieves any available message on the associated STREAM-head read queue,
returning control and data information to the buffers pointed to by ctrlbuf and databuf ,
respectively.

#include <stropts.h>
...
int fd;
char ctrlbuf[128];
char databuf[512];
struct strbuf ctrl;
struct strbuf data;
int flags = 0;
int ret;

ctrl.buf = ctrlbuf;
ctrl.maxlen = sizeof(ctrlbuf);

data.buf = databuf;
data.maxlen = sizeof(databuf);

ret = getmsg (fd, &ctrl, &data, &flags);

Getting the First Message off the Queue

In the following example, the call to getpmsg() retrieves the first available message on the
associated STREAM-head read queue.

#include <stropts.h>
...

int fd;
char ctrlbuf[128];
char databuf[512];
struct strbuf ctrl;
struct strbuf data;
int band = 0;
int flags = MSG_ANY;
int ret;

ctrl.buf = ctrlbuf;
ctrl.maxlen = sizeof(ctrlbuf);

data.buf = databuf;
data.maxlen = sizeof(databuf);

ret = getpmsg (fd, &ctrl, &data, &band, &flags);

1034 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

34636

34637

34638

34639

34640

34641

34642

34643

34644

34645

34646

34647

34648

34649

34650

34651

34652

34653

34654

34655

34656

34657

34658

34659

34660

34661

34662

34663

34664

34665

34666

34667

34668

34669

34670

34671

34672

34673

34674

34675

34676

34677

System Interfaces getmsg()

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The getmsg() and getpmsg() functions may be removed in a future version.

SEE ALSO
Section 2.6 (on page 494), poll(), putmsg(), read(), write()

XBD <stropts.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

A paragraph regarding ‘‘high-priority control parts of messages’’ is added to the RETURN
VALUE section.

Issue 6
This function is marked as part of the XSI STREAMS Option Group.

The restrict keyword is added to the getmsg() and getpmsg() prototypes for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
The getmsg() and getpmsg() functions are marked obsolescent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1035

34678

34679

34680

34681

34682

34683

34684

34685

34686

34687

34688

34689

34690

34691

34692

34693

34694

34695

34696

34697

34698

getnameinfo() System Interfaces

NAME
getnameinfo — get name information

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *restrict sa, socklen_t salen,
char *restrict node, socklen_t nodelen, char *restrict service,
socklen_t servicelen, int flags);

DESCRIPTION
The getnameinfo() function shall translate a socket address to a node name and service location,
all of which are defined as in freeaddrinfo().

The sa argument points to a socket address structure to be translated.

IP6 If the socket address structure contains an IPv4-mapped IPv6 address or an IPv4-compatible
IPv6 address, the implementation shall extract the embedded IPv4 address and lookup the node
name for that IPv4 address.

If the address is the IPv6 unspecified address ("::"), a lookup shall not be performed and the
behavior shall be the same as when the node’s name cannot be located.

If the node argument is non-NULL and the nodelen argument is non-zero, then the node argument
points to a buffer able to contain up to nodelen characters that receives the node name as a null-
terminated string. If the node argument is NULL or the nodelen argument is zero, the node name
shall not be returned. If the node’s name cannot be located, the numeric form of the address
contained in the socket address structure pointed to by the sa argument is returned instead of its
name.

If the service argument is non-NULL and the servicelen argument is non-zero, then the service
argument points to a buffer able to contain up to servicelen bytes that receives the service name
as a null-terminated string. If the service argument is NULL or the servicelen argument is zero,
the service name shall not be returned. If the service’s name cannot be located, the numeric form
of the service address (for example, its port number) shall be returned instead of its name.

The flags argument is a flag that changes the default actions of the function. By default the fully-
qualified domain name (FQDN) for the host shall be returned, but:

• If the flag bit NI_NOFQDN is set, only the node name portion of the FQDN shall be
returned for local hosts.

• If the flag bit NI_NUMERICHOST is set, the numeric form of the address contained in the
socket address structure pointed to by the sa argument shall be returned instead of its
name.

• If the flag bit NI_NAMEREQD is set, an error shall be returned if the host’s name cannot
be located.

• If the flag bit NI_NUMERICSERV is set, the numeric form of the service address shall be
returned (for example, its port number) instead of its name.

• If the flag bit NI_NUMERICSCOPE is set, the numeric form of the scope identifier shall be
returned (for example, interface index) instead of its name. This flag shall be ignored if the
sa argument is not an IPv6 address.

• If the flag bit NI_DGRAM is set, this indicates that the service is a datagram service
(SOCK_DGRAM). The default behavior shall assume that the service is a stream service
(SOCK_STREAM).

1036 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

34699

34700

34701

34702

34703

34704

34705

34706

34707

34708

34709

34710

34711

34712

34713

34714

34715

34716

34717

34718

34719

34720

34721

34722

34723

34724

34725

34726

34727

34728

34729

34730

34731

34732

34733

34734

34735

34736

34737

34738

34739

34740

34741

34742

34743

System Interfaces getnameinfo()

Notes:

1. The two NI_NUMERICxxx flags are required to support the −n flag that many
commands provide.

2. The NI_DGRAM flag is required for the few AF_INET and AF_INET6 port numbers (for
example, [512,514]) that represent different services for UDP and TCP.

The getnameinfo() function shall be thread-safe.

RETURN VALUE
A zero return value for getnameinfo() indicates successful completion; a non-zero return value
indicates failure. The possible values for the failures are listed in the ERRORS section.

Upon successful completion, getnameinfo() shall return the node and service names, if requested,
in the buffers provided. The returned names are always null-terminated strings.

ERRORS
The getnameinfo() function shall fail and return the corresponding value if:

[EAI_AGAIN] The name could not be resolved at this time. Future attempts may succeed.

[EAI_BADFLAGS]
The flags had an invalid value.

[EAI_FAIL] A non-recoverable error occurred.

[EAI_FAMILY] The address family was not recognized or the address length was invalid for
the specified family.

[EAI_MEMORY] There was a memory allocation failure.

[EAI_NONAME] The name does not resolve for the supplied parameters.

NI_NAMEREQD is set and the host’s name cannot be located, or both
nodename and servname were null.

[EAI_OVERFLOW]
An argument buffer overflowed. The buffer pointed to by the node argument
or the service argument was too small.

[EAI_SYSTEM] A system error occurred. The error code can be found in errno.

EXAMPLES
None.

APPLICATION USAGE
If the returned values are to be used as part of any further name resolution (for example, passed
to getaddrinfo()), applications should provide buffers large enough to store any result possible on
the system.

Given the IPv4-mapped IPv6 address "::ffff:1.2.3.4", the implementation performs a
lookup as if the socket address structure contains the IPv4 address "1.2.3.4".

The IPv6 unspecified address ("::") and the IPv6 loopback address ("::1") are not
IPv4-compatible addresses.

RATIONALE
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1037

34744

34745

34746

34747

34748

34749

34750

34751

34752

34753

34754

34755

34756

34757

34758

34759

34760

34761

34762

34763

34764

34765

34766

34767

34768

34769

34770

34771

34772

34773

34774

34775

34776

34777

34778

34779

34780

34781

34782

getnameinfo() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
endservent(), freeaddrinfo(), gai_strerror(), inet_ntop(), socket()

XBD <netdb.h>, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the getnameinfo() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/23 is applied, making various changes in
the SYNOPSIS and DESCRIPTION for alignment with IPv6.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/24 is applied, adding the
[EAI_OVERFLOW] error to the ERRORS section.

Issue 7
SD5-XSH-ERN-127 is applied, clarifying the behavior if the address is the IPv6 unspecified
address.

1038 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

34783

34784

34785

34786

34787

34788

34789

34790

34791

34792

34793

34794

34795

34796

34797

34798

System Interfaces getnetbyaddr()

NAME
getnetbyaddr, getnetbyname, getnetent — network database functions

SYNOPSIS
#include <netdb.h>

struct netent *getnetbyaddr(uint32_t net, int type);
struct netent *getnetbyname(const char *name);
struct netent *getnetent(void);

DESCRIPTION
Refer to endnetent().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1039

34799

34800

34801

34802

34803

34804

34805

34806

34807

getopt() System Interfaces

NAME
getopt, optarg, opterr, optind, optopt — command option parsing

SYNOPSIS
#include <unistd.h>

int getopt(int argc, char * const argv[], const char *optstring);
extern char *optarg;
extern int opterr, optind, optopt;

DESCRIPTION
The getopt() function is a command-line parser that shall follow Utility Syntax Guidelines 3, 4, 5,
6, 7, 9, and 10 in XBD Section 12.2 (on page 215).

The parameters argc and argv are the argument count and argument array as passed to main()
(see exec()). The argument optstring is a string of recognized option characters; if a character is
followed by a <colon>, the option takes an argument. All option characters allowed by Utility
Syntax Guideline 3 are allowed in optstring. The implementation may accept other characters as
an extension.

The variable optind is the index of the next element of the argv[] vector to be processed. It shall
be initialized to 1 by the system, and getopt() shall update it when it finishes with each element
of argv[]. When an element of argv[] contains multiple option characters, it is unspecified how
getopt() determines which options have already been processed.

The getopt() function shall return the next option character (if one is found) from argv that
matches a character in optstring, if there is one that matches. If the option takes an argument,
getopt() shall set the variable optarg to point to the option-argument as follows:

1. If the option was the last character in the string pointed to by an element of argv, then
optarg shall contain the next element of argv, and optind shall be incremented by 2. If the
resulting value of optind is greater than argc, this indicates a missing option-argument,
and getopt() shall return an error indication.

2. Otherwise, optarg shall point to the string following the option character in that element
of argv, and optind shall be incremented by 1.

If, when getopt() is called:

argv[optind] is a null pointer
*argv[optind] is not the character −
argv[optind] points to the string "−"

getopt() shall return −1 without changing optind. If:

argv[optind] points to the string "− −"

getopt() shall return −1 after incrementing optind.

If getopt() encounters an option character that is not contained in optstring, it shall return the
<question-mark> (’?’) character. If it detects a missing option-argument, it shall return the
<colon> character (’:’) if the first character of optstring was a <colon>, or a <question-mark>
character (’?’) otherwise. In either case, getopt() shall set the variable optopt to the option
character that caused the error. If the application has not set the variable opterr to 0 and the first
character of optstring is not a <colon>, getopt() shall also print a diagnostic message to stderr in
the format specified for the getopts utility.

The getopt() function need not be thread-safe.

1040 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

34808

34809

34810

34811

34812

34813

34814

34815

34816

34817

34818

34819

34820

34821

34822

34823

34824

34825

34826

34827

34828

34829

34830

34831

34832

34833

34834

34835

34836

34837

34838

34839

34840

34841

34842

34843

34844

34845

34846

34847

34848

34849

34850

System Interfaces getopt()

RETURN VALUE
The getopt() function shall return the next option character specified on the command line.

A <colon> (’:’) shall be returned if getopt() detects a missing argument and the first character
of optstring was a <colon> (’:’).

A <question-mark> (’?’) shall be returned if getopt() encounters an option character not in
optstring or detects a missing argument and the first character of optstring was not a <colon>
(’:’).

Otherwise, getopt() shall return −1 when all command line options are parsed.

ERRORS
No errors are defined.

EXAMPLES

Parsing Command Line Options

The following code fragment shows how you might process the arguments for a utility that can
take the mutually-exclusive options a and b and the options f and o, both of which require
arguments:

#include <unistd.h>

int
main(int argc, char *argv[])
{

int c;
int bflg, aflg, errflg;
char *ifile;
char *ofile;
extern char *optarg;
extern int optind, optopt;
. . .
while ((c = getopt(argc, argv, ":abf:o:")) != -1) {

switch(c) {
case ’a’:

if (bflg)
errflg++;

else
aflg++;

break;
case ’b’:

if (aflg)
errflg++;

else {
bflg++;
bproc();

}
break;

case ’f’:
ifile = optarg;
break;

case ’o’:
ofile = optarg;

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1041

34851

34852

34853

34854

34855

34856

34857

34858

34859

34860

34861

34862

34863

34864

34865

34866

34867

34868

34869

34870

34871

34872

34873

34874

34875

34876

34877

34878

34879

34880

34881

34882

34883

34884

34885

34886

34887

34888

34889

34890

34891

34892

34893

34894

34895

34896

34897

getopt() System Interfaces

break;
case ’:’: /* -f or -o without operand */

fprintf(stderr,
"Option -%c requires an operand\n", optopt);

errflg++;
break;

case ’?’:
fprintf(stderr,

"Unrecognized option: -%c\n", optopt);
errflg++;

}
}
if (errflg) {

fprintf(stderr, "usage: . . . ");
exit(2);

}
for (; optind < argc; optind++) {

if (access(argv[optind], R_OK)) {
. . .

}

This code accepts any of the following as equivalent:

cmd −ao arg path path
cmd −a −o arg path path
cmd −o arg −a path path
cmd −a −o arg − − path path
cmd −a −oarg path path
cmd −aoarg path path

Checking Options and Arguments

The following example parses a set of command line options and prints messages to standard
output for each option and argument that it encounters.

#include <unistd.h>
#include <stdio.h>
...
int c;
char *filename;
extern char *optarg;
extern int optind, optopt, opterr;
...
while ((c = getopt(argc, argv, ":abf:")) != -1) {

switch(c) {
case ’a’:

printf("a is set\n");
break;

case ’b’:
printf("b is set\n");
break;

case ’f’:
filename = optarg;

1042 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

34898

34899

34900

34901

34902

34903

34904

34905

34906

34907

34908

34909

34910

34911

34912

34913

34914

34915

34916

34917

34918

34919

34920

34921

34922

34923

34924

34925

34926

34927

34928

34929

34930

34931

34932

34933

34934

34935

34936

34937

34938

34939

34940

34941

34942

34943

34944

34945

System Interfaces getopt()

printf("filename is %s\n", filename);
break;

case ’:’:
printf("-%c without filename\n", optopt);
break;

case ’?’:
printf("unknown arg %c\n", optopt);
break;

}
}

Selecting Options from the Command Line

The following example selects the type of database routines the user wants to use based on the
Options argument.

#include <unistd.h>
#include <string.h>
...
char *Options = "hdbtl";
...
int dbtype, i;
char c;
char *st;
...
dbtype = 0;
while ((c = getopt(argc, argv, Options)) != −1) {

if ((st = strchr(Options, c)) != NULL) {
dbtype = st - Options;
break;

}
}

APPLICATION USAGE
The getopt() function is only required to support option characters included in Utility Syntax
Guideline 3. Many historical implementations of getopt() support other characters as options.
This is an allowed extension, but applications that use extensions are not maximally portable.
Note that support for multi-byte option characters is only possible when such characters can be
represented as type int.

RATIONALE
The optopt variable represents historical practice and allows the application to obtain the identity
of the invalid option.

The description has been written to make it clear that getopt(), like the getopts utility, deals with
option-arguments whether separated from the option by <blank> characters or not. Note that
the requirements on getopt() and getopts are more stringent than the Utility Syntax Guidelines.

The getopt() function shall return −1, rather than EOF, so that <stdio.h> is not required.

The special significance of a <colon> as the first character of optstring makes getopt() consistent
with the getopts utility. It allows an application to make a distinction between a missing
argument and an incorrect option letter without having to examine the option letter. It is true
that a missing argument can only be detected in one case, but that is a case that has to be
considered.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1043

34946

34947

34948

34949

34950

34951

34952

34953

34954

34955

34956

34957

34958

34959

34960

34961

34962

34963

34964

34965

34966

34967

34968

34969

34970

34971

34972

34973

34974

34975

34976

34977

34978

34979

34980

34981

34982

34983

34984

34985

34986

34987

34988

34989

34990

34991

34992

getopt() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
exec

XBD Section 12.2 (on page 215), <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A note indicating that the getopt() function need not be reentrant is added to the DESCRIPTION.

Issue 6
IEEE PASC Interpretation 1003.2 #150 is applied.

Austin Group Interpretation 1003.1-2001 #156 is applied.

1044 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

34993

34994

34995

34996

34997

34998

34999

35000

35001

35002

35003

35004

System Interfaces getpeername()

NAME
getpeername — get the name of the peer socket

SYNOPSIS
#include <sys/socket.h>

int getpeername(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len);

DESCRIPTION
The getpeername() function shall retrieve the peer address of the specified socket, store this
address in the sockaddr structure pointed to by the address argument, and store the length of this
address in the object pointed to by the address_len argument.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address shall be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound, then the
value stored in the object pointed to by address is unspecified.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The getpeername() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EINVAL] The socket has been shut down.

[ENOTCONN] The socket is not connected or otherwise has not had the peer pre-specified.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The operation is not supported for the socket protocol.

The getpeername() function may fail if:

[ENOBUFS] Insufficient resources were available in the system to complete the call.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), bind(), getsockname(), socket()

XBD <sys/socket.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1045

35005

35006

35007

35008

35009

35010

35011

35012

35013

35014

35015

35016

35017

35018

35019

35020

35021

35022

35023

35024

35025

35026

35027

35028

35029

35030

35031

35032

35033

35034

35035

35036

35037

35038

35039

35040

35041

getpeername() System Interfaces

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the getpeername() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

1046 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35042

35043

35044

35045

System Interfaces getpgid()

NAME
getpgid — get the process group ID for a process

SYNOPSIS
#include <unistd.h>

pid_t getpgid(pid_t pid);

DESCRIPTION
The getpgid() function shall return the process group ID of the process whose process ID is equal
to pid. If pid is equal to 0, getpgid() shall return the process group ID of the calling process.

RETURN VALUE
Upon successful completion, getpgid() shall return a process group ID. Otherwise, it shall return
(pid_t)−1 and set errno to indicate the error.

ERRORS
The getpgid() function shall fail if:

[EPERM] The process whose process ID is equal to pid is not in the same session as the
calling process, and the implementation does not allow access to the process
group ID of that process from the calling process.

[ESRCH] There is no process with a process ID equal to pid.

The getpgid() function may fail if:

[EINVAL] The value of the pid argument is invalid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpgrp(), getpid(), getsid(), setpgid(), setsid()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The getpgid() function is moved from the XSI option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1047

35046

35047

35048

35049

35050

35051

35052

35053

35054

35055

35056

35057

35058

35059

35060

35061

35062

35063

35064

35065

35066

35067

35068

35069

35070

35071

35072

35073

35074

35075

35076

35077

35078

35079

35080

35081

getpgrp() System Interfaces

NAME
getpgrp — get the process group ID of the calling process

SYNOPSIS
#include <unistd.h>

pid_t getpgrp(void);

DESCRIPTION
The getpgrp() function shall return the process group ID of the calling process.

RETURN VALUE
The getpgrp() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
4.3 BSD provides a getpgrp() function that returns the process group ID for a specified process.
Although this function supports job control, all known job control shells always specify the
calling process with this function. Thus, the simpler System V getpgrp() suffices, and the added
complexity of the 4.3 BSD getpgrp() is provided by the XSI extension getpgid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpgid(), getpid(), getppid(), kill(), setpgid(), setsid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

1048 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35082

35083

35084

35085

35086

35087

35088

35089

35090

35091

35092

35093

35094

35095

35096

35097

35098

35099

35100

35101

35102

35103

35104

35105

35106

35107

35108

35109

35110

35111

35112

35113

35114

35115

35116

System Interfaces getpid()

NAME
getpid — get the process ID

SYNOPSIS
#include <unistd.h>

pid_t getpid(void);

DESCRIPTION
The getpid() function shall return the process ID of the calling process.

RETURN VALUE
The getpid() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpgrp(), getppid(), kill(), mkdtemp(), setpgid(), setsid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1049

35117

35118

35119

35120

35121

35122

35123

35124

35125

35126

35127

35128

35129

35130

35131

35132

35133

35134

35135

35136

35137

35138

35139

35140

35141

35142

35143

35144

35145

35146

35147

35148

getpmsg() System Interfaces

NAME
getpmsg — receive next message from a STREAMS file

SYNOPSIS
OB XSI #include <stropts.h>

int getpmsg(int fildes, struct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, int *restrict bandp,
int *restrict flagsp);

DESCRIPTION
Refer to getmsg().

1050 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35149

35150

35151

35152

35153

35154

35155

35156

35157

System Interfaces getppid()

NAME
getppid — get the parent process ID

SYNOPSIS
#include <unistd.h>

pid_t getppid(void);

DESCRIPTION
The getppid() function shall return the parent process ID of the calling process.

RETURN VALUE
The getppid() function shall always be successful and no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpgid(), getpgrp(), getpid(), kill(), setpgid(), setsid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1051

35158

35159

35160

35161

35162

35163

35164

35165

35166

35167

35168

35169

35170

35171

35172

35173

35174

35175

35176

35177

35178

35179

35180

35181

35182

35183

35184

35185

35186

35187

35188

35189

getpriority() System Interfaces

NAME
getpriority, setpriority — get and set the nice value

SYNOPSIS
XSI #include <sys/resource.h>

int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int value);

DESCRIPTION
The getpriority() function shall obtain the nice value of a process, process group, or user. The
setpriority() function shall set the nice value of a process, process group, or user to
value+{NZERO}.

Target processes are specified by the values of the which and who arguments. The which
argument may be one of the following values: PRIO_PROCESS, PRIO_PGRP, or PRIO_USER,
indicating that the who argument is to be interpreted as a process ID, a process group ID, or an
effective user ID, respectively. A 0 value for the who argument specifies the current process,
process group, or user.

The nice value set with setpriority() shall be applied to the process. If the process is multi-
threaded, the nice value shall affect all system scope threads in the process.

If more than one process is specified, getpriority() shall return value {NZERO} less than the
lowest nice value pertaining to any of the specified processes, and setpriority() shall set the nice
values of all of the specified processes to value+{NZERO}.

The default nice value is {NZERO}; lower nice values shall cause more favorable scheduling.
While the range of valid nice values is [0,{NZERO}*2−1], implementations may enforce more
restrictive limits. If value+{NZERO} is less than the system’s lowest supported nice value,
setpriority() shall set the nice value to the lowest supported value; if value+{NZERO} is greater
than the system’s highest supported nice value, setpriority() shall set the nice value to the
highest supported value.

Only a process with appropriate privileges can lower its nice value.

PS|TPS Any processes or threads using SCHED_FIFO or SCHED_RR shall be unaffected by a call to
setpriority(). This is not considered an error. A process which subsequently reverts to
SCHED_OTHER need not have its priority affected by such a setpriority() call.

The effect of changing the nice value may vary depending on the process-scheduling algorithm
in effect.

Since getpriority() can return the value −1 upon successful completion, it is necessary to set errno
to 0 prior to a call to getpriority(). If getpriority() returns the value −1, then errno can be checked
to see if an error occurred or if the value is a legitimate nice value.

RETURN VALUE
Upon successful completion, getpriority() shall return an integer in the range −{NZERO} to
{NZERO}−1. Otherwise, −1 shall be returned and errno set to indicate the error.

Upon successful completion, setpriority() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

1052 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35190

35191

35192

35193

35194

35195

35196

35197

35198

35199

35200

35201

35202

35203

35204

35205

35206

35207

35208

35209

35210

35211

35212

35213

35214

35215

35216

35217

35218

35219

35220

35221

35222

35223

35224

35225

35226

35227

35228

35229

System Interfaces getpriority()

ERRORS
The getpriority() and setpriority() functions shall fail if:

[ESRCH] No process could be located using the which and who argument values
specified.

[EINVAL] The value of the which argument was not recognized, or the value of the who
argument is not a valid process ID, process group ID, or user ID.

In addition, setpriority() may fail if:

[EPERM] A process was located, but neither the real nor effective user ID of the
executing process match the effective user ID of the process whose nice value
is being changed.

[EACCES] A request was made to change the nice value to a lower numeric value and the
current process does not have appropriate privileges.

EXAMPLES

Using getpriority()

The following example returns the current scheduling priority for the process ID returned by the
call to getpid().

#include <sys/resource.h>
...
int which = PRIO_PROCESS;
id_t pid;
int ret;

pid = getpid();
ret = getpriority(which, pid);

Using setpriority()

The following example sets the priority for the current process ID to −20.

#include <sys/resource.h>
...
int which = PRIO_PROCESS;
id_t pid;
int priority = -20;
int ret;

pid = getpid();
ret = setpriority(which, pid, priority);

APPLICATION USAGE
The getpriority() and setpriority() functions work with an offset nice value (nice value
−{NZERO}). The nice value is in the range [0,2*{NZERO} −1], while the return value for
getpriority() and the third parameter for setpriority() are in the range [−{NZERO},{NZERO} −1].

RATIONALE
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1053

35230

35231

35232

35233

35234

35235

35236

35237

35238

35239

35240

35241

35242

35243

35244

35245

35246

35247

35248

35249

35250

35251

35252

35253

35254

35255

35256

35257

35258

35259

35260

35261

35262

35263

35264

35265

35266

35267

35268

getpriority() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
nice(), sched_get_priority_max(), sched_setscheduler()

XBD <sys/resource.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is reworded in terms of the nice value rather than priority to avoid confusion
with functionality in the POSIX Realtime Extension.

1054 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35269

35270

35271

35272

35273

35274

35275

35276

35277

35278

35279

System Interfaces getprotobyname()

NAME
getprotobyname, getprotobynumber, getprotent — network protocol database functions

SYNOPSIS
#include <netdb.h>

struct protoent *getprotobyname(const char *name);
struct protoent *getprotobynumber(int proto);
struct protoent *getprotoent(void);

DESCRIPTION
Refer to endprotoent().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1055

35280

35281

35282

35283

35284

35285

35286

35287

35288

getpwent() System Interfaces

NAME
getpwent — get user database entry

SYNOPSIS
XSI #include <pwd.h>

struct passwd *getpwent(void);

DESCRIPTION
Refer to endpwent().

1056 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35289

35290

35291

35292

35293

35294

35295

System Interfaces getpwnam()

NAME
getpwnam, getpwnam_r — search user database for a name

SYNOPSIS
#include <pwd.h>

struct passwd *getpwnam(const char *name);
int getpwnam_r(const char *name, struct passwd *pwd, char *buffer,

size_t bufsize, struct passwd **result);

DESCRIPTION
The getpwnam() function shall search the user database for an entry with a matching name.

The getpwnam() function need not be thread-safe.

Applications wishing to check for error situations should set errno to 0 before calling
getpwnam(). If getpwnam() returns a null pointer and errno is non-zero, an error occurred.

The getpwnam_r() function shall update the passwd structure pointed to by pwd and store a
pointer to that structure at the location pointed to by result. The structure shall contain an entry
from the user database with a matching name. Storage referenced by the structure is allocated
from the memory provided with the buffer parameter, which is bufsize bytes in size. A call to
sysconf (_SC_GETPW_R_SIZE_MAX) returns either −1 without changing errno or an initial value
suggested for the size of this buffer. A null pointer shall be returned at the location pointed to
by result on error or if the requested entry is not found.

RETURN VALUE
The getpwnam() function shall return a pointer to a struct passwd with the structure as defined
in <pwd.h> with a matching entry if found. A null pointer shall be returned if the requested
entry is not found, or an error occurs. On error, errno shall be set to indicate the error.

The return value may point to a static area which is overwritten by a subsequent call to
getpwent(), getpwnam(), or getpwuid().

The getpwnam_r() function shall return zero on success or if the requested entry was not found
and no error has occurred. If an error has occurred, an error number shall be returned to indicate
the error.

ERRORS
These functions may fail if:

[EIO] An I/O error has occurred.

[EINTR] A signal was caught during getpwnam().

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The getpwnam_r() function may fail if:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting passwd structure.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1057

35296

35297

35298

35299

35300

35301

35302

35303

35304

35305

35306

35307

35308

35309

35310

35311

35312

35313

35314

35315

35316

35317

35318

35319

35320

35321

35322

35323

35324

35325

35326

35327

35328

35329

35330

35331

35332

getpwnam() System Interfaces

EXAMPLES
Note that sysconf (_SC_GETPW_R_SIZE_MAX) may return −1 if there is no hard limit on the size
of the buffer needed to store all the groups returned. This example shows how an application
can allocate a buffer of sufficient size to work with getpwnam_r().

long int initlen = sysconf(_SC_GETPW_R_SIZE_MAX);
size_t len;
if (initlen == −1)

/* Default initial length. */
len = 1024;

else
len = (size_t) initlen;

struct passwd result;
struct passwd *resultp;
char *buffer = malloc(len);
if (buffer == NULL)

...handle error...
int e;
while ((e = getpwnam_r("someuser", &result, buffer, len, &resultp))

== ERANGE)
{
size_t newlen = 2 * len;
if (newlen < len)

...handle error...
len = newlen;
char *newbuffer = realloc(buffer, len);
if (newbuffer == NULL)

...handle error...
buffer = newbuffer;
}

if (e != 0)
...handle error...

free (buffer);

Getting an Entry for the Login Name

The following example uses the getlogin() function to return the name of the user who logged in;
this information is passed to the getpwnam() function to get the user database entry for that user.

#include <sys/types.h>
#include <pwd.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
...
char *lgn;
struct passwd *pw;
...
if ((lgn = getlogin()) == NULL || (pw = getpwnam(lgn)) == NULL) {

fprintf(stderr, "Get of user information failed.\n"); exit(1);
}
...

1058 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35333

35334

35335

35336

35337

35338

35339

35340

35341

35342

35343

35344

35345

35346

35347

35348

35349

35350

35351

35352

35353

35354

35355

35356

35357

35358

35359

35360

35361

35362

35363

35364

35365

35366

35367

35368

35369

35370

35371

35372

35373

35374

35375

35376

35377

35378

35379

35380

System Interfaces getpwnam()

APPLICATION USAGE
Three names associated with the current process can be determined: getpwuid(geteuid()) returns
the name associated with the effective user ID of the process; getlogin() returns the name
associated with the current login activity; and getpwuid(getuid()) returns the name associated
with the real user ID of the process.

The getpwnam_r() function is thread-safe and returns values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

Portable applications should take into account that it is usual for an implementation to return −1
from sysconf() indicating that there is no maximum for _SC_GETPW_R_SIZE_MAX.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpwuid(), sysconf()

XBD <pwd.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from System V Release 2.0.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getpwnam_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getpwnam() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The getpwnam_r() function is marked as part of the Thread-Safe Functions option.

The Open Group Corrigendum U028/3 is applied, correcting text in the DESCRIPTION
describing matching the name.

In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the RETURN VALUE section, the requirement to set errno on error is added.

• The [EMFILE], [ENFILE], and [ENXIO] optional error conditions are added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

IEEE PASC Interpretation 1003.1 #116 is applied, changing the description of the size of the
buffer from bufsize characters to bytes.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1059

35381

35382

35383

35384

35385

35386

35387

35388

35389

35390

35391

35392

35393

35394

35395

35396

35397

35398

35399

35400

35401

35402

35403

35404

35405

35406

35407

35408

35409

35410

35411

35412

35413

35414

35415

35416

35417

35418

35419

35420

35421

getpwnam() System Interfaces

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied.

The getpwnam_r() function is moved from the Thread-Safe Functions option to the Base.

A minor addition is made to the EXAMPLES section, reminding the application developer to
free memory allocated as if by malloc().

1060 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35422

35423

35424

35425

35426

35427

35428

System Interfaces getpwuid()

NAME
getpwuid, getpwuid_r — search user database for a user ID

SYNOPSIS
#include <pwd.h>

struct passwd *getpwuid(uid_t uid);
int getpwuid_r(uid_t uid, struct passwd *pwd, char *buffer,

size_t bufsize, struct passwd **result);

DESCRIPTION
The getpwuid() function shall search the user database for an entry with a matching uid.

The getpwuid() function need not be thread-safe.

Applications wishing to check for error situations should set errno to 0 before calling getpwuid().
If getpwuid() returns a null pointer and errno is set to non-zero, an error occurred.

The getpwuid_r() function shall update the passwd structure pointed to by pwd and store a
pointer to that structure at the location pointed to by result. The structure shall contain an entry
from the user database with a matching uid. Storage referenced by the structure is allocated
from the memory provided with the buffer parameter, which is bufsize bytes in size. A call to
sysconf (_SC_GETPW_R_SIZE_MAX) returns either −1 without changing errno or an initial value
suggested for the size of this buffer. A null pointer shall be returned at the location pointed to
by result on error or if the requested entry is not found.

RETURN VALUE
The getpwuid() function shall return a pointer to a struct passwd with the structure as defined in
<pwd.h> with a matching entry if found. A null pointer shall be returned if the requested entry
is not found, or an error occurs. On error, errno shall be set to indicate the error.

The return value may point to a static area which is overwritten by a subsequent call to
getpwent(), getpwnam(), or getpwuid().

If successful, the getpwuid_r() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
These functions may fail if:

[EIO] An I/O error has occurred.

[EINTR] A signal was caught during getpwuid().

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The getpwuid_r() function may fail if:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting passwd structure.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1061

35429

35430

35431

35432

35433

35434

35435

35436

35437

35438

35439

35440

35441

35442

35443

35444

35445

35446

35447

35448

35449

35450

35451

35452

35453

35454

35455

35456

35457

35458

35459

35460

35461

35462

35463

35464

getpwuid() System Interfaces

EXAMPLES
Note that sysconf (_SC_GETPW_R_SIZE_MAX) may return −1 if there is no hard limit on the size
of the buffer needed to store all the groups returned. This example shows how an application
can allocate a buffer of sufficient size to work with getpwuid_r().

long int initlen = sysconf(_SC_GETPW_R_SIZE_MAX);
size_t len;
if (initlen == −1)

/* Default initial length. */
len = 1024;

else
len = (size_t) initlen;

struct passwd result;
struct passwd *resultp;
char *buffer = malloc(len);
if (buffer == NULL)

...handle error...
int e;
while ((e = getpwuid_r(42, &result, buffer, len, &resultp)) == ERANGE)

{
size_t newlen = 2 * len;
if (newlen < len)

...handle error...
len = newlen;
char *newbuffer = realloc(buffer, len);
if (newbuffer == NULL)

...handle error...
buffer = newbuffer;
}

if (e != 0)
...handle error...

free (buffer);

Getting an Entry for the Root User

The following example gets the user database entry for the user with user ID 0 (root).

#include <sys/types.h>
#include <pwd.h>
...
uid_t id = 0;
struct passwd *pwd;

pwd = getpwuid(id);

1062 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35465

35466

35467

35468

35469

35470

35471

35472

35473

35474

35475

35476

35477

35478

35479

35480

35481

35482

35483

35484

35485

35486

35487

35488

35489

35490

35491

35492

35493

35494

35495

35496

35497

35498

35499

35500

35501

35502

35503

System Interfaces getpwuid()

Finding the Name for the Effective User ID

The following example defines pws as a pointer to a structure of type passwd, which is used to
store the structure pointer returned by the call to the getpwuid() function. The geteuid() function
shall return the effective user ID of the calling process; this is used as the search criteria for the
getpwuid() function. The call to getpwuid() shall return a pointer to the structure containing that
user ID value.

#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>
...
struct passwd *pws;
pws = getpwuid(geteuid());

Finding an Entry in the User Database

The following example uses getpwuid() to search the user database for a user ID that was
previously stored in a stat structure, then prints out the user name if it is found. If the user is not
found, the program prints the numeric value of the user ID for the entry.

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
...
struct stat statbuf;
struct passwd *pwd;
...
if ((pwd = getpwuid(statbuf.st_uid)) != NULL)

printf(" %-8.8s", pwd->pw_name);
else

printf(" %-8d", statbuf.st_uid);

APPLICATION USAGE
Three names associated with the current process can be determined: getpwuid(geteuid()) returns
the name associated with the effective user ID of the process; getlogin() returns the name
associated with the current login activity; and getpwuid(getuid()) returns the name associated
with the real user ID of the process.

The getpwuid_r() function is thread-safe and returns values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

Portable applications should take into account that it is usual for an implementation to return −1
from sysconf() indicating that there is no maximum for _SC_GETPW_R_SIZE_MAX.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpwnam(), geteuid(), getuid(), getlogin(), sysconf()

XBD <pwd.h>, <sys/types.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1063

35504

35505

35506

35507

35508

35509

35510

35511

35512

35513

35514

35515

35516

35517

35518

35519

35520

35521

35522

35523

35524

35525

35526

35527

35528

35529

35530

35531

35532

35533

35534

35535

35536

35537

35538

35539

35540

35541

35542

35543

35544

35545

35546

getpwuid() System Interfaces

CHANGE HISTORY
First released in Issue 1. Derived from System V Release 2.0.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getpwuid_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getpwuid() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The getpwuid_r() function is marked as part of the Thread-Safe Functions option.

The Open Group Corrigendum U028/3 is applied, correcting text in the DESCRIPTION
describing matching the uid.

In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the RETURN VALUE section, the requirement to set errno on error is added.

• The [EIO], [EINTR], [EMFILE], and [ENFILE] optional error conditions are added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

IEEE PASC Interpretation 1003.1 #116 is applied, changing the description of the size of the
buffer from bufsize characters to bytes.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied.

The getpwuid_r() function is moved from the Thread-Safe Functions option to the Base.

A minor addition is made to the EXAMPLES section, reminding the application developer to
free memory allocated as if by malloc().

1064 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35547

35548

35549

35550

35551

35552

35553

35554

35555

35556

35557

35558

35559

35560

35561

35562

35563

35564

35565

35566

35567

35568

35569

35570

35571

35572

35573

35574

35575

35576

35577

35578

System Interfaces getrlimit()

NAME
getrlimit, setrlimit — control maximum resource consumption

SYNOPSIS
XSI #include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlp);
int setrlimit(int resource, const struct rlimit *rlp);

DESCRIPTION
The getrlimit() function shall get, and the setrlimit() function shall set, limits on the consumption
of a variety of resources.

Each call to either getrlimit() or setrlimit() identifies a specific resource to be operated upon as
well as a resource limit. A resource limit is represented by an rlimit structure. The rlim_cur
member specifies the current or soft limit and the rlim_max member specifies the maximum or
hard limit. Soft limits may be changed by a process to any value that is less than or equal to the
hard limit. A process may (irreversibly) lower its hard limit to any value that is greater than or
equal to the soft limit. Only a process with appropriate privileges can raise a hard limit. Both
hard and soft limits can be changed in a single call to setrlimit() subject to the constraints
described above.

The value RLIM_INFINITY, defined in <sys/resource.h>, shall be considered to be larger than
any other limit value. If a call to getrlimit() returns RLIM_INFINITY for a resource, it means the
implementation shall not enforce limits on that resource. Specifying RLIM_INFINITY as any
resource limit value on a successful call to setrlimit() shall inhibit enforcement of that resource
limit.

The following resources are defined:

RLIMIT_CORE This is the maximum size of a core file, in bytes, that may be created by a
process. A limit of 0 shall prevent the creation of a core file. If this limit is
exceeded, the writing of a core file shall terminate at this size.

RLIMIT_CPU This is the maximum amount of CPU time, in seconds, used by a process.
If this limit is exceeded, SIGXCPU shall be generated for the process. If
the process is catching or ignoring SIGXCPU, or all threads belonging to
that process are blocking SIGXCPU, the behavior is unspecified.

RLIMIT_DATA This is the maximum size of a data segment of the process, in bytes. If
this limit is exceeded, the malloc() function shall fail with errno set to
[ENOMEM].

RLIMIT_FSIZE This is the maximum size of a file, in bytes, that may be created by a
process. If a write or truncate operation would cause this limit to be
exceeded, SIGXFSZ shall be generated for the thread. If the thread is
blocking, or the process is catching or ignoring SIGXFSZ, continued
attempts to increase the size of a file from end-of-file to beyond the limit
shall fail with errno set to [EFBIG].

RLIMIT_NOFILE This is a number one greater than the maximum value that the system
may assign to a newly-created descriptor. If this limit is exceeded,
functions that allocate a file descriptor shall fail with errno set to
[EMFILE]. This limit constrains the number of file descriptors that a
process may allocate.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1065

35579

35580

35581

35582

35583

35584

35585

35586

35587

35588

35589

35590

35591

35592

35593

35594

35595

35596

35597

35598

35599

35600

35601

35602

35603

35604

35605

35606

35607

35608

35609

35610

35611

35612

35613

35614

35615

35616

35617

35618

35619

35620

35621

35622

getrlimit() System Interfaces

RLIMIT_STACK This is the maximum size of the initial thread’s stack, in bytes. The
implementation does not automatically grow the stack beyond this limit.
If this limit is exceeded, SIGSEGV shall be generated for the thread. If the
thread is blocking SIGSEGV, or the process is ignoring or catching
SIGSEGV and has not made arrangements to use an alternate stack, the
disposition of SIGSEGV shall be set to SIG_DFL before it is generated.

RLIMIT_AS This is the maximum size of total available memory of the process, in
bytes. If this limit is exceeded, the malloc() and mmap() functions shall fail
with errno set to [ENOMEM]. In addition, the automatic stack growth
fails with the effects outlined above.

When using the getrlimit() function, if a resource limit can be represented correctly in an object
of type rlim_t, then its representation is returned; otherwise, if the value of the resource limit is
equal to that of the corresponding saved hard limit, the value returned shall be
RLIM_SAVED_MAX; otherwise, the value returned shall be RLIM_SAVED_CUR.

When using the setrlimit() function, if the requested new limit is RLIM_INFINITY, the new limit
shall be ‘‘no limit’’; otherwise, if the requested new limit is RLIM_SAVED_MAX, the new limit
shall be the corresponding saved hard limit; otherwise, if the requested new limit is
RLIM_SAVED_CUR, the new limit shall be the corresponding saved soft limit; otherwise, the
new limit shall be the requested value. In addition, if the corresponding saved limit can be
represented correctly in an object of type rlim_t then it shall be overwritten with the new limit.

The result of setting a limit to RLIM_SAVED_MAX or RLIM_SAVED_CUR is unspecified unless
a previous call to getrlimit() returned that value as the soft or hard limit for the corresponding
resource limit.

The determination of whether a limit can be correctly represented in an object of type rlim_t is
implementation-defined. For example, some implementations permit a limit whose value is
greater than RLIM_INFINITY and others do not.

The exec family of functions shall cause resource limits to be saved.

RETURN VALUE
Upon successful completion, getrlimit() and setrlimit() shall return 0. Otherwise, these functions
shall return −1 and set errno to indicate the error.

ERRORS
The getrlimit() and setrlimit() functions shall fail if:

[EINVAL] An invalid resource was specified; or in a setrlimit() call, the new rlim_cur
exceeds the new rlim_max.

[EPERM] The limit specified to setrlimit() would have raised the maximum limit value,
and the calling process does not have appropriate privileges.

The setrlimit() function may fail if:

[EINVAL] The limit specified cannot be lowered because current usage is already higher
than the limit.

1066 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35623

35624

35625

35626

35627

35628

35629

35630

35631

35632

35633

35634

35635

35636

35637

35638

35639

35640

35641

35642

35643

35644

35645

35646

35647

35648

35649

35650

35651

35652

35653

35654

35655

35656

35657

35658

35659

35660

35661

System Interfaces getrlimit()

EXAMPLES
None.

APPLICATION USAGE
If a process attempts to set the hard limit or soft limit for RLIMIT_NOFILE to less than the value
of {_POSIX_OPEN_MAX} from <limits.h>, unexpected behavior may occur.

If a process attempts to set the hard limit or soft limit for RLIMIT_NOFILE to less than the
highest currently open file descriptor +1, unexpected behavior may occur.

RATIONALE
It should be noted that RLIMIT_STACK applies ‘‘at least’’ to the stack of the initial thread in the
process, and not to the sum of all the stacks in the process, as that would be very limiting unless
the value is so big as to provide no value at all with a single thread.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), malloc(), open(), sigaltstack(), sysconf(), ulimit()

XBD <stropts.h>, <sys/resource.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

An APPLICATION USAGE section is added.

Large File Summit extensions are added.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/25 is applied, changing wording for
RLIMIT_NOFILE in the DESCRIPTION related to functions that allocate a file descriptor failing
with [EMFILE]. Text is added to the APPLICATION USAGE section noting the consequences of
a process attempting to set the hard or soft limit for RLIMIT_NOFILE less than the highest
currently open file descriptor +1.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/46 is applied, updating the definition of
RLIMIT_STACK in the DESCRIPTION from ‘‘the maximum size of a process stack’’ to ‘‘the
maximum size of the initial thread’s stack’’. Text is added to the RATIONALE section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1067

35662

35663

35664

35665

35666

35667

35668

35669

35670

35671

35672

35673

35674

35675

35676

35677

35678

35679

35680

35681

35682

35683

35684

35685

35686

35687

35688

35689

35690

35691

35692

getrusage() System Interfaces

NAME
getrusage — get information about resource utilization

SYNOPSIS
XSI #include <sys/resource.h>

int getrusage(int who, struct rusage *r_usage);

DESCRIPTION
The getrusage() function shall provide measures of the resources used by the current process or
its terminated and waited-for child processes. If the value of the who argument is
RUSAGE_SELF, information shall be returned about resources used by the current process. If the
value of the who argument is RUSAGE_CHILDREN, information shall be returned about
resources used by the terminated and waited-for children of the current process. If the child is
never waited for (for example, if the parent has SA_NOCLDWAIT set or sets SIGCHLD to
SIG_IGN), the resource information for the child process is discarded and not included in the
resource information provided by getrusage().

The r_usage argument is a pointer to an object of type struct rusage in which the returned
information is stored.

RETURN VALUE
Upon successful completion, getrusage() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The getrusage() function shall fail if:

[EINVAL] The value of the who argument is not valid.

EXAMPLES

Using getrusage()

The following example returns information about the resources used by the current process.

#include <sys/resource.h>
...
int who = RUSAGE_SELF;
struct rusage usage;
int ret;

ret = getrusage(who, &usage);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), sigaction(), time(), times(), wait()

XBD <sys/resource.h>

1068 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35693

35694

35695

35696

35697

35698

35699

35700

35701

35702

35703

35704

35705

35706

35707

35708

35709

35710

35711

35712

35713

35714

35715

35716

35717

35718

35719

35720

35721

35722

35723

35724

35725

35726

35727

35728

35729

35730

35731

35732

System Interfaces getrusage()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1069

35733

35734

35735

35736

gets() System Interfaces

NAME
gets — get a string from a stdin stream

SYNOPSIS
OB #include <stdio.h>

char *gets(char *s);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The gets() function shall read bytes from the standard input stream, stdin, into the array pointed
to by s, until a <newline> is read or an end-of-file condition is encountered. Any <newline> shall
be discarded and a null byte shall be placed immediately after the last byte read into the array.

CX The gets() function may mark the last data access timestamp of the file associated with stream for
update. The last data access timestamp shall be marked for update by the first successful
execution of fgetc(), fgets(), fread(), fscanf(), getc(), getchar(), getdelim(), getline(), gets(), or
scanf() using stream that returns data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, gets() shall return s. If the end-of-file indicator for the stream is set,
or if the stream is at end-of-file, the end-of-file indicator for the stream shall be set and gets()
shall return a null pointer. If a read error occurs, the error indicator for the stream shall be set,

CX gets() shall return a null pointer, and set errno to indicate the error.

ERRORS
Refer to fgetc().

EXAMPLES
None.

APPLICATION USAGE
Reading a line that overflows the array pointed to by s results in undefined behavior. The use of
fgets() is recommended.

Since the user cannot specify the length of the buffer passed to gets(), use of this function is
discouraged. The length of the string read is unlimited. It is possible to overflow this buffer in
such a way as to cause applications to fail, or possible system security violations.

Applications should use the fgets() function instead of the obsolescent gets() function.

RATIONALE
The standard developers decided to mark the gets() function as obsolescent even though it is in
the ISO C standard due to the possibility of buffer overflow.

FUTURE DIRECTIONS
The gets() function may be removed in a future version.

SEE ALSO
feof(), ferror(), fgets()

XBD <stdio.h>

1070 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35737

35738

35739

35740

35741

35742

35743

35744

35745

35746

35747

35748

35749

35750

35751

35752

35753

35754

35755

35756

35757

35758

35759

35760

35761

35762

35763

35764

35765

35766

35767

35768

35769

35770

35771

35772

35773

35774

35775

35776

System Interfaces gets()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN VALUE section.

The gets() function is marked obsolescent.

Changes are made related to support for finegrained timestamps.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1071

35777

35778

35779

35780

35781

35782

35783

35784

getservbyname() System Interfaces

NAME
getservbyname, getservbyport, getservent — network services database functions

SYNOPSIS
#include <netdb.h>

struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);
struct servent *getservent(void);

DESCRIPTION
Refer to endservent().

1072 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35785

35786

35787

35788

35789

35790

35791

35792

35793

System Interfaces getsid()

NAME
getsid — get the process group ID of a session leader

SYNOPSIS
#include <unistd.h>

pid_t getsid(pid_t pid);

DESCRIPTION
The getsid() function shall obtain the process group ID of the process that is the session leader of
the process specified by pid. If pid is (pid_t)0, it specifies the calling process.

RETURN VALUE
Upon successful completion, getsid() shall return the process group ID of the session leader of
the specified process. Otherwise, it shall return (pid_t)−1 and set errno to indicate the error.

ERRORS
The getsid() function shall fail if:

[EPERM] The process specified by pid is not in the same session as the calling process,
and the implementation does not allow access to the process group ID of the
session leader of that process from the calling process.

[ESRCH] There is no process with a process ID equal to pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpid(), getpgid(), setpgid(), setsid()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The getsid() function is moved from the XSI option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1073

35794

35795

35796

35797

35798

35799

35800

35801

35802

35803

35804

35805

35806

35807

35808

35809

35810

35811

35812

35813

35814

35815

35816

35817

35818

35819

35820

35821

35822

35823

35824

35825

35826

35827

getsockname() System Interfaces

NAME
getsockname — get the socket name

SYNOPSIS
#include <sys/socket.h>

int getsockname(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len);

DESCRIPTION
The getsockname() function shall retrieve the locally-bound name of the specified socket, store
this address in the sockaddr structure pointed to by the address argument, and store the length of
this address in the object pointed to by the address_len argument.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address shall be truncated.

If the socket has not been bound to a local name, the value stored in the object pointed to by
address is unspecified.

RETURN VALUE
Upon successful completion, 0 shall be returned, the address argument shall point to the address
of the socket, and the address_len argument shall point to the length of the address. Otherwise, −1
shall be returned and errno set to indicate the error.

ERRORS
The getsockname() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The operation is not supported for this socket’s protocol.

The getsockname() function may fail if:

[EINVAL] The socket has been shut down.

[ENOBUFS] Insufficient resources were available in the system to complete the function.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), bind(), getpeername(), socket()

XBD <sys/socket.h>

1074 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35828

35829

35830

35831

35832

35833

35834

35835

35836

35837

35838

35839

35840

35841

35842

35843

35844

35845

35846

35847

35848

35849

35850

35851

35852

35853

35854

35855

35856

35857

35858

35859

35860

35861

35862

35863

35864

System Interfaces getsockname()

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the getsockname() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1075

35865

35866

35867

35868

getsockopt() System Interfaces

NAME
getsockopt — get the socket options

SYNOPSIS
#include <sys/socket.h>

int getsockopt(int socket, int level, int option_name,

void *restrict option_value, socklen_t *restrict option_len);

DESCRIPTION
The getsockopt() function manipulates options associated with a socket.

The getsockopt() function shall retrieve the value for the option specified by the option_name
argument for the socket specified by the socket argument. If the size of the option value is greater
than option_len, the value stored in the object pointed to by the option_value argument shall be
silently truncated. Otherwise, the object pointed to by the option_len argument shall be modified
to indicate the actual length of the value.

The level argument specifies the protocol level at which the option resides. To retrieve options at
the socket level, specify the level argument as SOL_SOCKET. To retrieve options at other levels,
supply the appropriate level identifier for the protocol controlling the option. For example, to
indicate that an option is interpreted by the TCP (Transmission Control Protocol), set level to
IPPROTO_TCP as defined in the <netinet/in.h> header.

The socket in use may require the process to have appropriate privileges to use the getsockopt()
function.

The option_name argument specifies a single option to be retrieved. It can be one of the socket-
level options defined in <sys/socket.h> and described in Section 2.10.16 (on page 522).

RETURN VALUE
Upon successful completion, getsockopt() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The getsockopt() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EINVAL] The specified option is invalid at the specified socket level.

[ENOPROTOOPT]
The option is not supported by the protocol.

[ENOTSOCK] The socket argument does not refer to a socket.

The getsockopt() function may fail if:

[EACCES] The calling process does not have appropriate privileges.

[EINVAL] The socket has been shut down.

[ENOBUFS] Insufficient resources are available in the system to complete the function.

1076 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35869

35870

35871

35872

35873

35874

35875

35876

35877

35878

35879

35880

35881

35882

35883

35884

35885

35886

35887

35888

35889

35890

35891

35892

35893

35894

35895

35896

35897

35898

35899

35900

35901

35902

35903

35904

System Interfaces getsockopt()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.10.16 (on page 522), bind(), close(), endprotoent(), setsockopt(), socket()

XBD <sys/socket.h>, <netinet/in.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the getsockopt() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/47 is applied, updating the description of
SO_LINGER in the DESCRIPTION so that it blocks the calling thread rather than the process.

Issue 7
Austin Group Interpretation 1003.1-2001 #158 is applied, removing text relating to socket options
that is now in Section 2.10.16 (on page 522).

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1077

35905

35906

35907

35908

35909

35910

35911

35912

35913

35914

35915

35916

35917

35918

35919

35920

35921

35922

35923

35924

getsubopt() System Interfaces

NAME
getsubopt — parse suboption arguments from a string

SYNOPSIS
#include <stdlib.h>

int getsubopt(char **optionp, char * const *keylistp, char **valuep);

DESCRIPTION
The getsubopt() function shall parse suboption arguments in a flag argument. Such options often
result from the use of getopt().

The getsubopt() argument optionp is a pointer to a pointer to the option argument string. The
suboption arguments shall be separated by <comma> characters and each may consist of either
a single token, or a token-value pair separated by an <equals-sign>.

The keylistp argument shall be a pointer to a vector of strings. The end of the vector is identified
by a null pointer. Each entry in the vector is one of the possible tokens that might be found in
*optionp. Since <comma> characters delimit suboption arguments in optionp, they should not
appear in any of the strings pointed to by keylistp. Similarly, because an <equals-sign> separates
a token from its value, the application should not include an <equals-sign> in any of the strings
pointed to by keylistp.

The valuep argument is the address of a value string pointer.

If a <comma> appears in optionp, it shall be interpreted as a suboption separator. After <comma>
characters have been processed, if there are one or more <equals-sign> characters in a suboption
string, the first <equals-sign> in any suboption string shall be interpreted as a separator between
a token and a value. Subsequent <equals-sign> characters in a suboption string shall be
interpreted as part of the value.

If the string at *optionp contains only one suboption argument (equivalently, no <comma>
characters), getsubopt() shall update *optionp to point to the null character at the end of the
string. Otherwise, it shall isolate the suboption argument by replacing the <comma> separator
with a null character, and shall update *optionp to point to the start of the next suboption
argument. If the suboption argument has an associated value (equivalently, contains an <equals-
sign>), getsubopt() shall update *valuep to point to the value’s first character. Otherwise, it shall
set *valuep to a null pointer. The calling application may use this information to determine
whether the presence or absence of a value for the suboption is an error.

Additionally, when getsubopt() fails to match the suboption argument with a token in the keylistp
array, the calling application should decide if this is an error, or if the unrecognized option
should be processed in another way.

RETURN VALUE
The getsubopt() function shall return the index of the matched token string, or −1 if no token
strings were matched.

ERRORS
No errors are defined.

1078 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

35925

35926

35927

35928

35929

35930

35931

35932

35933

35934

35935

35936

35937

35938

35939

35940

35941

35942

35943

35944

35945

35946

35947

35948

35949

35950

35951

35952

35953

35954

35955

35956

35957

35958

35959

35960

35961

35962

35963

System Interfaces getsubopt()

EXAMPLES

#include <stdio.h>
#include <stdlib.h>

int do_all;
const char *type;
int read_size;
int write_size;
int read_only;

enum
{

RO_OPTION = 0,
RW_OPTION,
READ_SIZE_OPTION,
WRITE_SIZE_OPTION

};

const char *mount_opts[] =
{

[RO_OPTION] = "ro",
[RW_OPTION] = "rw",
[READ_SIZE_OPTION] = "rsize",
[WRITE_SIZE_OPTION] = "wsize",
NULL

};

int
main(int argc, char *argv[])
{

char *subopts, *value;
int opt;

while ((opt = getopt(argc, argv, "at:o:")) != -1)
switch(opt)

{
case ’a’:

do_all = 1;
break;

case ’t’:
type = optarg;
break;

case ’o’:
subopts = optarg;
while (*subopts != ’\0’)

switch(getsubopt(&subopts, mount_opts, &value))
{
case RO_OPTION:

read_only = 1;
break;

case RW_OPTION:
read_only = 0;
break;

case READ_SIZE_OPTION:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1079

35964

35965

35966

35967

35968

35969

35970

35971

35972

35973

35974

35975

35976

35977

35978

35979

35980

35981

35982

35983

35984

35985

35986

35987

35988

35989

35990

35991

35992

35993

35994

35995

35996

35997

35998

35999

36000

36001

36002

36003

36004

36005

36006

36007

36008

36009

36010

36011

36012

getsubopt() System Interfaces

if (value == NULL)
abort();

read_size = atoi(value);
break;

case WRITE_SIZE_OPTION:
if (value == NULL)

abort();
write_size = atoi(value);
break;

default:
/* Unknown suboption. */
printf("Unknown suboption ‘%s’\n", value);
break;

}
break;

default:
abort();

}

/* Do the real work. */

return 0;
}

Parsing Suboptions

The following example uses the getsubopt() function to parse a value argument in the optarg
external variable returned by a call to getopt().

#include <stdlib.h>
...
char *tokens[] = {"HOME", "PATH", "LOGNAME", (char *) NULL };
char *value;
int opt, index;

while ((opt = getopt(argc, argv, "e:")) != -1) {
switch(opt) {
case ’e’ :

while ((index = getsubopt(&optarg, tokens, &value)) != -1) {
switch(index) {

...
}
break;

...
}

}
...

APPLICATION USAGE
None.

1080 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

36013

36014

36015

36016

36017

36018

36019

36020

36021

36022

36023

36024

36025

36026

36027

36028

36029

36030

36031

36032

36033

36034

36035

36036

36037

36038

36039

36040

36041

36042

36043

36044

36045

36046

36047

36048

36049

36050

36051

36052

36053

36054

36055

System Interfaces getsubopt()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getopt()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/26 is applied, correcting an editorial error
in the SYNOPSIS.

Issue 7
The getsubopt() function is moved from the XSI option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1081

36056

36057

36058

36059

36060

36061

36062

36063

36064

36065

36066

36067

36068

36069

36070

36071

gettimeofday() System Interfaces

NAME
gettimeofday — get the date and time

SYNOPSIS
OB XSI #include <sys/time.h>

int gettimeofday(struct timeval *restrict tp, void *restrict tzp);

DESCRIPTION
The gettimeofday() function shall obtain the current time, expressed as seconds and microseconds
since the Epoch, and store it in the timeval structure pointed to by tp. The resolution of the
system clock is unspecified.

If tzp is not a null pointer, the behavior is unspecified.

RETURN VALUE
The gettimeofday() function shall return 0 and no value shall be reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications should use the clock_gettime() function instead of the obsolescent gettimeofday()
function.

RATIONALE
None.

FUTURE DIRECTIONS
The gettimeofday() function may be removed in a future version.

SEE ALSO
clock_getres(), ctime()

XBD <sys/time.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The DESCRIPTION is updated to refer to ‘‘seconds since the Epoch’’ rather than ‘‘seconds since
00:00:00 UTC (Coordinated Universal Time), January 1 1970’’ for consistency with other time
functions.

The restrict keyword is added to the gettimeofday() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
The gettimeofday() function is marked obsolescent.

1082 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

36072

36073

36074

36075

36076

36077

36078

36079

36080

36081

36082

36083

36084

36085

36086

36087

36088

36089

36090

36091

36092

36093

36094

36095

36096

36097

36098

36099

36100

36101

36102

36103

36104

36105

36106

36107

36108

36109

System Interfaces getuid()

NAME
getuid — get a real user ID

SYNOPSIS
#include <unistd.h>

uid_t getuid(void);

DESCRIPTION
The getuid() function shall return the real user ID of the calling process.

RETURN VALUE
The getuid() function shall always be successful and no return value is reserved to indicate the
error.

ERRORS
No errors are defined.

EXAMPLES

Setting the Effective User ID to the Real User ID

The following example sets the effective user ID and the real user ID of the current process to the
real user ID of the caller.

#include <unistd.h>
#include <sys/types.h>
...
setreuid(getuid(), getuid());
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), geteuid(), getgid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), setuid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1083

36110

36111

36112

36113

36114

36115

36116

36117

36118

36119

36120

36121

36122

36123

36124

36125

36126

36127

36128

36129

36130

36131

36132

36133

36134

36135

36136

36137

36138

36139

36140

36141

36142

36143

36144

36145

36146

36147

36148

getutxent() System Interfaces

NAME
getutxent, getutxid, getutxline — get user accounting database entries

SYNOPSIS
XSI #include <utmpx.h>

struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx *id);
struct utmpx *getutxline(const struct utmpx *line);

DESCRIPTION
Refer to endutxent().

1084 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

36149

36150

36151

36152

36153

36154

36155

36156

36157

System Interfaces getwc()

NAME
getwc — get a wide character from a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t getwc(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The getwc() function shall be equivalent to fgetwc(), except that if it is implemented as a macro it
may evaluate stream more than once, so the argument should never be an expression with side-
effects.

RETURN VALUE
Refer to fgetwc().

ERRORS
Refer to fgetwc().

EXAMPLES
None.

APPLICATION USAGE
Since it may be implemented as a macro, getwc() may treat incorrectly a stream argument with
side-effects. In particular, getwc(*f++) does not necessarily work as expected. Therefore, use of
this function is not recommended; fgetwc() should be used instead.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fgetwc()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4. Derived from the MSE working
draft.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1085

36158

36159

36160

36161

36162

36163

36164

36165

36166

36167

36168

36169

36170

36171

36172

36173

36174

36175

36176

36177

36178

36179

36180

36181

36182

36183

36184

36185

36186

36187

36188

36189

36190

36191

36192

getwchar() System Interfaces

NAME
getwchar — get a wide character from a stdin stream

SYNOPSIS
#include <wchar.h>

wint_t getwchar(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The getwchar() function shall be equivalent to getwc(stdin).

RETURN VALUE
Refer to fgetwc().

ERRORS
Refer to fgetwc().

EXAMPLES
None.

APPLICATION USAGE
If the wint_t value returned by getwchar() is stored into a variable of type wchar_t and then
compared against the wint_t macro WEOF, the result may be incorrect. Only the wint_t type is
guaranteed to be able to represent any wide character and WEOF.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fgetwc(), getwc()

XBD <wchar.h>

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4. Derived from the MSE working
draft.

1086 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

36193

36194

36195

36196

36197

36198

36199

36200

36201

36202

36203

36204

36205

36206

36207

36208

36209

36210

36211

36212

36213

36214

36215

36216

36217

36218

36219

36220

36221

36222

System Interfaces glob()

NAME
glob, globfree — generate pathnames matching a pattern

SYNOPSIS
#include <glob.h>

int glob(const char *restrict pattern, int flags,
int(*errfunc)(const char *epath, int eerrno),
glob_t *restrict pglob);

void globfree(glob_t *pglob);

DESCRIPTION
The glob() function is a pathname generator that shall implement the rules defined in XCU
Section 2.13 (on page 2332), with optional support for rule 3 in XCU Section 2.13.3 (on page
2333).

The structure type glob_t is defined in <glob.h> and includes at least the following members:

Member Type Member Name Description

size_t gl_pathc Count of paths matched by pattern.
char ** gl_pathv Pointer to a list of matched pathnames.
size_t gl_offs Slots to reserve at the beginning of

gl_pathv.

The argument pattern is a pointer to a pathname pattern to be expanded. The glob() function
shall match all accessible pathnames against this pattern and develop a list of all pathnames that
match. In order to have access to a pathname, glob() requires search permission on every
component of a path except the last, and read permission on each directory of any filename
component of pattern that contains any of the following special characters: ’*’, ’?’, and ’[’.

The glob() function shall store the number of matched pathnames into pglob−>gl_pathc and a
pointer to a list of pointers to pathnames into pglob−>gl_pathv. The pathnames shall be in sort
order as defined by the current setting of the LC_COLLATE category; see XBD Section 7.3.2 (on
page 146). The first pointer after the last pathname shall be a null pointer. If the pattern does not
match any pathnames, the returned number of matched paths is set to 0, and the contents of
pglob−>gl_pathv are implementation-defined.

It is the caller’s responsibility to create the structure pointed to by pglob. The glob() function
shall allocate other space as needed, including the memory pointed to by gl_pathv. The globfree()
function shall free any space associated with pglob from a previous call to glob().

The flags argument is used to control the behavior of glob(). The value of flags is a bitwise-
inclusive OR of zero or more of the following constants, which are defined in <glob.h>:

GLOB_APPEND Append pathnames generated to the ones from a previous call to glob().

GLOB_DOOFFS Make use of pglob−>gl_offs. If this flag is set, pglob−>gl_offs is used to
specify how many null pointers to add to the beginning of
pglob−>gl_pathv. In other words, pglob−>gl_pathv shall point to
pglob−>gl_offs null pointers, followed by pglob−>gl_pathc pathname
pointers, followed by a null pointer.

GLOB_ERR Cause glob() to return when it encounters a directory that it cannot open
or read. Ordinarily, glob() continues to find matches.

GLOB_MARK Each pathname that is a directory that matches pattern shall have a
<slash> appended.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1087

36223

36224

36225

36226

36227

36228

36229

36230

36231

36232

36233

36234

36235

36236

36237

36238

36239

36240

36241

36242

36243

36244

36245

36246

36247

36248

36249

36250

36251

36252

36253

36254

36255

36256

36257

36258

36259

36260

36261

36262

36263

36264

36265

36266

glob() System Interfaces

GLOB_NOCHECK Supports rule 3 in XCU Section 2.13.3 (on page 2333). If pattern does not
match any pathname, then glob() shall return a list consisting of only
pattern, and the number of matched pathnames is 1.

GLOB_NOESCAPE Disable backslash escaping.

GLOB_NOSORT Ordinarily, glob() sorts the matching pathnames according to the current
setting of the LC_COLLATE category; see XBD Section 7.3.2 (on page 146).
When this flag is used, the order of pathnames returned is unspecified.

The GLOB_APPEND flag can be used to append a new set of pathnames to those found in a
previous call to glob(). The following rules apply to applications when two or more calls to
glob() are made with the same value of pglob and without intervening calls to globfree():

1. The first such call shall not set GLOB_APPEND. All subsequent calls shall set it.

2. All the calls shall set GLOB_DOOFFS, or all shall not set it.

3. After the second call, pglob−>gl_pathv points to a list containing the following:

a. Zero or more null pointers, as specified by GLOB_DOOFFS and pglob−>gl_offs.

b. Pointers to the pathnames that were in the pglob−>gl_pathv list before the call, in
the same order as before.

c. Pointers to the new pathnames generated by the second call, in the specified order.

4. The count returned in pglob−>gl_pathc shall be the total number of pathnames from the
two calls.

5. The application can change any of the fields after a call to glob(). If it does, the
application shall reset them to the original value before a subsequent call, using the same
pglob value, to globfree() or glob() with the GLOB_APPEND flag.

If, during the search, a directory is encountered that cannot be opened or read and errfunc is not
a null pointer, glob() calls (*errfunc()) with two arguments:

1. The epath argument is a pointer to the path that failed.

2. The eerrno argument is the value of errno from the failure, as set by opendir(), readdir(), or
stat(). (Other values may be used to report other errors not explicitly documented for
those functions.)

If (*errfunc()) is called and returns non-zero, or if the GLOB_ERR flag is set in flags, glob() shall
stop the scan and return GLOB_ABORTED after setting gl_pathc and gl_pathv in pglob to reflect
the paths already scanned. If GLOB_ERR is not set and either errfunc is a null pointer or
(*errfunc()) returns 0, the error shall be ignored.

The glob() function shall not fail because of large files.

RETURN VALUE
Upon successful completion, glob() shall return 0. The argument pglob−>gl_pathc shall return the
number of matched pathnames and the argument pglob−>gl_pathv shall contain a pointer to a
null-terminated list of matched and sorted pathnames. However, if pglob−>gl_pathc is 0, the
content of pglob−>gl_pathv is undefined.

The globfree() function shall not return a value.

If glob() terminates due to an error, it shall return one of the non-zero constants defined in
<glob.h>. The arguments pglob−>gl_pathc and pglob−>gl_pathv are still set as defined above.

1088 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

36267

36268

36269

36270

36271

36272

36273

36274

36275

36276

36277

36278

36279

36280

36281

36282

36283

36284

36285

36286

36287

36288

36289

36290

36291

36292

36293

36294

36295

36296

36297

36298

36299

36300

36301

36302

36303

36304

36305

36306

36307

System Interfaces glob()

ERRORS
The glob() function shall fail and return the corresponding value if:

GLOB_ABORTED The scan was stopped because GLOB_ERR was set or (*errfunc())
returned non-zero.

GLOB_NOMATCH The pattern does not match any existing pathname, and
GLOB_NOCHECK was not set in flags.

GLOB_NOSPACE An attempt to allocate memory failed.

EXAMPLES
One use of the GLOB_DOOFFS flag is by applications that build an argument list for use with
execv(), execve(), or execvp(). Suppose, for example, that an application wants to do the
equivalent of:

ls -l *.c

but for some reason:

system("ls -l *.c")

is not acceptable. The application could obtain approximately the same result using the
sequence:

globbuf.gl_offs = 2;
glob("*.c", GLOB_DOOFFS, NULL, &globbuf);
globbuf.gl_pathv[0] = "ls";
globbuf.gl_pathv[1] = "-l";
execvp("ls", &globbuf.gl_pathv[0]);

Using the same example:

ls -l *.c *.h

could be approximately simulated using GLOB_APPEND as follows:

globbuf.gl_offs = 2;
glob("*.c", GLOB_DOOFFS, NULL, &globbuf);
glob("*.h", GLOB_DOOFFS|GLOB_APPEND, NULL, &globbuf);
...

APPLICATION USAGE
This function is not provided for the purpose of enabling utilities to perform pathname
expansion on their arguments, as this operation is performed by the shell, and utilities are
explicitly not expected to redo this. Instead, it is provided for applications that need to do
pathname expansion on strings obtained from other sources, such as a pattern typed by a user or
read from a file.

If a utility needs to see if a pathname matches a given pattern, it can use fnmatch().

Note that gl_pathc and gl_pathv have meaning even if glob() fails. This allows glob() to report
partial results in the event of an error. However, if gl_pathc is 0, gl_pathv is unspecified even if
glob() did not return an error.

The GLOB_NOCHECK option could be used when an application wants to expand a pathname
if wildcards are specified, but wants to treat the pattern as just a string otherwise. The sh utility
might use this for option-arguments, for example.

The new pathnames generated by a subsequent call with GLOB_APPEND are not sorted
together with the previous pathnames. This mirrors the way that the shell handles pathname

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1089

36308

36309

36310

36311

36312

36313

36314

36315

36316

36317

36318

36319

36320

36321

36322

36323

36324

36325

36326

36327

36328

36329

36330

36331

36332

36333

36334

36335

36336

36337

36338

36339

36340

36341

36342

36343

36344

36345

36346

36347

36348

36349

36350

glob() System Interfaces

expansion when multiple expansions are done on a command line.

Applications that need tilde and parameter expansion should use wordexp().

RATIONALE
It was claimed that the GLOB_DOOFFS flag is unnecessary because it could be simulated using:

new = (char **)malloc((n + pglob->gl_pathc + 1)
* sizeof(char *));

(void) memcpy(new+n, pglob->gl_pathv,
pglob->gl_pathc * sizeof(char *));

(void) memset(new, 0, n * sizeof(char *));
free(pglob->gl_pathv);
pglob->gl_pathv = new;

However, this assumes that the memory pointed to by gl_pathv is a block that was separately
created using malloc(). This is not necessarily the case. An application should make no
assumptions about how the memory referenced by fields in pglob was allocated. It might have
been obtained from malloc() in a large chunk and then carved up within glob(), or it might have
been created using a different memory allocator. It is not the intent of the standard developers to
specify or imply how the memory used by glob() is managed.

The GLOB_APPEND flag would be used when an application wants to expand several different
patterns into a single list.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fdopendir(), fnmatch(), fstatat(), readdir(), Section 2.6

XBD Section 7.3.2 (on page 146), <glob.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 5
Moved from POSIX2 C-language Binding to BASE.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the glob() prototype for alignment with the ISO/IEC 9899: 1999
standard.

1090 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

36351

36352

36353

36354

36355

36356

36357

36358

36359

36360

36361

36362

36363

36364

36365

36366

36367

36368

36369

36370

36371

36372

36373

36374

36375

36376

36377

36378

36379

36380

36381

36382

System Interfaces gmtime()

NAME
gmtime, gmtime_r — convert a time value to a broken-down UTC time

SYNOPSIS
#include <time.h>

struct tm *gmtime(const time_t *timer);
CX struct tm *gmtime_r(const time_t *restrict timer,

struct tm *restrict result);

DESCRIPTION
CX For gmtime(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

The gmtime() function shall convert the time in seconds since the Epoch pointed to by timer into
a broken-down time, expressed as Coordinated Universal Time (UTC).

CX The relationship between a time in seconds since the Epoch used as an argument to gmtime()
and the tm structure (defined in the <time.h> header) is that the result shall be as specified in
the expression given in the definition of seconds since the Epoch (see XBD Section 4.15, on page
113), where the names in the structure and in the expression correspond.

The same relationship shall apply for gmtime_r().

The gmtime() function need not be thread-safe.

The asctime(), ctime(), gmtime(), and localtime() functions shall return values in one of two static
objects: a broken-down time structure and an array of type char. Execution of any of the
functions may overwrite the information returned in either of these objects by any of the other
functions.

The gmtime_r() function shall convert the time in seconds since the Epoch pointed to by timer
into a broken-down time expressed as Coordinated Universal Time (UTC). The broken-down
time is stored in the structure referred to by result. The gmtime_r() function shall also return the
address of the same structure.

RETURN VALUE
Upon successful completion, the gmtime() function shall return a pointer to a struct tm. If an

CX error is detected, gmtime() shall return a null pointer and set errno to indicate the error.

Upon successful completion, gmtime_r() shall return the address of the structure pointed to by
the argument result. If an error is detected, gmtime_r() shall return a null pointer and set errno to
indicate the error.

ERRORS
CX The gmtime() and gmtime_r() functions shall fail if:

CX [EOVERFLOW] The result cannot be represented.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1091

36383

36384

36385

36386

36387

36388

36389

36390

36391

36392

36393

36394

36395

36396

36397

36398

36399

36400

36401

36402

36403

36404

36405

36406

36407

36408

36409

36410

36411

36412

36413

36414

36415

36416

36417

36418

gmtime() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The gmtime_r() function is thread-safe and returns values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), difftime(), localtime(), mktime(), strftime(), strptime(), time(), utime()

XBD Section 4.15 (on page 113), <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A note indicating that the gmtime() function need not be reentrant is added to the
DESCRIPTION.

The gmtime_r() function is included for alignment with the POSIX Threads Extension.

Issue 6
The gmtime_r() function is marked as part of the Thread-Safe Functions option.

Extensions beyond the ISO C standard are marked.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

The restrict keyword is added to the gmtime_r() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/27 is applied, adding the [EOVERFLOW]
error.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/48 is applied, updating the error handling
for gmtime_r().

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The gmtime_r() function is moved from the Thread-Safe Functions option to the Base.

1092 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

36419

36420

36421

36422

36423

36424

36425

36426

36427

36428

36429

36430

36431

36432

36433

36434

36435

36436

36437

36438

36439

36440

36441

36442

36443

36444

36445

36446

36447

36448

36449

36450

System Interfaces grantpt()

NAME
grantpt — grant access to the slave pseudo-terminal device

SYNOPSIS
XSI #include <stdlib.h>

int grantpt(int fildes);

DESCRIPTION
The grantpt() function shall change the mode and ownership of the slave pseudo-terminal
device associated with its master pseudo-terminal counterpart. The fildes argument is a file
descriptor that refers to a master pseudo-terminal device. The user ID of the slave shall be set to
the real UID of the calling process and the group ID shall be set to an unspecified group ID. The
permission mode of the slave pseudo-terminal shall be set to readable and writable by the
owner, and writable by the group.

The behavior of the grantpt() function is unspecified if the application has installed a signal
handler to catch SIGCHLD signals.

RETURN VALUE
Upon successful completion, grantpt() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The grantpt() function may fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[EINVAL] The fildes argument is not associated with a master pseudo-terminal device.

[EACCES] The corresponding slave pseudo-terminal device could not be accessed.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
open(), ptsname(), unlockpt()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The last paragraph of the DESCRIPTION is moved from the APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1093

36451

36452

36453

36454

36455

36456

36457

36458

36459

36460

36461

36462

36463

36464

36465

36466

36467

36468

36469

36470

36471

36472

36473

36474

36475

36476

36477

36478

36479

36480

36481

36482

36483

36484

36485

36486

36487

36488

hcreate() System Interfaces

NAME
hcreate, hdestroy, hsearch — manage hash search table

SYNOPSIS
XSI #include <search.h>

int hcreate(size_t nel);
void hdestroy(void);
ENTRY *hsearch(ENTRY item, ACTION action);

DESCRIPTION
The hcreate(), hdestroy(), and hsearch() functions shall manage hash search tables.

The hcreate() function shall allocate sufficient space for the table, and the application shall
ensure it is called before hsearch() is used. The nel argument is an estimate of the maximum
number of entries that the table shall contain. This number may be adjusted upward by the
algorithm in order to obtain certain mathematically favorable circumstances.

The hdestroy() function shall dispose of the search table, and may be followed by another call to
hcreate(). After the call to hdestroy(), the data can no longer be considered accessible.

The hsearch() function is a hash-table search routine. It shall return a pointer into a hash table
indicating the location at which an entry can be found. The item argument is a structure of type
ENTRY (defined in the <search.h> header) containing two pointers: item.key points to the
comparison key (a char *), and item.data (a void *) points to any other data to be associated with
that key. The comparison function used by hsearch() is strcmp(). The action argument is a
member of an enumeration type ACTION indicating the disposition of the entry if it cannot be
found in the table. ENTER indicates that the item should be inserted in the table at an
appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution is
indicated by the return of a null pointer.

These functions need not be thread-safe.

RETURN VALUE
The hcreate() function shall return 0 if it cannot allocate sufficient space for the table; otherwise,
it shall return non-zero.

The hdestroy() function shall not return a value.

The hsearch() function shall return a null pointer if either the action is FIND and the item could
not be found or the action is ENTER and the table is full.

ERRORS
The hcreate() and hsearch() functions may fail if:

[ENOMEM] Insufficient storage space is available.

EXAMPLES
The following example reads in strings followed by two numbers and stores them in a hash
table, discarding duplicates. It then reads in strings and finds the matching entry in the hash
table and prints it out.

#include <stdio.h>
#include <search.h>
#include <string.h>

struct info { /* This is the info stored in the table */
int age, room; /* other than the key. */

};

1094 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

36489

36490

36491

36492

36493

36494

36495

36496

36497

36498

36499

36500

36501

36502

36503

36504

36505

36506

36507

36508

36509

36510

36511

36512

36513

36514

36515

36516

36517

36518

36519

36520

36521

36522

36523

36524

36525

36526

36527

36528

36529

36530

36531

36532

System Interfaces hcreate()

#define NUM_EMPL 5000 /* # of elements in search table. */

int main(void)
{

char string_space[NUM_EMPL*20]; /* Space to store strings. */
struct info info_space[NUM_EMPL]; /* Space to store employee info. */
char *str_ptr = string_space; /* Next space in string_space. */
struct info *info_ptr = info_space;

/* Next space in info_space. */
ENTRY item;
ENTRY *found_item; /* Name to look for in table. */
char name_to_find[30];

int i = 0;

/* Create table; no error checking is performed. */
(void) hcreate(NUM_EMPL);
while (scanf("%s%d%d", str_ptr, &info_ptr−>age,

&info_ptr−>room) != EOF && i++ < NUM_EMPL) {

/* Put information in structure, and structure in item. */
item.key = str_ptr;
item.data = info_ptr;
str_ptr += strlen(str_ptr) + 1;
info_ptr++;

/* Put item into table. */
(void) hsearch(item, ENTER);

}

/* Access table. */
item.key = name_to_find;
while (scanf("%s", item.key) != EOF) {

if ((found_item = hsearch(item, FIND)) != NULL) {

/* If item is in the table. */
(void)printf("found %s, age = %d, room = %d\n",

found_item−>key,
((struct info *)found_item−>data)−>age,
((struct info *)found_item−>data)−>room);

} else
(void)printf("no such employee %s\n", name_to_find);

}
return 0;

}

APPLICATION USAGE
The hcreate() and hsearch() functions may use malloc() to allocate space.

RATIONALE
None.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1095

36533

36534

36535

36536

36537

36538

36539

36540

36541

36542

36543

36544

36545

36546

36547

36548

36549

36550

36551

36552

36553

36554

36555

36556

36557

36558

36559

36560

36561

36562

36563

36564

36565

36566

36567

36568

36569

36570

36571

36572

36573

36574

36575

36576

hcreate() System Interfaces

SEE ALSO
bsearch(), lsearch(), malloc(), strcmp(), tdelete()

XBD <search.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

1096 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

36577

36578

36579

36580

36581

36582

36583

36584

36585

36586

System Interfaces htonl()

NAME
htonl, htons, ntohl, ntohs — convert values between host and network byte order

SYNOPSIS
#include <arpa/inet.h>

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

DESCRIPTION
These functions shall convert 16-bit and 32-bit quantities between network byte order and host
byte order.

On some implementations, these functions are defined as macros.

The uint32_t and uint16_t types are defined in <inttypes.h>.

RETURN VALUE
The htonl() and htons() functions shall return the argument value converted from host to
network byte order.

The ntohl() and ntohs() functions shall return the argument value converted from network to
host byte order.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
These functions are most often used in conjunction with IPv4 addresses and ports as returned by
gethostent() and getservent().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endhostent(), endservent()

XBD <arpa/inet.h>, <inttypes.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1097

36587

36588

36589

36590

36591

36592

36593

36594

36595

36596

36597

36598

36599

36600

36601

36602

36603

36604

36605

36606

36607

36608

36609

36610

36611

36612

36613

36614

36615

36616

36617

36618

36619

36620

hypot() System Interfaces

NAME
hypot, hypotf, hypotl — Euclidean distance function

SYNOPSIS
#include <math.h>

double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the value of the square root of x2+y2 without undue overflow or
underflow.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the length of the hypotenuse of a right-
angled triangle with sides of length x and y.

If the correct value would cause overflow, a range error shall occur and hypot(), hypotf(), and
hypotl() shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL,
respectively.

MX If x or y is ±Inf, +Inf shall be returned (even if one of x or y is NaN).

If x or y is NaN, and the other is not ±Inf, a NaN shall be returned.

If both arguments are subnormal and the correct result is subnormal, a range error may occur
and the correct result is returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

MX Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

1098 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

36621

36622

36623

36624

36625

36626

36627

36628

36629

36630

36631

36632

36633

36634

36635

36636

36637

36638

36639

36640

36641

36642

36643

36644

36645

36646

36647

36648

36649

36650

36651

36652

36653

36654

36655

36656

36657

36658

36659

36660

System Interfaces hypot()

EXAMPLES
See the EXAMPLES section in atan2().

APPLICATION USAGE
hypot(x,y), hypot(y,x), and hypot(x, −y) are equivalent.

hypot(x, ±0) is equivalent to fabs(x).

Underflow only happens when both x and y are subnormal and the (inexact) result is also
subnormal.

These functions take precautions against overflow during intermediate steps of the computation.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atan2(), feclearexcept(), fetestexcept(), isnan(), sqrt()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The hypot() function is no longer marked as an extension.

The hypotf() and hypotl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/49 is applied, updating the EXAMPLES
section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1099

36661

36662

36663

36664

36665

36666

36667

36668

36669

36670

36671

36672

36673

36674

36675

36676

36677

36678

36679

36680

36681

36682

36683

36684

36685

36686

36687

36688

36689

36690

36691

36692

iconv() System Interfaces

NAME
iconv — codeset conversion function

SYNOPSIS
#include <iconv.h>

size_t iconv(iconv_t cd, char **restrict inbuf,
size_t *restrict inbytesleft, char **restrict outbuf,
size_t *restrict outbytesleft);

DESCRIPTION
The iconv() function shall convert the sequence of characters from one codeset, in the array
specified by inbuf , into a sequence of corresponding characters in another codeset, in the array
specified by outbuf . The codesets are those specified in the iconv_open() call that returned the
conversion descriptor, cd. The inbuf argument points to a variable that points to the first
character in the input buffer and inbytesleft indicates the number of bytes to the end of the buffer
to be converted. The outbuf argument points to a variable that points to the first available byte in
the output buffer and outbytesleft indicates the number of the available bytes to the end of the
buffer.

For state-dependent encodings, the conversion descriptor cd is placed into its initial shift state by
a call for which inbuf is a null pointer, or for which inbuf points to a null pointer. When iconv() is
called in this way, and if outbuf is not a null pointer or a pointer to a null pointer, and outbytesleft
points to a positive value, iconv() shall place, into the output buffer, the byte sequence to change
the output buffer to its initial shift state. If the output buffer is not large enough to hold the
entire reset sequence, iconv() shall fail and set errno to [E2BIG]. Subsequent calls with inbuf as
other than a null pointer or a pointer to a null pointer cause the conversion to take place from
the current state of the conversion descriptor.

If a sequence of input bytes does not form a valid character in the specified codeset, conversion
shall stop after the previous successfully converted character. If the input buffer ends with an
incomplete character or shift sequence, conversion shall stop after the previous successfully
converted bytes. If the output buffer is not large enough to hold the entire converted input,
conversion shall stop just prior to the input bytes that would cause the output buffer to
overflow. The variable pointed to by inbuf shall be updated to point to the byte following the last
byte successfully used in the conversion. The value pointed to by inbytesleft shall be
decremented to reflect the number of bytes still not converted in the input buffer. The variable
pointed to by outbuf shall be updated to point to the byte following the last byte of converted
output data. The value pointed to by outbytesleft shall be decremented to reflect the number of
bytes still available in the output buffer. For state-dependent encodings, the conversion
descriptor shall be updated to reflect the shift state in effect at the end of the last successfully
converted byte sequence.

If iconv() encounters a character in the input buffer that is valid, but for which an identical
character does not exist in the target codeset, iconv() shall perform an implementation-defined
conversion on this character.

RETURN VALUE
The iconv() function shall update the variables pointed to by the arguments to reflect the extent
of the conversion and return the number of non-identical conversions performed. If the entire
string in the input buffer is converted, the value pointed to by inbytesleft shall be 0. If the input
conversion is stopped due to any conditions mentioned above, the value pointed to by inbytesleft
shall be non-zero and errno shall be set to indicate the condition. If an error occurs, iconv() shall
return (size_t)−1 and set errno to indicate the error.

1100 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

36693

36694

36695

36696

36697

36698

36699

36700

36701

36702

36703

36704

36705

36706

36707

36708

36709

36710

36711

36712

36713

36714

36715

36716

36717

36718

36719

36720

36721

36722

36723

36724

36725

36726

36727

36728

36729

36730

36731

36732

36733

36734

36735

36736

36737

36738

36739

System Interfaces iconv()

ERRORS
The iconv() function shall fail if:

[EILSEQ] Input conversion stopped due to an input byte that does not belong to the
input codeset.

[E2BIG] Input conversion stopped due to lack of space in the output buffer.

[EINVAL] Input conversion stopped due to an incomplete character or shift sequence at
the end of the input buffer.

The iconv() function may fail if:

[EBADF] The cd argument is not a valid open conversion descriptor.

EXAMPLES
None.

APPLICATION USAGE
The inbuf argument indirectly points to the memory area which contains the conversion input
data. The outbuf argument indirectly points to the memory area which is to contain the result of
the conversion. The objects indirectly pointed to by inbuf and outbuf are not restricted to
containing data that is directly representable in the ISO C standard language char data type. The
type of inbuf and outbuf , char **, does not imply that the objects pointed to are interpreted as
null-terminated C strings or arrays of characters. Any interpretation of a byte sequence that
represents a character in a given character set encoding scheme is done internally within the
codeset converters. For example, the area pointed to indirectly by inbuf and/or outbuf can
contain all zero octets that are not interpreted as string terminators but as coded character data
according to the respective codeset encoding scheme. The type of the data (char, short, long, and
so on) read or stored in the objects is not specified, but may be inferred for both the input and
output data by the converters determined by the fromcode and tocode arguments of iconv_open().

Regardless of the data type inferred by the converter, the size of the remaining space in both
input and output objects (the intbytesleft and outbytesleft arguments) is always measured in bytes.

For implementations that support the conversion of state-dependent encodings, the conversion
descriptor must be able to accurately reflect the shift-state in effect at the end of the last
successful conversion. It is not required that the conversion descriptor itself be updated, which
would require it to be a pointer type. Thus, implementations are free to implement the
descriptor as a handle (other than a pointer type) by which the conversion information can be
accessed and updated.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv_open(), iconv_close(), mbsrtowcs()

XBD <iconv.h>

CHANGE HISTORY
First released in Issue 4. Derived from the HP-UX Manual.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1101

36740

36741

36742

36743

36744

36745

36746

36747

36748

36749

36750

36751

36752

36753

36754

36755

36756

36757

36758

36759

36760

36761

36762

36763

36764

36765

36766

36767

36768

36769

36770

36771

36772

36773

36774

36775

36776

36777

36778

36779

36780

iconv() System Interfaces

Issue 6
The SYNOPSIS has been corrected to align with the <iconv.h> reference page.

The restrict keyword is added to the iconv() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
The iconv() function is moved from the XSI option to the Base.

1102 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

36781

36782

36783

36784

36785

36786

System Interfaces iconv_close()

NAME
iconv_close — codeset conversion deallocation function

SYNOPSIS
#include <iconv.h>

int iconv_close(iconv_t cd);

DESCRIPTION
The iconv_close() function shall deallocate the conversion descriptor cd and all other associated
resources allocated by iconv_open().

If a file descriptor is used to implement the type iconv_t, that file descriptor shall be closed.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The iconv_close() function may fail if:

[EBADF] The conversion descriptor is invalid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv(), iconv_open()

XBD <iconv.h>

CHANGE HISTORY
First released in Issue 4. Derived from the HP-UX Manual.

Issue 7
The iconv_close() function is moved from the XSI option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1103

36787

36788

36789

36790

36791

36792

36793

36794

36795

36796

36797

36798

36799

36800

36801

36802

36803

36804

36805

36806

36807

36808

36809

36810

36811

36812

36813

36814

36815

36816

iconv_open() System Interfaces

NAME
iconv_open — codeset conversion allocation function

SYNOPSIS
#include <iconv.h>

iconv_t iconv_open(const char *tocode, const char *fromcode);

DESCRIPTION
The iconv_open() function shall return a conversion descriptor that describes a conversion from
the codeset specified by the string pointed to by the fromcode argument to the codeset specified
by the string pointed to by the tocode argument. For state-dependent encodings, the conversion
descriptor shall be in a codeset-dependent initial shift state, ready for immediate use with
iconv().

Settings of fromcode and tocode and their permitted combinations are implementation-defined.

A conversion descriptor shall remain valid until it is closed by iconv_close() or an implicit close.

If a file descriptor is used to implement conversion descriptors, the FD_CLOEXEC flag shall be
set; see <fcntl.h>.

RETURN VALUE
Upon successful completion, iconv_open() shall return a conversion descriptor for use on
subsequent calls to iconv(). Otherwise, iconv_open() shall return (iconv_t)−1 and set errno to
indicate the error.

ERRORS
The iconv_open() function may fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] Too many files are currently open in the system.

[ENOMEM] Insufficient storage space is available.

[EINVAL] The conversion specified by fromcode and tocode is not supported by the
implementation.

EXAMPLES
None.

APPLICATION USAGE
Some implementations of iconv_open() use malloc() to allocate space for internal buffer areas.
The iconv_open() function may fail if there is insufficient storage space to accommodate these
buffers.

Conforming applications must assume that conversion descriptors are not valid after a call to
one of the exec functions.

Application developers should consult the system documentation to determine the supported
codesets and their naming schemes.

RATIONALE
None.

FUTURE DIRECTIONS
None.

1104 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

36817

36818

36819

36820

36821

36822

36823

36824

36825

36826

36827

36828

36829

36830

36831

36832

36833

36834

36835

36836

36837

36838

36839

36840

36841

36842

36843

36844

36845

36846

36847

36848

36849

36850

36851

36852

36853

36854

36855

36856

System Interfaces iconv_open()

SEE ALSO
iconv(), iconv_close()

XBD <fcntl.h>, <iconv.h>

CHANGE HISTORY
First released in Issue 4. Derived from the HP-UX Manual.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The iconv_open() function is moved from the XSI option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1105

36857

36858

36859

36860

36861

36862

36863

36864

if_freenameindex() System Interfaces

NAME
if_freenameindex — free memory allocated by if_nameindex

SYNOPSIS
#include <net/if.h>

void if_freenameindex(struct if_nameindex *ptr);

DESCRIPTION
The if_freenameindex() function shall free the memory allocated by if_nameindex(). The ptr
argument shall be a pointer that was returned by if_nameindex(). After if_freenameindex() has
been called, the application shall not use the array of which ptr is the address.

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), if_indextoname(), if_nameindex(), if_nametoindex(), setsockopt()

XBD <net/if.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

1106 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

36865

36866

36867

36868

36869

36870

36871

36872

36873

36874

36875

36876

36877

36878

36879

36880

36881

36882

36883

36884

36885

36886

36887

36888

36889

36890

System Interfaces if_indextoname()

NAME
if_indextoname — map a network interface index to its corresponding name

SYNOPSIS
#include <net/if.h>

char *if_indextoname(unsigned ifindex, char *ifname);

DESCRIPTION
The if_indextoname() function shall map an interface index to its corresponding name.

When this function is called, ifname shall point to a buffer of at least {IF_NAMESIZE} bytes. The
function shall place in this buffer the name of the interface with index ifindex.

RETURN VALUE
If ifindex is an interface index, then the function shall return the value supplied in ifname, which
points to a buffer now containing the interface name. Otherwise, the function shall return a null
pointer and set errno to indicate the error.

ERRORS
The if_indextoname() function shall fail if:

[ENXIO] The interface does not exist.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), if_freenameindex(), if_nameindex(), if_nametoindex(), setsockopt()

XBD <net/if.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/28 is applied, changing {IFNAMSIZ} to
{IF_NAMESIZ} in the DESCRIPTION.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1107

36891

36892

36893

36894

36895

36896

36897

36898

36899

36900

36901

36902

36903

36904

36905

36906

36907

36908

36909

36910

36911

36912

36913

36914

36915

36916

36917

36918

36919

36920

36921

if_nameindex() System Interfaces

NAME
if_nameindex — return all network interface names and indexes

SYNOPSIS
#include <net/if.h>

struct if_nameindex *if_nameindex(void);

DESCRIPTION
The if_nameindex() function shall return an array of if_nameindex structures, one structure per
interface. The end of the array is indicated by a structure with an if_index field of zero and an
if_name field of NULL.

Applications should call if_freenameindex() to release the memory that may be dynamically
allocated by this function, after they have finished using it.

RETURN VALUE
An array of structures identifying local interfaces. A null pointer is returned upon an error, with
errno set to indicate the error.

ERRORS
The if_nameindex() function may fail if:

[ENOBUFS] Insufficient resources are available to complete the function.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), if_freenameindex(), if_indextoname(), if_nametoindex(), setsockopt()

XBD <net/if.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

1108 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

36922

36923

36924

36925

36926

36927

36928

36929

36930

36931

36932

36933

36934

36935

36936

36937

36938

36939

36940

36941

36942

36943

36944

36945

36946

36947

36948

36949

36950

36951

System Interfaces if_nametoindex()

NAME
if_nametoindex — map a network interface name to its corresponding index

SYNOPSIS
#include <net/if.h>

unsigned if_nametoindex(const char *ifname);

DESCRIPTION
The if_nametoindex() function shall return the interface index corresponding to name ifname.

RETURN VALUE
The corresponding index if ifname is the name of an interface; otherwise, zero.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), if_freenameindex(), if_indextoname(), if_nameindex(), setsockopt()

XBD <net/if.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1109

36952

36953

36954

36955

36956

36957

36958

36959

36960

36961

36962

36963

36964

36965

36966

36967

36968

36969

36970

36971

36972

36973

36974

36975

ilogb() System Interfaces

NAME
ilogb, ilogbf, ilogbl — return an unbiased exponent

SYNOPSIS
#include <math.h>

int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall return the exponent part of their argument x. Formally, the return value is
the integral part of logr |x| as a signed integral value, for non-zero x, where r is the radix of the
machine’s floating-point arithmetic, which is the value of FLT_RADIX defined in <float.h>.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the exponent part of x as a signed
integer value. They are equivalent to calling the corresponding logb() function and casting the
returned value to type int.

XSI If x is 0, the value FP_ILOGB0 shall be returned. On XSI-conformant systems, a domain error
shall occur;

CX otherwise, a domain error may occur.

XSI If x is ±Inf, the value {INT_MAX} shall be returned. On XSI-conformant systems, a domain
error shall occur;

CX otherwise, a domain error may occur.

XSI If x is a NaN, the value FP_ILOGBNAN shall be returned. On XSI-conformant systems, a
domain error shall occur;

CX otherwise, a domain error may occur.

MX If the correct value is greater than {INT_MAX}, a domain error shall occur and an unspecified
XSI value shall be returned. On XSI-conformant systems, a domain error shall occur and

{INT_MAX} shall be returned.

MX If the correct value is less than {INT_MIN}, a domain error shall occur and an unspecified value
XSI shall be returned. On XSI-conformant systems, a domain error shall occur and {INT_MIN} shall

be returned.

ERRORS
These functions shall fail if:

XSI|MX Domain Error The correct value is not representable as an integer.

XSI The x argument is zero, NaN, or ±Inf.

XSI|MX If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

1110 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

36976

36977

36978

36979

36980

36981

36982

36983

36984

36985

36986

36987

36988

36989

36990

36991

36992

36993

36994

36995

36996

36997

36998

36999

37000

37001

37002

37003

37004

37005

37006

37007

37008

37009

37010

37011

37012

37013

37014

37015

37016

37017

37018

37019

37020

System Interfaces ilogb()

These functions may fail if:

Domain Error The x argument is zero, NaN, or ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
The errors come from taking the expected floating-point value and converting it to int, which is
an invalid operation in IEEE Std 754-1985 (since overflow, infinity, and NaN are not
representable in a type int), so should be a domain error.

There are no known implementations that overflow. For overflow to happen, {INT_MAX} must
be less than LDBL_MAX_EXP*log2(FLT_RADIX) or {INT_MIN} must be greater than
LDBL_MIN_EXP*log2(FLT_RADIX) if subnormals are not supported, or {INT_MIN} must be
greater than (LDBL_MIN_EXP-LDBL_MANT_DIG)*log2(FLT_RADIX) if subnormals are
supported.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), logb(), scalbln()

XBD Section 4.19 (on page 116), <float.h>, <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The ilogb() function is no longer marked as an extension.

The ilogbf() and ilogbl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The RETURN VALUE section is revised for alignment with the ISO/IEC 9899: 1999 standard.

Functionality relating to the XSI option is marked.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #48 (SD5-XSH-ERN-71), #49, and #79
(SD5-XSH-ERN-72) are applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1111

37021

37022

37023

37024

37025

37026

37027

37028

37029

37030

37031

37032

37033

37034

37035

37036

37037

37038

37039

37040

37041

37042

37043

37044

37045

37046

37047

37048

37049

37050

37051

37052

37053

37054

37055

37056

37057

37058

imaxabs() System Interfaces

NAME
imaxabs — return absolute value

SYNOPSIS
#include <inttypes.h>

intmax_t imaxabs(intmax_t j);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The imaxabs() function shall compute the absolute value of an integer j. If the result cannot be
represented, the behavior is undefined.

RETURN VALUE
The imaxabs() function shall return the absolute value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The absolute value of the most negative number cannot be represented in two’s complement.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
imaxdiv()

XBD <inttypes.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

1112 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

37059

37060

37061

37062

37063

37064

37065

37066

37067

37068

37069

37070

37071

37072

37073

37074

37075

37076

37077

37078

37079

37080

37081

37082

37083

37084

37085

37086

System Interfaces imaxdiv()

NAME
imaxdiv — return quotient and remainder

SYNOPSIS
#include <inttypes.h>

imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The imaxdiv() function shall compute numer / denom and numer % denom in a single operation.

RETURN VALUE
The imaxdiv() function shall return a structure of type imaxdiv_t, comprising both the quotient
and the remainder. The structure shall contain (in either order) the members quot (the quotient)
and rem (the remainder), each of which has type intmax_t.

If either part of the result cannot be represented, the behavior is undefined.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
imaxabs()

XBD <inttypes.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1113

37087

37088

37089

37090

37091

37092

37093

37094

37095

37096

37097

37098

37099

37100

37101

37102

37103

37104

37105

37106

37107

37108

37109

37110

37111

37112

37113

37114

37115

37116

inet_addr() System Interfaces

NAME
inet_addr, inet_ntoa — IPv4 address manipulation

SYNOPSIS
#include <arpa/inet.h>

in_addr_t inet_addr(const char *cp);
char *inet_ntoa(struct in_addr in);

DESCRIPTION
The inet_addr() function shall convert the string pointed to by cp, in the standard IPv4 dotted
decimal notation, to an integer value suitable for use as an Internet address.

The inet_ntoa() function shall convert the Internet host address specified by in to a string in the
Internet standard dot notation.

The inet_ntoa() function need not be thread-safe.

All Internet addresses shall be returned in network order (bytes ordered from left to right).

Values specified using IPv4 dotted decimal notation take one of the following forms:

a.b.c.d When four parts are specified, each shall be interpreted as a byte of data and
assigned, from left to right, to the four bytes of an Internet address.

a.b.c When a three-part address is specified, the last part shall be interpreted as a 16-bit
quantity and placed in the rightmost two bytes of the network address. This makes
the three-part address format convenient for specifying Class B network addresses
as "128.net.host".

a.b When a two-part address is supplied, the last part shall be interpreted as a 24-bit
quantity and placed in the rightmost three bytes of the network address. This
makes the two-part address format convenient for specifying Class A network
addresses as "net.host".

a When only one part is given, the value shall be stored directly in the network
address without any byte rearrangement.

All numbers supplied as parts in IPv4 dotted decimal notation may be decimal, octal, or
hexadecimal, as specified in the ISO C standard (that is, a leading 0x or 0X implies hexadecimal;
otherwise, a leading ’0’ implies octal; otherwise, the number is interpreted as decimal).

RETURN VALUE
Upon successful completion, inet_addr() shall return the Internet address. Otherwise, it shall
return (in_addr_t)(−1).

The inet_ntoa() function shall return a pointer to the network address in Internet standard dot
notation.

ERRORS
No errors are defined.

1114 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

37117

37118

37119

37120

37121

37122

37123

37124

37125

37126

37127

37128

37129

37130

37131

37132

37133

37134

37135

37136

37137

37138

37139

37140

37141

37142

37143

37144

37145

37146

37147

37148

37149

37150

37151

37152

System Interfaces inet_addr()

EXAMPLES
None.

APPLICATION USAGE
The return value of inet_ntoa() may point to static data that may be overwritten by subsequent
calls to inet_ntoa().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endhostent(), endnetent()

XBD <arpa/inet.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1115

37153

37154

37155

37156

37157

37158

37159

37160

37161

37162

37163

37164

37165

37166

37167

37168

inet_ntop() System Interfaces

NAME
inet_ntop, inet_pton — convert IPv4 and IPv6 addresses between binary and text form

SYNOPSIS
#include <arpa/inet.h>

const char *inet_ntop(int af, const void *restrict src,
char *restrict dst, socklen_t size);

int inet_pton(int af, const char *restrict src, void *restrict dst);

DESCRIPTION
The inet_ntop() function shall convert a numeric address into a text string suitable for

IP6 presentation. The af argument shall specify the family of the address. This can be AF_INET or
AF_INET6. The src argument points to a buffer holding an IPv4 address if the af argument is

IP6 AF_INET, or an IPv6 address if the af argument is AF_INET6; the address must be in network
byte order. The dst argument points to a buffer where the function stores the resulting text string;
it shall not be NULL. The size argument specifies the size of this buffer, which shall be large

IP6 enough to hold the text string (INET_ADDRSTRLEN characters for IPv4,
INET6_ADDRSTRLEN characters for IPv6).

The inet_pton() function shall convert an address in its standard text presentation form into its
IP6 numeric binary form. The af argument shall specify the family of the address. The AF_INET and

AF_INET6 address families shall be supported. The src argument points to the string being
passed in. The dst argument points to a buffer into which the function stores the numeric

IP6 address; this shall be large enough to hold the numeric address (32 bits for AF_INET, 128 bits
for AF_INET6).

If the af argument of inet_pton() is AF_INET, the src string shall be in the standard IPv4 dotted-
decimal form:

ddd.ddd.ddd.ddd

where "ddd" is a one to three digit decimal number between 0 and 255 (see inet_addr()). The
inet_pton() function does not accept other formats (such as the octal numbers, hexadecimal
numbers, and fewer than four numbers that inet_addr() accepts).

IP6 If the af argument of inet_pton() is AF_INET6, the src string shall be in one of the following
standard IPv6 text forms:

1. The preferred form is "x:x:x:x:x:x:x:x", where the ’x’s are the hexadecimal values
of the eight 16-bit pieces of the address. Leading zeros in individual fields can be
omitted, but there shall be at least one numeral in every field.

2. A string of contiguous zero fields in the preferred form can be shown as "::". The "::"
can only appear once in an address. Unspecified addresses ("0:0:0:0:0:0:0:0") may
be represented simply as "::".

3. A third form that is sometimes more convenient when dealing with a mixed environment
of IPv4 and IPv6 nodes is "x:x:x:x:x:x:d.d.d.d", where the ’x’s are the
hexadecimal values of the six high-order 16-bit pieces of the address, and the ’d’s are the
decimal values of the four low-order 8-bit pieces of the address (standard IPv4
representation).

Note: A more extensive description of the standard representations of IPv6 addresses can be found in
RFC 2373.

1116 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

37169

37170

37171

37172

37173

37174

37175

37176

37177

37178

37179

37180

37181

37182

37183

37184

37185

37186

37187

37188

37189

37190

37191

37192

37193

37194

37195

37196

37197

37198

37199

37200

37201

37202

37203

37204

37205

37206

37207

37208

37209

37210

37211

System Interfaces inet_ntop()

RETURN VALUE
The inet_ntop() function shall return a pointer to the buffer containing the text string if the
conversion succeeds, and NULL otherwise, and set errno to indicate the error.

The inet_pton() function shall return 1 if the conversion succeeds, with the address pointed to by
IP6 dst in network byte order. It shall return 0 if the input is not a valid IPv4 dotted-decimal string

or a valid IPv6 address string, or −1 with errno set to [EAFNOSUPPORT] if the af argument is
unknown.

ERRORS
The inet_ntop() and inet_pton() functions shall fail if:

[EAFNOSUPPORT]
The af argument is invalid.

[ENOSPC] The size of the inet_ntop() result buffer is inadequate.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <arpa/inet.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

IPv6 extensions are marked.

The restrict keyword is added to the inet_ntop() and inet_pton() prototypes for alignment with
the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/29 is applied, adding ‘‘the address must
be in network byte order ’’ to the end of the fourth sentence of the first paragraph in the
DESCRIPTION.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1117

37212

37213

37214

37215

37216

37217

37218

37219

37220

37221

37222

37223

37224

37225

37226

37227

37228

37229

37230

37231

37232

37233

37234

37235

37236

37237

37238

37239

37240

37241

initstate() System Interfaces

NAME
initstate, random, setstate, srandom — pseudo-random number functions

SYNOPSIS
XSI #include <stdlib.h>

char *initstate(unsigned seed, char *state, size_t size);
long random(void);
char *setstate(char *state);
void srandom(unsigned seed);

DESCRIPTION
The random() function shall use a non-linear additive feedback random-number generator
employing a default state array size of 31 long integers to return successive pseudo-random
numbers in the range from 0 to 231−1. The period of this random-number generator is
approximately 16 x (231−1). The size of the state array determines the period of the random-
number generator. Increasing the state array size shall increase the period.

With 256 bytes of state information, the period of the random-number generator shall be greater
than 269.

Like rand(), random() shall produce by default a sequence of numbers that can be duplicated by
calling srandom() with 1 as the seed.

The srandom() function shall initialize the current state array using the value of seed.

The initstate() and setstate() functions handle restarting and changing random-number
generators. The initstate() function allows a state array, pointed to by the state argument, to be
initialized for future use. The size argument, which specifies the size in bytes of the state array,
shall be used by initstate() to decide what type of random-number generator to use; the larger
the state array, the more random the numbers. Values for the amount of state information are 8,
32, 64, 128, and 256 bytes. Other values greater than 8 bytes are rounded down to the nearest one
of these values. If initstate() is called with 8≤size<32, then random() shall use a simple linear
congruential random number generator. The seed argument specifies a starting point for the
random-number sequence and provides for restarting at the same point. The initstate() function
shall return a pointer to the previous state information array.

If initstate() has not been called, then random() shall behave as though initstate() had been called
with seed=1 and size=128.

Once a state has been initialized, setstate() allows switching between state arrays. The array
defined by the state argument shall be used for further random-number generation until
initstate() is called or setstate() is called again. The setstate() function shall return a pointer to the
previous state array.

RETURN VALUE
If initstate() is called with size less than 8, it shall return NULL.

The random() function shall return the generated pseudo-random number.

The srandom() function shall not return a value.

Upon successful completion, initstate() and setstate() shall return a pointer to the previous state
array; otherwise, a null pointer shall be returned.

1118 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

37242

37243

37244

37245

37246

37247

37248

37249

37250

37251

37252

37253

37254

37255

37256

37257

37258

37259

37260

37261

37262

37263

37264

37265

37266

37267

37268

37269

37270

37271

37272

37273

37274

37275

37276

37277

37278

37279

37280

37281

37282

System Interfaces initstate()

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
After initialization, a state array can be restarted at a different point in one of two ways:

1. The initstate() function can be used, with the desired seed, state array, and size of the
array.

2. The setstate() function, with the desired state, can be used, followed by srandom() with
the desired seed. The advantage of using both of these functions is that the size of the
state array does not have to be saved once it is initialized.

Although some implementations of random() have written messages to standard error, such
implementations do not conform to POSIX.1-2008.

Issue 5 restored the historical behavior of this function.

Threaded applications should use erand48(), nrand48(), or jrand48() instead of random() when
an independent random number sequence in multiple threads is required.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
drand48(), rand()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

In the DESCRIPTION, the phrase ‘‘values smaller than 8’’ is replaced with ‘‘values greater than
or equal to 8, or less than 32’’, ‘‘size<8’’ is replaced with ‘‘8≤size <32’’, and a new first paragraph
is added to the RETURN VALUE section. A note is added to the APPLICATION USAGE
indicating that these changes restore the historical behavior of the function.

Issue 6
In the DESCRIPTION, duplicate text ‘‘For values greater than or equal to 8 . . .’’ is removed.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/30 is applied, removing rand_r() from the
list of suggested functions in the APPLICATION USAGE section.

Issue 7
The type of the first argument to setstate() is changed from const char * to char *.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1119

37283

37284

37285

37286

37287

37288

37289

37290

37291

37292

37293

37294

37295

37296

37297

37298

37299

37300

37301

37302

37303

37304

37305

37306

37307

37308

37309

37310

37311

37312

37313

37314

37315

37316

37317

37318

37319

insque() System Interfaces

NAME
insque, remque — insert or remove an element in a queue

SYNOPSIS
XSI #include <search.h>

void insque(void *element, void *pred);
void remque(void *element);

DESCRIPTION
The insque() and remque() functions shall manipulate queues built from doubly-linked lists. The
queue can be either circular or linear. An application using insque() or remque() shall ensure it
defines a structure in which the first two members of the structure are pointers to the same type
of structure, and any further members are application-specific. The first member of the structure
is a forward pointer to the next entry in the queue. The second member is a backward pointer to
the previous entry in the queue. If the queue is linear, the queue is terminated with null
pointers. The names of the structure and of the pointer members are not subject to any special
restriction.

The insque() function shall insert the element pointed to by element into a queue immediately
after the element pointed to by pred.

The remque() function shall remove the element pointed to by element from a queue.

If the queue is to be used as a linear list, invoking insque(&element, NULL), where element is the
initial element of the queue, shall initialize the forward and backward pointers of element to null
pointers.

If the queue is to be used as a circular list, the application shall ensure it initializes the forward
pointer and the backward pointer of the initial element of the queue to the element’s own
address.

RETURN VALUE
The insque() and remque() functions do not return a value.

ERRORS
No errors are defined.

EXAMPLES

Creating a Linear Linked List

The following example creates a linear linked list.

#include <search.h>
...
struct myque element1;
struct myque element2;

char *data1 = "DATA1";
char *data2 = "DATA2";
...
element1.data = data1;
element2.data = data2;

insque (&element1, NULL);
insque (&element2, &element1);

1120 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

37320

37321

37322

37323

37324

37325

37326

37327

37328

37329

37330

37331

37332

37333

37334

37335

37336

37337

37338

37339

37340

37341

37342

37343

37344

37345

37346

37347

37348

37349

37350

37351

37352

37353

37354

37355

37356

37357

37358

37359

37360

37361

System Interfaces insque()

Creating a Circular Linked List

The following example creates a circular linked list.

#include <search.h>
...
struct myque element1;
struct myque element2;

char *data1 = "DATA1";
char *data2 = "DATA2";
...
element1.data = data1;
element2.data = data2;

element1.fwd = &element1;
element1.bck = &element1;

insque (&element2, &element1);

Removing an Element

The following example removes the element pointed to by element1.

#include <search.h>
...
struct myque element1;
...
remque (&element1);

APPLICATION USAGE
The historical implementations of these functions described the arguments as being of type
struct qelem * rather than as being of type void * as defined here. In those implementations,
struct qelem was commonly defined in <search.h> as:

struct qelem {
struct qelem *q_forw;
struct qelem *q_back;

};

Applications using these functions, however, were never able to use this structure directly since
it provided no room for the actual data contained in the elements. Most applications defined
structures that contained the two pointers as the initial elements and also provided space for, or
pointers to, the object’s data. Applications that used these functions to update more than one
type of table also had the problem of specifying two or more different structures with the same
name, if they literally used struct qelem as specified.

As described here, the implementations were actually expecting a structure type where the first
two members were forward and backward pointers to structures. With C compilers that didn’t
provide function prototypes, applications used structures as specified in the DESCRIPTION
above and the compiler did what the application expected.

If this method had been carried forward with an ISO C standard compiler and the historical
function prototype, most applications would have to be modified to cast pointers to the
structures actually used to be pointers to struct qelem to avoid compilation warnings. By
specifying void * as the argument type, applications do not need to change (unless they
specifically referenced struct qelem and depended on it being defined in <search.h>).

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1121

37362

37363

37364

37365

37366

37367

37368

37369

37370

37371

37372

37373

37374

37375

37376

37377

37378

37379

37380

37381

37382

37383

37384

37385

37386

37387

37388

37389

37390

37391

37392

37393

37394

37395

37396

37397

37398

37399

37400

37401

37402

37403

37404

37405

insque() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <search.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

1122 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

37406

37407

37408

37409

37410

37411

37412

37413

37414

37415

37416

37417

System Interfaces ioctl()

NAME
ioctl — control a STREAMS device (STREAMS)

SYNOPSIS
OB XSR #include <stropts.h>

int ioctl(int fildes, int request, ... /* arg */);

DESCRIPTION
The ioctl() function shall perform a variety of control functions on STREAMS devices. For non-
STREAMS devices, the functions performed by this call are unspecified. The request argument
and an optional third argument (with varying type) shall be passed to and interpreted by the
appropriate part of the STREAM associated with fildes.

The fildes argument is an open file descriptor that refers to a device.

The request argument selects the control function to be performed and shall depend on the
STREAMS device being addressed.

The arg argument represents additional information that is needed by this specific STREAMS
device to perform the requested function. The type of arg depends upon the particular control
request, but it shall be either an integer or a pointer to a device-specific data structure.

The ioctl() commands applicable to STREAMS, their arguments, and error conditions that apply
to each individual command are described below.

The following ioctl() commands, with error values indicated, are applicable to all STREAMS
files:

I_PUSH Pushes the module whose name is pointed to by arg onto the top of the current
STREAM, just below the STREAM head. It then calls the open() function of the
newly-pushed module.

The ioctl() function with the I_PUSH command shall fail if:

[EINVAL] Invalid module name.

[ENXIO] Open function of new module failed.

[ENXIO] Hangup received on fildes.

I_POP Removes the module just below the STREAM head of the STREAM pointed to
by fildes. The arg argument should be 0 in an I_POP request.

The ioctl() function with the I_POP command shall fail if:

[EINVAL] No module present in the STREAM.

[ENXIO] Hangup received on fildes.

I_LOOK Retrieves the name of the module just below the STREAM head of the
STREAM pointed to by fildes, and places it in a character string pointed to by
arg. The buffer pointed to by arg should be at least FMNAMESZ+1 bytes long,
where FMNAMESZ is defined in <stropts.h>.

The ioctl() function with the I_LOOK command shall fail if:

[EINVAL] No module present in the STREAM.

I_FLUSH Flushes read and/or write queues, depending on the value of arg. Valid arg
values are:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1123

37418

37419

37420

37421

37422

37423

37424

37425

37426

37427

37428

37429

37430

37431

37432

37433

37434

37435

37436

37437

37438

37439

37440

37441

37442

37443

37444

37445

37446

37447

37448

37449

37450

37451

37452

37453

37454

37455

37456

37457

ioctl() System Interfaces

FLUSHR Flush all read queues.

FLUSHW Flush all write queues.

FLUSHRW Flush all read and all write queues.

The ioctl() function with the I_FLUSH command shall fail if:

[EINVAL] Invalid arg value.

[EAGAIN] or [ENOSR]
Unable to allocate buffers for flush message.

[ENXIO] Hangup received on fildes.

I_FLUSHBAND Flushes a particular band of messages. The arg argument points to a bandinfo
structure. The bi_flag member may be one of FLUSHR, FLUSHW, or
FLUSHRW as described above. The bi_pri member determines the priority
band to be flushed.

I_SETSIG Requests that the STREAMS implementation send the SIGPOLL signal to the
calling process when a particular event has occurred on the STREAM
associated with fildes. I_SETSIG supports an asynchronous processing
capability in STREAMS. The value of arg is a bitmask that specifies the events
for which the process should be signaled. It is the bitwise-inclusive OR of any
combination of the following constants:

S_RDNORM A normal (priority band set to 0) message has arrived at the
head of a STREAM head read queue. A signal shall be
generated even if the message is of zero length.

S_RDBAND A message with a non-zero priority band has arrived at the
head of a STREAM head read queue. A signal shall be
generated even if the message is of zero length.

S_INPUT A message, other than a high-priority message, has arrived
at the head of a STREAM head read queue. A signal shall be
generated even if the message is of zero length.

S_HIPRI A high-priority message is present on a STREAM head read
queue. A signal shall be generated even if the message is of
zero length.

S_OUTPUT The write queue for normal data (priority band 0) just below
the STREAM head is no longer full. This notifies the process
that there is room on the queue for sending (or writing)
normal data downstream.

S_WRNORM Equivalent to S_OUTPUT.

S_WRBAND The write queue for a non-zero priority band just below the
STREAM head is no longer full. This notifies the process
that there is room on the queue for sending (or writing)
priority data downstream.

S_MSG A STREAMS signal message that contains the SIGPOLL
signal has reached the front of the STREAM head read
queue.

1124 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

37458

37459

37460

37461

37462

37463

37464

37465

37466

37467

37468

37469

37470

37471

37472

37473

37474

37475

37476

37477

37478

37479

37480

37481

37482

37483

37484

37485

37486

37487

37488

37489

37490

37491

37492

37493

37494

37495

37496

37497

37498

37499

System Interfaces ioctl()

S_ERROR Notification of an error condition has reached the STREAM
head.

S_HANGUP Notification of a hangup has reached the STREAM head.

S_BANDURG When used in conjunction with S_RDBAND, SIGURG is
generated instead of SIGPOLL when a priority message
reaches the front of the STREAM head read queue.

If arg is 0, the calling process shall be unregistered and shall not receive further
SIGPOLL signals for the stream associated with fildes.

Processes that wish to receive SIGPOLL signals shall ensure that they
explicitly register to receive them using I_SETSIG. If several processes register
to receive this signal for the same event on the same STREAM, each process
shall be signaled when the event occurs.

The ioctl() function with the I_SETSIG command shall fail if:

[EINVAL] The value of arg is invalid.

[EINVAL] The value of arg is 0 and the calling process is not registered
to receive the SIGPOLL signal.

[EAGAIN] There were insufficient resources to store the signal request.

I_GETSIG Returns the events for which the calling process is currently registered to be
sent a SIGPOLL signal. The events are returned as a bitmask in an int pointed
to by arg, where the events are those specified in the description of I_SETSIG
above.

The ioctl() function with the I_GETSIG command shall fail if:

[EINVAL] Process is not registered to receive the SIGPOLL signal.

I_FIND Compares the names of all modules currently present in the STREAM to the
name pointed to by arg, and returns 1 if the named module is present in the
STREAM, or returns 0 if the named module is not present.

The ioctl() function with the I_FIND command shall fail if:

[EINVAL] arg does not contain a valid module name.

I_PEEK Retrieves the information in the first message on the STREAM head read
queue without taking the message off the queue. It is analogous to getmsg()
except that this command does not remove the message from the queue. The
arg argument points to a strpeek structure.

The application shall ensure that the maxlen member in the ctlbuf and databuf
strbuf structures is set to the number of bytes of control information and/or
data information, respectively, to retrieve. The flags member may be marked
RS_HIPRI or 0, as described by getmsg(). If the process sets flags to RS_HIPRI,
for example, I_PEEK shall only look for a high-priority message on the
STREAM head read queue.

I_PEEK returns 1 if a message was retrieved, and returns 0 if no message was
found on the STREAM head read queue, or if the RS_HIPRI flag was set in
flags and a high-priority message was not present on the STREAM head read
queue. It does not wait for a message to arrive. On return, ctlbuf specifies
information in the control buffer, databuf specifies information in the data

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1125

37500

37501

37502

37503

37504

37505

37506

37507

37508

37509

37510

37511

37512

37513

37514

37515

37516

37517

37518

37519

37520

37521

37522

37523

37524

37525

37526

37527

37528

37529

37530

37531

37532

37533

37534

37535

37536

37537

37538

37539

37540

37541

37542

ioctl() System Interfaces

buffer, and flags contains the value RS_HIPRI or 0.

I_SRDOPT Sets the read mode using the value of the argument arg. Read modes are
described in read(). Valid arg flags are:

RNORM Byte-stream mode, the default.

RMSGD Message-discard mode.

RMSGN Message-nondiscard mode.

The bitwise-inclusive OR of RMSGD and RMSGN shall return [EINVAL]. The
bitwise-inclusive OR of RNORM and either RMSGD or RMSGN shall result in
the other flag overriding RNORM which is the default.

In addition, treatment of control messages by the STREAM head may be
changed by setting any of the following flags in arg:

RPROTNORM Fail read() with [EBADMSG] if a message containing a
control part is at the front of the STREAM head read queue.

RPROTDAT Deliver the control part of a message as data when a process
issues a read().

RPROTDIS Discard the control part of a message, delivering any data
portion, when a process issues a read().

The ioctl() function with the I_SRDOPT command shall fail if:

[EINVAL] The arg argument is not valid.

I_GRDOPT Returns the current read mode setting, as described above, in an int pointed to
by the argument arg. Read modes are described in read().

I_NREAD Counts the number of data bytes in the data part of the first message on the
STREAM head read queue and places this value in the int pointed to by arg.
The return value for the command shall be the number of messages on the
STREAM head read queue. For example, if 0 is returned in arg, but the ioctl()
return value is greater than 0, this indicates that a zero-length message is next
on the queue.

I_FDINSERT Creates a message from specified buffer(s), adds information about another
STREAM, and sends the message downstream. The message contains a
control part and an optional data part. The data and control parts to be sent
are distinguished by placement in separate buffers, as described below. The
arg argument points to a strfdinsert structure.

The application shall ensure that the len member in the ctlbuf strbuf structure
is set to the size of a t_uscalar_t plus the number of bytes of control
information to be sent with the message. The fildes member specifies the file
descriptor of the other STREAM, and the offset member, which must be
suitably aligned for use as a t_uscalar_t, specifies the offset from the start of
the control buffer where I_FDINSERT shall store a t_uscalar_t whose
interpretation is specific to the STREAM end. The application shall ensure that
the len member in the databuf strbuf structure is set to the number of bytes of
data information to be sent with the message, or to 0 if no data part is to be
sent.

The flags member specifies the type of message to be created. A normal
message is created if flags is set to 0, and a high-priority message is created if

1126 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

37543

37544

37545

37546

37547

37548

37549

37550

37551

37552

37553

37554

37555

37556

37557

37558

37559

37560

37561

37562

37563

37564

37565

37566

37567

37568

37569

37570

37571

37572

37573

37574

37575

37576

37577

37578

37579

37580

37581

37582

37583

37584

37585

37586

System Interfaces ioctl()

flags is set to RS_HIPRI. For non-priority messages, I_FDINSERT shall block if
the STREAM write queue is full due to internal flow control conditions. For
priority messages, I_FDINSERT does not block on this condition. For non-
priority messages, I_FDINSERT does not block when the write queue is full
and O_NONBLOCK is set. Instead, it fails and sets errno to [EAGAIN].

I_FDINSERT also blocks, unless prevented by lack of internal resources,
waiting for the availability of message blocks in the STREAM, regardless of
priority or whether O_NONBLOCK has been specified. No partial message is
sent.

The ioctl() function with the I_FDINSERT command shall fail if:

[EAGAIN] A non-priority message is specified, the O_NONBLOCK
flag is set, and the STREAM write queue is full due to
internal flow control conditions.

[EAGAIN] or [ENOSR]
Buffers cannot be allocated for the message that is to be
created.

[EINVAL] One of the following:

— The fildes member of the strfdinsert structure is not a
valid, open STREAM file descriptor.

— The size of a t_uscalar_t plus offset is greater than the
len member for the buffer specified through ctlbuf.

— The offset member does not specify a properly-aligned
location in the data buffer.

— An undefined value is stored in flags.

[ENXIO] Hangup received on the STREAM identified by either the
fildes argument or the fildes member of the strfdinsert
structure.

[ERANGE] The len member for the buffer specified through databuf
does not fall within the range specified by the maximum
and minimum packet sizes of the topmost STREAM
module; or the len member for the buffer specified through
databuf is larger than the maximum configured size of the
data part of a message; or the len member for the buffer
specified through ctlbuf is larger than the maximum
configured size of the control part of a message.

I_STR Constructs an internal STREAMS ioctl() message from the data pointed to by
arg, and sends that message downstream.

This mechanism is provided to send ioctl() requests to downstream modules
and drivers. It allows information to be sent with ioctl(), and returns to the
process any information sent upstream by the downstream recipient. I_STR
shall block until the system responds with either a positive or negative
acknowledgement message, or until the request times out after some period of
time. If the request times out, it shall fail with errno set to [ETIME].

At most, one I_STR can be active on a STREAM. Further I_STR calls shall
block until the active I_STR completes at the STREAM head. The default

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1127

37587

37588

37589

37590

37591

37592

37593

37594

37595

37596

37597

37598

37599

37600

37601

37602

37603

37604

37605

37606

37607

37608

37609

37610

37611

37612

37613

37614

37615

37616

37617

37618

37619

37620

37621

37622

37623

37624

37625

37626

37627

37628

37629

37630

37631

ioctl() System Interfaces

timeout interval for these requests is 15 seconds. The O_NONBLOCK flag has
no effect on this call.

To send requests downstream, the application shall ensure that arg points to a
strioctl structure.

The ic_cmd member is the internal ioctl() command intended for a
downstream module or driver and ic_timout is the number of seconds
(−1=infinite, 0=use implementation-defined timeout interval, >0=as specified)
an I_STR request shall wait for acknowledgement before timing out. ic_len is
the number of bytes in the data argument, and ic_dp is a pointer to the data
argument. The ic_len member has two uses: on input, it contains the length of
the data argument passed in, and on return from the command, it contains the
number of bytes being returned to the process (the buffer pointed to by ic_dp
should be large enough to contain the maximum amount of data that any
module or the driver in the STREAM can return).

The STREAM head shall convert the information pointed to by the strioctl
structure to an internal ioctl() command message and send it downstream.

The ioctl() function with the I_STR command shall fail if:

[EAGAIN] or [ENOSR]
Unable to allocate buffers for the ioctl() message.

[EINVAL] The ic_len member is less than 0 or larger than the
maximum configured size of the data part of a message, or
ic_timout is less than −1.

[ENXIO] Hangup received on fildes.

[ETIME] A downstream ioctl() timed out before acknowledgement
was received.

An I_STR can also fail while waiting for an acknowledgement if a message
indicating an error or a hangup is received at the STREAM head. In addition,
an error code can be returned in the positive or negative acknowledgement
message, in the event the ioctl() command sent downstream fails. For these
cases, I_STR shall fail with errno set to the value in the message.

I_SWROPT Sets the write mode using the value of the argument arg. Valid bit settings for
arg are:

SNDZERO Send a zero-length message downstream when a write() of 0
bytes occurs. To not send a zero-length message when a
write() of 0 bytes occurs, the application shall ensure that
this bit is not set in arg (for example, arg would be set to 0).

The ioctl() function with the I_SWROPT command shall fail if:

[EINVAL] arg is not the above value.

I_GWROPT Returns the current write mode setting, as described above, in the int that is
pointed to by the argument arg.

I_SENDFD Creates a new reference to the open file description associated with the file
descriptor arg, and writes a message on the STREAMS-based pipe fildes
containing this reference, together with the user ID and group ID of the calling
process.

1128 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

37632

37633

37634

37635

37636

37637

37638

37639

37640

37641

37642

37643

37644

37645

37646

37647

37648

37649

37650

37651

37652

37653

37654

37655

37656

37657

37658

37659

37660

37661

37662

37663

37664

37665

37666

37667

37668

37669

37670

37671

37672

37673

37674

37675

System Interfaces ioctl()

The ioctl() function with the I_SENDFD command shall fail if:

[EAGAIN] The sending STREAM is unable to allocate a message block
to contain the file pointer; or the read queue of the receiving
STREAM head is full and cannot accept the message sent by
I_SENDFD.

[EBADF] The arg argument is not a valid, open file descriptor.

[EINVAL] The fildes argument is not connected to a STREAM pipe.

[ENXIO] Hangup received on fildes.

The ioctl() function with the I_SENDFD command may fail if:

[EINVAL] The arg argument is equal to the fildes argument.

I_RECVFD Retrieves the reference to an open file description from a message written to a
STREAMS-based pipe using the I_SENDFD command, and allocates a new file
descriptor in the calling process that refers to this open file description. The
arg argument is a pointer to a strrecvfd data structure as defined in
<stropts.h>.

The fd member is a file descriptor. The uid and gid members are the effective
user ID and effective group ID, respectively, of the sending process.

If O_NONBLOCK is not set, I_RECVFD shall block until a message is present
at the STREAM head. If O_NONBLOCK is set, I_RECVFD shall fail with errno
set to [EAGAIN] if no message is present at the STREAM head.

If the message at the STREAM head is a message sent by an I_SENDFD, a new
file descriptor shall be allocated for the open file descriptor referenced in the
message. The new file descriptor is placed in the fd member of the strrecvfd
structure pointed to by arg.

The ioctl() function with the I_RECVFD command shall fail if:

[EAGAIN] A message is not present at the STREAM head read queue
and the O_NONBLOCK flag is set.

[EBADMSG] The message at the STREAM head read queue is not a
message containing a passed file descriptor.

[EMFILE] All file descriptors available to the process are currently
open.

[ENXIO] Hangup received on fildes.

I_LIST Allows the process to list all the module names on the STREAM, up to and
including the topmost driver name. If arg is a null pointer, the return value
shall be the number of modules, including the driver, that are on the STREAM
pointed to by fildes. This lets the process allocate enough space for the module
names. Otherwise, it should point to a str_list structure.

The sl_nmods member indicates the number of entries the process has
allocated in the array. Upon return, the sl_modlist member of the str_list
structure shall contain the list of module names, and the number of entries
that have been filled into the sl_modlist array is found in the sl_nmods member
(the number includes the number of modules including the driver). The return
value from ioctl() shall be 0. The entries are filled in starting at the top of the

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1129

37676

37677

37678

37679

37680

37681

37682

37683

37684

37685

37686

37687

37688

37689

37690

37691

37692

37693

37694

37695

37696

37697

37698

37699

37700

37701

37702

37703

37704

37705

37706

37707

37708

37709

37710

37711

37712

37713

37714

37715

37716

37717

37718

ioctl() System Interfaces

STREAM and continuing downstream until either the end of the STREAM is
reached, or the number of requested modules (sl_nmods) is satisfied.

The ioctl() function with the I_LIST command shall fail if:

[EINVAL] The sl_nmods member is less than 1.

[EAGAIN] or [ENOSR]
Unable to allocate buffers.

I_ATMARK Allows the process to see if the message at the head of the STREAM head read
queue is marked by some module downstream. The arg argument determines
how the checking is done when there may be multiple marked messages on
the STREAM head read queue. It may take on the following values:

ANYMARK Check if the message is marked.

LASTMARK Check if the message is the last one marked on the queue.

The bitwise-inclusive OR of the flags ANYMARK and LASTMARK is
permitted.

The return value shall be 1 if the mark condition is satisfied; otherwise, the
value shall be 0.

The ioctl() function with the I_ATMARK command shall fail if:

[EINVAL] Invalid arg value.

I_CKBAND Checks if the message of a given priority band exists on the STREAM head
read queue. This shall return 1 if a message of the given priority exists, 0 if no
such message exists, or −1 on error. arg should be of type int.

The ioctl() function with the I_CKBAND command shall fail if:

[EINVAL] Invalid arg value.

I_GETBAND Returns the priority band of the first message on the STREAM head read
queue in the integer referenced by arg.

The ioctl() function with the I_GETBAND command shall fail if:

[ENODATA] No message on the STREAM head read queue.

I_CANPUT Checks if a certain band is writable. arg is set to the priority band in question.
The return value shall be 0 if the band is flow-controlled, 1 if the band is
writable, or −1 on error.

The ioctl() function with the I_CANPUT command shall fail if:

[EINVAL] Invalid arg value.

I_SETCLTIME This request allows the process to set the time the STREAM head shall delay
when a STREAM is closing and there is data on the write queues. Before
closing each module or driver, if there is data on its write queue, the STREAM
head shall delay for the specified amount of time to allow the data to drain. If,
after the delay, data is still present, it shall be flushed. The arg argument is a
pointer to an integer specifying the number of milliseconds to delay, rounded
up to the nearest valid value. If I_SETCLTIME is not performed on a STREAM,
an implementation-defined default timeout interval is used.

1130 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

37719

37720

37721

37722

37723

37724

37725

37726

37727

37728

37729

37730

37731

37732

37733

37734

37735

37736

37737

37738

37739

37740

37741

37742

37743

37744

37745

37746

37747

37748

37749

37750

37751

37752

37753

37754

37755

37756

37757

37758

System Interfaces ioctl()

The ioctl() function with the I_SETCLTIME command shall fail if:

[EINVAL] Invalid arg value.

I_GETCLTIME Returns the close time delay in the integer pointed to by arg.

Multiplexed STREAMS Configurations

The following commands are used for connecting and disconnecting multiplexed STREAMS
configurations. These commands use an implementation-defined default timeout interval.

I_LINK Connects two STREAMs, where fildes is the file descriptor of the STREAM
connected to the multiplexing driver, and arg is the file descriptor of the
STREAM connected to another driver. The STREAM designated by arg is
connected below the multiplexing driver. I_LINK requires the multiplexing
driver to send an acknowledgement message to the STREAM head regarding
the connection. This call shall return a multiplexer ID number (an identifier
used to disconnect the multiplexer; see I_UNLINK) on success, and −1 on
failure.

The ioctl() function with the I_LINK command shall fail if:

[ENXIO] Hangup received on fildes.

[ETIME] Timeout before acknowledgement message was received at
STREAM head.

[EAGAIN] or [ENOSR]
Unable to allocate STREAMS storage to perform the
I_LINK.

[EBADF] The arg argument is not a valid, open file descriptor.

[EINVAL] The fildes argument does not support multiplexing; or arg is
not a STREAM or is already connected downstream from a
multiplexer; or the specified I_LINK operation would
connect the STREAM head in more than one place in the
multiplexed STREAM.

An I_LINK can also fail while waiting for the multiplexing driver to
acknowledge the request, if a message indicating an error or a hangup is
received at the STREAM head of fildes. In addition, an error code can be
returned in the positive or negative acknowledgement message. For these
cases, I_LINK fails with errno set to the value in the message.

I_UNLINK Disconnects the two STREAMs specified by fildes and arg. fildes is the file
descriptor of the STREAM connected to the multiplexing driver. The arg
argument is the multiplexer ID number that was returned by the I_LINK
ioctl() command when a STREAM was connected downstream from the
multiplexing driver. If arg is MUXID_ALL, then all STREAMs that were
connected to fildes shall be disconnected. As in I_LINK, this command requires
acknowledgement.

The ioctl() function with the I_UNLINK command shall fail if:

[ENXIO] Hangup received on fildes.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1131

37759

37760

37761

37762

37763

37764

37765

37766

37767

37768

37769

37770

37771

37772

37773

37774

37775

37776

37777

37778

37779

37780

37781

37782

37783

37784

37785

37786

37787

37788

37789

37790

37791

37792

37793

37794

37795

37796

37797

37798

37799

ioctl() System Interfaces

[ETIME] Timeout before acknowledgement message was received at
STREAM head.

[EAGAIN] or [ENOSR]
Unable to allocate buffers for the acknowledgement
message.

[EINVAL] Invalid multiplexer ID number.

An I_UNLINK can also fail while waiting for the multiplexing driver to
acknowledge the request if a message indicating an error or a hangup is
received at the STREAM head of fildes. In addition, an error code can be
returned in the positive or negative acknowledgement message. For these
cases, I_UNLINK shall fail with errno set to the value in the message.

I_PLINK Creates a persistent connection between two STREAMs, where fildes is the file
descriptor of the STREAM connected to the multiplexing driver, and arg is the
file descriptor of the STREAM connected to another driver. This call shall
create a persistent connection which can exist even if the file descriptor fildes
associated with the upper STREAM to the multiplexing driver is closed. The
STREAM designated by arg gets connected via a persistent connection below
the multiplexing driver. I_PLINK requires the multiplexing driver to send an
acknowledgement message to the STREAM head. This call shall return a
multiplexer ID number (an identifier that may be used to disconnect the
multiplexer; see I_PUNLINK) on success, and −1 on failure.

The ioctl() function with the I_PLINK command shall fail if:

[ENXIO] Hangup received on fildes.

[ETIME] Timeout before acknowledgement message was received at
STREAM head.

[EAGAIN] or [ENOSR]
Unable to allocate STREAMS storage to perform the
I_PLINK.

[EBADF] The arg argument is not a valid, open file descriptor.

[EINVAL] The fildes argument does not support multiplexing; or arg is
not a STREAM or is already connected downstream from a
multiplexer; or the specified I_PLINK operation would
connect the STREAM head in more than one place in the
multiplexed STREAM.

An I_PLINK can also fail while waiting for the multiplexing driver to
acknowledge the request, if a message indicating an error or a hangup is
received at the STREAM head of fildes. In addition, an error code can be
returned in the positive or negative acknowledgement message. For these
cases, I_PLINK shall fail with errno set to the value in the message.

I_PUNLINK Disconnects the two STREAMs specified by fildes and arg from a persistent
connection. The fildes argument is the file descriptor of the STREAM
connected to the multiplexing driver. The arg argument is the multiplexer ID
number that was returned by the I_PLINK ioctl() command when a STREAM
was connected downstream from the multiplexing driver. If arg is
MUXID_ALL, then all STREAMs which are persistent connections to fildes
shall be disconnected. As in I_PLINK, this command requires the multiplexing

1132 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

37800

37801

37802

37803

37804

37805

37806

37807

37808

37809

37810

37811

37812

37813

37814

37815

37816

37817

37818

37819

37820

37821

37822

37823

37824

37825

37826

37827

37828

37829

37830

37831

37832

37833

37834

37835

37836

37837

37838

37839

37840

37841

37842

37843

37844

37845

System Interfaces ioctl()

driver to acknowledge the request.

The ioctl() function with the I_PUNLINK command shall fail if:

[ENXIO] Hangup received on fildes.

[ETIME] Timeout before acknowledgement message was received at
STREAM head.

[EAGAIN] or [ENOSR]
Unable to allocate buffers for the acknowledgement
message.

[EINVAL] Invalid multiplexer ID number.

An I_PUNLINK can also fail while waiting for the multiplexing driver to
acknowledge the request if a message indicating an error or a hangup is
received at the STREAM head of fildes. In addition, an error code can be
returned in the positive or negative acknowledgement message. For these
cases, I_PUNLINK shall fail with errno set to the value in the message.

RETURN VALUE
Upon successful completion, ioctl() shall return a value other than −1 that depends upon the
STREAMS device control function. Otherwise, it shall return −1 and set errno to indicate the
error.

ERRORS
Under the following general conditions, ioctl() shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[EINTR] A signal was caught during the ioctl() operation.

[EINVAL] The STREAM or multiplexer referenced by fildes is linked (directly or
indirectly) downstream from a multiplexer.

If an underlying device driver detects an error, then ioctl() shall fail if:

[EINVAL] The request or arg argument is not valid for this device.

[EIO] Some physical I/O error has occurred.

[ENOTTY] The file associated with the fildes argument is not a STREAMS device that
accepts control functions.

[ENXIO] The request and arg arguments are valid for this device driver, but the service
requested cannot be performed on this particular sub-device.

[ENODEV] The fildes argument refers to a valid STREAMS device, but the corresponding
device driver does not support the ioctl() function.

If a STREAM is connected downstream from a multiplexer, any ioctl() command except
I_UNLINK and I_PUNLINK shall set errno to [EINVAL].

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1133

37846

37847

37848

37849

37850

37851

37852

37853

37854

37855

37856

37857

37858

37859

37860

37861

37862

37863

37864

37865

37866

37867

37868

37869

37870

37871

37872

37873

37874

37875

37876

37877

37878

37879

37880

ioctl() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The implementation-defined timeout interval for STREAMS has historically been 15 seconds.

RATIONALE
None.

FUTURE DIRECTIONS
The ioctl() function may be removed in a future version.

SEE ALSO
Section 2.6 (on page 494), close(), fcntl(), getmsg(), open(), pipe(), poll(), putmsg(), read(),
sigaction(), write()

XBD <stropts.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The Open Group Corrigendum U028/4 is applied, correcting text in the I_FDINSERT [EINVAL]
case to refer to ctlbuf .

This function is marked as part of the XSI STREAMS Option Group.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #155 is applied, adding a ‘‘may fail’’ [EINVAL] error
condition for the I_SENDFD command.

SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error condition.

The ioctl() function is marked obsolescent.

1134 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

37881

37882

37883

37884

37885

37886

37887

37888

37889

37890

37891

37892

37893

37894

37895

37896

37897

37898

37899

37900

37901

37902

37903

37904

37905

37906

System Interfaces isalnum()

NAME
isalnum, isalnum_l — test for an alphanumeric character

SYNOPSIS
#include <ctype.h>

int isalnum(int c);
CX int isalnum_l(int c, locale_t locale);

DESCRIPTION
CX For isalnum(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The isalnum() and isalnum_l() functions shall test whether c is a character of class alpha or
CX digit in the current locale of the process, or in the locale represented by locale, respectively; see

XBD Chapter 7 (on page 135).

The c argument is an int, the value of which the application shall ensure is representable as an
unsigned char or equal to the value of the macro EOF. If the argument has any other value, the
behavior is undefined.

RETURN VALUE
CX The isalnum() and isalnum_l() functions shall return non-zero if c is an alphanumeric character;

otherwise, they shall return 0.

ERRORS
The isalnum_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <ctype.h>, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1135

37907

37908

37909

37910

37911

37912

37913

37914

37915

37916

37917

37918

37919

37920

37921

37922

37923

37924

37925

37926

37927

37928

37929

37930

37931

37932

37933

37934

37935

37936

37937

37938

37939

37940

37941

37942

37943

37944

37945

37946

isalnum() System Interfaces

Issue 7
The isalnum_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

1136 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

37947

37948

37949

System Interfaces isalpha()

NAME
isalpha, isalpha_l — test for an alphabetic character

SYNOPSIS
#include <ctype.h>

int isalpha(int c);
CX int isalpha_l(int c, locale_t locale);

DESCRIPTION
CX For isalpha(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The isalpha() and isalpha_l() functions shall test whether c is a character of class alpha in the
CX current locale of the process, or in the locale represented by locale, respectively; see XBD

Chapter 7 (on page 135).

The c argument is an int, the value of which the application shall ensure is representable as an
unsigned char or equal to the value of the macro EOF. If the argument has any other value, the
behavior is undefined.

RETURN VALUE
CX The isalpha() and isalpha_l() functions shall return non-zero if c is an alphabetic character;

otherwise, they shall return 0.

ERRORS
The isalpha_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <ctype.h>, <locale.h>, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1137

37950

37951

37952

37953

37954

37955

37956

37957

37958

37959

37960

37961

37962

37963

37964

37965

37966

37967

37968

37969

37970

37971

37972

37973

37974

37975

37976

37977

37978

37979

37980

37981

37982

37983

37984

37985

37986

37987

37988

37989

isalpha() System Interfaces

Issue 7
The isalpha_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

1138 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

37990

37991

37992

System Interfaces isascii()

NAME
isascii — test for a 7-bit US-ASCII character

SYNOPSIS
OB XSI #include <ctype.h>

int isascii(int c);

DESCRIPTION
The isascii() function shall test whether c is a 7-bit US-ASCII character code.

The isascii() function is defined on all integer values.

RETURN VALUE
The isascii() function shall return non-zero if c is a 7-bit US-ASCII character code between 0 and
octal 0177 inclusive; otherwise, it shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The isascii() function cannot be used portably in a localized application.

RATIONALE
None.

FUTURE DIRECTIONS
The isascii() function may be removed in a future version.

SEE ALSO
XBD <ctype.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
The isascii() function is marked obsolescent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1139

37993

37994

37995

37996

37997

37998

37999

38000

38001

38002

38003

38004

38005

38006

38007

38008

38009

38010

38011

38012

38013

38014

38015

38016

38017

38018

38019

isastream() System Interfaces

NAME
isastream — test a file descriptor (STREAMS)

SYNOPSIS
OB XSR #include <stropts.h>

int isastream(int fildes);

DESCRIPTION
The isastream() function shall test whether fildes, an open file descriptor, is associated with a
STREAMS-based file.

RETURN VALUE
Upon successful completion, isastream() shall return 1 if fildes refers to a STREAMS-based file
and 0 if not. Otherwise, isastream() shall return −1 and set errno to indicate the error.

ERRORS
The isastream() function shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The isastream() function may be removed in a future version.

SEE ALSO
XBD <stropts.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The isastream() function is marked obsolescent.

1140 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38020

38021

38022

38023

38024

38025

38026

38027

38028

38029

38030

38031

38032

38033

38034

38035

38036

38037

38038

38039

38040

38041

38042

38043

38044

38045

38046

38047

38048

38049

System Interfaces isatty()

NAME
isatty — test for a terminal device

SYNOPSIS
#include <unistd.h>

int isatty(int fildes);

DESCRIPTION
The isatty() function shall test whether fildes, an open file descriptor, is associated with a
terminal device.

RETURN VALUE
The isatty() function shall return 1 if fildes is associated with a terminal; otherwise, it shall return
0 and may set errno to indicate the error.

ERRORS
The isatty() function may fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[ENOTTY] The file associated with the fildes argument is not a terminal.

EXAMPLES
None.

APPLICATION USAGE
The isatty() function does not necessarily indicate that a human being is available for interaction
via fildes. It is quite possible that non-terminal devices are connected to the communications
line.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The optional setting of errno to indicate an error is added.

• The [EBADF] and [ENOTTY] optional error conditions are added.

Issue 7
SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error condition.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1141

38050

38051

38052

38053

38054

38055

38056

38057

38058

38059

38060

38061

38062

38063

38064

38065

38066

38067

38068

38069

38070

38071

38072

38073

38074

38075

38076

38077

38078

38079

38080

38081

38082

38083

38084

38085

isblank() System Interfaces

NAME
isblank, isblank_l — test for a blank character

SYNOPSIS
#include <ctype.h>

int isblank(int c);
CX int isblank_l(int c, locale_t locale);

DESCRIPTION
CX For isblank(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The isblank() and isblank_l() functions shall test whether c is a character of class blank in the
CX current locale of the process, or in the locale represented by locale, respectively; see XBD

Chapter 7 (on page 135).

The c argument is a type int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The isblank() and isblank_l() functions shall return non-zero if c is a <blank>; otherwise, they

shall return 0.

ERRORS
The isblank_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
The isblank_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

1142 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38086

38087

38088

38089

38090

38091

38092

38093

38094

38095

38096

38097

38098

38099

38100

38101

38102

38103

38104

38105

38106

38107

38108

38109

38110

38111

38112

38113

38114

38115

38116

38117

38118

38119

38120

38121

38122

38123

38124

38125

38126

System Interfaces iscntrl()

NAME
iscntrl, iscntrl_l — test for a control character

SYNOPSIS
#include <ctype.h>

int iscntrl(int c);
CX int iscntrl_l(int c, locale_t locale);

DESCRIPTION
CX For iscntrl(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The iscntrl() and iscntrl_l() functions shall test whether c is a character of class cntrl in the
CX current locale of the process, or in the locale represented by locale, respectively; see XBD

Chapter 7 (on page 135).

The c argument is a type int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The iscntrl() and iscntrl_l() functions shall return non-zero if c is a control character; otherwise,

they shall return 0.

ERRORS
The iscntrl_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper(), isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1143

38127

38128

38129

38130

38131

38132

38133

38134

38135

38136

38137

38138

38139

38140

38141

38142

38143

38144

38145

38146

38147

38148

38149

38150

38151

38152

38153

38154

38155

38156

38157

38158

38159

38160

38161

38162

38163

38164

38165

38166

iscntrl() System Interfaces

Issue 7
The iscntrl_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

1144 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38167

38168

38169

System Interfaces isdigit()

NAME
isdigit, isdigit_l — test for a decimal digit

SYNOPSIS
#include <ctype.h>

int isdigit(int c);
CX int isdigit_l(int c, locale_t locale);

DESCRIPTION
CX For isdigit(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The isdigit() and isdigit_l() functions shall test whether c is a character of class digit in the
CX current locale of the process, or in the locale represented by locale, respectively; see XBD

Chapter 7 (on page 135).

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The isdigit() and isdigit_l() functions shall return non-zero if c is a decimal digit; otherwise,

they shall return 0.

ERRORS
The isdigit_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper(), isxdigit()

XBD Chapter 7 (on page 135), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1145

38170

38171

38172

38173

38174

38175

38176

38177

38178

38179

38180

38181

38182

38183

38184

38185

38186

38187

38188

38189

38190

38191

38192

38193

38194

38195

38196

38197

38198

38199

38200

38201

38202

38203

38204

38205

38206

38207

38208

38209

isdigit() System Interfaces

Issue 7
The isdigit_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

1146 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38210

38211

38212

System Interfaces isfinite()

NAME
isfinite — test for finite value

SYNOPSIS
#include <math.h>

int isfinite(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The isfinite() macro shall determine whether its argument has a finite value (zero, subnormal, or
normal, and not infinite or NaN). First, an argument represented in a format wider than its
semantic type is converted to its semantic type. Then determination is based on the type of the
argument.

RETURN VALUE
The isfinite() macro shall return a non-zero value if and only if its argument has a finite value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isinf(), isnan(), isnormal(), signbit()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1147

38213

38214

38215

38216

38217

38218

38219

38220

38221

38222

38223

38224

38225

38226

38227

38228

38229

38230

38231

38232

38233

38234

38235

38236

38237

38238

38239

38240

38241

38242

isgraph() System Interfaces

NAME
isgraph, isgraph_l — test for a visible character

SYNOPSIS
#include <ctype.h>

int isgraph(int c);
CX int isgraph_l(int c, locale_t locale);

DESCRIPTION
CX For isgraph(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The isgraph() and isgraph_l() functions shall test whether c is a character of class graph in the
CX current locale of the process, or in the locale represented by locale, respectively; see XBD

Chapter 7 (on page 135).

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The isgraph() and isgraph_l() functions shall return non-zero if c is a character with a visible

representation; otherwise, they shall return 0.

ERRORS
The isgraph_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

1148 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38243

38244

38245

38246

38247

38248

38249

38250

38251

38252

38253

38254

38255

38256

38257

38258

38259

38260

38261

38262

38263

38264

38265

38266

38267

38268

38269

38270

38271

38272

38273

38274

38275

38276

38277

38278

38279

38280

38281

38282

System Interfaces isgraph()

Issue 7
The isgraph_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1149

38283

38284

38285

isgreater() System Interfaces

NAME
isgreater — test if x greater than y

SYNOPSIS
#include <math.h>

int isgreater(real-floating x, real-floating y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The isgreater() macro shall determine whether its first argument is greater than its second
argument. The value of isgreater(x, y) shall be equal to (x) > (y); however, unlike (x) > (y),
isgreater(x, y) shall not raise the invalid floating-point exception when x and y are unordered.

RETURN VALUE
Upon successful completion, the isgreater() macro shall return the value of (x) > (y).

If x or y is NaN, 0 shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between
numeric values. For any ordered pair of numeric values, exactly one of the relationships (less,
greater, and equal) is true. Relational operators may raise the invalid floating-point exception
when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the
unordered relationship is true. This macro is a quiet (non-floating-point exception raising)
version of a relational operator. It facilitates writing efficient code that accounts for NaNs
without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating
indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreaterequal(), isless(), islessequal(), islessgreater(), isunordered()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

1150 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38286

38287

38288

38289

38290

38291

38292

38293

38294

38295

38296

38297

38298

38299

38300

38301

38302

38303

38304

38305

38306

38307

38308

38309

38310

38311

38312

38313

38314

38315

38316

38317

38318

38319

38320

38321

38322

System Interfaces isgreaterequal()

NAME
isgreaterequal — test if x is greater than or equal to y

SYNOPSIS
#include <math.h>

int isgreaterequal(real-floating x, real-floating y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The isgreaterequal() macro shall determine whether its first argument is greater than or equal to
its second argument. The value of isgreaterequal(x, y) shall be equal to (x) ≥ (y); however, unlike
(x) ≥ (y), isgreaterequal(x, y) shall not raise the invalid floating-point exception when x and y are
unordered.

RETURN VALUE
Upon successful completion, the isgreaterequal() macro shall return the value of (x) ≥ (y).

If x or y is NaN, 0 shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between
numeric values. For any ordered pair of numeric values, exactly one of the relationships (less,
greater, and equal) is true. Relational operators may raise the invalid floating-point exception
when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the
unordered relationship is true. This macro is a quiet (non-floating-point exception raising)
version of a relational operator. It facilitates writing efficient code that accounts for NaNs
without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating
indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreater(), isless(), islessequal(), islessgreater(), isunordered()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1151

38323

38324

38325

38326

38327

38328

38329

38330

38331

38332

38333

38334

38335

38336

38337

38338

38339

38340

38341

38342

38343

38344

38345

38346

38347

38348

38349

38350

38351

38352

38353

38354

38355

38356

38357

38358

38359

38360

isinf() System Interfaces

NAME
isinf — test for infinity

SYNOPSIS
#include <math.h>

int isinf(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The isinf() macro shall determine whether its argument value is an infinity (positive or
negative). First, an argument represented in a format wider than its semantic type is converted
to its semantic type. Then determination is based on the type of the argument.

RETURN VALUE
The isinf() macro shall return a non-zero value if and only if its argument has an infinite value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isfinite(), isnan(), isnormal(), signbit()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

1152 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38361

38362

38363

38364

38365

38366

38367

38368

38369

38370

38371

38372

38373

38374

38375

38376

38377

38378

38379

38380

38381

38382

38383

38384

38385

38386

38387

38388

38389

System Interfaces isless()

NAME
isless — test if x is less than y

SYNOPSIS
#include <math.h>

int isless(real-floating x, real-floating y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The isless() macro shall determine whether its first argument is less than its second argument.
The value of isless(x, y) shall be equal to (x) < (y); however, unlike (x) < (y), isless(x, y) shall not
raise the invalid floating-point exception when x and y are unordered.

RETURN VALUE
Upon successful completion, the isless() macro shall return the value of (x) < (y).

If x or y is NaN, 0 shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between
numeric values. For any ordered pair of numeric values, exactly one of the relationships (less,
greater, and equal) is true. Relational operators may raise the invalid floating-point exception
when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the
unordered relationship is true. This macro is a quiet (non-floating-point exception raising)
version of a relational operator. It facilitates writing efficient code that accounts for NaNs
without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating
indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreater(), isgreaterequal(), islessequal(), islessgreater(), isunordered()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1153

38390

38391

38392

38393

38394

38395

38396

38397

38398

38399

38400

38401

38402

38403

38404

38405

38406

38407

38408

38409

38410

38411

38412

38413

38414

38415

38416

38417

38418

38419

38420

38421

38422

38423

38424

38425

38426

islessequal() System Interfaces

NAME
islessequal — test if x is less than or equal to y

SYNOPSIS
#include <math.h>

int islessequal(real-floating x, real-floating y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The islessequal() macro shall determine whether its first argument is less than or equal to its
second argument. The value of islessequal(x, y) shall be equal to (x) <= (y); however, unlike
(x) <= (y), islessequal(x, y) shall not raise the invalid floating-point exception when x and y are
unordered.

RETURN VALUE
Upon successful completion, the islessequal() macro shall return the value of (x) <= (y).

If x or y is NaN, 0 shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between
numeric values. For any ordered pair of numeric values, exactly one of the relationships (less,
greater, and equal) is true. Relational operators may raise the invalid floating-point exception
when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the
unordered relationship is true. This macro is a quiet (non-floating-point exception raising)
version of a relational operator. It facilitates writing efficient code that accounts for NaNs
without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating
indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreater(), isgreaterequal(), isless(), islessgreater(), isunordered()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

1154 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38427

38428

38429

38430

38431

38432

38433

38434

38435

38436

38437

38438

38439

38440

38441

38442

38443

38444

38445

38446

38447

38448

38449

38450

38451

38452

38453

38454

38455

38456

38457

38458

38459

38460

38461

38462

38463

38464

System Interfaces islessgreater()

NAME
islessgreater — test if x is less than or greater than y

SYNOPSIS
#include <math.h>

int islessgreater(real-floating x, real-floating y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The islessgreater() macro shall determine whether its first argument is less than or greater than
its second argument. The islessgreater(x, y) macro is similar to (x) < (y) || (x) > (y); however,
islessgreater(x, y) shall not raise the invalid floating-point exception when x and y are unordered
(nor shall it evaluate x and y twice).

RETURN VALUE
Upon successful completion, the islessgreater() macro shall return the value of
(x) < (y) || (x) > (y).

If x or y is NaN, 0 shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between
numeric values. For any ordered pair of numeric values, exactly one of the relationships (less,
greater, and equal) is true. Relational operators may raise the invalid floating-point exception
when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the
unordered relationship is true. This macro is a quiet (non-floating-point exception raising)
version of a relational operator. It facilitates writing efficient code that accounts for NaNs
without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating
indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreater(), isgreaterequal(), isless(), islessequal(), isunordered()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1155

38465

38466

38467

38468

38469

38470

38471

38472

38473

38474

38475

38476

38477

38478

38479

38480

38481

38482

38483

38484

38485

38486

38487

38488

38489

38490

38491

38492

38493

38494

38495

38496

38497

38498

38499

38500

38501

38502

38503

islower() System Interfaces

NAME
islower, islower_l — test for a lowercase letter

SYNOPSIS
#include <ctype.h>

int islower(int c);
CX int islower_l(int c, locale_t locale);

DESCRIPTION
CX For islower(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The islower() and islower_l() functions shall test whether c is a character of class lower in the
CX current locale of the process, or in the locale represented by locale, respectively; see XBD

Chapter 7 (on page 135).

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The islower() and islower_l() functions shall return non-zero if c is a lowercase letter; otherwise,

they shall return 0.

ERRORS
The islower_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES

Testing for a Lowercase Letter

Two examples follow, the first using islower(), the second using multiple concurrent locales and
islower_l().

The examples test whether the value is a lowercase letter, based on the locale of the user, then
use it as part of a key value.

/* Example 1 -- using islower() */
#include <ctype.h>
#include <stdlib.h>
#include <locale.h>
...
char *keystr;
int elementlen, len;
char c;
...
setlocale(LC_ALL, "");
...
len = 0;
while (len < elementlen) {

c = (char) (rand() % 256);
...

if (islower(c))

1156 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38504

38505

38506

38507

38508

38509

38510

38511

38512

38513

38514

38515

38516

38517

38518

38519

38520

38521

38522

38523

38524

38525

38526

38527

38528

38529

38530

38531

38532

38533

38534

38535

38536

38537

38538

38539

38540

38541

38542

38543

38544

38545

38546

38547

System Interfaces islower()

keystr[len++] = c;
}

...

/* Example 2 -- using islower_l() */
#include <ctype.h>
#include <stdlib.h>
#include <locale.h>
...
char *keystr;
int elementlen, len;
char c;
...
locale_t loc = newlocale (LC_ALL_MASK, "", (locale_t) 0);
...
len = 0;
while (len < elementlen) {

c = (char) (rand() % 256);
...

if (islower_l(c, loc))
keystr[len++] = c;

}
...

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

An example is added.

Issue 7
The islower_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1157

38548

38549

38550

38551

38552

38553

38554

38555

38556

38557

38558

38559

38560

38561

38562

38563

38564

38565

38566

38567

38568

38569

38570

38571

38572

38573

38574

38575

38576

38577

38578

38579

38580

38581

38582

38583

38584

38585

38586

38587

38588

38589

isnan() System Interfaces

NAME
isnan — test for a NaN

SYNOPSIS
#include <math.h>

int isnan(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The isnan() macro shall determine whether its argument value is a NaN. First, an argument
represented in a format wider than its semantic type is converted to its semantic type. Then
determination is based on the type of the argument.

RETURN VALUE
The isnan() macro shall return a non-zero value if and only if its argument has a NaN value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isfinite(), isinf(), isnormal(), signbit()

XBD <math.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated to indicate the return value when NaN is not supported. This
text was previously published in the APPLICATION USAGE section.

Issue 6
Re-written for alignment with the ISO/IEC 9899: 1999 standard.

1158 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38590

38591

38592

38593

38594

38595

38596

38597

38598

38599

38600

38601

38602

38603

38604

38605

38606

38607

38608

38609

38610

38611

38612

38613

38614

38615

38616

38617

38618

38619

38620

38621

38622

38623

System Interfaces isnormal()

NAME
isnormal — test for a normal value

SYNOPSIS
#include <math.h>

int isnormal(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The isnormal() macro shall determine whether its argument value is normal (neither zero,
subnormal, infinite, nor NaN). First, an argument represented in a format wider than its
semantic type is converted to its semantic type. Then determination is based on the type of the
argument.

RETURN VALUE
The isnormal() macro shall return a non-zero value if and only if its argument has a normal
value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isfinite(), isinf(), isnan(), signbit()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1159

38624

38625

38626

38627

38628

38629

38630

38631

38632

38633

38634

38635

38636

38637

38638

38639

38640

38641

38642

38643

38644

38645

38646

38647

38648

38649

38650

38651

38652

38653

38654

isprint() System Interfaces

NAME
isprint, isprint_l — test for a printable character

SYNOPSIS
#include <ctype.h>

int isprint(int c);
CX int isprint_l(int c, locale_t locale);

DESCRIPTION
CX For isprint(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The isprint() and isprint_l() functions shall test whether c is a character of class print in the
CX current locale of the process, or in the locale represented by locale, respectively; see XBD

Chapter 7 (on page 135).

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The isprint() and isprint_l() functions shall return non-zero if c is a printable character;

otherwise, they shall return 0.

ERRORS
The isprint_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

1160 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38655

38656

38657

38658

38659

38660

38661

38662

38663

38664

38665

38666

38667

38668

38669

38670

38671

38672

38673

38674

38675

38676

38677

38678

38679

38680

38681

38682

38683

38684

38685

38686

38687

38688

38689

38690

38691

38692

38693

38694

System Interfaces isprint()

Issue 7
The isprint_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1161

38695

38696

38697

ispunct() System Interfaces

NAME
ispunct, ispunct_l — test for a punctuation character

SYNOPSIS
#include <ctype.h>

int ispunct(int c);
CX int ispunct_l(int c, locale_t locale);

DESCRIPTION
CX For ispunct(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The ispunct() and ispunct_l() functions shall test whether c is a character of class punct in the
CX current locale of the process, or in the locale represented by locale, respectively; see XBD

Chapter 7 (on page 135).

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The ispunct() and ispunct_l() functions shall return non-zero if c is a punctuation character;

otherwise, they shall return 0.

ERRORS
The ispunct_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

1162 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38698

38699

38700

38701

38702

38703

38704

38705

38706

38707

38708

38709

38710

38711

38712

38713

38714

38715

38716

38717

38718

38719

38720

38721

38722

38723

38724

38725

38726

38727

38728

38729

38730

38731

38732

38733

38734

38735

38736

38737

System Interfaces ispunct()

Issue 7
The ispunct_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1163

38738

38739

38740

isspace() System Interfaces

NAME
isspace, isspace_l — test for a white-space character

SYNOPSIS
#include <ctype.h>

int isspace(int c);
CX int isspace_l(int c, locale_t locale);

DESCRIPTION
CX For isspace(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The isspace() and isspace_l() functions shall test whether c is a character of class space in the
CX current locale of the process, or in the locale represented by locale, respectively; see XBD

Chapter 7 (on page 135).

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The isspace() and isspace_l() functions shall return non-zero if c is a white-space character;

otherwise, they shall return 0.

ERRORS
The isspace_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isupper(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

1164 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38741

38742

38743

38744

38745

38746

38747

38748

38749

38750

38751

38752

38753

38754

38755

38756

38757

38758

38759

38760

38761

38762

38763

38764

38765

38766

38767

38768

38769

38770

38771

38772

38773

38774

38775

38776

38777

38778

38779

38780

System Interfaces isspace()

Issue 7
The isspace_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1165

38781

38782

38783

isunordered() System Interfaces

NAME
isunordered — test if arguments are unordered

SYNOPSIS
#include <math.h>

int isunordered(real-floating x, real-floating y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The isunordered() macro shall determine whether its arguments are unordered.

RETURN VALUE
Upon successful completion, the isunordered() macro shall return 1 if its arguments are
unordered, and 0 otherwise.

If x or y is NaN, 1 shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between
numeric values. For any ordered pair of numeric values, exactly one of the relationships (less,
greater, and equal) is true. Relational operators may raise the invalid floating-point exception
when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the
unordered relationship is true. This macro is a quiet (non-floating-point exception raising)
version of a relational operator. It facilitates writing efficient code that accounts for NaNs
without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating
indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreater(), isgreaterequal(), isless(), islessequal(), islessgreater()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/50 is applied, correcting the RETURN
VALUE section when x or y is NaN.

1166 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38784

38785

38786

38787

38788

38789

38790

38791

38792

38793

38794

38795

38796

38797

38798

38799

38800

38801

38802

38803

38804

38805

38806

38807

38808

38809

38810

38811

38812

38813

38814

38815

38816

38817

38818

38819

38820

38821

System Interfaces isupper()

NAME
isupper, isupper_l — test for an uppercase letter

SYNOPSIS
#include <ctype.h>

int isupper(int c);
CX int isupper_l(int c, locale_t locale);

DESCRIPTION
CX For isupper(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The isupper() and isupper_l() functions shall test whether c is a character of class upper in the
CX current locale of the process, or in the locale represented by locale, respectively; see XBD

Chapter 7 (on page 135).

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The isupper() and isupper_l() functions shall return non-zero if c is an uppercase letter;

otherwise, they shall return 0.

ERRORS
The isupper_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1167

38822

38823

38824

38825

38826

38827

38828

38829

38830

38831

38832

38833

38834

38835

38836

38837

38838

38839

38840

38841

38842

38843

38844

38845

38846

38847

38848

38849

38850

38851

38852

38853

38854

38855

38856

38857

38858

38859

38860

38861

isupper() System Interfaces

Issue 7
The isupper_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

1168 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38862

38863

38864

System Interfaces iswalnum()

NAME
iswalnum, iswalnum_l — test for an alphanumeric wide-character code

SYNOPSIS
#include <wctype.h>

int iswalnum(wint_t wc);
CX int iswalnum_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswalnum(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The iswalnum() and iswalnum_l() functions shall test whether wc is a wide-character code
CX representing a character of class alpha or digit in the current locale of the process, or in the

locale represented by locale, respectively; see XBD Chapter 7 (on page 135).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswalnum() and iswalnum_l() functions shall return non-zero if wc is an alphanumeric

wide-character code; otherwise, they shall return 0.

ERRORS
The iswalnum_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <locale.h>, <stdio.h>, <wctype.h>

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1169

38865

38866

38867

38868

38869

38870

38871

38872

38873

38874

38875

38876

38877

38878

38879

38880

38881

38882

38883

38884

38885

38886

38887

38888

38889

38890

38891

38892

38893

38894

38895

38896

38897

38898

38899

38900

38901

38902

38903

38904

38905

iswalnum() System Interfaces

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswalnum_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

1170 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38906

38907

38908

38909

38910

38911

38912

System Interfaces iswalpha()

NAME
iswalpha, iswalpha_l — test for an alphabetic wide-character code

SYNOPSIS
#include <wctype.h>

int iswalpha(wint_t wc);
CX int iswalpha_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswalpha(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The iswalpha() and iswalpha_l() functions shall test whether wc is a wide-character code
CX representing a character of class alpha in the current locale of the process, or in the locale

represented by locale, respectively; see XBD Chapter 7 (on page 135).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswalpha() and iswalpha_l() functions shall return non-zero if wc is an alphabetic wide-

character code; otherwise, they shall return 0.

ERRORS
The iswalpha_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1171

38913

38914

38915

38916

38917

38918

38919

38920

38921

38922

38923

38924

38925

38926

38927

38928

38929

38930

38931

38932

38933

38934

38935

38936

38937

38938

38939

38940

38941

38942

38943

38944

38945

38946

38947

38948

38949

38950

38951

38952

38953

iswalpha() System Interfaces

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswalpha_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

1172 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

38954

38955

38956

38957

38958

38959

38960

System Interfaces iswblank()

NAME
iswblank, iswblank_l — test for a blank wide-character code

SYNOPSIS
#include <wctype.h>

int iswblank(wint_t wc);
CX int iswblank_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswblank(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The iswblank() and iswblank() functions shall test whether wc is a wide-character code
CX representing a character of class blank in the current locale of the process, or in the locale

represented by locale, respectively; see XBD Chapter 7 (on page 135).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswblank() and iswblank_l() functions shall return non-zero if wc is a blank wide-character

code; otherwise, they shall return 0.

ERRORS
The iswblank_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
The iswblank_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1173

38961

38962

38963

38964

38965

38966

38967

38968

38969

38970

38971

38972

38973

38974

38975

38976

38977

38978

38979

38980

38981

38982

38983

38984

38985

38986

38987

38988

38989

38990

38991

38992

38993

38994

38995

38996

38997

38998

38999

39000

39001

iswcntrl() System Interfaces

NAME
iswcntrl, iswcntrl_l — test for a control wide-character code

SYNOPSIS
#include <wctype.h>

int iswcntrl(wint_t wc);
CX int iswcntrl_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswcntrl(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The iswcntrl() and iswcntrl_l() functions shall test whether wc is a wide-character code
CX representing a character of class cntrl in the current locale of the process, or in the locale

represented by locale, respectively; see XBD Chapter 7 (on page 135).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswcntrl() and iswcntrl_l() functions shall return non-zero if wc is a control wide-character

code; otherwise, they shall return 0.

ERRORS
The iswcntrl_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

1174 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39002

39003

39004

39005

39006

39007

39008

39009

39010

39011

39012

39013

39014

39015

39016

39017

39018

39019

39020

39021

39022

39023

39024

39025

39026

39027

39028

39029

39030

39031

39032

39033

39034

39035

39036

39037

39038

39039

39040

39041

39042

System Interfaces iswcntrl()

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswcntrl_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1175

39043

39044

39045

39046

39047

39048

39049

iswctype() System Interfaces

NAME
iswctype, iswctype_l — test character for a specified class

SYNOPSIS
#include <wctype.h>

int iswctype(wint_t wc, wctype_t charclass);
CX int iswctype_l(wint_t wc, wctype_t charclass,

locale_t locale);

DESCRIPTION
CX For iswctype(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The iswctype() and iswctype_l() functions shall determine whether the wide-character code wc
CX has the character class charclass, returning true or false. The iswctype() and iswctype_l()

functions are defined on WEOF and wide-character codes corresponding to the valid character
CX encodings in the current locale, or in the locale represented by locale, respectively. If the wc

argument is not in the domain of the function, the result is undefined. If the value of charclass is
invalid (that is, not obtained by a call to wctype() or charclass is invalidated by a subsequent call
to setlocale() that has affected category LC_CTYPE) the result is unspecified.

RETURN VALUE
CX The iswctype() and iswctype_l() functions shall return non-zero (true) if and only if wc has the
CX property described by charclass. If charclass is 0, these functions shall return 0.

ERRORS
The iswctype_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES

Testing for a Valid Character

#include <wctype.h>
...
int yes_or_no;
wint_t wc;
wctype_t valid_class;
...
if ((valid_class=wctype("vowel")) == (wctype_t)0)

/* Invalid character class. */
yes_or_no=iswctype(wc,valid_class);

APPLICATION USAGE
The twelve strings "alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower",
"print", "punct", "space", "upper", and "xdigit" are reserved for the standard
character classes. In the table below, the functions in the left column are equivalent to the
functions in the right column.

iswalnum(wc) iswctype(wc, wctype("alnum"))
iswalnum_l(wc, locale) iswctype_l(wc, wctype("alnum"), locale)
iswalpha(wc) iswctype(wc, wctype("alpha"))
iswalpha_l(wc, locale) iswctype_l(wc, wctype("alpha"), locale)
iswblank(wc) iswctype(wc, wctype("blank"))

1176 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39050

39051

39052

39053

39054

39055

39056

39057

39058

39059

39060

39061

39062

39063

39064

39065

39066

39067

39068

39069

39070

39071

39072

39073

39074

39075

39076

39077

39078

39079

39080

39081

39082

39083

39084

39085

39086

39087

39088

39089

39090

39091

39092

39093

39094

System Interfaces iswctype()

iswblank_l(wc, locale) iswctype_l(wc, wctype("blank"), locale)
iswcntrl(wc) iswctype(wc, wctype("cntrl"))
iswcntrl_l(wc, locale) iswctype_l(wc, wctype("cntrl"), locale)
iswdigit(wc) iswctype(wc, wctype("digit"))
iswdigit_l(wc, locale) iswctype_l(wc, wctype("digit"), locale)
iswgraph(wc) iswctype(wc, wctype("graph"))
iswgraph_l(wc, locale) iswctype_l(wc, wctype("graph"), locale)
iswlower(wc) iswctype(wc, wctype("lower"))
iswlower_l(wc, locale) iswctype_l(wc, wctype("lower"), locale)
iswprint(wc) iswctype(wc, wctype("print"))
iswprint_l(wc, locale) iswctype_l(wc, wctype("print"), locale)
iswpunct(wc) iswctype(wc, wctype("punct"))
iswpunct_l(wc, locale) iswctype_l(wc, wctype("punct"), locale)
iswspace(wc) iswctype(wc, wctype("space"))
iswspace_l(wc, locale) iswctype_l(wc, wctype("space"), locale)
iswupper(wc) iswctype(wc, wctype("upper"))
iswupper_l(wc, locale) iswctype_l(wc, wctype("upper"), locale)
iswxdigit(wc) iswctype(wc, wctype("xdigit"))
iswxdigit_l(wc, locale) iswctype_l(wc, wctype("xdigit"), locale)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale(), wctype()

XBD <locale.h>, <wctype.h>

CHANGE HISTORY
First released as World-wide Portability Interfaces in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The behavior of n=0 is now described.

An example is added.

A new function, iswblank(), is added to the list in the APPLICATION USAGE.

Issue 7
The iswctype_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1177

39095

39096

39097

39098

39099

39100

39101

39102

39103

39104

39105

39106

39107

39108

39109

39110

39111

39112

39113

39114

39115

39116

39117

39118

39119

39120

39121

39122

39123

39124

39125

39126

39127

39128

39129

39130

39131

39132

39133

39134

39135

iswdigit() System Interfaces

NAME
iswdigit, iswdigit_l — test for a decimal digit wide-character code

SYNOPSIS
#include <wctype.h>

int iswdigit(wint_t wc);
CX int iswdigit_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswdigit(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The iswdigit() and iswdigit_l() functions shall test whether wc is a wide-character code
CX representing a character of class digit in the current locale of the process, or in the locale

represented by locale, respectively; see XBD Chapter 7 (on page 135).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswdigit() and iswdigit_l() functions shall return non-zero if wc is a decimal digit wide-

character code; otherwise, they shall return 0.

ERRORS
The iswdigit_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

1178 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39136

39137

39138

39139

39140

39141

39142

39143

39144

39145

39146

39147

39148

39149

39150

39151

39152

39153

39154

39155

39156

39157

39158

39159

39160

39161

39162

39163

39164

39165

39166

39167

39168

39169

39170

39171

39172

39173

39174

39175

39176

System Interfaces iswdigit()

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswdigit_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1179

39177

39178

39179

39180

39181

39182

39183

iswgraph() System Interfaces

NAME
iswgraph, iswgraph_l — test for a visible wide-character code

SYNOPSIS
#include <wctype.h>

int iswgraph(wint_t wc);
CX int iswgraph_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswgraph(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The iswgraph() and iswgraph_l() functions shall test whether wc is a wide-character code
CX representing a character of class graph in the current locale of the process, or in the locale

represented by locale, respectively; see XBD Chapter 7 (on page 135).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswgraph() and iswgraph_l() functions shall return non-zero if wc is a wide-character code

with a visible representation; otherwise, they shall return 0.

ERRORS
The iswgraph_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

1180 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39184

39185

39186

39187

39188

39189

39190

39191

39192

39193

39194

39195

39196

39197

39198

39199

39200

39201

39202

39203

39204

39205

39206

39207

39208

39209

39210

39211

39212

39213

39214

39215

39216

39217

39218

39219

39220

39221

39222

39223

39224

System Interfaces iswgraph()

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswgraph_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1181

39225

39226

39227

39228

39229

39230

39231

iswlower() System Interfaces

NAME
iswlower, iswlower_l — test for a lowercase letter wide-character code

SYNOPSIS
#include <wctype.h>

int iswlower(wint_t wc);
CX int iswlower_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswlower(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The iswlower() and iswlower_l() functions shall test whether wc is a wide-character code
CX representing a character of class lower in the current locale of the process, or in the locale

represented by locale, respectively; see XBD Chapter 7 (on page 135).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswlower() and iswlower_l() functions shall return non-zero if wc is a lowercase letter wide-

character code; otherwise, they shall return 0.

ERRORS
The iswlower_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale() (on page 2162) 1

XBD Chapter 7 (on page 135), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

1182 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39232

39233

39234

39235

39236

39237

39238

39239

39240

39241

39242

39243

39244

39245

39246

39247

39248

39249

39250

39251

39252

39253

39254

39255

39256

39257

39258

39259

39260

39261

39262

39263

39264

39265

39266

39267

39268

39269

39270

39271

39272

System Interfaces iswlower()

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswlower_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1183

39273

39274

39275

39276

39277

39278

39279

iswprint() System Interfaces

NAME
iswprint, iswprint_l — test for a printable wide-character code

SYNOPSIS
#include <wctype.h>

int iswprint(wint_t wc);
CX int iswprint_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswprint(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The iswprint() and iswprint_l() functions shall test whether wc is a wide-character code
CX representing a character of class print in the current locale of the process, or in the locale

represented by locale, respectively; see XBD Chapter 7 (on page 135).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswprint() and iswprint_l() functions shall return non-zero if wc is a printable wide-

character code; otherwise, they shall return 0.

ERRORS
The iswprint_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswpunct(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

1184 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39280

39281

39282

39283

39284

39285

39286

39287

39288

39289

39290

39291

39292

39293

39294

39295

39296

39297

39298

39299

39300

39301

39302

39303

39304

39305

39306

39307

39308

39309

39310

39311

39312

39313

39314

39315

39316

39317

39318

39319

39320

System Interfaces iswprint()

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswprint_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1185

39321

39322

39323

39324

39325

39326

39327

iswpunct() System Interfaces

NAME
iswpunct, iswpunct_l — test for a punctuation wide-character code

SYNOPSIS
#include <wctype.h>

int iswpunct(wint_t wc);
CX int iswpunct_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswpunct(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The iswpunct() and iswpunct_l() functions shall test whether wc is a wide-character code
CX representing a character of class punct in the current locale of the process, or in the locale

represented by locale, respectively; see XBD Chapter 7 (on page 135).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswpunct() and iswpunct_l() functions shall return non-zero if wc is a punctuation wide-

character code; otherwise, they shall return 0.

ERRORS
The iswpunct_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

1186 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39328

39329

39330

39331

39332

39333

39334

39335

39336

39337

39338

39339

39340

39341

39342

39343

39344

39345

39346

39347

39348

39349

39350

39351

39352

39353

39354

39355

39356

39357

39358

39359

39360

39361

39362

39363

39364

39365

39366

39367

39368

System Interfaces iswpunct()

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswpunct_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1187

39369

39370

39371

39372

39373

39374

39375

iswspace() System Interfaces

NAME
iswspace, iswspace_l — test for a white-space wide-character code

SYNOPSIS
#include <wctype.h>

int iswspace(wint_t wc);
CX int iswspace_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswspace(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The iswspace() and iswspace_l() functions shall test whether wc is a wide-character code
CX representing a character of class space in the current locale of the process, or in the locale

represented by locale, respectively; see XBD Chapter 7 (on page 135).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswspace() and iswspace_l() functions shall return non-zero if wc is a white-space wide-

character code; otherwise, they shall return 0.

ERRORS
The iswspace_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswupper(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

1188 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39376

39377

39378

39379

39380

39381

39382

39383

39384

39385

39386

39387

39388

39389

39390

39391

39392

39393

39394

39395

39396

39397

39398

39399

39400

39401

39402

39403

39404

39405

39406

39407

39408

39409

39410

39411

39412

39413

39414

39415

39416

System Interfaces iswspace()

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswspace_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1189

39417

39418

39419

39420

39421

39422

39423

iswupper() System Interfaces

NAME
iswupper, iswupper_l — test for an uppercase letter wide-character code

SYNOPSIS
#include <wctype.h>

int iswupper(wint_t wc);
CX int iswupper_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswupper(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The iswupper() and iswupper_l() functions shall test whether wc is a wide-character code
CX representing a character of class upper in the current locale of the process, or in the locale

represented by locale, respectively; see XBD Chapter 7 (on page 135).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswupper() and iswupper_l() functions shall return non-zero if wc is an uppercase letter

wide-character code; otherwise, they shall return 0.

ERRORS
The iswupper_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswxdigit(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

1190 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39424

39425

39426

39427

39428

39429

39430

39431

39432

39433

39434

39435

39436

39437

39438

39439

39440

39441

39442

39443

39444

39445

39446

39447

39448

39449

39450

39451

39452

39453

39454

39455

39456

39457

39458

39459

39460

39461

39462

39463

39464

System Interfaces iswupper()

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswupper_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1191

39465

39466

39467

39468

39469

39470

39471

iswxdigit() System Interfaces

NAME
iswxdigit, iswxdigit_l — test for a hexadecimal digit wide-character code

SYNOPSIS
#include <wctype.h>

int iswxdigit(wint_t wc);
CX int iswxdigit_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For iswxdigit(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The iswxdigit() and iswxdigit_l() functions shall test whether wc is a wide-character code
CX representing a character of class xdigit in the current locale of the process, or in the locale

represented by locale, respectively; see XBD Chapter 7 (on page 135).

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
CX The iswxdigit() and iswxdigit_l() functions shall return non-zero if wc is a hexadecimal digit

wide-character code; otherwise, they shall return 0.

ERRORS
The iswxdigit_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), setlocale(), uselocale()

XBD Chapter 7 (on page 135), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

1192 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39472

39473

39474

39475

39476

39477

39478

39479

39480

39481

39482

39483

39484

39485

39486

39487

39488

39489

39490

39491

39492

39493

39494

39495

39496

39497

39498

39499

39500

39501

39502

39503

39504

39505

39506

39507

39508

39509

39510

39511

39512

System Interfaces iswxdigit()

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The iswxdigit_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1193

39513

39514

39515

39516

39517

39518

39519

isxdigit() System Interfaces

NAME
isxdigit, isxdigit_l — test for a hexadecimal digit

SYNOPSIS
#include <ctype.h>

int isxdigit(int c);
CX int isxdigit_l(int c, locale_t locale);

DESCRIPTION
CX For isxdigit(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The isxdigit() and isxdigit_l() functions shall test whether c is a character of class xdigit in the
CX current locale of the process, or in the locale represented by locale, respectively; see XBD

Chapter 7 (on page 135).

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
CX The isxdigit() and isxdigit_l() functions shall return non-zero if c is a hexadecimal digit;

otherwise, they shall return 0.

ERRORS
The isxdigit_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and
the functions in the reference pages listed in the SEE ALSO section should be used for character
classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper()

XBD Chapter 7 (on page 135), <ctype.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

1194 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39520

39521

39522

39523

39524

39525

39526

39527

39528

39529

39530

39531

39532

39533

39534

39535

39536

39537

39538

39539

39540

39541

39542

39543

39544

39545

39546

39547

39548

39549

39550

39551

39552

39553

39554

39555

39556

39557

39558

39559

System Interfaces isxdigit()

Issue 7
The isxdigit_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1195

39560

39561

39562

j0() System Interfaces

NAME
j0, j1, jn — Bessel functions of the first kind

SYNOPSIS
XSI #include <math.h>

double j0(double x);
double j1(double x);
double jn(int n, double x);

DESCRIPTION
The j0(), j1(), and jn() functions shall compute Bessel functions of x of the first kind of orders 0,
1, and n, respectively.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the relevant Bessel value of x of the
first kind.

If the x argument is too large in magnitude, or the correct result would cause underflow, 0 shall
be returned and a range error may occur.

If x is NaN, a NaN shall be returned.

ERRORS
These functions may fail if:

Range Error The value of x was too large in magnitude, or an underflow occurred.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

No other errors shall occur.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), y0()

XBD Section 4.19 (on page 116), <math.h>

1196 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39563

39564

39565

39566

39567

39568

39569

39570

39571

39572

39573

39574

39575

39576

39577

39578

39579

39580

39581

39582

39583

39584

39585

39586

39587

39588

39589

39590

39591

39592

39593

39594

39595

39596

39597

39598

39599

39600

39601

39602

System Interfaces j0()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The may fail [EDOM] error is removed for the case for NaN.

The RETURN VALUE and ERRORS sections are reworked for alignment of the error handling
with the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1197

39603

39604

39605

39606

39607

39608

39609

39610

39611

jrand48() System Interfaces

NAME
jrand48 — generate a uniformly distributed pseudo-random long signed integer

SYNOPSIS
XSI #include <stdlib.h>

long jrand48(unsigned short xsubi[3]);

DESCRIPTION
Refer to drand48().

1198 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39612

39613

39614

39615

39616

39617

39618

System Interfaces kill()

NAME
kill — send a signal to a process or a group of processes

SYNOPSIS
CX #include <signal.h>

int kill(pid_t pid, int sig);

DESCRIPTION
The kill() function shall send a signal to a process or a group of processes specified by pid. The
signal to be sent is specified by sig and is either one from the list given in <signal.h> or 0. If sig is
0 (the null signal), error checking is performed but no signal is actually sent. The null signal can
be used to check the validity of pid.

For a process to have permission to send a signal to a process designated by pid, unless the
sending process has appropriate privileges, the real or effective user ID of the sending process
shall match the real or saved set-user-ID of the receiving process.

If pid is greater than 0, sig shall be sent to the process whose process ID is equal to pid.

If pid is 0, sig shall be sent to all processes (excluding an unspecified set of system processes)
whose process group ID is equal to the process group ID of the sender, and for which the process
has permission to send a signal.

If pid is −1, sig shall be sent to all processes (excluding an unspecified set of system processes) for
which the process has permission to send that signal.

If pid is negative, but not −1, sig shall be sent to all processes (excluding an unspecified set of
system processes) whose process group ID is equal to the absolute value of pid, and for which
the process has permission to send a signal.

If the value of pid causes sig to be generated for the sending process, and if sig is not blocked for
the calling thread and if no other thread has sig unblocked or is waiting in a sigwait() function
for sig, either sig or at least one pending unblocked signal shall be delivered to the sending
thread before kill() returns.

The user ID tests described above shall not be applied when sending SIGCONT to a process that
is a member of the same session as the sending process.

An implementation that provides extended security controls may impose further
implementation-defined restrictions on the sending of signals, including the null signal. In
particular, the system may deny the existence of some or all of the processes specified by pid.

The kill() function is successful if the process has permission to send sig to any of the processes
specified by pid. If kill() fails, no signal shall be sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The kill() function shall fail if:

[EINVAL] The value of the sig argument is an invalid or unsupported signal number.

[EPERM] The process does not have permission to send the signal to any receiving
process.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1199

39619

39620

39621

39622

39623

39624

39625

39626

39627

39628

39629

39630

39631

39632

39633

39634

39635

39636

39637

39638

39639

39640

39641

39642

39643

39644

39645

39646

39647

39648

39649

39650

39651

39652

39653

39654

39655

39656

39657

39658

39659

kill() System Interfaces

[ESRCH] No process or process group can be found corresponding to that specified by
pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The semantics for permission checking for kill() differed between System V and most other
implementations, such as Version 7 or 4.3 BSD. The semantics chosen for this volume of
POSIX.1-2008 agree with System V. Specifically, a set-user-ID process cannot protect itself
against signals (or at least not against SIGKILL) unless it changes its real user ID. This choice
allows the user who starts an application to send it signals even if it changes its effective user ID.
The other semantics give more power to an application that wants to protect itself from the user
who ran it.

Some implementations provide semantic extensions to the kill() function when the absolute
value of pid is greater than some maximum, or otherwise special, value. Negative values are a
flag to kill(). Since most implementations return [ESRCH] in this case, this behavior is not
included in this volume of POSIX.1-2008, although a conforming implementation could provide
such an extension.

The unspecified processes to which a signal cannot be sent may include the scheduler or init.

There was initially strong sentiment to specify that, if pid specifies that a signal be sent to the
calling process and that signal is not blocked, that signal would be delivered before kill()
returns. This would permit a process to call kill() and be guaranteed that the call never return.
However, historical implementations that provide only the signal() function make only the
weaker guarantee in this volume of POSIX.1-2008, because they only deliver one signal each
time a process enters the kernel. Modifications to such implementations to support the
sigaction() function generally require entry to the kernel following return from a signal-catching
function, in order to restore the signal mask. Such modifications have the effect of satisfying the
stronger requirement, at least when sigaction() is used, but not necessarily when signal() is used.
The standard developers considered making the stronger requirement except when signal() is
used, but felt this would be unnecessarily complex. Implementors are encouraged to meet the
stronger requirement whenever possible. In practice, the weaker requirement is the same, except
in the rare case when two signals arrive during a very short window. This reasoning also applies
to a similar requirement for sigprocmask().

In 4.2 BSD, the SIGCONT signal can be sent to any descendant process regardless of user-ID
security checks. This allows a job control shell to continue a job even if processes in the job have
altered their user IDs (as in the su command). In keeping with the addition of the concept of
sessions, similar functionality is provided by allowing the SIGCONT signal to be sent to any
process in the same session regardless of user ID security checks. This is less restrictive than BSD
in the sense that ancestor processes (in the same session) can now be the recipient. It is more
restrictive than BSD in the sense that descendant processes that form new sessions are now
subject to the user ID checks. A similar relaxation of security is not necessary for the other job
control signals since those signals are typically sent by the terminal driver in recognition of
special characters being typed; the terminal driver bypasses all security checks.

In secure implementations, a process may be restricted from sending a signal to a process having
a different security label. In order to prevent the existence or nonexistence of a process from
being used as a covert channel, such processes should appear nonexistent to the sender; that is,
[ESRCH] should be returned, rather than [EPERM], if pid refers only to such processes.

1200 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39660

39661

39662

39663

39664

39665

39666

39667

39668

39669

39670

39671

39672

39673

39674

39675

39676

39677

39678

39679

39680

39681

39682

39683

39684

39685

39686

39687

39688

39689

39690

39691

39692

39693

39694

39695

39696

39697

39698

39699

39700

39701

39702

39703

39704

39705

39706

39707

System Interfaces kill()

Existing implementations vary on the result of a kill() with pid indicating an inactive process (a
terminated process that has not been waited for by its parent). Some indicate success on such a
call (subject to permission checking), while others give an error of [ESRCH]. Since the definition
of process lifetime in this volume of POSIX.1-2008 covers inactive processes, the [ESRCH] error
as described is inappropriate in this case. In particular, this means that an application cannot
have a parent process check for termination of a particular child with kill(). (Usually this is done
with the null signal; this can be done reliably with waitpid().)

There is some belief that the name kill() is misleading, since the function is not always intended
to cause process termination. However, the name is common to all historical implementations,
and any change would be in conflict with the goal of minimal changes to existing application
code.

FUTURE DIRECTIONS
None.

SEE ALSO
getpid(), raise(), setsid(), sigaction(), sigqueue(), wait()

XBD <signal.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the second paragraph is reworded to indicate that the saved set-
user-ID of the calling process is checked in place of its effective user ID. This is a FIPS
requirement.

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The behavior when pid is −1 is now specified. It was previously explicitly unspecified in
the POSIX.1-1988 standard.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/51 is applied, correcting the RATIONALE
section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1201

39708

39709

39710

39711

39712

39713

39714

39715

39716

39717

39718

39719

39720

39721

39722

39723

39724

39725

39726

39727

39728

39729

39730

39731

39732

39733

39734

39735

39736

39737

39738

39739

39740

39741

39742

killpg() System Interfaces

NAME
killpg — send a signal to a process group

SYNOPSIS
XSI #include <signal.h>

int killpg(pid_t pgrp, int sig);

DESCRIPTION
The killpg() function shall send the signal specified by sig to the process group specified by pgrp.

If pgrp is greater than 1, killpg(pgrp, sig) shall be equivalent to kill(−pgrp, sig). If pgrp is less than or
equal to 1, the behavior of killpg() is undefined.

RETURN VALUE
Refer to kill().

ERRORS
Refer to kill().

EXAMPLES

Sending a Signal to All Other Members of a Process Group

The following example shows how the calling process could send a signal to all other members
of its process group. To prevent itself from receiving the signal it first makes itself immune to the
signal by ignoring it.

#include <signal.h>
#include <unistd.h>
...

if (signal(SIGUSR1, SIG_IGN) == SIG_ERR)
/* Handle error */;

if (killpg(getpgrp(), SIGUSR1) == −1)
/* Handle error */;"

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpgid(), getpid(), kill(), raise()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

1202 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39743

39744

39745

39746

39747

39748

39749

39750

39751

39752

39753

39754

39755

39756

39757

39758

39759

39760

39761

39762

39763

39764

39765

39766

39767

39768

39769

39770

39771

39772

39773

39774

39775

39776

39777

39778

39779

39780

System Interfaces killpg()

Issue 6
IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/52 is applied, adding the example to the
EXAMPLES section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1203

39781

39782

39783

l64a() System Interfaces

NAME
l64a — convert a 32-bit integer to a radix-64 ASCII string

SYNOPSIS
XSI #include <stdlib.h>

char *l64a(long value);

DESCRIPTION
Refer to a64l().

1204 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39784

39785

39786

39787

39788

39789

39790

System Interfaces labs()

NAME
labs, llabs — return a long integer absolute value

SYNOPSIS
#include <stdlib.h>

long labs(long i);
long long llabs(long long i);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The labs() function shall compute the absolute value of the long integer operand i. The llabs()
function shall compute the absolute value of the long long integer operand i. If the result
cannot be represented, the behavior is undefined.

RETURN VALUE
The labs() function shall return the absolute value of the long integer operand.

The llabs() function shall return the absolute value of the long long integer operand.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abs()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Issue 6
The llabs() function is added for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
SD5-XSH-ERN-152 is applied, correcting the RETURN VALUE section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1205

39791

39792

39793

39794

39795

39796

39797

39798

39799

39800

39801

39802

39803

39804

39805

39806

39807

39808

39809

39810

39811

39812

39813

39814

39815

39816

39817

39818

39819

39820

39821

39822

39823

39824

39825

lchown() System Interfaces

NAME
lchown — change the owner and group of a symbolic link

SYNOPSIS
#include <unistd.h>

int lchown(const char *path, uid_t owner, gid_t group);

DESCRIPTION
The lchown() function shall be equivalent to chown(), except in the case where the named file is a
symbolic link. In this case, lchown() shall change the ownership of the symbolic link file itself,
while chown() changes the ownership of the file or directory to which the symbolic link refers.

RETURN VALUE
Upon successful completion, lchown() shall return 0. Otherwise, it shall return −1 and set errno to
indicate an error.

ERRORS
The lchown() function shall fail if:

[EACCES] Search permission is denied on a component of the path prefix of path.

[EINVAL] The owner or group ID is not a value supported by the implementation.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory, or the path argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

[EPERM] The effective user ID does not match the owner of the file and the process does
not have appropriate privileges.

[EROFS] The file resides on a read-only file system.

The lchown() function may fail if:

[EIO] An I/O error occurred while reading or writing to the file system.

[EINTR] A signal was caught during execution of the function.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

1206 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39826

39827

39828

39829

39830

39831

39832

39833

39834

39835

39836

39837

39838

39839

39840

39841

39842

39843

39844

39845

39846

39847

39848

39849

39850

39851

39852

39853

39854

39855

39856

39857

39858

39859

39860

39861

39862

System Interfaces lchown()

EXAMPLES

Changing the Current Owner of a File

The following example shows how to change the ownership of the symbolic link named
/modules/pass1 to the user ID associated with ‘‘jones’’ and the group ID associated with ‘‘cnd’’.

The numeric value for the user ID is obtained by using the getpwnam() function. The numeric
value for the group ID is obtained by using the getgrnam() function.

#include <sys/types.h>
#include <unistd.h>
#include <pwd.h>
#include <grp.h>

struct passwd *pwd;
struct group *grp;
char *path = "/modules/pass1";
...
pwd = getpwnam("jones");
grp = getgrnam("cnd");
lchown(path, pwd->pw_uid, grp->gr_gid);

APPLICATION USAGE
On implementations which support symbolic links as directory entries rather than files, lchown()
may fail.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chown(), symlink()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

The Open Group Base Resolution bwg2001-013 is applied, adding wording to the
APPLICATION USAGE.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The lchown() function is moved from the XSI option to the Base.

The [EOPNOTSUPP] error is removed.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1207

39863

39864

39865

39866

39867

39868

39869

39870

39871

39872

39873

39874

39875

39876

39877

39878

39879

39880

39881

39882

39883

39884

39885

39886

39887

39888

39889

39890

39891

39892

39893

39894

39895

39896

39897

39898

39899

39900

39901

39902

lchown() System Interfaces

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

1208 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39903

39904

System Interfaces lcong48()

NAME
lcong48 — seed a uniformly distributed pseudo-random signed long integer generator

SYNOPSIS
XSI #include <stdlib.h>

void lcong48(unsigned short param[7]);

DESCRIPTION
Refer to drand48().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1209

39905

39906

39907

39908

39909

39910

39911

ldexp() System Interfaces

NAME
ldexp, ldexpf, ldexpl — load exponent of a floating-point number

SYNOPSIS
#include <math.h>

double ldexp(double x, int exp);
float ldexpf(float x, int exp);
long double ldexpl(long double x, int exp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the quantity x * 2exp.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return x multiplied by 2, raised to the power
exp.

If these functions would cause overflow, a range error shall occur and ldexp(), ldexpf(), and
ldexpl() shall return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (according to the sign of
x), respectively.

If the correct value would cause underflow, and is not representable, a range error may occur,
MX and either 0.0 (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

If exp is 0, x shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

1210 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39912

39913

39914

39915

39916

39917

39918

39919

39920

39921

39922

39923

39924

39925

39926

39927

39928

39929

39930

39931

39932

39933

39934

39935

39936

39937

39938

39939

39940

39941

39942

39943

39944

39945

39946

39947

39948

39949

39950

39951

39952

39953

System Interfaces ldexp()

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), frexp(), isnan()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The ldexpf() and ldexpl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1211

39954

39955

39956

39957

39958

39959

39960

39961

39962

39963

39964

39965

39966

39967

39968

39969

39970

39971

39972

39973

39974

39975

39976

39977

ldiv() System Interfaces

NAME
ldiv, lldiv — compute quotient and remainder of a long division

SYNOPSIS
#include <stdlib.h>

ldiv_t ldiv(long numer, long denom);
lldiv_t lldiv(long long numer, long long denom);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the quotient and remainder of the division of the numerator
numer by the denominator denom. If the division is inexact, the resulting quotient is the long
integer (for the ldiv() function) or long long integer (for the lldiv() function) of lesser magnitude
that is the nearest to the algebraic quotient. If the result cannot be represented, the behavior is
undefined; otherwise, quot * denom+rem shall equal numer.

RETURN VALUE
The ldiv() function shall return a structure of type ldiv_t, comprising both the quotient and the
remainder. The structure shall include the following members, in any order:

long quot; /* Quotient */
long rem; /* Remainder */

The lldiv() function shall return a structure of type lldiv_t, comprising both the quotient and the
remainder. The structure shall include the following members, in any order:

long long quot; /* Quotient */
long long rem; /* Remainder */

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
div()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Issue 6
The lldiv() function is added for alignment with the ISO/IEC 9899: 1999 standard.

1212 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

39978

39979

39980

39981

39982

39983

39984

39985

39986

39987

39988

39989

39990

39991

39992

39993

39994

39995

39996

39997

39998

39999

40000

40001

40002

40003

40004

40005

40006

40007

40008

40009

40010

40011

40012

40013

40014

40015

40016

40017

40018

System Interfaces lfind()

NAME
lfind — find entry in a linear search table

SYNOPSIS
XSI #include <search.h>

void *lfind(const void *key, const void *base, size_t *nelp,
size_t width, int (*compar)(const void *, const void *));

DESCRIPTION
Refer to lsearch().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1213

40019

40020

40021

40022

40023

40024

40025

40026

lgamma() System Interfaces

NAME
lgamma, lgammaf, lgammal, signgam — log gamma function

SYNOPSIS
#include <math.h>

double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

XSI extern int signgam;

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute loge Γ(x) where Γ(x) is defined as

∞

0
∫ e−ttx−1dt. The argument x

need not be a non-positive integer (Γ(x) is defined over the reals, except the non-positive
integers).

XSI If x is NaN, −Inf, or a negative integer, the value of signgam is unspecified.

CX These functions need not be thread-safe.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the logarithmic gamma of x.

If x is a non-positive integer, a pole error shall occur and lgamma(), lgammaf(), and lgammal()
shall return +HUGE_VAL, +HUGE_VALF, and +HUGE_VALL, respectively.

If the correct value would cause overflow, a range error shall occur and lgamma(), lgammaf(),
and lgammal() shall return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (having the same
sign as the correct value), respectively.

MX If x is NaN, a NaN shall be returned.

If x is 1 or 2, +0 shall be returned.

If x is ±Inf, +Inf shall be returned.

ERRORS
These functions shall fail if:

Pole Error The x argument is a negative integer or zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression

1214 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

40027

40028

40029

40030

40031

40032

40033

40034

40035

40036

40037

40038

40039

40040

40041

40042

40043

40044

40045

40046

40047

40048

40049

40050

40051

40052

40053

40054

40055

40056

40057

40058

40059

40060

40061

40062

40063

40064

40065

40066

40067

System Interfaces lgamma()

(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), isnan()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
The lgamma() function is no longer marked as an extension.

The lgammaf() and lgammal() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Functionality relating to the XSI option is marked.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The DESCRIPTION is clarified regarding the value of signgam when x is Nan, −Inf, or a negative
integer.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1215

40068

40069

40070

40071

40072

40073

40074

40075

40076

40077

40078

40079

40080

40081

40082

40083

40084

40085

40086

40087

40088

40089

40090

40091

40092

40093

40094

40095

40096

40097

40098

40099

40100

link() System Interfaces

NAME
link, linkat — link one file to another file relative to two directory file descriptors

SYNOPSIS
#include <unistd.h>

int link(const char *path1, const char *path2);
int linkat(int fd1, const char *path1, int fd2, const char *path2,

int flag);

DESCRIPTION
The link() function shall create a new link (directory entry) for the existing file, path1.

The path1 argument points to a pathname naming an existing file. The path2 argument points to
a pathname naming the new directory entry to be created. The link() function shall atomically
create a new link for the existing file and the link count of the file shall be incremented by one.

If path1 names a directory, link() shall fail unless the process has appropriate privileges and the
implementation supports using link() on directories.

If path1 names a symbolic link, it is implementation-defined whether link() follows the symbolic
link, or creates a new link to the symbolic link itself.

Upon successful completion, link() shall mark for update the last file status change timestamp of
the file. Also, the last data modification and last file status change timestamps of the directory
that contains the new entry shall be marked for update.

If link() fails, no link shall be created and the link count of the file shall remain unchanged.

The implementation may require that the calling process has permission to access the existing
file.

The linkat() function shall be equivalent to the link() function except in the case where either
path1 or path2 or both are relative paths. In this case a relative path path1 is interpreted relative to
the directory associated with the file descriptor fd1 instead of the current working directory and
similarly for path2 and the file descriptor fd2. If the file descriptor was opened without
O_SEARCH, the function shall check whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was opened with
O_SEARCH, the function shall not perform the check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_SYMLINK_FOLLOW
If path1 names a symbolic link, a new link for the target of the symbolic link is created.

If linkat() is passed the special value AT_FDCWD in the fd1 or fd2 parameter, the current
working directory is used for the respective path argument. If both fd1 and fd2 have value
AT_FDCWD, the behavior shall be identical to a call to link().

If the AT_SYMLINK_FOLLOW flag is clear in the flag argument and the path1 argument names a
symbolic link, a new link is created for the symbolic link path1 and not its target.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error.

1216 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

40101

40102

40103

40104

40105

40106

40107

40108

40109

40110

40111

40112

40113

40114

40115

40116

40117

40118

40119

40120

40121

40122

40123

40124

40125

40126

40127

40128

40129

40130

40131

40132

40133

40134

40135

40136

40137

40138

40139

40140

40141

System Interfaces link()

ERRORS
These functions shall fail if:

[EACCES] A component of either path prefix denies search permission, or the requested
link requires writing in a directory that denies write permission, or the calling
process does not have permission to access the existing file and this is required
by the implementation.

[EEXIST] The path2 argument resolves to an existing directory entry or refers to a
symbolic link.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path1 or
path2 argument.

[EMLINK] The number of links to the file named by path1 would exceed {LINK_MAX}.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of either path prefix does not exist; the file named by path1 does
not exist; or path1 or path2 points to an empty string.

[ENOSPC] The directory to contain the link cannot be extended.

[ENOTDIR] A component of either path prefix is not a directory, or the path1 argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

[EPERM] The file named by path1 is a directory and either the calling process does not
have appropriate privileges or the implementation prohibits using link() on
directories.

[EROFS] The requested link requires writing in a directory on a read-only file system.

[EXDEV] The link named by path2 and the file named by path1 are on different file
systems and the implementation does not support links between file systems.

OB XSR [EXDEV] path1 refers to a named STREAM.

The linkat() function shall fail if:

[EBADF] The path1 or path2 argument does not specify an absolute path and the fd1 or
fd2 argument, respectively, is neither AT_FDCWD nor a valid file descriptor
open for reading.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path1 or path2 argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1217

40142

40143

40144

40145

40146

40147

40148

40149

40150

40151

40152

40153

40154

40155

40156

40157

40158

40159

40160

40161

40162

40163

40164

40165

40166

40167

40168

40169

40170

40171

40172

40173

40174

40175

40176

40177

40178

40179

link() System Interfaces

The linkat() function may fail if:

[EINVAL] The value of the flag argument is not valid.

[ENOTDIR] The path1 or path2 argument is not an absolute path and fd1 or fd2,
respectively, is neither AT_FDCWD nor a file descriptor associated with a
directory.

EXAMPLES

Creating a Link to a File

The following example shows how to create a link to a file named /home/cnd/mod1 by creating
a new directory entry named /modules/pass1.

#include <unistd.h>

char *path1 = "/home/cnd/mod1";
char *path2 = "/modules/pass1";
int status;
...
status = link (path1, path2);

Creating a Link to a File Within a Program

In the following program example, the link() function links the /etc/passwd file (defined as
PASSWDFILE) to a file named /etc/opasswd (defined as SAVEFILE), which is used to save the
current password file. Then, after removing the current password file (defined as
PASSWDFILE), the new password file is saved as the current password file using the link()
function again.

#include <unistd.h>

#define LOCKFILE "/etc/ptmp"
#define PASSWDFILE "/etc/passwd"
#define SAVEFILE "/etc/opasswd"
...
/* Save current password file */
link (PASSWDFILE, SAVEFILE);

/* Remove current password file. */
unlink (PASSWDFILE);

/* Save new password file as current password file. */
link (LOCKFILE,PASSWDFILE);

APPLICATION USAGE
Some implementations do allow links between file systems.

If path1 refers to a symbolic link, application developers should use linkat() with appropriate
flags to select whether or not the symbolic link should be resolved.

RATIONALE
Linking to a directory is restricted to the superuser in most historical implementations because
this capability may produce loops in the file hierarchy or otherwise corrupt the file system. This
volume of POSIX.1-2008 continues that philosophy by prohibiting link() and unlink() from
doing this. Other functions could do it if the implementor designed such an extension.

Some historical implementations allow linking of files on different file systems. Wording was

1218 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

40180

40181

40182

40183

40184

40185

40186

40187

40188

40189

40190

40191

40192

40193

40194

40195

40196

40197

40198

40199

40200

40201

40202

40203

40204

40205

40206

40207

40208

40209

40210

40211

40212

40213

40214

40215

40216

40217

40218

40219

40220

40221

System Interfaces link()

added to explicitly allow this optional behavior.

The exception for cross-file system links is intended to apply only to links that are
programmatically indistinguishable from ‘‘hard’’ links.

The purpose of the linkat() function is to link files in directories other than the current working
directory without exposure to race conditions. Any part of the path of a file could be changed in
parallel to a call to link(), resulting in unspecified behavior. By opening a file descriptor for the
directory of both the existing file and the target location and using the linkat() function it can be
guaranteed that the both filenames are in the desired directories.

The AT_SYMLINK_FOLLOW flag allows for implementing both common behaviors of the
link() function. The POSIX specification requires that if path1 is a symbolic link, a new link for
the target of the symbolic link is created. Many systems by default or as an alternative provide a
mechanism to avoid the implicit symbolic link lookup and create a new link for the symbolic
link itself.

Earlier versions of this standard specified only the link() function, and required it to behave like
linkat() with the AT_SYMLINK_FOLLOW flag. However, historical practice from SVR4 and
Linux kernels had link() behaving like linkat() with no flags, and many systems that attempted
to provide a conforming link() function did so in a way that was rarely used, and when it was
used did not conform to the standard (e.g., by not being atomic, or by dereferencing the
symbolic link incorrectly). Since applications could not rely on link() following links in practice,
the linkat() function was added taking a flag to specify the desired behavior for the application.

FUTURE DIRECTIONS
None.

SEE ALSO
rename(), symlink(), unlink()

XBD <fcntl.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• An explanation is added of the action when path2 refers to a symbolic link.

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

SD5-XSH-ERN-93 is applied, adding RATIONALE.

The linkat() function is added from The Open Group Technical Standard, 2006, Extended API Set
Part 2.

Functionality relating to XSI STREAMS is marked obsolescent.

Changes are made related to support for finegrained timestamps.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1219

40222

40223

40224

40225

40226

40227

40228

40229

40230

40231

40232

40233

40234

40235

40236

40237

40238

40239

40240

40241

40242

40243

40244

40245

40246

40247

40248

40249

40250

40251

40252

40253

40254

40255

40256

40257

40258

40259

40260

40261

40262

40263

link() System Interfaces

The [EOPNOTSUPP] error is removed.

1220 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

40264

System Interfaces lio_listio()

NAME
lio_listio — list directed I/O

SYNOPSIS
#include <aio.h>

int lio_listio(int mode, struct aiocb *restrict const list[restrict],
int nent, struct sigevent *restrict sig);

DESCRIPTION
The lio_listio() function shall initiate a list of I/O requests with a single function call.

The mode argument takes one of the values LIO_WAIT or LIO_NOWAIT declared in <aio.h> and
determines whether the function returns when the I/O operations have been completed, or as
soon as the operations have been queued. If the mode argument is LIO_WAIT, the function shall
wait until all I/O is complete and the sig argument shall be ignored.

If the mode argument is LIO_NOWAIT, the function shall return immediately, and asynchronous
notification shall occur, according to the sig argument, when all the I/O operations complete. If
sig is NULL, then no asynchronous notification shall occur. If sig is not NULL, asynchronous
notification occurs as specified in Section 2.4.1 (on page 484) when all the requests in list have
completed.

The I/O requests enumerated by list are submitted in an unspecified order.

The list argument is an array of pointers to aiocb structures. The array contains nent elements.
The array may contain NULL elements, which shall be ignored.

If the buffer pointed to by list or the aiocb structures pointed to by the elements of the array list
become illegal addresses before all asynchronous I/O completed and, if necessary, the
notification is sent, then the behavior is undefined. If the buffers pointed to by the aio_buf
member of the aiocb structure pointed to by the elements of the array list become illegal
addresses prior to the asynchronous I/O associated with that aiocb structure being completed,
the behavior is undefined.

The aio_lio_opcode field of each aiocb structure specifies the operation to be performed. The
supported operations are LIO_READ, LIO_WRITE, and LIO_NOP; these symbols are defined in
<aio.h>. The LIO_NOP operation causes the list entry to be ignored. If the aio_lio_opcode
element is equal to LIO_READ, then an I/O operation is submitted as if by a call to aio_read()
with the aiocbp equal to the address of the aiocb structure. If the aio_lio_opcode element is equal to
LIO_WRITE, then an I/O operation is submitted as if by a call to aio_write() with the aiocbp
equal to the address of the aiocb structure.

The aio_fildes member specifies the file descriptor on which the operation is to be performed.

The aio_buf member specifies the address of the buffer to or from which the data is transferred.

The aio_nbytes member specifies the number of bytes of data to be transferred.

The members of the aiocb structure further describe the I/O operation to be performed, in a
manner identical to that of the corresponding aiocb structure when used by the aio_read() and
aio_write() functions.

The nent argument specifies how many elements are members of the list; that is, the length of the
array.

The behavior of this function is altered according to the definitions of synchronized I/O data
integrity completion and synchronized I/O file integrity completion if synchronized I/O is
enabled on the file associated with aio_fildes.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1221

40265

40266

40267

40268

40269

40270

40271

40272

40273

40274

40275

40276

40277

40278

40279

40280

40281

40282

40283

40284

40285

40286

40287

40288

40289

40290

40291

40292

40293

40294

40295

40296

40297

40298

40299

40300

40301

40302

40303

40304

40305

40306

40307

40308

lio_listio() System Interfaces

For regular files, no data transfer shall occur past the offset maximum established in the open
file description associated with aiocbp−>aio_fildes.

If sig−>sigev_notify is SIGEV_THREAD and sig−>sigev_notify_attributes is a non-null pointer and
the block pointed to by this pointer becomes an illegal address prior to all asynchronous I/O
being completed, then the behavior is undefined.

RETURN VALUE
If the mode argument has the value LIO_NOWAIT, the lio_listio() function shall return the value
zero if the I/O operations are successfully queued; otherwise, the function shall return the value
−1 and set errno to indicate the error.

If the mode argument has the value LIO_WAIT, the lio_listio() function shall return the value zero
when all the indicated I/O has completed successfully. Otherwise, lio_listio() shall return a value
of −1 and set errno to indicate the error.

In either case, the return value only indicates the success or failure of the lio_listio() call itself,
not the status of the individual I/O requests. In some cases one or more of the I/O requests
contained in the list may fail. Failure of an individual request does not prevent completion of
any other individual request. To determine the outcome of each I/O request, the application
shall examine the error status associated with each aiocb control block. The error statuses so
returned are identical to those returned as the result of an aio_read() or aio_write() function.

ERRORS
The lio_listio() function shall fail if:

[EAGAIN] The resources necessary to queue all the I/O requests were not available. The
application may check the error status for each aiocb to determine the
individual request(s) that failed.

[EAGAIN] The number of entries indicated by nent would cause the system-wide limit
{AIO_MAX} to be exceeded.

[EINVAL] The mode argument is not a proper value, or the value of nent was greater than
{AIO_LISTIO_MAX}.

[EINTR] A signal was delivered while waiting for all I/O requests to complete during
an LIO_WAIT operation. Note that, since each I/O operation invoked by
lio_listio() may possibly provoke a signal when it completes, this error return
may be caused by the completion of one (or more) of the very I/O operations
being awaited. Outstanding I/O requests are not canceled, and the application
shall examine each list element to determine whether the request was
initiated, canceled, or completed.

[EIO] One or more of the individual I/O operations failed. The application may
check the error status for each aiocb structure to determine the individual
request(s) that failed.

In addition to the errors returned by the lio_listio() function, if the lio_listio() function succeeds
or fails with errors of [EAGAIN], [EINTR], or [EIO], then some of the I/O specified by the list
may have been initiated. If the lio_listio() function fails with an error code other than [EAGAIN],
[EINTR], or [EIO], no operations from the list shall have been initiated. The I/O operation
indicated by each list element can encounter errors specific to the individual read or write
function being performed. In this event, the error status for each aiocb control block contains the
associated error code. The error codes that can be set are the same as would be set by a read() or
write() function, with the following additional error codes possible:

1222 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

40309

40310

40311

40312

40313

40314

40315

40316

40317

40318

40319

40320

40321

40322

40323

40324

40325

40326

40327

40328

40329

40330

40331

40332

40333

40334

40335

40336

40337

40338

40339

40340

40341

40342

40343

40344

40345

40346

40347

40348

40349

40350

40351

40352

40353

System Interfaces lio_listio()

[EAGAIN] The requested I/O operation was not queued due to resource limitations.

[ECANCELED] The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel() request.

[EFBIG] The aiocbp−>aio_lio_opcode is LIO_WRITE, the file is a regular file,
aiocbp−>aio_nbytes is greater than 0, and the aiocbp−>aio_offset is greater than or
equal to the offset maximum in the open file description associated with
aiocbp−>aio_fildes.

[EINPROGRESS] The requested I/O is in progress.

[EOVERFLOW] The aiocbp−>aio_lio_opcode is LIO_READ, the file is a regular file,
aiocbp−>aio_nbytes is greater than 0, and the aiocbp−>aio_offset is before the
end-of-file and is greater than or equal to the offset maximum in the open file
description associated with aiocbp−>aio_fildes.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Although it may appear that there are inconsistencies in the specified circumstances for error
codes, the [EIO] error condition applies when any circumstance relating to an individual
operation makes that operation fail. This might be due to a badly formulated request (for
example, the aio_lio_opcode field is invalid, and aio_error() returns [EINVAL]) or might arise from
application behavior (for example, the file descriptor is closed before the operation is initiated,
and aio_error() returns [EBADF]).

The limitation on the set of error codes returned when operations from the list shall have been
initiated enables applications to know when operations have been started and whether
aio_error() is valid for a specific operation.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_read(), aio_write(), aio_error(), aio_return(), aio_cancel(), close(), exec , exit(), fork(), lseek(),
read()

XBD <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The lio_listio() function is marked as part of the Asynchronous Input and Output option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1223

40354

40355

40356

40357

40358

40359

40360

40361

40362

40363

40364

40365

40366

40367

40368

40369

40370

40371

40372

40373

40374

40375

40376

40377

40378

40379

40380

40381

40382

40383

40384

40385

40386

40387

40388

40389

40390

40391

40392

40393

40394

lio_listio() System Interfaces

• In the DESCRIPTION, text is added to indicate that for regular files no data transfer occurs
past the offset maximum established in the open file description associated with
aiocbp−>aio_fildes. This change is to support large files.

• The [EBIG] and [EOVERFLOW] error conditions are defined. This change is to support
large files.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the lio_listio() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 6
IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/53 is applied, adding new text for
symmetry with the aio_read() and aio_write() functions to the DESCRIPTION.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/54 is applied, adding text to the
DESCRIPTION making it explicit that the user is required to keep the structure pointed to by
sig−>sigev_notify_attributes valid until the last asynchronous operation finished and the
notification has been sent.

Issue 7
The lio_listio() function is moved from the Asynchronous Input and Output option to the Base.

1224 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

40395

40396

40397

40398

40399

40400

40401

40402

40403

40404

40405

40406

40407

40408

40409

40410

40411

System Interfaces listen()

NAME
listen — listen for socket connections and limit the queue of incoming connections

SYNOPSIS
#include <sys/socket.h>

int listen(int socket, int backlog);

DESCRIPTION
The listen() function shall mark a connection-mode socket, specified by the socket argument, as
accepting connections.

The backlog argument provides a hint to the implementation which the implementation shall use
to limit the number of outstanding connections in the socket’s listen queue. Implementations
may impose a limit on backlog and silently reduce the specified value. Normally, a larger backlog
argument value shall result in a larger or equal length of the listen queue. Implementations shall
support values of backlog up to SOMAXCONN, defined in <sys/socket.h>.

The implementation may include incomplete connections in its listen queue. The limits on the
number of incomplete connections and completed connections queued may be different.

The implementation may have an upper limit on the length of the listen queue—either global or
per accepting socket. If backlog exceeds this limit, the length of the listen queue is set to the limit.

If listen() is called with a backlog argument value that is less than 0, the function behaves as if it
had been called with a backlog argument value of 0.

A backlog argument of 0 may allow the socket to accept connections, in which case the length of
the listen queue may be set to an implementation-defined minimum value.

The socket in use may require the process to have appropriate privileges to use the listen()
function.

RETURN VALUE
Upon successful completions, listen() shall return 0; otherwise, −1 shall be returned and errno set
to indicate the error.

ERRORS
The listen() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EDESTADDRREQ]
The socket is not bound to a local address, and the protocol does not support
listening on an unbound socket.

[EINVAL] The socket is already connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket protocol does not support listen().

The listen() function may fail if:

[EACCES] The calling process does not have appropriate privileges.

[EINVAL] The socket has been shut down.

[ENOBUFS] Insufficient resources are available in the system to complete the call.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1225

40412

40413

40414

40415

40416

40417

40418

40419

40420

40421

40422

40423

40424

40425

40426

40427

40428

40429

40430

40431

40432

40433

40434

40435

40436

40437

40438

40439

40440

40441

40442

40443

40444

40445

40446

40447

40448

40449

40450

listen() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), connect(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The DESCRIPTION is updated to describe the relationship of SOMAXCONN and the backlog
argument.

1226 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

40451

40452

40453

40454

40455

40456

40457

40458

40459

40460

40461

40462

40463

40464

40465

System Interfaces llabs()

NAME
llabs — return a long integer absolute value

SYNOPSIS
#include <stdlib.h>

long long llabs(long long i);

DESCRIPTION
Refer to labs().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1227

40466

40467

40468

40469

40470

40471

40472

lldiv() System Interfaces

NAME
lldiv — compute quotient and remainder of a long division

SYNOPSIS
#include <stdlib.h>

lldiv_t lldiv(long long numer, long long denom);

DESCRIPTION
Refer to ldiv().

1228 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

40473

40474

40475

40476

40477

40478

40479

System Interfaces llrint()

NAME
llrint, llrintf, llrintl — round to the nearest integer value using current rounding direction

SYNOPSIS
#include <math.h>

long long llrint(double x);
long long llrintf(float x);
long long llrintl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall round their argument to the nearest integer value, rounding according to
the current rounding direction.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

MX If x is NaN, a domain error shall occur, and an unspecified value is returned.

If x is +Inf, a domain error shall occur and an unspecified value is returned.

If x is −Inf, a domain error shall occur and an unspecified value is returned.

If the correct value is positive and too large to represent as a long long, an unspecified value
MX shall be returned. On systems that support the IEC 60559 Floating-Point option, a domain error

shall occur;
CX otherwise, a domain error may occur.

If the correct value is negative and too large to represent as a long long, an unspecified value
MX shall be returned. On systems that support the IEC 60559 Floating-Point option, a domain error

shall occur;
CX otherwise, a domain error may occur.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is NaN or ±Inf, or the correct value is not representable as an
integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1229

40480

40481

40482

40483

40484

40485

40486

40487

40488

40489

40490

40491

40492

40493

40494

40495

40496

40497

40498

40499

40500

40501

40502

40503

40504

40505

40506

40507

40508

40509

40510

40511

40512

40513

40514

40515

40516

40517

40518

40519

40520

40521

40522

40523

llrint() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions provide floating-to-integer conversions. They round according to the current
rounding direction. If the rounded value is outside the range of the return type, the numeric
result is unspecified and the invalid floating-point exception is raised. When they raise no other
floating-point exception and the result differs from the argument, they raise the inexact floating-
point exception.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), lrint()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #53 is applied.

1230 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

40524

40525

40526

40527

40528

40529

40530

40531

40532

40533

40534

40535

40536

40537

40538

40539

40540

40541

40542

40543

System Interfaces llround()

NAME
llround, llroundf, llroundl — round to nearest integer value

SYNOPSIS
#include <math.h>

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall round their argument to the nearest integer value, rounding halfway cases
away from zero, regardless of the current rounding direction.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

MX If x is NaN, a domain error shall occur, and an unspecified value is returned.

If x is +Inf, a domain error shall occur and an unspecified value is returned.

If x is −Inf, a domain error shall occur and an unspecified value is returned.

If the correct value is positive and too large to represent as a long long, an unspecified value
MX shall be returned. On systems that support the IEC 60559 Floating-Point option, a domain error

shall occur;
CX otherwise, a domain error may occur.

If the correct value is negative and too large to represent as a long long, an unspecified value
MX shall be returned. On systems that support the IEC 60559 Floating-Point option, a domain error

shall occur;
CX otherwise, a domain error may occur.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is NaN or ±Inf, or the correct value is not representable as an
integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1231

40544

40545

40546

40547

40548

40549

40550

40551

40552

40553

40554

40555

40556

40557

40558

40559

40560

40561

40562

40563

40564

40565

40566

40567

40568

40569

40570

40571

40572

40573

40574

40575

40576

40577

40578

40579

40580

40581

40582

40583

40584

40585

40586

40587

llround() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions differ from the llrint() functions in that the default rounding direction for the
llround() functions round halfway cases away from zero and need not raise the inexact floating-
point exception for non-integer arguments that round to within the range of the return type.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), lround()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #54 (SD5-XSH-ERN-75) is applied.

1232 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

40588

40589

40590

40591

40592

40593

40594

40595

40596

40597

40598

40599

40600

40601

40602

40603

40604

40605

System Interfaces localeconv()

NAME
localeconv — return locale-specific information

SYNOPSIS
#include <locale.h>

struct lconv *localeconv(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The localeconv() function shall set the components of an object with the type struct lconv with
the values appropriate for the formatting of numeric quantities (monetary and otherwise)
according to the rules of the current locale.

The members of the structure with type char * are pointers to strings, any of which (except
decimal_point) can point to "", to indicate that the value is not available in the current locale or
is of zero length. The members with type char are non-negative numbers, any of which can be
{CHAR_MAX} to indicate that the value is not available in the current locale.

The members include the following:

char *decimal_point
The radix character used to format non-monetary quantities.

char *thousands_sep
The character used to separate groups of digits before the decimal-point character in
formatted non-monetary quantities.

char *grouping
A string whose elements taken as one-byte integer values indicate the size of each group of
digits in formatted non-monetary quantities.

char *int_curr_symbol
The international currency symbol applicable to the current locale. The first three characters
contain the alphabetic international currency symbol in accordance with those specified in
the ISO 4217: 2001 standard. The fourth character (immediately preceding the null byte) is
the character used to separate the international currency symbol from the monetary
quantity.

char *currency_symbol
The local currency symbol applicable to the current locale.

char *mon_decimal_point
The radix character used to format monetary quantities.

char *mon_thousands_sep
The separator for groups of digits before the decimal-point in formatted monetary
quantities.

char *mon_grouping
A string whose elements taken as one-byte integer values indicate the size of each group of
digits in formatted monetary quantities.

char *positive_sign
The string used to indicate a non-negative valued formatted monetary quantity.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1233

40606

40607

40608

40609

40610

40611

40612

40613

40614

40615

40616

40617

40618

40619

40620

40621

40622

40623

40624

40625

40626

40627

40628

40629

40630

40631

40632

40633

40634

40635

40636

40637

40638

40639

40640

40641

40642

40643

40644

40645

40646

40647

40648

localeconv() System Interfaces

char *negative_sign
The string used to indicate a negative valued formatted monetary quantity.

char int_frac_digits
The number of fractional digits (those after the decimal-point) to be displayed in an
internationally formatted monetary quantity.

char frac_digits
The number of fractional digits (those after the decimal-point) to be displayed in a
formatted monetary quantity.

char p_cs_precedes
Set to 1 if the currency_symbol precedes the value for a non-negative formatted monetary
quantity. Set to 0 if the symbol succeeds the value.

char p_sep_by_space
Set to a value indicating the separation of the currency_symbol, the sign string, and the
value for a non-negative formatted monetary quantity.

char n_cs_precedes
Set to 1 if the currency_symbol precedes the value for a negative formatted monetary
quantity. Set to 0 if the symbol succeeds the value.

char n_sep_by_space
Set to a value indicating the separation of the currency_symbol, the sign string, and the
value for a negative formatted monetary quantity.

char p_sign_posn
Set to a value indicating the positioning of the positive_sign for a non-negative formatted
monetary quantity.

char n_sign_posn
Set to a value indicating the positioning of the negative_sign for a negative formatted
monetary quantity.

char int_p_cs_precedes
Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a non-
negative internationally formatted monetary quantity.

char int_n_cs_precedes
Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a
negative internationally formatted monetary quantity.

char int_p_sep_by_space
Set to a value indicating the separation of the int_curr_symbol, the sign string, and the
value for a non-negative internationally formatted monetary quantity.

char int_n_sep_by_space
Set to a value indicating the separation of the int_curr_symbol, the sign string, and the
value for a negative internationally formatted monetary quantity.

char int_p_sign_posn
Set to a value indicating the positioning of the positive_sign for a non-negative
internationally formatted monetary quantity.

char int_n_sign_posn
Set to a value indicating the positioning of the negative_sign for a negative internationally
formatted monetary quantity.

1234 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

40649

40650

40651

40652

40653

40654

40655

40656

40657

40658

40659

40660

40661

40662

40663

40664

40665

40666

40667

40668

40669

40670

40671

40672

40673

40674

40675

40676

40677

40678

40679

40680

40681

40682

40683

40684

40685

40686

40687

40688

40689

40690

40691

40692

System Interfaces localeconv()

The elements of grouping and mon_grouping are interpreted according to the following:

{CHAR_MAX} No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the digits.

other The integer value is the number of digits that comprise the current group. The
next element is examined to determine the size of the next group of digits
before the current group.

The values of p_sep_by_space, n_sep_by_space, int_p_sep_by_space, and int_n_sep_by_space
are interpreted according to the following:

0 No space separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a space separates them from the value;
otherwise, a space separates the currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a space separates them; otherwise, a
space separates the sign string from the value.

For int_p_sep_by_space and int_n_sep_by_space, the fourth character of int_curr_symbol is
used instead of a space.

The values of p_sign_posn, n_sign_posn, int_p_sign_posn, and int_n_sign_posn are
interpreted according to the following:

0 Parentheses surround the quantity and currency_symbol or int_curr_symbol.

1 The sign string precedes the quantity and currency_symbol or int_curr_symbol.

2 The sign string succeeds the quantity and currency_symbol or int_curr_symbol.

3 The sign string immediately precedes the currency_symbol or int_curr_symbol.

4 The sign string immediately succeeds the currency_symbol or int_curr_symbol.

The implementation shall behave as if no function in this volume of POSIX.1-2008 calls
localeconv().

CX The localeconv() function need not be thread-safe.

RETURN VALUE
The localeconv() function shall return a pointer to the filled-in object. The application shall not
modify the structure pointed to by the return value which may be overwritten by a subsequent
call to localeconv(). In addition, calls to setlocale() with the categories LC_ALL, LC_MONETARY,
or LC_NUMERIC or calls to uselocale() which change the categories LC_MONETARY or
LC_NUMERIC may overwrite the contents of the structure.

ERRORS
No errors are defined.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1235

40693

40694

40695

40696

40697

40698

40699

40700

40701

40702

40703

40704

40705

40706

40707

40708

40709

40710

40711

40712

40713

40714

40715

40716

40717

40718

40719

40720

40721

40722

40723

40724

40725

localeconv() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The following table illustrates the rules which may be used by four countries to format
monetary quantities.

Country Positive Format Negative Format International Format

Italy €.1.230 −€.1.230 EUR.1.230
Netherlands € 1.234,56 € −1.234,56 EUR 1.234,56
Norway kr1.234,56 kr1.234,56− NOK 1.234,56
Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

For these four countries, the respective values for the monetary members of the structure
returned by localeconv() are:

Italy Netherlands Norway Switzerland

int_curr_symbol "EUR." "EUR " "NOK " "CHF "
currency_symbol "€." "€" "kr" "SFrs."
mon_decimal_point "" "," "," "."
mon_thousands_sep "." "." "." ","
mon_grouping "\3" "\3" "\3" "\3"
positive_sign "" "" "" ""
negative_sign "-" "-" "-" "C"
int_frac_digits 0 2 2 2
frac_digits 0 2 2 2
p_cs_precedes 1 1 1 1
p_sep_by_space 0 1 0 0
n_cs_precedes 1 1 1 1
n_sep_by_space 0 1 0 0
p_sign_posn 1 1 1 1
n_sign_posn 1 4 2 2
int_p_cs_precedes 1 1 1 1
int_n_cs_precedes 1 1 1 1
int_p_sep_by_space 0 0 0 0
int_n_sep_by_space 0 0 0 0
int_p_sign_posn 1 1 1 1
int_n_sign_posn 1 4 4 2

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf(), fscanf(), isalpha(), isascii(), nl_langinfo(), setlocale(), strcat(), strchr(), strcmp(), strcoll(),
strcpy(), strftime(), strlen(), strpbrk(), strspn(), strtok(), strxfrm(), strtod(), uselocale()

XBD <langinfo.h>, <locale.h>

1236 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

40726

40727

40728

40729

40730

40731

40732

40733

40734

40735

40736

40737

40738

40739

40740

40741

40742

40743

40744

40745

40746

40747

40748

40749

40750

40751

40752

40753

40754

40755

40756

40757

40758

40759

40760

40761

40762

40763

40764

40765

40766

40767

System Interfaces localeconv()

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 6
A note indicating that this function need not be reentrant is added to the DESCRIPTION.

The RETURN VALUE section is rewritten to avoid use of the term ‘‘must’’.

This reference page is updated for alignment with the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/31 is applied, removing references to
int_curr_symbol and updating the descriptions of p_sep_by_space and n_sep_by_space. These
changes are for alignment with the ISO C standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The definitions of int_curr_symbol and currency_symbol are updated.

The examples in the APPLICATION USAGE section are updated.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1237

40768

40769

40770

40771

40772

40773

40774

40775

40776

40777

40778

40779

40780

40781

localtime() System Interfaces

NAME
localtime, localtime_r — convert a time value to a broken-down local time

SYNOPSIS
#include <time.h>

struct tm *localtime(const time_t *timer);
CX struct tm *localtime_r(const time_t *restrict timer,

struct tm *restrict result);

DESCRIPTION
CX For localtime(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

The localtime() function shall convert the time in seconds since the Epoch pointed to by timer
into a broken-down time, expressed as a local time. The function corrects for the timezone and

CX any seasonal time adjustments. Local timezone information is used as though localtime() calls
tzset().

The relationship between a time in seconds since the Epoch used as an argument to localtime()
and the tm structure (defined in the <time.h> header) is that the result shall be as specified in
the expression given in the definition of seconds since the Epoch (see XBD Section 4.15, on page
113) corrected for timezone and any seasonal time adjustments, where the names in the structure
and in the expression correspond.

The same relationship shall apply for localtime_r().

The localtime() function need not be thread-safe.

The asctime(), ctime(), gmtime(), and localtime() functions shall return values in one of two static
objects: a broken-down time structure and an array of type char. Execution of any of the
functions may overwrite the information returned in either of these objects by any of the other
functions.

The localtime_r() function shall convert the time in seconds since the Epoch pointed to by timer
into a broken-down time stored in the structure to which result points. The localtime_r() function
shall also return a pointer to that same structure.

Unlike localtime(), the localtime_r() function is not required to set tzname. If localtime_r() does
not set tzname, it shall not set daylight and shall not set timezone.

RETURN VALUE
Upon successful completion, the localtime() function shall return a pointer to the broken-down

CX time structure. If an error is detected, localtime() shall return a null pointer and set errno to
indicate the error.

Upon successful completion, localtime_r() shall return a pointer to the structure pointed to by the
argument result. If an error is detected, localtime_r() shall return a null pointer and set errno to
indicate the error.

ERRORS
CX The localtime() and localtime_r() functions shall fail if:

CX [EOVERFLOW] The result cannot be represented.

1238 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

40782

40783

40784

40785

40786

40787

40788

40789

40790

40791

40792

40793

40794

40795

40796

40797

40798

40799

40800

40801

40802

40803

40804

40805

40806

40807

40808

40809

40810

40811

40812

40813

40814

40815

40816

40817

40818

40819

40820

40821

40822

System Interfaces localtime()

EXAMPLES

Getting the Local Date and Time

The following example uses the time() function to calculate the time elapsed, in seconds, since
January 1, 1970 0:00 UTC (the Epoch), localtime() to convert that value to a broken-down time,
and asctime() to convert the broken-down time values into a printable string.

#include <stdio.h>
#include <time.h>

int main(void)
{

time_t result;

result = time(NULL);
printf("%s%ju secs since the Epoch\n",

asctime(localtime(&result)),
(uintmax_t)result);

return(0);
}

This example writes the current time to stdout in a form like this:

Wed Jun 26 10:32:15 1996
835810335 secs since the Epoch

Getting the Modification Time for a File

The following example prints the last data modification timestamp in the local timezone for a
given file.

#include <stdio.h>
#include <time.h>
#include <sys/stat.h>

int
print_file_time(const char *filename)
{

struct stat statbuf;
struct tm *tm;
char timestr[BUFSIZ];

if(stat(filename, &statbuf) == −1)
return −1;

if((tm = localtime(&statbuf.st_mtime)) == NULL)
return −1;

if(strftime(timestr, sizeof(timestr), "%Y-%m-%d %H:%M:%S", tm) == 0)
return −1;

printf("%s: %s.%09ld\n", filename, timestr, statbuf.st_mtim.tv_nsec);
return 0;

}

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1239

40823

40824

40825

40826

40827

40828

40829

40830

40831

40832

40833

40834

40835

40836

40837

40838

40839

40840

40841

40842

40843

40844

40845

40846

40847

40848

40849

40850

40851

40852

40853

40854

40855

40856

40857

40858

40859

40860

40861

40862

localtime() System Interfaces

Timing an Event

The following example gets the current time, converts it to a string using localtime() and
asctime(), and prints it to standard output using fputs(). It then prints the number of minutes to
an event being timed.

#include <time.h>
#include <stdio.h>
...
time_t now;
int minutes_to_event;
...
time(&now);
printf("The time is ");
fputs(asctime(localtime(&now)), stdout);
printf("There are still %d minutes to the event.\n",

minutes_to_event);
...

APPLICATION USAGE
The localtime_r() function is thread-safe and returns values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), difftime(), getdate(), gmtime(), mktime(), strftime(), strptime(), time(),
tzset(), utime()

XBD Section 4.15 (on page 113), <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A note indicating that the localtime() function need not be reentrant is added to the
DESCRIPTION.

The localtime_r() function is included for alignment with the POSIX Threads Extension.

Issue 6
The localtime_r() function is marked as part of the Thread-Safe Functions option.

Extensions beyond the ISO C standard are marked.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

The restrict keyword is added to the localtime_r() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Examples are added.

IEEE Std 1003.1-2001/Cor 1-2002, itemm XSH/TC1/D6/32 is applied, adding the
[EOVERFLOW] error.

1240 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

40863

40864

40865

40866

40867

40868

40869

40870

40871

40872

40873

40874

40875

40876

40877

40878

40879

40880

40881

40882

40883

40884

40885

40886

40887

40888

40889

40890

40891

40892

40893

40894

40895

40896

40897

40898

40899

40900

40901

40902

40903

40904

40905

System Interfaces localtime()

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/55 is applied, updating the error handling
for localtime_r().

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/56 is applied, adding a requirement that if
localtime_r() does not set the tzname variable, it shall not set the daylight or timezone variables. On
systems supporting XSI, the daylight, timezone, and tzname variables should all be set to provide
information for the same timezone. This updates the description of localtime_r() to mention
daylight and timezone as well as tzname. The SEE ALSO section is updated.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The localtime_r() function is moved from the Thread-Safe Functions option to the Base.

Changes are made to the EXAMPLES section related to support for finegrained timestamps.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1241

40906

40907

40908

40909

40910

40911

40912

40913

40914

40915

40916

lockf() System Interfaces

NAME
lockf — record locking on files

SYNOPSIS
XSI #include <unistd.h>

int lockf(int fildes, int function, off_t size);

DESCRIPTION
The lockf() function shall lock sections of a file with advisory-mode locks. Calls to lockf() from
threads in other processes which attempt to lock the locked file section shall either return an
error value or block until the section becomes unlocked. All the locks for a process are removed
when the process terminates. Record locking with lockf() shall be supported for regular files and
may be supported for other files.

The fildes argument is an open file descriptor. To establish a lock with this function, the file
descriptor shall be opened with write-only permission (O_WRONLY) or with read/write
permission (O_RDWR).

The function argument is a control value which specifies the action to be taken. The permissible
values for function are defined in <unistd.h> as follows:

Function Description

F_ULOCK Unlock locked sections.
F_LOCK Lock a section for exclusive use.
F_TLOCK Test and lock a section for exclusive use.
F_TEST Test a section for locks by other processes.

F_TEST shall detect if a lock by another process is present on the specified section.

F_LOCK and F_TLOCK shall both lock a section of a file if the section is available.

F_ULOCK shall remove locks from a section of the file.

The size argument is the number of contiguous bytes to be locked or unlocked. The section to be
locked or unlocked starts at the current offset in the file and extends forward for a positive size
or backward for a negative size (the preceding bytes up to but not including the current offset).
If size is 0, the section from the current offset through the largest possible file offset shall be
locked (that is, from the current offset through the present or any future end-of-file). An area
need not be allocated to the file to be locked because locks may exist past the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole or in part, contain or be contained
by a previously locked section for the same process. When this occurs, or if adjacent locked
sections would occur, the sections shall be combined into a single locked section. If the request
would cause the number of locks to exceed a system-imposed limit, the request shall fail.

F_LOCK and F_TLOCK requests differ only by the action taken if the section is not available.
F_LOCK shall block the calling thread until the section is available. F_TLOCK shall cause the
function to fail if the section is already locked by another process.

File locks shall be released on first close by the locking process of any file descriptor for the file.

F_ULOCK requests may release (wholly or in part) one or more locked sections controlled by the
process. Locked sections shall be unlocked starting at the current file offset through size bytes or
to the end-of-file if size is (off_t)0. When all of a locked section is not released (that is, when the
beginning or end of the area to be unlocked falls within a locked section), the remaining portions
of that section shall remain locked by the process. Releasing the center portion of a locked
section shall cause the remaining locked beginning and end portions to become two separate

1242 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

40917

40918

40919

40920

40921

40922

40923

40924

40925

40926

40927

40928

40929

40930

40931

40932

40933

40934

40935

40936

40937

40938

40939

40940

40941

40942

40943

40944

40945

40946

40947

40948

40949

40950

40951

40952

40953

40954

40955

40956

40957

40958

40959

40960

System Interfaces lockf()

locked sections. If the request would cause the number of locks in the system to exceed a system-
imposed limit, the request shall fail.

A potential for deadlock occurs if the threads of a process controlling a locked section are
blocked by accessing a locked section of another process. If the system detects that deadlock
would occur, lockf() shall fail with an [EDEADLK] error.

The interaction between fcntl() and lockf() locks is unspecified.

Blocking on a section shall be interrupted by any signal.

An F_ULOCK request in which size is non-zero and the offset of the last byte of the requested
section is the maximum value for an object of type off_t, when the process has an existing lock
in which size is 0 and which includes the last byte of the requested section, shall be treated as a
request to unlock from the start of the requested section with a size equal to 0. Otherwise, an
F_ULOCK request shall attempt to unlock only the requested section.

Attempting to lock a section of a file that is associated with a buffered stream produces
unspecified results.

RETURN VALUE
Upon successful completion, lockf() shall return 0. Otherwise, it shall return −1, set errno to
indicate an error, and existing locks shall not be changed.

ERRORS
The lockf() function shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor; or function is F_LOCK
or F_TLOCK and fildes is not a valid file descriptor open for writing.

[EACCES] or [EAGAIN]
The function argument is F_TLOCK or F_TEST and the section is already
locked by another process.

[EDEADLK] The function argument is F_LOCK and a deadlock is detected.

[EINTR] A signal was caught during execution of the function.

[EINVAL] The function argument is not one of F_LOCK, F_TLOCK, F_TEST, or
F_ULOCK; or size plus the current file offset is less than 0.

[EOVERFLOW] The offset of the first, or if size is not 0 then the last, byte in the requested
section cannot be represented correctly in an object of type off_t.

The lockf() function may fail if:

[EAGAIN] The function argument is F_LOCK or F_TLOCK and the file is mapped with
mmap().

[EDEADLK] or [ENOLCK]
The function argument is F_LOCK, F_TLOCK, or F_ULOCK, and the request
would cause the number of locks to exceed a system-imposed limit.

[EOPNOTSUPP] or [EINVAL]
The implementation does not support the locking of files of the type indicated
by the fildes argument.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1243

40961

40962

40963

40964

40965

40966

40967

40968

40969

40970

40971

40972

40973

40974

40975

40976

40977

40978

40979

40980

40981

40982

40983

40984

40985

40986

40987

40988

40989

40990

40991

40992

40993

40994

40995

40996

40997

40998

40999

lockf() System Interfaces

EXAMPLES

Locking a Portion of a File

In the following example, a file named /home/cnd/mod1 is being modified. Other processes that
use locking are prevented from changing it during this process. Only the first 10 000 bytes are
locked, and the lock call fails if another process has any part of this area locked already.

#include <fcntl.h>
#include <unistd.h>

int fildes;
int status;
...
fildes = open("/home/cnd/mod1", O_RDWR);
status = lockf(fildes, F_TLOCK, (off_t)10000);

APPLICATION USAGE
Record-locking should not be used in combination with the fopen(), fread(), fwrite(), and other
stdio functions. Instead, the more primitive, non-buffered functions (such as open()) should be
used. Unexpected results may occur in processes that do buffering in the user address space. The
process may later read/write data which is/was locked. The stdio functions are the most
common source of unexpected buffering.

The alarm() function may be used to provide a timeout facility in applications requiring it.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), chmod(), close(), creat(), fcntl(), fopen(), mmap(), open(), read(), write()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Large File Summit extensions are added. In particular, the description of [EINVAL] is clarified
and moved from optional to mandatory status.

A note is added to the DESCRIPTION indicating the effects of attempting to lock a section of a
file that is associated with a buffered stream.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #054 is applied, updating the DESCRIPTION.

1244 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41000

41001

41002

41003

41004

41005

41006

41007

41008

41009

41010

41011

41012

41013

41014

41015

41016

41017

41018

41019

41020

41021

41022

41023

41024

41025

41026

41027

41028

41029

41030

41031

41032

41033

41034

41035

41036

41037

System Interfaces log()

NAME
log, logf, logl — natural logarithm function

SYNOPSIS
#include <math.h>

double log(double x);
float logf(float x);
long double logl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the natural logarithm of their argument x, log
e
(x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the natural logarithm of x.

If x is ±0, a pole error shall occur and log(), logf(), and logl() shall return −HUGE_VAL,
−HUGE_VALF, and −HUGE_VALL, respectively.

MXMX For finite values of x that are less than 0, or if x is −Inf, a domain error shall occur, and either a
NaN (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is 1, +0 shall be returned.

If x is +Inf, x shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The finite value of x is negative, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1245

41038

41039

41040

41041

41042

41043

41044

41045

41046

41047

41048

41049

41050

41051

41052

41053

41054

41055

41056

41057

41058

41059

41060

41061

41062

41063

41064

41065

41066

41067

41068

41069

41070

41071

41072

41073

41074

log() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), isnan(), log10(), log1p()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The logf() and logl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

1246 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41075

41076

41077

41078

41079

41080

41081

41082

41083

41084

41085

41086

41087

41088

41089

41090

41091

41092

41093

41094

41095

41096

41097

41098

System Interfaces log10()

NAME
log10, log10f, log10l — base 10 logarithm function

SYNOPSIS
#include <math.h>

double log10(double x);
float log10f(float x);
long double log10l(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the base 10 logarithm of their argument x, log
10

(x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the base 10 logarithm of x.

If x is ±0, a pole error shall occur and log10(), log10f(), and log10l() shall return −HUGE_VAL,
−HUGE_VALF, and −HUGE_VALL, respectively.

MXMX For finite values of x that are less than 0, or if x is −Inf, a domain error shall occur, and either a
NaN (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is 1, +0 shall be returned.

If x is +Inf, +Inf shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The finite value of x is negative, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1247

41099

41100

41101

41102

41103

41104

41105

41106

41107

41108

41109

41110

41111

41112

41113

41114

41115

41116

41117

41118

41119

41120

41121

41122

41123

41124

41125

41126

41127

41128

41129

41130

41131

41132

41133

41134

41135

log10() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), log(), pow()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The log10f() and log10l() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

1248 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41136

41137

41138

41139

41140

41141

41142

41143

41144

41145

41146

41147

41148

41149

41150

41151

41152

41153

41154

41155

41156

41157

41158

41159

41160

System Interfaces log1p()

NAME
log1p, log1pf, log1pl — compute a natural logarithm

SYNOPSIS
#include <math.h>

double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute log
e
(1.0 + x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the natural logarithm of 1.0 + x.

If x is −1, a pole error shall occur and log1p(), log1pf(), and log1pl() shall return −HUGE_VAL,
−HUGE_VALF, and −HUGE_VALL, respectively.

MXMX For finite values of x that are less than −1, or if x is −Inf, a domain error shall occur, and either a
NaN (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, or +Inf, x shall be returned.

If x is subnormal, a range error may occur and x should be returned.

ERRORS
These functions shall fail if:

MX Domain Error The finite value of x is less than −1, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is −1.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1249

41161

41162

41163

41164

41165

41166

41167

41168

41169

41170

41171

41172

41173

41174

41175

41176

41177

41178

41179

41180

41181

41182

41183

41184

41185

41186

41187

41188

41189

41190

41191

41192

41193

41194

41195

41196

41197

41198

41199

41200

41201

41202

41203

log1p() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), log()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The log1p() function is no longer marked as an extension.

The log1pf() and log1pl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

1250 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41204

41205

41206

41207

41208

41209

41210

41211

41212

41213

41214

41215

41216

41217

41218

41219

41220

41221

41222

41223

41224

41225

41226

41227

41228

System Interfaces log2()

NAME
log2, log2f, log2l — compute base 2 logarithm functions

SYNOPSIS
#include <math.h>

double log2(double x);
float log2f(float x);
long double log2l(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the base 2 logarithm of their argument x, log2(x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the base 2 logarithm of x.

If x is ±0, a pole error shall occur and log2(), log2f(), and log2l() shall return −HUGE_VAL,
−HUGE_VALF, and −HUGE_VALL, respectively.

MXMX For finite values of x that are less than 0, or if x is −Inf, a domain error shall occur, and either a
NaN (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is 1, +0 shall be returned.

If x is +Inf, x shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The finite value of x is less than zero, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1251

41229

41230

41231

41232

41233

41234

41235

41236

41237

41238

41239

41240

41241

41242

41243

41244

41245

41246

41247

41248

41249

41250

41251

41252

41253

41254

41255

41256

41257

41258

41259

41260

41261

41262

41263

41264

41265

log2() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), log()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

1252 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41266

41267

41268

41269

41270

41271

41272

41273

41274

41275

41276

41277

41278

41279

System Interfaces logb()

NAME
logb, logbf, logbl — radix-independent exponent

SYNOPSIS
#include <math.h>

double logb(double x);
float logbf(float x);
long double logbl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the exponent of x, which is the integral part of log
r

| x |, as a
signed floating-point value, for non-zero x, where r is the radix of the machine’s floating-point
arithmetic, which is the value of FLT_RADIX defined in the <float.h> header.

If x is subnormal it is treated as though it were normalized; thus for finite positive x:

1 <= x * FLT_RADIX−logb(x) < FLT_RADIX

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the exponent of x.

If x is ±0, logb(), logbf(), and logbl() shall return −HUGE_VAL, −HUGE_VALF, and
MX −HUGE_VALL, respectively. On systems that support the IEC 60559 Floating-Point option, a

pole error shall occur;
CX otherwise, a pole error may occur.

MX If x is NaN, a NaN shall be returned.

MX If x is ±Inf, +Inf shall be returned.

ERRORS
These functions shall fail if:

MX Pole Error The value of x is ±0.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

These functions may fail if:

Pole Error The value of x is 0.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1253

41280

41281

41282

41283

41284

41285

41286

41287

41288

41289

41290

41291

41292

41293

41294

41295

41296

41297

41298

41299

41300

41301

41302

41303

41304

41305

41306

41307

41308

41309

41310

41311

41312

41313

41314

41315

41316

41317

41318

41319

41320

logb() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), ilogb(), scalbln()

XBD Section 4.19 (on page 116), <float.h>, <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The logb() function is no longer marked as an extension.

The logbf() and logbl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #50 (SD5-XSH-ERN-76) is applied.

1254 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41321

41322

41323

41324

41325

41326

41327

41328

41329

41330

41331

41332

41333

41334

41335

41336

41337

41338

41339

41340

41341

41342

41343

41344

41345

System Interfaces logf()

NAME
logf, logl — natural logarithm function

SYNOPSIS
#include <math.h>

float logf(float x);
long double logl(long double x);

DESCRIPTION
Refer to log().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1255

41346

41347

41348

41349

41350

41351

41352

41353

longjmp() System Interfaces

NAME
longjmp — non-local goto

SYNOPSIS
#include <setjmp.h>

void longjmp(jmp_buf env, int val);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The longjmp() function shall restore the environment saved by the most recent invocation of
setjmp() in the same thread, with the corresponding jmp_buf argument. If there is no such
invocation, or if the function containing the invocation of setjmp() has terminated execution in
the interim, or if the invocation of setjmp() was within the scope of an identifier with variably

CX modified type and execution has left that scope in the interim, the behavior is undefined. It is
unspecified whether longjmp() restores the signal mask, leaves the signal mask unchanged, or
restores it to its value at the time setjmp() was called.

All accessible objects have values, and all other components of the abstract machine have state
(for example, floating-point status flags and open files), as of the time longjmp() was called,
except that the values of objects of automatic storage duration are unspecified if they meet all
the following conditions:

• They are local to the function containing the corresponding setjmp() invocation.

• They do not have volatile-qualified type.

• They are changed between the setjmp() invocation and longjmp() call.

CX As it bypasses the usual function call and return mechanisms, longjmp() shall execute correctly
in contexts of interrupts, signals, and any of their associated functions. However, if longjmp() is
invoked from a nested signal handler (that is, from a function invoked as a result of a signal
raised during the handling of another signal), the behavior is undefined.

The effect of a call to longjmp() where initialization of the jmp_buf structure was not performed
in the calling thread is undefined.

RETURN VALUE
After longjmp() is completed, program execution continues as if the corresponding invocation of
setjmp() had just returned the value specified by val. The longjmp() function shall not cause
setjmp() to return 0; if val is 0, setjmp() shall return 1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications whose behavior depends on the value of the signal mask should not use longjmp()
and setjmp(), since their effect on the signal mask is unspecified, but should instead use the
siglongjmp() and sigsetjmp() functions (which can save and restore the signal mask under
application control).

1256 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41354

41355

41356

41357

41358

41359

41360

41361

41362

41363

41364

41365

41366

41367

41368

41369

41370

41371

41372

41373

41374

41375

41376

41377

41378

41379

41380

41381

41382

41383

41384

41385

41386

41387

41388

41389

41390

41391

41392

41393

41394

41395

System Interfaces longjmp()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setjmp(), sigaction(), siglongjmp(), sigsetjmp()

XBD <setjmp.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION now explicitly makes longjmp()’s effect on the signal mask
unspecified.

The DESCRIPTION is updated for alignment with the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1257

41396

41397

41398

41399

41400

41401

41402

41403

41404

41405

41406

41407

41408

41409

41410

41411

41412

41413

lrand48() System Interfaces

NAME
lrand48 — generate uniformly distributed pseudo-random non-negative long integers

SYNOPSIS
XSI #include <stdlib.h>

long lrand48(void);

DESCRIPTION
Refer to drand48().

1258 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41414

41415

41416

41417

41418

41419

41420

System Interfaces lrint()

NAME
lrint, lrintf, lrintl — round to nearest integer value using current rounding direction

SYNOPSIS
#include <math.h>

long lrint(double x);
long lrintf(float x);
long lrintl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall round their argument to the nearest integer value, rounding according to
the current rounding direction.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

MX If x is NaN, a domain error shall occur and an unspecified value is returned.

If x is +Inf, a domain error shall occur and an unspecified value is returned.

If x is −Inf, a domain error shall occur and an unspecified value is returned.

If the correct value is positive and too large to represent as a long, an unspecified value shall be
MX returned. On systems that support the IEC 60559 Floating-Point option, a domain error shall

occur;
CX otherwise, a domain error may occur.

If the correct value is negative and too large to represent as a long, an unspecified value shall be
MX returned. On systems that support the IEC 60559 Floating-Point option, a domain error shall

occur;
CX otherwise, a domain error may occur.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is NaN or ±Inf, or the correct value is not representable as an
integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1259

41421

41422

41423

41424

41425

41426

41427

41428

41429

41430

41431

41432

41433

41434

41435

41436

41437

41438

41439

41440

41441

41442

41443

41444

41445

41446

41447

41448

41449

41450

41451

41452

41453

41454

41455

41456

41457

41458

41459

41460

41461

41462

41463

41464

lrint() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions provide floating-to-integer conversions. They round according to the current
rounding direction. If the rounded value is outside the range of the return type, the numeric
result is unspecified and the invalid floating-point exception is raised. When they raise no other
floating-point exception and the result differs from the argument, they raise the inexact floating-
point exception.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), llrint()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #53 (SD5-XSH-ERN-77) is applied.

1260 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41465

41466

41467

41468

41469

41470

41471

41472

41473

41474

41475

41476

41477

41478

41479

41480

41481

41482

41483

41484

System Interfaces lround()

NAME
lround, lroundf, lroundl — round to nearest integer value

SYNOPSIS
#include <math.h>

long lround(double x);
long lroundf(float x);
long lroundl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall round their argument to the nearest integer value, rounding halfway cases
away from zero, regardless of the current rounding direction.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

MX If x is NaN, a domain error shall occur and an unspecified value is returned.

If x is +Inf, a domain error shall occur and an unspecified value is returned.

If x is −Inf, a domain error shall occur and an unspecified value is returned.

If the correct value is positive and too large to represent as a long, an unspecified value shall be
MX returned. On systems that support the IEC 60559 Floating-Point option, a domain shall occur;
CX otherwise, a domain error may occur.

If the correct value is negative and too large to represent as a long, an unspecified value shall be
MX returned. On systems that support the IEC 60559 Floating-Point option, a domain shall occur;
CX otherwise, a domain error may occur.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is NaN or ±Inf, or the correct value is not representable as an
integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1261

41485

41486

41487

41488

41489

41490

41491

41492

41493

41494

41495

41496

41497

41498

41499

41500

41501

41502

41503

41504

41505

41506

41507

41508

41509

41510

41511

41512

41513

41514

41515

41516

41517

41518

41519

41520

41521

41522

41523

41524

41525

41526

lround() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions differ from the lrint() functions in the default rounding direction, with the
lround() functions rounding halfway cases away from zero and needing not to raise the inexact
floating-point exception for non-integer arguments that round to within the range of the return
type.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), llround()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #54 (SD5-XSH-ERN-78) is applied.

1262 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41527

41528

41529

41530

41531

41532

41533

41534

41535

41536

41537

41538

41539

41540

41541

41542

41543

41544

41545

System Interfaces lsearch()

NAME
lsearch, lfind — linear search and update

SYNOPSIS
XSI #include <search.h>

void *lsearch(const void *key, void *base, size_t *nelp, size_t width,
int (*compar)(const void *, const void *));

void *lfind(const void *key, const void *base, size_t *nelp,
size_t width, int (*compar)(const void *, const void *));

DESCRIPTION
The lsearch() function shall linearly search the table and return a pointer into the table for the
matching entry. If the entry does not occur, it shall be added at the end of the table. The key
argument points to the entry to be sought in the table. The base argument points to the first
element in the table. The width argument is the size of an element in bytes. The nelp argument
points to an integer containing the current number of elements in the table. The integer to which
nelp points shall be incremented if the entry is added to the table. The compar argument points to
a comparison function which the application shall supply (for example, strcmp()). It is called
with two arguments that point to the elements being compared. The application shall ensure
that the function returns 0 if the elements are equal, and non-zero otherwise.

The lfind() function shall be equivalent to lsearch(), except that if the entry is not found, it is not
added to the table. Instead, a null pointer is returned.

RETURN VALUE
If the searched for entry is found, both lsearch() and lfind() shall return a pointer to it.
Otherwise, lfind() shall return a null pointer and lsearch() shall return a pointer to the newly
added element.

Both functions shall return a null pointer in case of error.

ERRORS
No errors are defined.

EXAMPLES

Storing Strings in a Table

This fragment reads in less than or equal to TABSIZE strings of length less than or equal to
ELSIZE and stores them in a table, eliminating duplicates.

#include <stdio.h>
#include <string.h>
#include <search.h>

#define TABSIZE 50
#define ELSIZE 120

...
char line[ELSIZE], tab[TABSIZE][ELSIZE];
size_t nel = 0;
...
while (fgets(line, ELSIZE, stdin) != NULL && nel < TABSIZE)

(void) lsearch(line, tab, &nel,
ELSIZE, (int (*)(const void *, const void *)) strcmp);

...

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1263

41546

41547

41548

41549

41550

41551

41552

41553

41554

41555

41556

41557

41558

41559

41560

41561

41562

41563

41564

41565

41566

41567

41568

41569

41570

41571

41572

41573

41574

41575

41576

41577

41578

41579

41580

41581

41582

41583

41584

41585

41586

41587

41588

41589

lsearch() System Interfaces

Finding a Matching Entry

The following example finds any line that reads "This is a test.".

#include <search.h>
#include <string.h>
...
char line[ELSIZE], tab[TABSIZE][ELSIZE];
size_t nel = 0;
char *findline;
void *entry;

findline = "This is a test.\n";

entry = lfind(findline, tab, &nel, ELSIZE, (
int (*)(const void *, const void *)) strcmp);

APPLICATION USAGE
The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.

Undefined results can occur if there is not enough room in the table to add a new item.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
hcreate(), tdelete()

XBD <search.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

1264 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41590

41591

41592

41593

41594

41595

41596

41597

41598

41599

41600

41601

41602

41603

41604

41605

41606

41607

41608

41609

41610

41611

41612

41613

41614

41615

41616

System Interfaces lseek()

NAME
lseek — move the read/write file offset

SYNOPSIS
#include <unistd.h>

off_t lseek(int fildes, off_t offset, int whence);

DESCRIPTION
The lseek() function shall set the file offset for the open file description associated with the file
descriptor fildes, as follows:

• If whence is SEEK_SET, the file offset shall be set to offset bytes.

• If whence is SEEK_CUR, the file offset shall be set to its current location plus offset.

• If whence is SEEK_END, the file offset shall be set to the size of the file plus offset.

The symbolic constants SEEK_SET, SEEK_CUR, and SEEK_END are defined in <unistd.h>.

The behavior of lseek() on devices which are incapable of seeking is implementation-defined.
The value of the file offset associated with such a device is undefined.

The lseek() function shall allow the file offset to be set beyond the end of the existing data in the
file. If data is later written at this point, subsequent reads of data in the gap shall return bytes
with the value 0 until data is actually written into the gap.

The lseek() function shall not, by itself, extend the size of a file.

SHM If fildes refers to a shared memory object, the result of the lseek() function is unspecified.

TYM If fildes refers to a typed memory object, the result of the lseek() function is unspecified.

RETURN VALUE
Upon successful completion, the resulting offset, as measured in bytes from the beginning of the
file, shall be returned. Otherwise, (off_t)−1 shall be returned, errno shall be set to indicate the
error, and the file offset shall remain unchanged.

ERRORS
The lseek() function shall fail if:

[EBADF] The fildes argument is not an open file descriptor.

[EINVAL] The whence argument is not a proper value, or the resulting file offset would
be negative for a regular file, block special file, or directory.

[EOVERFLOW] The resulting file offset would be a value which cannot be represented
correctly in an object of type off_t.

[ESPIPE] The fildes argument is associated with a pipe, FIFO, or socket.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The ISO C standard includes the functions fgetpos() and fsetpos(), which work on very large files
by use of a special positioning type.

Although lseek() may position the file offset beyond the end of the file, this function does not
itself extend the size of the file. While the only function in POSIX.1-2008 that may directly extend

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1265

41617

41618

41619

41620

41621

41622

41623

41624

41625

41626

41627

41628

41629

41630

41631

41632

41633

41634

41635

41636

41637

41638

41639

41640

41641

41642

41643

41644

41645

41646

41647

41648

41649

41650

41651

41652

41653

41654

41655

41656

41657

lseek() System Interfaces

the size of the file is write(), truncate(), and ftruncate(), several functions originally derived from
the ISO C standard, such as fwrite(), fprintf(), and so on, may do so (by causing calls on write()).

An invalid file offset that would cause [EINVAL] to be returned may be both implementation-
defined and device-dependent (for example, memory may have few invalid values). A negative
file offset may be valid for some devices in some implementations.

The POSIX.1-1990 standard did not specifically prohibit lseek() from returning a negative offset.
Therefore, an application was required to clear errno prior to the call and check errno upon return
to determine whether a return value of (off_t)−1 is a negative offset or an indication of an error
condition. The standard developers did not wish to require this action on the part of a
conforming application, and chose to require that errno be set to [EINVAL] when the resulting
file offset would be negative for a regular file, block special file, or directory.

FUTURE DIRECTIONS
None.

SEE ALSO
open()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [EOVERFLOW] error condition is added. This change is to support large files.

An additional [ESPIPE] error condition is added for sockets.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
lseek() results are unspecified for typed memory objects.

1266 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41658

41659

41660

41661

41662

41663

41664

41665

41666

41667

41668

41669

41670

41671

41672

41673

41674

41675

41676

41677

41678

41679

41680

41681

41682

41683

41684

41685

41686

41687

41688

41689

System Interfaces lstat()

NAME
lstat — get file status

SYNOPSIS
#include <sys/stat.h>

int lstat(const char *restrict path, struct stat *restrict buf);

DESCRIPTION
Refer to fstatat().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1267

41690

41691

41692

41693

41694

41695

41696

malloc() System Interfaces

NAME
malloc — a memory allocator

SYNOPSIS
#include <stdlib.h>

void *malloc(size_t size);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The malloc() function shall allocate unused space for an object whose size in bytes is specified by
size and whose value is unspecified.

The order and contiguity of storage allocated by successive calls to malloc() is unspecified. The
pointer returned if the allocation succeeds shall be suitably aligned so that it may be assigned to
a pointer to any type of object and then used to access such an object in the space allocated (until
the space is explicitly freed or reallocated). Each such allocation shall yield a pointer to an object
disjoint from any other object. The pointer returned points to the start (lowest byte address) of
the allocated space. If the space cannot be allocated, a null pointer shall be returned. If the size of
the space requested is 0, the behavior is implementation-defined: the value returned shall be
either a null pointer or a unique pointer.

RETURN VALUE
Upon successful completion with size not equal to 0, malloc() shall return a pointer to the
allocated space. If size is 0, either a null pointer or a unique pointer that can be successfully

CX passed to free() shall be returned. Otherwise, it shall return a null pointer and set errno to
indicate the error.

ERRORS
The malloc() function shall fail if:

CX [ENOMEM] Insufficient storage space is available.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
calloc(), free(), getrlimit(), posix_memalign(), realloc()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

1268 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41697

41698

41699

41700

41701

41702

41703

41704

41705

41706

41707

41708

41709

41710

41711

41712

41713

41714

41715

41716

41717

41718

41719

41720

41721

41722

41723

41724

41725

41726

41727

41728

41729

41730

41731

41732

41733

41734

41735

41736

41737

41738

System Interfaces malloc()

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE section, the requirement to set errno to indicate an error is added.

• The [ENOMEM] error condition is added.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1269

41739

41740

41741

41742

mblen() System Interfaces

NAME
mblen — get number of bytes in a character

SYNOPSIS
#include <stdlib.h>

int mblen(const char *s, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

If s is not a null pointer, mblen() shall determine the number of bytes constituting the character
pointed to by s. Except that the shift state of mbtowc() is not affected, it shall be equivalent to:

mbtowc((wchar_t *)0, s, n);

The implementation shall behave as if no function defined in this volume of POSIX.1-2008 calls
mblen().

The behavior of this function is affected by the LC_CTYPE category of the current locale. For a
state-dependent encoding, this function shall be placed into its initial state by a call for which its
character pointer argument, s, is a null pointer. Subsequent calls with s as other than a null
pointer shall cause the internal state of the function to be altered as necessary. A call with s as a
null pointer shall cause this function to return a non-zero value if encodings have state
dependency, and 0 otherwise. If the implementation employs special bytes to change the shift
state, these bytes shall not produce separate wide-character codes, but shall be grouped with an
adjacent character. Changing the LC_CTYPE category causes the shift state of this function to be
unspecified.

RETURN VALUE
If s is a null pointer, mblen() shall return a non-zero or 0 value, if character encodings,
respectively, do or do not have state-dependent encodings. If s is not a null pointer, mblen() shall
either return 0 (if s points to the null byte), or return the number of bytes that constitute the
character (if the next n or fewer bytes form a valid character), or return −1 (if they do not form a

CX valid character) and may set errno to indicate the error. In no case shall the value returned be
greater than n or the value of the {MB_CUR_MAX} macro.

ERRORS
The mblen() function may fail if:

XSI [EILSEQ] An invalid character sequence is detected.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

1270 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41743

41744

41745

41746

41747

41748

41749

41750

41751

41752

41753

41754

41755

41756

41757

41758

41759

41760

41761

41762

41763

41764

41765

41766

41767

41768

41769

41770

41771

41772

41773

41774

41775

41776

41777

41778

41779

41780

41781

41782

41783

System Interfaces mblen()

SEE ALSO
mbtowc(), mbstowcs(), wctomb(), wcstombs()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Aligned with the ISO C standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1271

41784

41785

41786

41787

41788

mbrlen() System Interfaces

NAME
mbrlen — get number of bytes in a character (restartable)

SYNOPSIS
#include <wchar.h>

size_t mbrlen(const char *restrict s, size_t n,
mbstate_t *restrict ps);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

If s is not a null pointer, mbrlen() shall determine the number of bytes constituting the character
pointed to by s. It shall be equivalent to:

mbstate_t internal;
mbrtowc(NULL, s, n, ps != NULL ? ps : &internal);

If ps is a null pointer, the mbrlen() function shall use its own internal mbstate_t object, which is
initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence. The implementation shall behave as if no function defined in this
volume of POSIX.1-2008 calls mbrlen().

The behavior of this function is affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The mbrlen() function shall return the first of the following that applies:

0 If the next n or fewer bytes complete the character that corresponds to the null
wide character.

positive If the next n or fewer bytes complete a valid character; the value returned shall
be the number of bytes that complete the character.

(size_t)−2 If the next n bytes contribute to an incomplete but potentially valid character,
and all n bytes have been processed. When n has at least the value of the
{MB_CUR_MAX} macro, this case can only occur if s points at a sequence of
redundant shift sequences (for implementations with state-dependent
encodings).

(size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes do not
contribute to a complete and valid character. In this case, [EILSEQ] shall be
stored in errno and the conversion state is undefined.

ERRORS
The mbrlen() function shall fail if:

[EILSEQ] An invalid character sequence is detected.

The mbrlen() function may fail if:

[EINVAL] ps points to an object that contains an invalid conversion state.

1272 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41789

41790

41791

41792

41793

41794

41795

41796

41797

41798

41799

41800

41801

41802

41803

41804

41805

41806

41807

41808

41809

41810

41811

41812

41813

41814

41815

41816

41817

41818

41819

41820

41821

41822

41823

41824

41825

41826

41827

System Interfaces mbrlen()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), mbrtowc()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The mbrlen() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #170 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1273

41828

41829

41830

41831

41832

41833

41834

41835

41836

41837

41838

41839

41840

41841

41842

41843

41844

41845

mbrtowc() System Interfaces

NAME
mbrtowc — convert a character to a wide-character code (restartable)

SYNOPSIS
#include <wchar.h>

size_t mbrtowc(wchar_t *restrict pwc, const char *restrict s,
size_t n, mbstate_t *restrict ps);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

If s is a null pointer, the mbrtowc() function shall be equivalent to the call:

mbrtowc(NULL, "", 1, ps)

In this case, the values of the arguments pwc and n are ignored.

If s is not a null pointer, the mbrtowc() function shall inspect at most n bytes beginning at the
byte pointed to by s to determine the number of bytes needed to complete the next character
(including any shift sequences). If the function determines that the next character is completed,
it shall determine the value of the corresponding wide character and then, if pwc is not a null
pointer, shall store that value in the object pointed to by pwc. If the corresponding wide
character is the null wide character, the resulting state described shall be the initial conversion
state.

If ps is a null pointer, the mbrtowc() function shall use its own internal mbstate_t object, which
shall be initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t
object pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence. The implementation shall behave as if no function defined in this
volume of POSIX.1-2008 calls mbrtowc().

The behavior of this function is affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The mbrtowc() function shall return the first of the following that applies:

0 If the next n or fewer bytes complete the character that corresponds to the null
wide character (which is the value stored).

between 1 and n inclusive
If the next n or fewer bytes complete a valid character (which is the value
stored); the value returned shall be the number of bytes that complete the
character.

(size_t)−2 If the next n bytes contribute to an incomplete but potentially valid character,
and all n bytes have been processed (no value is stored). When n has at least
the value of the {MB_CUR_MAX} macro, this case can only occur if s points at
a sequence of redundant shift sequences (for implementations with state-
dependent encodings).

(size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes do not
contribute to a complete and valid character (no value is stored). In this case,
[EILSEQ] shall be stored in errno and the conversion state is undefined.

1274 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41846

41847

41848

41849

41850

41851

41852

41853

41854

41855

41856

41857

41858

41859

41860

41861

41862

41863

41864

41865

41866

41867

41868

41869

41870

41871

41872

41873

41874

41875

41876

41877

41878

41879

41880

41881

41882

41883

41884

41885

41886

41887

System Interfaces mbrtowc()

ERRORS
The mbrtowc() function shall fail if:

[EILSEQ] An invalid character sequence is detected.

The mbrtowc() function may fail if:

CX [EINVAL] ps points to an object that contains an invalid conversion state.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), mbsrtowcs()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The mbrtowc() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EINVAL] error condition is added.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

Issue 7
Austin Group Interpretation 1003.1-2001 #170 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1275

41888

41889

41890

41891

41892

41893

41894

41895

41896

41897

41898

41899

41900

41901

41902

41903

41904

41905

41906

41907

41908

41909

41910

41911

41912

41913

41914

mbsinit() System Interfaces

NAME
mbsinit — determine conversion object status

SYNOPSIS
#include <wchar.h>

int mbsinit(const mbstate_t *ps);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

If ps is not a null pointer, the mbsinit() function shall determine whether the object pointed to by
ps describes an initial conversion state.

RETURN VALUE
The mbsinit() function shall return non-zero if ps is a null pointer, or if the pointed-to object
describes an initial conversion state; otherwise, it shall return zero.

If an mbstate_t object is altered by any of the functions described as ‘‘restartable’’, and is then
used with a different character sequence, or in the other conversion direction, or with a different
LC_CTYPE category setting than on earlier function calls, the behavior is undefined.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The mbstate_t object is used to describe the current conversion state from a particular character
sequence to a wide-character sequence (or vice versa) under the rules of a particular setting of the
LC_CTYPE category of the current locale.

The initial conversion state corresponds, for a conversion in either direction, to the beginning of
a new character sequence in the initial shift state. A zero valued mbstate_t object is at least one
way to describe an initial conversion state. A zero valued mbstate_t object can be used to initiate
conversion involving any character sequence, in any LC_CTYPE category setting.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbrlen(), mbrtowc(), mbsrtowcs(), wcrtomb(), wcsrtombs()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

1276 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41915

41916

41917

41918

41919

41920

41921

41922

41923

41924

41925

41926

41927

41928

41929

41930

41931

41932

41933

41934

41935

41936

41937

41938

41939

41940

41941

41942

41943

41944

41945

41946

41947

41948

41949

41950

41951

41952

41953

System Interfaces mbsrtowcs()

NAME
mbsnrtowcs, mbsrtowcs — convert a character string to a wide-character string (restartable)

SYNOPSIS
#include <wchar.h>

CX size_t mbsnrtowcs(wchar_t *restrict dst, const char **restrict src,
size_t nmc, size_t len, mbstate_t *restrict ps);

size_t mbsrtowcs(wchar_t *restrict dst, const char **restrict src,
size_t len, mbstate_t *restrict ps);

DESCRIPTION
CX For mbsrtowcs(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

The mbsrtowcs() function shall convert a sequence of characters, beginning in the conversion
state described by the object pointed to by ps, from the array indirectly pointed to by src into a
sequence of corresponding wide characters. If dst is not a null pointer, the converted characters
shall be stored into the array pointed to by dst. Conversion continues up to and including a
terminating null character, which shall also be stored. Conversion shall stop early in either of the
following cases:

• A sequence of bytes is encountered that does not form a valid character.

• len codes have been stored into the array pointed to by dst (and dst is not a null pointer).

Each conversion shall take place as if by a call to the mbrtowc() function.

If dst is not a null pointer, the pointer object pointed to by src shall be assigned either a null
pointer (if conversion stopped due to reaching a terminating null character) or the address just
past the last character converted (if any). If conversion stopped due to reaching a terminating
null character, and if dst is not a null pointer, the resulting state described shall be the initial
conversion state.

If ps is a null pointer, the mbsrtowcs() function shall use its own internal mbstate_t object, which
is initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence.

CX The mbsnrtowcs() function shall be equivalent to the mbsrtowcs() function, except that the
conversion of characters pointed to by src is limited to at most nmc bytes (the size of the input
buffer).

The behavior of these functions shall be affected by the LC_CTYPE category of the current locale.

The implementation shall behave as if no function defined in this volume of POSIX.1-2008 calls
these functions.

RETURN VALUE
If the input conversion encounters a sequence of bytes that do not form a valid character, an
encoding error occurs. In this case, these functions shall store the value of the macro [EILSEQ] in
errno and shall return (size_t)−1; the conversion state is undefined. Otherwise, these functions
shall return the number of characters successfully converted, not including the terminating null
(if any).

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1277

41954

41955

41956

41957

41958

41959

41960

41961

41962

41963

41964

41965

41966

41967

41968

41969

41970

41971

41972

41973

41974

41975

41976

41977

41978

41979

41980

41981

41982

41983

41984

41985

41986

41987

41988

41989

41990

41991

41992

41993

41994

41995

mbsrtowcs() System Interfaces

ERRORS
These functions shall fail if:

[EILSEQ] An invalid character sequence is detected.

These functions may fail if:

CX [EINVAL] ps points to an object that contains an invalid conversion state.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv(), mbrtowc(), mbsinit()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The mbsrtowcs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

The [EINVAL] error condition is marked CX.

Issue 7
Austin Group Interpretation 1003.1-2001 #170 is applied.

The mbsnrtowcs() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 1.

1278 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

41996

41997

41998

41999

42000

42001

42002

42003

42004

42005

42006

42007

42008

42009

42010

42011

42012

42013

42014

42015

42016

42017

42018

42019

42020

42021

System Interfaces mbstowcs()

NAME
mbstowcs — convert a character string to a wide-character string

SYNOPSIS
#include <stdlib.h>

size_t mbstowcs(wchar_t *restrict pwcs, const char *restrict s,
size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The mbstowcs() function shall convert a sequence of characters that begins in the initial shift
state from the array pointed to by s into a sequence of corresponding wide-character codes and
shall store not more than n wide-character codes into the array pointed to by pwcs. No
characters that follow a null byte (which is converted into a wide-character code with value 0)
shall be examined or converted. Each character shall be converted as if by a call to mbtowc(),
except that the shift state of mbtowc() is not affected.

No more than n elements shall be modified in the array pointed to by pwcs. If copying takes
place between objects that overlap, the behavior is undefined.

XSI The behavior of this function shall be affected by the LC_CTYPE category of the current locale.
If pwcs is a null pointer, mbstowcs() shall return the length required to convert the entire array

regardless of the value of n, but no values are stored.

RETURN VALUE
CX If an invalid character is encountered, mbstowcs() shall return (size_t)−1 and may set errno to

indicate the error.

XSI Otherwise, mbstowcs() shall return the number of the array elements modified (or required if
pwcs is null), not including a terminating 0 code, if any. The array shall not be zero-terminated if
the value returned is n.

ERRORS
The mbstowcs() function shall fail if:

XSI [EILSEQ] An invalid byte sequence is detected.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mblen(), mbtowc(), wctomb(), wcstombs()

XBD <stdlib.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1279

42022

42023

42024

42025

42026

42027

42028

42029

42030

42031

42032

42033

42034

42035

42036

42037

42038

42039

42040

42041

42042

42043

42044

42045

42046

42047

42048

42049

42050

42051

42052

42053

42054

42055

42056

42057

42058

42059

42060

42061

42062

mbstowcs() System Interfaces

CHANGE HISTORY
First released in Issue 4. Aligned with the ISO C standard.

Issue 6
The mbstowcs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Extensions beyond the ISO C standard are marked.

Issue 7
Austin Group Interpretation 1003.1-2001 #170 is applied.

1280 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

42063

42064

42065

42066

42067

42068

42069

System Interfaces mbtowc()

NAME
mbtowc — convert a character to a wide-character code

SYNOPSIS
#include <stdlib.h>

int mbtowc(wchar_t *restrict pwc, const char *restrict s, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

If s is not a null pointer, mbtowc() shall determine the number of bytes that constitute the
character pointed to by s. It shall then determine the wide-character code for the value of type
wchar_t that corresponds to that character. (The value of the wide-character code corresponding
to the null byte is 0.) If the character is valid and pwc is not a null pointer, mbtowc() shall store
the wide-character code in the object pointed to by pwc.

The behavior of this function is affected by the LC_CTYPE category of the current locale. For a
state-dependent encoding, this function is placed into its initial state by a call for which its
character pointer argument, s, is a null pointer. Subsequent calls with s as other than a null
pointer shall cause the internal state of the function to be altered as necessary. A call with s as a
null pointer shall cause this function to return a non-zero value if encodings have state
dependency, and 0 otherwise. If the implementation employs special bytes to change the shift
state, these bytes shall not produce separate wide-character codes, but shall be grouped with an
adjacent character. Changing the LC_CTYPE category causes the shift state of this function to be
unspecified. At most n bytes of the array pointed to by s shall be examined.

The implementation shall behave as if no function defined in this volume of POSIX.1-2008 calls
mbtowc().

RETURN VALUE
If s is a null pointer, mbtowc() shall return a non-zero or 0 value, if character encodings,
respectively, do or do not have state-dependent encodings. If s is not a null pointer, mbtowc()
shall either return 0 (if s points to the null byte), or return the number of bytes that constitute the

CX converted character (if the next n or fewer bytes form a valid character), or return −1 and may
set errno to indicate the error (if they do not form a valid character).

In no case shall the value returned be greater than n or the value of the {MB_CUR_MAX} macro.

ERRORS
The mbtowc() function shall fail if:

XSI [EILSEQ] An invalid character sequence is detected.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1281

42070

42071

42072

42073

42074

42075

42076

42077

42078

42079

42080

42081

42082

42083

42084

42085

42086

42087

42088

42089

42090

42091

42092

42093

42094

42095

42096

42097

42098

42099

42100

42101

42102

42103

42104

42105

42106

42107

42108

42109

42110

42111

42112

mbtowc() System Interfaces

SEE ALSO
mblen(), mbstowcs(), wctomb(), wcstombs()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Aligned with the ISO C standard.

Issue 6
The mbtowc() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Extensions beyond the ISO C standard are marked.

Issue 7
Austin Group Interpretation 1003.1-2001 #170 is applied.

1282 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

42113

42114

42115

42116

42117

42118

42119

42120

42121

42122

System Interfaces memccpy()

NAME
memccpy — copy bytes in memory

SYNOPSIS
XSI #include <string.h>

void *memccpy(void *restrict s1, const void *restrict s2,
int c, size_t n);

DESCRIPTION
The memccpy() function shall copy bytes from memory area s2 into s1, stopping after the first
occurrence of byte c (converted to an unsigned char) is copied, or after n bytes are copied,
whichever comes first. If copying takes place between objects that overlap, the behavior is
undefined.

RETURN VALUE
The memccpy() function shall return a pointer to the byte after the copy of c in s1, or a null
pointer if c was not found in the first n bytes of s2.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The memccpy() function does not check for the overflow of the receiving memory area.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The restrict keyword is added to the memccpy() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1283

42123

42124

42125

42126

42127

42128

42129

42130

42131

42132

42133

42134

42135

42136

42137

42138

42139

42140

42141

42142

42143

42144

42145

42146

42147

42148

42149

42150

42151

42152

42153

memchr() System Interfaces

NAME
memchr — find byte in memory

SYNOPSIS
#include <string.h>

void *memchr(const void *s, int c, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The memchr() function shall locate the first occurrence of c (converted to an unsigned char) in
the initial n bytes (each interpreted as unsigned char) of the object pointed to by s.

RETURN VALUE
The memchr() function shall return a pointer to the located byte, or a null pointer if the byte does
not occur in the object.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

1284 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

42154

42155

42156

42157

42158

42159

42160

42161

42162

42163

42164

42165

42166

42167

42168

42169

42170

42171

42172

42173

42174

42175

42176

42177

42178

42179

42180

42181

System Interfaces memcmp()

NAME
memcmp — compare bytes in memory

SYNOPSIS
#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The memcmp() function shall compare the first n bytes (each interpreted as unsigned char) of the
object pointed to by s1 to the first n bytes of the object pointed to by s2.

The sign of a non-zero return value shall be determined by the sign of the difference between the
values of the first pair of bytes (both interpreted as type unsigned char) that differ in the objects
being compared.

RETURN VALUE
The memcmp() function shall return an integer greater than, equal to, or less than 0, if the object
pointed to by s1 is greater than, equal to, or less than the object pointed to by s2, respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1285

42182

42183

42184

42185

42186

42187

42188

42189

42190

42191

42192

42193

42194

42195

42196

42197

42198

42199

42200

42201

42202

42203

42204

42205

42206

42207

42208

42209

42210

42211

42212

memcpy() System Interfaces

NAME
memcpy — copy bytes in memory

SYNOPSIS
#include <string.h>

void *memcpy(void *restrict s1, const void *restrict s2, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The memcpy() function shall copy n bytes from the object pointed to by s2 into the object pointed
to by s1. If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
The memcpy() function shall return s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The memcpy() function does not check for the overflow of the receiving memory area.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The memcpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

1286 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

42213

42214

42215

42216

42217

42218

42219

42220

42221

42222

42223

42224

42225

42226

42227

42228

42229

42230

42231

42232

42233

42234

42235

42236

42237

42238

42239

42240

42241

System Interfaces memmove()

NAME
memmove — copy bytes in memory with overlapping areas

SYNOPSIS
#include <string.h>

void *memmove(void *s1, const void *s2, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The memmove() function shall copy n bytes from the object pointed to by s2 into the object
pointed to by s1. Copying takes place as if the n bytes from the object pointed to by s2 are first
copied into a temporary array of n bytes that does not overlap the objects pointed to by s1 and
s2, and then the n bytes from the temporary array are copied into the object pointed to by s1.

RETURN VALUE
The memmove() function shall return s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <string.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1287

42242

42243

42244

42245

42246

42247

42248

42249

42250

42251

42252

42253

42254

42255

42256

42257

42258

42259

42260

42261

42262

42263

42264

42265

42266

42267

42268

42269

42270

memset() System Interfaces

NAME
memset — set bytes in memory

SYNOPSIS
#include <string.h>

void *memset(void *s, int c, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The memset() function shall copy c (converted to an unsigned char) into each of the first n bytes
of the object pointed to by s.

RETURN VALUE
The memset() function shall return s; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

1288 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

42271

42272

42273

42274

42275

42276

42277

42278

42279

42280

42281

42282

42283

42284

42285

42286

42287

42288

42289

42290

42291

42292

42293

42294

42295

42296

42297

System Interfaces mkdir()

NAME
mkdir, mkdirat — make a directory relative to directory file descriptor

SYNOPSIS
#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);
int mkdirat(int fd, const char *path, mode_t mode);

DESCRIPTION
The mkdir() function shall create a new directory with name path. The file permission bits of the
new directory shall be initialized from mode. These file permission bits of the mode argument
shall be modified by the process’ file creation mask.

When bits in mode other than the file permission bits are set, the meaning of these additional bits
is implementation-defined.

The directory’s user ID shall be set to the process’ effective user ID. The directory’s group ID
shall be set to the group ID of the parent directory or to the effective group ID of the process.
Implementations shall provide a way to initialize the directory’s group ID to the group ID of the
parent directory. Implementations may, but need not, provide an implementation-defined way
to initialize the directory’s group ID to the effective group ID of the calling process.

The newly created directory shall be an empty directory.

If path names a symbolic link, mkdir() shall fail and set errno to [EEXIST].

Upon successful completion, mkdir() shall mark for update the last data access, last data
modification, and last file status change timestamps of the directory. Also, the last data
modification and last file status change timestamps of the directory that contains the new entry
shall be marked for update.

The mkdirat() function shall be equivalent to the mkdir() function except in the case where path
specifies a relative path. In this case the newly created directory is created relative to the
directory associated with the file descriptor fd instead of the current working directory. If the file
descriptor was opened without O_SEARCH, the function shall check whether directory searches
are permitted using the current permissions of the directory underlying the file descriptor. If the
file descriptor was opened with O_SEARCH, the function shall not perform the check.

If mkdirat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to mkdir().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, no directory shall be created.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied on a component of the path prefix, or write
permission is denied on the parent directory of the directory to be created.

[EEXIST] The named file exists.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[EMLINK] The link count of the parent directory would exceed {LINK_MAX}.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1289

42298

42299

42300

42301

42302

42303

42304

42305

42306

42307

42308

42309

42310

42311

42312

42313

42314

42315

42316

42317

42318

42319

42320

42321

42322

42323

42324

42325

42326

42327

42328

42329

42330

42331

42332

42333

42334

42335

42336

42337

42338

42339

mkdir() System Interfaces

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of the path prefix specified by path does not name an existing
directory or path is an empty string.

[ENOSPC] The file system does not contain enough space to hold the contents of the new
directory or to extend the parent directory of the new directory.

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The parent directory resides on a read-only file system.

In addition, the mkdirat() function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

The mkdirat() function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES

Creating a Directory

The following example shows how to create a directory named /home/cnd/mod1, with
read/write/search permissions for owner and group, and with read/search permissions for
others.

#include <sys/types.h>
#include <sys/stat.h>

int status;
...
status = mkdir("/home/cnd/mod1", S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);

APPLICATION USAGE
None.

RATIONALE
The mkdir() function originated in 4.2 BSD and was added to System V in Release 3.0.

4.3 BSD detects [ENAMETOOLONG].

The POSIX.1-1990 standard required that the group ID of a newly created directory be set to the
group ID of its parent directory or to the effective group ID of the creating process. FIPS 151-2
required that implementations provide a way to have the group ID be set to the group ID of the
containing directory, but did not prohibit implementations also supporting a way to set the
group ID to the effective group ID of the creating process. Conforming applications should not

1290 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

42340

42341

42342

42343

42344

42345

42346

42347

42348

42349

42350

42351

42352

42353

42354

42355

42356

42357

42358

42359

42360

42361

42362

42363

42364

42365

42366

42367

42368

42369

42370

42371

42372

42373

42374

42375

42376

42377

42378

42379

42380

System Interfaces mkdir()

assume which group ID will be used. If it matters, an application can use chown() to set the
group ID after the directory is created, or determine under what conditions the implementation
will set the desired group ID.

The purpose of the mkdirat() function is to create a directory in directories other than the current
working directory without exposure to race conditions. Any part of the path of a file could be
changed in parallel to the call to mkdir(), resulting in unspecified behavior. By opening a file
descriptor for the target directory and using the mkdirat() function it can be guaranteed that the
newly created directory is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), mkdtemp(), mknod(), umask()

XBD <sys/stat.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The mkdirat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made related to support for finegrained timestamps.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1291

42381

42382

42383

42384

42385

42386

42387

42388

42389

42390

42391

42392

42393

42394

42395

42396

42397

42398

42399

42400

42401

42402

42403

42404

42405

42406

42407

42408

42409

42410

42411

mkdtemp() System Interfaces

NAME
mkdtemp, mkstemp — create a unique directory or file

SYNOPSIS
CX #include <stdlib.h>

char *mkdtemp(char *template);
int mkstemp(char *template);

DESCRIPTION
The mkdtemp() function uses the contents of template to construct a unique directory name. The
string provided in template shall be a filename ending with six trailing ’X’s. The mkdtemp()
function shall replace each ’X’ with a character from the portable filename character set. The
characters are chosen such that the resulting name does not duplicate the name of an existing file
at the time of a call to mkdtemp(). The unique directory name is used to attempt to create the
directory using mode 0700 as modified by the file creation mask.

The mkstemp() function shall replace the contents of the string pointed to by template by a unique
filename, and return a file descriptor for the file open for reading and writing. The mkstemp()
function shall create the file, and obtain a file descriptor for it, as if by a call to:

open(filename, O_RDWR|O_CREAT|O_EXCL, S_IRUSR|S_IWUSR)

The function thus prevents any possible race condition between testing whether the file exists
and opening it for use. The string in template should look like a filename with six trailing ’X’s;
mkstemp() replaces each ’X’ with a character from the portable filename character set. The
characters are chosen such that the resulting name does not duplicate the name of an existing file
at the time of a call to mkstemp().

RETURN VALUE
Upon successful completion, the mkdtemp() function shall return a pointer to the string
containing the directory name if it was created. Otherwise, it shall return a null pointer and shall
set errno to indicate the error.

Upon successful completion, the mkstemp() function shall return an open file descriptor.
Otherwise, it shall return −1 if no suitable file could be created.

ERRORS
The mkdtemp() function shall fail if:

[EACCES] Search permission is denied on a component of the path prefix, or write
permission is denied on the parent directory of the directory to be created.

[EINVAL] The string pointed to by template does not end in "XXXXXX".

[ELOOP] A loop exists in symbolic links encountered during resolution of the path of
the directory to be created.

[EMLINK] The link count of the parent directory would exceed {LINK_MAX}.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of the path prefix specified by the template argument does not
name an existing directory.

[ENOSPC] The file system does not contain enough space to hold the contents of the new
directory or to extend the parent directory of the new directory.

1292 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

42412

42413

42414

42415

42416

42417

42418

42419

42420

42421

42422

42423

42424

42425

42426

42427

42428

42429

42430

42431

42432

42433

42434

42435

42436

42437

42438

42439

42440

42441

42442

42443

42444

42445

42446

42447

42448

42449

42450

42451

42452

42453

System Interfaces mkdtemp()

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The parent directory resides on a read-only file system.

The mkdtemp() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path of the directory to be created.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

The error conditions for the mkstemp() function are defined in open().

EXAMPLES

Generating a Filename

The following example creates a file with a 10-character name beginning with the characters
"file" and opens the file for reading and writing. The value returned as the value of fd is a file
descriptor that identifies the file.

#include <stdlib.h>
...
char template[] = "/tmp/fileXXXXXX";
int fd;

fd = mkstemp(template);

APPLICATION USAGE
It is possible to run out of letters.

The mkdtemp() and mkstemp() functions need not check to determine whether the filename part
of template exceeds the maximum allowable filename length.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpid(), mkdir(), open(), tmpfile(), tmpnam()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1293

42454

42455

42456

42457

42458

42459

42460

42461

42462

42463

42464

42465

42466

42467

42468

42469

42470

42471

42472

42473

42474

42475

42476

42477

42478

42479

42480

42481

42482

42483

42484

42485

42486

42487

42488

mkdtemp() System Interfaces

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

SD5-XSH-ERN-168 is applied, clarifying file permissions upon creation.

The mkstemp() function is moved from the XSI option to the Base.

The mkdtemp() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

1294 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

42489

42490

42491

42492

42493

42494

System Interfaces mkfifo()

NAME
mkfifo, mkfifoat — make a FIFO special file relative to directory file descriptor

SYNOPSIS
#include <sys/stat.h>

int mkfifo(const char *path, mode_t mode);
int mkfifoat(int fd, const char *path, mode_t mode);

DESCRIPTION
The mkfifo() function shall create a new FIFO special file named by the pathname pointed to by
path. The file permission bits of the new FIFO shall be initialized from mode. The file permission
bits of the mode argument shall be modified by the process’ file creation mask.

When bits in mode other than the file permission bits are set, the effect is implementation-
defined.

If path names a symbolic link, mkfifo() shall fail and set errno to [EEXIST].

The FIFO’s user ID shall be set to the process’ effective user ID. The FIFO’s group ID shall be set
to the group ID of the parent directory or to the effective group ID of the process.
Implementations shall provide a way to initialize the FIFO’s group ID to the group ID of the
parent directory. Implementations may, but need not, provide an implementation-defined way
to initialize the FIFO’s group ID to the effective group ID of the calling process.

Upon successful completion, mkfifo() shall mark for update the last data access, last data
modification, and last file status change timestamps of the file. Also, the last data modification
and last file status change timestamps of the directory that contains the new entry shall be
marked for update.

The mkfifoat() function shall be equivalent to the mkfifo() function except in the case where path
specifies a relative path. In this case the newly created FIFO is created relative to the directory
associated with the file descriptor fd instead of the current working directory. If the file
descriptor was opened without O_SEARCH, the function shall check whether directory searches
are permitted using the current permissions of the directory underlying the file descriptor. If the
file descriptor was opened with O_SEARCH, the function shall not perform the check.

If mkfifoat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to mkfifo().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, no FIFO shall be created.

ERRORS
These functions shall fail if:

[EACCES] A component of the path prefix denies search permission, or write permission
is denied on the parent directory of the FIFO to be created.

[EEXIST] The named file already exists.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1295

42495

42496

42497

42498

42499

42500

42501

42502

42503

42504

42505

42506

42507

42508

42509

42510

42511

42512

42513

42514

42515

42516

42517

42518

42519

42520

42521

42522

42523

42524

42525

42526

42527

42528

42529

42530

42531

42532

42533

42534

42535

42536

mkfifo() System Interfaces

[ENOENT] A component of the path prefix specified by path does not name an existing
directory or path is an empty string.

[ENOSPC] The directory that would contain the new file cannot be extended or the file
system is out of file-allocation resources.

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The named file resides on a read-only file system.

The mkfifoat() function shall fail if:

[EACCES] fd was not opened with O_SEARCH and the permissions of the directory
underlying fd do not permit directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

The mkfifoat() function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES

Creating a FIFO File

The following example shows how to create a FIFO file named /home/cnd/mod_done, with
read/write permissions for owner, and with read permissions for group and others.

#include <sys/types.h>
#include <sys/stat.h>

int status;
...
status = mkfifo("/home/cnd/mod_done", S_IWUSR | S_IRUSR |

S_IRGRP | S_IROTH);

APPLICATION USAGE
None.

RATIONALE
The syntax of this function is intended to maintain compatibility with historical
implementations of mknod(). The latter function was included in the 1984 /usr/group standard
but only for use in creating FIFO special files. The mknod() function was originally excluded
from the POSIX.1-1988 standard as implementation-defined and replaced by mkdir() and
mkfifo(). The mknod() function is now included for alignment with the Single UNIX
Specification.

The POSIX.1-1990 standard required that the group ID of a newly created FIFO be set to the
group ID of its parent directory or to the effective group ID of the creating process. FIPS 151-2

1296 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

42537

42538

42539

42540

42541

42542

42543

42544

42545

42546

42547

42548

42549

42550

42551

42552

42553

42554

42555

42556

42557

42558

42559

42560

42561

42562

42563

42564

42565

42566

42567

42568

42569

42570

42571

42572

42573

42574

42575

42576

42577

42578

System Interfaces mkfifo()

required that implementations provide a way to have the group ID be set to the group ID of the
containing directory, but did not prohibit implementations also supporting a way to set the
group ID to the effective group ID of the creating process. Conforming applications should not
assume which group ID will be used. If it matters, an application can use chown() to set the
group ID after the FIFO is created, or determine under what conditions the implementation will
set the desired group ID.

The purpose of the mkfifoat() function is to create a FIFO special file in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to mkfifo(), resulting in unspecified behavior. By opening a
file descriptor for the target directory and using the mkfifoat() function it can be guaranteed that
the newly created FIFO is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), mknod(), umask()

XBD <sys/stat.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The mkfifoat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1297

42579

42580

42581

42582

42583

42584

42585

42586

42587

42588

42589

42590

42591

42592

42593

42594

42595

42596

42597

42598

42599

42600

42601

42602

42603

42604

42605

42606

42607

42608

42609

42610

42611

42612

42613

mknod() System Interfaces

NAME
mknod, mknodat — make directory, special file, or regular file

SYNOPSIS
XSI #include <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev);
int mknodat(int fd, const char *path, mode_t mode, dev_t dev);

DESCRIPTION
The mknod() function shall create a new file named by the pathname to which the argument path
points.

The file type for path is OR’ed into the mode argument, and the application shall select one of the
following symbolic constants:

Name Description

S_IFIFO FIFO-special
S_IFCHR Character-special (non-portable)
S_IFDIR Directory (non-portable)
S_IFBLK Block-special (non-portable)
S_IFREG Regular (non-portable)

The only portable use of mknod() is to create a FIFO-special file. If mode is not S_IFIFO or dev is
not 0, the behavior of mknod() is unspecified.

The permissions for the new file are OR’ed into the mode argument, and may be selected from
any combination of the following symbolic constants:

Name Description

S_ISUID Set user ID on execution.
S_ISGID Set group ID on execution.
S_IRWXU Read, write, or execute (search) by owner.
S_IRUSR Read by owner.
S_IWUSR Write by owner.
S_IXUSR Execute (search) by owner.
S_IRWXG Read, write, or execute (search) by group.
S_IRGRP Read by group.
S_IWGRP Write by group.
S_IXGRP Execute (search) by group.
S_IRWXO Read, write, or execute (search) by others.
S_IROTH Read by others.
S_IWOTH Write by others.
S_IXOTH Execute (search) by others.
S_ISVTX On directories, restricted deletion flag.

The user ID of the file shall be initialized to the effective user ID of the process. The group ID of
the file shall be initialized to either the effective group ID of the process or the group ID of the
parent directory. Implementations shall provide a way to initialize the file’s group ID to the
group ID of the parent directory. Implementations may, but need not, provide an
implementation-defined way to initialize the file’s group ID to the effective group ID of the
calling process. The owner, group, and other permission bits of mode shall be modified by the file
mode creation mask of the process. The mknod() function shall clear each bit whose
corresponding bit in the file mode creation mask of the process is set.

1298 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

42614

42615

42616

42617

42618

42619

42620

42621

42622

42623

42624

42625

42626

42627

42628

42629

42630

42631

42632

42633

42634

42635

42636

42637

42638

42639

42640

42641

42642

42643

42644

42645

42646

42647

42648

42649

42650

42651

42652

42653

42654

42655

42656

42657

42658

System Interfaces mknod()

If path names a symbolic link, mknod() shall fail and set errno to [EEXIST].

Upon successful completion, mknod() shall mark for update the last data access, last data
modification, and last file status change timestamps of the file. Also, the last data modification
and last file status change timestamps of the directory that contains the new entry shall be
marked for update.

Only a process with appropriate privileges may invoke mknod() for file types other than FIFO-
special.

The mknodat() function shall be equivalent to the mknod() function except in the case where path
specifies a relative path. In this case the newly created directory, special file, or regular file is
located relative to the directory associated with the file descriptor fd instead of the current
working directory. If the file descriptor was opened without O_SEARCH, the function shall
check whether directory searches are permitted using the current permissions of the directory
underlying the file descriptor. If the file descriptor was opened with O_SEARCH, the function
shall not perform the check.

If mknodat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to mknod().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, the new file shall not be created.

ERRORS
These functions shall fail if:

[EACCES] A component of the path prefix denies search permission, or write permission
is denied on the parent directory.

[EEXIST] The named file exists.

[EINVAL] An invalid argument exists.

[EIO] An I/O error occurred while accessing the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of the path prefix specified by path does not name an existing
directory or path is an empty string.

[ENOSPC] The directory that would contain the new file cannot be extended or the file
system is out of file allocation resources.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The invoking process does not have appropriate privileges and the file type is
not FIFO-special.

[EROFS] The directory in which the file is to be created is located on a read-only file
system.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1299

42659

42660

42661

42662

42663

42664

42665

42666

42667

42668

42669

42670

42671

42672

42673

42674

42675

42676

42677

42678

42679

42680

42681

42682

42683

42684

42685

42686

42687

42688

42689

42690

42691

42692

42693

42694

42695

42696

42697

mknod() System Interfaces

The mknodat() function shall fail if:

[EACCES] fd was not opened with O_SEARCH and the permissions of the directory
underlying fd do not permit directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

The mknodat() function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES

Creating a FIFO Special File

The following example shows how to create a FIFO special file named /home/cnd/mod_done,
with read/write permissions for owner, and with read permissions for group and others.

#include <sys/types.h>
#include <sys/stat.h>

dev_t dev;
int status;
...
status = mknod("/home/cnd/mod_done", S_IFIFO | S_IWUSR |

S_IRUSR | S_IRGRP | S_IROTH, dev);

APPLICATION USAGE
The mkfifo() function is preferred over this function for making FIFO special files.

RATIONALE
The POSIX.1-1990 standard required that the group ID of a newly created file be set to the group
ID of its parent directory or to the effective group ID of the creating process. FIPS 151-2 required
that implementations provide a way to have the group ID be set to the group ID of the
containing directory, but did not prohibit implementations also supporting a way to set the
group ID to the effective group ID of the creating process. Conforming applications should not
assume which group ID will be used. If it matters, an application can use chown() to set the
group ID after the file is created, or determine under what conditions the implementation will
set the desired group ID.

The purpose of the mknodat() function is to create directories, special files, or regular files in
directories other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to mknod(), resulting in unspecified
behavior. By opening a file descriptor for the target directory and using the mknodat() function it
can be guaranteed that the newly created directory, special file, or regular file is located relative
to the desired directory.

1300 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

42698

42699

42700

42701

42702

42703

42704

42705

42706

42707

42708

42709

42710

42711

42712

42713

42714

42715

42716

42717

42718

42719

42720

42721

42722

42723

42724

42725

42726

42727

42728

42729

42730

42731

42732

42733

42734

42735

42736

42737

42738

42739

42740

System Interfaces mknod()

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), creat(), exec , fstatat(), mkdir(), mkfifo(), open(), umask()

XBD <sys/stat.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The mknodat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1301

42741

42742

42743

42744

42745

42746

42747

42748

42749

42750

42751

42752

42753

42754

42755

42756

42757

42758

42759

mkstemp() System Interfaces

NAME
mkstemp — create a unique directory

SYNOPSIS
CX #include <stdlib.h>

int mkstemp(char *template);

DESCRIPTION
Refer to mkdtemp().

1302 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

42760

42761

42762

42763

42764

42765

42766

System Interfaces mktime()

NAME
mktime — convert broken-down time into time since the Epoch

SYNOPSIS
#include <time.h>

time_t mktime(struct tm *timeptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The mktime() function shall convert the broken-down time, expressed as local time, in the
structure pointed to by timeptr, into a time since the Epoch value with the same encoding as that
of the values returned by time(). The original values of the tm_wday and tm_yday components of
the structure are ignored, and the original values of the other components are not restricted to
the ranges described in <time.h>.

CX A positive or 0 value for tm_isdst shall cause mktime() to presume initially that Daylight Savings
Time, respectively, is or is not in effect for the specified time. A negative value for tm_isdst shall
cause mktime() to attempt to determine whether Daylight Savings Time is in effect for the
specified time.

Local timezone information shall be set as though mktime() called tzset().

The relationship between the tm structure (defined in the <time.h> header) and the time in
seconds since the Epoch is that the result shall be as specified in the expression given in the
definition of seconds since the Epoch (see XBD Section 4.15, on page 113) corrected for timezone
and any seasonal time adjustments, where the names in the structure and in the expression
correspond.

Upon successful completion, the values of the tm_wday and tm_yday components of the structure
shall be set appropriately, and the other components are set to represent the specified time since
the Epoch, but with their values forced to the ranges indicated in the <time.h> entry; the final
value of tm_mday shall not be set until tm_mon and tm_year are determined.

RETURN VALUE
The mktime() function shall return the specified time since the Epoch encoded as a value of type
time_t. If the time since the Epoch cannot be represented, the function shall return the value

CX (time_t)−1 and may set errno to indicate the error.

ERRORS
The mktime() function may fail if:

CX [EOVERFLOW] The result cannot be represented.

EXAMPLES
What day of the week is July 4, 2001?

#include <stdio.h>
#include <time.h>

struct tm time_str;

char daybuf[20];

int main(void)
{

time_str.tm_year = 2001 — 1900;

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1303

42767

42768

42769

42770

42771

42772

42773

42774

42775

42776

42777

42778

42779

42780

42781

42782

42783

42784

42785

42786

42787

42788

42789

42790

42791

42792

42793

42794

42795

42796

42797

42798

42799

42800

42801

42802

42803

42804

42805

42806

42807

42808

42809

42810

mktime() System Interfaces

time_str.tm_mon = 7 — 1;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str.tm_isdst = −1;
if (mktime(&time_str) == -1)

(void)puts("-unknown-");
else {

(void)strftime(daybuf, sizeof(daybuf), "%A", &time_str);
(void)puts(daybuf);

}
return 0;

}

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), difftime(), gmtime(), localtime(), strftime(), strptime(), time(), tzset(),
utime()

XBD Section 4.15 (on page 113), <time.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard and the ANSI C
standard.

Issue 6
Extensions beyond the ISO C standard are marked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/58 is applied, updating the RETURN
VALUE and ERRORS sections to add the optional [EOVERFLOW] error as a CX extension.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/59 is applied, adding the tzset() function
to the SEE ALSO section.

1304 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

42811

42812

42813

42814

42815

42816

42817

42818

42819

42820

42821

42822

42823

42824

42825

42826

42827

42828

42829

42830

42831

42832

42833

42834

42835

42836

42837

42838

42839

42840

42841

42842

42843

System Interfaces mlock()

NAME
mlock, munlock — lock or unlock a range of process address space (REALTIME)

SYNOPSIS
MLR #include <sys/mman.h>

int mlock(const void *addr, size_t len);
int munlock(const void *addr, size_t len);

DESCRIPTION
The mlock() function shall cause those whole pages containing any part of the address space of
the process starting at address addr and continuing for len bytes to be memory-resident until
unlocked or until the process exits or execs another process image. The implementation may
require that addr be a multiple of {PAGESIZE}.

The munlock() function shall unlock those whole pages containing any part of the address space
of the process starting at address addr and continuing for len bytes, regardless of how many
times mlock() has been called by the process for any of the pages in the specified range. The
implementation may require that addr be a multiple of {PAGESIZE}.

If any of the pages in the range specified to a call to munlock() are also mapped into the address
spaces of other processes, any locks established on those pages by another process are
unaffected by the call of this process to munlock(). If any of the pages in the range specified by a
call to munlock() are also mapped into other portions of the address space of the calling process
outside the range specified, any locks established on those pages via the other mappings are also
unaffected by this call.

Upon successful return from mlock(), pages in the specified range shall be locked and memory-
resident. Upon successful return from munlock(), pages in the specified range shall be unlocked
with respect to the address space of the process. Memory residency of unlocked pages is
unspecified.

Appropriate privileges are required to lock process memory with mlock().

RETURN VALUE
Upon successful completion, the mlock() and munlock() functions shall return a value of zero.
Otherwise, no change is made to any locks in the address space of the process, and the function
shall return a value of −1 and set errno to indicate the error.

ERRORS
The mlock() and munlock() functions shall fail if:

[ENOMEM] Some or all of the address range specified by the addr and len arguments does
not correspond to valid mapped pages in the address space of the process.

The mlock() function shall fail if:

[EAGAIN] Some or all of the memory identified by the operation could not be locked
when the call was made.

The mlock() and munlock() functions may fail if:

[EINVAL] The addr argument is not a multiple of {PAGESIZE}.

The mlock() function may fail if:

[ENOMEM] Locking the pages mapped by the specified range would exceed an
implementation-defined limit on the amount of memory that the process may
lock.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1305

42844

42845

42846

42847

42848

42849

42850

42851

42852

42853

42854

42855

42856

42857

42858

42859

42860

42861

42862

42863

42864

42865

42866

42867

42868

42869

42870

42871

42872

42873

42874

42875

42876

42877

42878

42879

42880

42881

42882

42883

42884

42885

42886

mlock() System Interfaces

[EPERM] The calling process does not have appropriate privileges to perform the
requested operation.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , exit(), fork(), mlockall(), munmap()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mlock() and munlock() functions are marked as part of the Range Memory Locking option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Range Memory Locking option.

1306 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

42887

42888

42889

42890

42891

42892

42893

42894

42895

42896

42897

42898

42899

42900

42901

42902

42903

42904

42905

System Interfaces mlockall()

NAME
mlockall, munlockall — lock/unlock the address space of a process (REALTIME)

SYNOPSIS
ML #include <sys/mman.h>

int mlockall(int flags);
int munlockall(void);

DESCRIPTION
The mlockall() function shall cause all of the pages mapped by the address space of a process to
be memory-resident until unlocked or until the process exits or execs another process image. The
flags argument determines whether the pages to be locked are those currently mapped by the
address space of the process, those that are mapped in the future, or both. The flags argument is
constructed from the bitwise-inclusive OR of one or more of the following symbolic constants,
defined in <sys/mman.h>:

MCL_CURRENT Lock all of the pages currently mapped into the address space of the process.

MCL_FUTURE Lock all of the pages that become mapped into the address space of the
process in the future, when those mappings are established.

If MCL_FUTURE is specified, and the automatic locking of future mappings eventually causes
the amount of locked memory to exceed the amount of available physical memory or any other
implementation-defined limit, the behavior is implementation-defined. The manner in which the
implementation informs the application of these situations is also implementation-defined.

The munlockall() function shall unlock all currently mapped pages of the address space of the
process. Any pages that become mapped into the address space of the process after a call to
munlockall() shall not be locked, unless there is an intervening call to mlockall() specifying
MCL_FUTURE or a subsequent call to mlockall() specifying MCL_CURRENT. If pages mapped
into the address space of the process are also mapped into the address spaces of other processes
and are locked by those processes, the locks established by the other processes shall be
unaffected by a call by this process to munlockall().

Upon successful return from the mlockall() function that specifies MCL_CURRENT, all currently
mapped pages of the address space of the process shall be memory-resident and locked. Upon
return from the munlockall() function, all currently mapped pages of the address space of the
process shall be unlocked with respect to the address space of the process. The memory
residency of unlocked pages is unspecified.

Appropriate privileges are required to lock process memory with mlockall().

RETURN VALUE
Upon successful completion, the mlockall() function shall return a value of zero. Otherwise, no
additional memory shall be locked, and the function shall return a value of −1 and set errno to
indicate the error. The effect of failure of mlockall() on previously existing locks in the address
space is unspecified.

If it is supported by the implementation, the munlockall() function shall always return a value of
zero. Otherwise, the function shall return a value of −1 and set errno to indicate the error.

ERRORS
The mlockall() function shall fail if:

[EAGAIN] Some or all of the memory identified by the operation could not be locked
when the call was made.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1307

42906

42907

42908

42909

42910

42911

42912

42913

42914

42915

42916

42917

42918

42919

42920

42921

42922

42923

42924

42925

42926

42927

42928

42929

42930

42931

42932

42933

42934

42935

42936

42937

42938

42939

42940

42941

42942

42943

42944

42945

42946

42947

42948

42949

mlockall() System Interfaces

[EINVAL] The flags argument is zero, or includes unimplemented flags.

The mlockall() function may fail if:

[ENOMEM] Locking all of the pages currently mapped into the address space of the
process would exceed an implementation-defined limit on the amount of
memory that the process may lock.

[EPERM] The calling process does not have appropriate privileges to perform the
requested operation.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , exit(), fork(), mlock(), munmap()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mlockall() and munlockall() functions are marked as part of the Process Memory Locking
option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Memory Locking option.

1308 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

42950

42951

42952

42953

42954

42955

42956

42957

42958

42959

42960

42961

42962

42963

42964

42965

42966

42967

42968

42969

42970

42971

42972

42973

42974

System Interfaces mmap()

NAME
mmap — map pages of memory

SYNOPSIS
#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot, int flags,
int fildes, off_t off);

DESCRIPTION
The mmap() function shall establish a mapping between an address space of a process and a
memory object.

The mmap() function shall be supported for the following memory objects:

• Regular files

SHM • Shared memory objects

TYM • Typed memory objects

Support for any other type of file is unspecified.

The format of the call is as follows:

pa=mmap(addr, len, prot, flags, fildes, off);

The mmap() function shall establish a mapping between the address space of the process at an
address pa for len bytes to the memory object represented by the file descriptor fildes at offset off
for len bytes. The value of pa is an implementation-defined function of the parameter addr and
the values of flags, further described below. A successful mmap() call shall return pa as its result.
The address range starting at pa and continuing for len bytes shall be legitimate for the possible
(not necessarily current) address space of the process. The range of bytes starting at off and
continuing for len bytes shall be legitimate for the possible (not necessarily current) offsets in the
memory object represented by fildes.

TYM If fildes represents a typed memory object opened with either the
POSIX_TYPED_MEM_ALLOCATE flag or the POSIX_TYPED_MEM_ALLOCATE_CONTIG
flag, the memory object to be mapped shall be that portion of the typed memory object allocated
by the implementation as specified below. In this case, if off is non-zero, the behavior of mmap()
is undefined. If fildes refers to a valid typed memory object that is not accessible from the calling
process, mmap() shall fail.

The mapping established by mmap() shall replace any previous mappings for those whole pages
containing any part of the address space of the process starting at pa and continuing for len
bytes.

If the size of the mapped file changes after the call to mmap() as a result of some other operation
on the mapped file, the effect of references to portions of the mapped region that correspond to
added or removed portions of the file is unspecified.

If len is zero, mmap() shall fail and no mapping shall be established.

The parameter prot determines whether read, write, execute, or some combination of accesses
are permitted to the data being mapped. The prot shall be either PROT_NONE or the bitwise-
inclusive OR of one or more of the other flags in the following table, defined in the
<sys/mman.h> header.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1309

42975

42976

42977

42978

42979

42980

42981

42982

42983

42984

42985

42986

42987

42988

42989

42990

42991

42992

42993

42994

42995

42996

42997

42998

42999

43000

43001

43002

43003

43004

43005

43006

43007

43008

43009

43010

43011

43012

43013

43014

43015

mmap() System Interfaces

Symbolic Constant Description

PROT_READ Data can be read.
PROT_WRITE Data can be written.
PROT_EXEC Data can be executed.
PROT_NONE Data cannot be accessed.

If an implementation cannot support the combination of access types specified by prot, the call to
mmap() shall fail.

An implementation may permit accesses other than those specified by prot; however, the
implementation shall not permit a write to succeed where PROT_WRITE has not been set and
shall not permit any access where PROT_NONE alone has been set. The implementation shall
support at least the following values of prot: PROT_NONE, PROT_READ, PROT_WRITE, and
the bitwise-inclusive OR of PROT_READ and PROT_WRITE. The file descriptor fildes shall have
been opened with read permission, regardless of the protection options specified. If
PROT_WRITE is specified, the application shall ensure that it has opened the file descriptor fildes
with write permission unless MAP_PRIVATE is specified in the flags parameter as described
below.

The parameter flags provides other information about the handling of the mapped data. The
value of flags is the bitwise-inclusive OR of these options, defined in <sys/mman.h>:

Symbolic Constant Description

MAP_SHARED Changes are shared.
MAP_PRIVATE Changes are private.
MAP_FIXED Interpret addr exactly.

XSI It is implementation-defined whether MAP_FIXED shall be supported. MAP_FIXED shall be
supported on XSI-conformant systems.

MAP_SHARED and MAP_PRIVATE describe the disposition of write references to the memory
object. If MAP_SHARED is specified, write references shall change the underlying object. If
MAP_PRIVATE is specified, modifications to the mapped data by the calling process shall be
visible only to the calling process and shall not change the underlying object. It is unspecified
whether modifications to the underlying object done after the MAP_PRIVATE mapping is
established are visible through the MAP_PRIVATE mapping. Either MAP_SHARED or
MAP_PRIVATE can be specified, but not both. The mapping type is retained across fork().

The state of synchronization objects such as mutexes, semaphores, barriers, and conditional
variables placed in shared memory mapped with MAP_SHARED becomes undefined when the
last region in any process containing the synchronization object is unmapped.

TYM When fildes represents a typed memory object opened with either the
POSIX_TYPED_MEM_ALLOCATE flag or the POSIX_TYPED_MEM_ALLOCATE_CONTIG
flag, mmap() shall, if there are enough resources available, map len bytes allocated from the
corresponding typed memory object which were not previously allocated to any process in any
processor that may access that typed memory object. If there are not enough resources available,
the function shall fail. If fildes represents a typed memory object opened with the
POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, these allocated bytes shall be contiguous
within the typed memory object. If fildes represents a typed memory object opened with the
POSIX_TYPED_MEM_ALLOCATE flag, these allocated bytes may be composed of non-
contiguous fragments within the typed memory object. If fildes represents a typed memory
object opened with neither the POSIX_TYPED_MEM_ALLOCATE_CONTIG flag nor the
POSIX_TYPED_MEM_ALLOCATE flag, len bytes starting at offset off within the typed memory
object are mapped, exactly as when mapping a file or shared memory object. In this case, if two

1310 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

43016

43017

43018

43019

43020

43021

43022

43023

43024

43025

43026

43027

43028

43029

43030

43031

43032

43033

43034

43035

43036

43037

43038

43039

43040

43041

43042

43043

43044

43045

43046

43047

43048

43049

43050

43051

43052

43053

43054

43055

43056

43057

43058

43059

43060

43061

43062

System Interfaces mmap()

processes map an area of typed memory using the same off and len values and using file
descriptors that refer to the same memory pool (either from the same port or from a different
port), both processes shall map the same region of storage.

When MAP_FIXED is set in the flags argument, the implementation is informed that the value of
pa shall be addr, exactly. If MAP_FIXED is set, mmap() may return MAP_FAILED and set errno to
[EINVAL]. If a MAP_FIXED request is successful, the mapping established by mmap() replaces
any previous mappings for the pages in the range [pa,pa+len) of the process.

When MAP_FIXED is not set, the implementation uses addr in an implementation-defined
manner to arrive at pa. The pa so chosen shall be an area of the address space that the
implementation deems suitable for a mapping of len bytes to the file. All implementations
interpret an addr value of 0 as granting the implementation complete freedom in selecting pa,
subject to constraints described below. A non-zero value of addr is taken to be a suggestion of a
process address near which the mapping should be placed. When the implementation selects a
value for pa, it never places a mapping at address 0, nor does it replace any extant mapping.

If MAP_FIXED is specified and addr is non-zero, it shall have the same remainder as the off
parameter, modulo the page size as returned by sysconf() when passed _SC_PAGESIZE or
_SC_PAGE_SIZE. The implementation may require that off is a multiple of the page size. If
MAP_FIXED is specified, the implementation may require that addr is a multiple of the page
size. The system performs mapping operations over whole pages. Thus, while the parameter len
need not meet a size or alignment constraint, the system shall include, in any mapping
operation, any partial page specified by the address range starting at pa and continuing for len
bytes.

The system shall always zero-fill any partial page at the end of an object. Further, the system
shall never write out any modified portions of the last page of an object which are beyond its
end. References within the address range starting at pa and continuing for len bytes to whole
pages following the end of an object shall result in delivery of a SIGBUS signal.

An implementation may generate SIGBUS signals when a reference would cause an error in the
mapped object, such as out-of-space condition.

The mmap() function shall add an extra reference to the file associated with the file descriptor
fildes which is not removed by a subsequent close() on that file descriptor. This reference shall be
removed when there are no more mappings to the file.

The last data access timestamp of the mapped file may be marked for update at any time
between the mmap() call and the corresponding munmap() call. The initial read or write
reference to a mapped region shall cause the file’s last data access timestamp to be marked for
update if it has not already been marked for update.

The last data modification and last file status change timestamps of a file that is mapped with
MAP_SHARED and PROT_WRITE shall be marked for update at some point in the interval
between a write reference to the mapped region and the next call to msync() with MS_ASYNC or
MS_SYNC for that portion of the file by any process. If there is no such call and if the
underlying file is modified as a result of a write reference, then these timestamps shall be
marked for update at some time after the write reference.

There may be implementation-defined limits on the number of memory regions that can be
mapped (per process or per system).

XSI If such a limit is imposed, whether the number of memory regions that can be mapped by a
process is decreased by the use of shmat() is implementation-defined.

If mmap() fails for reasons other than [EBADF], [EINVAL], or [ENOTSUP], some of the

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1311

43063

43064

43065

43066

43067

43068

43069

43070

43071

43072

43073

43074

43075

43076

43077

43078

43079

43080

43081

43082

43083

43084

43085

43086

43087

43088

43089

43090

43091

43092

43093

43094

43095

43096

43097

43098

43099

43100

43101

43102

43103

43104

43105

43106

43107

43108

mmap() System Interfaces

mappings in the address range starting at addr and continuing for len bytes may have been
unmapped.

RETURN VALUE
Upon successful completion, the mmap() function shall return the address at which the mapping
was placed (pa); otherwise, it shall return a value of MAP_FAILED and set errno to indicate the
error. The symbol MAP_FAILED is defined in the <sys/mman.h> header. No successful return
from mmap() shall return the value MAP_FAILED.

ERRORS
The mmap() function shall fail if:

[EACCES] The fildes argument is not open for read, regardless of the protection specified,
or fildes is not open for write and PROT_WRITE was specified for a
MAP_SHARED type mapping.

ML [EAGAIN] The mapping could not be locked in memory, if required by mlockall(), due to
a lack of resources.

[EBADF] The fildes argument is not a valid open file descriptor.

[EINVAL] The value of len is zero.

[EINVAL] The value of flags is invalid (neither MAP_PRIVATE nor MAP_SHARED is
set).

[EMFILE] The number of mapped regions would exceed an implementation-defined
limit (per process or per system).

[ENODEV] The fildes argument refers to a file whose type is not supported by mmap().

[ENOMEM] MAP_FIXED was specified, and the range [addr,addr+len) exceeds that allowed
for the address space of a process; or, if MAP_FIXED was not specified and
there is insufficient room in the address space to effect the mapping.

ML [ENOMEM] The mapping could not be locked in memory, if required by mlockall(),
because it would require more space than the system is able to supply.

TYM [ENOMEM] Not enough unallocated memory resources remain in the typed memory
object designated by fildes to allocate len bytes.

[ENOTSUP] MAP_FIXED or MAP_PRIVATE was specified in the flags argument and the
implementation does not support this functionality.

The implementation does not support the combination of accesses requested
in the prot argument.

[ENXIO] Addresses in the range [off,off+len) are invalid for the object specified by fildes.

[ENXIO] MAP_FIXED was specified in flags and the combination of addr, len, and off is
invalid for the object specified by fildes.

TYM [ENXIO] The fildes argument refers to a typed memory object that is not accessible from
the calling process.

[EOVERFLOW] The file is a regular file and the value of off plus len exceeds the offset
maximum established in the open file description associated with fildes.

1312 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

43109

43110

43111

43112

43113

43114

43115

43116

43117

43118

43119

43120

43121

43122

43123

43124

43125

43126

43127

43128

43129

43130

43131

43132

43133

43134

43135

43136

43137

43138

43139

43140

43141

43142

43143

43144

43145

43146

43147

System Interfaces mmap()

The mmap() function may fail if:

[EINVAL] The addr argument (if MAP_FIXED was specified) or off is not a multiple of the
page size as returned by sysconf(), or is considered invalid by the
implementation.

EXAMPLES
None.

APPLICATION USAGE
Use of mmap() may reduce the amount of memory available to other memory allocation
functions.

Use of MAP_FIXED may result in unspecified behavior in further use of malloc() and shmat().
The use of MAP_FIXED is discouraged, as it may prevent an implementation from making the
most effective use of resources. Most implementations require that off and addr are multiples of
the page size as returned by sysconf().

The application must ensure correct synchronization when using mmap() in conjunction with
any other file access method, such as read() and write(), standard input/output, and shmat().

The mmap() function allows access to resources via address space manipulations, instead of
read()/write(). Once a file is mapped, all a process has to do to access it is use the data at the
address to which the file was mapped. So, using pseudo-code to illustrate the way in which an
existing program might be changed to use mmap(), the following:

fildes = open(...)
lseek(fildes, some_offset)
read(fildes, buf, len)
/* Use data in buf. */

becomes:

fildes = open(...)
address = mmap(0, len, PROT_READ, MAP_PRIVATE, fildes, some_offset)
/* Use data at address. */

RATIONALE
After considering several other alternatives, it was decided to adopt the mmap() definition
found in SVR4 for mapping memory objects into process address spaces. The SVR4 definition is
minimal, in that it describes only what has been built, and what appears to be necessary for a
general and portable mapping facility.

Note that while mmap() was first designed for mapping files, it is actually a general-purpose
mapping facility. It can be used to map any appropriate object, such as memory, files, devices,
and so on, into the address space of a process.

When a mapping is established, it is possible that the implementation may need to map more
than is requested into the address space of the process because of hardware requirements. An
application, however, cannot count on this behavior. Implementations that do not use a paged
architecture may simply allocate a common memory region and return the address of it; such
implementations probably do not allocate any more than is necessary. References past the end of
the requested area are unspecified.

If an application requests a mapping that would overlay existing mappings in the process, it
might be desirable that an implementation detect this and inform the application. However, the
default, portable (not MAP_FIXED) operation does not overlay existing mappings. On the other
hand, if the program specifies a fixed address mapping (which requires some implementation

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1313

43148

43149

43150

43151

43152

43153

43154

43155

43156

43157

43158

43159

43160

43161

43162

43163

43164

43165

43166

43167

43168

43169

43170

43171

43172

43173

43174

43175

43176

43177

43178

43179

43180

43181

43182

43183

43184

43185

43186

43187

43188

43189

43190

43191

43192

mmap() System Interfaces

knowledge to determine a suitable address, if the function is supported at all), then the program
is presumed to be successfully managing its own address space and should be trusted when it
asks to map over existing data structures. Furthermore, it is also desirable to make as few system
calls as possible, and it might be considered onerous to require an munmap() before an mmap()
to the same address range. This volume of POSIX.1-2008 specifies that the new mappings
replace any existing mappings, following existing practice in this regard.

It is not expected that all hardware implementations are able to support all combinations of
permissions at all addresses. Implementations are required to disallow write access to mappings
without write permission and to disallow access to mappings without any access permission.
Other than these restrictions, implementations may allow access types other than those
requested by the application. For example, if the application requests only PROT_WRITE, the
implementation may also allow read access. A call to mmap() fails if the implementation cannot
support allowing all the access requested by the application. For example, some
implementations cannot support a request for both write access and execute access
simultaneously. All implementations must support requests for no access, read access, write
access, and both read and write access. Strictly conforming code must only rely on the required
checks. These restrictions allow for portability across a wide range of hardware.

The MAP_FIXED address treatment is likely to fail for non-page-aligned values and for certain
architecture-dependent address ranges. Conforming implementations cannot count on being
able to choose address values for MAP_FIXED without utilizing non-portable, implementation-
defined knowledge. Nonetheless, MAP_FIXED is provided as a standard interface conforming
to existing practice for utilizing such knowledge when it is available.

Similarly, in order to allow implementations that do not support virtual addresses, support for
directly specifying any mapping addresses via MAP_FIXED is not required and thus a
conforming application may not count on it.

The MAP_PRIVATE function can be implemented efficiently when memory protection hardware
is available. When such hardware is not available, implementations can implement such
‘‘mappings’’ by simply making a real copy of the relevant data into process private memory,
though this tends to behave similarly to read().

The function has been defined to allow for many different models of using shared memory.
However, all uses are not equally portable across all machine architectures. In particular, the
mmap() function allows the system as well as the application to specify the address at which to
map a specific region of a memory object. The most portable way to use the function is always to
let the system choose the address, specifying NULL as the value for the argument addr and not
to specify MAP_FIXED.

If it is intended that a particular region of a memory object be mapped at the same address in a
group of processes (on machines where this is even possible), then MAP_FIXED can be used to
pass in the desired mapping address. The system can still be used to choose the desired address
if the first such mapping is made without specifying MAP_FIXED, and then the resulting
mapping address can be passed to subsequent processes for them to pass in via MAP_FIXED.
The availability of a specific address range cannot be guaranteed, in general.

The mmap() function can be used to map a region of memory that is larger than the current size
of the object. Memory access within the mapping but beyond the current end of the underlying
objects may result in SIGBUS signals being sent to the process. The reason for this is that the size
of the object can be manipulated by other processes and can change at any moment. The
implementation should tell the application that a memory reference is outside the object where
this can be detected; otherwise, written data may be lost and read data may not reflect actual
data in the object.

1314 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

43193

43194

43195

43196

43197

43198

43199

43200

43201

43202

43203

43204

43205

43206

43207

43208

43209

43210

43211

43212

43213

43214

43215

43216

43217

43218

43219

43220

43221

43222

43223

43224

43225

43226

43227

43228

43229

43230

43231

43232

43233

43234

43235

43236

43237

43238

43239

43240

System Interfaces mmap()

Note that references beyond the end of the object do not extend the object as the new end cannot
be determined precisely by most virtual memory hardware. Instead, the size can be directly
manipulated by ftruncate().

Process memory locking does apply to shared memory regions, and the MEMLOCK_FUTURE
argument to mlockall() can be relied upon to cause new shared memory regions to be
automatically locked.

Existing implementations of mmap() return the value −1 when unsuccessful. Since the casting of
this value to type void * cannot be guaranteed by the ISO C standard to be distinct from a
successful value, this volume of POSIX.1-2008 defines the symbol MAP_FAILED, which a
conforming implementation does not return as the result of a successful call.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fcntl(), fork(), lockf(), msync(), munmap(), mprotect(), posix_typed_mem_open(), shmat(),
sysconf()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Aligned with mmap() in the POSIX Realtime Extension as follows:

• The DESCRIPTION is extensively reworded.

• The [EAGAIN] and [ENOTSUP] mandatory error conditions are added.

• New cases of [ENOMEM] and [ENXIO] are added as mandatory error conditions.

• The value returned on failure is the value of the constant MAP_FAILED; this was
previously defined as −1.

Large File Summit extensions are added.

Issue 6
The mmap() function is marked as part of the Memory Mapped Files option.

The Open Group Corrigendum U028/6 is applied, changing (void *)−1 to MAP_FAILED.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to describe the use of MAP_FIXED.

• The DESCRIPTION is updated to describe the addition of an extra reference to the file
associated with the file descriptor passed to mmap().

• The DESCRIPTION is updated to state that there may be implementation-defined limits on
the number of memory regions that can be mapped.

• The DESCRIPTION is updated to describe constraints on the alignment and size of the off
argument.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1315

43241

43242

43243

43244

43245

43246

43247

43248

43249

43250

43251

43252

43253

43254

43255

43256

43257

43258

43259

43260

43261

43262

43263

43264

43265

43266

43267

43268

43269

43270

43271

43272

43273

43274

43275

43276

43277

43278

43279

mmap() System Interfaces

• The [EINVAL] and [EMFILE] error conditions are added.

• The [EOVERFLOW] error condition is added. This change is to support large files.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The DESCRIPTION is updated to describe the cases when MAP_PRIVATE and
MAP_FIXED need not be supported.

The following changes are made for alignment with IEEE Std 1003.1j-2000:

• Semantics for typed memory objects are added to the DESCRIPTION.

• New [ENOMEM] and [ENXIO] errors are added to the ERRORS section.

• The posix_typed_mem_open() function is added to the SEE ALSO section.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/34 is applied, changing the margin code
in the SYNOPSIS from MF|SHM to MC3 (notation for MF|SHM|TYM).

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/60 is applied, updating the
DESCRIPTION and ERRORS sections to add the [EINVAL] error when len is zero.

Issue 7
Austin Group Interpretations 1003.1-2001 #078 and #079 are applied, clarifying page alignment
requirements and adding a note about the state of synchronization objects becoming undefined
when a shared region is unmapped.

Functionality relating to the Memory Protection and Memory Mapped Files options is moved to
the Base.

Changes are made related to support for finegrained timestamps.

1316 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

43280

43281

43282

43283

43284

43285

43286

43287

43288

43289

43290

43291

43292

43293

43294

43295

43296

43297

43298

43299

43300

System Interfaces modf()

NAME
modf, modff, modfl — decompose a floating-point number

SYNOPSIS
#include <math.h>

double modf(double x, double *iptr);
float modff(float value, float *iptr);
long double modfl(long double value, long double *iptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall break the argument x into integral and fractional parts, each of which has
the same sign as the argument. It stores the integral part as a double (for the modf() function), a
float (for the modff() function), or a long double (for the modfl() function), in the object pointed
to by iptr.

RETURN VALUE
Upon successful completion, these functions shall return the signed fractional part of x.

MX If x is NaN, a NaN shall be returned, and *iptr shall be set to a NaN.

If x is ±Inf, ±0 shall be returned, and *iptr shall be set to ±Inf.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The modf() function computes the function result and *iptr such that:

a = modf(x, iptr) ;
x == a+*iptr ;

allowing for the usual floating-point inaccuracies.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
frexp(), isnan(), ldexp()

XBD <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1317

43301

43302

43303

43304

43305

43306

43307

43308

43309

43310

43311

43312

43313

43314

43315

43316

43317

43318

43319

43320

43321

43322

43323

43324

43325

43326

43327

43328

43329

43330

43331

43332

43333

43334

43335

43336

43337

43338

43339

43340

modf() System Interfaces

Issue 6
The modff() and modfl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/35 is applied, correcting the code example
in the APPLICATION USAGE section.

1318 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

43341

43342

43343

43344

43345

43346

43347

43348

43349

System Interfaces mprotect()

NAME
mprotect — set protection of memory mapping

SYNOPSIS
#include <sys/mman.h>

int mprotect(void *addr, size_t len, int prot);

DESCRIPTION
The mprotect() function shall change the access protections to be that specified by prot for those
whole pages containing any part of the address space of the process starting at address addr and
continuing for len bytes. The parameter prot determines whether read, write, execute, or some
combination of accesses are permitted to the data being mapped. The prot argument should be
either PROT_NONE or the bitwise-inclusive OR of one or more of PROT_READ, PROT_WRITE,
and PROT_EXEC.

If an implementation cannot support the combination of access types specified by prot, the call to
mprotect() shall fail.

An implementation may permit accesses other than those specified by prot; however, no
implementation shall permit a write to succeed where PROT_WRITE has not been set or shall
permit any access where PROT_NONE alone has been set. Implementations shall support at
least the following values of prot: PROT_NONE, PROT_READ, PROT_WRITE, and the bitwise-
inclusive OR of PROT_READ and PROT_WRITE. If PROT_WRITE is specified, the application
shall ensure that it has opened the mapped objects in the specified address range with write
permission, unless MAP_PRIVATE was specified in the original mapping, regardless of whether
the file descriptors used to map the objects have since been closed.

The implementation may require that addr be a multiple of the page size as returned by
sysconf().

The behavior of this function is unspecified if the mapping was not established by a call to
mmap().

When mprotect() fails for reasons other than [EINVAL], the protections on some of the pages in
the range [addr,addr+len) may have been changed.

RETURN VALUE
Upon successful completion, mprotect() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
The mprotect() function shall fail if:

[EACCES] The prot argument specifies a protection that violates the access permission the
process has to the underlying memory object.

[EAGAIN] The prot argument specifies PROT_WRITE over a MAP_PRIVATE mapping
and there are insufficient memory resources to reserve for locking the private
page.

[ENOMEM] Addresses in the range [addr,addr+len) are invalid for the address space of a
process, or specify one or more pages which are not mapped.

[ENOMEM] The prot argument specifies PROT_WRITE on a MAP_PRIVATE mapping, and
it would require more space than the system is able to supply for locking the
private pages, if required.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1319

43350

43351

43352

43353

43354

43355

43356

43357

43358

43359

43360

43361

43362

43363

43364

43365

43366

43367

43368

43369

43370

43371

43372

43373

43374

43375

43376

43377

43378

43379

43380

43381

43382

43383

43384

43385

43386

43387

43388

43389

43390

43391

43392

mprotect() System Interfaces

[ENOTSUP] The implementation does not support the combination of accesses requested
in the prot argument.

The mprotect() function may fail if:

[EINVAL] The addr argument is not a multiple of the page size as returned by sysconf().

EXAMPLES
None.

APPLICATION USAGE
Most implementations require that addr is a multiple of the page size as returned by sysconf().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), sysconf()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Aligned with mprotect() in the POSIX Realtime Extension as follows:

• The DESCRIPTION is largely reworded.

• [ENOTSUP] and a second form of [ENOMEM] are added as mandatory error conditions.

• [EAGAIN] is moved from the optional to the mandatory error conditions.

Issue 6
The mprotect() function is marked as part of the Memory Protection option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to state that implementations require addr to be a multiple
of the page size as returned by sysconf().

• The [EINVAL] error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
SD5-XSH-ERN-22 is applied, deleting erroneous APPLICATION USAGE.

Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

The mprotect() function is moved from the Memory Protection option to the Base.

1320 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

43393

43394

43395

43396

43397

43398

43399

43400

43401

43402

43403

43404

43405

43406

43407

43408

43409

43410

43411

43412

43413

43414

43415

43416

43417

43418

43419

43420

43421

43422

43423

43424

43425

43426

43427

43428

System Interfaces mq_close()

NAME
mq_close — close a message queue (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_close(mqd_t mqdes);

DESCRIPTION
The mq_close() function shall remove the association between the message queue descriptor,
mqdes, and its message queue. The results of using this message queue descriptor after successful
return from this mq_close(), and until the return of this message queue descriptor from a
subsequent mq_open(), are undefined.

If the process has successfully attached a notification request to the message queue via this
mqdes, this attachment shall be removed, and the message queue is available for another process
to attach for notification.

RETURN VALUE
Upon successful completion, the mq_close() function shall return a value of zero; otherwise, the
function shall return a value of −1 and set errno to indicate the error.

ERRORS
The mq_close() function shall fail if:

[EBADF] The mqdes argument is not a valid message queue descriptor.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_unlink(), msgctl(), msgget(), msgrcv(), msgsnd()

XBD <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_close() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1321

43429

43430

43431

43432

43433

43434

43435

43436

43437

43438

43439

43440

43441

43442

43443

43444

43445

43446

43447

43448

43449

43450

43451

43452

43453

43454

43455

43456

43457

43458

43459

43460

43461

43462

43463

43464

mq_getattr() System Interfaces

NAME
mq_getattr — get message queue attributes (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_getattr(mqd_t mqdes, struct mq_attr *mqstat);

DESCRIPTION
The mq_getattr() function shall obtain status information and attributes of the message queue
and the open message queue description associated with the message queue descriptor.

The mqdes argument specifies a message queue descriptor.

The results shall be returned in the mq_attr structure referenced by the mqstat argument.

Upon return, the following members shall have the values associated with the open message
queue description as set when the message queue was opened and as modified by subsequent
mq_setattr() calls: mq_flags.

The following attributes of the message queue shall be returned as set at message queue
creation: mq_maxmsg, mq_msgsize.

Upon return, the following members within the mq_attr structure referenced by the mqstat
argument shall be set to the current state of the message queue:

mq_curmsgs The number of messages currently on the queue.

RETURN VALUE
Upon successful completion, the mq_getattr() function shall return zero. Otherwise, the function
shall return −1 and set errno to indicate the error.

ERRORS
The mq_getattr() function may fail if:

[EBADF] The mqdes argument is not a valid message queue descriptor.

EXAMPLES
See mq_notify().

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_notify(), mq_open(), mq_send(), mq_setattr(), msgctl(), msgget(), msgrcv(), msgsnd()

XBD <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_getattr() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

1322 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

43465

43466

43467

43468

43469

43470

43471

43472

43473

43474

43475

43476

43477

43478

43479

43480

43481

43482

43483

43484

43485

43486

43487

43488

43489

43490

43491

43492

43493

43494

43495

43496

43497

43498

43499

43500

43501

43502

43503

43504

43505

System Interfaces mq_getattr()

The mq_timedsend() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/61 is applied, updating the ERRORS
section to change the [EBADF] error from mandatory to optional.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1323

43506

43507

43508

43509

mq_notify() System Interfaces

NAME
mq_notify — notify process that a message is available (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_notify(mqd_t mqdes, const struct sigevent *notification);

DESCRIPTION
If the argument notification is not NULL, this function shall register the calling process to be
notified of message arrival at an empty message queue associated with the specified message
queue descriptor, mqdes. The notification specified by the notification argument shall be sent to
the process when the message queue transitions from empty to non-empty. At any time, only
one process may be registered for notification by a message queue. If the calling process or any
other process has already registered for notification of message arrival at the specified message
queue, subsequent attempts to register for that message queue shall fail.

If notification is NULL and the process is currently registered for notification by the specified
message queue, the existing registration shall be removed.

When the notification is sent to the registered process, its registration shall be removed. The
message queue shall then be available for registration.

If a process has registered for notification of message arrival at a message queue and some
thread is blocked in mq_receive() or mq_timedreceive() waiting to receive a message when a
message arrives at the queue, the arriving message shall satisfy the appropriate mq_receive() or
mq_timedreceive(), respectively. The resulting behavior is as if the message queue remains empty,
and no notification shall be sent.

RETURN VALUE
Upon successful completion, the mq_notify() function shall return a value of zero; otherwise, the
function shall return a value of −1 and set errno to indicate the error.

ERRORS
The mq_notify() function shall fail if:

[EBADF] The mqdes argument is not a valid message queue descriptor.

[EBUSY] A process is already registered for notification by the message queue.

The mq_notify() function may fail if:

[EINVAL] The notification argument is NULL and the process is currently not registered.

EXAMPLES
The following program registers a notification request for the message queue named in its
command-line argument. Notification is performed by creating a thread. The thread executes a
function which reads one message from the queue and then terminates the process.

#include <pthread.h>
#include <mqueue.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static void /* Thread start function */
tfunc(union sigval sv)
{

1324 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

43510

43511

43512

43513

43514

43515

43516

43517

43518

43519

43520

43521

43522

43523

43524

43525

43526

43527

43528

43529

43530

43531

43532

43533

43534

43535

43536

43537

43538

43539

43540

43541

43542

43543

43544

43545

43546

43547

43548

43549

43550

43551

43552

43553

System Interfaces mq_notify()

struct mq_attr attr;
ssize_t nr;
void *buf;
mqd_t mqdes = *((mqd_t *) sv.sival_ptr);

/* Determine maximum msg size; allocate buffer to receive msg */

if (mq_getattr(mqdes, &attr) == -1) {
perror("mq_getattr");
exit(EXIT_FAILURE);

}
buf = malloc(attr.mq_msgsize);

if (buf == NULL) {
perror("malloc");
exit(EXIT_FAILURE);

}

nr = mq_receive(mqdes, buf, attr.mq_msgsize, NULL);
if (nr == -1) {

perror("mq_receive");
exit(EXIT_FAILURE);

}

printf("Read %ld bytes from message queue\n", (long) nr);
free(buf);
exit(EXIT_SUCCESS); /* Terminate the process */

}

int
main(int argc, char *argv[])
{

mqd_t mqdes;
struct sigevent not;

assert(argc == 2);

mqdes = mq_open(argv[1], O_RDONLY);
if (mqdes == (mqd_t) -1) {

perror("mq_open");
exit(EXIT_FAILURE);

}

not.sigev_notify = SIGEV_THREAD;
not.sigev_notify_function = tfunc;
not.sigev_notify_attributes = NULL;
not.sigev_value.sival_ptr = &mqdes; /* Arg. to thread func. */
if (mq_notify(mqdes, ¬) == -1) {

perror("mq_notify");
exit(EXIT_FAILURE);

}

pause(); /* Process will be terminated by thread function */
}

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1325

43554

43555

43556

43557

43558

43559

43560

43561

43562

43563

43564

43565

43566

43567

43568

43569

43570

43571

43572

43573

43574

43575

43576

43577

43578

43579

43580

43581

43582

43583

43584

43585

43586

43587

43588

43589

43590

43591

43592

43593

43594

43595

43596

43597

mq_notify() System Interfaces

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_send(), mq_receive(), msgctl(), msgget(), msgrcv(), msgsnd()

XBD <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_notify() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

The mq_timedsend() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

Issue 7
SD5-XSH-ERN-38 is applied, adding the mq_timedreceive() function to the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #032 is applied, adding the [EINVAL] error.

An example is added.

1326 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

43598

43599

43600

43601

43602

43603

43604

43605

43606

43607

43608

43609

43610

43611

43612

43613

43614

43615

43616

43617

43618

System Interfaces mq_open()

NAME
mq_open — open a message queue (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

mqd_t mq_open(const char *name, int oflag, ...);

DESCRIPTION
The mq_open() function shall establish the connection between a process and a message queue
with a message queue descriptor. It shall create an open message queue description that refers to
the message queue, and a message queue descriptor that refers to that open message queue
description. The message queue descriptor is used by other functions to refer to that message
queue. The name argument points to a string naming a message queue. It is unspecified whether
the name appears in the file system and is visible to other functions that take pathnames as
arguments. The name argument conforms to the construction rules for a pathname, except that
the interpretation of <slash> characters other than the leading <slash> character in name is
implementation-defined, and that the length limits for the name argument are implementation-
defined and need not be the same as the pathname limits {PATH_MAX} and {NAME_MAX}. If
name begins with the <slash> character, then processes calling mq_open() with the same value of
name shall refer to the same message queue object, as long as that name has not been removed. If
name does not begin with the <slash> character, the effect is implementation-defined. If the name
argument is not the name of an existing message queue and creation is not requested, mq_open()
shall fail and return an error.

A message queue descriptor may be implemented using a file descriptor, in which case
applications can open up to at least {OPEN_MAX} file and message queues.

The oflag argument requests the desired receive and/or send access to the message queue. The
requested access permission to receive messages or send messages shall be granted if the calling
process would be granted read or write access, respectively, to an equivalently protected file.

The value of oflag is the bitwise-inclusive OR of values from the following list. Applications
shall specify exactly one of the first three values (access modes) below in the value of oflag:

O_RDONLY Open the message queue for receiving messages. The process can use the
returned message queue descriptor with mq_receive(), but not mq_send(). A
message queue may be open multiple times in the same or different processes
for receiving messages.

O_WRONLY Open the queue for sending messages. The process can use the returned
message queue descriptor with mq_send() but not mq_receive(). A message
queue may be open multiple times in the same or different processes for
sending messages.

O_RDWR Open the queue for both receiving and sending messages. The process can use
any of the functions allowed for O_RDONLY and O_WRONLY. A message
queue may be open multiple times in the same or different processes for
sending messages.

Any combination of the remaining flags may be specified in the value of oflag:

O_CREAT Create a message queue. It requires two additional arguments: mode, which
shall be of type mode_t, and attr, which shall be a pointer to an mq_attr
structure. If the pathname name has already been used to create a message
queue that still exists, then this flag shall have no effect, except as noted under
O_EXCL. Otherwise, a message queue shall be created without any messages

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1327

43619

43620

43621

43622

43623

43624

43625

43626

43627

43628

43629

43630

43631

43632

43633

43634

43635

43636

43637

43638

43639

43640

43641

43642

43643

43644

43645

43646

43647

43648

43649

43650

43651

43652

43653

43654

43655

43656

43657

43658

43659

43660

43661

43662

43663

43664

mq_open() System Interfaces

in it. The user ID of the message queue shall be set to the effective user ID of
the process. The group ID of the message queue shall be set to the effective
group ID of the process; however, if the name argument is visible in the file
system, the group ID may be set to the group ID of the containing directory.
When bits in mode other than the file permission bits are specified, the effect is
unspecified. If attr is NULL, the message queue shall be created with
implementation-defined default message queue attributes. If attr is non-NULL
and the calling process has appropriate privileges on name, the message queue
mq_maxmsg and mq_msgsize attributes shall be set to the values of the
corresponding members in the mq_attr structure referred to by attr. If attr is
non-NULL, but the calling process does not have appropriate privileges on
name, the mq_open() function shall fail and return an error without creating
the message queue.

O_EXCL If O_EXCL and O_CREAT are set, mq_open() shall fail if the message queue
name exists. The check for the existence of the message queue and the creation
of the message queue if it does not exist shall be atomic with respect to other
threads executing mq_open() naming the same name with O_EXCL and
O_CREAT set. If O_EXCL is set and O_CREAT is not set, the result is
undefined.

O_NONBLOCK Determines whether an mq_send() or mq_receive() waits for resources or
messages that are not currently available, or fails with errno set to [EAGAIN];
see mq_send() and mq_receive() for details.

The mq_open() function does not add or remove messages from the queue.

RETURN VALUE
Upon successful completion, the function shall return a message queue descriptor; otherwise,
the function shall return (mqd_t)−1 and set errno to indicate the error.

ERRORS
The mq_open() function shall fail if:

[EACCES] The message queue exists and the permissions specified by oflag are denied, or
the message queue does not exist and permission to create the message queue
is denied.

[EEXIST] O_CREAT and O_EXCL are set and the named message queue already exists.

[EINTR] The mq_open() function was interrupted by a signal.

[EINVAL] The mq_open() function is not supported for the given name.

[EINVAL] O_CREAT was specified in oflag, the value of attr is not NULL, and either
mq_maxmsg or mq_msgsize was less than or equal to zero.

[EMFILE] Too many message queue descriptors or file descriptors are currently in use by
this process.

[ENFILE] Too many message queues are currently open in the system.

[ENOENT] O_CREAT is not set and the named message queue does not exist.

[ENOSPC] There is insufficient space for the creation of the new message queue.

1328 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

43665

43666

43667

43668

43669

43670

43671

43672

43673

43674

43675

43676

43677

43678

43679

43680

43681

43682

43683

43684

43685

43686

43687

43688

43689

43690

43691

43692

43693

43694

43695

43696

43697

43698

43699

43700

43701

43702

43703

43704

43705

System Interfaces mq_open()

If any of the following conditions occur, the mq_open() function may return (mqd_t)−1 and set
errno to the corresponding value.

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
A future version might require the mq_open() and mq_unlink() functions to have semantics
similar to normal file system operations.

SEE ALSO
mq_close(), mq_getattr(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgctl(), msgget(),
msgrcv(), msgsnd()

XBD <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_open() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

The mq_timedreceive() and mq_timedsend() functions are added to the SEE ALSO section for
alignment with IEEE Std 1003.1d-1999.

The DESCRIPTION of O_EXCL is updated in response to IEEE PASC Interpretation 1003.1c #48.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/62 is applied, updating the description of
the permission bits in the DESCRIPTION. The change is made for consistency with the
shm_open() and sem_open() functions.

Issue 7
Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name argument and
changing [ENAMETOOLONG] from a ‘‘shall fail’’ to a ‘‘may fail’’ error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE DIRECTIONS.

SD5-XSH-ERN-170 is applied, updating the DESCRIPTION to clarify the wording for setting the
user ID and group ID of the message queue.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1329

43706

43707

43708

43709

43710

43711

43712

43713

43714

43715

43716

43717

43718

43719

43720

43721

43722

43723

43724

43725

43726

43727

43728

43729

43730

43731

43732

43733

43734

43735

43736

43737

43738

43739

43740

43741

43742

43743

43744

mq_receive() System Interfaces

NAME
mq_receive, mq_timedreceive — receive a message from a message queue (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len,
unsigned *msg_prio);

#include <mqueue.h>
#include <time.h>

ssize_t mq_timedreceive(mqd_t mqdes, char *restrict msg_ptr,
size_t msg_len, unsigned *restrict msg_prio,
const struct timespec *restrict abstime);

DESCRIPTION
The mq_receive() function shall receive the oldest of the highest priority message(s) from the
message queue specified by mqdes. If the size of the buffer in bytes, specified by the msg_len
argument, is less than the mq_msgsize attribute of the message queue, the function shall fail and
return an error. Otherwise, the selected message shall be removed from the queue and copied to
the buffer pointed to by the msg_ptr argument.

If the value of msg_len is greater than {SSIZE_MAX}, the result is implementation-defined.

If the argument msg_prio is not NULL, the priority of the selected message shall be stored in the
location referenced by msg_prio.

If the specified message queue is empty and O_NONBLOCK is not set in the message queue
description associated with mqdes, mq_receive() shall block until a message is enqueued on the
message queue or until mq_receive() is interrupted by a signal. If more than one thread is waiting
to receive a message when a message arrives at an empty queue and the Priority Scheduling
option is supported, then the thread of highest priority that has been waiting the longest shall be
selected to receive the message. Otherwise, it is unspecified which waiting thread receives the
message. If the specified message queue is empty and O_NONBLOCK is set in the message
queue description associated with mqdes, no message shall be removed from the queue, and
mq_receive() shall return an error.

The mq_timedreceive() function shall receive the oldest of the highest priority messages from the
message queue specified by mqdes as described for the mq_receive() function. However, if
O_NONBLOCK was not specified when the message queue was opened via the mq_open()
function, and no message exists on the queue to satisfy the receive, the wait for such a message
shall be terminated when the specified timeout expires. If O_NONBLOCK is set, this function is
equivalent to mq_receive().

The timeout expires when the absolute time specified by abstime passes, as measured by the
clock on which timeouts are based (that is, when the value of that clock equals or exceeds
abstime), or if the absolute time specified by abstime has already been passed at the time of the
call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall
be the resolution of the clock on which it is based. The timespec argument is defined in the
<time.h> header.

Under no circumstance shall the operation fail with a timeout if a message can be removed from
the message queue immediately. The validity of the abstime parameter need not be checked if a
message can be removed from the message queue immediately.

1330 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

43745

43746

43747

43748

43749

43750

43751

43752

43753

43754

43755

43756

43757

43758

43759

43760

43761

43762

43763

43764

43765

43766

43767

43768

43769

43770

43771

43772

43773

43774

43775

43776

43777

43778

43779

43780

43781

43782

43783

43784

43785

43786

43787

43788

43789

System Interfaces mq_receive()

RETURN VALUE
Upon successful completion, the mq_receive() and mq_timedreceive() functions shall return the
length of the selected message in bytes and the message shall be removed from the queue.
Otherwise, no message shall be removed from the queue, the functions shall return a value of −1,
and set errno to indicate the error.

ERRORS
These functions shall fail if:

[EAGAIN] O_NONBLOCK was set in the message description associated with mqdes, and
the specified message queue is empty.

[EBADF] The mqdes argument is not a valid message queue descriptor open for reading.

[EMSGSIZE] The specified message buffer size, msg_len, is less than the message size
attribute of the message queue.

[EINTR] The mq_receive() or mq_timedreceive() operation was interrupted by a signal.

[EINVAL] The process or thread would have blocked, and the abstime parameter
specified a nanoseconds field value less than zero or greater than or equal to
1 000 million.

[ETIMEDOUT] The O_NONBLOCK flag was not set when the message queue was opened,
but no message arrived on the queue before the specified timeout expired.

These functions may fail if:

[EBADMSG] The implementation has detected a data corruption problem with the
message.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_send(), msgctl(), msgget(), msgrcv(), msgsnd(), time()

XBD <mqueue.h>, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_receive() function is marked as part of the Message Passing option.

The Open Group Corrigendum U021/4 is applied. The DESCRIPTION is changed to refer to
msg_len rather than maxsize.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1331

43790

43791

43792

43793

43794

43795

43796

43797

43798

43799

43800

43801

43802

43803

43804

43805

43806

43807

43808

43809

43810

43811

43812

43813

43814

43815

43816

43817

43818

43819

43820

43821

43822

43823

43824

43825

43826

43827

43828

43829

43830

43831

mq_receive() System Interfaces

• In this function it is possible for the return value to exceed the range of the type ssize_t
(since size_t has a larger range of positive values than ssize_t). A sentence restricting the
size of the size_t object is added to the description to resolve this conflict.

The mq_timedreceive() function is added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the mq_timedreceive() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE PASC Interpretation 1003.1 #109 is applied, correcting the return type for mq_timedreceive()
from int to ssize_t.

Issue 7
The mq_timedreceive() function is moved from the Timeouts option to the Base.

Functionality relating to the Timers option is moved to the Base.

1332 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

43832

43833

43834

43835

43836

43837

43838

43839

43840

43841

43842

System Interfaces mq_send()

NAME
mq_send, mq_timedsend — send a message to a message queue (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
unsigned msg_prio);

#include <mqueue.h>
#include <time.h>

int mq_timedsend(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
unsigned msg_prio, const struct timespec *abstime);

DESCRIPTION
The mq_send() function shall add the message pointed to by the argument msg_ptr to the
message queue specified by mqdes. The msg_len argument specifies the length of the message, in
bytes, pointed to by msg_ptr. The value of msg_len shall be less than or equal to the mq_msgsize
attribute of the message queue, or mq_send() shall fail.

If the specified message queue is not full, mq_send() shall behave as if the message is inserted
into the message queue at the position indicated by the msg_prio argument. A message with a
larger numeric value of msg_prio shall be inserted before messages with lower values of
msg_prio. A message shall be inserted after other messages in the queue, if any, with equal
msg_prio. The value of msg_prio shall be less than {MQ_PRIO_MAX}.

If the specified message queue is full and O_NONBLOCK is not set in the message queue
description associated with mqdes, mq_send() shall block until space becomes available to
enqueue the message, or until mq_send() is interrupted by a signal. If more than one thread is
waiting to send when space becomes available in the message queue and the Priority Scheduling
option is supported, then the thread of the highest priority that has been waiting the longest
shall be unblocked to send its message. Otherwise, it is unspecified which waiting thread is
unblocked. If the specified message queue is full and O_NONBLOCK is set in the message
queue description associated with mqdes, the message shall not be queued and mq_send() shall
return an error.

The mq_timedsend() function shall add a message to the message queue specified by mqdes in the
manner defined for the mq_send() function. However, if the specified message queue is full and
O_NONBLOCK is not set in the message queue description associated with mqdes, the wait for
sufficient room in the queue shall be terminated when the specified timeout expires. If
O_NONBLOCK is set in the message queue description, this function shall be equivalent to
mq_send().

The timeout shall expire when the absolute time specified by abstime passes, as measured by the
clock on which timeouts are based (that is, when the value of that clock equals or exceeds
abstime), or if the absolute time specified by abstime has already been passed at the time of the
call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall
be the resolution of the clock on which it is based. The timespec argument is defined in the
<time.h> header.

Under no circumstance shall the operation fail with a timeout if there is sufficient room in the
queue to add the message immediately. The validity of the abstime parameter need not be
checked when there is sufficient room in the queue.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1333

43843

43844

43845

43846

43847

43848

43849

43850

43851

43852

43853

43854

43855

43856

43857

43858

43859

43860

43861

43862

43863

43864

43865

43866

43867

43868

43869

43870

43871

43872

43873

43874

43875

43876

43877

43878

43879

43880

43881

43882

43883

43884

43885

43886

43887

mq_send() System Interfaces

RETURN VALUE
Upon successful completion, the mq_send() and mq_timedsend() functions shall return a value of
zero. Otherwise, no message shall be enqueued, the functions shall return −1, and errno shall be
set to indicate the error.

ERRORS
The mq_send() and mq_timedsend() functions shall fail if:

[EAGAIN] The O_NONBLOCK flag is set in the message queue description associated
with mqdes, and the specified message queue is full.

[EBADF] The mqdes argument is not a valid message queue descriptor open for writing.

[EINTR] A signal interrupted the call to mq_send() or mq_timedsend().

[EINVAL] The value of msg_prio was outside the valid range.

[EINVAL] The process or thread would have blocked, and the abstime parameter
specified a nanoseconds field value less than zero or greater than or equal to
1 000 million.

[EMSGSIZE] The specified message length, msg_len, exceeds the message size attribute of
the message queue.

[ETIMEDOUT] The O_NONBLOCK flag was not set when the message queue was opened,
but the timeout expired before the message could be added to the queue.

EXAMPLES
None.

APPLICATION USAGE
The value of the symbol {MQ_PRIO_MAX} limits the number of priority levels supported by the
application. Message priorities range from 0 to {MQ_PRIO_MAX}−1.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_receive(), mq_setattr(), time()

XBD <mqueue.h>, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_send() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

The mq_timedsend() function is added for alignment with IEEE Std 1003.1d-1999.

Issue 7
The mq_timedsend() function is moved from the Timeouts option to the Base.

Functionality relating to the Timers option is moved to the Base.

1334 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

43888

43889

43890

43891

43892

43893

43894

43895

43896

43897

43898

43899

43900

43901

43902

43903

43904

43905

43906

43907

43908

43909

43910

43911

43912

43913

43914

43915

43916

43917

43918

43919

43920

43921

43922

43923

43924

43925

43926

43927

System Interfaces mq_setattr()

NAME
mq_setattr — set message queue attributes (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_setattr(mqd_t mqdes, const struct mq_attr *restrict mqstat,
struct mq_attr *restrict omqstat);

DESCRIPTION
The mq_setattr() function shall set attributes associated with the open message queue
description referenced by the message queue descriptor specified by mqdes.

The message queue attributes corresponding to the following members defined in the mq_attr
structure shall be set to the specified values upon successful completion of mq_setattr():

mq_flags The value of this member is the bitwise-logical OR of zero or more of
O_NONBLOCK and any implementation-defined flags.

The values of the mq_maxmsg, mq_msgsize, and mq_curmsgs members of the mq_attr structure
shall be ignored by mq_setattr().

If omqstat is non-NULL, the mq_setattr() function shall store, in the location referenced by
omqstat, the previous message queue attributes and the current queue status. These values shall
be the same as would be returned by a call to mq_getattr() at that point.

RETURN VALUE
Upon successful completion, the function shall return a value of zero and the attributes of the
message queue shall have been changed as specified.

Otherwise, the message queue attributes shall be unchanged, and the function shall return a
value of −1 and set errno to indicate the error.

ERRORS
The mq_setattr() function shall fail if:

[EBADF] The mqdes argument is not a valid message queue descriptor.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_send(), msgctl(), msgget(), msgrcv(), msgsnd()

XBD <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1335

43928

43929

43930

43931

43932

43933

43934

43935

43936

43937

43938

43939

43940

43941

43942

43943

43944

43945

43946

43947

43948

43949

43950

43951

43952

43953

43954

43955

43956

43957

43958

43959

43960

43961

43962

43963

43964

43965

43966

mq_setattr() System Interfaces

Issue 6
The mq_setattr() function is marked as part of the Message Passing option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

The mq_timedsend() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

The restrict keyword is added to the mq_setattr() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

1336 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

43967

43968

43969

43970

43971

43972

43973

43974

System Interfaces mq_timedreceive()

NAME
mq_timedreceive — receive a message from a message queue (ADVANCED REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

#include <time.h>

ssize_t mq_timedreceive(mqd_t mqdes, char *restrict msg_ptr,
size_t msg_len, unsigned *restrict msg_prio,
const struct timespec *restrict abstime);

DESCRIPTION
Refer to mq_receive().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1337

43975

43976

43977

43978

43979

43980

43981

43982

43983

43984

mq_timedsend() System Interfaces

NAME
mq_timedsend — send a message to a message queue (ADVANCED REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

#include <time.h>

int mq_timedsend(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
unsigned msg_prio, const struct timespec *abstime);

DESCRIPTION
Refer to mq_send().

1338 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

43985

43986

43987

43988

43989

43990

43991

43992

43993

System Interfaces mq_unlink()

NAME
mq_unlink — remove a message queue (REALTIME)

SYNOPSIS
MSG #include <mqueue.h>

int mq_unlink(const char *name);

DESCRIPTION
The mq_unlink() function shall remove the message queue named by the string name. If one or
more processes have the message queue open when mq_unlink() is called, destruction of the
message queue shall be postponed until all references to the message queue have been closed.
However, the mq_unlink() call need not block until all references have been closed; it may return
immediately.

After a successful call to mq_unlink(), reuse of the name shall subsequently cause mq_open() to
behave as if no message queue of this name exists (that is, mq_open() will fail if O_CREAT is not
set, or will create a new message queue if O_CREAT is set).

RETURN VALUE
Upon successful completion, the function shall return a value of zero. Otherwise, the named
message queue shall be unchanged by this function call, and the function shall return a value of
−1 and set errno to indicate the error.

ERRORS
The mq_unlink() function shall fail if:

[EACCES] Permission is denied to unlink the named message queue.

[ENOENT] The named message queue does not exist.

The mq_unlink() function may fail if:

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems. A call to mq_unlink()
with a name argument that contains the same message queue name as was
previously used in a successful mq_open() call shall not give an
[ENAMETOOLONG] error.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
A future version might require the mq_open() and mq_unlink() functions to have semantics
similar to normal file system operations.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1339

43994

43995

43996

43997

43998

43999

44000

44001

44002

44003

44004

44005

44006

44007

44008

44009

44010

44011

44012

44013

44014

44015

44016

44017

44018

44019

44020

44021

44022

44023

44024

44025

44026

44027

44028

44029

44030

44031

44032

44033

44034

mq_unlink() System Interfaces

SEE ALSO
mq_close(), mq_open(), msgctl(), msgget(), msgrcv(), msgsnd()

XBD <mqueue.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The mq_unlink() function is marked as part of the Message Passing option.

The Open Group Corrigendum U021/5 is applied, clarifying that upon unsuccessful completion,
the named message queue is unchanged by this function.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Message Passing option.

Issue 7
Austin Group Interpretation 1003.1-2001 #077 is applied, changing [ENAMETOOLONG] from a
‘‘shall fail’’ to a ‘‘may fail’’ error .

Austin Group Interpretation 1003.1-2001 #141 is applied.

1340 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

44035

44036

44037

44038

44039

44040

44041

44042

44043

44044

44045

44046

44047

44048

44049

System Interfaces mrand48()

NAME
mrand48 — generate uniformly distributed pseudo-random signed long integers

SYNOPSIS
XSI #include <stdlib.h>

long mrand48(void);

DESCRIPTION
Refer to drand48().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1341

44050

44051

44052

44053

44054

44055

44056

msgctl() System Interfaces

NAME
msgctl — XSI message control operations

SYNOPSIS
XSI #include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

DESCRIPTION
The msgctl() function operates on XSI message queues (see XBD Section 3.224, on page 69). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 497).

The msgctl() function shall provide message control operations as specified by cmd. The
following values for cmd, and the message control operations they specify, are:

IPC_STAT Place the current value of each member of the msqid_ds data structure
associated with msqid into the structure pointed to by buf . The contents of this
structure are defined in <sys/msg.h>.

IPC_SET Set the value of the following members of the msqid_ds data structure
associated with msqid to the corresponding value found in the structure
pointed to by buf :

msg_perm.uid
msg_perm.gid
msg_perm.mode
msg_qbytes

IPC_SET can only be executed by a process with appropriate privileges or that
has an effective user ID equal to the value of msg_perm.cuid or
msg_perm.uid in the msqid_ds data structure associated with msqid. Only a
process with appropriate privileges can raise the value of msg_qbytes.

IPC_RMID Remove the message queue identifier specified by msqid from the system and
destroy the message queue and msqid_ds data structure associated with it.
IPC_RMD can only be executed by a process with appropriate privileges or
one that has an effective user ID equal to the value of msg_perm.cuid or
msg_perm.uid in the msqid_ds data structure associated with msqid.

RETURN VALUE
Upon successful completion, msgctl() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The msgctl() function shall fail if:

[EACCES] The argument cmd is IPC_STAT and the calling process does not have read
permission; see Section 2.7 (on page 496).

[EINVAL] The value of msqid is not a valid message queue identifier; or the value of cmd
is not a valid command.

[EPERM] The argument cmd is IPC_RMID or IPC_SET and the effective user ID of the
calling process is not equal to that of a process with appropriate privileges and
it is not equal to the value of msg_perm.cuid or msg_perm.uid in the data
structure associated with msqid.

1342 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

44057

44058

44059

44060

44061

44062

44063

44064

44065

44066

44067

44068

44069

44070

44071

44072

44073

44074

44075

44076

44077

44078

44079

44080

44081

44082

44083

44084

44085

44086

44087

44088

44089

44090

44091

44092

44093

44094

44095

44096

44097

44098

44099

System Interfaces msgctl()

[EPERM] The argument cmd is IPC_SET, an attempt is being made to increase to the
value of msg_qbytes, and the effective user ID of the calling process does not
have appropriate privileges.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication
(IPC). Application developers who need to use IPC should design their applications so that
modules using the IPC routines described in Section 2.7 (on page 496) can be easily modified to
use the alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 496), Section 2.8 (on page 497), mq_close(), mq_getattr(), mq_notify(),
mq_open(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgget(), msgrcv(), msgsnd()

XBD Section 3.224 (on page 69), <sys/msg.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1343

44100

44101

44102

44103

44104

44105

44106

44107

44108

44109

44110

44111

44112

44113

44114

44115

44116

44117

44118

44119

44120

44121

44122

msgget() System Interfaces

NAME
msgget — get the XSI message queue identifier

SYNOPSIS
XSI #include <sys/msg.h>

int msgget(key_t key, int msgflg);

DESCRIPTION
The msgget() function operates on XSI message queues (see XBD Section 3.224, on page 69). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 497).

The msgget() function shall return the message queue identifier associated with the argument
key.

A message queue identifier, associated message queue, and data structure (see <sys/msg.h>),
shall be created for the argument key if one of the following is true:

• The argument key is equal to IPC_PRIVATE.

• The argument key does not already have a message queue identifier associated with it, and
(msgflg & IPC_CREAT) is non-zero.

Upon creation, the data structure associated with the new message queue identifier shall be
initialized as follows:

• msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid shall be set equal to
the effective user ID and effective group ID, respectively, of the calling process.

• The low-order 9 bits of msg_perm.mode shall be set equal to the low-order 9 bits of msgflg.

• msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime shall be set equal to 0.

• msg_ctime shall be set equal to the current time.

• msg_qbytes shall be set equal to the system limit.

RETURN VALUE
Upon successful completion, msgget() shall return a non-negative integer, namely a message
queue identifier. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The msgget() function shall fail if:

[EACCES] A message queue identifier exists for the argument key, but operation
permission as specified by the low-order 9 bits of msgflg would not be granted;
see Section 2.7 (on page 496).

[EEXIST] A message queue identifier exists for the argument key but ((msgflg &
IPC_CREAT) && (msgflg & IPC_EXCL)) is non-zero.

[ENOENT] A message queue identifier does not exist for the argument key and (msgflg &
IPC_CREAT) is 0.

[ENOSPC] A message queue identifier is to be created but the system-imposed limit on
the maximum number of allowed message queue identifiers system-wide
would be exceeded.

1344 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

44123

44124

44125

44126

44127

44128

44129

44130

44131

44132

44133

44134

44135

44136

44137

44138

44139

44140

44141

44142

44143

44144

44145

44146

44147

44148

44149

44150

44151

44152

44153

44154

44155

44156

44157

44158

44159

44160

44161

System Interfaces msgget()

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication
(IPC). Application developers who need to use IPC should design their applications so that
modules using the IPC routines described in Section 2.7 (on page 496) can be easily modified to
use the alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 496), Section 2.8 (on page 497), mq_close(), mq_getattr(), mq_notify(),
mq_open(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgctl(), msgrcv(), msgsnd()

XBD Section 3.224 (on page 69), <sys/msg.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1345

44162

44163

44164

44165

44166

44167

44168

44169

44170

44171

44172

44173

44174

44175

44176

44177

44178

44179

44180

44181

msgrcv() System Interfaces

NAME
msgrcv — XSI message receive operation

SYNOPSIS
XSI #include <sys/msg.h>

ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,
int msgflg);

DESCRIPTION
The msgrcv() function operates on XSI message queues (see XBD Section 3.224, on page 69). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 497).

The msgrcv() function shall read a message from the queue associated with the message queue
identifier specified by msqid and place it in the user-defined buffer pointed to by msgp.

The application shall ensure that the argument msgp points to a user-defined buffer that contains
first a field of type long specifying the type of the message, and then a data portion that holds
the data bytes of the message. The structure below is an example of what this user-defined
buffer might look like:

struct mymsg {
long mtype; /* Message type. */
char mtext[1]; /* Message text. */

}

The structure member mtype is the received message’s type as specified by the sending process.

The structure member mtext is the text of the message.

The argument msgsz specifies the size in bytes of mtext. The received message shall be truncated
to msgsz bytes if it is larger than msgsz and (msgflg & MSG_NOERROR) is non-zero. The
truncated part of the message shall be lost and no indication of the truncation shall be given to
the calling process.

If the value of msgsz is greater than {SSIZE_MAX}, the result is implementation-defined.

The argument msgtyp specifies the type of message requested as follows:

• If msgtyp is 0, the first message on the queue shall be received.

• If msgtyp is greater than 0, the first message of type msgtyp shall be received.

• If msgtyp is less than 0, the first message of the lowest type that is less than or equal to the
absolute value of msgtyp shall be received.

The argument msgflg specifies the action to be taken if a message of the desired type is not on the
queue. These are as follows:

• If (msgflg & IPC_NOWAIT) is non-zero, the calling thread shall return immediately with a
return value of −1 and errno set to [ENOMSG].

• If (msgflg & IPC_NOWAIT) is 0, the calling thread shall suspend execution until one of the
following occurs:

— A message of the desired type is placed on the queue.

— The message queue identifier msqid is removed from the system; when this occurs,
errno shall be set equal to [EIDRM] and −1 shall be returned.

1346 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

44182

44183

44184

44185

44186

44187

44188

44189

44190

44191

44192

44193

44194

44195

44196

44197

44198

44199

44200

44201

44202

44203

44204

44205

44206

44207

44208

44209

44210

44211

44212

44213

44214

44215

44216

44217

44218

44219

44220

44221

44222

System Interfaces msgrcv()

— The calling thread receives a signal that is to be caught; in this case a message is not
received and the calling thread resumes execution in the manner prescribed in
sigaction().

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid:

• msg_qnum shall be decremented by 1.

• msg_lrpid shall be set equal to the process ID of the calling process.

• msg_rtime shall be set equal to the current time.

RETURN VALUE
Upon successful completion, msgrcv() shall return a value equal to the number of bytes actually
placed into the buffer mtext. Otherwise, no message shall be received, msgrcv() shall return
(ssize_t)−1, and errno shall be set to indicate the error.

ERRORS
The msgrcv() function shall fail if:

[E2BIG] The value of mtext is greater than msgsz and (msgflg & MSG_NOERROR) is 0.

[EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page
496).

[EIDRM] The message queue identifier msqid is removed from the system.

[EINTR] The msgrcv() function was interrupted by a signal.

[EINVAL] msqid is not a valid message queue identifier.

[ENOMSG] The queue does not contain a message of the desired type and (msgflg &
IPC_NOWAIT) is non-zero.

EXAMPLES

Receiving a Message

The following example receives the first message on the queue (based on the value of the msgtyp
argument, 0). The queue is identified by the msqid argument (assuming that the value has
previously been set). This call specifies that an error should be reported if no message is
available, but not if the message is too large. The message size is calculated directly using the
sizeof operator.

#include <sys/msg.h>
...
int result;
int msqid;
struct message {

long type;
char text[20];

} msg;
long msgtyp = 0;
...
result = msgrcv(msqid, (void *) &msg, sizeof(msg.text),

msgtyp, MSG_NOERROR | IPC_NOWAIT);

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1347

44223

44224

44225

44226

44227

44228

44229

44230

44231

44232

44233

44234

44235

44236

44237

44238

44239

44240

44241

44242

44243

44244

44245

44246

44247

44248

44249

44250

44251

44252

44253

44254

44255

44256

44257

44258

44259

44260

44261

44262

44263

msgrcv() System Interfaces

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication
(IPC). Application developers who need to use IPC should design their applications so that
modules using the IPC routines described in Section 2.7 (on page 496) can be easily modified to
use the alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 496), Section 2.8 (on page 497), mq_close(), mq_getattr(), mq_notify(),
mq_open(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgctl(), msgget(), msgsnd(),
sigaction()

XBD Section 3.224 (on page 69), <sys/msg.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The type of the return value is changed from int to ssize_t, and a warning is added to the
DESCRIPTION about values of msgsz larger the {SSIZE_MAX}.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to the APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

1348 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

44264

44265

44266

44267

44268

44269

44270

44271

44272

44273

44274

44275

44276

44277

44278

44279

44280

44281

44282

44283

44284

44285

44286

System Interfaces msgsnd()

NAME
msgsnd — XSI message send operation

SYNOPSIS
XSI #include <sys/msg.h>

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

DESCRIPTION
The msgsnd() function operates on XSI message queues (see XBD Section 3.224, on page 69). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 497).

The msgsnd() function shall send a message to the queue associated with the message queue
identifier specified by msqid.

The application shall ensure that the argument msgp points to a user-defined buffer that contains
first a field of type long specifying the type of the message, and then a data portion that holds
the data bytes of the message. The structure below is an example of what this user-defined
buffer might look like:

struct mymsg {
long mtype; /* Message type. */
char mtext[1]; /* Message text. */

}

The structure member mtype is a non-zero positive type long that can be used by the receiving
process for message selection.

The structure member mtext is any text of length msgsz bytes. The argument msgsz can range
from 0 to a system-imposed maximum.

The argument msgflg specifies the action to be taken if one or more of the following is true:

• The number of bytes already on the queue is equal to msg_qbytes; see <sys/msg.h>.

• The total number of messages on all queues system-wide is equal to the system-imposed
limit.

These actions are as follows:

• If (msgflg & IPC_NOWAIT) is non-zero, the message shall not be sent and the calling
thread shall return immediately.

• If (msgflg & IPC_NOWAIT) is 0, the calling thread shall suspend execution until one of the
following occurs:

— The condition responsible for the suspension no longer exists, in which case the
message is sent.

— The message queue identifier msqid is removed from the system; when this occurs,
errno shall be set equal to [EIDRM] and −1 shall be returned.

— The calling thread receives a signal that is to be caught; in this case the message is not
sent and the calling thread resumes execution in the manner prescribed in sigaction().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1349

44287

44288

44289

44290

44291

44292

44293

44294

44295

44296

44297

44298

44299

44300

44301

44302

44303

44304

44305

44306

44307

44308

44309

44310

44311

44312

44313

44314

44315

44316

44317

44318

44319

44320

44321

44322

44323

44324

msgsnd() System Interfaces

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid; see <sys/msg.h>:

• msg_qnum shall be incremented by 1.

• msg_lspid shall be set equal to the process ID of the calling process.

• msg_stime shall be set equal to the current time.

RETURN VALUE
Upon successful completion, msgsnd() shall return 0; otherwise, no message shall be sent,
msgsnd() shall return −1, and errno shall be set to indicate the error.

ERRORS
The msgsnd() function shall fail if:

[EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page
496).

[EAGAIN] The message cannot be sent for one of the reasons cited above and (msgflg &
IPC_NOWAIT) is non-zero.

[EIDRM] The message queue identifier msqid is removed from the system.

[EINTR] The msgsnd() function was interrupted by a signal.

[EINVAL] The value of msqid is not a valid message queue identifier, or the value of
mtype is less than 1; or the value of msgsz is less than 0 or greater than the
system-imposed limit.

EXAMPLES

Sending a Message

The following example sends a message to the queue identified by the msqid argument
(assuming that value has previously been set). This call specifies that an error should be
reported if no message is available. The message size is calculated directly using the sizeof
operator.

#include <sys/msg.h>
...
int result;
int msqid;
struct message {

long type;
char text[20];

} msg;

msg.type = 1;
strcpy(msg.text, "This is message 1");
...
result = msgsnd(msqid, (void *) &msg, sizeof(msg.text), IPC_NOWAIT);

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication
(IPC). Application developers who need to use IPC should design their applications so that
modules using the IPC routines described in Section 2.7 (on page 496) can be easily modified to
use the alternative interfaces.

1350 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

44325

44326

44327

44328

44329

44330

44331

44332

44333

44334

44335

44336

44337

44338

44339

44340

44341

44342

44343

44344

44345

44346

44347

44348

44349

44350

44351

44352

44353

44354

44355

44356

44357

44358

44359

44360

44361

44362

44363

44364

44365

44366

System Interfaces msgsnd()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 496), Section 2.8 (on page 497), mq_close(), mq_getattr(), mq_notify(),
mq_open(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgctl(), msgget(), msgrcv(),
sigaction()

XBD Section 3.224 (on page 69), <sys/msg.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1351

44367

44368

44369

44370

44371

44372

44373

44374

44375

44376

44377

44378

44379

44380

44381

44382

msync() System Interfaces

NAME
msync — synchronize memory with physical storage

SYNOPSIS
XSI|SIO #include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

DESCRIPTION
The msync() function shall write all modified data to permanent storage locations, if any, in
those whole pages containing any part of the address space of the process starting at address
addr and continuing for len bytes. If no such storage exists, msync() need not have any effect. If
requested, the msync() function shall then invalidate cached copies of data.

The implementation may require that addr be a multiple of the page size as returned by
sysconf().

For mappings to files, the msync() function shall ensure that all write operations are completed
as defined for synchronized I/O data integrity completion. It is unspecified whether the
implementation also writes out other file attributes. When the msync() function is called on
MAP_PRIVATE mappings, any modified data shall not be written to the underlying object and
shall not cause such data to be made visible to other processes. It is unspecified whether data in

SHM|TYM MAP_PRIVATE mappings has any permanent storage locations. The effect of msync() on a
shared memory object or a typed memory object is unspecified. The behavior of this function is
unspecified if the mapping was not established by a call to mmap().

The flags argument is constructed from the bitwise-inclusive OR of one or more of the following
flags defined in the <sys/mman.h> header:

Symbolic Constant Description

MS_ASYNC Perform asynchronous writes.
MS_SYNC Perform synchronous writes.
MS_INVALIDATE Invalidate cached data.

When MS_ASYNC is specified, msync() shall return immediately once all the write operations
are initiated or queued for servicing; when MS_SYNC is specified, msync() shall not return until
all write operations are completed as defined for synchronized I/O data integrity completion.
Either MS_ASYNC or MS_SYNC shall be specified, but not both.

When MS_INVALIDATE is specified, msync() shall invalidate all cached copies of mapped data
that are inconsistent with the permanent storage locations such that subsequent references shall
obtain data that was consistent with the permanent storage locations sometime between the call
to msync() and the first subsequent memory reference to the data.

If msync() causes any write to a file, the file’s last data modification and last file status change
timestamps shall be marked for update.

RETURN VALUE
Upon successful completion, msync() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The msync() function shall fail if:

[EBUSY] Some or all of the addresses in the range starting at addr and continuing for len
bytes are locked, and MS_INVALIDATE is specified.

1352 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

44383

44384

44385

44386

44387

44388

44389

44390

44391

44392

44393

44394

44395

44396

44397

44398

44399

44400

44401

44402

44403

44404

44405

44406

44407

44408

44409

44410

44411

44412

44413

44414

44415

44416

44417

44418

44419

44420

44421

44422

44423

44424

44425

System Interfaces msync()

[EINVAL] The value of flags is invalid.

[ENOMEM] The addresses in the range starting at addr and continuing for len bytes are
outside the range allowed for the address space of a process or specify one or
more pages that are not mapped.

The msync() function may fail if:

[EINVAL] The value of addr is not a multiple of the page size as returned by sysconf().

EXAMPLES
None.

APPLICATION USAGE
The msync() function is only supported if the Synchronized Input and Output option is
supported, and thus need not be available on all implementations.

The msync() function should be used by programs that require a memory object to be in a
known state; for example, in building transaction facilities.

Normal system activity can cause pages to be written to disk. Therefore, there are no guarantees
that msync() is the only control over when pages are or are not written to disk.

RATIONALE
The msync() function writes out data in a mapped region to the permanent storage for the
underlying object. The call to msync() ensures data integrity of the file.

After the data is written out, any cached data may be invalidated if the MS_INVALIDATE flag
was specified. This is useful on systems that do not support read/write consistency.

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), sysconf()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Aligned with msync() in the POSIX Realtime Extension as follows:

• The DESCRIPTION is extensively reworded.

• [EBUSY] and a new form of [EINVAL] are added as mandatory error conditions.

Issue 6
The msync() function is marked as part of the Memory Mapped Files and Synchronized Input
and Output options.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The [EBUSY] mandatory error condition is added.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1353

44426

44427

44428

44429

44430

44431

44432

44433

44434

44435

44436

44437

44438

44439

44440

44441

44442

44443

44444

44445

44446

44447

44448

44449

44450

44451

44452

44453

44454

44455

44456

44457

44458

44459

44460

44461

44462

44463

44464

msync() System Interfaces

• The DESCRIPTION is updated to state that implementations require addr to be a multiple
of the page size.

• The second [EINVAL] error condition is made mandatory.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding reference to
typed memory objects.

Issue 7
Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

SD5-XSH-ERN-110 is applied.

The msync() function is marked as part of the Synchronized Input and Output option or XSI
option as the Memory Mapped Files is moved to the Base.

Changes are made related to support for finegrained timestamps.

1354 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

44465

44466

44467

44468

44469

44470

44471

44472

44473

44474

44475

44476

System Interfaces munlock()

NAME
munlock — unlock a range of process address space

SYNOPSIS
MLR #include <sys/mman.h>

int munlock(const void *addr, size_t len);

DESCRIPTION
Refer to mlock().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1355

44477

44478

44479

44480

44481

44482

44483

munlockall() System Interfaces

NAME
munlockall — unlock the address space of a process

SYNOPSIS
ML #include <sys/mman.h>

int munlockall(void);

DESCRIPTION
Refer to mlockall().

1356 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

44484

44485

44486

44487

44488

44489

44490

System Interfaces munmap()

NAME
munmap — unmap pages of memory

SYNOPSIS
#include <sys/mman.h>

int munmap(void *addr, size_t len);

DESCRIPTION
The munmap() function shall remove any mappings for those entire pages containing any part of
the address space of the process starting at addr and continuing for len bytes. Further references
to these pages shall result in the generation of a SIGSEGV signal to the process. If there are no
mappings in the specified address range, then munmap() has no effect.

The implementation may require that addr be a multiple of the page size as returned by
sysconf().

If a mapping to be removed was private, any modifications made in this address range shall be
discarded.

ML|MLR Any memory locks (see mlock() and mlockall()) associated with this address range shall be
removed, as if by an appropriate call to munlock().

TYM If a mapping removed from a typed memory object causes the corresponding address range of
the memory pool to be inaccessible by any process in the system except through allocatable
mappings (that is, mappings of typed memory objects opened with the
POSIX_TYPED_MEM_MAP_ALLOCATABLE flag), then that range of the memory pool shall
become deallocated and may become available to satisfy future typed memory allocation
requests.

A mapping removed from a typed memory object opened with the
POSIX_TYPED_MEM_MAP_ALLOCATABLE flag shall not affect in any way the availability of
that typed memory for allocation.

The behavior of this function is unspecified if the mapping was not established by a call to
mmap().

RETURN VALUE
Upon successful completion, munmap() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
The munmap() function shall fail if:

[EINVAL] Addresses in the range [addr,addr+len) are outside the valid range for the
address space of a process.

[EINVAL] The len argument is 0.

The munmap() function may fail if:

[EINVAL] The addr argument is not a multiple of the page size as returned by sysconf().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1357

44491

44492

44493

44494

44495

44496

44497

44498

44499

44500

44501

44502

44503

44504

44505

44506

44507

44508

44509

44510

44511

44512

44513

44514

44515

44516

44517

44518

44519

44520

44521

44522

44523

44524

44525

44526

44527

munmap() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The munmap() function corresponds to SVR4, just as the mmap() function does.

It is possible that an application has applied process memory locking to a region that contains
shared memory. If this has occurred, the munmap() call ignores those locks and, if necessary,
causes those locks to be removed.

Most implementations require that addr is a multiple of the page size as returned by sysconf().

FUTURE DIRECTIONS
None.

SEE ALSO
mlock(), mlockall(), mmap(), posix_typed_mem_open(), sysconf()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Aligned with munmap() in the POSIX Realtime Extension as follows:

• The DESCRIPTION is extensively reworded.

• The SIGBUS error is no longer permitted to be generated.

Issue 6
The munmap() function is marked as part of the Memory Mapped Files and Shared Memory
Objects option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to state that implementations require addr to be a multiple
of the page size.

• The [EINVAL] error conditions are added.

The following changes are made for alignment with IEEE Std 1003.1j-2000:

• Semantics for typed memory objects are added to the DESCRIPTION.

• The posix_typed_mem_open() function is added to the SEE ALSO section.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/36 is applied, changing the margin code
in the SYNOPSIS from MF|SHM to MC3 (notation for MF|SHM|TYM).

Issue 7
Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

The munmap() function is moved from the Memory Mapped Files option to the Base.

1358 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

44528

44529

44530

44531

44532

44533

44534

44535

44536

44537

44538

44539

44540

44541

44542

44543

44544

44545

44546

44547

44548

44549

44550

44551

44552

44553

44554

44555

44556

44557

44558

44559

44560

44561

44562

44563

44564

44565

44566

System Interfaces nan()

NAME
nan, nanf, nanl — return quiet NaN

SYNOPSIS
#include <math.h>

double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The function call nan("n-char-sequence") shall be equivalent to:

strtod("NAN(n-char-sequence)", (char **) NULL);

The function call nan(" ") shall be equivalent to:

strtod("NAN()", (char **) NULL)

If tagp does not point to an n-char sequence or an empty string, the function call shall be
equivalent to:

strtod("NAN", (char **) NULL)

Function calls to nanf() and nanl() are equivalent to the corresponding function calls to strtof()
and strtold().

RETURN VALUE
These functions shall return a quiet NaN, if available, with content indicated through tagp.

If the implementation does not support quiet NaNs, these functions shall return zero.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtod()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1359

44567

44568

44569

44570

44571

44572

44573

44574

44575

44576

44577

44578

44579

44580

44581

44582

44583

44584

44585

44586

44587

44588

44589

44590

44591

44592

44593

44594

44595

44596

44597

44598

44599

44600

44601

44602

44603

44604

nanosleep() System Interfaces

NAME
nanosleep — high resolution sleep

SYNOPSIS
CX #include <time.h>

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

DESCRIPTION
The nanosleep() function shall cause the current thread to be suspended from execution until
either the time interval specified by the rqtp argument has elapsed or a signal is delivered to the
calling thread, and its action is to invoke a signal-catching function or to terminate the process.
The suspension time may be longer than requested because the argument value is rounded up to
an integer multiple of the sleep resolution or because of the scheduling of other activity by the
system. But, except for the case of being interrupted by a signal, the suspension time shall not be
less than the time specified by rqtp, as measured by the system clock CLOCK_REALTIME.

The use of the nanosleep() function has no effect on the action or blockage of any signal.

RETURN VALUE
If the nanosleep() function returns because the requested time has elapsed, its return value shall
be zero.

If the nanosleep() function returns because it has been interrupted by a signal, it shall return a
value of −1 and set errno to indicate the interruption. If the rmtp argument is non-NULL, the
timespec structure referenced by it is updated to contain the amount of time remaining in the
interval (the requested time minus the time actually slept). The rqtp and rmtp arguments may
point to the same object. If the rmtp argument is NULL, the remaining time is not returned.

If nanosleep() fails, it shall return a value of −1 and set errno to indicate the error.

ERRORS
The nanosleep() function shall fail if:

[EINTR] The nanosleep() function was interrupted by a signal.

[EINVAL] The rqtp argument specified a nanosecond value less than zero or greater than
or equal to 1 000 million.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
It is common to suspend execution of a thread for an interval in order to poll the status of a non-
interrupting function. A large number of actual needs can be met with a simple extension to
sleep() that provides finer resolution.

In the POSIX.1-1990 standard and SVR4, it is possible to implement such a routine, but the
frequency of wakeup is limited by the resolution of the alarm() and sleep() functions. In 4.3 BSD,
it is possible to write such a routine using no static storage and reserving no system facilities.
Although it is possible to write a function with similar functionality to sleep() using the
remainder of the timer_*() functions, such a function requires the use of signals and the
reservation of some signal number. This volume of POSIX.1-2008 requires that nanosleep() be
non-intrusive of the signals function.

The nanosleep() function shall return a value of 0 on success and −1 on failure or if interrupted.

1360 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

44605

44606

44607

44608

44609

44610

44611

44612

44613

44614

44615

44616

44617

44618

44619

44620

44621

44622

44623

44624

44625

44626

44627

44628

44629

44630

44631

44632

44633

44634

44635

44636

44637

44638

44639

44640

44641

44642

44643

44644

44645

44646

44647

44648

System Interfaces nanosleep()

This latter case is different from sleep(). This was done because the remaining time is returned
via an argument structure pointer, rmtp, instead of as the return value.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_nanosleep(), sleep()

XBD <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The nanosleep() function is marked as part of the Timers option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Timers option.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/37 is applied, updating the SEE ALSO
section to include the clock_nanosleep() function.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/63 is applied, correcting text in the
RATIONALE section.

Issue 7
SD5-XBD-ERN-33 is applied.

The nanosleep() function is moved from the Timers option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1361

44649

44650

44651

44652

44653

44654

44655

44656

44657

44658

44659

44660

44661

44662

44663

44664

44665

44666

44667

44668

nearbyint() System Interfaces

NAME
nearbyint, nearbyintf, nearbyintl — floating-point rounding functions

SYNOPSIS
#include <math.h>

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall round their argument to an integer value in floating-point format, using
the current rounding direction and without raising the inexact floating-point exception.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

MX If x is NaN, a NaN shall be returned.

If x is ±0, ±0 shall be returned.

If x is ±Inf, x shall be returned.

XSI If the correct value would cause overflow, a range error shall occur and nearbyint(), nearbyintf(),
and nearbyintl() shall return the value of the macro ±HUGE_VAL, ±HUGE_VALF, and
±HUGE_VALL (with the same sign as x), respectively.

ERRORS
These functions shall fail if:

XSI Range Error The result would cause an overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

1362 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

44669

44670

44671

44672

44673

44674

44675

44676

44677

44678

44679

44680

44681

44682

44683

44684

44685

44686

44687

44688

44689

44690

44691

44692

44693

44694

44695

44696

44697

44698

44699

44700

44701

44702

44703

44704

44705

44706

44707

44708

44709

System Interfaces nearbyint()

SEE ALSO
feclearexcept(), fetestexcept()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1363

44710

44711

44712

44713

44714

newlocale() System Interfaces

NAME
newlocale — create or modify a locale object

SYNOPSIS
CX #include <locale.h>

locale_t newlocale(int category_mask, const char *locale,
locale_t base);

DESCRIPTION
The newlocale() function shall create a new locale object or modify an existing one. If the base
argument is (locale_t)0, a new locale object shall be created. It is unspecified whether the locale
object pointed to by base shall be modified or freed and a new locale object created.

The category_mask argument specifies the locale categories to be set or modified. Values for
category_mask shall be constructed by a bitwise-inclusive OR of the symbolic constants
LC_CTYPE_MASK, LC_NUMERIC_MASK, LC_TIME_MASK, LC_COLLATE_MASK,
LC_MONETARY_MASK, and LC_MESSAGES_MASK, or any of the other implementation-
defined LC_*_MASK values defined in <locale.h>.

For each category with the corresponding bit set in category_mask the data from the locale named
by locale shall be used. In the case of modifying an existing locale object, the data from the locale
named by locale shall replace the existing data within the locale object. If a completely new locale
object is created, the data for all sections not requested by category_mask shall be taken from the
default locale.

The following preset values of locale are defined for all settings of category_mask:

"POSIX" Specifies the minimal environment for C-language translation called the
POSIX locale.

"C" Equivalent to "POSIX".

" " Specifies an implementation-defined native environment. This corresponds to
the value of the associated environment variables, LC_* and LANG; see XBD
Chapter 7 (on page 135) and Chapter 8 (on page 173).

If the base argument is not (locale_t)0 and the newlocale() function call succeeds, the contents of
base are unspecified. Applications shall ensure that they stop using base as a locale object before
calling newlocale(). If the function call fails and the base argument is not (locale_t)0, the contents
of base shall remain valid and unchanged.

The results are undefined if the base argument is the special locale object LC_GLOBAL_LOCALE.

RETURN VALUE
Upon successful completion, the newlocale() function shall return a handle which the caller may
use on subsequent calls to duplocale(), freelocale(), and other functions taking a locale_t
argument.

Upon failure, the newlocale() function shall return (locale_t)0 and set errno to indicate the error.

ERRORS
The newlocale() function shall fail if:

[ENOMEM] There is not enough memory available to create the locale object or load the
locale data.

1364 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

44715

44716

44717

44718

44719

44720

44721

44722

44723

44724

44725

44726

44727

44728

44729

44730

44731

44732

44733

44734

44735

44736

44737

44738

44739

44740

44741

44742

44743

44744

44745

44746

44747

44748

44749

44750

44751

44752

44753

44754

44755

System Interfaces newlocale()

[EINVAL] The category_mask contains a bit that does not correspond to a valid category.

[ENOENT] For any of the categories in category_mask, the locale data is not available.

The newlocale() function may fail if:

[EINVAL] The locale argument is not a valid string pointer.

EXAMPLES

Constructing a Locale Object from Different Locales

The following example shows the construction of a locale where the LC_CTYPE category data
comes from a locale loc1 and the LC_TIME category data from a locale tok2:

#include <locale.h>
...
locale_t loc, new_loc;

/* Get the "loc1" data. */

loc = newlocale (LC_CTYPE_MASK, "loc1", NULL);
if (loc == (locale_t) 0)

abort ();

/* Get the "loc2" data. */

new_loc = newlocale (LC_TIME_MASK, "loc2", loc);
if (new_loc != (locale_t) 0)

/* We don t abort if this fails. In this case this
simply used to unchanged locale object. */

loc = new_loc;

...

Freeing up a Locale Object

The following example shows a code fragment to free a locale object created by newlocale():

#include <locale.h>
...

/* Every locale object allocated with newlocale() should be
* freed using freelocale():
*/

locale_t loc;

/* Get the locale. */

loc = newlocale (LC_CTYPE_MASK | LC_TIME_MASK, "locname", NULL);

/* ... Use the locale object ... */
...

/* Free the locale object resources. */
freelocale (loc);

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1365

44756

44757

44758

44759

44760

44761

44762

44763

44764

44765

44766

44767

44768

44769

44770

44771

44772

44773

44774

44775

44776

44777

44778

44779

44780

44781

44782

44783

44784

44785

44786

44787

44788

44789

44790

44791

newlocale() System Interfaces

APPLICATION USAGE
Handles for locale objects created by the newlocale() function should be released by a
corresponding call to freelocale().

The special locale object LC_GLOBAL_LOCALE must not be passed for the base argument, even
when returned by the uselocale() function.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
duplocale(), freelocale(), uselocale()

XBD Chapter 7 (on page 135), Chapter 8 (on page 173), <locale.h>

CHANGE HISTORY
First released in Issue 7.

1366 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

44792

44793

44794

44795

44796

44797

44798

44799

44800

44801

44802

44803

44804

44805

System Interfaces nextafter()

NAME
nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, nexttowardl — next representable
floating-point number

SYNOPSIS
#include <math.h>

double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);
double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The nextafter(), nextafterf(), and nextafterl() functions shall compute the next representable
floating-point value following x in the direction of y. Thus, if y is less than x, nextafter() shall
return the largest representable floating-point number less than x. The nextafter(), nextafterf(),
and nextafterl() functions shall return y if x equals y.

The nexttoward(), nexttowardf(), and nexttowardl() functions shall be equivalent to the
corresponding nextafter() functions, except that the second parameter shall have type long
double and the functions shall return y converted to the type of the function if x equals y.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the next representable floating-point
value following x in the direction of y.

If x==y, y (of the type x) shall be returned.

If x is finite and the correct function value would overflow, a range error shall occur and
±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (with the same sign as x) shall be returned as
appropriate for the return type of the function.

MX If x or y is NaN, a NaN shall be returned.

If x!=y and the correct function value is subnormal, zero, or underflows, a range error shall
occur, and either the correct function value (if representable) or 0.0 shall be returned.

ERRORS
These functions shall fail if:

Range Error The correct value overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1367

44806

44807

44808

44809

44810

44811

44812

44813

44814

44815

44816

44817

44818

44819

44820

44821

44822

44823

44824

44825

44826

44827

44828

44829

44830

44831

44832

44833

44834

44835

44836

44837

44838

44839

44840

44841

44842

44843

44844

44845

44846

44847

44848

nextafter() System Interfaces

MX Range Error The correct value is subnormal or underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6

The nextafter() function is no longer marked as an extension.

The nextafterf(), nextafterl(), nexttoward(), nexttowardf(), and nexttowardl() functions are added
for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

1368 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

44849

44850

44851

44852

44853

44854

44855

44856

44857

44858

44859

44860

44861

44862

44863

44864

44865

44866

44867

44868

44869

44870

44871

44872

44873

44874

44875

44876

44877

System Interfaces nftw()

NAME
nftw — walk a file tree

SYNOPSIS
XSI #include <ftw.h>

int nftw(const char *path, int (*fn)(const char *,
const struct stat *, int, struct FTW *), int fd_limit, int flags);

DESCRIPTION
The nftw() function shall recursively descend the directory hierarchy rooted in path. The nftw()
function has a similar effect to ftw() except that it takes an additional argument flags, which is a
bitwise-inclusive OR of zero or more of the following flags:

FTW_CHDIR If set, nftw() shall change the current working directory to each directory as it
reports files in that directory. If clear, nftw() shall not change the current
working directory.

FTW_DEPTH If set, nftw() shall report all files in a directory before reporting the directory
itself. If clear, nftw() shall report any directory before reporting the files in that
directory.

FTW_MOUNT If set, nftw() shall only report files in the same file system as path. If clear,
nftw() shall report all files encountered during the walk.

FTW_PHYS If set, nftw() shall perform a physical walk and shall not follow symbolic links.

If FTW_PHYS is clear and FTW_DEPTH is set, nftw() shall follow links instead of reporting
them, but shall not report any directory that would be a descendant of itself. If FTW_PHYS is
clear and FTW_DEPTH is clear, nftw() shall follow links instead of reporting them, but shall not
report the contents of any directory that would be a descendant of itself.

At each file it encounters, nftw() shall call the user-supplied function fn with four arguments:

• The first argument is the pathname of the object.

• The second argument is a pointer to the stat buffer containing information on the object,
filled in as if fstatat(), stat(), or lstat() had been called to retrieve the information.

• The third argument is an integer giving additional information. Its value is one of the
following:

FTW_D The object is a directory.

FTW_DNR The object is a directory that cannot be read. The fn function shall not be
called for any of its descendants.

FTW_DP The object is a directory and subdirectories have been visited. (This condition
shall only occur if the FTW_DEPTH flag is included in flags.)

FTW_F The object is a file.

FTW_NS The stat() function failed on the object because of lack of appropriate
permission. The stat buffer passed to fn is undefined. Failure of stat() for any
other reason is considered an error and nftw() shall return −1.

FTW_SL The object is a symbolic link. (This condition shall only occur if the
FTW_PHYS flag is included in flags.)

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1369

44878

44879

44880

44881

44882

44883

44884

44885

44886

44887

44888

44889

44890

44891

44892

44893

44894

44895

44896

44897

44898

44899

44900

44901

44902

44903

44904

44905

44906

44907

44908

44909

44910

44911

44912

44913

44914

44915

44916

44917

nftw() System Interfaces

FTW_SLN The object is a symbolic link that does not name an existing file. (This
condition shall only occur if the FTW_PHYS flag is not included in flags.)

• The fourth argument is a pointer to an FTW structure. The value of base is the offset of the
object’s filename in the pathname passed as the first argument to fn. The value of level
indicates depth relative to the root of the walk, where the root level is 0.

The results are unspecified if the application-supplied fn function does not preserve the current
working directory.

The argument fd_limit sets the maximum number of file descriptors that shall be used by nftw()
while traversing the file tree. At most one file descriptor shall be used for each directory level.

The nftw() function need not be thread-safe.

RETURN VALUE
The nftw() function shall continue until the first of the following conditions occurs:

• An invocation of fn shall return a non-zero value, in which case nftw() shall return that
value.

• The nftw() function detects an error other than [EACCES] (see FTW_DNR and FTW_NS
above), in which case nftw() shall return −1 and set errno to indicate the error.

• The tree is exhausted, in which case nftw() shall return 0.

ERRORS
The nftw() function shall fail if:

[EACCES] Search permission is denied for any component of path or read permission is
denied for path, or fn returns −1 and does not reset errno.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of path is not a directory.

[EOVERFLOW] A field in the stat structure cannot be represented correctly in the current
programming environment for one or more files found in the file hierarchy.

The nftw() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[EMFILE] All file descriptors available to the process are currently open.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

In addition, errno may be set if the function pointed to by fn causes errno to be set.

1370 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

44918

44919

44920

44921

44922

44923

44924

44925

44926

44927

44928

44929

44930

44931

44932

44933

44934

44935

44936

44937

44938

44939

44940

44941

44942

44943

44944

44945

44946

44947

44948

44949

44950

44951

44952

44953

44954

44955

44956

System Interfaces nftw()

EXAMPLES
The following program traverses the directory tree under the path named in its first command-
line argument, or under the current directory if no argument is supplied. It displays various
information about each file. The second command-line argument can be used to specify
characters that control the value assigned to the flags argument when calling nftw().

#include <ftw.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>

static int
display_info(const char *fpath, const struct stat *sb,

int tflag, struct FTW *ftwbuf)
{

printf("%-3s %2d %7jd %-40s %d %s\n",
(tflag == FTW_D) ? "d" : (tflag == FTW_DNR) ? "dnr" :
(tflag == FTW_DP) ? "dp" : (tflag == FTW_F) ? "f" :
(tflag == FTW_NS) ? "ns" : (tflag == FTW_SL) ? "sl" :
(tflag == FTW_SLN) ? "sln" : "???",
ftwbuf->level, (intmax_t) sb->st_size,
fpath, ftwbuf->base, fpath + ftwbuf->base);

return 0; /* To tell nftw() to continue */
}

int
main(int argc, char *argv[])
{

int flags = 0;

if (argc > 2 && strchr(argv[2], ’d’) != NULL)
flags |= FTW_DEPTH;

if (argc > 2 && strchr(argv[2], ’p’) != NULL)
flags |= FTW_PHYS;

if (nftw((argc < 2) ? "." : argv[1], display_info, 20, flags) == -1)
{

perror("nftw");
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);
}

APPLICATION USAGE
The nftw() function may allocate dynamic storage during its operation. If nftw() is forcibly
terminated, such as by longjmp() or siglongjmp() being executed by the function pointed to by fn
or an interrupt routine, nftw() does not have a chance to free that storage, so it remains
permanently allocated. A safe way to handle interrupts is to store the fact that an interrupt has
occurred, and arrange to have the function pointed to by fn return a non-zero value at its next
invocation.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1371

44957

44958

44959

44960

44961

44962

44963

44964

44965

44966

44967

44968

44969

44970

44971

44972

44973

44974

44975

44976

44977

44978

44979

44980

44981

44982

44983

44984

44985

44986

44987

44988

44989

44990

44991

44992

44993

44994

44995

44996

44997

44998

44999

45000

45001

nftw() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopendir(), fstatat(), readdir()

XBD <ftw.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

In the DESCRIPTION, the definition of the depth argument is clarified.

Issue 6
The Open Group Base Resolution bwg97-003 is applied.

The ERRORS section is updated as follows:

• The wording of the mandatory [ELOOP] error condition is updated.

• A second optional [ELOOP] error condition is added.

• The [EOVERFLOW] mandatory error condition is added.

Text is added to the DESCRIPTION to say that the nftw() function need not be reentrant and that
the results are unspecified if the application-supplied fn function does not preserve the current
working directory.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/64 is applied, changing the argument
depth to fd_limit throughout and changing ‘‘to a maximum of 5 levels deep’’ to ‘‘using a
maximum of 5 file descriptors’’ in the EXAMPLES section.

Issue 7
Austin Group Interpretations 1003.1-2001 #143 and #156 are applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XBD-ERN-61 is applied.

APPLICATION USAGE is added and the EXAMPLES section is replaced with a new example.

1372 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45002

45003

45004

45005

45006

45007

45008

45009

45010

45011

45012

45013

45014

45015

45016

45017

45018

45019

45020

45021

45022

45023

45024

45025

45026

45027

45028

45029

45030

System Interfaces nice()

NAME
nice — change the nice value of a process

SYNOPSIS
XSI #include <unistd.h>

int nice(int incr);

DESCRIPTION
The nice() function shall add the value of incr to the nice value of the calling process. A nice
value of a process is a non-negative number for which a more positive value shall result in less
favorable scheduling.

A maximum nice value of 2*{NZERO}−1 and a minimum nice value of 0 shall be imposed by the
system. Requests for values above or below these limits shall result in the nice value being set to
the corresponding limit. Only a process with appropriate privileges can lower the nice value.

PS|TPS Calling the nice() function has no effect on the priority of processes or threads with policy
SCHED_FIFO or SCHED_RR. The effect on processes or threads with other scheduling policies
is implementation-defined.

The nice value set with nice() shall be applied to the process. If the process is multi-threaded, the
nice value shall affect all system scope threads in the process.

As −1 is a permissible return value in a successful situation, an application wishing to check for
error situations should set errno to 0, then call nice(), and if it returns −1, check to see whether
errno is non-zero.

RETURN VALUE
Upon successful completion, nice() shall return the new nice value −{NZERO}. Otherwise, −1
shall be returned, the nice value of the process shall not be changed, and errno shall be set to
indicate the error.

ERRORS
The nice() function shall fail if:

[EPERM] The incr argument is negative and the calling process does not have
appropriate privileges.

EXAMPLES

Changing the Nice Value

The following example adds the value of the incr argument, −20, to the nice value of the calling
process.

#include <unistd.h>
...
int incr = -20;
int ret;

ret = nice(incr);

APPLICATION USAGE
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1373

45031

45032

45033

45034

45035

45036

45037

45038

45039

45040

45041

45042

45043

45044

45045

45046

45047

45048

45049

45050

45051

45052

45053

45054

45055

45056

45057

45058

45059

45060

45061

45062

45063

45064

45065

45066

45067

45068

45069

nice() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getpriority()

XBD <limits.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A statement is added to the description indicating the effects of this function on the different
scheduling policies and multi-threaded processes.

1374 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45070

45071

45072

45073

45074

45075

45076

45077

45078

45079

45080

45081

System Interfaces nl_langinfo()

NAME
nl_langinfo, nl_langinfo_l — language information

SYNOPSIS
#include <langinfo.h>

char *nl_langinfo(nl_item item);
char *nl_langinfo_l(nl_item item, locale_t locale);

DESCRIPTION
The nl_langinfo() and nl_langinfo_l() functions shall return a pointer to a string containing
information relevant to the particular language or cultural area defined in the locale of the
process, or in the locale represented by locale, respectively (see <langinfo.h>). The manifest
constant names and values of item are defined in <langinfo.h>. For example:

nl_langinfo(ABDAY_1)

would return a pointer to the string "Dom" if the identified language was Portuguese, and
"Sun" if the identified language was English.

nl_langinfo_l(ABDAY_1, loc)

would return a pointer to the string "Dom" if the identified language of the locale represented by
loc was Portuguese, and "Sun" if the identified language of the locale represented by loc was
English.

Calls to setlocale() with a category corresponding to the category of item (see <langinfo.h>), or to
the category LC_ALL, may overwrite the array pointed to by the return value. Calls to uselocale()
which change the category corresponding to the category of item may overwrite the array
pointed to by the return value.

The nl_langinfo() function need not be thread-safe.

RETURN VALUE
In a locale where langinfo data is not defined, these functions shall return a pointer to the
corresponding string in the POSIX locale. In all locales, these functions shall return a pointer to
an empty string if item contains an invalid setting.

This pointer may point to static data that may be overwritten on the next call to either function.

ERRORS
The nl_langinfo_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES

Getting Date and Time Formatting Information

The following example returns a pointer to a string containing date and time formatting
information, as defined in the LC_TIME category of the current locale.

#include <time.h>
#include <langinfo.h>
...
strftime(datestring, sizeof(datestring), nl_langinfo(D_T_FMT), tm);
...

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1375

45082

45083

45084

45085

45086

45087

45088

45089

45090

45091

45092

45093

45094

45095

45096

45097

45098

45099

45100

45101

45102

45103

45104

45105

45106

45107

45108

45109

45110

45111

45112

45113

45114

45115

45116

45117

45118

45119

45120

45121

nl_langinfo() System Interfaces

APPLICATION USAGE
The array pointed to by the return value should not be modified by the program, but may be
modified by further calls to these functions.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale()

XBD Chapter 7 (on page 135), <langinfo.h>, <locale.h>, <nl_types.h>

CHANGE HISTORY
First released in Issue 2.

Issue 5
The last paragraph of the DESCRIPTION is moved from the APPLICATION USAGE section.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The nl_langinfo() function is moved from the XSI option to the Base.

The nl_langinfo_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

1376 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45122

45123

45124

45125

45126

45127

45128

45129

45130

45131

45132

45133

45134

45135

45136

45137

45138

45139

45140

45141

System Interfaces nrand48()

NAME
nrand48 — generate uniformly distributed pseudo-random non-negative long integers

SYNOPSIS
XSI #include <stdlib.h>

long nrand48(unsigned short xsubi[3]);

DESCRIPTION
Refer to drand48().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1377

45142

45143

45144

45145

45146

45147

45148

ntohl() System Interfaces

NAME
ntohl, ntohs — convert values between host and network byte order

SYNOPSIS
#include <arpa/inet.h>

uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

DESCRIPTION
Refer to htonl().

1378 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45149

45150

45151

45152

45153

45154

45155

45156

System Interfaces open()

NAME
open, openat — open file relative to directory file descriptor

SYNOPSIS
OH #include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int oflag, ...);
int openat(int fd, const char *path, int oflag, ...);

DESCRIPTION
The open() function shall establish the connection between a file and a file descriptor. It shall
create an open file description that refers to a file and a file descriptor that refers to that open file
description. The file descriptor is used by other I/O functions to refer to that file. The path
argument points to a pathname naming the file.

The open() function shall return a file descriptor for the named file that is the lowest file
descriptor not currently open for that process. The open file description is new, and therefore the
file descriptor shall not share it with any other process in the system. The FD_CLOEXEC file
descriptor flag associated with the new file descriptor shall be cleared unless the O_CLOEXEC
flag is set in oflag.

The file offset used to mark the current position within the file shall be set to the beginning of
the file.

The file status flags and file access modes of the open file description shall be set according to
the value of oflag.

Values for oflag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>. Applications shall specify exactly one of the first five values (file access modes)
below in the value of oflag:

O_EXEC Open for execute only (non-directory files). The result is unspecified if
this flag is applied to a directory.

O_RDONLY Open for reading only.

O_RDWR Open for reading and writing. The result is undefined if this flag is
applied to a FIFO.

O_SEARCH Open directory for search only. The result is unspecified if this flag is
applied to a non-directory file.

O_WRONLY Open for writing only.

Any combination of the following may be used:

O_APPEND If set, the file offset shall be set to the end of the file prior to each write.

O_CLOEXEC If set, the FD_CLOEXEC flag for the new file descriptor shall be set.

O_CREAT If the file exists, this flag has no effect except as noted under O_EXCL
below. Otherwise, the file shall be created; the user ID of the file shall be
set to the effective user ID of the process; the group ID of the file shall be
set to the group ID of the file’s parent directory or to the effective group
ID of the process; and the access permission bits (see <sys/stat.h>) of the
file mode shall be set to the value of the argument following the oflag
argument taken as type mode_t modified as follows: a bitwise AND is
performed on the file-mode bits and the corresponding bits in the
complement of the process’ file mode creation mask. Thus, all bits in the

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1379

45157

45158

45159

45160

45161

45162

45163

45164

45165

45166

45167

45168

45169

45170

45171

45172

45173

45174

45175

45176

45177

45178

45179

45180

45181

45182

45183

45184

45185

45186

45187

45188

45189

45190

45191

45192

45193

45194

45195

45196

45197

45198

45199

45200

open() System Interfaces

file mode whose corresponding bit in the file mode creation mask is set
are cleared. When bits other than the file permission bits are set, the effect
is unspecified. The argument following the oflag argument does not affect
whether the file is open for reading, writing, or for both. Implementations
shall provide a way to initialize the file’s group ID to the group ID of the
parent directory. Implementations may, but need not, provide an
implementation-defined way to initialize the file’s group ID to the
effective group ID of the calling process.

O_DIRECTORY If path does not name a directory, fail and set errno to [ENOTDIR].

SIO O_DSYNC Write I/O operations on the file descriptor shall complete as defined by
synchronized I/O data integrity completion.

O_EXCL If O_CREAT and O_EXCL are set, open() shall fail if the file exists. The
check for the existence of the file and the creation of the file if it does not
exist shall be atomic with respect to other threads executing open()
naming the same filename in the same directory with O_EXCL and
O_CREAT set. If O_EXCL and O_CREAT are set, and path names a
symbolic link, open() shall fail and set errno to [EEXIST], regardless of the
contents of the symbolic link. If O_EXCL is set and O_CREAT is not set,
the result is undefined.

O_NOCTTY If set and path identifies a terminal device, open() shall not cause the
terminal device to become the controlling terminal for the process. If path
does not identify a terminal device, O_NOCTTY shall be ignored.

O_NOFOLLOW If path names a symbolic link, fail and set errno to [ELOOP].

O_NONBLOCK When opening a FIFO with O_RDONLY or O_WRONLY set:

• If O_NONBLOCK is set, an open() for reading-only shall return
without delay. An open() for writing-only shall return an error if no
process currently has the file open for reading.

• If O_NONBLOCK is clear, an open() for reading-only shall block the
calling thread until a thread opens the file for writing. An open() for
writing-only shall block the calling thread until a thread opens the
file for reading.

When opening a block special or character special file that supports non-
blocking opens:

• If O_NONBLOCK is set, the open() function shall return without
blocking for the device to be ready or available. Subsequent
behavior of the device is device-specific.

• If O_NONBLOCK is clear, the open() function shall block the calling
thread until the device is ready or available before returning.

Otherwise, the behavior of O_NONBLOCK is unspecified.

SIO O_RSYNC Read I/O operations on the file descriptor shall complete at the same
level of integrity as specified by the O_DSYNC and O_SYNC flags. If both
O_DSYNC and O_RSYNC are set in oflag, all I/O operations on the file
descriptor shall complete as defined by synchronized I/O data integrity
completion. If both O_SYNC and O_RSYNC are set in flags, all I/O
operations on the file descriptor shall complete as defined by

1380 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45201

45202

45203

45204

45205

45206

45207

45208

45209

45210

45211

45212

45213

45214

45215

45216

45217

45218

45219

45220

45221

45222

45223

45224

45225

45226

45227

45228

45229

45230

45231

45232

45233

45234

45235

45236

45237

45238

45239

45240

45241

45242

45243

45244

45245

System Interfaces open()

synchronized I/O file integrity completion.

XSI|SIO O_SYNC Write I/O operations on the file descriptor shall complete as defined by
synchronized I/O file integrity completion.

XSI The O_SYNC flag shall be supported for regular files, even if the
Synchronized Input and Output option is not supported.

O_TRUNC If the file exists and is a regular file, and the file is successfully opened
O_RDWR or O_WRONLY, its length shall be truncated to 0, and the mode
and owner shall be unchanged. It shall have no effect on FIFO special files
or terminal device files. Its effect on other file types is implementation-
defined. The result of using O_TRUNC without either O_RDWR or
O_WRONLY is undefined.

O_TTY_INIT If path identifies a terminal device other than a pseudo-terminal, the
device is not already open in any process, and either O_TTY_INIT is set in
oflag or O_TTY_INIT has the value zero, open() shall set any non-standard
termios structure terminal parameters to a state that provides conforming
behavior; see XBD Section 11.2 (on page 205). It is unspecified whether
O_TTY_INIT has any effect if the device is already open in any process. If
path identifies the slave side of a pseudo-terminal that is not already open
in any process, open() shall set any non-standard termios structure
terminal parameters to a state that provides conforming behavior,
regardless of whether O_TTY_INIT is set. If path does not identify a
terminal device, O_TTY_INIT shall be ignored.

If O_CREAT is set and the file did not previously exist, upon successful completion, open() shall
mark for update the last data access, last data modification, and last file status change
timestamps of the file and the last data modification and last file status change timestamps of
the parent directory.

If O_TRUNC is set and the file did previously exist, upon successful completion, open() shall
mark for update the last data modification and last file status change timestamps of the file.

SIO If both the O_SYNC and O_DSYNC flags are set, the effect is as if only the O_SYNC flag was set.

OB XSR If path refers to a STREAMS file, oflag may be constructed from O_NONBLOCK OR’ed with
either O_RDONLY, O_WRONLY, or O_RDWR. Other flag values are not applicable to STREAMS
devices and shall have no effect on them. The value O_NONBLOCK affects the operation of
STREAMS drivers and certain functions applied to file descriptors associated with STREAMS
files. For STREAMS drivers, the implementation of O_NONBLOCK is device-specific.

The application shall ensure that it specifies the O_TTY_INIT flag on the first open of a terminal
device since system boot or since the device was closed by the process that last had it open. The

XSI application need not specify the O_TTY_INIT flag when opening pseudo-terminals. If path
names the master side of a pseudo-terminal device, then it is unspecified whether open() locks
the slave side so that it cannot be opened. Conforming applications shall call unlockpt() before
opening the slave side.

The largest value that can be represented correctly in an object of type off_t shall be established
as the offset maximum in the open file description.

The openat() function shall be equivalent to the open() function except in the case where path
specifies a relative path. In this case the file to be opened is determined relative to the directory
associated with the file descriptor fd instead of the current working directory. If the file

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1381

45246

45247

45248

45249

45250

45251

45252

45253

45254

45255

45256

45257

45258

45259

45260

45261

45262

45263

45264

45265

45266

45267

45268

45269

45270

45271

45272

45273

45274

45275

45276

45277

45278

45279

45280

45281

45282

45283

45284

45285

45286

45287

45288

45289

45290

open() System Interfaces

descriptor was opened without O_SEARCH, the function shall check whether directory searches
are permitted using the current permissions of the directory underlying the file descriptor. If the
file descriptor was opened with O_SEARCH, the function shall not perform the check.

The oflag parameter and the optional fourth parameter correspond exactly to the parameters of
open().

If openat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to open().

RETURN VALUE
Upon successful completion, these functions shall open the file and return a non-negative
integer representing the lowest numbered unused file descriptor. Otherwise, these functions
shall return −1 and set errno to indicate the error. If − is returned, no files shall be created or
modified.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by oflag are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be
created, or O_TRUNC is specified and write permission is denied.

[EEXIST] O_CREAT and O_EXCL are set, and the named file exists.

[EINTR] A signal was caught during open().

SIO [EINVAL] The implementation does not support synchronized I/O for this file.

OB XSR [EIO] The path argument names a STREAMS file and a hangup or error occurred
during the open().

[EISDIR] The named file is a directory and oflag includes O_WRONLY or O_RDWR.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument, or O_NOFOLLOW was specified and the path argument names a
symbolic link.

[EMFILE] All file descriptors available to the process are currently open.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENFILE] The maximum allowable number of files is currently open in the system.

[ENOENT] O_CREAT is not set and the named file does not exist; or O_CREAT is set and
either the path prefix does not exist or the path argument points to an empty
string.

OB XSR [ENOSR] The path argument names a STREAMS-based file and the system is unable to
allocate a STREAM.

[ENOSPC] The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and O_CREAT is specified.

[ENOTDIR] A component of the path prefix is not a directory; or O_CREAT and O_EXCL
are not specified, the path argument contains at least one non-<slash>
character and ends with one or more trailing <slash> characters, and the last
pathname component names an existing file that is neither a directory nor a
symbolic link to a directory; or O_DIRECTORY was specified and the path

1382 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45291

45292

45293

45294

45295

45296

45297

45298

45299

45300

45301

45302

45303

45304

45305

45306

45307

45308

45309

45310

45311

45312

45313

45314

45315

45316

45317

45318

45319

45320

45321

45322

45323

45324

45325

45326

45327

45328

45329

45330

45331

45332

45333

System Interfaces open()

argument does not name a directory.

[ENXIO] O_NONBLOCK is set, the named file is a FIFO, O_WRONLY is set, and no
process has the file open for reading.

[ENXIO] The named file is a character special or block special file, and the device
associated with this special file does not exist.

[EOVERFLOW] The named file is a regular file and the size of the file cannot be represented
correctly in an object of type off_t.

[EROFS] The named file resides on a read-only file system and either O_WRONLY,
O_RDWR, O_CREAT (if the file does not exist), or O_TRUNC is set in the oflag
argument.

The openat() function shall fail if:

[EACCES] fd was not opened with O_SEARCH and the permissions of the directory
underlying fd do not permit directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

These functions may fail if:

XSI [EAGAIN] The path argument names the slave side of a pseudo-terminal device that is
locked.

[EINVAL] The value of the oflag argument is not valid.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

OB XSR [ENOMEM] The path argument names a STREAMS file and the system is unable to allocate
resources.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed and oflag is
O_WRONLY or O_RDWR.

The openat() function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES

Opening a File for Writing by the Owner

The following example opens the file /tmp/file, either by creating it (if it does not already exist),
or by truncating its length to 0 (if it does exist). In the former case, if the call creates a new file,
the access permission bits in the file mode of the file are set to permit reading and writing by the
owner, and to permit reading only by group members and others.

If the call to open() is successful, the file is opened for writing.

#include <fcntl.h>
...

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1383

45334

45335

45336

45337

45338

45339

45340

45341

45342

45343

45344

45345

45346

45347

45348

45349

45350

45351

45352

45353

45354

45355

45356

45357

45358

45359

45360

45361

45362

45363

45364

45365

45366

45367

45368

45369

45370

45371

45372

45373

45374

open() System Interfaces

int fd;
mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
char *filename = "/tmp/file";
...
fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, mode);
...

Opening a File Using an Existence Check

The following example uses the open() function to try to create the LOCKFILE file and open it
for writing. Since the open() function specifies the O_EXCL flag, the call fails if the file already
exists. In that case, the program assumes that someone else is updating the password file and
exits.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...
int pfd; /* Integer for file descriptor returned by open() call. */
...
if ((pfd = open(LOCKFILE, O_WRONLY | O_CREAT | O_EXCL,

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == -1)
{

fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
exit(1);

}
...

Opening a File for Writing

The following example opens a file for writing, creating the file if it does not already exist. If the
file does exist, the system truncates the file to zero bytes.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...
int pfd;
char filename[PATH_MAX+1];
...
if ((pfd = open(filename, O_WRONLY | O_CREAT | O_TRUNC,

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == -1)
{

perror("Cannot open output file\n"); exit(1);
}
...

1384 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45375

45376

45377

45378

45379

45380

45381

45382

45383

45384

45385

45386

45387

45388

45389

45390

45391

45392

45393

45394

45395

45396

45397

45398

45399

45400

45401

45402

45403

45404

45405

45406

45407

45408

45409

45410

45411

45412

45413

45414

45415

45416

System Interfaces open()

APPLICATION USAGE
POSIX.1-2008 does not require that terminal parameters be automatically set to any state on first
open, nor that they be reset after the last close. It is possible for a non-conforming application to
leave a terminal device in a state where the next process to use that device finds it in a non-
conforming state, but has no way of determining this. To ensure that the device is set to a
conforming initial state, applications which perform a first open of a terminal (other than a
pseudo-terminal) should do so using the O_TTY_INIT flag to set the parameters associated with
the terminal to a conforming state.

RATIONALE
Except as specified in this volume of POSIX.1-2008, the flags allowed in oflag are not mutually-
exclusive and any number of them may be used simultaneously.

Some implementations permit opening FIFOs with O_RDWR. Since FIFOs could be
implemented in other ways, and since two file descriptors can be used to the same effect, this
possibility is left as undefined.

See getgroups() about the group of a newly created file.

The use of open() to create a regular file is preferable to the use of creat(), because the latter is
redundant and included only for historical reasons.

The use of the O_TRUNC flag on FIFOs and directories (pipes cannot be open()-ed) must be
permissible without unexpected side-effects (for example, creat() on a FIFO must not remove
data). Since terminal special files might have type-ahead data stored in the buffer, O_TRUNC
should not affect their content, particularly if a program that normally opens a regular file
should open the current controlling terminal instead. Other file types, particularly
implementation-defined ones, are left implementation-defined.

POSIX.1-2008 permits [EACCES] to be returned for conditions other than those explicitly listed.

The O_NOCTTY flag was added to allow applications to avoid unintentionally acquiring a
controlling terminal as a side-effect of opening a terminal file. This volume of POSIX.1-2008 does
not specify how a controlling terminal is acquired, but it allows an implementation to provide
this on open() if the O_NOCTTY flag is not set and other conditions specified in XBD Chapter 11
(on page 199) are met.

In historical implementations the value of O_RDONLY is zero. Because of that, it is not possible
to detect the presence of O_RDONLY and another option. Future implementations should
encode O_RDONLY and O_WRONLY as bit flags so that:

O_RDONLY | O_WRONLY == O_RDWR

O_EXEC and O_SEARCH are specified as two of the five file access modes. Since O_EXEC does
not apply to directories, and O_SEARCH only applies to directories, their values need not be
distinct. Since O_RDONLY has historically had the value zero, implementations are not able to
distinguish between O_SEARCH and O_SEARCH | O_RDONLY, and similarly for O_EXEC.

In general, the open() function follows the symbolic link if path names a symbolic link. However,
the open() function, when called with O_CREAT and O_EXCL, is required to fail with [EEXIST]
if path names an existing symbolic link, even if the symbolic link refers to a nonexistent file. This
behavior is required so that privileged applications can create a new file in a known location
without the possibility that a symbolic link might cause the file to be created in a different
location.

For example, a privileged application that must create a file with a predictable name in a user-
writable directory, such as the user’s home directory, could be compromised if the user creates a
symbolic link with that name that refers to a nonexistent file in a system directory. If the user can

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1385

45417

45418

45419

45420

45421

45422

45423

45424

45425

45426

45427

45428

45429

45430

45431

45432

45433

45434

45435

45436

45437

45438

45439

45440

45441

45442

45443

45444

45445

45446

45447

45448

45449

45450

45451

45452

45453

45454

45455

45456

45457

45458

45459

45460

45461

45462

open() System Interfaces

influence the contents of a file, the user could compromise the system by creating a new system
configuration or spool file that would then be interpreted by the system. The test for a symbolic
link which refers to a nonexisting file must be atomic with the creation of a new file.

In addition, the open() function refuses to open non-directories if the O_DIRECTORY flag is set.
This avoids race conditions whereby a user might compromise the system by substituting a hard
link to a sensitive file (e.g., a device or a FIFO) while a privileged application is running, where
opening a file even for read access might have undesirable side-effects.

In addition, the open() function does not follow symbolic links if the O_NOFOLLOW flag is set.
This avoids race conditions whereby a user might compromise the system by substituting a
symbolic link to a sensitive file (e.g., a device) while a privileged application is running, where
opening a file even for read access might have undesirable side-effects.

The POSIX.1-1990 standard required that the group ID of a newly created file be set to the group
ID of its parent directory or to the effective group ID of the creating process. FIPS 151-2 required
that implementations provide a way to have the group ID be set to the group ID of the
containing directory, but did not prohibit implementations also supporting a way to set the
group ID to the effective group ID of the creating process. Conforming applications should not
assume which group ID will be used. If it matters, an application can use chown() to set the
group ID after the file is created, or determine under what conditions the implementation will
set the desired group ID.

The purpose of the openat() function is to enable opening files in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to open(), resulting in unspecified behavior. By opening a
file descriptor for the target directory and using the openat() function it can be guaranteed that
the opened file is located relative to the desired directory. Some implementations use the
openat() function for other purposes as well. In some cases, if the oflag parameter has the
O_XATTR bit set, the returned file descriptor provides access to extended attributes. This
functionality is not standardized here.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), close(), creat(), dirfd(), dup(), exec , fcntl(), fdopendir(), link(), lseek(), mkdtemp(),
mknod(), read(), symlink(), umask(), unlockpt(), write()

XBD Chapter 11 (on page 199), <fcntl.h>, <sys/stat.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

1386 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45463

45464

45465

45466

45467

45468

45469

45470

45471

45472

45473

45474

45475

45476

45477

45478

45479

45480

45481

45482

45483

45484

45485

45486

45487

45488

45489

45490

45491

45492

45493

45494

45495

45496

45497

45498

45499

45500

45501

45502

45503

45504

45505

System Interfaces open()

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the DESCRIPTION, O_CREAT is amended to state that the group ID of the file is set to
the group ID of the file’s parent directory or to the effective group ID of the process. This is
a FIPS requirement.

• In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open
file description. This change is to support large files.

• In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
large files.

• The [ENXIO] mandatory error condition is added.

• The [EINVAL], [ENAMETOOLONG], and [ETXTBSY] optional error conditions are added.

The DESCRIPTION and ERRORS sections are updated so that items related to the optional XSI
STREAMS Option Group are marked.

The following changes were made to align with the IEEE P1003.1a draft standard:

• An explanation is added of the effect of the O_CREAT and O_EXCL flags when the path
refers to a symbolic link.

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The DESCRIPTION of O_EXCL is updated in response to IEEE PASC Interpretation 1003.1c #48.

Issue 7
Austin Group Interpretations 1003.1-2001 #113 and #143 are applied.

Austin Group Interpretation 1003.1-2001 #144 is applied, adding the O_TTY_INIT flag.

Austin Group Interpretation 1003.1-2001 #171 is applied, adding support to set the
FD_CLOEXEC flag atomically at open(), and adding the F_DUPFD_CLOEXEC flag.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

This page is revised and the openat() function is added from The Open Group Technical
Standard, 2006, Extended API Set Part 2.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1387

45506

45507

45508

45509

45510

45511

45512

45513

45514

45515

45516

45517

45518

45519

45520

45521

45522

45523

45524

45525

45526

45527

45528

45529

45530

45531

45532

45533

45534

45535

45536

open_memstream() System Interfaces

NAME
open_memstream, open_wmemstream — open a dynamic memory buffer stream

SYNOPSIS
CX #include <stdio.h>

FILE *open_memstream(char **bufp, size_t *sizep);

#include <wchar.h>

FILE *open_wmemstream(wchar_t **bufp, size_t *sizep);

DESCRIPTION
The open_memstream() and open_wmemstream() functions shall create an I/O stream associated
with a dynamically allocated memory buffer. The stream shall be opened for writing and shall
be seekable.

The stream associated with a call to open_memstream() shall be byte-oriented.

The stream associated with a call to open_wmemstream() shall be wide-oriented.

The stream shall maintain a current position in the allocated buffer and a current buffer length.
The position shall be initially set to zero (the start of the buffer). Each write to the stream shall
start at the current position and move this position by the number of successfully written bytes
for open_memstream() or the number of successfully written wide characters for
open_wmemstream(). The length shall be initially set to zero. If a write moves the position to a
value larger than the current length, the current length shall be set to this position. In this case a
null character for open_memstream() or a null wide character for open_wmemstream() shall be
appended to the current buffer. For both functions the terminating null is not included in the
calculation of the buffer length.

After a successful fflush() or fclose(), the pointer referenced by bufp shall contain the address of
the buffer, and the variable pointed to by sizep shall contain the smaller of the current buffer
length and the number of bytes for open_memstream(), or the number of wide characters for
open_wmemstream(), between the beginning of the buffer and the current file position indicator.

After a successful fflush() the pointer referenced by bufp and the variable referenced by sizep
remain valid only until the next write operation on the stream or a call to fclose().

RETURN VALUE
Upon successful completion, these functions shall return a pointer to the object controlling the
stream. Otherwise, a null pointer shall be returned, and errno shall be set to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] bufp or sizep are NULL.

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

[ENOMEM] Memory for the stream or the buffer could not be allocated.

1388 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45537

45538

45539

45540

45541

45542

45543

45544

45545

45546

45547

45548

45549

45550

45551

45552

45553

45554

45555

45556

45557

45558

45559

45560

45561

45562

45563

45564

45565

45566

45567

45568

45569

45570

45571

45572

System Interfaces open_memstream()

EXAMPLES

#include <stdio.h>
#include <stdlib.h>

int
main (void)
{

FILE *stream;
char *buf;
size_t len;
off_t eob;

stream = open_memstream (&buf, &len);
if (stream == NULL)

/* handle error */ ;
fprintf (stream, "hello my world");
fflush (stream);
printf ("buf=%s, len=%zu\n", buf, len);
eob = ftello(stream);
fseeko (stream, 0, SEEK_SET);
fprintf (stream, "good-bye");
fseeko (stream, eob, SEEK_SET);
fclose (stream);
printf ("buf=%s, len=%zu\n", buf, len);
free (buf);
return 0;

}

This program produces the following output:

buf=hello my world, len=14
buf=good-bye world, len=14

APPLICATION USAGE
The buffer created by these functions should be freed by the application after closing the stream,
by means of a call to free().

RATIONALE
These functions are similar to fmemopen() except that the memory is always allocated
dynamically by the function, and the stream is opened only for output.

FUTURE DIRECTIONS
None.

SEE ALSO
fclose(), fdopen(), fflush(), fmemopen(), fopen(), free(), freopen()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 7.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1389

45573

45574

45575

45576

45577

45578

45579

45580

45581

45582

45583

45584

45585

45586

45587

45588

45589

45590

45591

45592

45593

45594

45595

45596

45597

45598

45599

45600

45601

45602

45603

45604

45605

45606

45607

45608

45609

45610

45611

45612

45613

openat() System Interfaces

NAME
openat — open file relative to directory file descriptor

SYNOPSIS
#include <fcntl.h>

int openat(int fd, const char *path, int oflag, ...);

DESCRIPTION
Refer to open().

1390 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45614

45615

45616

45617

45618

45619

45620

System Interfaces opendir()

NAME
opendir — open directory associated with file descriptor

SYNOPSIS
#include <dirent.h>

DIR *opendir(const char *dirname);

DESCRIPTION
Refer to fdopendir().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1391

45621

45622

45623

45624

45625

45626

45627

openlog() System Interfaces

NAME
openlog — open a connection to the logging facility

SYNOPSIS
XSI #include <syslog.h>

void openlog(const char *ident, int logopt, int facility);

DESCRIPTION
Refer to closelog().

1392 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45628

45629

45630

45631

45632

45633

45634

System Interfaces optarg

NAME
optarg, opterr, optind, optopt — options parsing variables

SYNOPSIS
#include <unistd.h>

extern char *optarg;
extern int opterr, optind, optopt;

DESCRIPTION
Refer to getopt().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1393

45635

45636

45637

45638

45639

45640

45641

45642

pathconf() System Interfaces

NAME
pathconf — get configurable pathname variables

SYNOPSIS
#include <unistd.h>

long pathconf(const char *path, int name);

DESCRIPTION
Refer to fpathconf().

1394 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45643

45644

45645

45646

45647

45648

45649

System Interfaces pause()

NAME
pause — suspend the thread until a signal is received

SYNOPSIS
#include <unistd.h>

int pause(void);

DESCRIPTION
The pause() function shall suspend the calling thread until delivery of a signal whose action is
either to execute a signal-catching function or to terminate the process.

If the action is to terminate the process, pause() shall not return.

If the action is to execute a signal-catching function, pause() shall return after the signal-catching
function returns.

RETURN VALUE
Since pause() suspends thread execution indefinitely unless interrupted by a signal, there is no
successful completion return value. A value of −1 shall be returned and errno set to indicate the
error.

ERRORS
The pause() function shall fail if:

[EINTR] A signal is caught by the calling process and control is returned from the
signal-catching function.

EXAMPLES
None.

APPLICATION USAGE
Many common uses of pause() have timing windows. The scenario involves checking a
condition related to a signal and, if the signal has not occurred, calling pause(). When the signal
occurs between the check and the call to pause(), the process often blocks indefinitely. The
sigprocmask() and sigsuspend() functions can be used to avoid this type of problem.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sigsuspend()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The APPLICATION USAGE section is added.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1395

45650

45651

45652

45653

45654

45655

45656

45657

45658

45659

45660

45661

45662

45663

45664

45665

45666

45667

45668

45669

45670

45671

45672

45673

45674

45675

45676

45677

45678

45679

45680

45681

45682

45683

45684

45685

45686

45687

45688

pclose() System Interfaces

NAME
pclose — close a pipe stream to or from a process

SYNOPSIS
CX #include <stdio.h>

int pclose(FILE *stream);

DESCRIPTION
The pclose() function shall close a stream that was opened by popen(), wait for the command to
terminate, and return the termination status of the process that was running the command
language interpreter. However, if a call caused the termination status to be unavailable to
pclose(), then pclose() shall return −1 with errno set to [ECHILD] to report this situation. This can
happen if the application calls one of the following functions:

• wait()

• waitpid() with a pid argument less than or equal to 0 or equal to the process ID of the
command line interpreter

• Any other function not defined in this volume of POSIX.1-2008 that could do one of the
above

In any case, pclose() shall not return before the child process created by popen() has terminated.

If the command language interpreter cannot be executed, the child termination status returned
by pclose() shall be as if the command language interpreter terminated using exit(127) or
_exit(127).

The pclose() function shall not affect the termination status of any child of the calling process
other than the one created by popen() for the associated stream.

If the argument stream to pclose() is not a pointer to a stream created by popen(), the result of
pclose() is undefined.

RETURN VALUE
Upon successful return, pclose() shall return the termination status of the command language
interpreter. Otherwise, pclose() shall return −1 and set errno to indicate the error.

ERRORS
The pclose() function shall fail if:

[ECHILD] The status of the child process could not be obtained, as described above.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
There is a requirement that pclose() not return before the child process terminates. This is
intended to disallow implementations that return [EINTR] if a signal is received while waiting.
If pclose() returned before the child terminated, there would be no way for the application to
discover which child used to be associated with the stream, and it could not do the cleanup
itself.

If the stream pointed to by stream was not created by popen(), historical implementations of
pclose() return −1 without setting errno. To avoid requiring pclose() to set errno in this case,
POSIX.1-2008 makes the behavior unspecified. An application should not use pclose() to close

1396 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45689

45690

45691

45692

45693

45694

45695

45696

45697

45698

45699

45700

45701

45702

45703

45704

45705

45706

45707

45708

45709

45710

45711

45712

45713

45714

45715

45716

45717

45718

45719

45720

45721

45722

45723

45724

45725

45726

45727

45728

45729

45730

45731

System Interfaces pclose()

any stream that was not created by popen().

Some historical implementations of pclose() either block or ignore the signals SIGINT, SIGQUIT,
and SIGHUP while waiting for the child process to terminate. Since this behavior is not
described for the pclose() function in POSIX.1-2008, such implementations are not conforming.
Also, some historical implementations return [EINTR] if a signal is received, even though the
child process has not terminated. Such implementations are also considered non-conforming.

Consider, for example, an application that uses:

popen("command", "r")

to start command, which is part of the same application. The parent writes a prompt to its
standard output (presumably the terminal) and then reads from the popen()ed stream. The child
reads the response from the user, does some transformation on the response (pathname
expansion, perhaps) and writes the result to its standard output. The parent process reads the
result from the pipe, does something with it, and prints another prompt. The cycle repeats.
Assuming that both processes do appropriate buffer flushing, this would be expected to work.

To conform to POSIX.1-2008, pclose() must use waitpid(), or some similar function, instead of
wait().

The code sample below illustrates how the pclose() function might be implemented on a system
conforming to POSIX.1-2008.

int pclose(FILE *stream)
{

int stat;
pid_t pid;

pid = <pid for process created for stream by popen()>
(void) fclose(stream);
while (waitpid(pid, &stat, 0) == -1) {

if (errno != EINTR){
stat = -1;
break;

}
}
return(stat);

}

FUTURE DIRECTIONS
None.

SEE ALSO
fork(), popen(), wait()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1397

45732

45733

45734

45735

45736

45737

45738

45739

45740

45741

45742

45743

45744

45745

45746

45747

45748

45749

45750

45751

45752

45753

45754

45755

45756

45757

45758

45759

45760

45761

45762

45763

45764

45765

45766

45767

45768

45769

45770

perror() System Interfaces

NAME
perror — write error messages to standard error

SYNOPSIS
#include <stdio.h>

void perror(const char *s);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The perror() function shall map the error number accessed through the symbol errno to a
language-dependent error message, which shall be written to the standard error stream as
follows:

• First (if s is not a null pointer and the character pointed to by s is not the null byte), the
string pointed to by s followed by a <colon> and a <space>.

• Then an error message string followed by a <newline>.

The contents of the error message strings shall be the same as those returned by strerror() with
argument errno.

CX The perror() function shall mark for update the last data modification and last file status change
timestamps of the file associated with the standard error stream at some time between its
successful completion and exit(), abort(), or the completion of fflush() or fclose() on stderr.

The perror() function shall not change the orientation of the standard error stream.

RETURN VALUE
The perror() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES

Printing an Error Message for a Function

The following example replaces bufptr with a buffer that is the necessary size. If an error occurs,
the perror() function prints a message and the program exits.

#include <stdio.h>
#include <stdlib.h>
...
char *bufptr;
size_t szbuf;
...
if ((bufptr = malloc(szbuf)) == NULL) {

perror("malloc"); exit(2);
}
...

APPLICATION USAGE
None.

1398 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45771

45772

45773

45774

45775

45776

45777

45778

45779

45780

45781

45782

45783

45784

45785

45786

45787

45788

45789

45790

45791

45792

45793

45794

45795

45796

45797

45798

45799

45800

45801

45802

45803

45804

45805

45806

45807

45808

45809

45810

45811

System Interfaces perror()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
psiginfo(), strerror()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A paragraph is added to the DESCRIPTION indicating that perror() does not change the
orientation of the standard error stream.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
SD5-XSH-ERN-95 is applied.

Changes are made related to support for finegrained timestamps.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1399

45812

45813

45814

45815

45816

45817

45818

45819

45820

45821

45822

45823

45824

45825

45826

45827

45828

pipe() System Interfaces

NAME
pipe — create an interprocess channel

SYNOPSIS
#include <unistd.h>

int pipe(int fildes[2]);

DESCRIPTION
The pipe() function shall create a pipe and place two file descriptors, one each into the
arguments fildes[0] and fildes[1], that refer to the open file descriptions for the read and write
ends of the pipe. Their integer values shall be the two lowest available at the time of the pipe()
call. The O_NONBLOCK and FD_CLOEXEC flags shall be clear on both file descriptors. (The
fcntl() function can be used to set both these flags.)

Data can be written to the file descriptor fildes[1] and read from the file descriptor fildes[0]. A
read on the file descriptor fildes[0] shall access data written to the file descriptor fildes[1] on a
first-in-first-out basis. It is unspecified whether fildes[0] is also open for writing and whether
fildes[1] is also open for reading.

A process has the pipe open for reading (correspondingly writing) if it has a file descriptor open
that refers to the read end, fildes[0] (write end, fildes[1]).

The pipe’s user ID shall be set to the effective user ID of the calling process.

The pipe’s group ID shall be set to the effective group ID of the calling process.

Upon successful completion, pipe() shall mark for update the last data access, last data
modification, and last file status change timestamps of the pipe.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The pipe() function shall fail if:

[EMFILE] All, or all but one, of the file descriptors available to the process are currently
open.

[ENFILE] The number of simultaneously open files in the system would exceed a
system-imposed limit.

EXAMPLES

Using a Pipe to Pass Data Between a Parent Process and a Child Process

The following example demonstrates the use of a pipe to transfer data between a parent process
and a child process. Error handling is excluded, but otherwise this code demonstrates good
practice when using pipes: after the fork() the two processes close the unused ends of the pipe
before they commence transferring data.

#include <stdlib.h>
#include <unistd.h>
...

int fildes[2];
const int BSIZE = 100;
char buf[BSIZE];
ssize_t nbytes;

1400 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45829

45830

45831

45832

45833

45834

45835

45836

45837

45838

45839

45840

45841

45842

45843

45844

45845

45846

45847

45848

45849

45850

45851

45852

45853

45854

45855

45856

45857

45858

45859

45860

45861

45862

45863

45864

45865

45866

45867

45868

45869

45870

45871

System Interfaces pipe()

int status;

status = pipe(fildes);
if (status == −1) {

/* an error occurred */
...

}

switch (fork()) {
case −1: /* Handle error */

break;

case 0: /* Child - reads from pipe */
close(fildes[1]); /* Write end is unused */
nbytes = read(fildes[0], buf, BSIZE); /* Get data from pipe */
/* At this point, a further read would see end of file ... */
close(fildes[0]); /* Finished with pipe */
exit(EXIT_SUCCESS);

default: /* Parent - writes to pipe */
close(fildes[0]); /* Read end is unused */
write(fildes[1], "Hello world\n", 12); /* Write data on pipe */
close(fildes[1]); /* Child will see EOF */
exit(EXIT_SUCCESS);

}

APPLICATION USAGE
None.

RATIONALE
The wording carefully avoids using the verb ‘‘to open’’ in order to avoid any implication of use
of open(); see also write().

FUTURE DIRECTIONS
None.

SEE ALSO
fcntl(), read(), write()

XBD <fcntl.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to indicate that certain dispositions of fildes[0] and fildes[1]
are unspecified.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/65 is applied, adding the example to the
EXAMPLES section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1401

45872

45873

45874

45875

45876

45877

45878

45879

45880

45881

45882

45883

45884

45885

45886

45887

45888

45889

45890

45891

45892

45893

45894

45895

45896

45897

45898

45899

45900

45901

45902

45903

45904

45905

45906

45907

45908

45909

45910

45911

pipe() System Interfaces

Issue 7
SD5-XSH-ERN-156 is applied, updating the DESCRIPTION to state the setting of the pipe’s user
ID and group ID.

Changes are made related to support for finegrained timestamps.

1402 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45912

45913

45914

45915

System Interfaces poll()

NAME
poll — input/output multiplexing

SYNOPSIS
#include <poll.h>

int poll(struct pollfd fds[], nfds_t nfds, int timeout);

DESCRIPTION
The poll() function provides applications with a mechanism for multiplexing input/output over
a set of file descriptors. For each member of the array pointed to by fds, poll() shall examine the
given file descriptor for the event(s) specified in events. The number of pollfd structures in the
fds array is specified by nfds. The poll() function shall identify those file descriptors on which an
application can read or write data, or on which certain events have occurred.

The fds argument specifies the file descriptors to be examined and the events of interest for each
file descriptor. It is a pointer to an array with one member for each open file descriptor of
interest. The array’s members are pollfd structures within which fd specifies an open file
descriptor and events and revents are bitmasks constructed by OR’ing a combination of the
following event flags:

POLLIN Data other than high-priority data may be read without blocking.

OB XSR For STREAMS, this flag is set in revents even if the message is of zero length.
This flag shall be equivalent to POLLRDNORM | POLLRDBAND.

POLLRDNORM Normal data may be read without blocking.

OB XSR For STREAMS, data on priority band 0 may be read without blocking. This
flag is set in revents even if the message is of zero length.

POLLRDBAND Priority data may be read without blocking.

OB XSR For STREAMS, data on priority bands greater than 0 may be read without
blocking. This flag is set in revents even if the message is of zero length.

POLLPRI High-priority data may be read without blocking.

OB XSR For STREAMS, this flag is set in revents even if the message is of zero length.

POLLOUT Normal data may be written without blocking.

OB XSR For STREAMS, data on priority band 0 may be written without blocking.

POLLWRNORM Equivalent to POLLOUT.

POLLWRBAND Priority data may be written.

OB XSR For STREAMS, data on priority bands greater than 0 may be written without
blocking. If any priority band has been written to on this STREAM, this event
only examines bands that have been written to at least once.

POLLERR An error has occurred on the device or stream. This flag is only valid in the
revents bitmask; it shall be ignored in the events member.

POLLHUP A device has been disconnected, or a pipe or FIFO has been closed by the last
process that had it open for writing. Once set, the hangup state of a FIFO shall
persist until some process opens the FIFO for writing or until all read-only file
descriptors for the FIFO are closed. This event and POLLOUT are mutually-
exclusive; a stream can never be writable if a hangup has occurred. However,
this event and POLLIN, POLLRDNORM, POLLRDBAND, or POLLPRI are
not mutually-exclusive. This flag is only valid in the revents bitmask; it shall be

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1403

45916

45917

45918

45919

45920

45921

45922

45923

45924

45925

45926

45927

45928

45929

45930

45931

45932

45933

45934

45935

45936

45937

45938

45939

45940

45941

45942

45943

45944

45945

45946

45947

45948

45949

45950

45951

45952

45953

45954

45955

45956

45957

45958

poll() System Interfaces

ignored in the events member.

POLLNVAL The specified fd value is invalid. This flag is only valid in the revents member;
it shall ignored in the events member.

The significance and semantics of normal, priority, and high-priority data are file and device-
specific.

If the value of fd is less than 0, events shall be ignored, and revents shall be set to 0 in that entry on
return from poll().

In each pollfd structure, poll() shall clear the revents member, except that where the application
requested a report on a condition by setting one of the bits of events listed above, poll() shall set
the corresponding bit in revents if the requested condition is true. In addition, poll() shall set the
POLLHUP, POLLERR, and POLLNVAL flag in revents if the condition is true, even if the
application did not set the corresponding bit in events.

If none of the defined events have occurred on any selected file descriptor, poll() shall wait at
least timeout milliseconds for an event to occur on any of the selected file descriptors. If the value
of timeout is 0, poll() shall return immediately. If the value of timeout is −1, poll() shall block until
a requested event occurs or until the call is interrupted.

Implementations may place limitations on the granularity of timeout intervals. If the requested
timeout interval requires a finer granularity than the implementation supports, the actual
timeout interval shall be rounded up to the next supported value.

The poll() function shall not be affected by the O_NONBLOCK flag.

The poll() function shall support regular files, terminal and pseudo-terminal devices, FIFOs,
OB XSR pipes, sockets and STREAMS-based files. The behavior of poll() on elements of fds that refer to

other types of file is unspecified.

Regular files shall always poll TRUE for reading and writing.

A file descriptor for a socket that is listening for connections shall indicate that it is ready for
reading, once connections are available. A file descriptor for a socket that is connecting
asynchronously shall indicate that it is ready for writing, once a connection has been established.

RETURN VALUE
Upon successful completion, poll() shall return a non-negative value. A positive value indicates
the total number of file descriptors that have been selected (that is, file descriptors for which the
revents member is non-zero). A value of 0 indicates that the call timed out and no file descriptors
have been selected. Upon failure, poll() shall return −1 and set errno to indicate the error.

ERRORS
The poll() function shall fail if:

[EAGAIN] The allocation of internal data structures failed but a subsequent request may
succeed.

[EINTR] A signal was caught during poll().

OB XSR [EINVAL] The nfds argument is greater than {OPEN_MAX}, or one of the fd members
refers to a STREAM or multiplexer that is linked (directly or indirectly)
downstream from a multiplexer.

1404 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

45959

45960

45961

45962

45963

45964

45965

45966

45967

45968

45969

45970

45971

45972

45973

45974

45975

45976

45977

45978

45979

45980

45981

45982

45983

45984

45985

45986

45987

45988

45989

45990

45991

45992

45993

45994

45995

45996

45997

45998

System Interfaces poll()

EXAMPLES

Checking for Events on a Stream

The following example opens a pair of STREAMS devices and then waits for either one to
become writable. This example proceeds as follows:

1. Sets the timeout parameter to 500 milliseconds.

2. Opens the STREAMS devices /dev/dev0 and /dev/dev1, and then polls them, specifying
POLLOUT and POLLWRBAND as the events of interest.

The STREAMS device names /dev/dev0 and /dev/dev1 are only examples of how
STREAMS devices can be named; STREAMS naming conventions may vary among
systems conforming to the POSIX.1-2008.

3. Uses the ret variable to determine whether an event has occurred on either of the two
STREAMS. The poll() function is given 500 milliseconds to wait for an event to occur (if it
has not occurred prior to the poll() call).

4. Checks the returned value of ret. If a positive value is returned, one of the following can
be done:

a. Priority data can be written to the open STREAM on priority bands greater than 0,
because the POLLWRBAND event occurred on the open STREAM (fds[0] or fds[1]).

b. Data can be written to the open STREAM on priority-band 0, because the
POLLOUT event occurred on the open STREAM (fds[0] or fds[1]).

5. If the returned value is not a positive value, permission to write data to the open
STREAM (on any priority band) is denied.

6. If the POLLHUP event occurs on the open STREAM (fds[0] or fds[1]), the device on the
open STREAM has disconnected.

#include <stropts.h>
#include <poll.h>
...
struct pollfd fds[2];
int timeout_msecs = 500;
int ret;

int i;

/* Open STREAMS device. */
fds[0].fd = open("/dev/dev0", ...);
fds[1].fd = open("/dev/dev1", ...);
fds[0].events = POLLOUT | POLLWRBAND;
fds[1].events = POLLOUT | POLLWRBAND;

ret = poll(fds, 2, timeout_msecs);

if (ret > 0) {
/* An event on one of the fds has occurred. */
for (i=0; i<2; i++) {

if (fds[i].revents & POLLWRBAND) {
/* Priority data may be written on device number i. */

...
}
if (fds[i].revents & POLLOUT) {

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1405

45999

46000

46001

46002

46003

46004

46005

46006

46007

46008

46009

46010

46011

46012

46013

46014

46015

46016

46017

46018

46019

46020

46021

46022

46023

46024

46025

46026

46027

46028

46029

46030

46031

46032

46033

46034

46035

46036

46037

46038

46039

46040

46041

46042

poll() System Interfaces

/* Data may be written on device number i. */
...

}
if (fds[i].revents & POLLHUP) {
/* A hangup has occurred on device number i. */

...
}

}
}

APPLICATION USAGE
None.

RATIONALE
The POLLHUP event does not occur for FIFOs just because the FIFO is not open for writing. It
only occurs when the FIFO is closed by the last writer and persists until some process opens the
FIFO for writing or until all read-only file descriptors for the FIFO are closed.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.6 (on page 494), getmsg(), pselect(), putmsg(), read(), write()

XBD <poll.h>, <stropts.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The description of POLLWRBAND is updated.

Issue 6
Text referring to sockets is added to the DESCRIPTION.

Functionality relating to the XSI STREAMS Option Group is marked.

The Open Group Corrigendum U055/3 is applied, updating the DESCRIPTION of
POLLWRBAND.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/66 is applied, correcting the spacing in
the EXAMPLES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #209 is applied, clarifying the POLLHUP event.

The poll() function is moved from the XSI option to the Base.

Functionality relating to the XSI STREAMS option is marked obsolescent.

1406 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

46043

46044

46045

46046

46047

46048

46049

46050

46051

46052

46053

46054

46055

46056

46057

46058

46059

46060

46061

46062

46063

46064

46065

46066

46067

46068

46069

46070

46071

46072

46073

46074

46075

46076

46077

46078

System Interfaces popen()

NAME
popen — initiate pipe streams to or from a process

SYNOPSIS
CX #include <stdio.h>

FILE *popen(const char *command, const char *mode);

DESCRIPTION
The popen() function shall execute the command specified by the string command. It shall create
a pipe between the calling program and the executed command, and shall return a pointer to a
stream that can be used to either read from or write to the pipe.

The environment of the executed command shall be as if a child process were created within the
popen() call using the fork() function, and the child invoked the sh utility using the call:

execl(shell path, "sh", "-c", command, (char *)0);

where shell path is an unspecified pathname for the sh utility.

The popen() function shall ensure that any streams from previous popen() calls that remain open
in the parent process are closed in the new child process.

The mode argument to popen() is a string that specifies I/O mode:

1. If mode is r, when the child process is started, its file descriptor STDOUT_FILENO shall be
the writable end of the pipe, and the file descriptor fileno(stream) in the calling process,
where stream is the stream pointer returned by popen(), shall be the readable end of the
pipe.

2. If mode is w, when the child process is started its file descriptor STDIN_FILENO shall be
the readable end of the pipe, and the file descriptor fileno(stream) in the calling process,
where stream is the stream pointer returned by popen(), shall be the writable end of the
pipe.

3. If mode is any other value, the result is unspecified.

After popen(), both the parent and the child process shall be capable of executing independently
before either terminates.

Pipe streams are byte-oriented.

RETURN VALUE
Upon successful completion, popen() shall return a pointer to an open stream that can be used to
read or write to the pipe. Otherwise, it shall return a null pointer and may set errno to indicate
the error.

ERRORS
The popen() function shall fail if:

[EMFILE] {STREAM_MAX} streams are currently open in the calling process.

The popen() function may fail if:

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

[EINVAL] The mode argument is invalid.

The popen() function may also set errno values as described by fork() or pipe().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1407

46079

46080

46081

46082

46083

46084

46085

46086

46087

46088

46089

46090

46091

46092

46093

46094

46095

46096

46097

46098

46099

46100

46101

46102

46103

46104

46105

46106

46107

46108

46109

46110

46111

46112

46113

46114

46115

46116

46117

popen() System Interfaces

EXAMPLES

Using popen() to Obtain a List of Files from the ls Utility

The following example demonstrates the use of popen() and pclose() to execute the command ls*
in order to obtain a list of files in the current directory:

#include <stdio.h>
...

FILE *fp;
int status;
char path[PATH_MAX];

fp = popen("ls *", "r");
if (fp == NULL)

/* Handle error */;

while (fgets(path, PATH_MAX, fp) != NULL)
printf("%s", path);

status = pclose(fp);
if (status == −1) {

/* Error reported by pclose() */
...

} else {
/* Use macros described under wait() to inspect ‘status’ in order

to determine success/failure of command executed by popen() */
...

}

APPLICATION USAGE
Since open files are shared, a mode r command can be used as an input filter and a mode w
command as an output filter.

Buffered reading before opening an input filter may leave the standard input of that filter
mispositioned. Similar problems with an output filter may be prevented by careful buffer
flushing; for example, with fflush().

A stream opened by popen() should be closed by pclose().

The behavior of popen() is specified for values of mode of r and w. Other modes such as rb and
wb might be supported by specific implementations, but these would not be portable features.
Note that historical implementations of popen() only check to see if the first character of mode is
r. Thus, a mode of robert the robot would be treated as mode r, and a mode of anything else would be
treated as mode w.

If the application calls waitpid() or waitid() with a pid argument greater than 0, and it still has a
stream that was called with popen() open, it must ensure that pid does not refer to the process
started by popen().

To determine whether or not the environment specified in the Shell and Utilities volume of
POSIX.1-2008 is present, use the function call:

sysconf(_SC_2_VERSION)

(See sysconf()).

1408 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

46118

46119

46120

46121

46122

46123

46124

46125

46126

46127

46128

46129

46130

46131

46132

46133

46134

46135

46136

46137

46138

46139

46140

46141

46142

46143

46144

46145

46146

46147

46148

46149

46150

46151

46152

46153

46154

46155

46156

46157

46158

46159

System Interfaces popen()

RATIONALE
The popen() function should not be used by programs that have set user (or group) ID privileges.
The fork() and exec family of functions (except execlp() and execvp()), should be used instead.
This prevents any unforeseen manipulation of the environment of the user that could cause
execution of commands not anticipated by the calling program.

If the original and popen()ed processes both intend to read or write or read and write a common
file, and either will be using FILE-type C functions (fread(), fwrite(), and so on), the rules for
sharing file handles must be observed (see Section 2.5.1, on page 491).

FUTURE DIRECTIONS
None.

SEE ALSO
fork(), pclose(), pipe(), sysconf(), system(), wait(), waitid()

XBD <stdio.h>

XCU sh

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A statement is added to the DESCRIPTION indicating that pipe streams are byte-oriented.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The optional [EMFILE] error condition is added.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/67 is applied, adding the example to the
EXAMPLES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #029 is applied, clarifying the values for mode in the
DESCRIPTION.

SD5-XSH-ERN-149 is applied, changing the {STREAM_MAX} [EMFILE] error condition from a
‘‘may fail’’ to a ‘‘shall fail’’.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1409

46160

46161

46162

46163

46164

46165

46166

46167

46168

46169

46170

46171

46172

46173

46174

46175

46176

46177

46178

46179

46180

46181

46182

46183

46184

46185

46186

46187

46188

posix_fadvise() System Interfaces

NAME
posix_fadvise — file advisory information (ADVANCED REALTIME)

SYNOPSIS
ADV #include <fcntl.h>

int posix_fadvise(int fd, off_t offset, off_t len, int advice);

DESCRIPTION
The posix_fadvise() function shall advise the implementation on the expected behavior of the
application with respect to the data in the file associated with the open file descriptor, fd, starting
at offset and continuing for len bytes. The specified range need not currently exist in the file. If len
is zero, all data following offset is specified. The implementation may use this information to
optimize handling of the specified data. The posix_fadvise() function shall have no effect on the
semantics of other operations on the specified data, although it may affect the performance of
other operations.

The advice to be applied to the data is specified by the advice parameter and may be one of the
following values:

POSIX_FADV_NORMAL
Specifies that the application has no advice to give on its behavior with respect to the
specified data. It is the default characteristic if no advice is given for an open file.

POSIX_FADV_SEQUENTIAL
Specifies that the application expects to access the specified data sequentially from lower
offsets to higher offsets.

POSIX_FADV_RANDOM
Specifies that the application expects to access the specified data in a random order.

POSIX_FADV_WILLNEED
Specifies that the application expects to access the specified data in the near future.

POSIX_FADV_DONTNEED
Specifies that the application expects that it will not access the specified data in the near
future.

POSIX_FADV_NOREUSE
Specifies that the application expects to access the specified data once and then not reuse it
thereafter.

These values are defined in <fcntl.h>.

RETURN VALUE
Upon successful completion, posix_fadvise() shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The posix_fadvise() function shall fail if:

[EBADF] The fd argument is not a valid file descriptor.

[EINVAL] The value of advice is invalid, or the value of len is less than zero.

[ESPIPE] The fd argument is associated with a pipe or FIFO.

1410 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

46189

46190

46191

46192

46193

46194

46195

46196

46197

46198

46199

46200

46201

46202

46203

46204

46205

46206

46207

46208

46209

46210

46211

46212

46213

46214

46215

46216

46217

46218

46219

46220

46221

46222

46223

46224

46225

46226

46227

46228

System Interfaces posix_fadvise()

EXAMPLES
None.

APPLICATION USAGE
The posix_fadvise() function is part of the Advisory Information option and need not be
provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_madvise()

XBD <fcntl.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/68 is applied, changing the function
prototype in the SYNOPSIS section. The previous prototype was not large file-aware, and the
standard developers felt it acceptable to make this change before implementations of this
function become widespread.

Issue 7
Austin Group Interpretation 1003.1-2001 #024 is applied, changing the definition of the
[EINVAL] error.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1411

46229

46230

46231

46232

46233

46234

46235

46236

46237

46238

46239

46240

46241

46242

46243

46244

46245

46246

46247

46248

46249

46250

posix_fallocate() System Interfaces

NAME
posix_fallocate — file space control (ADVANCED REALTIME)

SYNOPSIS
ADV #include <fcntl.h>

int posix_fallocate(int fd, off_t offset, off_t len);

DESCRIPTION
The posix_fallocate() function shall ensure that any required storage for regular file data starting
at offset and continuing for len bytes is allocated on the file system storage media. If
posix_fallocate() returns successfully, subsequent writes to the specified file data shall not fail due
to the lack of free space on the file system storage media.

If the offset+len is beyond the current file size, then posix_fallocate() shall adjust the file size to
offset+len. Otherwise, the file size shall not be changed.

It is implementation-defined whether a previous posix_fadvise() call influences allocation
strategy.

Space allocated via posix_fallocate() shall be freed by a successful call to creat() or open() that
truncates the size of the file. Space allocated via posix_fallocate() may be freed by a successful call
to ftruncate() that reduces the file size to a size smaller than offset+len.

RETURN VALUE
Upon successful completion, posix_fallocate() shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The posix_fallocate() function shall fail if:

[EBADF] The fd argument is not a valid file descriptor.

[EBADF] The fd argument references a file that was opened without write permission.

[EFBIG] The value of offset+len is greater than the maximum file size.

[EINTR] A signal was caught during execution.

[EINVAL] The len argument is less than zero, or the offset argument is less than zero, or
the underlying file system does not support this operation.

[EIO] An I/O error occurred while reading from or writing to a file system.

[ENODEV] The fd argument does not refer to a regular file.

[ENOSPC] There is insufficient free space remaining on the file system storage media.

[ESPIPE] The fd argument is associated with a pipe or FIFO.

The posix_fallocate() function may fail if:

[EINVAL] The len argument is zero.

1412 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

46251

46252

46253

46254

46255

46256

46257

46258

46259

46260

46261

46262

46263

46264

46265

46266

46267

46268

46269

46270

46271

46272

46273

46274

46275

46276

46277

46278

46279

46280

46281

46282

46283

46284

System Interfaces posix_fallocate()

EXAMPLES
None.

APPLICATION USAGE
The posix_fallocate() function is part of the Advisory Information option and need not be
provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
creat(), ftruncate(), open(), unlink()

XBD <fcntl.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/69 is applied, changing the function
prototype in the SYNOPSIS section. The previous prototype was not large file-aware, and the
standard developers felt it acceptable to make this change before implementations of this
function become widespread.

Issue 7
Austin Group Interpretations 1003.1-2001 #022, #024, and #162 are applied, changing the
definition of the [EINVAL] error.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1413

46285

46286

46287

46288

46289

46290

46291

46292

46293

46294

46295

46296

46297

46298

46299

46300

46301

46302

46303

46304

46305

46306

posix_madvise() System Interfaces

NAME
posix_madvise — memory advisory information and alignment control (ADVANCED
REALTIME)

SYNOPSIS
ADV #include <sys/mman.h>

int posix_madvise(void *addr, size_t len, int advice);

DESCRIPTION
The posix_madvise() function shall advise the implementation on the expected behavior of the
application with respect to the data in the memory starting at address addr, and continuing for
len bytes. The implementation may use this information to optimize handling of the specified
data. The posix_madvise() function shall have no effect on the semantics of access to memory in
the specified range, although it may affect the performance of access.

The implementation may require that addr be a multiple of the page size, which is the value
returned by sysconf() when the name value _SC_PAGESIZE is used.

The advice to be applied to the memory range is specified by the advice parameter and may be
one of the following values:

POSIX_MADV_NORMAL
Specifies that the application has no advice to give on its behavior with respect to the
specified range. It is the default characteristic if no advice is given for a range of memory.

POSIX_MADV_SEQUENTIAL
Specifies that the application expects to access the specified range sequentially from lower
addresses to higher addresses.

POSIX_MADV_RANDOM
Specifies that the application expects to access the specified range in a random order.

POSIX_MADV_WILLNEED
Specifies that the application expects to access the specified range in the near future.

POSIX_MADV_DONTNEED
Specifies that the application expects that it will not access the specified range in the near
future.

These values are defined in the <sys/mman.h> header.

RETURN VALUE
Upon successful completion, posix_madvise() shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The posix_madvise() function shall fail if:

[EINVAL] The value of advice is invalid.

[ENOMEM] Addresses in the range starting at addr and continuing for len bytes are partly
or completely outside the range allowed for the address space of the calling
process.

1414 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

46307

46308

46309

46310

46311

46312

46313

46314

46315

46316

46317

46318

46319

46320

46321

46322

46323

46324

46325

46326

46327

46328

46329

46330

46331

46332

46333

46334

46335

46336

46337

46338

46339

46340

46341

46342

46343

46344

46345

System Interfaces posix_madvise()

The posix_madvise() function may fail if:

[EINVAL] The value of addr is not a multiple of the value returned by sysconf() when the
name value _SC_PAGESIZE is used.

[EINVAL] The value of len is zero.

EXAMPLES
None.

APPLICATION USAGE
The posix_madvise() function is part of the Advisory Information option and need not be
provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), posix_fadvise(), sysconf()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #102 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1415

46346

46347

46348

46349

46350

46351

46352

46353

46354

46355

46356

46357

46358

46359

46360

46361

46362

46363

46364

posix_mem_offset() System Interfaces

NAME
posix_mem_offset — find offset and length of a mapped typed memory block (ADVANCED
REALTIME)

SYNOPSIS
TYM #include <sys/mman.h>

int posix_mem_offset(const void *restrict addr, size_t len,
off_t *restrict off, size_t *restrict contig_len,
int *restrict fildes);

DESCRIPTION
The posix_mem_offset() function shall return in the variable pointed to by off a value that
identifies the offset (or location), within a memory object, of the memory block currently
mapped at addr. The function shall return in the variable pointed to by fildes, the descriptor used
(via mmap()) to establish the mapping which contains addr. If that descriptor was closed since
the mapping was established, the returned value of fildes shall be −1. The len argument specifies
the length of the block of the memory object the user wishes the offset for; upon return, the
value pointed to by contig_len shall equal either len, or the length of the largest contiguous block
of the memory object that is currently mapped to the calling process starting at addr, whichever
is smaller.

If the memory object mapped at addr is a typed memory object, then if the off and contig_len
values obtained by calling posix_mem_offset() are used in a call to mmap() with a file descriptor
that refers to the same memory pool as fildes (either through the same port or through a different
port), and that was opened with neither the POSIX_TYPED_MEM_ALLOCATE nor the
POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, the typed memory area that is mapped shall
be exactly the same area that was mapped at addr in the address space of the process that called
posix_mem_offset().

If the memory object specified by fildes is not a typed memory object, then the behavior of this
function is implementation-defined.

RETURN VALUE
Upon successful completion, the posix_mem_offset() function shall return zero; otherwise, the
corresponding error status value shall be returned.

ERRORS
The posix_mem_offset() function shall fail if:

[EACCES] The process has not mapped a memory object supported by this function at
the given address addr.

This function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

1416 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

46365

46366

46367

46368

46369

46370

46371

46372

46373

46374

46375

46376

46377

46378

46379

46380

46381

46382

46383

46384

46385

46386

46387

46388

46389

46390

46391

46392

46393

46394

46395

46396

46397

46398

46399

46400

46401

46402

46403

46404

46405

System Interfaces posix_mem_offset()

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), posix_typed_mem_open()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1417

46406

46407

46408

46409

46410

46411

46412

posix_memalign() System Interfaces

NAME
posix_memalign — aligned memory allocation (ADVANCED REALTIME)

SYNOPSIS
ADV #include <stdlib.h>

int posix_memalign(void **memptr, size_t alignment, size_t size);

DESCRIPTION
The posix_memalign() function shall allocate size bytes aligned on a boundary specified by
alignment, and shall return a pointer to the allocated memory in memptr. The value of alignment
shall be a power of two multiple of sizeof (void *).

Upon successful completion, the value pointed to by memptr shall be a multiple of alignment.

If the size of the space requested is 0, the behavior is implementation-defined; the value returned
in memptr shall be either a null pointer or a unique pointer.

CX The free() function shall deallocate memory that has previously been allocated by
posix_memalign().

RETURN VALUE
Upon successful completion, posix_memalign() shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The posix_memalign() function shall fail if:

[EINVAL] The value of the alignment parameter is not a power of two multiple of
sizeof (void *).

[ENOMEM] There is insufficient memory available with the requested alignment.

EXAMPLES
None.

APPLICATION USAGE
The posix_memalign() function is part of the Advisory Information option and need not be
provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
free(), malloc()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
Austin Group Interpretation 1003.1-2001 #058 is applied, clarifying the value of the alignment
argument in the DESCRIPTION.

1418 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

46413

46414

46415

46416

46417

46418

46419

46420

46421

46422

46423

46424

46425

46426

46427

46428

46429

46430

46431

46432

46433

46434

46435

46436

46437

46438

46439

46440

46441

46442

46443

46444

46445

46446

46447

46448

46449

46450

46451

46452

System Interfaces posix_memalign()

Austin Group Interpretation 1003.1-2001 #152 is applied, clarifying the behavior when the size of
the space requested is 0.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1419

46453

46454

posix_openpt() System Interfaces

NAME
posix_openpt — open a pseudo-terminal device

SYNOPSIS
XSI #include <stdlib.h>

#include <fcntl.h>

int posix_openpt(int oflag);

DESCRIPTION
The posix_openpt() function shall establish a connection between a master device for a pseudo-
terminal and a file descriptor. The file descriptor is used by other I/O functions that refer to that
pseudo-terminal.

The file status flags and file access modes of the open file description shall be set according to
the value of oflag.

Values for oflag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

O_RDWR Open for reading and writing.

O_NOCTTY If set posix_openpt() shall not cause the terminal device to become the
controlling terminal for the process.

The behavior of other values for the oflag argument is unspecified.

RETURN VALUE
Upon successful completion, the posix_openpt() function shall open a master pseudo-terminal
device and return a non-negative integer representing the lowest numbered unused file
descriptor. Otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The posix_openpt() function shall fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

The posix_openpt() function may fail if:

[EINVAL] The value of oflag is not valid.

[EAGAIN] Out of pseudo-terminal resources.

OB XSR [ENOSR] Out of STREAMS resources.

EXAMPLES

Opening a Pseudo-Terminal and Returning the Name of the Slave Device and a File
Descriptor

#include <fcntl.h>
#include <stdio.h>

int masterfd, slavefd;
char *slavedevice;

masterfd = posix_openpt(O_RDWR|O_NOCTTY);

if (masterfd == -1
|| grantpt (masterfd) == -1

1420 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

46455

46456

46457

46458

46459

46460

46461

46462

46463

46464

46465

46466

46467

46468

46469

46470

46471

46472

46473

46474

46475

46476

46477

46478

46479

46480

46481

46482

46483

46484

46485

46486

46487

46488

46489

46490

46491

46492

46493

46494

System Interfaces posix_openpt()

|| unlockpt (masterfd) == -1
|| (slavedevice = ptsname (masterfd)) == NULL)
return -1;

printf("slave device is: %s\n", slavedevice);

slavefd = open(slavedevice, O_RDWR|O_NOCTTY);
if (slavefd < 0)

return -1;

APPLICATION USAGE
This function is a method for portably obtaining a file descriptor of a master terminal device for
a pseudo-terminal. The grantpt() and ptsname() functions can be used to manipulate mode and
ownership permissions, and to obtain the name of the slave device, respectively.

RATIONALE
The standard developers considered the matter of adding a special device for cloning master
pseudo-terminals: the /dev/ptmx device. However, consensus could not be reached, and it was
felt that adding a new function would permit other implementations. The posix_openpt()
function is designed to complement the grantpt(), ptsname(), and unlockpt() functions.

On implementations supporting the /dev/ptmx clone device, opening the master device of a
pseudo-terminal is simply:

mfdp = open("/dev/ptmx", oflag);
if (mfdp < 0)

return -1;

FUTURE DIRECTIONS
None.

SEE ALSO
grantpt(), open(), ptsname(), unlockpt()

XBD <fcntl.h>, <stdlib.h>

CHANGE HISTORY
First released in Issue 6.

Issue 7
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-51 is applied, correcting an error in the EXAMPLES section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1421

46495

46496

46497

46498

46499

46500

46501

46502

46503

46504

46505

46506

46507

46508

46509

46510

46511

46512

46513

46514

46515

46516

46517

46518

46519

46520

46521

46522

46523

46524

46525

posix_spawn() System Interfaces

NAME
posix_spawn, posix_spawnp — spawn a process (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn(pid_t *restrict pid, const char *restrict path,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envp[restrict]);

int posix_spawnp(pid_t *restrict pid, const char *restrict file,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envp[restrict]);

DESCRIPTION
The posix_spawn() and posix_spawnp() functions shall create a new process (child process) from
the specified process image. The new process image shall be constructed from a regular
executable file called the new process image file.

When a C program is executed as the result of this call, it shall be entered as a C-language
function call as follows:

int main(int argc, char *argv[]);

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the following variable:

extern char **environ;

shall be initialized as a pointer to an array of character pointers to the environment strings.

The argument argv is an array of character pointers to null-terminated strings. The last member
of this array shall be a null pointer and is not counted in argc. These strings constitute the
argument list available to the new process image. The value in argv[0] should point to a filename
that is associated with the process image being started by the posix_spawn() or posix_spawnp()
function.

The argument envp is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process image. The environment array is terminated by a
null pointer.

The number of bytes available for the combined argument and environment lists of the child
process is {ARG_MAX}. The implementation shall specify in the system documentation (see
XBD Chapter 2, on page 15) whether any list overhead, such as length words, null terminators,
pointers, or alignment bytes, is included in this total.

The path argument to posix_spawn() is a pathname that identifies the new process image file to
execute.

The file parameter to posix_spawnp() shall be used to construct a pathname that identifies the
new process image file. If the file parameter contains a <slash> character, the file parameter shall
be used as the pathname for the new process image file. Otherwise, the path prefix for this file
shall be obtained by a search of the directories passed as the environment variable PA TH (see
XBD Chapter 8, on page 173). If this environment variable is not defined, the results of the
search are implementation-defined.

If file_actions is a null pointer, then file descriptors open in the calling process shall remain open

1422 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

46526

46527

46528

46529

46530

46531

46532

46533

46534

46535

46536

46537

46538

46539

46540

46541

46542

46543

46544

46545

46546

46547

46548

46549

46550

46551

46552

46553

46554

46555

46556

46557

46558

46559

46560

46561

46562

46563

46564

46565

46566

46567

46568

46569

System Interfaces posix_spawn()

in the child process, except for those whose close-on-exec flag FD_CLOEXEC is set (see fcntl()).
For those file descriptors that remain open, all attributes of the corresponding open file
descriptions, including file locks (see fcntl()), shall remain unchanged.

If file_actions is not NULL, then the file descriptors open in the child process shall be those open
in the calling process as modified by the spawn file actions object pointed to by file_actions and
the FD_CLOEXEC flag of each remaining open file descriptor after the spawn file actions have
been processed. The effective order of processing the spawn file actions shall be:

1. The set of open file descriptors for the child process shall initially be the same set as is
open for the calling process. All attributes of the corresponding open file descriptions,
including file locks (see fcntl()), shall remain unchanged.

2. The signal mask, signal default actions, and the effective user and group IDs for the child
process shall be changed as specified in the attributes object referenced by attrp.

3. The file actions specified by the spawn file actions object shall be performed in the order
in which they were added to the spawn file actions object.

4. Any file descriptor that has its FD_CLOEXEC flag set (see fcntl()) shall be closed.

The posix_spawnattr_t spawn attributes object type is defined in <spawn.h>. It shall contain at
least the attributes defined below.

If the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of the object referenced
by attrp, and the spawn-pgroup attribute of the same object is non-zero, then the child’s process
group shall be as specified in the spawn-pgroup attribute of the object referenced by attrp.

As a special case, if the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of
the object referenced by attrp, and the spawn-pgroup attribute of the same object is set to zero,
then the child shall be in a new process group with a process group ID equal to its process ID.

If the POSIX_SPAWN_SETPGROUP flag is not set in the spawn-flags attribute of the object
referenced by attrp, the new child process shall inherit the parent’s process group.

PS If the POSIX_SPAWN_SETSCHEDPARAM flag is set in the spawn-flags attribute of the object
referenced by attrp, but POSIX_SPAWN_SETSCHEDULER is not set, the new process image
shall initially have the scheduling policy of the calling process with the scheduling parameters
specified in the spawn-schedparam attribute of the object referenced by attrp.

If the POSIX_SPAWN_SETSCHEDULER flag is set in the spawn-flags attribute of the object
referenced by attrp (regardless of the setting of the POSIX_SPAWN_SETSCHEDPARAM flag),
the new process image shall initially have the scheduling policy specified in the spawn-
schedpolicy attribute of the object referenced by attrp and the scheduling parameters specified in
the spawn-schedparam attribute of the same object.

The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp
governs the effective user ID of the child process. If this flag is not set, the child process shall
inherit the effective user ID of the parent process. If this flag is set, the effective user ID of the
child process shall be reset to the parent’s real user ID. In either case, if the set-user-ID mode bit
of the new process image file is set, the effective user ID of the child process shall become that
file’s owner ID before the new process image begins execution.

The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp
also governs the effective group ID of the child process. If this flag is not set, the child process
shall inherit the effective group ID of the parent process. If this flag is set, the effective group ID
of the child process shall be reset to the parent’s real group ID. In either case, if the set-group-ID
mode bit of the new process image file is set, the effective group ID of the child process shall

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1423

46570

46571

46572

46573

46574

46575

46576

46577

46578

46579

46580

46581

46582

46583

46584

46585

46586

46587

46588

46589

46590

46591

46592

46593

46594

46595

46596

46597

46598

46599

46600

46601

46602

46603

46604

46605

46606

46607

46608

46609

46610

46611

46612

46613

46614

posix_spawn() System Interfaces

become that file’s group ID before the new process image begins execution.

If the POSIX_SPAWN_SETSIGMASK flag is set in the spawn-flags attribute of the object
referenced by attrp, the child process shall initially have the signal mask specified in the spawn-
sigmask attribute of the object referenced by attrp.

If the POSIX_SPAWN_SETSIGDEF flag is set in the spawn-flags attribute of the object referenced
by attrp, the signals specified in the spawn-sigdefault attribute of the same object shall be set to
their default actions in the child process. Signals set to the default action in the parent process
shall be set to the default action in the child process.

Signals set to be caught by the calling process shall be set to the default action in the child
process.

Except for SIGCHLD, signals set to be ignored by the calling process image shall be set to be
ignored by the child process, unless otherwise specified by the POSIX_SPAWN_SETSIGDEF flag
being set in the spawn-flags attribute of the object referenced by attrp and the signals being
indicated in the spawn-sigdefault attribute of the object referenced by attrp.

If the SIGCHLD signal is set to be ignored by the calling process, it is unspecified whether the
SIGCHLD signal is set to be ignored or to the default action in the child process, unless
otherwise specified by the POSIX_SPAWN_SETSIGDEF flag being set in the spawn_flags
attribute of the object referenced by attrp and the SIGCHLD signal being indicated in the
spawn_sigdefault attribute of the object referenced by attrp.

If the value of the attrp pointer is NULL, then the default values are used.

All process attributes, other than those influenced by the attributes set in the object referenced
by attrp as specified above or by the file descriptor manipulations specified in file_actions, shall
appear in the new process image as though fork() had been called to create a child process and
then a member of the exec family of functions had been called by the child process to execute the
new process image.

It is implementation-defined whether the fork handlers are run when posix_spawn() or
posix_spawnp() is called.

RETURN VALUE
Upon successful completion, posix_spawn() and posix_spawnp() shall return the process ID of the
child process to the parent process, in the variable pointed to by a non-NULL pid argument, and
shall return zero as the function return value. Otherwise, no child process shall be created, the
value stored into the variable pointed to by a non-NULL pid is unspecified, and an error number
shall be returned as the function return value to indicate the error. If the pid argument is a null
pointer, the process ID of the child is not returned to the caller.

ERRORS
These functions may fail if:

[EINVAL] The value specified by file_actions or attrp is invalid.

If this error occurs after the calling process successfully returns from the posix_spawn() or
posix_spawnp() function, the child process may exit with exit status 127.

If posix_spawn() or posix_spawnp() fail for any of the reasons that would cause fork() or one of
the exec family of functions to fail, an error value shall be returned as described by fork() and
exec, respectively (or, if the error occurs after the calling process successfully returns, the child
process shall exit with exit status 127).

If POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute of the object referenced by
attrp, and posix_spawn() or posix_spawnp() fails while changing the child’s process group, an

1424 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

46615

46616

46617

46618

46619

46620

46621

46622

46623

46624

46625

46626

46627

46628

46629

46630

46631

46632

46633

46634

46635

46636

46637

46638

46639

46640

46641

46642

46643

46644

46645

46646

46647

46648

46649

46650

46651

46652

46653

46654

46655

46656

46657

46658

46659

System Interfaces posix_spawn()

error value shall be returned as described by setpgid() (or, if the error occurs after the calling
process successfully returns, the child process shall exit with exit status 127).

PS If POSIX_SPAWN_SETSCHEDPARAM is set and POSIX_SPAWN_SETSCHEDULER is not set in
the spawn-flags attribute of the object referenced by attrp, then if posix_spawn() or posix_spawnp()
fails for any of the reasons that would cause sched_setparam() to fail, an error value shall be
returned as described by sched_setparam() (or, if the error occurs after the calling process
successfully returns, the child process shall exit with exit status 127).

If POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags attribute of the object referenced by
attrp, and if posix_spawn() or posix_spawnp() fails for any of the reasons that would cause
sched_setscheduler() to fail, an error value shall be returned as described by sched_setscheduler()
(or, if the error occurs after the calling process successfully returns, the child process shall exit
with exit status 127).

If the file_actions argument is not NULL, and specifies any close, dup2, or open actions to be
performed, and if posix_spawn() or posix_spawnp() fails for any of the reasons that would cause
close(), dup2(), or open() to fail, an error value shall be returned as described by close(), dup2(),
and open(), respectively (or, if the error occurs after the calling process successfully returns, the
child process shall exit with exit status 127). An open file action may, by itself, result in any of
the errors described by close() or dup2(), in addition to those described by open().

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
The posix_spawn() function and its close relation posix_spawnp() have been introduced to
overcome the following perceived difficulties with fork(): the fork() function is difficult or
impossible to implement without swapping or dynamic address translation.

• Swapping is generally too slow for a realtime environment.

• Dynamic address translation is not available everywhere that POSIX might be useful.

• Processes are too useful to simply option out of POSIX whenever it must run without
address translation or other MMU services.

Thus, POSIX needs process creation and file execution primitives that can be efficiently
implemented without address translation or other MMU services.

The posix_spawn() function is implementable as a library routine, but both posix_spawn() and
posix_spawnp() are designed as kernel operations. Also, although they may be an efficient
replacement for many fork()/exec pairs, their goal is to provide useful process creation
primitives for systems that have difficulty with fork(), not to provide drop-in replacements for
fork()/exec.

This view of the role of posix_spawn() and posix_spawnp() influenced the design of their API. It
does not attempt to provide the full functionality of fork()/exec in which arbitrary user-specified
operations of any sort are permitted between the creation of the child process and the execution
of the new process image; any attempt to reach that level would need to provide a programming
language as parameters. Instead, posix_spawn() and posix_spawnp() are process creation
primitives like the Start_Process and Start_Process_Search Ada language bindings package
POSIX_Process_Primitives and also like those in many operating systems that are not UNIX
systems, but with some POSIX-specific additions.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1425

46660

46661

46662

46663

46664

46665

46666

46667

46668

46669

46670

46671

46672

46673

46674

46675

46676

46677

46678

46679

46680

46681

46682

46683

46684

46685

46686

46687

46688

46689

46690

46691

46692

46693

46694

46695

46696

46697

46698

46699

46700

46701

46702

46703

46704

posix_spawn() System Interfaces

To achieve its coverage goals, posix_spawn() and posix_spawnp() have control of six types of
inheritance: file descriptors, process group ID, user and group ID, signal mask, scheduling, and
whether each signal ignored in the parent will remain ignored in the child, or be reset to its
default action in the child.

Control of file descriptors is required to allow an independently written child process image to
access data streams opened by and even generated or read by the parent process without being
specifically coded to know which parent files and file descriptors are to be used. Control of the
process group ID is required to control how the job control of the child process relates to that of
the parent.

Control of the signal mask and signal defaulting is sufficient to support the implementation of
system(). Although support for system() is not explicitly one of the goals for posix_spawn() and
posix_spawnp(), it is covered under the ‘‘at least 50%’’ coverage goal.

The intention is that the normal file descriptor inheritance across fork(), the subsequent effect of
the specified spawn file actions, and the normal file descriptor inheritance across one of the exec
family of functions should fully specify open file inheritance. The implementation need make no
decisions regarding the set of open file descriptors when the child process image begins
execution, those decisions having already been made by the caller and expressed as the set of
open file descriptors and their FD_CLOEXEC flags at the time of the call and the spawn file
actions object specified in the call. We have been assured that in cases where the POSIX
Start_Process Ada primitives have been implemented in a library, this method of controlling file
descriptor inheritance may be implemented very easily.

We can identify several problems with posix_spawn() and posix_spawnp(), but there does not
appear to be a solution that introduces fewer problems. Environment modification for child
process attributes not specifiable via the attrp or file_actions arguments must be done in the
parent process, and since the parent generally wants to save its context, it is more costly than
similar functionality with fork()/exec. It is also complicated to modify the environment of a
multi-threaded process temporarily, since all threads must agree when it is safe for the
environment to be changed. However, this cost is only borne by those invocations of
posix_spawn() and posix_spawnp() that use the additional functionality. Since extensive
modifications are not the usual case, and are particularly unlikely in time-critical code, keeping
much of the environment control out of posix_spawn() and posix_spawnp() is appropriate design.

The posix_spawn() and posix_spawnp() functions do not have all the power of fork()/exec. This is
to be expected. The fork() function is a wonderfully powerful operation. We do not expect to
duplicate its functionality in a simple, fast function with no special hardware requirements. It is
worth noting that posix_spawn() and posix_spawnp() are very similar to the process creation
operations on many operating systems that are not UNIX systems.

Requirements

The requirements for posix_spawn() and posix_spawnp() are:

• They must be implementable without an MMU or unusual hardware.

• They must be compatible with existing POSIX standards.

Additional goals are:

• They should be efficiently implementable.

• They should be able to replace at least 50% of typical executions of fork().

1426 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

46705

46706

46707

46708

46709

46710

46711

46712

46713

46714

46715

46716

46717

46718

46719

46720

46721

46722

46723

46724

46725

46726

46727

46728

46729

46730

46731

46732

46733

46734

46735

46736

46737

46738

46739

46740

46741

46742

46743

46744

46745

46746

46747

System Interfaces posix_spawn()

• A system with posix_spawn() and posix_spawnp() and without fork() should be useful, at
least for realtime applications.

• A system with fork() and the exec family should be able to implement posix_spawn() and
posix_spawnp() as library routines.

Two-Syntax

POSIX exec has several calling sequences with approximately the same functionality. These
appear to be required for compatibility with existing practice. Since the existing practice for the
posix_spawn*() functions is otherwise substantially unlike POSIX, we feel that simplicity
outweighs compatibility. There are, therefore, only two names for the posix_spawn*() functions.

The parameter list does not differ between posix_spawn() and posix_spawnp(); posix_spawnp()
interprets the second parameter more elaborately than posix_spawn().

Compatibility with POSIX.5 (Ada)

The Start_Process and Start_Process_Search procedures from the POSIX_Process_Primitives
package from the Ada language binding to POSIX.1 encapsulate fork() and exec functionality in a
manner similar to that of posix_spawn() and posix_spawnp(). Originally, in keeping with our
simplicity goal, the standard developers had limited the capabilities of posix_spawn() and
posix_spawnp() to a subset of the capabilities of Start_Process and Start_Process_Search; certain
non-default capabilities were not supported. However, based on suggestions by the ballot group
to improve file descriptor mapping or drop it, and on the advice of an Ada Language Bindings
working group member, the standard developers decided that posix_spawn() and posix_spawnp()
should be sufficiently powerful to implement Start_Process and Start_Process_Search. The
rationale is that if the Ada language binding to such a primitive had already been approved as
an IEEE standard, there can be little justification for not approving the functionally-equivalent
parts of a C binding. The only three capabilities provided by posix_spawn() and posix_spawnp()
that are not provided by Start_Process and Start_Process_Search are optionally specifying the
child’s process group ID, the set of signals to be reset to default signal handling in the child
process, and the child’s scheduling policy and parameters.

For the Ada language binding for Start_Process to be implemented with posix_spawn(), that
binding would need to explicitly pass an empty signal mask and the parent’s environment to
posix_spawn() whenever the caller of Start_Process allowed these arguments to default, since
posix_spawn() does not provide such defaults. The ability of Start_Process to mask user-specified
signals during its execution is functionally unique to the Ada language binding and must be
dealt with in the binding separately from the call to posix_spawn().

Process Group

The process group inheritance field can be used to join the child process with an existing process
group. By assigning a value of zero to the spawn-pgroup attribute of the object referenced by attrp,
the setpgid() mechanism will place the child process in a new process group.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1427

46748

46749

46750

46751

46752

46753

46754

46755

46756

46757

46758

46759

46760

46761

46762

46763

46764

46765

46766

46767

46768

46769

46770

46771

46772

46773

46774

46775

46776

46777

46778

46779

46780

46781

46782

46783

46784

posix_spawn() System Interfaces

Threads

Without the posix_spawn() and posix_spawnp() functions, systems without address translation
can still use threads to give an abstraction of concurrency. In many cases, thread creation
suffices, but it is not always a good substitute. The posix_spawn() and posix_spawnp() functions
are considerably ‘‘heavier ’’ than thread creation. Processes have several important attributes that
threads do not. Even without address translation, a process may have base-and-bound memory
protection. Each process has a process environment including security attributes and file
capabilities, and powerful scheduling attributes. Processes abstract the behavior of non-
uniform-memory-architecture multi-processors better than threads, and they are more
convenient to use for activities that are not closely linked.

The posix_spawn() and posix_spawnp() functions may not bring support for multiple processes to
every configuration. Process creation is not the only piece of operating system support required
to support multiple processes. The total cost of support for multiple processes may be quite high
in some circumstances. Existing practice shows that support for multiple processes is
uncommon and threads are common among ‘‘tiny kernels’’. There should, therefore, probably
continue to be AEPs for operating systems with only one process.

Asynchronous Error Notification

A library implementation of posix_spawn() or posix_spawnp() may not be able to detect all
possible errors before it forks the child process. POSIX.1-2008 provides for an error indication
returned from a child process which could not successfully complete the spawn operation via a
special exit status which may be detected using the status value returned by wait(), waitid(), and
waitpid().

The stat_val interface and the macros used to interpret it are not well suited to the purpose of
returning API errors, but they are the only path available to a library implementation. Thus, an
implementation may cause the child process to exit with exit status 127 for any error detected
during the spawn process after the posix_spawn() or posix_spawnp() function has successfully
returned.

The standard developers had proposed using two additional macros to interpret stat_val. The
first, WIFSPAWNFAIL, would have detected a status that indicated that the child exited because
of an error detected during the posix_spawn() or posix_spawnp() operations rather than during
actual execution of the child process image; the second, WSPAWNERRNO, would have
extracted the error value if WIFSPAWNFAIL indicated a failure. Unfortunately, the ballot group
strongly opposed this because it would make a library implementation of posix_spawn() or
posix_spawnp() dependent on kernel modifications to waitpid() to be able to embed special
information in stat_val to indicate a spawn failure.

The 8 bits of child process exit status that are guaranteed by POSIX.1-2008 to be accessible to the
waiting parent process are insufficient to disambiguate a spawn error from any other kind of
error that may be returned by an arbitrary process image. No other bits of the exit status are
required to be visible in stat_val, so these macros could not be strictly implemented at the library
level. Reserving an exit status of 127 for such spawn errors is consistent with the use of this
value by system() and popen() to signal failures in these operations that occur after the function
has returned but before a shell is able to execute. The exit status of 127 does not uniquely
identify this class of error, nor does it provide any detailed information on the nature of the
failure. Note that a kernel implementation of posix_spawn() or posix_spawnp() is permitted (and
encouraged) to return any possible error as the function value, thus providing more detailed
failure information to the parent process.

Thus, no special macros are available to isolate asynchronous posix_spawn() or posix_spawnp()

1428 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

46785

46786

46787

46788

46789

46790

46791

46792

46793

46794

46795

46796

46797

46798

46799

46800

46801

46802

46803

46804

46805

46806

46807

46808

46809

46810

46811

46812

46813

46814

46815

46816

46817

46818

46819

46820

46821

46822

46823

46824

46825

46826

46827

46828

46829

46830

46831

System Interfaces posix_spawn()

errors. Instead, errors detected by the posix_spawn() or posix_spawnp() operations in the context
of the child process before the new process image executes are reported by setting the child’s exit
status to 127. The calling process may use the WIFEXITED and WEXITSTATUS macros on the
stat_val stored by the wait() or waitpid() functions to detect spawn failures to the extent that
other status values with which the child process image may exit (before the parent can
conclusively determine that the child process image has begun execution) are distinct from exit
status 127.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), chmod(), close(), dup(), exec , exit(), fcntl(), fork(), fstatat(), kill(), open(),
posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(),
posix_spawn_file_actions_destroy(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(),
posix_spawnattr_getschedpolicy(), posix_spawnattr_getsigmask(), sched_setparam(),
sched_setscheduler(), setpgid(), setuid(), times(), wait(), waitid()

XBD Chapter 8 (on page 173), <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #103 is applied, noting that the signal default actions are
changed as well as the signal mask in step 2.

IEEE PASC Interpretation 1003.1 #132 is applied.

Issue 7
Functionality relating to the Threads option is moved to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1429

46832

46833

46834

46835

46836

46837

46838

46839

46840

46841

46842

46843

46844

46845

46846

46847

46848

46849

46850

46851

46852

46853

46854

46855

posix_spawn_file_actions_addclose() System Interfaces

NAME
posix_spawn_file_actions_addclose, posix_spawn_file_actions_addopen — add close or open
action to spawn file actions object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t
*file_actions, int fildes);

int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t
*restrict file_actions, int fildes,
const char *restrict path, int oflag, mode_t mode);

DESCRIPTION
These functions shall add or delete a close or open action to a spawn file actions object.

A spawn file actions object is of type posix_spawn_file_actions_t (defined in <spawn.h>) and is
used to specify a series of actions to be performed by a posix_spawn() or posix_spawnp()
operation in order to arrive at the set of open file descriptors for the child process given the set
of open file descriptors of the parent. POSIX.1-2008 does not define comparison or assignment
operators for the type posix_spawn_file_actions_t.

A spawn file actions object, when passed to posix_spawn() or posix_spawnp(), shall specify how
the set of open file descriptors in the calling process is transformed into a set of potentially open
file descriptors for the spawned process. This transformation shall be as if the specified sequence
of actions was performed exactly once, in the context of the spawned process (prior to execution
of the new process image), in the order in which the actions were added to the object;
additionally, when the new process image is executed, any file descriptor (from this new set)
which has its FD_CLOEXEC flag set shall be closed (see posix_spawn()).

The posix_spawn_file_actions_addclose() function shall add a close action to the object referenced
by file_actions that shall cause the file descriptor fildes to be closed (as if close(fildes) had been
called) when a new process is spawned using this file actions object.

The posix_spawn_file_actions_addopen() function shall add an open action to the object referenced
by file_actions that shall cause the file named by path to be opened (as if open(path, oflag, mode)
had been called, and the returned file descriptor, if not fildes, had been changed to fildes) when a
new process is spawned using this file actions object. If fildes was already an open file descriptor,
it shall be closed before the new file is opened.

The string described by path shall be copied by the posix_spawn_file_actions_addopen() function.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
These functions shall fail if:

[EBADF] The value specified by fildes is negative or greater than or equal to
{OPEN_MAX}.

These functions may fail if:

[EINVAL] The value specified by file_actions is invalid.

1430 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

46856

46857

46858

46859

46860

46861

46862

46863

46864

46865

46866

46867

46868

46869

46870

46871

46872

46873

46874

46875

46876

46877

46878

46879

46880

46881

46882

46883

46884

46885

46886

46887

46888

46889

46890

46891

46892

46893

46894

46895

46896

46897

System Interfaces posix_spawn_file_actions_addclose()

[ENOMEM] Insufficient memory exists to add to the spawn file actions object.

It shall not be considered an error for the fildes argument passed to these functions to specify a
file descriptor for which the specified operation could not be performed at the time of the call.
Any such error will be detected when the associated file actions object is later used during a
posix_spawn() or posix_spawnp() operation.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
A spawn file actions object may be initialized to contain an ordered sequence of close(), dup2(),
and open() operations to be used by posix_spawn() or posix_spawnp() to arrive at the set of open
file descriptors inherited by the spawned process from the set of open file descriptors in the
parent at the time of the posix_spawn() or posix_spawnp() call. It had been suggested that the
close() and dup2() operations alone are sufficient to rearrange file descriptors, and that files
which need to be opened for use by the spawned process can be handled either by having the
calling process open them before the posix_spawn() or posix_spawnp() call (and close them after),
or by passing filenames to the spawned process (in argv) so that it may open them itself. The
standard developers recommend that applications use one of these two methods when practical,
since detailed error status on a failed open operation is always available to the application this
way. However, the standard developers feel that allowing a spawn file actions object to specify
open operations is still appropriate because:

1. It is consistent with equivalent POSIX.5 (Ada) functionality.

2. It supports the I/O redirection paradigm commonly employed by POSIX programs
designed to be invoked from a shell. When such a program is the child process, it may not
be designed to open files on its own.

3. It allows file opens that might otherwise fail or violate file ownership/access rights if
executed by the parent process.

Regarding 2. above, note that the spawn open file action provides to posix_spawn() and
posix_spawnp() the same capability that the shell redirection operators provide to system(), only
without the intervening execution of a shell; for example:

system ("myprog <file1 3<file2");

Regarding 3. above, note that if the calling process needs to open one or more files for access by
the spawned process, but has insufficient spare file descriptors, then the open action is necessary
to allow the open() to occur in the context of the child process after other file descriptors have
been closed (that must remain open in the parent).

Additionally, if a parent is executed from a file having a ‘‘set-user-id’’ mode bit set and the
POSIX_SPAWN_RESETIDS flag is set in the spawn attributes, a file created within the parent
process will (possibly incorrectly) have the parent’s effective user ID as its owner, whereas a file
created via an open() action during posix_spawn() or posix_spawnp() will have the parent’s real
ID as its owner; and an open by the parent process may successfully open a file to which the real
user should not have access or fail to open a file to which the real user should have access.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1431

46898

46899

46900

46901

46902

46903

46904

46905

46906

46907

46908

46909

46910

46911

46912

46913

46914

46915

46916

46917

46918

46919

46920

46921

46922

46923

46924

46925

46926

46927

46928

46929

46930

46931

46932

46933

46934

46935

46936

46937

46938

46939

posix_spawn_file_actions_addclose() System Interfaces

File Descriptor Mapping

The standard developers had originally proposed using an array which specified the mapping of
child file descriptors back to those of the parent. It was pointed out by the ballot group that it is
not possible to reshuffle file descriptors arbitrarily in a library implementation of posix_spawn()
or posix_spawnp() without provision for one or more spare file descriptor entries (which simply
may not be available). Such an array requires that an implementation develop a complex
strategy to achieve the desired mapping without inadvertently closing the wrong file descriptor
at the wrong time.

It was noted by a member of the Ada Language Bindings working group that the approved Ada
Language Start_Process family of POSIX process primitives use a caller-specified set of file
actions to alter the normal fork()/exec semantics for inheritance of file descriptors in a very
flexible way, yet no such problems exist because the burden of determining how to achieve the
final file descriptor mapping is completely on the application. Furthermore, although the file
actions interface appears frightening at first glance, it is actually quite simple to implement in
either a library or the kernel.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), dup(), open(), posix_spawn(), posix_spawn_file_actions_adddup2(),
posix_spawn_file_actions_destroy()

XBD <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #105 is applied, adding a note to the DESCRIPTION that the
string pointed to by path is copied by the posix_spawn_file_actions_addopen() function.

1432 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

46940

46941

46942

46943

46944

46945

46946

46947

46948

46949

46950

46951

46952

46953

46954

46955

46956

46957

46958

46959

46960

46961

46962

46963

46964

System Interfaces posix_spawn_file_actions_adddup2()

NAME
posix_spawn_file_actions_adddup2 — add dup2 action to spawn file actions object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t
*file_actions, int fildes, int newfildes);

DESCRIPTION
The posix_spawn_file_actions_adddup2() function shall add a dup2() action to the object
referenced by file_actions that shall cause the file descriptor fildes to be duplicated as newfildes (as
if dup2(fildes, newfildes) had been called) when a new process is spawned using this file actions
object.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose().

RETURN VALUE
Upon successful completion, the posix_spawn_file_actions_adddup2() function shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The posix_spawn_file_actions_adddup2() function shall fail if:

[EBADF] The value specified by fildes or newfildes is negative or greater than or equal to
{OPEN_MAX}.

[ENOMEM] Insufficient memory exists to add to the spawn file actions object.

The posix_spawn_file_actions_adddup2() function may fail if:

[EINVAL] The value specified by file_actions is invalid.

It shall not be considered an error for the fildes argument passed to the
posix_spawn_file_actions_adddup2() function to specify a file descriptor for which the specified
operation could not be performed at the time of the call. Any such error will be detected when
the associated file actions object is later used during a posix_spawn() or posix_spawnp()
operation.

EXAMPLES
None.

APPLICATION USAGE
The posix_spawn_file_actions_adddup2() function is part of the Spawn option and need not be
provided on all implementations.

RATIONALE
Refer to the RATIONALE in posix_spawn_file_actions_addclose().

FUTURE DIRECTIONS
None.

SEE ALSO
dup(), posix_spawn(), posix_spawn_file_actions_addclose(), posix_spawn_file_actions_destroy()

XBD <spawn.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1433

46965

46966

46967

46968

46969

46970

46971

46972

46973

46974

46975

46976

46977

46978

46979

46980

46981

46982

46983

46984

46985

46986

46987

46988

46989

46990

46991

46992

46993

46994

46995

46996

46997

46998

46999

47000

47001

47002

47003

47004

posix_spawn_file_actions_adddup2() System Interfaces

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #104 is applied, noting that the [EBADF] error can apply to the
newfildes argument in addition to fildes.

1434 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47005

47006

47007

47008

System Interfaces posix_spawn_file_actions_addopen()

NAME
posix_spawn_file_actions_addopen — add open action to spawn file actions object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t
*restrict file_actions, int fildes,
const char *restrict path, int oflag, mode_t mode);

DESCRIPTION
Refer to posix_spawn_file_actions_addclose().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1435

47009

47010

47011

47012

47013

47014

47015

47016

47017

47018

posix_spawn_file_actions_destroy() System Interfaces

NAME
posix_spawn_file_actions_destroy, posix_spawn_file_actions_init — destroy and initialize
spawn file actions object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawn_file_actions_destroy(posix_spawn_file_actions_t
*file_actions);

int posix_spawn_file_actions_init(posix_spawn_file_actions_t
*file_actions);

DESCRIPTION
The posix_spawn_file_actions_destroy() function shall destroy the object referenced by file_actions;
the object becomes, in effect, uninitialized. An implementation may cause
posix_spawn_file_actions_destroy() to set the object referenced by file_actions to an invalid value. A
destroyed spawn file actions object can be reinitialized using posix_spawn_file_actions_init(); the
results of otherwise referencing the object after it has been destroyed are undefined.

The posix_spawn_file_actions_init() function shall initialize the object referenced by file_actions to
contain no file actions for posix_spawn() or posix_spawnp() to perform.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose().

The effect of initializing an already initialized spawn file actions object is undefined.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The posix_spawn_file_actions_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the spawn file actions object.

The posix_spawn_file_actions_destroy() function may fail if:

[EINVAL] The value specified by file_actions is invalid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
Refer to the RATIONALE in posix_spawn_file_actions_addclose().

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn()

XBD <spawn.h>

1436 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47019

47020

47021

47022

47023

47024

47025

47026

47027

47028

47029

47030

47031

47032

47033

47034

47035

47036

47037

47038

47039

47040

47041

47042

47043

47044

47045

47046

47047

47048

47049

47050

47051

47052

47053

47054

47055

47056

System Interfaces posix_spawn_file_actions_destroy()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1437

47057

47058

47059

posix_spawnattr_destroy() System Interfaces

NAME
posix_spawnattr_destroy, posix_spawnattr_init — destroy and initialize spawn attributes object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_destroy(posix_spawnattr_t *attr);
int posix_spawnattr_init(posix_spawnattr_t *attr);

DESCRIPTION
The posix_spawnattr_destroy() function shall destroy a spawn attributes object. A destroyed attr
attributes object can be reinitialized using posix_spawnattr_init(); the results of otherwise
referencing the object after it has been destroyed are undefined. An implementation may cause
posix_spawnattr_destroy() to set the object referenced by attr to an invalid value.

The posix_spawnattr_init() function shall initialize a spawn attributes object attr with the default
value for all of the individual attributes used by the implementation. Results are undefined if
posix_spawnattr_init() is called specifying an already initialized attr attributes object.

A spawn attributes object is of type posix_spawnattr_t (defined in <spawn.h>) and is used to
specify the inheritance of process attributes across a spawn operation. POSIX.1-2008 does not
define comparison or assignment operators for the type posix_spawnattr_t.

Each implementation shall document the individual attributes it uses and their default values
unless these values are defined by POSIX.1-2008. Attributes not defined by POSIX.1-2008, their
default values, and the names of the associated functions to get and set those attribute values are
implementation-defined.

The resulting spawn attributes object (possibly modified by setting individual attribute values),
is used to modify the behavior of posix_spawn() or posix_spawnp(). After a spawn attributes
object has been used to spawn a process by a call to a posix_spawn() or posix_spawnp(), any
function affecting the attributes object (including destruction) shall not affect any process that
has been spawned in this way.

RETURN VALUE
Upon successful completion, posix_spawnattr_destroy() and posix_spawnattr_init() shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The posix_spawnattr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the spawn attributes object.

The posix_spawnattr_destroy() function may fail if:

[EINVAL] The value specified by attr is invalid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
The original spawn interface proposed in POSIX.1-2008 defined the attributes that specify the
inheritance of process attributes across a spawn operation as a structure. In order to be able to
separate optional individual attributes under their appropriate options (that is, the spawn-
schedparam and spawn-schedpolicy attributes depending upon the Process Scheduling option), and

1438 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47060

47061

47062

47063

47064

47065

47066

47067

47068

47069

47070

47071

47072

47073

47074

47075

47076

47077

47078

47079

47080

47081

47082

47083

47084

47085

47086

47087

47088

47089

47090

47091

47092

47093

47094

47095

47096

47097

47098

47099

47100

47101

47102

47103

System Interfaces posix_spawnattr_destroy()

also for extensibility and consistency with the newer POSIX interfaces, the attributes interface
has been changed to an opaque data type. This interface now consists of the type
posix_spawnattr_t, representing a spawn attributes object, together with associated functions to
initialize or destroy the attributes object, and to set or get each individual attribute. Although the
new object-oriented interface is more verbose than the original structure, it is simple to use,
more extensible, and easy to implement.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_getsigdefault(), posix_spawnattr_getflags(),
posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigmask()

XBD <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #106 is applied, noting that the effect of initializing an already
initialized spawn attributes option is undefined.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1439

47104

47105

47106

47107

47108

47109

47110

47111

47112

47113

47114

47115

47116

47117

47118

47119

47120

posix_spawnattr_getflags() System Interfaces

NAME
posix_spawnattr_getflags, posix_spawnattr_setflags — get and set the spawn-flags attribute of a
spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_getflags(const posix_spawnattr_t *restrict attr,
short *restrict flags);

int posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags);

DESCRIPTION
The posix_spawnattr_getflags() function shall obtain the value of the spawn-flags attribute from the
attributes object referenced by attr.

The posix_spawnattr_setflags() function shall set the spawn-flags attribute in an initialized
attributes object referenced by attr.

The spawn-flags attribute is used to indicate which process attributes are to be changed in the
new process image when invoking posix_spawn() or posix_spawnp(). It is the bitwise-inclusive
OR of zero or more of the following flags:

POSIX_SPAWN_RESETIDS
POSIX_SPAWN_SETPGROUP
POSIX_SPAWN_SETSIGDEF
POSIX_SPAWN_SETSIGMASK

PS POSIX_SPAWN_SETSCHEDPARAM
POSIX_SPAWN_SETSCHEDULER

These flags are defined in <spawn.h>. The default value of this attribute shall be as if no flags
were set.

RETURN VALUE
Upon successful completion, posix_spawnattr_getflags() shall return zero and store the value of
the spawn-flags attribute of attr into the object referenced by the flags parameter; otherwise, an
error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setflags() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setflags() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

1440 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47121

47122

47123

47124

47125

47126

47127

47128

47129

47130

47131

47132

47133

47134

47135

47136

47137

47138

47139

47140

47141

47142

47143

47144

47145

47146

47147

47148

47149

47150

47151

47152

47153

47154

47155

System Interfaces posix_spawnattr_getflags()

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigmask()

XBD <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1441

47156

47157

47158

47159

47160

47161

47162

47163

47164

47165

47166

47167

47168

47169

47170

posix_spawnattr_getpgroup() System Interfaces

NAME
posix_spawnattr_getpgroup, posix_spawnattr_setpgroup — get and set the spawn-pgroup
attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict attr,
pid_t *restrict pgroup);

int posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup);

DESCRIPTION
The posix_spawnattr_getpgroup() function shall obtain the value of the spawn-pgroup attribute
from the attributes object referenced by attr.

The posix_spawnattr_setpgroup() function shall set the spawn-pgroup attribute in an initialized
attributes object referenced by attr.

The spawn-pgroup attribute represents the process group to be joined by the new process image
in a spawn operation (if POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute). The
default value of this attribute shall be zero.

RETURN VALUE
Upon successful completion, posix_spawnattr_getpgroup() shall return zero and store the value of
the spawn-pgroup attribute of attr into the object referenced by the pgroup parameter; otherwise,
an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setpgroup() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setpgroup() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getflags(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigmask()

XBD <spawn.h>

1442 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47171

47172

47173

47174

47175

47176

47177

47178

47179

47180

47181

47182

47183

47184

47185

47186

47187

47188

47189

47190

47191

47192

47193

47194

47195

47196

47197

47198

47199

47200

47201

47202

47203

47204

47205

47206

47207

47208

47209

47210

System Interfaces posix_spawnattr_getpgroup()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1443

47211

47212

posix_spawnattr_getschedparam() System Interfaces

NAME
posix_spawnattr_getschedparam, posix_spawnattr_setschedparam — get and set the spawn-
schedparam attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN PS #include <spawn.h>

#include <sched.h>

int posix_spawnattr_getschedparam(const posix_spawnattr_t
*restrict attr, struct sched_param *restrict schedparam);

int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict attr,
const struct sched_param *restrict schedparam);

DESCRIPTION
The posix_spawnattr_getschedparam() function shall obtain the value of the spawn-schedparam
attribute from the attributes object referenced by attr.

The posix_spawnattr_setschedparam() function shall set the spawn-schedparam attribute in an
initialized attributes object referenced by attr.

The spawn-schedparam attribute represents the scheduling parameters to be assigned to the new
process image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER or
POSIX_SPAWN_SETSCHEDPARAM is set in the spawn-flags attribute). The default value of this
attribute is unspecified.

RETURN VALUE
Upon successful completion, posix_spawnattr_getschedparam() shall return zero and store the
value of the spawn-schedparam attribute of attr into the object referenced by the schedparam
parameter; otherwise, an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setschedparam() shall return zero; otherwise, an
error number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setschedparam() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn and Process Scheduling options and need not be provided
on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigmask()

1444 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47213

47214

47215

47216

47217

47218

47219

47220

47221

47222

47223

47224

47225

47226

47227

47228

47229

47230

47231

47232

47233

47234

47235

47236

47237

47238

47239

47240

47241

47242

47243

47244

47245

47246

47247

47248

47249

47250

47251

47252

47253

47254

47255

System Interfaces posix_spawnattr_getschedparam()

XBD <sched.h>, <spawn.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1445

47256

47257

47258

posix_spawnattr_getschedpolicy() System Interfaces

NAME
posix_spawnattr_getschedpolicy, posix_spawnattr_setschedpolicy — get and set the spawn-
schedpolicy attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN PS #include <spawn.h>

#include <sched.h>

int posix_spawnattr_getschedpolicy(const posix_spawnattr_t
*restrict attr, int *restrict schedpolicy);

int posix_spawnattr_setschedpolicy(posix_spawnattr_t *attr,
int schedpolicy);

DESCRIPTION
The posix_spawnattr_getschedpolicy() function shall obtain the value of the spawn-schedpolicy
attribute from the attributes object referenced by attr.

The posix_spawnattr_setschedpolicy() function shall set the spawn-schedpolicy attribute in an
initialized attributes object referenced by attr.

The spawn-schedpolicy attribute represents the scheduling policy to be assigned to the new
process image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER is set in the spawn-
flags attribute). The default value of this attribute is unspecified.

RETURN VALUE
Upon successful completion, posix_spawnattr_getschedpolicy() shall return zero and store the
value of the spawn-schedpolicy attribute of attr into the object referenced by the schedpolicy
parameter; otherwise, an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setschedpolicy() shall return zero; otherwise, an
error number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setschedpolicy() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn and Process Scheduling options and need not be provided
on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(),
posix_spawnattr_getsigmask()

XBD <sched.h>, <spawn.h>

1446 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47259

47260

47261

47262

47263

47264

47265

47266

47267

47268

47269

47270

47271

47272

47273

47274

47275

47276

47277

47278

47279

47280

47281

47282

47283

47284

47285

47286

47287

47288

47289

47290

47291

47292

47293

47294

47295

47296

47297

47298

47299

47300

47301

System Interfaces posix_spawnattr_getschedpolicy()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1447

47302

47303

posix_spawnattr_getsigdefault() System Interfaces

NAME
posix_spawnattr_getsigdefault, posix_spawnattr_setsigdefault — get and set the spawn-
sigdefault attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <signal.h>

#include <spawn.h>

int posix_spawnattr_getsigdefault(const posix_spawnattr_t
*restrict attr, sigset_t *restrict sigdefault);

int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigdefault);

DESCRIPTION
The posix_spawnattr_getsigdefault() function shall obtain the value of the spawn-sigdefault
attribute from the attributes object referenced by attr.

The posix_spawnattr_setsigdefault() function shall set the spawn-sigdefault attribute in an
initialized attributes object referenced by attr.

The spawn-sigdefault attribute represents the set of signals to be forced to default signal handling
in the new process image (if POSIX_SPAWN_SETSIGDEF is set in the spawn-flags attribute) by a
spawn operation. The default value of this attribute shall be an empty signal set.

RETURN VALUE
Upon successful completion, posix_spawnattr_getsigdefault() shall return zero and store the value
of the spawn-sigdefault attribute of attr into the object referenced by the sigdefault parameter;
otherwise, an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setsigdefault() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setsigdefault() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getflags(), posix_spawnattr_getpgroup(),
posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(), posix_spawnattr_getsigmask()

XBD <signal.h>, <spawn.h>

1448 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47304

47305

47306

47307

47308

47309

47310

47311

47312

47313

47314

47315

47316

47317

47318

47319

47320

47321

47322

47323

47324

47325

47326

47327

47328

47329

47330

47331

47332

47333

47334

47335

47336

47337

47338

47339

47340

47341

47342

47343

47344

System Interfaces posix_spawnattr_getsigdefault()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1449

47345

47346

posix_spawnattr_getsigmask() System Interfaces

NAME
posix_spawnattr_getsigmask, posix_spawnattr_setsigmask — get and set the spawn-sigmask
attribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <signal.h>

#include <spawn.h>

int posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict attr,
sigset_t *restrict sigmask);

int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigmask);

DESCRIPTION
The posix_spawnattr_getsigmask() function shall obtain the value of the spawn-sigmask attribute
from the attributes object referenced by attr.

The posix_spawnattr_setsigmask() function shall set the spawn-sigmask attribute in an initialized
attributes object referenced by attr.

The spawn-sigmask attribute represents the signal mask in effect in the new process image of a
spawn operation (if POSIX_SPAWN_SETSIGMASK is set in the spawn-flags attribute). The
default value of this attribute is unspecified.

RETURN VALUE
Upon successful completion, posix_spawnattr_getsigmask() shall return zero and store the value
of the spawn-sigmask attribute of attr into the object referenced by the sigmask parameter;
otherwise, an error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setsigmask() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by attr is invalid.

The posix_spawnattr_setsigmask() function may fail if:

[EINVAL] The value of the attribute being set is not valid.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(),
posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(),
posix_spawnattr_getschedpolicy()

XBD <signal.h>, <spawn.h>

1450 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47347

47348

47349

47350

47351

47352

47353

47354

47355

47356

47357

47358

47359

47360

47361

47362

47363

47364

47365

47366

47367

47368

47369

47370

47371

47372

47373

47374

47375

47376

47377

47378

47379

47380

47381

47382

47383

47384

47385

47386

47387

47388

System Interfaces posix_spawnattr_getsigmask()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1451

47389

47390

posix_spawnattr_init() System Interfaces

NAME
posix_spawnattr_init — initialize the spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_init(posix_spawnattr_t *attr);

DESCRIPTION
Refer to posix_spawnattr_destroy().

1452 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47391

47392

47393

47394

47395

47396

47397

System Interfaces posix_spawnattr_setflags()

NAME
posix_spawnattr_setflags — set the spawn-flags attribute of a spawn attributes object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags);

DESCRIPTION
Refer to posix_spawnattr_getflags().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1453

47398

47399

47400

47401

47402

47403

47404

47405

posix_spawnattr_setpgroup() System Interfaces

NAME
posix_spawnattr_setpgroup — set the spawn-pgroup attribute of a spawn attributes object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup);

DESCRIPTION
Refer to posix_spawnattr_getpgroup().

1454 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47406

47407

47408

47409

47410

47411

47412

47413

System Interfaces posix_spawnattr_setschedparam()

NAME
posix_spawnattr_setschedparam — set the spawn-schedparam attribute of a spawn attributes
object (ADVANCED REALTIME)

SYNOPSIS
SPN PS #include <sched.h>

#include <spawn.h>

int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict attr,
const struct sched_param *restrict schedparam);

DESCRIPTION
Refer to posix_spawnattr_getschedparam().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1455

47414

47415

47416

47417

47418

47419

47420

47421

47422

47423

posix_spawnattr_setschedpolicy() System Interfaces

NAME
posix_spawnattr_setschedpolicy — set the spawn-schedpolicy attribute of a spawn attributes
object (ADVANCED REALTIME)

SYNOPSIS
SPN PS #include <sched.h>

#include <spawn.h>

int posix_spawnattr_setschedpolicy(posix_spawnattr_t *attr,
int schedpolicy);

DESCRIPTION
Refer to posix_spawnattr_getschedpolicy().

1456 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47424

47425

47426

47427

47428

47429

47430

47431

47432

47433

System Interfaces posix_spawnattr_setsigdefault()

NAME
posix_spawnattr_setsigdefault — set the spawn-sigdefault attribute of a spawn attributes object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <signal.h>

#include <spawn.h>

int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigdefault);

DESCRIPTION
Refer to posix_spawnattr_getsigdefault().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1457

47434

47435

47436

47437

47438

47439

47440

47441

47442

47443

posix_spawnattr_setsigmask() System Interfaces

NAME
posix_spawnattr_setsigmask — set the spawn-sigmask attribute of a spawn attributes object
(ADVANCED REALTIME)

SYNOPSIS
SPN #include <signal.h>

#include <spawn.h>

int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigmask);

DESCRIPTION
Refer to posix_spawnattr_getsigmask().

1458 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47444

47445

47446

47447

47448

47449

47450

47451

47452

47453

System Interfaces posix_spawnp()

NAME
posix_spawnp — spawn a process (ADVANCED REALTIME)

SYNOPSIS
SPN #include <spawn.h>

int posix_spawnp(pid_t *restrict pid, const char *restrict file,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envp[restrict]);

DESCRIPTION
Refer to posix_spawn().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1459

47454

47455

47456

47457

47458

47459

47460

47461

47462

47463

posix_trace_attr_destroy() System Interfaces

NAME
posix_trace_attr_destroy, posix_trace_attr_init — destroy and initialize the trace stream
attributes object (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_attr_destroy(trace_attr_t *attr);
int posix_trace_attr_init(trace_attr_t *attr);

DESCRIPTION
The posix_trace_attr_destroy() function shall destroy an initialized trace attributes object. A
destroyed attr attributes object can be reinitialized using posix_trace_attr_init(); the results of
otherwise referencing the object after it has been destroyed are undefined.

The posix_trace_attr_init() function shall initialize a trace attributes object attr with the default
value for all of the individual attributes used by a given implementation. The read-only
generation-version and clock-resolution attributes of the newly initialized trace attributes object
shall be set to their appropriate values (see Section 2.11.1.2, on page 535).

Results are undefined if posix_trace_attr_init() is called specifying an already initialized attr
attributes object.

Implementations may add extensions to the trace attributes object structure as permitted in XBD
Chapter 2 (on page 15).

The resulting attributes object (possibly modified by setting individual attributes values), when
used by posix_trace_create(), defines the attributes of the trace stream created. A single attributes
object can be used in multiple calls to posix_trace_create(). After one or more trace streams have
been created using an attributes object, any function affecting that attributes object, including
destruction, shall not affect any trace stream previously created. An initialized attributes object
also serves to receive the attributes of an existing trace stream or trace log when calling the
posix_trace_get_attr() function.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

ERRORS
The posix_trace_attr_destroy() function may fail if:

[EINVAL] The value of attr is invalid.

The posix_trace_attr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the trace attributes object.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

1460 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47464

47465

47466

47467

47468

47469

47470

47471

47472

47473

47474

47475

47476

47477

47478

47479

47480

47481

47482

47483

47484

47485

47486

47487

47488

47489

47490

47491

47492

47493

47494

47495

47496

47497

47498

47499

47500

47501

47502

47503

System Interfaces posix_trace_attr_destroy()

FUTURE DIRECTIONS
The posix_trace_attr_destroy() and posix_trace_attr_init() functions may be removed in a future
version.

SEE ALSO
posix_trace_create(), posix_trace_get_attr(), uname()

XBD <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #123 is applied.

Issue 7
The posix_trace_attr_destroy() and posix_trace_attr_init() functions are marked obsolescent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1461

47504

47505

47506

47507

47508

47509

47510

47511

47512

47513

47514

posix_trace_attr_getclockres() System Interfaces

NAME
posix_trace_attr_getclockres, posix_trace_attr_getcreatetime, posix_trace_attr_getgenversion,
posix_trace_attr_getname, posix_trace_attr_setname — retrieve and set information about a
trace stream (TRACING)

SYNOPSIS
OB TRC #include <time.h>

#include <trace.h>

int posix_trace_attr_getclockres(const trace_attr_t *attr,
struct timespec *resolution);

int posix_trace_attr_getcreatetime(const trace_attr_t *attr,
struct timespec *createtime);

#include <trace.h>

int posix_trace_attr_getgenversion(const trace_attr_t *attr,
char *genversion);

int posix_trace_attr_getname(const trace_attr_t *attr,
char *tracename);

int posix_trace_attr_setname(trace_attr_t *attr,
const char *tracename);

DESCRIPTION
The posix_trace_attr_getclockres() function shall copy the clock resolution of the clock used to
generate timestamps from the clock-resolution attribute of the attributes object pointed to by the
attr argument into the structure pointed to by the resolution argument.

The posix_trace_attr_getcreatetime() function shall copy the trace stream creation time from the
creation-time attribute of the attributes object pointed to by the attr argument into the structure
pointed to by the createtime argument. The creation-time attribute shall represent the time of
creation of the trace stream.

The posix_trace_attr_getgenversion() function shall copy the string containing version information
from the generation-version attribute of the attributes object pointed to by the attr argument into
the string pointed to by the genversion argument. The genversion argument shall be the address of
a character array which can store at least {TRACE_NAME_MAX} characters.

The posix_trace_attr_getname() function shall copy the string containing the trace name from the
trace-name attribute of the attributes object pointed to by the attr argument into the string
pointed to by the tracename argument. The tracename argument shall be the address of a character
array which can store at least {TRACE_NAME_MAX} characters.

The posix_trace_attr_setname() function shall set the name in the trace-name attribute of the
attributes object pointed to by the attr argument, using the trace name string supplied by the
tracename argument. If the supplied string contains more than {TRACE_NAME_MAX}
characters, the name copied into the trace-name attribute may be truncated to one less than the
length of {TRACE_NAME_MAX} characters. The default value is a null string.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

If successful, the posix_trace_attr_getclockres() function stores the clock-resolution attribute value in
the object pointed to by resolution. Otherwise, the content of this object is unspecified.

If successful, the posix_trace_attr_getcreatetime() function stores the trace stream creation time in

1462 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47515

47516

47517

47518

47519

47520

47521

47522

47523

47524

47525

47526

47527

47528

47529

47530

47531

47532

47533

47534

47535

47536

47537

47538

47539

47540

47541

47542

47543

47544

47545

47546

47547

47548

47549

47550

47551

47552

47553

47554

47555

47556

47557

47558

47559

System Interfaces posix_trace_attr_getclockres()

the object pointed to by createtime. Otherwise, the content of this object is unspecified.

If successful, the posix_trace_attr_getgenversion() function stores the trace version information in
the string pointed to by genversion. Otherwise, the content of this string is unspecified.

If successful, the posix_trace_attr_getname() function stores the trace name in the string pointed
to by tracename. Otherwise, the content of this string is unspecified.

ERRORS
The posix_trace_attr_getclockres(), posix_trace_attr_getcreatetime(), posix_trace_attr_getgenversion(),
and posix_trace_attr_getname() functions may fail if:

[EINVAL] The value specified by one of the arguments is invalid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_attr_getclockres(), posix_trace_attr_getcreatetime(), posix_trace_attr_getgenversion(),
posix_trace_attr_getname(), and posix_trace_attr_setname() functions may be removed in a future
version.

SEE ALSO
posix_trace_attr_destroy(), posix_trace_create(), posix_trace_get_attr(), uname()

XBD <time.h>, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7
The posix_trace_attr_getclockres(), posix_trace_attr_getcreatetime(), posix_trace_attr_getgenversion(),
posix_trace_attr_getname(), and posix_trace_attr_setname() functions are marked obsolescent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1463

47560

47561

47562

47563

47564

47565

47566

47567

47568

47569

47570

47571

47572

47573

47574

47575

47576

47577

47578

47579

47580

47581

47582

47583

47584

47585

47586

posix_trace_attr_getinherited() System Interfaces

NAME
posix_trace_attr_getinherited, posix_trace_attr_getlogfullpolicy,
posix_trace_attr_getstreamfullpolicy, posix_trace_attr_setinherited,
posix_trace_attr_setlogfullpolicy, posix_trace_attr_setstreamfullpolicy — retrieve and set the
behavior of a trace stream (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

TRI int posix_trace_attr_getinherited(const trace_attr_t *restrict attr,
int *restrict inheritancepolicy);

TRL int posix_trace_attr_getlogfullpolicy(const trace_attr_t *restrict attr,
int *restrict logpolicy);

int posix_trace_attr_getstreamfullpolicy(const trace_attr_t *restrict
attr, int *restrict streampolicy);

TRI int posix_trace_attr_setinherited(trace_attr_t *attr,
int inheritancepolicy);

TRL int posix_trace_attr_setlogfullpolicy(trace_attr_t *attr,
int logpolicy);

int posix_trace_attr_setstreamfullpolicy(trace_attr_t *attr,
int streampolicy);

DESCRIPTION
TRI The posix_trace_attr_getinherited() and posix_trace_attr_setinherited() functions, respectively, shall

get and set the inheritance policy stored in the inheritance attribute for traced processes across the
fork() and spawn() operations. The inheritance attribute of the attributes object pointed to by the
attr argument shall be set to one of the following values defined by manifest constants in the
<trace.h> header:

POSIX_TRACE_CLOSE_FOR_CHILD
After a fork() or spawn() operation, the child shall not be traced, and tracing of the parent
shall continue.

POSIX_TRACE_INHERITED
After a fork() or spawn() operation, if the parent is being traced, its child shall be
concurrently traced using the same trace stream.

The default value for the inheritance attribute is POSIX_TRACE_CLOSE_FOR_CHILD.

TRL The posix_trace_attr_getlogfullpolicy() and posix_trace_attr_setlogfullpolicy() functions,
respectively, shall get and set the trace log full policy stored in the log-full-policy attribute of the
attributes object pointed to by the attr argument.

The log-full-policy attribute shall be set to one of the following values defined by manifest
constants in the <trace.h> header:

POSIX_TRACE_LOOP
The trace log shall loop until the associated trace stream is stopped. This policy means that
when the trace log gets full, the file system shall reuse the resources allocated to the oldest
trace events that were recorded. In this way, the trace log will always contain the most
recent trace events flushed.

POSIX_TRACE_UNTIL_FULL
The trace stream shall be flushed to the trace log until the trace log is full. This condition can
be deduced from the posix_log_full_status member status (see the posix_trace_status_info
structure defined in <trace.h>). The last recorded trace event shall be the
POSIX_TRACE_STOP trace event.

1464 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47587

47588

47589

47590

47591

47592

47593

47594

47595

47596

47597

47598

47599

47600

47601

47602

47603

47604

47605

47606

47607

47608

47609

47610

47611

47612

47613

47614

47615

47616

47617

47618

47619

47620

47621

47622

47623

47624

47625

47626

47627

47628

47629

47630

47631

47632

47633

System Interfaces posix_trace_attr_getinherited()

POSIX_TRACE_APPEND
The associated trace stream shall be flushed to the trace log without log size limitation. If
the application specifies POSIX_TRACE_APPEND, the implementation shall ignore the log-
max-size attribute.

The default value for the log-full-policy attribute is POSIX_TRACE_LOOP.

The posix_trace_attr_getstreamfullpolicy() and posix_trace_attr_setstreamfullpolicy() functions,
respectively, shall get and set the trace stream full policy stored in the stream-full-policy attribute
of the attributes object pointed to by the attr argument.

The stream-full-policy attribute shall be set to one of the following values defined by manifest
constants in the <trace.h> header:

POSIX_TRACE_LOOP
The trace stream shall loop until explicitly stopped by the posix_trace_stop() function. This
policy means that when the trace stream is full, the trace system shall reuse the resources
allocated to the oldest trace events recorded. In this way, the trace stream will always
contain the most recent trace events recorded.

POSIX_TRACE_UNTIL_FULL
The trace stream will run until the trace stream resources are exhausted. Then the trace
stream will stop. This condition can be deduced from posix_stream_status and
posix_stream_full_status (see the posix_trace_status_info structure defined in <trace.h>).
When this trace stream is read, a POSIX_TRACE_STOP trace event shall be reported after
reporting the last recorded trace event. The trace system shall reuse the resources allocated
to any trace events already reported—see the posix_trace_getnext_event(),
posix_trace_trygetnext_event(), and posix_trace_timedgetnext_event() functions—or already
flushed for an active trace stream with log if the Trace Log option is supported; see the
posix_trace_flush() function. The trace system shall restart the trace stream when it is empty
and may restart it sooner. A POSIX_TRACE_START trace event shall be reported before
reporting the next recorded trace event.

TRL POSIX_TRACE_FLUSH
If the Trace Log option is supported, this policy is identical to the
POSIX_TRACE_UNTIL_FULL trace stream full policy except that the trace stream shall be
flushed regularly as if posix_trace_flush() had been explicitly called. Defining this policy for
an active trace stream without log shall be invalid.

The default value for the stream-full-policy attribute shall be POSIX_TRACE_LOOP for an active
trace stream without log.

TRL If the Trace Log option is supported, the default value for the stream-full-policy attribute shall be
POSIX_TRACE_FLUSH for an active trace stream with log.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

TRI If successful, the posix_trace_attr_getinherited() function shall store the inheritance attribute value
in the object pointed to by inheritancepolicy. Otherwise, the content of this object is undefined.

TRL If successful, the posix_trace_attr_getlogfullpolicy() function shall store the log-full-policy attribute
value in the object pointed to by logpolicy. Otherwise, the content of this object is undefined.

If successful, the posix_trace_attr_getstreamfullpolicy() function shall store the stream-full-policy
attribute value in the object pointed to by streampolicy. Otherwise, the content of this object is
undefined.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1465

47634

47635

47636

47637

47638

47639

47640

47641

47642

47643

47644

47645

47646

47647

47648

47649

47650

47651

47652

47653

47654

47655

47656

47657

47658

47659

47660

47661

47662

47663

47664

47665

47666

47667

47668

47669

47670

47671

47672

47673

47674

47675

47676

47677

47678

47679

posix_trace_attr_getinherited() System Interfaces

ERRORS
These functions may fail if:

[EINVAL] The value specified by at least one of the arguments is invalid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The following functions:

posix_trace_attr_getinherited()
posix_trace_attr_getlogfullpolicy()
posix_trace_attr_getstreamfullpolicy()
posix_trace_attr_setinherited()
posix_trace_attr_setlogfullpolicy()
posix_trace_attr_setstreamfullpolicy()

may be removed in a future version.

SEE ALSO
fork(), posix_trace_attr_destroy(), posix_trace_create(), posix_trace_get_attr(),
posix_trace_getnext_event(), posix_trace_start()

XBD <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/39 is applied, adding the TRL and TRC
margin codes to the posix_trace_attr_setlogfullpolicy() function.

Issue 7
SD5-XSH-ERN-116 is applied, adding the missing restrict keyword to the
posix_trace_attr_getstreamfullpolicy() function declaration.

These functions are marked obsolescent.

1466 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47680

47681

47682

47683

47684

47685

47686

47687

47688

47689

47690

47691

47692

47693

47694

47695

47696

47697

47698

47699

47700

47701

47702

47703

47704

47705

47706

47707

47708

47709

System Interfaces posix_trace_attr_getlogsize()

NAME
posix_trace_attr_getlogsize, posix_trace_attr_getmaxdatasize,
posix_trace_attr_getmaxsystemeventsize, posix_trace_attr_getmaxusereventsize,
posix_trace_attr_getstreamsize, posix_trace_attr_setlogsize, posix_trace_attr_setmaxdatasize,
posix_trace_attr_setstreamsize — retrieve and set trace stream size attributes (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

TRL int posix_trace_attr_getlogsize(const trace_attr_t *restrict attr,
size_t *restrict logsize);

int posix_trace_attr_getmaxdatasize(const trace_attr_t *restrict attr,
size_t *restrict maxdatasize);

int posix_trace_attr_getmaxsystemeventsize(
const trace_attr_t *restrict attr,
size_t *restrict eventsize);

int posix_trace_attr_getmaxusereventsize(
const trace_attr_t *restrict attr,
size_t data_len, size_t *restrict eventsize);

int posix_trace_attr_getstreamsize(const trace_attr_t *restrict attr,
size_t *restrict streamsize);

TRL int posix_trace_attr_setlogsize(trace_attr_t *attr,
size_t logsize);

int posix_trace_attr_setmaxdatasize(trace_attr_t *attr,
size_t maxdatasize);

int posix_trace_attr_setstreamsize(trace_attr_t *attr,
size_t streamsize);

DESCRIPTION
TRL The posix_trace_attr_getlogsize() function shall copy the log size, in bytes, from the log-max-size

attribute of the attributes object pointed to by the attr argument into the variable pointed to by
the logsize argument. This log size is the maximum total of bytes that shall be allocated for
system and user trace events in the trace log. The default value for the log-max-size attribute is
implementation-defined.

The posix_trace_attr_setlogsize() function shall set the maximum allowed size, in bytes, in the log-
max-size attribute of the attributes object pointed to by the attr argument, using the size value
supplied by the logsize argument.

The trace log size shall be used if the log-full-policy attribute is set to POSIX_TRACE_LOOP or
POSIX_TRACE_UNTIL_FULL. If the log-full-policy attribute is set to POSIX_TRACE_APPEND,
the implementation shall ignore the log-max-size attribute.

The posix_trace_attr_getmaxdatasize() function shall copy the maximum user trace event data
size, in bytes, from the max-data-size attribute of the attributes object pointed to by the attr
argument into the variable pointed to by the maxdatasize argument. The default value for the
max-data-size attribute is implementation-defined.

The posix_trace_attr_getmaxsystemeventsize() function shall calculate the maximum memory size,
in bytes, required to store a single system trace event. This value is calculated for the trace
stream attributes object pointed to by the attr argument and is returned in the variable pointed
to by the eventsize argument.

The values returned as the maximum memory sizes of the user and system trace events shall be
such that if the sum of the maximum memory sizes of a set of the trace events that may be

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1467

47710

47711

47712

47713

47714

47715

47716

47717

47718

47719

47720

47721

47722

47723

47724

47725

47726

47727

47728

47729

47730

47731

47732

47733

47734

47735

47736

47737

47738

47739

47740

47741

47742

47743

47744

47745

47746

47747

47748

47749

47750

47751

47752

47753

47754

47755

47756

47757

posix_trace_attr_getlogsize() System Interfaces

recorded in a trace stream is less than or equal to the stream-min-size attribute of that trace
stream, the system provides the necessary resources for recording all those trace events, without
loss.

The posix_trace_attr_getmaxusereventsize() function shall calculate the maximum memory size, in
bytes, required to store a single user trace event generated by a call to posix_trace_event() with a
data_len parameter equal to the data_len value specified in this call. This value is calculated for
the trace stream attributes object pointed to by the attr argument and is returned in the variable
pointed to by the eventsize argument.

The posix_trace_attr_getstreamsize() function shall copy the stream size, in bytes, from the stream-
min-size attribute of the attributes object pointed to by the attr argument into the variable
pointed to by the streamsize argument.

This stream size is the current total memory size reserved for system and user trace events in the
trace stream. The default value for the stream-min-size attribute is implementation-defined. The
stream size refers to memory used to store trace event records. Other stream data (for example,
trace attribute values) shall not be included in this size.

The posix_trace_attr_setmaxdatasize() function shall set the maximum allowed size, in bytes, in
the max-data-size attribute of the attributes object pointed to by the attr argument, using the size
value supplied by the maxdatasize argument. This maximum size is the maximum allowed size
for the user data argument which may be passed to posix_trace_event(). The implementation
shall be allowed to truncate data passed to trace_user_event which is longer than maxdatasize.

The posix_trace_attr_setstreamsize() function shall set the minimum allowed size, in bytes, in the
stream-min-size attribute of the attributes object pointed to by the attr argument, using the size
value supplied by the streamsize argument.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

TRL The posix_trace_attr_getlogsize() function stores the maximum trace log allowed size in the object
pointed to by logsize, if successful.

The posix_trace_attr_getmaxdatasize() function stores the maximum trace event record memory
size in the object pointed to by maxdatasize, if successful.

The posix_trace_attr_getmaxsystemeventsize() function stores the maximum memory size to store a
single system trace event in the object pointed to by eventsize, if successful.

The posix_trace_attr_getmaxusereventsize() function stores the maximum memory size to store a
single user trace event in the object pointed to by eventsize, if successful.

The posix_trace_attr_getstreamsize() function stores the maximum trace stream allowed size in the
object pointed to by streamsize, if successful.

ERRORS
These functions may fail if:

[EINVAL] The value specified by one of the arguments is invalid.

1468 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47758

47759

47760

47761

47762

47763

47764

47765

47766

47767

47768

47769

47770

47771

47772

47773

47774

47775

47776

47777

47778

47779

47780

47781

47782

47783

47784

47785

47786

47787

47788

47789

47790

47791

47792

47793

47794

47795

47796

System Interfaces posix_trace_attr_getlogsize()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The following functions:

posix_trace_attr_getlogsize()
posix_trace_attr_getmaxdatasize()
posix_trace_attr_getmaxsystemeventsize()
posix_trace_attr_getmaxusereventsize()
posix_trace_attr_getstreamsize()
posix_trace_attr_setlogsize()
posix_trace_attr_setmaxdatasize()
posix_trace_attr_setstreamsize()

may be removed in a future version.

SEE ALSO
posix_trace_attr_destroy(), posix_trace_create(), posix_trace_event(), posix_trace_get_attr()

XBD <sys/types.h>, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7
These functions are marked obsolescent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1469

47797

47798

47799

47800

47801

47802

47803

47804

47805

47806

47807

47808

47809

47810

47811

47812

47813

47814

47815

47816

47817

47818

47819

47820

posix_trace_attr_getname() System Interfaces

NAME
posix_trace_attr_getname — retrieve and set information about a trace stream (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_attr_getname(const trace_attr_t *attr,
char *tracename);

DESCRIPTION
Refer to posix_trace_attr_getclockres().

1470 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47821

47822

47823

47824

47825

47826

47827

47828

System Interfaces posix_trace_attr_getstreamfullpolicy()

NAME
posix_trace_attr_getstreamfullpolicy — retrieve and set the behavior of a trace stream
(TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_attr_getstreamfullpolicy(const trace_attr_t *restrict
attr, int *restrict streampolicy);

DESCRIPTION
Refer to posix_trace_attr_getinherited().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1471

47829

47830

47831

47832

47833

47834

47835

47836

47837

posix_trace_attr_getstreamsize() System Interfaces

NAME
posix_trace_attr_getstreamsize — retrieve and set trace stream size attributes (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_attr_getstreamsize(const trace_attr_t *restrict attr,
size_t *restrict streamsize);

DESCRIPTION
Refer to posix_trace_attr_getlogsize().

1472 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47838

47839

47840

47841

47842

47843

47844

47845

47846

System Interfaces posix_trace_attr_init()

NAME
posix_trace_attr_init — initialize the trace stream attributes object (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_attr_init(trace_attr_t *attr);

DESCRIPTION
Refer to posix_trace_attr_destroy().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1473

47847

47848

47849

47850

47851

47852

47853

posix_trace_attr_setinherited() System Interfaces

NAME
posix_trace_attr_setinherited, posix_trace_attr_setlogfullpolicy — retrieve and set the behavior
of a trace stream (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

TRI int posix_trace_attr_setinherited(trace_attr_t *attr,
int inheritancepolicy);

TRL int posix_trace_attr_setlogfullpolicy(trace_attr_t *attr,
int logpolicy);

DESCRIPTION
Refer to posix_trace_attr_getinherited().

1474 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47854

47855

47856

47857

47858

47859

47860

47861

47862

47863

47864

System Interfaces posix_trace_attr_setlogsize()

NAME
posix_trace_attr_setlogsize, posix_trace_attr_setmaxdatasize — retrieve and set trace stream size
attributes (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

TRL int posix_trace_attr_setlogsize(trace_attr_t *attr,
size_t logsize);

OB TRC int posix_trace_attr_setmaxdatasize(trace_attr_t *attr,
size_t maxdatasize);

DESCRIPTION
Refer to posix_trace_attr_getlogsize().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1475

47865

47866

47867

47868

47869

47870

47871

47872

47873

47874

47875

47876

posix_trace_attr_setname() System Interfaces

NAME
posix_trace_attr_setname — retrieve and set information about a trace stream (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_attr_setname(trace_attr_t *attr,
const char *tracename);

DESCRIPTION
Refer to posix_trace_attr_getclockres().

1476 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47877

47878

47879

47880

47881

47882

47883

47884

System Interfaces posix_trace_attr_setstreamfullpolicy()

NAME
posix_trace_attr_setstreamfullpolicy — retrieve and set the behavior of a trace stream
(TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_attr_setstreamfullpolicy(trace_attr_t *attr,
int streampolicy);

DESCRIPTION
Refer to posix_trace_attr_getinherited().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1477

47885

47886

47887

47888

47889

47890

47891

47892

47893

posix_trace_attr_setstreamsize() System Interfaces

NAME
posix_trace_attr_setstreamsize — retrieve and set trace stream size attributes (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_attr_setstreamsize(trace_attr_t *attr,
size_t streamsize);

DESCRIPTION
Refer to posix_trace_attr_getlogsize().

1478 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47894

47895

47896

47897

47898

47899

47900

47901

47902

System Interfaces posix_trace_clear()

NAME
posix_trace_clear — clear trace stream and trace log (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_clear(trace_id_t trid);

DESCRIPTION
The posix_trace_clear() function shall reinitialize the trace stream identified by the argument trid
as if it were returning from the posix_trace_create() function, except that the same allocated
resources shall be reused, the mapping of trace event type identifiers to trace event names shall
be unchanged, and the trace stream status shall remain unchanged (that is, if it was running, it
remains running and if it was suspended, it remains suspended).

All trace events in the trace stream recorded before the call to posix_trace_clear() shall be lost. The
posix_stream_full_status status shall be set to POSIX_TRACE_NOT_FULL. There is no guarantee
that all trace events that occurred during the posix_trace_clear() call are recorded; the behavior
with respect to trace points that may occur during this call is unspecified.

OB TRL If the Trace Log option is supported and the trace stream has been created with a log, the
posix_trace_clear() function shall reinitialize the trace stream with the same behavior as if the
trace stream was created without the log, plus it shall reinitialize the trace log associated with
the trace stream identified by the argument trid as if it were returning from the
posix_trace_create_withlog() function, except that the same allocated resources, for the trace log,
may be reused and the associated trace stream status remains unchanged. The first trace event
recorded in the trace log after the call to posix_trace_clear() shall be the same as the first trace
event recorded in the active trace stream after the call to posix_trace_clear(). The
posix_log_full_status status shall be set to POSIX_TRACE_NOT_FULL. There is no guarantee that
all trace events that occurred during the posix_trace_clear() call are recorded in the trace log; the
behavior with respect to trace points that may occur during this call is unspecified. If the log full
policy is POSIX_TRACE_APPEND, the effect of a call to this function is unspecified for the trace
log associated with the trace stream identified by the trid argument.

RETURN VALUE
Upon successful completion, the posix_trace_clear() function shall return a value of zero.
Otherwise, it shall return the corresponding error number.

ERRORS
The posix_trace_clear() function shall fail if:

[EINVAL] The value of the trid argument does not correspond to an active trace stream.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_clear() function may be removed in a future version.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1479

47903

47904

47905

47906

47907

47908

47909

47910

47911

47912

47913

47914

47915

47916

47917

47918

47919

47920

47921

47922

47923

47924

47925

47926

47927

47928

47929

47930

47931

47932

47933

47934

47935

47936

47937

47938

47939

47940

47941

47942

47943

47944

47945

posix_trace_clear() System Interfaces

SEE ALSO
posix_trace_attr_destroy(), posix_trace_create(), posix_trace_get_attr()

XBD <sys/types.h>, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #123 is applied.

Issue 7
The posix_trace_clear() function is marked obsolescent.

1480 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47946

47947

47948

47949

47950

47951

47952

47953

System Interfaces posix_trace_close()

NAME
posix_trace_close, posix_trace_open, posix_trace_rewind — trace log management (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

TRL int posix_trace_close(trace_id_t trid);
int posix_trace_open(int file_desc, trace_id_t *trid);
int posix_trace_rewind(trace_id_t trid);

DESCRIPTION
The posix_trace_close() function shall deallocate the trace log identifier indicated by trid, and all
of its associated resources. If there is no valid trace log pointed to by the trid, this function shall
fail.

The posix_trace_open() function shall allocate the necessary resources and establish the
connection between a trace log identified by the file_desc argument and a trace stream identifier
identified by the object pointed to by the trid argument. The file_desc argument should be a valid
open file descriptor that corresponds to a trace log. The file_desc argument shall be open for
reading. The current trace event timestamp, which specifies the timestamp of the trace event that
will be read by the next call to posix_trace_getnext_event(), shall be set to the timestamp of the
oldest trace event recorded in the trace log identified by trid.

The posix_trace_open() function shall return a trace stream identifier in the variable pointed to by
the trid argument, that may only be used by the following functions:

posix_trace_close()
posix_trace_eventid_equal()
posix_trace_eventid_get_name()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()

posix_trace_get_attr()
posix_trace_get_status()
posix_trace_getnext_event()
posix_trace_rewind()

In particular, notice that the operations normally used by a trace controller process, such as
posix_trace_start(), posix_trace_stop(), or posix_trace_shutdown(), cannot be invoked using the
trace stream identifier returned by the posix_trace_open() function.

The posix_trace_rewind() function shall reset the current trace event timestamp, which specifies
the timestamp of the trace event that will be read by the next call to posix_trace_getnext_event(),
to the timestamp of the oldest trace event recorded in the trace log identified by trid.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

If successful, the posix_trace_open() function stores the trace stream identifier value in the object
pointed to by trid.

ERRORS
The posix_trace_open() function shall fail if:

[EINTR] The operation was interrupted by a signal and thus no trace log was opened.

[EINVAL] The object pointed to by file_desc does not correspond to a valid trace log.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1481

47954

47955

47956

47957

47958

47959

47960

47961

47962

47963

47964

47965

47966

47967

47968

47969

47970

47971

47972

47973

47974

47975

47976

47977

47978

47979

47980

47981

47982

47983

47984

47985

47986

47987

47988

47989

47990

47991

47992

47993

posix_trace_close() System Interfaces

The posix_trace_close() and posix_trace_rewind() functions may fail if:

[EINVAL] The object pointed to by trid does not correspond to a valid trace log.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_close(), posix_trace_open(), and posix_trace_rewind() functions may be removed in
a future version.

SEE ALSO
posix_trace_get_attr(), posix_trace_get_filter(), posix_trace_getnext_event()

XBD <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #123 is applied.

Issue 7
The posix_trace_close(), posix_trace_open(), and posix_trace_rewind() functions are marked
obsolescent.

1482 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

47994

47995

47996

47997

47998

47999

48000

48001

48002

48003

48004

48005

48006

48007

48008

48009

48010

48011

48012

48013

System Interfaces posix_trace_create()

NAME
posix_trace_create, posix_trace_create_withlog, posix_trace_flush, posix_trace_shutdown —
trace stream initialization, flush, and shutdown from a process (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_create(pid_t pid,
const trace_attr_t *restrict attr,
trace_id_t *restrict trid);

TRL int posix_trace_create_withlog(pid_t pid,
const trace_attr_t *restrict attr, int file_desc,
trace_id_t *restrict trid);

int posix_trace_flush(trace_id_t trid);
int posix_trace_shutdown(trace_id_t trid);

DESCRIPTION
The posix_trace_create() function shall create an active trace stream. It allocates all the resources
needed by the trace stream being created for tracing the process specified by pid in accordance
with the attr argument. The attr argument represents the initial attributes of the trace stream and
shall have been initialized by the function posix_trace_attr_init() prior to the posix_trace_create()
call. If the argument attr is NULL, the default attributes shall be used. The attr attributes object
shall be manipulated through a set of functions described in the posix_trace_attr family of
functions. If the attributes of the object pointed to by attr are modified later, the attributes of the
trace stream shall not be affected. The creation-time attribute of the newly created trace stream
shall be set to the value of the system clock, if the Timers option is not supported, or to the value
of the CLOCK_REALTIME clock, if the Timers option is supported.

The pid argument represents the target process to be traced. If the process executing this function
does not have appropriate privileges to trace the process identified by pid, an error shall be
returned. If the pid argument is zero, the calling process shall be traced.

The posix_trace_create() function shall store the trace stream identifier of the new trace stream in
the object pointed to by the trid argument. This trace stream identifier shall be used in
subsequent calls to control tracing. The trid argument may only be used by the following
functions:

posix_trace_clear()
posix_trace_eventid_equal()
posix_trace_eventid_get_name()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()
posix_trace_get_attr()
posix_trace_get_status()

posix_trace_getnext_event()
posix_trace_shutdown()
posix_trace_start()
posix_trace_stop()
posix_trace_timedgetnext_event()
posix_trace_trid_eventid_open()
posix_trace_trygetnext_event()

TEF If the Trace Event Filter option is supported, the following additional functions may use the trid
argument:

posix_trace_get_filter() posix_trace_set_filter()

In particular, notice that the operations normally used by a trace analyzer process, such as
posix_trace_rewind() or posix_trace_close(), cannot be invoked using the trace stream identifier
returned by the posix_trace_create() function.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1483

48014

48015

48016

48017

48018

48019

48020

48021

48022

48023

48024

48025

48026

48027

48028

48029

48030

48031

48032

48033

48034

48035

48036

48037

48038

48039

48040

48041

48042

48043

48044

48045

48046

48047

48048

48049

48050

48051

48052

48053

48054

48055

48056

48057

48058

posix_trace_create() System Interfaces

TEF A trace stream shall be created in a suspended state. If the Trace Event Filter option is
supported, its trace event type filter shall be empty.

The posix_trace_create() function may be called multiple times from the same or different
processes, with the system-wide limit indicated by the runtime invariant value
{TRACE_SYS_MAX}, which has the minimum value {_POSIX_TRACE_SYS_MAX}.

The trace stream identifier returned by the posix_trace_create() function in the argument pointed
to by trid is valid only in the process that made the function call. If it is used from another
process, that is a child process, in functions defined in POSIX.1-2008, these functions shall return
with the error [EINVAL].

TRL The posix_trace_create_withlog() function shall be equivalent to posix_trace_create(), except that it
associates a trace log with this stream. The file_desc argument shall be the file descriptor
designating the trace log destination. The function shall fail if this file descriptor refers to a file
with a file type that is not compatible with the log policy associated with the trace log. The list of
the appropriate file types that are compatible with each log policy is implementation-defined.

The posix_trace_create_withlog() function shall return in the parameter pointed to by trid the trace
stream identifier, which uniquely identifies the newly created trace stream, and shall be used in
subsequent calls to control tracing. The trid argument may only be used by the following
functions:

posix_trace_clear()
posix_trace_eventid_equal()
posix_trace_eventid_get_name()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()
posix_trace_flush()
posix_trace_get_attr()

posix_trace_get_status()
posix_trace_getnext_event()
posix_trace_shutdown()
posix_trace_start()
posix_trace_stop()
posix_trace_timedgetnext_event()
posix_trace_trid_eventid_open()

TEF TRL If the Trace Event Filter option is supported, the following additional functions may use the trid
argument:

posix_trace_get_filter() posix_trace_set_filter()

TRL In particular, notice that the operations normally used by a trace analyzer process, such as
posix_trace_rewind() or posix_trace_close(), cannot be invoked using the trace stream identifier
returned by the posix_trace_create_withlog() function.

The posix_trace_flush() function shall initiate a flush operation which copies the contents of the
trace stream identified by the argument trid into the trace log associated with the trace stream at
the creation time. If no trace log has been associated with the trace stream pointed to by trid, this
function shall return an error. The termination of the flush operation can be polled by the
posix_trace_get_status() function. During the flush operation, it shall be possible to trace new
trace events up to the point when the trace stream becomes full. After flushing is completed, the
space used by the flushed trace events shall be available for tracing new trace events.

If flushing the trace stream causes the resulting trace log to become full, the trace log full policy
shall be applied. If the trace log-full-policy attribute is set, the following occurs:

POSIX_TRACE_UNTIL_FULL
The trace events that have not yet been flushed shall be discarded.

1484 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48059

48060

48061

48062

48063

48064

48065

48066

48067

48068

48069

48070

48071

48072

48073

48074

48075

48076

48077

48078

48079

48080

48081

48082

48083

48084

48085

48086

48087

48088

48089

48090

48091

48092

48093

48094

48095

48096

48097

48098

48099

48100

System Interfaces posix_trace_create()

POSIX_TRACE_LOOP
The trace events that have not yet been flushed shall be written to the beginning of the trace
log, overwriting previous trace events stored there.

POSIX_TRACE_APPEND
The trace events that have not yet been flushed shall be appended to the trace log.

The posix_trace_shutdown() function shall stop the tracing of trace events in the trace stream
identified by trid, as if posix_trace_stop() had been invoked. The posix_trace_shutdown() function
shall free all the resources associated with the trace stream.

The posix_trace_shutdown() function shall not return until all the resources associated with the
trace stream have been freed. When the posix_trace_shutdown() function returns, the trid
argument becomes an invalid trace stream identifier. A call to this function shall unconditionally
deallocate the resources regardless of whether all trace events have been retrieved by the
analyzer process. Any thread blocked on one of the trace_getnext_event() functions (which
specified this trid) before this call is unblocked with the error [EINVAL].

If the process exits, invokes a member of the exec family of functions, or is terminated, the trace
streams that the process had created and that have not yet been shut down, shall be
automatically shut down as if an explicit call were made to the posix_trace_shutdown() function.

TRL For an active trace stream with log, when the posix_trace_shutdown() function is called, all trace
events that have not yet been flushed to the trace log shall be flushed, as in the
posix_trace_flush() function, and the trace log shall be closed.

When a trace log is closed, all the information that may be retrieved later from the trace log
through the trace interface shall have been written to the trace log. This information includes the
trace attributes, the list of trace event types (with the mapping between trace event names and
trace event type identifiers), and the trace status.

In addition, unspecified information shall be written to the trace log to allow detection of a valid
trace log during the posix_trace_open() operation.

The posix_trace_shutdown() function shall not return until all trace events have been flushed.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

TRL The posix_trace_create() and posix_trace_create_withlog() functions store the trace stream
identifier value in the object pointed to by trid, if successful.

ERRORS
TRL The posix_trace_create() and posix_trace_create_withlog() functions shall fail if:

[EAGAIN] No more trace streams can be started now. {TRACE_SYS_MAX} has been
exceeded.

[EINTR] The operation was interrupted by a signal. No trace stream was created.

[EINVAL] One or more of the trace parameters specified by the attr parameter is invalid.

[ENOMEM] The implementation does not currently have sufficient memory to create the
trace stream with the specified parameters.

[EPERM] The caller does not have appropriate privileges to trace the process specified
by pid.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1485

48101

48102

48103

48104

48105

48106

48107

48108

48109

48110

48111

48112

48113

48114

48115

48116

48117

48118

48119

48120

48121

48122

48123

48124

48125

48126

48127

48128

48129

48130

48131

48132

48133

48134

48135

48136

48137

48138

48139

48140

48141

48142

posix_trace_create() System Interfaces

[ESRCH] The pid argument does not refer to an existing process.

TRL The posix_trace_create_withlog() function shall fail if:

[EBADF] The file_desc argument is not a valid file descriptor open for writing.

[EINVAL] The file_desc argument refers to a file with a file type that does not support the
log policy associated with the trace log.

[ENOSPC] No space left on device. The device corresponding to the argument file_desc
does not contain the space required to create this trace log.

TRL The posix_trace_flush() and posix_trace_shutdown() functions shall fail if:

[EINVAL] The value of the trid argument does not correspond to an active trace stream
with log.

[EFBIG] The trace log file has attempted to exceed an implementation-defined
maximum file size.

[ENOSPC] No space left on device.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_create(), posix_trace_create_withlog(), posix_trace_flush(), and
posix_trace_shutdown() functions may be removed in a future version.

SEE ALSO
clock_getres(), exec , posix_trace_attr_destroy(), posix_trace_clear(), posix_trace_close(),
posix_trace_eventid_equal(), posix_trace_eventtypelist_getnext_id(), posix_trace_get_attr(),
posix_trace_get_filter(), posix_trace_getnext_event(), posix_trace_start(), posix_trace_start(), time()

XBD <sys/types.h>, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7
These functions are marked obsolescent.

SD5-XSH-ERN-154 is applied, updating the DESCRIPTION to remove the
posix_trace_trygetnext_event() function from the list of functions that use the trid argument.

1486 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48143

48144

48145

48146

48147

48148

48149

48150

48151

48152

48153

48154

48155

48156

48157

48158

48159

48160

48161

48162

48163

48164

48165

48166

48167

48168

48169

48170

48171

48172

48173

48174

48175

System Interfaces posix_trace_event()

NAME
posix_trace_event, posix_trace_eventid_open — trace functions for instrumenting application
code (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

void posix_trace_event(trace_event_id_t event_id,
const void *restrict data_ptr, size_t data_len);

int posix_trace_eventid_open(const char *restrict event_name,
trace_event_id_t *restrict event_id);

DESCRIPTION
The posix_trace_event() function shall record the event_id and the user data pointed to by data_ptr
in the trace stream into which the calling process is being traced and in which event_id is not
filtered out. If the total size of the user trace event data represented by data_len is not greater
than the declared maximum size for user trace event data, then the truncation-status attribute of
the trace event recorded is POSIX_TRACE_NOT_TRUNCATED. Otherwise, the user trace event
data is truncated to this declared maximum size and the truncation-status attribute of the trace
event recorded is POSIX_TRACE_TRUNCATED_RECORD.

If there is no trace stream created for the process or if the created trace stream is not running, or
if the trace event specified by event_id is filtered out in the trace stream, the posix_trace_event()
function shall have no effect.

The posix_trace_eventid_open() function shall associate a user trace event name with a trace event
type identifier for the calling process. The trace event name is the string pointed to by the
argument event_name. It shall have a maximum of {TRACE_EVENT_NAME_MAX} characters
(which has the minimum value {_POSIX_TRACE_EVENT_NAME_MAX}). The number of user
trace event type identifiers that can be defined for any given process is limited by the maximum
value {TRACE_USER_EVENT_MAX}, which has the minimum value
{POSIX_TRACE_USER_EVENT_MAX}.

If the Trace Inherit option is not supported, the posix_trace_eventid_open() function shall associate
the user trace event name pointed to by the event_name argument with a trace event type
identifier that is unique for the traced process, and is returned in the variable pointed to by the
event_id argument. If the user trace event name has already been mapped for the traced process,
then the previously assigned trace event type identifier shall be returned. If the per-process user
trace event name limit represented by {TRACE_USER_EVENT_MAX} has been reached, the pre-
defined POSIX_TRACE_UNNAMED_USEREVENT (see Table 2-7, on page 539) user trace event
shall be returned.

TRI If the Trace Inherit option is supported, the posix_trace_eventid_open() function shall associate the
user trace event name pointed to by the event_name argument with a trace event type identifier
that is unique for all the processes being traced in this same trace stream, and is returned in the
variable pointed to by the event_id argument. If the user trace event name has already been
mapped for the traced processes, then the previously assigned trace event type identifier shall be
returned. If the per-process user trace event name limit represented by
{TRACE_USER_EVENT_MAX} has been reached, the pre-defined
POSIX_TRACE_UNNAMED_USEREVENT (Table 2-7, on page 539) user trace event shall be
returned.

Note: The above procedure, together with the fact that multiple processes can only be traced into the
same trace stream by inheritance, ensure that all the processes that are traced into a trace stream
have the same mapping of trace event names to trace event type identifiers.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1487

48176

48177

48178

48179

48180

48181

48182

48183

48184

48185

48186

48187

48188

48189

48190

48191

48192

48193

48194

48195

48196

48197

48198

48199

48200

48201

48202

48203

48204

48205

48206

48207

48208

48209

48210

48211

48212

48213

48214

48215

48216

48217

48218

48219

48220

48221

48222

48223

posix_trace_event() System Interfaces

If there is no trace stream created, the posix_trace_eventid_open() function shall store this
information for future trace streams created for this process.

RETURN VALUE
No return value is defined for the posix_trace_event() function.

Upon successful completion, the posix_trace_eventid_open() function shall return a value of zero.
Otherwise, it shall return the corresponding error number. The posix_trace_eventid_open()
function stores the trace event type identifier value in the object pointed to by event_id, if
successful.

ERRORS
The posix_trace_eventid_open() function shall fail if:

[ENAMETOOLONG]
The size of the name pointed to by the event_name argument was longer than
the implementation-defined value {TRACE_EVENT_NAME_MAX}.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_event() and posix_trace_eventid_open() functions may be removed in a future
version.

SEE ALSO
Table 2-7 (on page 539), exec , posix_trace_eventid_equal(), posix_trace_start()

XBD <sys/types.h>, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #123 is applied.

IEEE PASC Interpretation 1003.1 #127 is applied, correcting some editorial errors in the names of
the posix_trace_eventid_open() function and the event_id argument.

Issue 7
The posix_trace_event() and posix_trace_eventid_open() functions are marked obsolescent.

1488 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48224

48225

48226

48227

48228

48229

48230

48231

48232

48233

48234

48235

48236

48237

48238

48239

48240

48241

48242

48243

48244

48245

48246

48247

48248

48249

48250

48251

48252

48253

48254

48255

System Interfaces posix_trace_eventid_equal()

NAME
posix_trace_eventid_equal, posix_trace_eventid_get_name, posix_trace_trid_eventid_open —
manipulate the trace event type identifier (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_eventid_equal(trace_id_t trid, trace_event_id_t event1,
trace_event_id_t event2);

int posix_trace_eventid_get_name(trace_id_t trid,
trace_event_id_t event, char *event_name);

TEF int posix_trace_trid_eventid_open(trace_id_t trid,
const char *restrict event_name,
trace_event_id_t *restrict event);

DESCRIPTION
The posix_trace_eventid_equal() function shall compare the trace event type identifiers event1 and
event2 from the same trace stream or the same trace log identified by the trid argument. If the
trace event type identifiers event1 and event2 are from different trace streams, the return value
shall be unspecified.

The posix_trace_eventid_get_name() function shall return, in the argument pointed to by
event_name, the trace event name associated with the trace event type identifier identified by the
argument event, for the trace stream or for the trace log identified by the trid argument. The
name of the trace event shall have a maximum of {TRACE_EVENT_NAME_MAX} characters
(which has the minimum value {_POSIX_TRACE_EVENT_NAME_MAX}). Successive calls to
this function with the same trace event type identifier and the same trace stream identifier shall
return the same event name.

TEF The posix_trace_trid_eventid_open() function shall associate a user trace event name with a trace
event type identifier for a given trace stream. The trace stream is identified by the trid argument,
and it shall be an active trace stream. The trace event name is the string pointed to by the
argument event_name. It shall have a maximum of {TRACE_EVENT_NAME_MAX} characters
(which has the minimum value {_POSIX_TRACE_EVENT_NAME_MAX}). The number of user
trace event type identifiers that can be defined for any given process is limited by the maximum
value {TRACE_USER_EVENT_MAX}, which has the minimum value
{_POSIX_TRACE_USER_EVENT_MAX}.

If the Trace Inherit option is not supported, the posix_trace_trid_eventid_open() function shall
associate the user trace event name pointed to by the event_name argument with a trace event
type identifier that is unique for the process being traced in the trace stream identified by the trid
argument, and is returned in the variable pointed to by the event argument. If the user trace
event name has already been mapped for the traced process, then the previously assigned trace
event type identifier shall be returned. If the per-process user trace event name limit represented
by {TRACE_USER_EVENT_MAX} has been reached, the pre-defined
POSIX_TRACE_UNNAMED_USEREVENT (see Table 2-7, on page 539) user trace event shall be
returned.

TEF TRI If the Trace Inherit option is supported, the posix_trace_trid_eventid_open() function shall
associate the user trace event name pointed to by the event_name argument with a trace event
type identifier that is unique for all the processes being traced in the trace stream identified by
the trid argument, and is returned in the variable pointed to by the event argument. If the user
trace event name has already been mapped for the traced processes, then the previously
assigned trace event type identifier shall be returned. If the per-process user trace event name
limit represented by {TRACE_USER_EVENT_MAX} has been reached, the pre-defined

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1489

48256

48257

48258

48259

48260

48261

48262

48263

48264

48265

48266

48267

48268

48269

48270

48271

48272

48273

48274

48275

48276

48277

48278

48279

48280

48281

48282

48283

48284

48285

48286

48287

48288

48289

48290

48291

48292

48293

48294

48295

48296

48297

48298

48299

48300

48301

48302

48303

posix_trace_eventid_equal() System Interfaces

POSIX_TRACE_UNNAMED_USEREVENT (see Table 2-7, on page 539) user trace event shall be
returned.

RETURN VALUE
TEF Upon successful completion, the posix_trace_eventid_get_name() and

posix_trace_trid_eventid_open() functions shall return a value of zero. Otherwise, they shall return
the corresponding error number.

The posix_trace_eventid_equal() function shall return a non-zero value if event1 and event2 are
equal; otherwise, a value of zero shall be returned. No errors are defined. If either event1 or
event2 are not valid trace event type identifiers for the trace stream specified by trid or if the trid
is invalid, the behavior shall be unspecified.

The posix_trace_eventid_get_name() function stores the trace event name value in the object
pointed to by event_name, if successful.

TEF The posix_trace_trid_eventid_open() function stores the trace event type identifier value in the
object pointed to by event, if successful.

ERRORS
TEF The posix_trace_eventid_get_name() and posix_trace_trid_eventid_open() functions shall fail if:

[EINVAL] The trid argument was not a valid trace stream identifier.

TEF The posix_trace_trid_eventid_open() function shall fail if:

TEF [ENAMETOOLONG]
The size of the name pointed to by the event_name argument was longer than
the implementation-defined value {TRACE_EVENT_NAME_MAX}.

The posix_trace_eventid_get_name() function shall fail if:

[EINVAL] The trace event type identifier event was not associated with any name.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_eventid_equal(), posix_trace_eventid_get_name(), and
posix_trace_trid_eventid_open() functions may be removed in a future version.

SEE ALSO
Table 2-7 (on page 539), exec , posix_trace_event(), posix_trace_getnext_event()

XBD <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretations 1003.1 #123 and #129 are applied.

Issue 7
These functions are marked obsolescent.

1490 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48304

48305

48306

48307

48308

48309

48310

48311

48312

48313

48314

48315

48316

48317

48318

48319

48320

48321

48322

48323

48324

48325

48326

48327

48328

48329

48330

48331

48332

48333

48334

48335

48336

48337

48338

48339

48340

48341

48342

48343

System Interfaces posix_trace_eventid_open()

NAME
posix_trace_eventid_open — trace functions for instrumenting application code (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_eventid_open(const char *restrict event_name,
trace_event_id_t *restrict event_id);

DESCRIPTION
Refer to posix_trace_event().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1491

48344

48345

48346

48347

48348

48349

48350

48351

48352

posix_trace_eventset_add() System Interfaces

NAME
posix_trace_eventset_add, posix_trace_eventset_del, posix_trace_eventset_empty,
posix_trace_eventset_fill, posix_trace_eventset_ismember — manipulate trace event type sets
(TRACING)

SYNOPSIS
OB TRC #include <trace.h>

TEF int posix_trace_eventset_add(trace_event_id_t event_id,
trace_event_set_t *set);

int posix_trace_eventset_del(trace_event_id_t event_id,
trace_event_set_t *set);

int posix_trace_eventset_empty(trace_event_set_t *set);
int posix_trace_eventset_fill(trace_event_set_t *set, int what);
int posix_trace_eventset_ismember(trace_event_id_t event_id,

const trace_event_set_t *restrict set, int *restrict ismember);

DESCRIPTION
These primitives manipulate sets of trace event types. They operate on data objects addressable
by the application, not on the current trace event filter of any trace stream.

The posix_trace_eventset_add() and posix_trace_eventset_del() functions, respectively, shall add or
delete the individual trace event type specified by the value of the argument event_id to or from
the trace event type set pointed to by the argument set. Adding a trace event type already in the
set or deleting a trace event type not in the set shall not be considered an error.

The posix_trace_eventset_empty() function shall initialize the trace event type set pointed to by
the set argument such that all trace event types defined, both system and user, shall be excluded
from the set.

The posix_trace_eventset_fill() function shall initialize the trace event type set pointed to by the
argument set, such that the set of trace event types defined by the argument what shall be
included in the set. The value of the argument what shall consist of one of the following values,
as defined in the <trace.h> header:

POSIX_TRACE_WOPID_EVENTS
All the process-independent implementation-defined system trace event types are included
in the set.

POSIX_TRACE_SYSTEM_EVENTS
All the implementation-defined system trace event types are included in the set, as are those
defined in POSIX.1-2008.

POSIX_TRACE_ALL_EVENTS
All trace event types defined, both system and user, are included in the set.

Applications shall call either posix_trace_eventset_empty() or posix_trace_eventset_fill() at least
once for each object of type trace_event_set_t prior to any other use of that object. If such an
object is not initialized in this way, but is nonetheless supplied as an argument to any of the
posix_trace_eventset_add(), posix_trace_eventset_del(), or posix_trace_eventset_ismember() functions,
the results are undefined.

The posix_trace_eventset_ismember() function shall test whether the trace event type specified by
the value of the argument event_id is a member of the set pointed to by the argument set. The
value returned in the object pointed to by ismember argument is zero if the trace event type
identifier is not a member of the set and a value different from zero if it is a member of the set.

1492 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48353

48354

48355

48356

48357

48358

48359

48360

48361

48362

48363

48364

48365

48366

48367

48368

48369

48370

48371

48372

48373

48374

48375

48376

48377

48378

48379

48380

48381

48382

48383

48384

48385

48386

48387

48388

48389

48390

48391

48392

48393

48394

48395

48396

48397

System Interfaces posix_trace_eventset_add()

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

ERRORS
These functions may fail if:

[EINVAL] The value of one of the arguments is invalid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_eventset_add(), posix_trace_eventset_del(), posix_trace_eventset_empty(),
posix_trace_eventset_fill(), and posix_trace_eventset_ismember() functions may be removed in a
future version.

SEE ALSO
posix_trace_eventid_equal(), posix_trace_get_filter()

XBD <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7
The posix_trace_eventset_add(), posix_trace_eventset_del(), posix_trace_eventset_empty(),
posix_trace_eventset_fill(), and posix_trace_eventset_ismember() functions are marked obsolescent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1493

48398

48399

48400

48401

48402

48403

48404

48405

48406

48407

48408

48409

48410

48411

48412

48413

48414

48415

48416

48417

48418

48419

48420

48421

posix_trace_eventtypelist_getnext_id() System Interfaces

NAME
posix_trace_eventtypelist_getnext_id, posix_trace_eventtypelist_rewind — iterate over a
mapping of trace event types (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_eventtypelist_getnext_id(trace_id_t trid,
trace_event_id_t *restrict event, int *restrict unavailable);

int posix_trace_eventtypelist_rewind(trace_id_t trid);

DESCRIPTION
The first time posix_trace_eventtypelist_getnext_id() is called, the function shall return in the
variable pointed to by event the first trace event type identifier of the list of trace events of the
trace stream identified by the trid argument. Successive calls to
posix_trace_eventtypelist_getnext_id() return in the variable pointed to by event the next trace
event type identifier in that same list. Each time a trace event type identifier is successfully
written into the variable pointed to by the event argument, the variable pointed to by the
unavailable argument shall be set to zero. When no more trace event type identifiers are available,
and so none is returned, the variable pointed to by the unavailable argument shall be set to a
value different from zero.

The posix_trace_eventtypelist_rewind() function shall reset the next trace event type identifier to
be read to the first trace event type identifier from the list of trace events used in the trace stream
identified by trid.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

The posix_trace_eventtypelist_getnext_id() function stores the trace event type identifier value in
the object pointed to by event, if successful.

ERRORS
These functions shall fail if:

[EINVAL] The trid argument was not a valid trace stream identifier.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_eventtypelist_getnext_id() and posix_trace_eventtypelist_rewind() functions may be
removed in a future version.

SEE ALSO
posix_trace_event(), posix_trace_eventid_equal(), posix_trace_getnext_event()

XBD <trace.h>

1494 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48422

48423

48424

48425

48426

48427

48428

48429

48430

48431

48432

48433

48434

48435

48436

48437

48438

48439

48440

48441

48442

48443

48444

48445

48446

48447

48448

48449

48450

48451

48452

48453

48454

48455

48456

48457

48458

48459

48460

48461

48462

System Interfaces posix_trace_eventtypelist_getnext_id()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretations 1003.1 #123 and #129 are applied.

Issue 7
The posix_trace_eventtypelist_getnext_id() and posix_trace_eventtypelist_rewind() functions are
marked obsolescent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1495

48463

48464

48465

48466

48467

48468

posix_trace_flush() System Interfaces

NAME
posix_trace_flush — trace stream flush from a process (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

TRL int posix_trace_flush(trace_id_t trid);

DESCRIPTION
Refer to posix_trace_create().

1496 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48469

48470

48471

48472

48473

48474

48475

48476

System Interfaces posix_trace_get_attr()

NAME
posix_trace_get_attr, posix_trace_get_status — retrieve the trace attributes or trace status
(TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_get_attr(trace_id_t trid, trace_attr_t *attr);
int posix_trace_get_status(trace_id_t trid,

struct posix_trace_status_info *statusinfo);

DESCRIPTION
The posix_trace_get_attr() function shall copy the attributes of the active trace stream identified

TRL by trid into the object pointed to by the attr argument. If the Trace Log option is supported, trid
may represent a pre-recorded trace log.

The posix_trace_get_status() function shall return, in the structure pointed to by the statusinfo
argument, the current trace status for the trace stream identified by the trid argument. These
status values returned in the structure pointed to by statusinfo shall have been appropriately

TRL read to ensure that the returned values are consistent. If the Trace Log option is supported and
the trid argument refers to a pre-recorded trace stream, the status shall be the status of the
completed trace stream.

Each time the posix_trace_get_status() function is used, the overrun status of the trace stream
TRL shall be reset to POSIX_TRACE_NO_OVERRUN immediately after the call completes. If the

Trace Log option is supported, the posix_trace_get_status() function shall behave the same as
when the option is not supported except for the following differences:

• If the trid argument refers to a trace stream with log, each time the posix_trace_get_status()
function is used, the log overrun status of the trace stream shall be reset to
POSIX_TRACE_NO_OVERRUN and the flush_error status shall be reset to zero
immediately after the call completes.

• If the trid argument refers to a pre-recorded trace stream, the status returned shall be the
status of the completed trace stream and the status values of the trace stream shall not be
reset.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

The posix_trace_get_attr() function stores the trace attributes in the object pointed to by attr, if
successful.

The posix_trace_get_status() function stores the trace status in the object pointed to by statusinfo,
if successful.

ERRORS
These functions shall fail if:

[EINVAL] The trace stream argument trid does not correspond to a valid active trace
stream or a valid trace log.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1497

48477

48478

48479

48480

48481

48482

48483

48484

48485

48486

48487

48488

48489

48490

48491

48492

48493

48494

48495

48496

48497

48498

48499

48500

48501

48502

48503

48504

48505

48506

48507

48508

48509

48510

48511

48512

48513

48514

48515

48516

posix_trace_get_attr() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_get_attr() and posix_trace_get_status() functions may be removed in a future
version.

SEE ALSO
posix_trace_attr_destroy(), posix_trace_close(), posix_trace_create()

XBD <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #123 is applied.

Issue 7
The posix_trace_get_attr() and posix_trace_get_status() functions are marked obsolescent.

1498 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48517

48518

48519

48520

48521

48522

48523

48524

48525

48526

48527

48528

48529

48530

48531

48532

48533

System Interfaces posix_trace_get_filter()

NAME
posix_trace_get_filter, posix_trace_set_filter — retrieve and set the filter of an initialized trace
stream (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

TEF int posix_trace_get_filter(trace_id_t trid, trace_event_set_t *set);
int posix_trace_set_filter(trace_id_t trid,

const trace_event_set_t *set, int how);

DESCRIPTION
The posix_trace_get_filter() function shall retrieve, into the argument pointed to by set, the actual
trace event filter from the trace stream specified by trid.

The posix_trace_set_filter() function shall change the set of filtered trace event types after a trace
stream identified by the trid argument is created. This function may be called prior to starting
the trace stream, or while the trace stream is active. By default, if no call is made to
posix_trace_set_filter(), all trace events shall be recorded (that is, none of the trace event types are
filtered out).

If this function is called while the trace is in progress, a special system trace event,
POSIX_TRACE_FILTER, shall be recorded in the trace indicating both the old and the new sets
of filtered trace event types (see Table 2-4 (on page 537) and Table 2-6, on page 538).

If the posix_trace_set_filter() function is interrupted by a signal, an error shall be returned and the
filter shall not be changed. In this case, the state of the trace stream shall not be changed.

The value of the argument how indicates the manner in which the set is to be changed and shall
have one of the following values, as defined in the <trace.h> header:

POSIX_TRACE_SET_EVENTSET
The resulting set of trace event types to be filtered shall be the trace event type set pointed
to by the argument set.

POSIX_TRACE_ADD_EVENTSET
The resulting set of trace event types to be filtered shall be the union of the current set and
the trace event type set pointed to by the argument set.

POSIX_TRACE_SUB_EVENTSET
The resulting set of trace event types to be filtered shall be all trace event types in the
current set that are not in the set pointed to by the argument set; that is, remove each
element of the specified set from the current filter.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

The posix_trace_get_filter() function stores the set of filtered trace event types in set, if successful.

ERRORS
These functions shall fail if:

[EINVAL] The value of the trid argument does not correspond to an active trace stream
or the value of the argument pointed to by set is invalid.

[EINTR] The operation was interrupted by a signal.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1499

48534

48535

48536

48537

48538

48539

48540

48541

48542

48543

48544

48545

48546

48547

48548

48549

48550

48551

48552

48553

48554

48555

48556

48557

48558

48559

48560

48561

48562

48563

48564

48565

48566

48567

48568

48569

48570

48571

48572

48573

48574

48575

posix_trace_get_filter() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_get_filter() and posix_trace_set_filter() functions may be removed in a future
version.

SEE ALSO
Table 2-4 (on page 537), Table 2-6 (on page 538), posix_trace_eventset_add()

XBD <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #123 is applied.

Issue 7
The posix_trace_get_filter() and posix_trace_set_filter() functions are marked obsolescent.

1500 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48576

48577

48578

48579

48580

48581

48582

48583

48584

48585

48586

48587

48588

48589

48590

48591

48592

System Interfaces posix_trace_get_status()

NAME
posix_trace_get_status — retrieve the trace status (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_get_status(trace_id_t trid,
struct posix_trace_status_info *statusinfo);

DESCRIPTION
Refer to posix_trace_get_attr().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1501

48593

48594

48595

48596

48597

48598

48599

48600

posix_trace_getnext_event() System Interfaces

NAME
posix_trace_getnext_event, posix_trace_timedgetnext_event, posix_trace_trygetnext_event —
retrieve a trace event (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_getnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, size_t num_bytes,
size_t *restrict data_len, int *restrict unavailable);

int posix_trace_timedgetnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, size_t num_bytes,
size_t *restrict data_len, int *restrict unavailable,
const struct timespec *restrict abstime);

int posix_trace_trygetnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, size_t num_bytes,
size_t *restrict data_len, int *restrict unavailable);

DESCRIPTION
The posix_trace_getnext_event() function shall report a recorded trace event either from an active

TRL trace stream without log or a pre-recorded trace stream identified by the trid argument. The
posix_trace_trygetnext_event() function shall report a recorded trace event from an active trace
stream without log identified by the trid argument.

The trace event information associated with the recorded trace event shall be copied by the
function into the structure pointed to by the argument event and the data associated with the
trace event shall be copied into the buffer pointed to by the data argument.

The posix_trace_getnext_event() function shall block if the trid argument identifies an active trace
stream and there is currently no trace event ready to be retrieved. When returning, if a recorded
trace event was reported, the variable pointed to by the unavailable argument shall be set to zero.
Otherwise, the variable pointed to by the unavailable argument shall be set to a value different
from zero.

The posix_trace_timedgetnext_event() function shall attempt to get another trace event from an
active trace stream without log, as in the posix_trace_getnext_event() function. However, if no
trace event is available from the trace stream, the implied wait shall be terminated when the
timeout specified by the argument abstime expires, and the function shall return the error
[ETIMEDOUT].

The timeout shall expire when the absolute time specified by abstime passes, as measured by the
clock upon which timeouts are based (that is, when the value of that clock equals or exceeds
abstime), or if the absolute time specified by abstime has already passed at the time of the call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall
be the resolution of the clock on which it is based. The timespec data type is defined in the
<time.h> header.

Under no circumstance shall the function fail with a timeout if a trace event is immediately
available from the trace stream. The validity of the abstime argument need not be checked if a
trace event is immediately available from the trace stream.

1502 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48601

48602

48603

48604

48605

48606

48607

48608

48609

48610

48611

48612

48613

48614

48615

48616

48617

48618

48619

48620

48621

48622

48623

48624

48625

48626

48627

48628

48629

48630

48631

48632

48633

48634

48635

48636

48637

48638

48639

48640

48641

48642

48643

48644

48645

48646

System Interfaces posix_trace_getnext_event()

The behavior of this function for a pre-recorded trace stream is unspecified.

TRL The posix_trace_trygetnext_event() function shall not block. This function shall return an error if
the trid argument identifies a pre-recorded trace stream. If a recorded trace event was reported,
the variable pointed to by the unavailable argument shall be set to zero. Otherwise, if no trace
event was reported, the variable pointed to by the unavailable argument shall be set to a value
different from zero.

The argument num_bytes shall be the size of the buffer pointed to by the data argument. The
argument data_len reports to the application the length in bytes of the data record just
transferred. If num_bytes is greater than or equal to the size of the data associated with the trace
event pointed to by the event argument, all the recorded data shall be transferred. In this case,
the truncation-status member of the trace event structure shall be either
POSIX_TRACE_NOT_TRUNCATED, if the trace event data was recorded without truncation
while tracing, or POSIX_TRACE_TRUNCATED_RECORD, if the trace event data was truncated
when it was recorded. If the num_bytes argument is less than the length of recorded trace event
data, the data transferred shall be truncated to a length of num_bytes, the value stored in the
variable pointed to by data_len shall be equal to num_bytes, and the truncation-status member of
the event structure argument shall be set to POSIX_TRACE_TRUNCATED_READ (see the
posix_trace_event_info structure defined in <trace.h>).

The report of a trace event shall be sequential starting from the oldest recorded trace event. Trace
events shall be reported in the order in which they were generated, up to an implementation-
defined time resolution that causes the ordering of trace events occurring very close to each
other to be unknown. Once reported, a trace event cannot be reported again from an active trace
stream. Once a trace event is reported from an active trace stream without log, the trace stream
shall make the resources associated with that trace event available to record future generated
trace events.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

If successful, these functions store:

• The recorded trace event in the object pointed to by event

• The trace event information associated with the recorded trace event in the object pointed
to by data

• The length of this trace event information in the object pointed to by data_len

• The value of zero in the object pointed to by unavailable

ERRORS
These functions shall fail if:

[EINVAL] The trace stream identifier argument trid is invalid.

The posix_trace_getnext_event() and posix_trace_timedgetnext_event() functions shall fail if:

[EINTR] The operation was interrupted by a signal, and so the call had no effect.

The posix_trace_trygetnext_event() function shall fail if:

[EINVAL] The trace stream identifier argument trid does not correspond to an active
trace stream.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1503

48647

48648

48649

48650

48651

48652

48653

48654

48655

48656

48657

48658

48659

48660

48661

48662

48663

48664

48665

48666

48667

48668

48669

48670

48671

48672

48673

48674

48675

48676

48677

48678

48679

48680

48681

48682

48683

48684

48685

48686

48687

48688

posix_trace_getnext_event() System Interfaces

The posix_trace_timedgetnext_event() function shall fail if:

[EINVAL] There is no trace event immediately available from the trace stream, and the
timeout argument is invalid.

[ETIMEDOUT] No trace event was available from the trace stream before the specified
timeout timeout expired.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
These functions may be removed in a future version.

SEE ALSO
posix_trace_close(), posix_trace_create()

XBD <sys/types.h>, <trace.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #123 is applied.

Issue 7
The posix_trace_getnext_event(), posix_trace_timedgetnext_event(), and
posix_trace_trygetnext_event() functions are marked obsolescent.

Functionality relating to the Timers option is moved to the Base.

1504 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48689

48690

48691

48692

48693

48694

48695

48696

48697

48698

48699

48700

48701

48702

48703

48704

48705

48706

48707

48708

48709

48710

48711

System Interfaces posix_trace_open()

NAME
posix_trace_open, posix_trace_rewind — trace log management (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

TRL int posix_trace_open(int file_desc, trace_id_t *trid);
int posix_trace_rewind(trace_id_t trid);

DESCRIPTION
Refer to posix_trace_close().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1505

48712

48713

48714

48715

48716

48717

48718

48719

posix_trace_set_filter() System Interfaces

NAME
posix_trace_set_filter — set filter of an initialized trace stream (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

TEF int posix_trace_set_filter(trace_id_t trid,
const trace_event_set_t *set, int how);

DESCRIPTION
Refer to posix_trace_get_filter().

1506 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48720

48721

48722

48723

48724

48725

48726

48727

System Interfaces posix_trace_shutdown()

NAME
posix_trace_shutdown — trace stream shutdown from a process (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_shutdown(trace_id_t trid);

DESCRIPTION
Refer to posix_trace_create().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1507

48728

48729

48730

48731

48732

48733

48734

48735

posix_trace_start() System Interfaces

NAME
posix_trace_start, posix_trace_stop — trace start and stop (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

int posix_trace_start(trace_id_t trid);
int posix_trace_stop (trace_id_t trid);

DESCRIPTION
The posix_trace_start() and posix_trace_stop() functions, respectively, shall start and stop the trace
stream identified by the argument trid.

The effect of calling the posix_trace_start() function shall be recorded in the trace stream as the
POSIX_TRACE_START system trace event and the status of the trace stream shall become
POSIX_TRACE_RUNNING. If the trace stream is in progress when this function is called, the
POSIX_TRACE_START system trace event shall not be recorded and the trace stream shall
continue to run. If the trace stream is full, the POSIX_TRACE_START system trace event shall
not be recorded and the status of the trace stream shall not be changed.

The effect of calling the posix_trace_stop() function shall be recorded in the trace stream as the
POSIX_TRACE_STOP system trace event and the status of the trace stream shall become
POSIX_TRACE_SUSPENDED. If the trace stream is suspended when this function is called, the
POSIX_TRACE_STOP system trace event shall not be recorded and the trace stream shall remain
suspended. If the trace stream is full, the POSIX_TRACE_STOP system trace event shall not be
recorded and the status of the trace stream shall not be changed.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall
return the corresponding error number.

ERRORS
These functions shall fail if:

[EINVAL] The value of the argument trid does not correspond to an active trace stream
and thus no trace stream was started or stopped.

[EINTR] The operation was interrupted by a signal and thus the trace stream was not
necessarily started or stopped.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_start() and posix_trace_stop() functions may be removed in a future version.

SEE ALSO
posix_trace_create()

XBD <trace.h>

1508 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48736

48737

48738

48739

48740

48741

48742

48743

48744

48745

48746

48747

48748

48749

48750

48751

48752

48753

48754

48755

48756

48757

48758

48759

48760

48761

48762

48763

48764

48765

48766

48767

48768

48769

48770

48771

48772

48773

48774

48775

48776

System Interfaces posix_trace_start()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

IEEE PASC Interpretation 1003.1 #123 is applied.

Issue 7
The posix_trace_start() and posix_trace_stop() functions are marked obsolescent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1509

48777

48778

48779

48780

48781

posix_trace_timedgetnext_event() System Interfaces

NAME
posix_trace_timedgetnext_event — retrieve a trace event (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_timedgetnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, size_t num_bytes,
size_t *restrict data_len, int *restrict unavailable,
const struct timespec *restrict abstime);

DESCRIPTION
Refer to posix_trace_getnext_event().

1510 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48782

48783

48784

48785

48786

48787

48788

48789

48790

48791

48792

48793

System Interfaces posix_trace_trid_eventid_open()

NAME
posix_trace_trid_eventid_open — open a trace event type identifier (TRACING)

SYNOPSIS
OB TRC #include <trace.h>

TEF int posix_trace_trid_eventid_open(trace_id_t trid,
const char *restrict event_name,
trace_event_id_t *restrict event);

DESCRIPTION
Refer to posix_trace_eventid_equal().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1511

48794

48795

48796

48797

48798

48799

48800

48801

48802

posix_trace_trygetnext_event() System Interfaces

NAME
posix_trace_trygetnext_event — retrieve a trace event (TRACING)

SYNOPSIS
OB TRC #include <sys/types.h>

#include <trace.h>

int posix_trace_trygetnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, size_t num_bytes,
size_t *restrict data_len, int *restrict unavailable);

DESCRIPTION
Refer to posix_trace_getnext_event().

1512 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48803

48804

48805

48806

48807

48808

48809

48810

48811

48812

48813

System Interfaces posix_typed_mem_get_info()

NAME
posix_typed_mem_get_info — query typed memory information (ADVANCED REALTIME)

SYNOPSIS
TYM #include <sys/mman.h>

int posix_typed_mem_get_info(int fildes,
struct posix_typed_mem_info *info);

DESCRIPTION
The posix_typed_mem_get_info() function shall return, in the posix_tmi_length field of the
posix_typed_mem_info structure pointed to by info, the maximum length which may be
successfully allocated by the typed memory object designated by fildes. This maximum length
shall take into account the flag POSIX_TYPED_MEM_ALLOCATE or
POSIX_TYPED_MEM_ALLOCATE_CONTIG specified when the typed memory object
represented by fildes was opened. The maximum length is dynamic; therefore, the value
returned is valid only while the current mapping of the corresponding typed memory pool
remains unchanged.

If fildes represents a typed memory object opened with neither the
POSIX_TYPED_MEM_ALLOCATE flag nor the POSIX_TYPED_MEM_ALLOCATE_CONTIG
flag specified, the returned value of info->posix_tmi_length is unspecified.

The posix_typed_mem_get_info() function may return additional implementation-defined
information in other fields of the posix_typed_mem_info structure pointed to by info.

If the memory object specified by fildes is not a typed memory object, then the behavior of this
function is undefined.

RETURN VALUE
Upon successful completion, the posix_typed_mem_get_info() function shall return zero;
otherwise, the corresponding error status value shall be returned.

ERRORS
The posix_typed_mem_get_info() function shall fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[ENODEV] The fildes argument is not connected to a memory object supported by this
function.

This function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
An application that needs to allocate a block of typed memory with length dependent upon the
amount of memory currently available must either query the typed memory object to obtain the
amount available, or repeatedly invoke mmap() attempting to guess an appropriate length.
While the latter method is existing practice with malloc(), it is awkward and imprecise. The
posix_typed_mem_get_info() function allows an application to immediately determine available
memory. This is particularly important for typed memory objects that may in some cases be
scarce resources. Note that when a typed memory pool is a shared resource, some form of
mutual-exclusion or synchronization may be required while typed memory is being queried and

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1513

48814

48815

48816

48817

48818

48819

48820

48821

48822

48823

48824

48825

48826

48827

48828

48829

48830

48831

48832

48833

48834

48835

48836

48837

48838

48839

48840

48841

48842

48843

48844

48845

48846

48847

48848

48849

48850

48851

48852

48853

48854

48855

48856

48857

posix_typed_mem_get_info() System Interfaces

allocated to prevent race conditions.

The existing fstat() function is not suitable for this purpose. We realize that implementations
may wish to provide other attributes of typed memory objects (for example, alignment
requirements, page size, and so on). The fstat() function returns a structure which is not
extensible and, furthermore, contains substantial information that is inappropriate for typed
memory objects.

FUTURE DIRECTIONS
None.

SEE ALSO
fstat(), mmap(), posix_typed_mem_open()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

1514 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48858

48859

48860

48861

48862

48863

48864

48865

48866

48867

48868

48869

48870

System Interfaces posix_typed_mem_open()

NAME
posix_typed_mem_open — open a typed memory object (ADVANCED REALTIME)

SYNOPSIS
TYM #include <sys/mman.h>

int posix_typed_mem_open(const char *name, int oflag, int tflag);

DESCRIPTION
The posix_typed_mem_open() function shall establish a connection between the typed memory
object specified by the string pointed to by name and a file descriptor. It shall create an open file
description that refers to the typed memory object and a file descriptor that refers to that open
file description. The file descriptor is used by other functions to refer to that typed memory
object. It is unspecified whether the name appears in the file system and is visible to other
functions that take pathnames as arguments. The name argument conforms to the construction
rules for a pathname, except that the interpretation of <slash> characters other than the leading
<slash> character in name is implementation-defined, and that the length limits for the name
argument are implementation-defined and need not be the same as the pathname limits
{PATH_MAX} and {NAME_MAX}. If name begins with the <slash> character, then processes
calling posix_typed_mem_open() with the same value of name shall refer to the same typed
memory object. If name does not begin with the <slash> character, the effect is implementation-
defined.

Each typed memory object supported in a system shall be identified by a name which specifies
not only its associated typed memory pool, but also the path or port by which it is accessed. That
is, the same typed memory pool accessed via several different ports shall have several different
corresponding names. The binding between names and typed memory objects is established in
an implementation-defined manner. Unlike shared memory objects, there is no way within
POSIX.1-2008 for a program to create a typed memory object.

The value of tflag shall determine how the typed memory object behaves when subsequently
mapped by calls to mmap(). At most, one of the following flags defined in <sys/mman.h> may
be specified:

POSIX_TYPED_MEM_ALLOCATE
Allocate on mmap().

POSIX_TYPED_MEM_ALLOCATE_CONTIG
Allocate contiguously on mmap().

POSIX_TYPED_MEM_MAP_ALLOCATABLE
Map on mmap(), without affecting allocatability.

If tflag has the flag POSIX_TYPED_MEM_ALLOCATE specified, any subsequent call to mmap()
using the returned file descriptor shall result in allocation and mapping of typed memory from
the specified typed memory pool. The allocated memory may be a contiguous previously
unallocated area of the typed memory pool or several non-contiguous previously unallocated
areas (mapped to a contiguous portion of the process address space). If tflag has the flag
POSIX_TYPED_MEM_ALLOCATE_CONTIG specified, any subsequent call to mmap() using the
returned file descriptor shall result in allocation and mapping of a single contiguous previously
unallocated area of the typed memory pool (also mapped to a contiguous portion of the process
address space). If tflag has none of the flags POSIX_TYPED_MEM_ALLOCATE or
POSIX_TYPED_MEM_ALLOCATE_CONTIG specified, any subsequent call to mmap() using the
returned file descriptor shall map an application-chosen area from the specified typed memory
pool such that this mapped area becomes unavailable for allocation until unmapped by all
processes. If tflag has the flag POSIX_TYPED_MEM_MAP_ALLOCATABLE specified, any

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1515

48871

48872

48873

48874

48875

48876

48877

48878

48879

48880

48881

48882

48883

48884

48885

48886

48887

48888

48889

48890

48891

48892

48893

48894

48895

48896

48897

48898

48899

48900

48901

48902

48903

48904

48905

48906

48907

48908

48909

48910

48911

48912

48913

48914

48915

48916

48917

posix_typed_mem_open() System Interfaces

subsequent call to mmap() using the returned file descriptor shall map an application-chosen
area from the specified typed memory pool without an effect on the availability of that area for
allocation; that is, mapping such an object leaves each byte of the mapped area unallocated if it
was unallocated prior to the mapping or allocated if it was allocated prior to the mapping.
Appropriate privileges to specify the POSIX_TYPED_MEM_MAP_ALLOCATABLE flag are
implementation-defined.

If successful, posix_typed_mem_open() shall return a file descriptor for the typed memory object
that is the lowest numbered file descriptor not currently open for that process. The open file
description is new, and therefore the file descriptor shall not share it with any other processes. It
is unspecified whether the file offset is set. The FD_CLOEXEC file descriptor flag associated
with the new file descriptor shall be cleared.

The behavior of msync(), ftruncate(), and all file operations other than mmap(),
posix_mem_offset(), posix_typed_mem_get_info(), fstat(), dup(), dup2(), and close(), is unspecified
when passed a file descriptor connected to a typed memory object by this function.

The file status flags of the open file description shall be set according to the value of oflag.
Applications shall specify exactly one of the three access mode values described below and
defined in the <fcntl.h> header, as the value of oflag.

O_RDONLY Open for read access only.

O_WRONLY Open for write access only.

O_RDWR Open for read or write access.

RETURN VALUE
Upon successful completion, the posix_typed_mem_open() function shall return a non-negative
integer representing the lowest numbered unused file descriptor. Otherwise, it shall return −1
and set errno to indicate the error.

ERRORS
The posix_typed_mem_open() function shall fail if:

[EACCES] The typed memory object exists and the permissions specified by oflag are
denied.

[EINTR] The posix_typed_mem_open() operation was interrupted by a signal.

[EINVAL] The flags specified in tflag are invalid (more than one of
POSIX_TYPED_MEM_ALLOCATE,
POSIX_TYPED_MEM_ALLOCATE_CONTIG, or
POSIX_TYPED_MEM_MAP_ALLOCATABLE is specified).

[EMFILE] All file descriptors available to the process are currently open.

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems.

[ENFILE] Too many file descriptors are currently open in the system.

[ENOENT] The named typed memory object does not exist.

1516 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48918

48919

48920

48921

48922

48923

48924

48925

48926

48927

48928

48929

48930

48931

48932

48933

48934

48935

48936

48937

48938

48939

48940

48941

48942

48943

48944

48945

48946

48947

48948

48949

48950

48951

48952

48953

48954

48955

48956

48957

48958

48959

System Interfaces posix_typed_mem_open()

[EPERM] The caller lacks appropriate privileges to specify the
POSIX_TYPED_MEM_MAP_ALLOCATABLE flag in the tflag argument.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), dup(), exec , fcntl(), fstat(), ftruncate(), mmap(), msync(), posix_mem_offset(),
posix_typed_mem_get_info(), umask()

XBD <fcntl.h>, <sys/mman.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1517

48960

48961

48962

48963

48964

48965

48966

48967

48968

48969

48970

48971

48972

48973

48974

48975

48976

48977

pow() System Interfaces

NAME
pow, powf, powl — power function

SYNOPSIS
#include <math.h>

double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the value of x raised to the power y, xy. If x is negative, the
application shall ensure that y is an integer value.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the value of x raised to the power y.

MX For finite values of x < 0, and finite non-integer values of y, a domain error shall occur and
either a NaN (if representable), or an implementation-defined value shall be returned.

If the correct value would cause overflow, a range error shall occur and pow(), powf(), and
powl() shall return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL, respectively, with the
same sign as the correct value of the function.

If the correct value would cause underflow, and is not representable, a range error may occur,
MX and either 0.0 (if supported), or an implementation-defined value shall be returned.

CX For y < 0, if x is zero, a pole error may occur and pow(), powf(), and powl() shall return
MX ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL, respectively. On systems that support the

IEC 60559 Floating-Point option, a pole error shall occur and pow(), powf(), and powl() shall
return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL, respectively if y is an odd integer, or
HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively if y is not an odd integer.

MX If x or y is a NaN, a NaN shall be returned (unless specified elsewhere in this description).

For any value of y (including NaN), if x is +1, 1.0 shall be returned.

For any value of x (including NaN), if y is ±0, 1.0 shall be returned.

For any odd integer value of y > 0, if x is ±0, ±0 shall be returned.

For y > 0 and not an odd integer, if x is ±0, +0 shall be returned.

If x is −1, and y is ±Inf, 1.0 shall be returned.

For |x| < 1, if y is −Inf, +Inf shall be returned.

For |x| > 1, if y is −Inf, +0 shall be returned.

For |x| < 1, if y is +Inf, +0 shall be returned.

For |x| > 1, if y is +Inf, +Inf shall be returned.

For y an odd integer < 0, if x is −Inf, −0 shall be returned.

1518 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

48978

48979

48980

48981

48982

48983

48984

48985

48986

48987

48988

48989

48990

48991

48992

48993

48994

48995

48996

48997

48998

48999

49000

49001

49002

49003

49004

49005

49006

49007

49008

49009

49010

49011

49012

49013

49014

49015

49016

49017

49018

49019

System Interfaces pow()

For y < 0 and not an odd integer, if x is −Inf, +0 shall be returned.

For y an odd integer > 0, if x is −Inf, −Inf shall be returned.

For y > 0 and not an odd integer, if x is −Inf, +Inf shall be returned.

For y < 0, if x is +Inf, +0 shall be returned.

For y > 0, if x is +Inf, +Inf shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

Domain Error The value of x is negative and y is a finite non-integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

MX Pole Error The value of x is zero and y is negative.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Pole Error The value of x is zero and y is negative.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1519

49020

49021

49022

49023

49024

49025

49026

49027

49028

49029

49030

49031

49032

49033

49034

49035

49036

49037

49038

49039

49040

49041

49042

49043

49044

49045

49046

49047

49048

49049

49050

49051

49052

49053

49054

pow() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), isnan()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The powf() and powl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/42 is applied, correcting the third
paragraph in the RETURN VALUE section.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #51 (SD5-XSH-ERN-81) is applied.

1520 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

49055

49056

49057

49058

49059

49060

49061

49062

49063

49064

49065

49066

49067

49068

49069

49070

49071

49072

49073

49074

49075

49076

49077

49078

49079

49080

49081

49082

System Interfaces pread()

NAME
pread — read from a file

SYNOPSIS
#include <unistd.h>

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);

DESCRIPTION
Refer to read().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1521

49083

49084

49085

49086

49087

49088

49089

printf() System Interfaces

NAME
printf — print formatted output

SYNOPSIS
#include <stdio.h>

int printf(const char *restrict format, ...);

DESCRIPTION
Refer to fprintf().

1522 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

49090

49091

49092

49093

49094

49095

49096

System Interfaces pselect()

NAME
pselect, select — synchronous I/O multiplexing

SYNOPSIS
#include <sys/select.h>

int pselect(int nfds, fd_set *restrict readfds,
fd_set *restrict writefds, fd_set *restrict errorfds,
const struct timespec *restrict timeout,
const sigset_t *restrict sigmask);

int select(int nfds, fd_set *restrict readfds,
fd_set *restrict writefds, fd_set *restrict errorfds,
struct timeval *restrict timeout);

void FD_CLR(int fd, fd_set *fdset);
int FD_ISSET(int fd, fd_set *fdset);
void FD_SET(int fd, fd_set *fdset);
void FD_ZERO(fd_set *fdset);

DESCRIPTION
The pselect() function shall examine the file descriptor sets whose addresses are passed in the
readfds, writefds, and errorfds parameters to see whether some of their descriptors are ready for
reading, are ready for writing, or have an exceptional condition pending, respectively.

The select() function shall be equivalent to the pselect() function, except as follows:

• For the select() function, the timeout period is given in seconds and microseconds in an
argument of type struct timeval, whereas for the pselect() function the timeout period is
given in seconds and nanoseconds in an argument of type struct timespec.

• The select() function has no sigmask argument; it shall behave as pselect() does when
sigmask is a null pointer.

• Upon successful completion, the select() function may modify the object pointed to by the
timeout argument.

The pselect() and select() functions shall support regular files, terminal and pseudo-terminal
OB XSR devices, STREAMS-based files, FIFOs, pipes, and sockets. The behavior of pselect() and select()

on file descriptors that refer to other types of file is unspecified.

The nfds argument specifies the range of descriptors to be tested. The first nfds descriptors shall
be checked in each set; that is, the descriptors from zero through nfds−1 in the descriptor sets
shall be examined.

If the readfds argument is not a null pointer, it points to an object of type fd_set that on input
specifies the file descriptors to be checked for being ready to read, and on output indicates
which file descriptors are ready to read.

If the writefds argument is not a null pointer, it points to an object of type fd_set that on input
specifies the file descriptors to be checked for being ready to write, and on output indicates
which file descriptors are ready to write.

If the errorfds argument is not a null pointer, it points to an object of type fd_set that on input
specifies the file descriptors to be checked for error conditions pending, and on output indicates
which file descriptors have error conditions pending.

Upon successful completion, the pselect() or select() function shall modify the objects pointed to
by the readfds, writefds, and errorfds arguments to indicate which file descriptors are ready for
reading, ready for writing, or have an error condition pending, respectively, and shall return the
total number of ready descriptors in all the output sets. For each file descriptor less than nfds, the

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1523

49097

49098

49099

49100

49101

49102

49103

49104

49105

49106

49107

49108

49109

49110

49111

49112

49113

49114

49115

49116

49117

49118

49119

49120

49121

49122

49123

49124

49125

49126

49127

49128

49129

49130

49131

49132

49133

49134

49135

49136

49137

49138

49139

49140

49141

49142

pselect() System Interfaces

corresponding bit shall be set upon successful completion if it was set on input and the
associated condition is true for that file descriptor.

If none of the selected descriptors are ready for the requested operation, the pselect() or select()
function shall block until at least one of the requested operations becomes ready, until the
timeout occurs, or until interrupted by a signal. The timeout parameter controls how long the
pselect() or select() function shall take before timing out. If the timeout parameter is not a null
pointer, it specifies a maximum interval to wait for the selection to complete. If the specified
time interval expires without any requested operation becoming ready, the function shall return.
If the timeout parameter is a null pointer, then the call to pselect() or select() shall block
indefinitely until at least one descriptor meets the specified criteria. To effect a poll, the timeout
parameter should not be a null pointer, and should point to a zero-valued timespec structure.

The use of a timeout does not affect any pending timers set up by alarm() or setitimer().

Implementations may place limitations on the maximum timeout interval supported. All
implementations shall support a maximum timeout interval of at least 31 days. If the timeout
argument specifies a timeout interval greater than the implementation-defined maximum value,
the maximum value shall be used as the actual timeout value. Implementations may also place
limitations on the granularity of timeout intervals. If the requested timeout interval requires a
finer granularity than the implementation supports, the actual timeout interval shall be rounded
up to the next supported value.

If sigmask is not a null pointer, then the pselect() function shall replace the signal mask of the
caller by the set of signals pointed to by sigmask before examining the descriptors, and shall
restore the signal mask of the calling thread before returning.

A descriptor shall be considered ready for reading when a call to an input function with
O_NONBLOCK clear would not block, whether or not the function would transfer data
successfully. (The function might return data, an end-of-file indication, or an error other than
one indicating that it is blocked, and in each of these cases the descriptor shall be considered
ready for reading.)

A descriptor shall be considered ready for writing when a call to an output function with
O_NONBLOCK clear would not block, whether or not the function would transfer data
successfully.

If a socket has a pending error, it shall be considered to have an exceptional condition pending.
Otherwise, what constitutes an exceptional condition is file type-specific. For a file descriptor for
use with a socket, it is protocol-specific except as noted below. For other file types it is
implementation-defined. If the operation is meaningless for a particular file type, pselect() or
select() shall indicate that the descriptor is ready for read or write operations, and shall indicate
that the descriptor has no exceptional condition pending.

If a descriptor refers to a socket, the implied input function is the recvmsg() function with
parameters requesting normal and ancillary data, such that the presence of either type shall
cause the socket to be marked as readable. The presence of out-of-band data shall be checked if
the socket option SO_OOBINLINE has been enabled, as out-of-band data is enqueued with
normal data. If the socket is currently listening, then it shall be marked as readable if an
incoming connection request has been received, and a call to the accept() function shall complete
without blocking.

If a descriptor refers to a socket, the implied output function is the sendmsg() function supplying
an amount of normal data equal to the current value of the SO_SNDLOWAT option for the
socket. If a non-blocking call to the connect() function has been made for a socket, and the
connection attempt has either succeeded or failed leaving a pending error, the socket shall be

1524 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

49143

49144

49145

49146

49147

49148

49149

49150

49151

49152

49153

49154

49155

49156

49157

49158

49159

49160

49161

49162

49163

49164

49165

49166

49167

49168

49169

49170

49171

49172

49173

49174

49175

49176

49177

49178

49179

49180

49181

49182

49183

49184

49185

49186

49187

49188

49189

System Interfaces pselect()

marked as writable.

A socket shall be considered to have an exceptional condition pending if a receive operation
with O_NONBLOCK clear for the open file description and with the MSG_OOB flag set would
return out-of-band data without blocking. (It is protocol-specific whether the MSG_OOB flag
would be used to read out-of-band data.) A socket shall also be considered to have an
exceptional condition pending if an out-of-band data mark is present in the receive queue. Other
circumstances under which a socket may be considered to have an exceptional condition
pending are protocol-specific and implementation-defined.

If the readfds, writefds, and errorfds arguments are all null pointers and the timeout argument is
not a null pointer, the pselect() or select() function shall block for the time specified, or until
interrupted by a signal. If the readfds, writefds, and errorfds arguments are all null pointers and
the timeout argument is a null pointer, the pselect() or select() function shall block until
interrupted by a signal.

File descriptors associated with regular files shall always select true for ready to read, ready to
write, and error conditions.

On failure, the objects pointed to by the readfds, writefds, and errorfds arguments shall not be
modified. If the timeout interval expires without the specified condition being true for any of the
specified file descriptors, the objects pointed to by the readfds, writefds, and errorfds arguments
shall have all bits set to 0.

File descriptor masks of type fd_set can be initialized and tested with FD_CLR(), FD_ISSET(),
FD_SET(), and FD_ZERO(). It is unspecified whether each of these is a macro or a function. If a
macro definition is suppressed in order to access an actual function, or a program defines an
external identifier with any of these names, the behavior is undefined.

FD_CLR(fd, fdsetp) shall remove the file descriptor fd from the set pointed to by fdsetp. If fd is not
a member of this set, there shall be no effect on the set, nor will an error be returned.

FD_ISSET(fd, fdsetp) shall evaluate to non-zero if the file descriptor fd is a member of the set
pointed to by fdsetp, and shall evaluate to zero otherwise.

FD_SET(fd, fdsetp) shall add the file descriptor fd to the set pointed to by fdsetp. If the file
descriptor fd is already in this set, there shall be no effect on the set, nor will an error be
returned.

FD_ZERO(fdsetp) shall initialize the descriptor set pointed to by fdsetp to the null set. No error is
returned if the set is not empty at the time FD_ZERO() is invoked.

The behavior of these macros is undefined if the fd argument is less than 0 or greater than or
equal to FD_SETSIZE, or if fd is not a valid file descriptor, or if any of the arguments are
expressions with side-effects.

If a thread gets canceled during a pselect() call, the signal mask in effect when executing the
registered cleanup functions is either the original signal mask or the signal mask installed as part
of the pselect() call.

RETURN VALUE
Upon successful completion, the pselect() and select() functions shall return the total number of
bits set in the bit masks. Otherwise, −1 shall be returned, and errno shall be set to indicate the
error.

FD_CLR(), FD_SET(), and FD_ZERO() do not return a value. FD_ISSET() shall return a non-
zero value if the bit for the file descriptor fd is set in the file descriptor set pointed to by fdset, and
0 otherwise.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1525

49190

49191

49192

49193

49194

49195

49196

49197

49198

49199

49200

49201

49202

49203

49204

49205

49206

49207

49208

49209

49210

49211

49212

49213

49214

49215

49216

49217

49218

49219

49220

49221

49222

49223

49224

49225

49226

49227

49228

49229

49230

49231

49232

49233

49234

pselect() System Interfaces

ERRORS
Under the following conditions, pselect() and select() shall fail and set errno to:

[EBADF] One or more of the file descriptor sets specified a file descriptor that is not a
valid open file descriptor.

[EINTR] The function was interrupted before any of the selected events occurred and
before the timeout interval expired.

XSI If SA_RESTART has been set for the interrupting signal, it is implementation-
defined whether the function restarts or returns with [EINTR].

[EINVAL] An invalid timeout interval was specified.

[EINVAL] The nfds argument is less than 0 or greater than FD_SETSIZE.

OB XSR [EINVAL] One of the specified file descriptors refers to a STREAM or multiplexer that is
linked (directly or indirectly) downstream from a multiplexer.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
In earlier versions of the Single UNIX Specification, the select() function was defined in the
<sys/time.h> header. This is now changed to <sys/select.h>. The rationale for this change was
as follows: the introduction of the pselect() function included the <sys/select.h> header and the
<sys/select.h> header defines all the related definitions for the pselect() and select() functions.
Backwards-compatibility to existing XSI implementations is handled by allowing <sys/time.h>
to include <sys/select.h>.

Code which wants to avoid the ambiguity of the signal mask for thread cancellation handlers
can install an additional cancellation handler which resets the signal mask to the expected value.

void cleanup(void *arg)
{

sigset_t *ss = (sigset_t *) arg;
pthread_sigmask(SIG_SETMASK, ss, NULL);

}

int call_pselect(int nfds, fd_set *readfds, fd_set *writefds,
fd_set errorfds, const struct timespec *timeout,
const sigset_t *sigmask)

{
sigset_t oldmask;
int result;
pthread_sigmask(SIG_SETMASK, NULL, &oldmask);
pthread_cleanup_push(cleanup, &oldmask);
result = pselect(nfds, readfds, writefds, errorfds, timeout, sigmask);
pthread_cleanup_pop(0);
return result;

}

1526 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

49235

49236

49237

49238

49239

49240

49241

49242

49243

49244

49245

49246

49247

49248

49249

49250

49251

49252

49253

49254

49255

49256

49257

49258

49259

49260

49261

49262

49263

49264

49265

49266

49267

49268

49269

49270

49271

49272

49273

49274

49275

49276

System Interfaces pselect()

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), alarm(), connect(), fcntl(), getitimer(), poll(), read(), recvmsg(), sendmsg(), write()

XBD <sys/select.h>, <sys/time.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

In the ERRORS section, the text has been changed to indicate that [EINVAL] is returned when
nfds is less than 0 or greater than FD_SETSIZE. It previously stated less than 0, or greater than or
equal to FD_SETSIZE.

Text about timeout is moved from the APPLICATION USAGE section to the DESCRIPTION.

Issue 6
The Open Group Corrigendum U026/6 is applied, changing the occurrences of readfs and writefs
in the select() DESCRIPTION to be readfds and writefds.

Text referring to sockets is added to the DESCRIPTION.

The DESCRIPTION and ERRORS sections are updated so that references to STREAMS are
marked as part of the XSI STREAMS Option Group.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• These functions are now mandatory.

The pselect() function is added for alignment with IEEE Std 1003.1g-2000 and additional detail
related to sockets semantics is added to the DESCRIPTION.

The select() function now requires inclusion of <sys/select.h>.

The restrict keyword is added to the select() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/70 is applied, updating the
DESCRIPTION to reference the signal mask in terms of the calling thread rather than the
process.

Issue 7
SD5-XSH-ERN-122 is applied, adding text to the DESCRIPTION for when a thread is canceled
during a call to pselect(), and adding example code to the RATIONALE.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Functionality relating to the Threads option is moved to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1527

49277

49278

49279

49280

49281

49282

49283

49284

49285

49286

49287

49288

49289

49290

49291

49292

49293

49294

49295

49296

49297

49298

49299

49300

49301

49302

49303

49304

49305

49306

49307

49308

49309

49310

49311

psiginfo() System Interfaces

NAME
psiginfo, psignal — print signal information to standard error

SYNOPSIS
CX #include <signal.h>

void psiginfo(const siginfo_t *pinfo, const char *message);
void psignal(int signum, const char *message);

DESCRIPTION
The psiginfo() and psignal() functions shall print a message out on stderr associated with a signal
number. If message is not null and is not the empty string, then the string pointed to by the
message argument shall be printed first, followed by a <colon>, a <space>, and the signal
description string indicated by signum, or by the signal associated with pinfo. If the message
argument is null or points to an empty string, then only the signal description shall be printed.
For psiginfo(), the argument pinfo references a valid siginfo_t structure. For psignal(), if signum is
not a valid signal number, the behavior is implementation-defined.

The psiginfo() and psignal() functions shall not change the orientation of the standard error
stream.

The psiginfo() and psignal() functions shall mark for update the last data modification and last
file status change timestamps of the file associated with the standard error stream at some time
between their successful completion and exit(), abort(), or the completion of fflush() or fclose()
on stderr.

RETURN VALUE
These functions shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
System V historically has psignal() and psiginfo() in <siginfo.h>. However, the <siginfo.h>
header is not specified in the Base Definitions volume of POSIX.1-2008, and the type siginfo_t is
defined in <signal.h>.

FUTURE DIRECTIONS
None.

SEE ALSO
perror(), strsignal()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 7.

1528 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

49312

49313

49314

49315

49316

49317

49318

49319

49320

49321

49322

49323

49324

49325

49326

49327

49328

49329

49330

49331

49332

49333

49334

49335

49336

49337

49338

49339

49340

49341

49342

49343

49344

49345

49346

49347

49348

49349

49350

System Interfaces pthread_atfork()

NAME
pthread_atfork — register fork handlers

SYNOPSIS
#include <pthread.h>

int pthread_atfork(void (*prepare)(void), void (*parent)(void),
void (*child)(void));

DESCRIPTION
The pthread_atfork() function shall declare fork handlers to be called before and after fork(), in
the context of the thread that called fork(). The prepare fork handler shall be called before fork()
processing commences. The parent fork handle shall be called after fork() processing completes
in the parent process. The child fork handler shall be called after fork() processing completes in
the child process. If no handling is desired at one or more of these three points, the
corresponding fork handler address(es) may be set to NULL.

The order of calls to pthread_atfork() is significant. The parent and child fork handlers shall be
called in the order in which they were established by calls to pthread_atfork(). The prepare fork
handlers shall be called in the opposite order.

RETURN VALUE
Upon successful completion, pthread_atfork() shall return a value of zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_atfork() function shall fail if:

[ENOMEM] Insufficient table space exists to record the fork handler addresses.

The pthread_atfork() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
There are at least two serious problems with the semantics of fork() in a multi-threaded
program. One problem has to do with state (for example, memory) covered by mutexes.
Consider the case where one thread has a mutex locked and the state covered by that mutex is
inconsistent while another thread calls fork(). In the child, the mutex is in the locked state
(locked by a nonexistent thread and thus can never be unlocked). Having the child simply
reinitialize the mutex is unsatisfactory since this approach does not resolve the question about
how to correct or otherwise deal with the inconsistent state in the child.

It is suggested that programs that use fork() call an exec function very soon afterwards in the
child process, thus resetting all states. In the meantime, only a short list of async-signal-safe
library routines are promised to be available.

Unfortunately, this solution does not address the needs of multi-threaded libraries. Application
programs may not be aware that a multi-threaded library is in use, and they feel free to call any
number of library routines between the fork() and exec calls, just as they always have. Indeed,
they may be extant single-threaded programs and cannot, therefore, be expected to obey new
restrictions imposed by the threads library.

On the other hand, the multi-threaded library needs a way to protect its internal state during
fork() in case it is re-entered later in the child process. The problem arises especially in multi-

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1529

49351

49352

49353

49354

49355

49356

49357

49358

49359

49360

49361

49362

49363

49364

49365

49366

49367

49368

49369

49370

49371

49372

49373

49374

49375

49376

49377

49378

49379

49380

49381

49382

49383

49384

49385

49386

49387

49388

49389

49390

49391

49392

49393

49394

49395

pthread_atfork() System Interfaces

threaded I/O libraries, which are almost sure to be invoked between the fork() and exec calls to
effect I/O redirection. The solution may require locking mutex variables during fork(), or it may
entail simply resetting the state in the child after the fork() processing completes.

The pthread_atfork() function was intended to provide multi-threaded libraries with a means to
protect themselves from innocent application programs that call fork(), and to provide multi-
threaded application programs with a standard mechanism for protecting themselves from
fork() calls in a library routine or the application itself.

The expected usage was that the prepare handler would acquire all mutex locks and the other
two fork handlers would release them.

For example, an application could have supplied a prepare routine that acquires the necessary
mutexes the library maintains and supplied child and parent routines that release those
mutexes, thus ensuring that the child would have got a consistent snapshot of the state of the
library (and that no mutexes would have been left stranded). This is good in theory, but in
reality not practical. Each and every mutex and lock in the process must be located and locked.
Every component of a program including third-party components must participate and they
must agree who is responsible for which mutex or lock. This is especially problematic for
mutexes and locks in dynamically allocated memory. All mutexes and locks internal to the
implementation must be locked, too. This possibly delays the thread calling fork() for a long
time or even indefinitely since uses of these synchronization objects may not be under control of
the application. A final problem to mention here is the problem of locking streams. At least the
streams under control of the system (like stdin, stdout, stderr) must be protected by locking the
stream with flockfile(). But the application itself could have done that, possibly in the same
thread calling fork(). In this case, the process will deadlock.

Alternatively, some libraries might have been able to supply just a child routine that reinitializes
the mutexes in the library and all associated states to some known value (for example, what it
was when the image was originally executed). This approach is not possible, though, because
implementations are allowed to fail *_init() and *_destroy() calls for mutexes and locks if the
mutex or lock is still locked. In this case, the child routine is not able to reinitialize the mutexes
and locks.

When fork() is called, only the calling thread is duplicated in the child process. Synchronization
variables remain in the same state in the child as they were in the parent at the time fork() was
called. Thus, for example, mutex locks may be held by threads that no longer exist in the child
process, and any associated states may be inconsistent. The intention was that the parent process
could have avoided this by explicit code that acquires and releases locks critical to the child via
pthread_atfork(). In addition, any critical threads would have needed to be recreated and
reinitialized to the proper state in the child (also via pthread_atfork()).

A higher-level package may acquire locks on its own data structures before invoking lower-level
packages. Under this scenario, the order specified for fork handler calls allows a simple rule of
initialization for avoiding package deadlock: a package initializes all packages on which it
depends before it calls the pthread_atfork() function for itself.

As explained, there is no suitable solution for functionality which requires non-atomic
operations to be protected through mutexes and locks. This is why the POSIX.1 standard since
the 1996 release requires that the child process after fork() in a multi-threaded process only calls
async-signal-safe interfaces.

1530 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

49396

49397

49398

49399

49400

49401

49402

49403

49404

49405

49406

49407

49408

49409

49410

49411

49412

49413

49414

49415

49416

49417

49418

49419

49420

49421

49422

49423

49424

49425

49426

49427

49428

49429

49430

49431

49432

49433

49434

49435

49436

49437

49438

49439

System Interfaces pthread_atfork()

FUTURE DIRECTIONS
None.

SEE ALSO
atexit(), exec , fork()

XBD <pthread.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 5. Derived from the POSIX Threads Extension.

IEEE PASC Interpretation 1003.1c #4 is applied.

Issue 6
The pthread_atfork() function is marked as part of the Threads option.

The <pthread.h> header is added to the SYNOPSIS.

Issue 7
The pthread_atfork() function is moved from the Threads option to the Base.

SD5-XSH-ERN-145 is applied, updating the RATIONALE.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1531

49440

49441

49442

49443

49444

49445

49446

49447

49448

49449

49450

49451

49452

49453

pthread_attr_destroy() System Interfaces

NAME
pthread_attr_destroy, pthread_attr_init — destroy and initialize the thread attributes object

SYNOPSIS
#include <pthread.h>

int pthread_attr_destroy(pthread_attr_t *attr);
int pthread_attr_init(pthread_attr_t *attr);

DESCRIPTION
The pthread_attr_destroy() function shall destroy a thread attributes object. An implementation
may cause pthread_attr_destroy() to set attr to an implementation-defined invalid value. A
destroyed attr attributes object can be reinitialized using pthread_attr_init(); the results of
otherwise referencing the object after it has been destroyed are undefined.

The pthread_attr_init() function shall initialize a thread attributes object attr with the default
value for all of the individual attributes used by a given implementation.

The resulting attributes object (possibly modified by setting individual attribute values) when
used by pthread_create() defines the attributes of the thread created. A single attributes object can
be used in multiple simultaneous calls to pthread_create(). Results are undefined if
pthread_attr_init() is called specifying an already initialized attr attributes object.

The behavior is undefined if the value specified by the attr argument to pthread_attr_destroy()
does not refer to an initialized thread attributes object.

RETURN VALUE
Upon successful completion, pthread_attr_destroy() and pthread_attr_init() shall return a value of
0; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the thread attributes object.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Attributes objects are provided for threads, mutexes, and condition variables as a mechanism to
support probable future standardization in these areas without requiring that the function itself
be changed.

Attributes objects provide clean isolation of the configurable aspects of threads. For example,
‘‘stack size’’ is an important attribute of a thread, but it cannot be expressed portably. When
porting a threaded program, stack sizes often need to be adjusted. The use of attributes objects
can help by allowing the changes to be isolated in a single place, rather than being spread across
every instance of thread creation.

Attributes objects can be used to set up ‘‘classes’ of threads with similar attributes; for example,
‘‘threads with large stacks and high priority’’ or ‘‘threads with minimal stacks’’. These classes
can be defined in a single place and then referenced wherever threads need to be created.
Changes to ‘‘class’’ decisions become straightforward, and detailed analysis of each
pthread_create() call is not required.

1532 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

49454

49455

49456

49457

49458

49459

49460

49461

49462

49463

49464

49465

49466

49467

49468

49469

49470

49471

49472

49473

49474

49475

49476

49477

49478

49479

49480

49481

49482

49483

49484

49485

49486

49487

49488

49489

49490

49491

49492

49493

49494

49495

49496

49497

System Interfaces pthread_attr_destroy()

The attributes objects are defined as opaque types as an aid to extensibility. If these objects had
been specified as structures, adding new attributes would force recompilation of all multi-
threaded programs when the attributes objects are extended; this might not be possible if
different program components were supplied by different vendors.

Additionally, opaque attributes objects present opportunities for improving performance.
Argument validity can be checked once when attributes are set, rather than each time a thread is
created. Implementations often need to cache kernel objects that are expensive to create.
Opaque attributes objects provide an efficient mechanism to detect when cached objects become
invalid due to attribute changes.

Since assignment is not necessarily defined on a given opaque type, implementation-defined
default values cannot be defined in a portable way. The solution to this problem is to allow
attributes objects to be initialized dynamically by attributes object initialization functions, so that
default values can be supplied automatically by the implementation.

The following proposal was provided as a suggested alternative to the supplied attributes:

1. Maintain the style of passing a parameter formed by the bitwise-inclusive OR of flags to
the initialization routines (pthread_create(), pthread_mutex_init(), pthread_cond_init()). The
parameter containing the flags should be an opaque type for extensibility. If no flags are
set in the parameter, then the objects are created with default characteristics. An
implementation may specify implementation-defined flag values and associated
behavior.

2. If further specialization of mutexes and condition variables is necessary, implementations
may specify additional procedures that operate on the pthread_mutex_t and
pthread_cond_t objects (instead of on attributes objects).

The difficulties with this solution are:

1. A bitmask is not opaque if bits have to be set into bitvector attributes objects using
explicitly-coded bitwise-inclusive OR operations. If the set of options exceeds an int,
application programmers need to know the location of each bit. If bits are set or read by
encapsulation (that is, get and set functions), then the bitmask is merely an
implementation of attributes objects as currently defined and should not be exposed to
the programmer.

2. Many attributes are not Boolean or very small integral values. For example, scheduling
policy may be placed in 3-bit or 4-bit, but priority requires 5-bit or more, thereby taking
up at least 8 bits out of a possible 16 bits on machines with 16-bit integers. Because of this,
the bitmask can only reasonably control whether particular attributes are set or not, and it
cannot serve as the repository of the value itself. The value needs to be specified as a
function parameter (which is non-extensible), or by setting a structure field (which is non-
opaque), or by get and set functions (making the bitmask a redundant addition to the
attributes objects).

Stack size is defined as an optional attribute because the very notion of a stack is inherently
machine-dependent. Some implementations may not be able to change the size of the stack, for
example, and others may not need to because stack pages may be discontiguous and can be
allocated and released on demand.

The attribute mechanism has been designed in large measure for extensibility. Future extensions
to the attribute mechanism or to any attributes object defined in this volume of POSIX.1-2008 has
to be done with care so as not to affect binary-compatibility.

Attributes objects, even if allocated by means of dynamic allocation functions such as malloc(),

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1533

49498

49499

49500

49501

49502

49503

49504

49505

49506

49507

49508

49509

49510

49511

49512

49513

49514

49515

49516

49517

49518

49519

49520

49521

49522

49523

49524

49525

49526

49527

49528

49529

49530

49531

49532

49533

49534

49535

49536

49537

49538

49539

49540

49541

49542

49543

pthread_attr_destroy() System Interfaces

may have their size fixed at compile time. This means, for example, a pthread_create() in an
implementation with extensions to pthread_attr_t cannot look beyond the area that the binary
application assumes is valid. This suggests that implementations should maintain a size field in
the attributes object, as well as possibly version information, if extensions in different directions
(possibly by different vendors) are to be accommodated.

If an implementation detects that the value specified by the attr argument to
pthread_attr_destroy() does not refer to an initialized thread attributes object, it is recommended
that the function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the attr argument to pthread_attr_init()
refers to an already initialized thread attributes object, it is recommended that the function
should fail and report an [EBUSY] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_getstacksize(), pthread_attr_getdetachstate(), pthread_create()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_attr_destroy() and pthread_attr_init() functions are marked as part of the Threads
option.

IEEE PASC Interpretation 1003.1 #107 is applied, noting that the effect of initializing an already
initialized thread attributes object is undefined.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/71 is applied, updating the ERRORS
section to add the optional [EINVAL] error for the pthread_attr_destroy() function, and the
optional [EBUSY] error for the pthread_attr_init() function.

Issue 7
The pthread_attr_destroy() and pthread_attr_init() functions are moved from the Threads option
to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

The [EBUSY] error for an already initialized thread attributes object is removed; this condition
results in undefined behavior.

1534 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

49544

49545

49546

49547

49548

49549

49550

49551

49552

49553

49554

49555

49556

49557

49558

49559

49560

49561

49562

49563

49564

49565

49566

49567

49568

49569

49570

49571

49572

49573

49574

49575

49576

System Interfaces pthread_attr_getdetachstate()

NAME
pthread_attr_getdetachstate, pthread_attr_setdetachstate — get and set the detachstate attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_getdetachstate(const pthread_attr_t *attr,
int *detachstate);

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

DESCRIPTION
The detachstate attribute controls whether the thread is created in a detached state. If the thread
is created detached, then use of the ID of the newly created thread by the pthread_detach() or
pthread_join() function is an error.

The pthread_attr_getdetachstate() and pthread_attr_setdetachstate() functions, respectively, shall get
and set the detachstate attribute in the attr object.

For pthread_attr_getdetachstate(), detachstate shall be set to either
PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.

For pthread_attr_setdetachstate(), the application shall set detachstate to either
PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.

A value of PTHREAD_CREATE_DETACHED shall cause all threads created with attr to be in
the detached state, whereas using a value of PTHREAD_CREATE_JOINABLE shall cause all
threads created with attr to be in the joinable state. The default value of the detachstate attribute
shall be PTHREAD_CREATE_JOINABLE.

The behavior is undefined if the value specified by the attr argument to
pthread_attr_getdetachstate() or pthread_attr_setdetachstate() does not refer to an initialized thread
attributes object.

RETURN VALUE
Upon successful completion, pthread_attr_getdetachstate() and pthread_attr_setdetachstate() shall
return a value of 0; otherwise, an error number shall be returned to indicate the error.

The pthread_attr_getdetachstate() function stores the value of the detachstate attribute in detachstate
if successful.

ERRORS
The pthread_attr_setdetachstate() function shall fail if:

[EINVAL] The value of detachstate was not valid

These functions shall not return an error code of [EINTR].

EXAMPLES

Retrieving the detachstate Attribute

This example shows how to obtain the detachstate attribute of a thread attribute object.

#include <pthread.h>

pthread_attr_t thread_attr;
int detachstate;
int rc;

/* code initializing thread_attr */
...

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1535

49577

49578

49579

49580

49581

49582

49583

49584

49585

49586

49587

49588

49589

49590

49591

49592

49593

49594

49595

49596

49597

49598

49599

49600

49601

49602

49603

49604

49605

49606

49607

49608

49609

49610

49611

49612

49613

49614

49615

49616

49617

49618

pthread_attr_getdetachstate() System Interfaces

rc = pthread_attr_getdetachstate (&thread_attr, &detachstate);
if (rc!=0) {

/* handle error */
...

}
else {

/* legal values for detachstate are:
* PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE
*/
...

}

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_attr_getdetachstate() or pthread_attr_setdetachstate() does not refer to an initialized thread
attributes object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getstacksize(), pthread_create()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_attr_setdetachstate() and pthread_attr_getdetachstate() functions are marked as part of
the Threads option.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/72 is applied, adding the example to the
EXAMPLES section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/73 is applied, updating the ERRORS
section to include the optional [EINVAL] error.

Issue 7
The pthread_attr_setdetachstate() and pthread_attr_getdetachstate() functions are moved from the
Threads option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

1536 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

49619

49620

49621

49622

49623

49624

49625

49626

49627

49628

49629

49630

49631

49632

49633

49634

49635

49636

49637

49638

49639

49640

49641

49642

49643

49644

49645

49646

49647

49648

49649

49650

49651

49652

49653

49654

49655

System Interfaces pthread_attr_getguardsize()

NAME
pthread_attr_getguardsize, pthread_attr_setguardsize — get and set the thread guardsize
attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_getguardsize(const pthread_attr_t *restrict attr,
size_t *restrict guardsize);

int pthread_attr_setguardsize(pthread_attr_t *attr,
size_t guardsize);

DESCRIPTION
The pthread_attr_getguardsize() function shall get the guardsize attribute in the attr object. This
attribute shall be returned in the guardsize parameter.

The pthread_attr_setguardsize() function shall set the guardsize attribute in the attr object. The new
value of this attribute shall be obtained from the guardsize parameter. If guardsize is zero, a guard
area shall not be provided for threads created with attr. If guardsize is greater than zero, a guard
area of at least size guardsize bytes shall be provided for each thread created with attr.

The guardsize attribute controls the size of the guard area for the created thread’s stack. The
guardsize attribute provides protection against overflow of the stack pointer. If a thread’s stack is
created with guard protection, the implementation allocates extra memory at the overflow end
of the stack as a buffer against stack overflow of the stack pointer. If an application overflows
into this buffer an error shall result (possibly in a SIGSEGV signal being delivered to the thread).

A conforming implementation may round up the value contained in guardsize to a multiple of
the configurable system variable {PAGESIZE} (see <sys/mman.h>). If an implementation
rounds up the value of guardsize to a multiple of {PAGESIZE}, a call to pthread_attr_getguardsize()
specifying attr shall store in the guardsize parameter the guard size specified by the previous
pthread_attr_setguardsize() function call.

The default value of the guardsize attribute is implementation-defined.

If the stackaddr attribute has been set (that is, the caller is allocating and managing its own thread
stacks), the guardsize attribute shall be ignored and no protection shall be provided by the
implementation. It is the responsibility of the application to manage stack overflow along with
stack allocation and management in this case.

The behavior is undefined if the value specified by the attr argument to
pthread_attr_getguardsize() or pthread_attr_setguardsize() does not refer to an initialized thread
attributes object.

RETURN VALUE
If successful, the pthread_attr_getguardsize() and pthread_attr_setguardsize() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
These functions shall fail if:

[EINVAL] The parameter guardsize is invalid.

These functions shall not return an error code of [EINTR].

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1537

49656

49657

49658

49659

49660

49661

49662

49663

49664

49665

49666

49667

49668

49669

49670

49671

49672

49673

49674

49675

49676

49677

49678

49679

49680

49681

49682

49683

49684

49685

49686

49687

49688

49689

49690

49691

49692

49693

49694

49695

49696

pthread_attr_getguardsize() System Interfaces

EXAMPLES

Retrieving the guardsize Attribute

This example shows how to obtain the guardsize attribute of a thread attribute object.

#include <pthread.h>

pthread_attr_t thread_attr;
size_t guardsize;
int rc;

/* code initializing thread_attr */
...

rc = pthread_attr_getguardsize (&thread_attr, &guardsize);
if (rc != 0) {

/* handle error */
...

}
else {

if (guardsize > 0) {
/* a guard area of at least guardsize bytes is provided */
...
}
else {
/* no guard area provided */
...
}

}

APPLICATION USAGE
None.

RATIONALE
The guardsize attribute is provided to the application for two reasons:

1. Overflow protection can potentially result in wasted system resources. An application
that creates a large number of threads, and which knows its threads never overflow their
stack, can save system resources by turning off guard areas.

2. When threads allocate large data structures on the stack, large guard areas may be needed
to detect stack overflow.

The default size of the guard area is left implementation-defined since on systems supporting
very large page sizes, the overhead might be substantial if at least one guard page is required by
default.

If an implementation detects that the value specified by the attr argument to
pthread_attr_getguardsize() or pthread_attr_setguardsize() does not refer to an initialized thread
attributes object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

1538 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

49697

49698

49699

49700

49701

49702

49703

49704

49705

49706

49707

49708

49709

49710

49711

49712

49713

49714

49715

49716

49717

49718

49719

49720

49721

49722

49723

49724

49725

49726

49727

49728

49729

49730

49731

49732

49733

49734

49735

49736

49737

System Interfaces pthread_attr_getguardsize()

SEE ALSO
XBD <pthread.h>, <sys/mman.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
In the ERRORS section, a third [EINVAL] error condition is removed as it is covered by the
second error condition.

The restrict keyword is added to the pthread_attr_getguardsize() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/74 is applied, updating the ERRORS
section to remove the [EINVAL] error (‘‘The attribute attr is invalid.’’), and replacing it with the
optional [EINVAL] error.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/76 is applied, adding the example to the
EXAMPLES section.

Issue 7
SD5-XSH-ERN-111 is applied, removing the reference to the stack attribute in the DESCRIPTION.

SD5-XSH-ERN-175 is applied, updating the DESCRIPTION to note that the default size of the
guard area is implementation-defined.

The pthread_attr_getguardsize() and pthread_attr_setguardsize() functions are moved from the XSI
option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1539

49738

49739

49740

49741

49742

49743

49744

49745

49746

49747

49748

49749

49750

49751

49752

49753

49754

49755

49756

49757

49758

49759

pthread_attr_getinheritsched() System Interfaces

NAME
pthread_attr_getinheritsched, pthread_attr_setinheritsched — get and set the inheritsched
attribute (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_getinheritsched(const pthread_attr_t *restrict attr,
int *restrict inheritsched);

int pthread_attr_setinheritsched(pthread_attr_t *attr,
int inheritsched);

DESCRIPTION
The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions, respectively, shall
get and set the inheritsched attribute in the attr argument.

When the attributes objects are used by pthread_create(), the inheritsched attribute determines
how the other scheduling attributes of the created thread shall be set.

The supported values of inheritsched shall be:

PTHREAD_INHERIT_SCHED
Specifies that the thread scheduling attributes shall be inherited from the creating thread,
and the scheduling attributes in this attr argument shall be ignored.

PTHREAD_EXPLICIT_SCHED
Specifies that the thread scheduling attributes shall be set to the corresponding values from
this attributes object.

The symbols PTHREAD_INHERIT_SCHED and PTHREAD_EXPLICIT_SCHED are defined in
the <pthread.h> header.

The following thread scheduling attributes defined by POSIX.1-2008 are affected by the
inheritsched attribute: scheduling policy (schedpolicy), scheduling parameters (schedparam), and
scheduling contention scope (contentionscope).

The behavior is undefined if the value specified by the attr argument to
pthread_attr_getinheritsched() or pthread_attr_setinheritsched() does not refer to an initialized
thread attributes object.

RETURN VALUE
If successful, the pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_setinheritsched() function may fail if:

[EINVAL] The value of inheritsched is not valid.

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

These functions shall not return an error code of [EINTR].

1540 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

49760

49761

49762

49763

49764

49765

49766

49767

49768

49769

49770

49771

49772

49773

49774

49775

49776

49777

49778

49779

49780

49781

49782

49783

49784

49785

49786

49787

49788

49789

49790

49791

49792

49793

49794

49795

49796

System Interfaces pthread_attr_getinheritsched()

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

See Section 2.9.4 (on page 509) for further details on thread scheduling attributes and their
default settings.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_attr_getinheritsched() or pthread_attr_setinheritsched() does not refer to an initialized
thread attributes object, it is recommended that the function should fail and report an [EINVAL]
error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getscope(), pthread_attr_getschedpolicy(),
pthread_attr_getschedparam(), pthread_create()

XBD <pthread.h>, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions are marked as part
of the Threads and Thread Execution Scheduling options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Execution Scheduling option.

The restrict keyword is added to the pthread_attr_getinheritsched() prototype for alignment with
the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/75 is applied, clarifying the values of
inheritsched in the DESCRIPTION and adding two optional [EINVAL] errors to the ERRORS
section for checking when attr refers to an uninitialized thread attribute object.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/77 is applied, adding a reference to
Section 2.9.4 (on page 509) in the APPLICATION USAGE section.

Issue 7
The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions are moved from the
Threads option.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1541

49797

49798

49799

49800

49801

49802

49803

49804

49805

49806

49807

49808

49809

49810

49811

49812

49813

49814

49815

49816

49817

49818

49819

49820

49821

49822

49823

49824

49825

49826

49827

49828

49829

49830

49831

49832

49833

49834

pthread_attr_getschedparam() System Interfaces

NAME
pthread_attr_getschedparam, pthread_attr_setschedparam — get and set the schedparam
attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_getschedparam(const pthread_attr_t *restrict attr,
struct sched_param *restrict param);

int pthread_attr_setschedparam(pthread_attr_t *restrict attr,
const struct sched_param *restrict param);

DESCRIPTION
The pthread_attr_getschedparam() and pthread_attr_setschedparam() functions, respectively, shall
get and set the scheduling parameter attributes in the attr argument. The contents of the param
structure are defined in the <sched.h> header. For the SCHED_FIFO and SCHED_RR policies,
the only required member of param is sched_priority.

TSP For the SCHED_SPORADIC policy, the required members of the param structure are
sched_priority, sched_ss_low_priority, sched_ss_repl_period, sched_ss_init_budget, and
sched_ss_max_repl. The specified sched_ss_repl_period must be greater than or equal to the
specified sched_ss_init_budget for the function to succeed; if it is not, then the function shall fail.
The value of sched_ss_max_repl shall be within the inclusive range [1,{SS_REPL_MAX}] for the
function to succeed; if not, the function shall fail. It is unspecified whether the
sched_ss_repl_period and sched_ss_init_budget values are stored as provided by this function or are
rounded to align with the resolution of the clock being used.

The behavior is undefined if the value specified by the attr argument to
pthread_attr_getschedparam() or pthread_attr_setschedparam() does not refer to an initialized thread
attributes object.

RETURN VALUE
If successful, the pthread_attr_getschedparam() and pthread_attr_setschedparam() functions shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_setschedparam() function may fail if:

[EINVAL] The value of param is not valid.

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_attr_getschedparam() or pthread_attr_setschedparam() does not refer to an initialized thread
attributes object, it is recommended that the function should fail and report an [EINVAL] error.

1542 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

49835

49836

49837

49838

49839

49840

49841

49842

49843

49844

49845

49846

49847

49848

49849

49850

49851

49852

49853

49854

49855

49856

49857

49858

49859

49860

49861

49862

49863

49864

49865

49866

49867

49868

49869

49870

49871

49872

49873

49874

49875

49876

System Interfaces pthread_attr_getschedparam()

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getscope(), pthread_attr_getinheritsched(),
pthread_attr_getschedpolicy(), pthread_create()

XBD <pthread.h>, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_attr_getschedparam() and pthread_attr_setschedparam() functions are marked as part
of the Threads option.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_attr_getschedparam() and
pthread_attr_setschedparam() prototypes for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/78 is applied, updating the ERRORS
section to include optional errors for the case when attr refers to an uninitialized thread attribute
object.

Issue 7
The pthread_attr_getschedparam() and pthread_attr_setschedparam() functions are moved from the
Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy requirements
for the sched_ss_repl_period and sched_ss_init_budget values.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1543

49877

49878

49879

49880

49881

49882

49883

49884

49885

49886

49887

49888

49889

49890

49891

49892

49893

49894

49895

49896

49897

49898

49899

49900

pthread_attr_getschedpolicy() System Interfaces

NAME
pthread_attr_getschedpolicy, pthread_attr_setschedpolicy — get and set the schedpolicy
attribute (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_getschedpolicy(const pthread_attr_t *restrict attr,
int *restrict policy);

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

DESCRIPTION
The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions, respectively, shall
get and set the schedpolicy attribute in the attr argument.

The supported values of policy shall include SCHED_FIFO, SCHED_RR, and SCHED_OTHER,
which are defined in the <sched.h> header. When threads executing with the scheduling policy

TSP SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC are waiting on a mutex, they shall acquire
the mutex in priority order when the mutex is unlocked.

The behavior is undefined if the value specified by the attr argument to
pthread_attr_getschedpolicy() or pthread_attr_setschedpolicy() does not refer to an initialized thread
attributes object.

RETURN VALUE
If successful, the pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_setschedpolicy() function may fail if:

[EINVAL] The value of policy is not valid.

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

See Section 2.9.4 (on page 509) for further details on thread scheduling attributes and their
default settings.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_attr_getschedpolicy() or pthread_attr_setschedpolicy() does not refer to an initialized thread
attributes object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getscope(), pthread_attr_getinheritsched(),
pthread_attr_getschedparam(), pthread_create()

XBD <pthread.h>, <sched.h>

1544 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

49901

49902

49903

49904

49905

49906

49907

49908

49909

49910

49911

49912

49913

49914

49915

49916

49917

49918

49919

49920

49921

49922

49923

49924

49925

49926

49927

49928

49929

49930

49931

49932

49933

49934

49935

49936

49937

49938

49939

49940

49941

49942

49943

System Interfaces pthread_attr_getschedpolicy()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions are marked as part of
the Threads and Thread Execution Scheduling options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Execution Scheduling option.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_attr_getschedpolicy() prototype for alignment with
the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/79 is applied, adding a reference to
Section 2.9.4 (on page 509) in the APPLICATION USAGE section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/80 is applied, updating the ERRORS
section to include optional errors for the case when attr refers to an uninitialized thread attribute
object.

Issue 7
The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions are moved from the
Threads option.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1545

49944

49945

49946

49947

49948

49949

49950

49951

49952

49953

49954

49955

49956

49957

49958

49959

49960

49961

49962

49963

49964

pthread_attr_getscope() System Interfaces

NAME
pthread_attr_getscope, pthread_attr_setscope — get and set the contentionscope attribute
(REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_getscope(const pthread_attr_t *restrict attr,
int *restrict contentionscope);

int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);

DESCRIPTION
The pthread_attr_getscope() and pthread_attr_setscope() functions, respectively, shall get and set
the contentionscope attribute in the attr object.

The contentionscope attribute may have the values PTHREAD_SCOPE_SYSTEM, signifying
system scheduling contention scope, or PTHREAD_SCOPE_PROCESS, signifying process
scheduling contention scope. The symbols PTHREAD_SCOPE_SYSTEM and
PTHREAD_SCOPE_PROCESS are defined in the <pthread.h> header.

The behavior is undefined if the value specified by the attr argument to pthread_attr_getscope() or
pthread_attr_setscope() does not refer to an initialized thread attributes object.

RETURN VALUE
If successful, the pthread_attr_getscope() and pthread_attr_setscope() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_setscope() function may fail if:

[EINVAL] The value of contentionscope is not valid.

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

See Section 2.9.4 (on page 509) for further details on thread scheduling attributes and their
default settings.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_attr_getscope() or pthread_attr_setscope() does not refer to an initialized thread attributes
object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getinheritsched(), pthread_attr_getschedpolicy(),
pthread_attr_getschedparam(), pthread_create()

XBD <pthread.h>, <sched.h>

1546 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

49965

49966

49967

49968

49969

49970

49971

49972

49973

49974

49975

49976

49977

49978

49979

49980

49981

49982

49983

49984

49985

49986

49987

49988

49989

49990

49991

49992

49993

49994

49995

49996

49997

49998

49999

50000

50001

50002

50003

50004

50005

50006

System Interfaces pthread_attr_getscope()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_attr_getscope() and pthread_attr_setscope() functions are marked as part of the
Threads and Thread Execution Scheduling options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Execution Scheduling option.

The restrict keyword is added to the pthread_attr_getscope() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/81 is applied, adding a reference to
Section 2.9.4 (on page 509) in the APPLICATION USAGE section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/82 is applied, updating the ERRORS
section to include optional errors for the case when attr refers to an uninitialized thread attribute
object.

Issue 7
The pthread_attr_getscope() and pthread_attr_setscope() functions are moved from the Threads
option.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1547

50007

50008

50009

50010

50011

50012

50013

50014

50015

50016

50017

50018

50019

50020

50021

50022

50023

50024

50025

50026

pthread_attr_getstack() System Interfaces

NAME
pthread_attr_getstack, pthread_attr_setstack — get and set stack attributes

SYNOPSIS
TSA TSS #include <pthread.h>

int pthread_attr_getstack(const pthread_attr_t *restrict attr,
void **restrict stackaddr, size_t *restrict stacksize);

int pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr,
size_t stacksize);

DESCRIPTION
The pthread_attr_getstack() and pthread_attr_setstack() functions, respectively, shall get and set the
thread creation stack attributes stackaddr and stacksize in the attr object.

The stack attributes specify the area of storage to be used for the created thread’s stack. The base
(lowest addressable byte) of the storage shall be stackaddr, and the size of the storage shall be
stacksize bytes. The stacksize shall be at least {PTHREAD_STACK_MIN}. The
pthread_attr_setstack() function may fail with [EINVAL] if stackaddr does not meet
implementation-defined alignment requirements. All pages within the stack described by
stackaddr and stacksize shall be both readable and writable by the thread.

If the pthread_attr_getstack() function is called before the stackaddr attribute has been set, the
behavior is unspecified.

The behavior is undefined if the value specified by the attr argument to pthread_attr_getstack() or
pthread_attr_setstack() does not refer to an initialized thread attributes object.

RETURN VALUE
Upon successful completion, these functions shall return a value of 0; otherwise, an error
number shall be returned to indicate the error.

The pthread_attr_getstack() function shall store the stack attribute values in stackaddr and stacksize
if successful.

ERRORS

The pthread_attr_setstack() function shall fail if:

[EINVAL] The value of stacksize is less than {PTHREAD_STACK_MIN} or exceeds an
implementation-defined limit.

The pthread_attr_setstack() function may fail if:

[EINVAL] The value of stackaddr does not have proper alignment to be used as a stack, or
((char *)stackaddr + stacksize) lacks proper alignment.

[EACCES] The stack page(s) described by stackaddr and stacksize are not both readable
and writable by the thread.

These functions shall not return an error code of [EINTR].

1548 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50027

50028

50029

50030

50031

50032

50033

50034

50035

50036

50037

50038

50039

50040

50041

50042

50043

50044

50045

50046

50047

50048

50049

50050

50051

50052

50053

50054

50055

50056

50057

50058

50059

50060

50061

50062

System Interfaces pthread_attr_getstack()

EXAMPLES
None.

APPLICATION USAGE
These functions are appropriate for use by applications in an environment where the stack for a
thread must be placed in some particular region of memory.

While it might seem that an application could detect stack overflow by providing a protected
page outside the specified stack region, this cannot be done portably. Implementations are free
to place the thread’s initial stack pointer anywhere within the specified region to accommodate
the machine’s stack pointer behavior and allocation requirements. Furthermore, on some
architectures, such as the IA-64, ‘‘overflow’’ might mean that two separate stack pointers
allocated within the region will overlap somewhere in the middle of the region.

After a successful call to pthread_attr_setstack(), the storage area specified by the stackaddr
parameter is under the control of the implementation, as described in Section 2.9.8 (on page 516).

The specification of the stackaddr attribute presents several ambiguities that make portable use of
these functions impossible. For example, the standard allows implementations to impose
arbitrary alignment requirements on stackaddr. Applications cannot assume that a buffer
obtained from malloc() is suitably aligned. Note that although the stacksize value passed to
pthread_attr_setstack() must satisfy alignment requirements, the same is not true for
pthread_attr_setstacksize() where the implementation must increase the specified size if necessary
to achieve the proper alignment.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_attr_getstack() or pthread_attr_setstack() does not refer to an initialized thread attributes
object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getdetachstate(), pthread_attr_getstacksize(), pthread_create()

XBD <limits.h>, <pthread.h>

CHANGE HISTORY
First released in Issue 6. Developed as part of the XSI option and brought into the BASE by IEEE
PASC Interpretation 1003.1 #101.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/83 is applied, updating the
APPLICATION USAGE section to refer to Section 2.9.8 (on page 516).

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC/D6/84 is applied, updating the ERRORS
section to include optional errors for the case when attr refers to an uninitialized thread attribute
object.

Issue 7
SD5-XSH-ERN-66 is applied, correcting the use of attr in the [EINVAL] error condition.

Austin Group Interpretation 1003.1-2001 #057 is applied, clarifying the behavior if the function is
called before the stackaddr attribute is set.

SD5-XSH-ERN-157 is applied, updating the APPLICATION USAGE section.

The description of the stackaddr attribute is updated in the DESCRIPTION and APPLICATION
USAGE sections.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1549

50063

50064

50065

50066

50067

50068

50069

50070

50071

50072

50073

50074

50075

50076

50077

50078

50079

50080

50081

50082

50083

50084

50085

50086

50087

50088

50089

50090

50091

50092

50093

50094

50095

50096

50097

50098

50099

50100

50101

50102

50103

50104

50105

50106

pthread_attr_getstack() System Interfaces

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

1550 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50107

50108

System Interfaces pthread_attr_getstacksize()

NAME
pthread_attr_getstacksize, pthread_attr_setstacksize — get and set the stacksize attribute

SYNOPSIS
TSS #include <pthread.h>

int pthread_attr_getstacksize(const pthread_attr_t *restrict attr,
size_t *restrict stacksize);

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);

DESCRIPTION
The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions, respectively, shall get and
set the thread creation stacksize attribute in the attr object.

The stacksize attribute shall define the minimum stack size (in bytes) allocated for the created
threads stack.

The behavior is undefined if the value specified by the attr argument to
pthread_attr_getstacksize() or pthread_attr_setstacksize() does not refer to an initialized thread
attributes object.

RETURN VALUE
Upon successful completion, pthread_attr_getstacksize() and pthread_attr_setstacksize() shall
return a value of 0; otherwise, an error number shall be returned to indicate the error.

The pthread_attr_getstacksize() function stores the stacksize attribute value in stacksize if
successful.

ERRORS
The pthread_attr_setstacksize() function shall fail if:

[EINVAL] The value of stacksize is less than {PTHREAD_STACK_MIN} or exceeds a
system-imposed limit.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_attr_getstacksize() or pthread_attr_setstacksize() does not refer to an initialized thread
attributes object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getdetachstate(), pthread_create()

XBD <limits.h>, <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1551

50109

50110

50111

50112

50113

50114

50115

50116

50117

50118

50119

50120

50121

50122

50123

50124

50125

50126

50127

50128

50129

50130

50131

50132

50133

50134

50135

50136

50137

50138

50139

50140

50141

50142

50143

50144

50145

50146

50147

50148

pthread_attr_getstacksize() System Interfaces

Issue 6
The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions are marked as part of the
Threads and Thread Stack Size Attribute options.

The restrict keyword is added to the pthread_attr_getstacksize() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/43 is applied, correcting the margin code
in the SYNOPSIS from TSA to TSS and updating the CHANGE HISTORY from ‘‘Thread Stack
Address Attribute’’ option to ‘‘Thread Stack Size Attribute’’ option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/87 is applied, updating the ERRORS
section to include optional errors for the case when attr refers to an uninitialized thread attribute
object.

Issue 7
The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions are moved from the
Threads option.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

1552 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50149

50150

50151

50152

50153

50154

50155

50156

50157

50158

50159

50160

50161

50162

50163

50164

System Interfaces pthread_attr_init()

NAME
pthread_attr_init — initialize the thread attributes object

SYNOPSIS
#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

DESCRIPTION
Refer to pthread_attr_destroy().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1553

50165

50166

50167

50168

50169

50170

50171

pthread_attr_setdetachstate() System Interfaces

NAME
pthread_attr_setdetachstate — set the detachstate attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

DESCRIPTION
Refer to pthread_attr_getdetachstate().

1554 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50172

50173

50174

50175

50176

50177

50178

System Interfaces pthread_attr_setguardsize()

NAME
pthread_attr_setguardsize — set the thread guardsize attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setguardsize(pthread_attr_t *attr,
size_t guardsize);

DESCRIPTION
Refer to pthread_attr_getguardsize().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1555

50179

50180

50181

50182

50183

50184

50185

50186

pthread_attr_setinheritsched() System Interfaces

NAME
pthread_attr_setinheritsched — set the inheritsched attribute (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_setinheritsched(pthread_attr_t *attr,
int inheritsched);

DESCRIPTION
Refer to pthread_attr_getinheritsched().

1556 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50187

50188

50189

50190

50191

50192

50193

50194

System Interfaces pthread_attr_setschedparam()

NAME
pthread_attr_setschedparam — set the schedparam attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setschedparam(pthread_attr_t *restrict attr,
const struct sched_param *restrict param);

DESCRIPTION
Refer to pthread_attr_getschedparam().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1557

50195

50196

50197

50198

50199

50200

50201

50202

pthread_attr_setschedpolicy() System Interfaces

NAME
pthread_attr_setschedpolicy — set the schedpolicy attribute (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

DESCRIPTION
Refer to pthread_attr_getschedpolicy().

1558 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50203

50204

50205

50206

50207

50208

50209

System Interfaces pthread_attr_setscope()

NAME
pthread_attr_setscope — set the contentionscope attribute (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);

DESCRIPTION
Refer to pthread_attr_getscope().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1559

50210

50211

50212

50213

50214

50215

50216

pthread_attr_setstack() System Interfaces

NAME
pthread_attr_setstack — set the stack attribute

SYNOPSIS
TSA TSS #include <pthread.h>

int pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr,
size_t stacksize);

DESCRIPTION
Refer to pthread_attr_getstack().

1560 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50217

50218

50219

50220

50221

50222

50223

50224

System Interfaces pthread_attr_setstacksize()

NAME
pthread_attr_setstacksize — set the stacksize attribute

SYNOPSIS
TSS #include <pthread.h>

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);

DESCRIPTION
Refer to pthread_attr_getstacksize().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1561

50225

50226

50227

50228

50229

50230

50231

pthread_barrier_destroy() System Interfaces

NAME
pthread_barrier_destroy, pthread_barrier_init — destroy and initialize a barrier object

SYNOPSIS
#include <pthread.h>

int pthread_barrier_destroy(pthread_barrier_t *barrier);
int pthread_barrier_init(pthread_barrier_t *restrict barrier,

const pthread_barrierattr_t *restrict attr, unsigned count);

DESCRIPTION
The pthread_barrier_destroy() function shall destroy the barrier referenced by barrier and release
any resources used by the barrier. The effect of subsequent use of the barrier is undefined until
the barrier is reinitialized by another call to pthread_barrier_init(). An implementation may use
this function to set barrier to an invalid value. The results are undefined if
pthread_barrier_destroy() is called when any thread is blocked on the barrier, or if this function is
called with an uninitialized barrier.

The pthread_barrier_init() function shall allocate any resources required to use the barrier
referenced by barrier and shall initialize the barrier with attributes referenced by attr. If attr is
NULL, the default barrier attributes shall be used; the effect is the same as passing the address of
a default barrier attributes object. The results are undefined if pthread_barrier_init() is called
when any thread is blocked on the barrier (that is, has not returned from the
pthread_barrier_wait() call). The results are undefined if a barrier is used without first being
initialized. The results are undefined if pthread_barrier_init() is called specifying an already
initialized barrier.

The count argument specifies the number of threads that must call pthread_barrier_wait() before
any of them successfully return from the call. The value specified by count must be greater than
zero.

If the pthread_barrier_init() function fails, the barrier shall not be initialized and the contents of
barrier are undefined.

Only the object referenced by barrier may be used for performing synchronization. The result of
referring to copies of that object in calls to pthread_barrier_destroy() or pthread_barrier_wait() is
undefined.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_barrier_init() function shall fail if:

[EAGAIN] The system lacks the necessary resources to initialize another barrier.

[EINVAL] The value specified by count is equal to zero.

[ENOMEM] Insufficient memory exists to initialize the barrier.

These functions shall not return an error code of [EINTR].

1562 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50232

50233

50234

50235

50236

50237

50238

50239

50240

50241

50242

50243

50244

50245

50246

50247

50248

50249

50250

50251

50252

50253

50254

50255

50256

50257

50258

50259

50260

50261

50262

50263

50264

50265

50266

50267

50268

50269

50270

System Interfaces pthread_barrier_destroy()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the barrier argument to
pthread_barrier_destroy() does not refer to an initialized barrier object, it is recommended that the
function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the attr argument to
pthread_barrier_init() does not refer to an initialized barrier attributes object, it is recommended
that the function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the barrier argument to
pthread_barrier_destroy() or pthread_barrier_init() refers to a barrier that is in use (for example, in
a pthread_barrier_wait() call) by another thread, or detects that the value specified by the barrier
argument to pthread_barrier_init() refers to an already initialized barrier object, it is
recommended that the function should fail and report an [EBUSY] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_barrier_wait()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7
The pthread_barrier_destroy() and pthread_barrier_init() functions are moved from the Barriers
option to the Base.

The [EINVAL] error for an uninitialized barrier object and an uninitialized barrier attributes
object is removed; this condition results in undefined behavior.

The [EBUSY] error for a barrier that is in use or an already initialized barrier object is removed;
this condition results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1563

50271

50272

50273

50274

50275

50276

50277

50278

50279

50280

50281

50282

50283

50284

50285

50286

50287

50288

50289

50290

50291

50292

50293

50294

50295

50296

50297

50298

50299

50300

pthread_barrier_wait() System Interfaces

NAME
pthread_barrier_wait — synchronize at a barrier

SYNOPSIS
#include <pthread.h>

int pthread_barrier_wait(pthread_barrier_t *barrier);

DESCRIPTION
The pthread_barrier_wait() function shall synchronize participating threads at the barrier
referenced by barrier. The calling thread shall block until the required number of threads have
called pthread_barrier_wait() specifying the barrier.

When the required number of threads have called pthread_barrier_wait() specifying the barrier,
the constant PTHREAD_BARRIER_SERIAL_THREAD shall be returned to one unspecified
thread and zero shall be returned to each of the remaining threads. At this point, the barrier shall
be reset to the state it had as a result of the most recent pthread_barrier_init() function that
referenced it.

The constant PTHREAD_BARRIER_SERIAL_THREAD is defined in <pthread.h> and its value
shall be distinct from any other value returned by pthread_barrier_wait().

The results are undefined if this function is called with an uninitialized barrier.

If a signal is delivered to a thread blocked on a barrier, upon return from the signal handler the
thread shall resume waiting at the barrier if the barrier wait has not completed (that is, if the
required number of threads have not arrived at the barrier during the execution of the signal
handler); otherwise, the thread shall continue as normal from the completed barrier wait. Until
the thread in the signal handler returns from it, it is unspecified whether other threads may
proceed past the barrier once they have all reached it.

A thread that has blocked on a barrier shall not prevent any unblocked thread that is eligible to
use the same processing resources from eventually making forward progress in its execution.
Eligibility for processing resources shall be determined by the scheduling policy.

RETURN VALUE
Upon successful completion, the pthread_barrier_wait() function shall return
PTHREAD_BARRIER_SERIAL_THREAD for a single (arbitrary) thread synchronized at the
barrier and zero for each of the other threads. Otherwise, an error number shall be returned to
indicate the error.

ERRORS
This function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in XBD
Section 3.285 (on page 79).

RATIONALE
If an implementation detects that the value specified by the barrier argument to
pthread_barrier_wait() does not refer to an initialized barrier object, it is recommended that the
function should fail and report an [EINVAL] error.

1564 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50301

50302

50303

50304

50305

50306

50307

50308

50309

50310

50311

50312

50313

50314

50315

50316

50317

50318

50319

50320

50321

50322

50323

50324

50325

50326

50327

50328

50329

50330

50331

50332

50333

50334

50335

50336

50337

50338

50339

50340

50341

50342

System Interfaces pthread_barrier_wait()

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_barrier_destroy()

XBD Section 3.285 (on page 79), Section 4.11 (on page 110), <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
The pthread_barrier_wait() function is moved from the Barriers option to the Base.

The [EINVAL] error for an uninitialized barrier object is removed; this condition results in
undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1565

50343

50344

50345

50346

50347

50348

50349

50350

50351

50352

50353

50354

pthread_barrierattr_destroy() System Interfaces

NAME
pthread_barrierattr_destroy, pthread_barrierattr_init — destroy and initialize the barrier
attributes object

SYNOPSIS
#include <pthread.h>

int pthread_barrierattr_destroy(pthread_barrierattr_t *attr);
int pthread_barrierattr_init(pthread_barrierattr_t *attr);

DESCRIPTION
The pthread_barrierattr_destroy() function shall destroy a barrier attributes object. A destroyed
attr attributes object can be reinitialized using pthread_barrierattr_init(); the results of otherwise
referencing the object after it has been destroyed are undefined. An implementation may cause
pthread_barrierattr_destroy() to set the object referenced by attr to an invalid value.

The pthread_barrierattr_init() function shall initialize a barrier attributes object attr with the
default value for all of the attributes defined by the implementation.

If pthread_barrierattr_init() is called specifying an already initialized attr attributes object, the
results are undefined.

After a barrier attributes object has been used to initialize one or more barriers, any function
affecting the attributes object (including destruction) shall not affect any previously initialized
barrier.

The behavior is undefined if the value specified by the attr argument to
pthread_barrierattr_destroy() does not refer to an initialized barrier attributes object.

RETURN VALUE
If successful, the pthread_barrierattr_destroy() and pthread_barrierattr_init() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_barrierattr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the barrier attributes object.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_barrierattr_destroy() does not refer to an initialized barrier attributes object, it is
recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_barrierattr_getpshared()

XBD <pthread.h>

1566 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50355

50356

50357

50358

50359

50360

50361

50362

50363

50364

50365

50366

50367

50368

50369

50370

50371

50372

50373

50374

50375

50376

50377

50378

50379

50380

50381

50382

50383

50384

50385

50386

50387

50388

50389

50390

50391

50392

50393

50394

50395

System Interfaces pthread_barrierattr_destroy()

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
The pthread_barrierattr_destroy() and pthread_barrierattr_init() functions are moved from the
Barriers option to the Base.

The [EINVAL] error for an uninitialized barrier attributes object is removed; this condition
results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1567

50396

50397

50398

50399

50400

50401

50402

50403

pthread_barrierattr_getpshared() System Interfaces

NAME
pthread_barrierattr_getpshared, pthread_barrierattr_setpshared — get and set the process-
shared attribute of the barrier attributes object

SYNOPSIS
TSH #include <pthread.h>

int pthread_barrierattr_getpshared(const pthread_barrierattr_t
*restrict attr, int *restrict pshared);

int pthread_barrierattr_setpshared(pthread_barrierattr_t *attr,
int pshared);

DESCRIPTION
The pthread_barrierattr_getpshared() function shall obtain the value of the process-shared attribute
from the attributes object referenced by attr. The pthread_barrierattr_setpshared() function shall
set the process-shared attribute in an initialized attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a barrier to be
operated upon by any thread that has access to the memory where the barrier is allocated. If the
process-shared attribute is PTHREAD_PROCESS_PRIVATE, the barrier shall only be operated
upon by threads created within the same process as the thread that initialized the barrier; if
threads of different processes attempt to operate on such a barrier, the behavior is undefined.
The default value of the attribute shall be PTHREAD_PROCESS_PRIVATE. Both constants
PTHREAD_PROCESS_SHARED and PTHREAD_PROCESS_PRIVATE are defined in
<pthread.h>.

Additional attributes, their default values, and the names of the associated functions to get and
set those attribute values are implementation-defined.

The behavior is undefined if the value specified by the attr argument to
pthread_barrierattr_getpshared() or pthread_barrierattr_setpshared() does not refer to an initialized
barrier attributes object.

RETURN VALUE
If successful, the pthread_barrierattr_getpshared() function shall return zero and store the value of
the process-shared attribute of attr into the object referenced by the pshared parameter. Otherwise,
an error number shall be returned to indicate the error.

If successful, the pthread_barrierattr_setpshared() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_barrierattr_setpshared() function may fail if:

[EINVAL] The new value specified for the process-shared attribute is not one of the legal
values PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE.

These functions shall not return an error code of [EINTR].

1568 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50404

50405

50406

50407

50408

50409

50410

50411

50412

50413

50414

50415

50416

50417

50418

50419

50420

50421

50422

50423

50424

50425

50426

50427

50428

50429

50430

50431

50432

50433

50434

50435

50436

50437

50438

50439

50440

System Interfaces pthread_barrierattr_getpshared()

EXAMPLES
None.

APPLICATION USAGE
The pthread_barrierattr_getpshared() and pthread_barrierattr_setpshared() functions are part of the
Thread Process-Shared Synchronization option and need not be provided on all
implementations.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_barrierattr_getpshared() or pthread_barrierattr_setpshared() does not refer to an initialized
barrier attributes object, it is recommended that the function should fail and report an [EINVAL]
error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_barrier_destroy(), pthread_barrierattr_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000

Issue 7
The pthread_barrierattr_getpshared() and pthread_barrierattr_setpshared() functions are moved from
the Barriers option.

The [EINVAL] error for an uninitialized barrier attributes object is removed; this condition
results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1569

50441

50442

50443

50444

50445

50446

50447

50448

50449

50450

50451

50452

50453

50454

50455

50456

50457

50458

50459

50460

50461

50462

50463

pthread_barrierattr_init() System Interfaces

NAME
pthread_barrierattr_init — initialize the barrier attributes object

SYNOPSIS
#include <pthread.h>

int pthread_barrierattr_init(pthread_barrierattr_t *attr);

DESCRIPTION
Refer to pthread_barrierattr_destroy().

1570 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50464

50465

50466

50467

50468

50469

50470

System Interfaces pthread_barrierattr_setpshared()

NAME
pthread_barrierattr_setpshared — set the process-shared attribute of the barrier attributes object

SYNOPSIS
TSH #include <pthread.h>

int pthread_barrierattr_setpshared(pthread_barrierattr_t *attr,
int pshared);

DESCRIPTION
Refer to pthread_barrierattr_getpshared().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1571

50471

50472

50473

50474

50475

50476

50477

50478

pthread_cancel() System Interfaces

NAME
pthread_cancel — cancel execution of a thread

SYNOPSIS
#include <pthread.h>

int pthread_cancel(pthread_t thread);

DESCRIPTION
The pthread_cancel() function shall request that thread be canceled. The target thread’s
cancelability state and type determines when the cancellation takes effect. When the cancellation
is acted on, the cancellation cleanup handlers for thread shall be called. When the last
cancellation cleanup handler returns, the thread-specific data destructor functions shall be called
for thread. When the last destructor function returns, thread shall be terminated.

The cancellation processing in the target thread shall run asynchronously with respect to the
calling thread returning from pthread_cancel().

RETURN VALUE
If successful, the pthread_cancel() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_cancel() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Two alternative functions were considered for sending the cancellation notification to a thread.
One would be to define a new SIGCANCEL signal that had the cancellation semantics when
delivered; the other was to define the new pthread_cancel() function, which would trigger the
cancellation semantics.

The advantage of a new signal was that so much of the delivery criteria were identical to that
used when trying to deliver a signal that making cancellation notification a signal was seen as
consistent. Indeed, many implementations implement cancellation using a special signal. On the
other hand, there would be no signal functions that could be used with this signal except
pthread_kill(), and the behavior of the delivered cancellation signal would be unlike any
previously existing defined signal.

The benefits of a special function include the recognition that this signal would be defined
because of the similar delivery criteria and that this is the only common behavior between a
cancellation request and a signal. In addition, the cancellation delivery mechanism does not
have to be implemented as a signal. There are also strong, if not stronger, parallels with
language exception mechanisms than with signals that are potentially obscured if the delivery
mechanism is visibly closer to signals.

In the end, it was considered that as there were so many exceptions to the use of the new signal
with existing signals functions it would be misleading. A special function has resolved this
problem. This function was carefully defined so that an implementation wishing to provide the
cancellation functions on top of signals could do so. The special function also means that
implementations are not obliged to implement cancellation with signals.

If an implementation detects use of a thread ID after the end of its lifetime, it is recommended
that the function should fail and report an [ESRCH] error.

1572 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50479

50480

50481

50482

50483

50484

50485

50486

50487

50488

50489

50490

50491

50492

50493

50494

50495

50496

50497

50498

50499

50500

50501

50502

50503

50504

50505

50506

50507

50508

50509

50510

50511

50512

50513

50514

50515

50516

50517

50518

50519

50520

50521

50522

50523

50524

System Interfaces pthread_cancel()

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_exit(), pthread_cond_timedwait(), pthread_join(), pthread_setcancelstate()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cancel() function is marked as part of the Threads option.

Issue 7
The pthread_cancel() function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH] error condition.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1573

50525

50526

50527

50528

50529

50530

50531

50532

50533

50534

50535

50536

pthread_cleanup_pop() System Interfaces

NAME
pthread_cleanup_pop, pthread_cleanup_push — establish cancellation handlers

SYNOPSIS
#include <pthread.h>

void pthread_cleanup_pop(int execute);
void pthread_cleanup_push(void (*routine)(void*), void *arg);

DESCRIPTION
The pthread_cleanup_pop() function shall remove the routine at the top of the calling thread’s
cancellation cleanup stack and optionally invoke it (if execute is non-zero).

The pthread_cleanup_push() function shall push the specified cancellation cleanup handler routine
onto the calling thread’s cancellation cleanup stack. The cancellation cleanup handler shall be
popped from the cancellation cleanup stack and invoked with the argument arg when:

• The thread exits (that is, calls pthread_exit()).

• The thread acts upon a cancellation request.

• The thread calls pthread_cleanup_pop() with a non-zero execute argument.

These functions may be implemented as macros. The application shall ensure that they appear
as statements, and in pairs within the same lexical scope (that is, the pthread_cleanup_push()
macro may be thought to expand to a token list whose first token is ’{’ with
pthread_cleanup_pop() expanding to a token list whose last token is the corresponding ’}’).

The effect of calling longjmp() or siglongjmp() is undefined if there have been any calls to
pthread_cleanup_push() or pthread_cleanup_pop() made without the matching call since the jump
buffer was filled. The effect of calling longjmp() or siglongjmp() from inside a cancellation
cleanup handler is also undefined unless the jump buffer was also filled in the cancellation
cleanup handler.

The effect of the use of return, break, continue, and goto to prematurely leave a code block
described by a pair of pthread_cleanup_push() and pthread_cleanup_pop() functions calls is
undefined.

RETURN VALUE
The pthread_cleanup_push() and pthread_cleanup_pop() functions shall not return a value.

ERRORS
No errors are defined.

These functions shall not return an error code of [EINTR].

EXAMPLES
The following is an example using thread primitives to implement a cancelable, writers-priority
read-write lock:

typedef struct {
pthread_mutex_t lock;
pthread_cond_t rcond,

wcond;
int lock_count; /* < 0 .. Held by writer. */

/* > 0 .. Held by lock_count readers. */
/* = 0 .. Held by nobody. */

int waiting_writers; /* Count of waiting writers. */
} rwlock;

1574 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50537

50538

50539

50540

50541

50542

50543

50544

50545

50546

50547

50548

50549

50550

50551

50552

50553

50554

50555

50556

50557

50558

50559

50560

50561

50562

50563

50564

50565

50566

50567

50568

50569

50570

50571

50572

50573

50574

50575

50576

50577

50578

50579

50580

System Interfaces pthread_cleanup_pop()

void
waiting_reader_cleanup(void *arg)
{

rwlock *l;

l = (rwlock *) arg;
pthread_mutex_unlock(&l->lock);

}

void
lock_for_read(rwlock *l)
{

pthread_mutex_lock(&l->lock);
pthread_cleanup_push(waiting_reader_cleanup, l);
while ((l->lock_count < 0) && (l->waiting_writers != 0))

pthread_cond_wait(&l->rcond, &l->lock);
l->lock_count++;
/*
* Note the pthread_cleanup_pop executes
* waiting_reader_cleanup.
*/
pthread_cleanup_pop(1);

}

void
release_read_lock(rwlock *l)
{

pthread_mutex_lock(&l->lock);
if (--l->lock_count == 0)

pthread_cond_signal(&l->wcond);
pthread_mutex_unlock(l);

}

void
waiting_writer_cleanup(void *arg)
{

rwlock *l;

l = (rwlock *) arg;
if ((--l->waiting_writers == 0) && (l->lock_count >= 0)) {

/*
* This only happens if we have been canceled.
*/
pthread_cond_broadcast(&l->wcond);

}
pthread_mutex_unlock(&l->lock);

}

void
lock_for_write(rwlock *l)
{

pthread_mutex_lock(&l->lock);
l->waiting_writers++;
pthread_cleanup_push(waiting_writer_cleanup, l);
while (l->lock_count != 0)

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1575

50581

50582

50583

50584

50585

50586

50587

50588

50589

50590

50591

50592

50593

50594

50595

50596

50597

50598

50599

50600

50601

50602

50603

50604

50605

50606

50607

50608

50609

50610

50611

50612

50613

50614

50615

50616

50617

50618

50619

50620

50621

50622

50623

50624

50625

50626

50627

50628

50629

pthread_cleanup_pop() System Interfaces

pthread_cond_wait(&l->wcond, &l->lock);
l->lock_count = −1;

/*
* Note the pthread_cleanup_pop executes
* waiting_writer_cleanup.
*/
pthread_cleanup_pop(1);

}

void
release_write_lock(rwlock *l)
{

pthread_mutex_lock(&l->lock);
l->lock_count = 0;
if (l->waiting_writers == 0)

pthread_cond_broadcast(&l->rcond)
else

pthread_cond_signal(&l->wcond);
pthread_mutex_unlock(&l->lock);

}

/*
* This function is called to initialize the read/write lock.
*/
void
initialize_rwlock(rwlock *l)
{

pthread_mutex_init(&l->lock, pthread_mutexattr_default);
pthread_cond_init(&l->wcond, pthread_condattr_default);
pthread_cond_init(&l->rcond, pthread_condattr_default);
l->lock_count = 0;
l->waiting_writers = 0;

}

reader_thread()
{

lock_for_read(&lock);
pthread_cleanup_push(release_read_lock, &lock);
/*
* Thread has read lock.
*/
pthread_cleanup_pop(1);

}

writer_thread()
{

lock_for_write(&lock);
pthread_cleanup_push(release_write_lock, &lock);
/*
* Thread has write lock.
*/

pthread_cleanup_pop(1);
}

1576 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50630

50631

50632

50633

50634

50635

50636

50637

50638

50639

50640

50641

50642

50643

50644

50645

50646

50647

50648

50649

50650

50651

50652

50653

50654

50655

50656

50657

50658

50659

50660

50661

50662

50663

50664

50665

50666

50667

50668

50669

50670

50671

50672

50673

50674

50675

50676

50677

50678

System Interfaces pthread_cleanup_pop()

APPLICATION USAGE
The two routines that push and pop cancellation cleanup handlers, pthread_cleanup_push() and
pthread_cleanup_pop(), can be thought of as left and right-parentheses. They always need to be
matched.

RATIONALE
The restriction that the two routines that push and pop cancellation cleanup handlers,
pthread_cleanup_push() and pthread_cleanup_pop(), have to appear in the same lexical scope
allows for efficient macro or compiler implementations and efficient storage management. A
sample implementation of these routines as macros might look like this:

#define pthread_cleanup_push(rtn,arg) { \
struct _pthread_handler_rec __cleanup_handler, **__head; \
__cleanup_handler.rtn = rtn; \
__cleanup_handler.arg = arg; \
(void) pthread_getspecific(_pthread_handler_key, &__head); \
__cleanup_handler.next = *__head; \
*__head = &__cleanup_handler;

#define pthread_cleanup_pop(ex) \
*__head = __cleanup_handler.next; \
if (ex) (*__cleanup_handler.rtn)(__cleanup_handler.arg); \

}

A more ambitious implementation of these routines might do even better by allowing the
compiler to note that the cancellation cleanup handler is a constant and can be expanded inline.

This volume of POSIX.1-2008 currently leaves unspecified the effect of calling longjmp() from a
signal handler executing in a POSIX System Interfaces function. If an implementation wants to
allow this and give the programmer reasonable behavior, the longjmp() function has to call all
cancellation cleanup handlers that have been pushed but not popped since the time setjmp() was
called.

Consider a multi-threaded function called by a thread that uses signals. If a signal were
delivered to a signal handler during the operation of qsort() and that handler were to call
longjmp() (which, in turn, did not call the cancellation cleanup handlers) the helper threads
created by the qsort() function would not be canceled. Instead, they would continue to execute
and write into the argument array even though the array might have been popped off the stack.

Note that the specified cleanup handling mechanism is especially tied to the C language and,
while the requirement for a uniform mechanism for expressing cleanup is language-
independent, the mechanism used in other languages may be quite different. In addition, this
mechanism is really only necessary due to the lack of a real exception mechanism in the C
language, which would be the ideal solution.

There is no notion of a cancellation cleanup-safe function. If an application has no cancellation
points in its signal handlers, blocks any signal whose handler may have cancellation points
while calling async-unsafe functions, or disables cancellation while calling async-unsafe
functions, all functions may be safely called from cancellation cleanup routines.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1577

50679

50680

50681

50682

50683

50684

50685

50686

50687

50688

50689

50690

50691

50692

50693

50694

50695

50696

50697

50698

50699

50700

50701

50702

50703

50704

50705

50706

50707

50708

50709

50710

50711

50712

50713

50714

50715

50716

50717

50718

50719

50720

50721

pthread_cleanup_pop() System Interfaces

SEE ALSO
pthread_cancel(), pthread_setcancelstate()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cleanup_pop() and pthread_cleanup_push() functions are marked as part of the
Threads option.

The APPLICATION USAGE section is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/88 is applied, updating the
DESCRIPTION to describe the consequences of prematurely leaving a code block defined by the
pthread_cleanup_push() and pthread_cleanup_pop() functions.

Issue 7
The pthread_cleanup_pop() and pthread_cleanup_push() functions are moved from the Threads
option to the Base.

1578 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50722

50723

50724

50725

50726

50727

50728

50729

50730

50731

50732

50733

50734

50735

50736

50737

System Interfaces pthread_cond_broadcast()

NAME
pthread_cond_broadcast, pthread_cond_signal — broadcast or signal a condition

SYNOPSIS
#include <pthread.h>

int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_signal(pthread_cond_t *cond);

DESCRIPTION
These functions shall unblock threads blocked on a condition variable.

The pthread_cond_broadcast() function shall unblock all threads currently blocked on the
specified condition variable cond.

The pthread_cond_signal() function shall unblock at least one of the threads that are blocked on
the specified condition variable cond (if any threads are blocked on cond).

If more than one thread is blocked on a condition variable, the scheduling policy shall determine
the order in which threads are unblocked. When each thread unblocked as a result of a
pthread_cond_broadcast() or pthread_cond_signal() returns from its call to pthread_cond_wait() or
pthread_cond_timedwait(), the thread shall own the mutex with which it called
pthread_cond_wait() or pthread_cond_timedwait(). The thread(s) that are unblocked shall contend
for the mutex according to the scheduling policy (if applicable), and as if each had called
pthread_mutex_lock().

The pthread_cond_broadcast() or pthread_cond_signal() functions may be called by a thread
whether or not it currently owns the mutex that threads calling pthread_cond_wait() or
pthread_cond_timedwait() have associated with the condition variable during their waits;
however, if predictable scheduling behavior is required, then that mutex shall be locked by the
thread calling pthread_cond_broadcast() or pthread_cond_signal().

The pthread_cond_broadcast() and pthread_cond_signal() functions shall have no effect if there are
no threads currently blocked on cond.

The behavior is undefined if the value specified by the cond argument to pthread_cond_broadcast()
or pthread_cond_signal() does not refer to an initialized condition variable.

RETURN VALUE
If successful, the pthread_cond_broadcast() and pthread_cond_signal() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
The pthread_cond_broadcast() function is used whenever the shared-variable state has been
changed in a way that more than one thread can proceed with its task. Consider a single
producer/multiple consumer problem, where the producer can insert multiple items on a list
that is accessed one item at a time by the consumers. By calling the pthread_cond_broadcast()
function, the producer would notify all consumers that might be waiting, and thereby the
application would receive more throughput on a multi-processor. In addition,
pthread_cond_broadcast() makes it easier to implement a read-write lock. The
pthread_cond_broadcast() function is needed in order to wake up all waiting readers when a
writer releases its lock. Finally, the two-phase commit algorithm can use this broadcast function
to notify all clients of an impending transaction commit.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1579

50738

50739

50740

50741

50742

50743

50744

50745

50746

50747

50748

50749

50750

50751

50752

50753

50754

50755

50756

50757

50758

50759

50760

50761

50762

50763

50764

50765

50766

50767

50768

50769

50770

50771

50772

50773

50774

50775

50776

50777

50778

50779

50780

50781

50782

50783

pthread_cond_broadcast() System Interfaces

It is not safe to use the pthread_cond_signal() function in a signal handler that is invoked
asynchronously. Even if it were safe, there would still be a race between the test of the Boolean
pthread_cond_wait() that could not be efficiently eliminated.

Mutexes and condition variables are thus not suitable for releasing a waiting thread by signaling
from code running in a signal handler.

RATIONALE
If an implementation detects that the value specified by the cond argument to
pthread_cond_broadcast() or pthread_cond_signal() does not refer to an initialized condition
variable, it is recommended that the function should fail and report an [EINVAL] error.

Multiple Awakenings by Condition Signal

On a multi-processor, it may be impossible for an implementation of pthread_cond_signal() to
avoid the unblocking of more than one thread blocked on a condition variable. For example,
consider the following partial implementation of pthread_cond_wait() and pthread_cond_signal(),
executed by two threads in the order given. One thread is trying to wait on the condition
variable, another is concurrently executing pthread_cond_signal(), while a third thread is already
waiting.

pthread_cond_wait(mutex, cond):
value = cond->value; /* 1 */
pthread_mutex_unlock(mutex); /* 2 */
pthread_mutex_lock(cond->mutex); /* 10 */
if (value == cond->value) { /* 11 */

me->next_cond = cond->waiter;
cond->waiter = me;
pthread_mutex_unlock(cond->mutex);
unable_to_run(me);

} else
pthread_mutex_unlock(cond->mutex); /* 12 */

pthread_mutex_lock(mutex); /* 13 */

pthread_cond_signal(cond):
pthread_mutex_lock(cond->mutex); /* 3 */
cond->value++; /* 4 */
if (cond->waiter) { /* 5 */

sleeper = cond->waiter; /* 6 */
cond->waiter = sleeper->next_cond; /* 7 */
able_to_run(sleeper); /* 8 */

}
pthread_mutex_unlock(cond->mutex); /* 9 */

The effect is that more than one thread can return from its call to pthread_cond_wait() or
pthread_cond_timedwait() as a result of one call to pthread_cond_signal(). This effect is called
‘‘spurious wakeup’’. Note that the situation is self-correcting in that the number of threads that
are so awakened is finite; for example, the next thread to call pthread_cond_wait() after the
sequence of events above blocks.

While this problem could be resolved, the loss of efficiency for a fringe condition that occurs
only rarely is unacceptable, especially given that one has to check the predicate associated with a
condition variable anyway. Correcting this problem would unnecessarily reduce the degree of
concurrency in this basic building block for all higher-level synchronization operations.

An added benefit of allowing spurious wakeups is that applications are forced to code a

1580 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50784

50785

50786

50787

50788

50789

50790

50791

50792

50793

50794

50795

50796

50797

50798

50799

50800

50801

50802

50803

50804

50805

50806

50807

50808

50809

50810

50811

50812

50813

50814

50815

50816

50817

50818

50819

50820

50821

50822

50823

50824

50825

50826

50827

50828

50829

50830

System Interfaces pthread_cond_broadcast()

predicate-testing-loop around the condition wait. This also makes the application tolerate
superfluous condition broadcasts or signals on the same condition variable that may be coded in
some other part of the application. The resulting applications are thus more robust. Therefore,
POSIX.1-2008 explicitly documents that spurious wakeups may occur.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_cond_timedwait()

XBD Section 4.11 (on page 110), <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cond_broadcast() and pthread_cond_signal() functions are marked as part of the
Threads option.

The APPLICATION USAGE section is added.

Issue 7
The pthread_cond_broadcast() and pthread_cond_signal() functions are moved from the Threads
option to the Base.

The [EINVAL] error for an uninitialized condition variable is removed; this condition results in
undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1581

50831

50832

50833

50834

50835

50836

50837

50838

50839

50840

50841

50842

50843

50844

50845

50846

50847

50848

50849

50850

pthread_cond_destroy() System Interfaces

NAME
pthread_cond_destroy, pthread_cond_init — destroy and initialize condition variables

SYNOPSIS
#include <pthread.h>

int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_init(pthread_cond_t *restrict cond,

const pthread_condattr_t *restrict attr);
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

DESCRIPTION
The pthread_cond_destroy() function shall destroy the given condition variable specified by cond;
the object becomes, in effect, uninitialized. An implementation may cause pthread_cond_destroy()
to set the object referenced by cond to an invalid value. A destroyed condition variable object can
be reinitialized using pthread_cond_init(); the results of otherwise referencing the object after it
has been destroyed are undefined.

It shall be safe to destroy an initialized condition variable upon which no threads are currently
blocked. Attempting to destroy a condition variable upon which other threads are currently
blocked results in undefined behavior.

The pthread_cond_init() function shall initialize the condition variable referenced by cond with
attributes referenced by attr. If attr is NULL, the default condition variable attributes shall be
used; the effect is the same as passing the address of a default condition variable attributes
object. Upon successful initialization, the state of the condition variable shall become initialized.

Only cond itself may be used for performing synchronization. The result of referring to copies of
cond in calls to pthread_cond_wait(), pthread_cond_timedwait(), pthread_cond_signal(),
pthread_cond_broadcast(), and pthread_cond_destroy() is undefined.

Attempting to initialize an already initialized condition variable results in undefined behavior.

In cases where default condition variable attributes are appropriate, the macro
PTHREAD_COND_INITIALIZER can be used to initialize condition variables that are statically
allocated. The effect shall be equivalent to dynamic initialization by a call to pthread_cond_init()
with parameter attr specified as NULL, except that no error checks are performed.

The behavior is undefined if the value specified by the cond argument to pthread_cond_destroy()
does not refer to an initialized condition variable.

The behavior is undefined if the value specified by the attr argument to pthread_cond_init() does
not refer to an initialized condition variable attributes object.

RETURN VALUE
If successful, the pthread_cond_destroy() and pthread_cond_init() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_cond_init() function shall fail if:

[EAGAIN] The system lacked the necessary resources (other than memory) to initialize
another condition variable.

[ENOMEM] Insufficient memory exists to initialize the condition variable.

These functions shall not return an error code of [EINTR].

1582 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50851

50852

50853

50854

50855

50856

50857

50858

50859

50860

50861

50862

50863

50864

50865

50866

50867

50868

50869

50870

50871

50872

50873

50874

50875

50876

50877

50878

50879

50880

50881

50882

50883

50884

50885

50886

50887

50888

50889

50890

50891

50892

System Interfaces pthread_cond_destroy()

EXAMPLES
A condition variable can be destroyed immediately after all the threads that are blocked on it are
awakened. For example, consider the following code:

struct list {
pthread_mutex_t lm;
...

}

struct elt {
key k;
int busy;
pthread_cond_t notbusy;
...

}

/* Find a list element and reserve it. */
struct elt *
list_find(struct list *lp, key k)
{

struct elt *ep;

pthread_mutex_lock(&lp->lm);
while ((ep = find_elt(l, k) != NULL) && ep->busy)

pthread_cond_wait(&ep->notbusy, &lp->lm);
if (ep != NULL)

ep->busy = 1;
pthread_mutex_unlock(&lp->lm);
return(ep);

}

delete_elt(struct list *lp, struct elt *ep)
{

pthread_mutex_lock(&lp->lm);
assert(ep->busy);
... remove ep from list ...
ep->busy = 0; /* Paranoid. */

(A) pthread_cond_broadcast(&ep->notbusy);
pthread_mutex_unlock(&lp->lm);

(B) pthread_cond_destroy(&rp->notbusy);
free(ep);

}

In this example, the condition variable and its list element may be freed (line B) immediately
after all threads waiting for it are awakened (line A), since the mutex and the code ensure that
no other thread can touch the element to be deleted.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the cond argument to
pthread_cond_destroy() does not refer to an initialized condition variable, it is recommended that
the function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the cond argument to

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1583

50893

50894

50895

50896

50897

50898

50899

50900

50901

50902

50903

50904

50905

50906

50907

50908

50909

50910

50911

50912

50913

50914

50915

50916

50917

50918

50919

50920

50921

50922

50923

50924

50925

50926

50927

50928

50929

50930

50931

50932

50933

50934

50935

50936

50937

50938

50939

pthread_cond_destroy() System Interfaces

pthread_cond_destroy() or pthread_cond_init() refers to a condition variable that is in use (for
example, in a pthread_cond_wait() call) by another thread, or detects that the value specified by
the cond argument to pthread_cond_init() refers to an already initialized condition variable, it is
recommended that the function should fail and report an [EBUSY] error.

If an implementation detects that the value specified by the attr argument to pthread_cond_init()
does not refer to an initialized condition variable attributes object, it is recommended that the
function should fail and report an [EINVAL] error.

See also pthread_mutex_destroy().

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_broadcast(), pthread_cond_timedwait(), pthread_mutex_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cond_destroy() and pthread_cond_init() functions are marked as part of the Threads
option.

IEEE PASC Interpretation 1003.1c #34 is applied, updating the DESCRIPTION.

The restrict keyword is added to the pthread_cond_init() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_cond_destroy() and pthread_cond_init() functions are moved from the Threads option
to the Base.

The [EINVAL] error for an uninitialized condition variable and an uninitialized condition
variable attributes object is removed; this condition results in undefined behavior.

The [EBUSY] error for a condition variable already in use or an already initialized condition
variable is removed; this condition results in undefined behavior.

1584 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50940

50941

50942

50943

50944

50945

50946

50947

50948

50949

50950

50951

50952

50953

50954

50955

50956

50957

50958

50959

50960

50961

50962

50963

50964

50965

50966

50967

System Interfaces pthread_cond_signal()

NAME
pthread_cond_signal — signal a condition

SYNOPSIS
#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);

DESCRIPTION
Refer to pthread_cond_broadcast().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1585

50968

50969

50970

50971

50972

50973

50974

pthread_cond_timedwait() System Interfaces

NAME
pthread_cond_timedwait, pthread_cond_wait — wait on a condition

SYNOPSIS
#include <pthread.h>

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

DESCRIPTION
The pthread_cond_timedwait() and pthread_cond_wait() functions shall block on a condition
variable. The application shall ensure that these functions are called with mutex locked by the
calling thread; otherwise, an error (for PTHREAD_MUTEX_ERRORCHECK and robust
mutexes) or undefined behavior (for other mutexes) results.

These functions atomically release mutex and cause the calling thread to block on the condition
variable cond; atomically here means ‘‘atomically with respect to access by another thread to the
mutex and then the condition variable’’. That is, if another thread is able to acquire the mutex
after the about-to-block thread has released it, then a subsequent call to pthread_cond_broadcast()
or pthread_cond_signal() in that thread shall behave as if it were issued after the about-to-block
thread has blocked.

Upon successful return, the mutex shall have been locked and shall be owned by the calling
thread. If mutex is a robust mutex where an owner terminated while holding the lock and the
state is recoverable, the mutex shall be acquired even though the function returns an error code.

When using condition variables there is always a Boolean predicate involving shared variables
associated with each condition wait that is true if the thread should proceed. Spurious wakeups
from the pthread_cond_timedwait() or pthread_cond_wait() functions may occur. Since the return
from pthread_cond_timedwait() or pthread_cond_wait() does not imply anything about the value of
this predicate, the predicate should be re-evaluated upon such return.

When a thread waits on a condition variable, having specified a particular mutex to either the
pthread_cond_timedwait() or the pthread_cond_wait() operation, a dynamic binding is formed
between that mutex and condition variable that remains in effect as long as at least one thread is
blocked on the condition variable. During this time, the effect of an attempt by any thread to
wait on that condition variable using a different mutex is undefined. Once all waiting threads
have been unblocked (as by the pthread_cond_broadcast() operation), the next wait operation on
that condition variable shall form a new dynamic binding with the mutex specified by that wait
operation. Even though the dynamic binding between condition variable and mutex may be
removed or replaced between the time a thread is unblocked from a wait on the condition
variable and the time that it returns to the caller or begins cancellation cleanup, the unblocked
thread shall always re-acquire the mutex specified in the condition wait operation call from
which it is returning.

A condition wait (whether timed or not) is a cancellation point. When the cancelability type of a
thread is set to PTHREAD_CANCEL_DEFERRED, a side-effect of acting upon a cancellation
request while in a condition wait is that the mutex is (in effect) re-acquired before calling the first
cancellation cleanup handler. The effect is as if the thread were unblocked, allowed to execute up
to the point of returning from the call to pthread_cond_timedwait() or pthread_cond_wait(), but at
that point notices the cancellation request and instead of returning to the caller of
pthread_cond_timedwait() or pthread_cond_wait(), starts the thread cancellation activities, which
includes calling cancellation cleanup handlers.

1586 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

50975

50976

50977

50978

50979

50980

50981

50982

50983

50984

50985

50986

50987

50988

50989

50990

50991

50992

50993

50994

50995

50996

50997

50998

50999

51000

51001

51002

51003

51004

51005

51006

51007

51008

51009

51010

51011

51012

51013

51014

51015

51016

51017

51018

51019

51020

51021

51022

System Interfaces pthread_cond_timedwait()

A thread that has been unblocked because it has been canceled while blocked in a call to
pthread_cond_timedwait() or pthread_cond_wait() shall not consume any condition signal that may
be directed concurrently at the condition variable if there are other threads blocked on the
condition variable.

The pthread_cond_timedwait() function shall be equivalent to pthread_cond_wait(), except that an
error is returned if the absolute time specified by abstime passes (that is, system time equals or
exceeds abstime) before the condition cond is signaled or broadcasted, or if the absolute time
specified by abstime has already been passed at the time of the call.

The condition variable shall have a clock attribute which specifies the clock that shall be used to
measure the time specified by the abstime argument. When such timeouts occur,
pthread_cond_timedwait() shall nonetheless release and re-acquire the mutex referenced by mutex.
The pthread_cond_timedwait() function is also a cancellation point.

If a signal is delivered to a thread waiting for a condition variable, upon return from the signal
handler the thread resumes waiting for the condition variable as if it was not interrupted, or it
shall return zero due to spurious wakeup.

The behavior is undefined if the value specified by the cond or mutex argument to these
functions does not refer to an initialized condition variable or an initialized mutex object,
respectively.

RETURN VALUE
Except in the case of [ETIMEDOUT], all these error checks shall act as if they were performed
immediately at the beginning of processing for the function and shall cause an error return, in
effect, prior to modifying the state of the mutex specified by mutex or the condition variable
specified by cond.

Upon successful completion, a value of zero shall be returned; otherwise, an error number shall
be returned to indicate the error.

ERRORS
These functions shall fail if:

[ENOTRECOVERABLE]
The state protected by the mutex is not recoverable.

[EOWNERDEAD]
The mutex is a robust mutex and the process containing the previous owning
thread terminated while holding the mutex lock. The mutex lock shall be
acquired by the calling thread and it is up to the new owner to make the state
consistent.

[EPERM] The mutex type is PTHREAD_MUTEX_ERRORCHECK or the mutex is a
robust mutex, and the current thread does not own the mutex.

The pthread_cond_timedwait() function shall fail if:

[ETIMEDOUT] The time specified by abstime to pthread_cond_timedwait() has passed.

[EINVAL] The abstime argument specified a nanosecond value less than zero or greater
than or equal to 1000 million.

These functions may fail if:

[EOWNERDEAD]
The mutex is a robust mutex and the previous owning thread terminated
while holding the mutex lock. The mutex lock shall be acquired by the calling

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1587

51023

51024

51025

51026

51027

51028

51029

51030

51031

51032

51033

51034

51035

51036

51037

51038

51039

51040

51041

51042

51043

51044

51045

51046

51047

51048

51049

51050

51051

51052

51053

51054

51055

51056

51057

51058

51059

51060

51061

51062

51063

51064

51065

51066

pthread_cond_timedwait() System Interfaces

thread and it is up to the new owner to make the state consistent.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications that have assumed that non-zero return values are errors will need updating for
use with robust mutexes, since a valid return for a thread acquiring a mutex which is protecting
a currently inconsistent state is [EOWNERDEAD]. Applications that do not check the error
returns, due to ruling out the possibility of such errors arising, should not use robust mutexes. If
an application is supposed to work with normal and robust mutexes, it should check all return
values for error conditions and if necessary take appropriate action.

RATIONALE
If an implementation detects that the value specified by the cond argument to
pthread_cond_timedwait() or pthread_cond_wait() does not refer to an initialized condition
variable, or detects that the value specified by the mutex argument to pthread_cond_timedwait() or
pthread_cond_wait() does not refer to an initialized mutex object, it is recommended that the
function should fail and report an [EINVAL] error.

Condition Wait Semantics

It is important to note that when pthread_cond_wait() and pthread_cond_timedwait() return
without error, the associated predicate may still be false. Similarly, when
pthread_cond_timedwait() returns with the timeout error, the associated predicate may be true
due to an unavoidable race between the expiration of the timeout and the predicate state change.

The application needs to recheck the predicate on any return because it cannot be sure there is
another thread waiting on the thread to handle the signal, and if there is not then the signal is
lost. The burden is on the application to check the predicate.

Some implementations, particularly on a multi-processor, may sometimes cause multiple
threads to wake up when the condition variable is signaled simultaneously on different
processors.

In general, whenever a condition wait returns, the thread has to re-evaluate the predicate
associated with the condition wait to determine whether it can safely proceed, should wait
again, or should declare a timeout. A return from the wait does not imply that the associated
predicate is either true or false.

It is thus recommended that a condition wait be enclosed in the equivalent of a ‘‘while loop’’
that checks the predicate.

Timed Wait Semantics

An absolute time measure was chosen for specifying the timeout parameter for two reasons.
First, a relative time measure can be easily implemented on top of a function that specifies
absolute time, but there is a race condition associated with specifying an absolute timeout on top
of a function that specifies relative timeouts. For example, assume that clock_gettime() returns
the current time and cond_relative_timed_wait() uses relative timeouts:

clock_gettime(CLOCK_REALTIME, &now)
reltime = sleep_til_this_absolute_time -now;
cond_relative_timed_wait(c, m, &reltime);

If the thread is preempted between the first statement and the last statement, the thread blocks

1588 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

51067

51068

51069

51070

51071

51072

51073

51074

51075

51076

51077

51078

51079

51080

51081

51082

51083

51084

51085

51086

51087

51088

51089

51090

51091

51092

51093

51094

51095

51096

51097

51098

51099

51100

51101

51102

51103

51104

51105

51106

51107

51108

51109

51110

System Interfaces pthread_cond_timedwait()

for too long. Blocking, however, is irrelevant if an absolute timeout is used. An absolute timeout
also need not be recomputed if it is used multiple times in a loop, such as that enclosing a
condition wait.

For cases when the system clock is advanced discontinuously by an operator, it is expected that
implementations process any timed wait expiring at an intervening time as if that time had
actually occurred.

Cancellation and Condition Wait

A condition wait, whether timed or not, is a cancellation point. That is, the functions
pthread_cond_wait() or pthread_cond_timedwait() are points where a pending (or concurrent)
cancellation request is noticed. The reason for this is that an indefinite wait is possible at these
points—whatever event is being waited for, even if the program is totally correct, might never
occur; for example, some input data being awaited might never be sent. By making condition
wait a cancellation point, the thread can be canceled and perform its cancellation cleanup
handler even though it may be stuck in some indefinite wait.

A side-effect of acting on a cancellation request while a thread is blocked on a condition variable
is to re-acquire the mutex before calling any of the cancellation cleanup handlers. This is done in
order to ensure that the cancellation cleanup handler is executed in the same state as the critical
code that lies both before and after the call to the condition wait function. This rule is also
required when interfacing to POSIX threads from languages, such as Ada or C++, which may
choose to map cancellation onto a language exception; this rule ensures that each exception
handler guarding a critical section can always safely depend upon the fact that the associated
mutex has already been locked regardless of exactly where within the critical section the
exception was raised. Without this rule, there would not be a uniform rule that exception
handlers could follow regarding the lock, and so coding would become very cumbersome.

Therefore, since some statement has to be made regarding the state of the lock when a
cancellation is delivered during a wait, a definition has been chosen that makes application
coding most convenient and error free.

When acting on a cancellation request while a thread is blocked on a condition variable, the
implementation is required to ensure that the thread does not consume any condition signals
directed at that condition variable if there are any other threads waiting on that condition
variable. This rule is specified in order to avoid deadlock conditions that could occur if these
two independent requests (one acting on a thread and the other acting on the condition variable)
were not processed independently.

Performance of Mutexes and Condition Variables

Mutexes are expected to be locked only for a few instructions. This practice is almost
automatically enforced by the desire of programmers to avoid long serial regions of execution
(which would reduce total effective parallelism).

When using mutexes and condition variables, one tries to ensure that the usual case is to lock the
mutex, access shared data, and unlock the mutex. Waiting on a condition variable should be a
relatively rare situation. For example, when implementing a read-write lock, code that acquires a
read-lock typically needs only to increment the count of readers (under mutual-exclusion) and
return. The calling thread would actually wait on the condition variable only when there is
already an active writer. So the efficiency of a synchronization operation is bounded by the cost
of mutex lock/unlock and not by condition wait. Note that in the usual case there is no context
switch.

This is not to say that the efficiency of condition waiting is unimportant. Since there needs to be

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1589

51111

51112

51113

51114

51115

51116

51117

51118

51119

51120

51121

51122

51123

51124

51125

51126

51127

51128

51129

51130

51131

51132

51133

51134

51135

51136

51137

51138

51139

51140

51141

51142

51143

51144

51145

51146

51147

51148

51149

51150

51151

51152

51153

51154

51155

51156

pthread_cond_timedwait() System Interfaces

at least one context switch per Ada rendezvous, the efficiency of waiting on a condition variable
is important. The cost of waiting on a condition variable should be little more than the minimal
cost for a context switch plus the time to unlock and lock the mutex.

Features of Mutexes and Condition Variables

It had been suggested that the mutex acquisition and release be decoupled from condition wait.
This was rejected because it is the combined nature of the operation that, in fact, facilitates
realtime implementations. Those implementations can atomically move a high-priority thread
between the condition variable and the mutex in a manner that is transparent to the caller. This
can prevent extra context switches and provide more deterministic acquisition of a mutex when
the waiting thread is signaled. Thus, fairness and priority issues can be dealt with directly by the
scheduling discipline. Furthermore, the current condition wait operation matches existing
practice.

Scheduling Behavior of Mutexes and Condition Variables

Synchronization primitives that attempt to interfere with scheduling policy by specifying an
ordering rule are considered undesirable. Threads waiting on mutexes and condition variables
are selected to proceed in an order dependent upon the scheduling policy rather than in some
fixed order (for example, FIFO or priority). Thus, the scheduling policy determines which
thread(s) are awakened and allowed to proceed.

Timed Condition Wait

The pthread_cond_timedwait() function allows an application to give up waiting for a particular
condition after a given amount of time. An example of its use follows:

(void) pthread_mutex_lock(&t.mn);
t.waiters++;

clock_gettime(CLOCK_REALTIME, &ts);
ts.tv_sec += 5;
rc = 0;
while (! mypredicate(&t) && rc == 0)

rc = pthread_cond_timedwait(&t.cond, &t.mn, &ts);
t.waiters- -;
if (rc == 0) setmystate(&t);

(void) pthread_mutex_unlock(&t.mn);

By making the timeout parameter absolute, it does not need to be recomputed each time the
program checks its blocking predicate. If the timeout was relative, it would have to be
recomputed before each call. This would be especially difficult since such code would need to
take into account the possibility of extra wakeups that result from extra broadcasts or signals on
the condition variable that occur before either the predicate is true or the timeout is due.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_broadcast()

XBD Section 4.11 (on page 110), <pthread.h>

1590 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

51157

51158

51159

51160

51161

51162

51163

51164

51165

51166

51167

51168

51169

51170

51171

51172

51173

51174

51175

51176

51177

51178

51179

51180

51181

51182

51183

51184

51185

51186

51187

51188

51189

51190

51191

51192

51193

51194

51195

51196

51197

System Interfaces pthread_cond_timedwait()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cond_timedwait() and pthread_cond_wait() functions are marked as part of the
Threads option.

The Open Group Corrigendum U021/9 is applied, correcting the prototype for the
pthread_cond_wait() function.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding semantics
for the Clock Selection option.

The ERRORS section has an additional case for [EPERM] in response to IEEE PASC
Interpretation 1003.1c #28.

The restrict keyword is added to the pthread_cond_timedwait() and pthread_cond_wait()
prototypes for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/89 is applied, updating the
DESCRIPTION for consistency with the pthread_cond_destroy() function that states it is safe to
destroy an initialized condition variable upon which no threads are currently blocked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/90 is applied, updating words in the
DESCRIPTION from ‘‘the cancelability enable state’’ to ‘‘the cancelability type’’.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/91 is applied, updating the ERRORS
section to remove the error case related to abstime from the pthread_cond_wait() function, and to
make the error case related to abstime mandatory for pthread_cond_timedwait() for consistency
with other functions.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/92 is applied, adding a new paragraph to
the RATIONALE section stating that an application should check the predicate on any return
from this function.

Issue 7
SD5-XSH-ERN-44 is applied, changing the definition of the ‘‘shall fail’’ case of the [EINVAL]
error.

Changes are made from The Open Group Technical Standard, 2006, Extended API Set Part 3.

The pthread_cond_timedwait() and pthread_cond_wait() functions are moved from the Threads
option to the Base.

The [EINVAL] error for an uninitialized condition variable or uninitialized mutex object is
removed; this condition results in undefined behavior"

The [EPERM] error is revised and moved to the ‘‘shall fail’’ list of error conditions for the
pthread_cond_timedwait() function.

The DESCRIPTION is updated to clarify the behavior when mutex is a robust mutex.

The ERRORS section is updated to include ‘‘shall fail’’ cases for
PTHREAD_MUTEX_ERRORCHECK mutexes.

The DESCRIPTION is rewritten to clarify that undefined behavior occurs only for mutexes
where the [EPERM] error is not mandated.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1591

51198

51199

51200

51201

51202

51203

51204

51205

51206

51207

51208

51209

51210

51211

51212

51213

51214

51215

51216

51217

51218

51219

51220

51221

51222

51223

51224

51225

51226

51227

51228

51229

51230

51231

51232

51233

51234

51235

51236

51237

pthread_condattr_destroy() System Interfaces

NAME
pthread_condattr_destroy, pthread_condattr_init — destroy and initialize the condition variable
attributes object

SYNOPSIS
#include <pthread.h>

int pthread_condattr_destroy(pthread_condattr_t *attr);
int pthread_condattr_init(pthread_condattr_t *attr);

DESCRIPTION
The pthread_condattr_destroy() function shall destroy a condition variable attributes object; the
object becomes, in effect, uninitialized. An implementation may cause pthread_condattr_destroy()
to set the object referenced by attr to an invalid value. A destroyed attr attributes object can be
reinitialized using pthread_condattr_init(); the results of otherwise referencing the object after it
has been destroyed are undefined.

The pthread_condattr_init() function shall initialize a condition variable attributes object attr with
the default value for all of the attributes defined by the implementation.

Results are undefined if pthread_condattr_init() is called specifying an already initialized attr
attributes object.

After a condition variable attributes object has been used to initialize one or more condition
variables, any function affecting the attributes object (including destruction) shall not affect any
previously initialized condition variables.

This volume of POSIX.1-2008 requires two attributes, the clock attribute and the process-shared
attribute.

Additional attributes, their default values, and the names of the associated functions to get and
set those attribute values are implementation-defined.

The behavior is undefined if the value specified by the attr argument to
pthread_condattr_destroy() does not refer to an initialized condition variable attributes object.

RETURN VALUE
If successful, the pthread_condattr_destroy() and pthread_condattr_init() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_condattr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the condition variable attributes object.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
A process-shared attribute has been defined for condition variables for the same reason it has been
defined for mutexes.

If an implementation detects that the value specified by the attr argument to
pthread_condattr_destroy() does not refer to an initialized condition variable attributes object, it is
recommended that the function should fail and report an [EINVAL] error.

1592 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

51238

51239

51240

51241

51242

51243

51244

51245

51246

51247

51248

51249

51250

51251

51252

51253

51254

51255

51256

51257

51258

51259

51260

51261

51262

51263

51264

51265

51266

51267

51268

51269

51270

51271

51272

51273

51274

51275

51276

51277

51278

51279

51280

System Interfaces pthread_condattr_destroy()

See also pthread_attr_destroy() and pthread_mutex_destroy().

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_cond_destroy(), pthread_condattr_getpshared(), pthread_create(),
pthread_mutex_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_condattr_destroy() and pthread_condattr_init() functions are marked as part of the
Threads option.

Issue 7
The pthread_condattr_destroy() and pthread_condattr_init() functions are moved from the Threads
option to the Base.

The [EINVAL] error for an uninitialized condition variable attributes object is removed; this
condition results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1593

51281

51282

51283

51284

51285

51286

51287

51288

51289

51290

51291

51292

51293

51294

51295

51296

51297

pthread_condattr_getclock() System Interfaces

NAME
pthread_condattr_getclock, pthread_condattr_setclock — get and set the clock selection
condition variable attribute

SYNOPSIS
#include <pthread.h>

int pthread_condattr_getclock(const pthread_condattr_t *restrict attr,
clockid_t *restrict clock_id);

int pthread_condattr_setclock(pthread_condattr_t *attr,
clockid_t clock_id);

DESCRIPTION
The pthread_condattr_getclock() function shall obtain the value of the clock attribute from the
attributes object referenced by attr.

The pthread_condattr_setclock() function shall set the clock attribute in an initialized attributes
object referenced by attr. If pthread_condattr_setclock() is called with a clock_id argument that
refers to a CPU-time clock, the call shall fail.

The clock attribute is the clock ID of the clock that shall be used to measure the timeout service of
pthread_cond_timedwait(). The default value of the clock attribute shall refer to the system clock.

The behavior is undefined if the value specified by the attr argument to
pthread_condattr_getclock() or pthread_condattr_setclock() does not refer to an initialized condition
variable attributes object.

RETURN VALUE
If successful, the pthread_condattr_getclock() function shall return zero and store the value of the
clock attribute of attr into the object referenced by the clock_id argument. Otherwise, an error
number shall be returned to indicate the error.

If successful, the pthread_condattr_setclock() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_condattr_setclock() function may fail if:

[EINVAL] The value specified by clock_id does not refer to a known clock, or is a CPU-
time clock.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_condattr_getclock() or pthread_condattr_setclock() does not refer to an initialized condition
variable attributes object, it is recommended that the function should fail and report an
[EINVAL] error.

FUTURE DIRECTIONS
None.

1594 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

51298

51299

51300

51301

51302

51303

51304

51305

51306

51307

51308

51309

51310

51311

51312

51313

51314

51315

51316

51317

51318

51319

51320

51321

51322

51323

51324

51325

51326

51327

51328

51329

51330

51331

51332

51333

51334

51335

51336

51337

51338

51339

System Interfaces pthread_condattr_getclock()

SEE ALSO
pthread_cond_destroy(), pthread_cond_timedwait(), pthread_condattr_destroy(),
pthread_condattr_getpshared(), pthread_create(), pthread_mutex_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7
The pthread_condattr_getclock() and pthread_condattr_setclock() functions are moved from the
Clock Selection option to the Base.

The [EINVAL] error for an uninitialized condition variable attributes object is removed; this
condition results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1595

51340

51341

51342

51343

51344

51345

51346

51347

51348

51349

51350

pthread_condattr_getpshared() System Interfaces

NAME
pthread_condattr_getpshared, pthread_condattr_setpshared — get and set the process-shared
condition variable attributes

SYNOPSIS
TSH #include <pthread.h>

int pthread_condattr_getpshared(const pthread_condattr_t *restrict attr,
int *restrict pshared);

int pthread_condattr_setpshared(pthread_condattr_t *attr,
int pshared);

DESCRIPTION
The pthread_condattr_getpshared() function shall obtain the value of the process-shared attribute
from the attributes object referenced by attr.

The pthread_condattr_setpshared() function shall set the process-shared attribute in an initialized
attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a condition
variable to be operated upon by any thread that has access to the memory where the condition
variable is allocated, even if the condition variable is allocated in memory that is shared by
multiple processes. If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the
condition variable shall only be operated upon by threads created within the same process as the
thread that initialized the condition variable; if threads of differing processes attempt to operate
on such a condition variable, the behavior is undefined. The default value of the attribute is
PTHREAD_PROCESS_PRIVATE.

The behavior is undefined if the value specified by the attr argument to
pthread_condattr_getpshared() or pthread_condattr_setpshared() does not refer to an initialized
condition variable attributes object.

RETURN VALUE
If successful, the pthread_condattr_setpshared() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

If successful, the pthread_condattr_getpshared() function shall return zero and store the value of
the process-shared attribute of attr into the object referenced by the pshared parameter. Otherwise,
an error number shall be returned to indicate the error.

ERRORS
The pthread_condattr_setpshared() function may fail if:

[EINVAL] The new value specified for the attribute is outside the range of legal values
for that attribute.

These functions shall not return an error code of [EINTR].

1596 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

51351

51352

51353

51354

51355

51356

51357

51358

51359

51360

51361

51362

51363

51364

51365

51366

51367

51368

51369

51370

51371

51372

51373

51374

51375

51376

51377

51378

51379

51380

51381

51382

51383

51384

51385

51386

System Interfaces pthread_condattr_getpshared()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_condattr_getpshared() or pthread_condattr_setpshared() does not refer to an initialized
condition variable attributes object, it is recommended that the function should fail and report
an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_cond_destroy(), pthread_condattr_destroy(), pthread_mutex_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_condattr_getpshared() and pthread_condattr_setpshared() functions are marked as part
of the Threads and Thread Process-Shared Synchronization options.

The restrict keyword is added to the pthread_condattr_getpshared() prototype for alignment with
the ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_condattr_getpshared() and pthread_condattr_setpshared() functions are moved from the
Threads option.

The [EINVAL] error for an uninitialized condition variable attributes object is removed; this
condition results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1597

51387

51388

51389

51390

51391

51392

51393

51394

51395

51396

51397

51398

51399

51400

51401

51402

51403

51404

51405

51406

51407

51408

51409

51410

51411

51412

pthread_condattr_init() System Interfaces

NAME
pthread_condattr_init — initialize the condition variable attributes object

SYNOPSIS
#include <pthread.h>

int pthread_condattr_init(pthread_condattr_t *attr);

DESCRIPTION
Refer to pthread_condattr_destroy().

1598 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

51413

51414

51415

51416

51417

51418

51419

System Interfaces pthread_condattr_setclock()

NAME
pthread_condattr_setclock — set the clock selection condition variable attribute

SYNOPSIS
#include <pthread.h>

int pthread_condattr_setclock(pthread_condattr_t *attr,
clockid_t clock_id);

DESCRIPTION
Refer to pthread_condattr_getclock().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1599

51420

51421

51422

51423

51424

51425

51426

51427

pthread_condattr_setpshared() System Interfaces

NAME
pthread_condattr_setpshared — set the process-shared condition variable attribute

SYNOPSIS
TSH #include <pthread.h>

int pthread_condattr_setpshared(pthread_condattr_t *attr,
int pshared);

DESCRIPTION
Refer to pthread_condattr_getpshared().

1600 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

51428

51429

51430

51431

51432

51433

51434

51435

System Interfaces pthread_create()

NAME
pthread_create — thread creation

SYNOPSIS
#include <pthread.h>

int pthread_create(pthread_t *restrict thread,
const pthread_attr_t *restrict attr,
void *(*start_routine)(void*), void *restrict arg);

DESCRIPTION
The pthread_create() function shall create a new thread, with attributes specified by attr, within a
process. If attr is NULL, the default attributes shall be used. If the attributes specified by attr are
modified later, the thread’s attributes shall not be affected. Upon successful completion,
pthread_create() shall store the ID of the created thread in the location referenced by thread.

The thread is created executing start_routine with arg as its sole argument. If the start_routine
returns, the effect shall be as if there was an implicit call to pthread_exit() using the return value
of start_routine as the exit status. Note that the thread in which main() was originally invoked
differs from this. When it returns from main(), the effect shall be as if there was an implicit call to
exit() using the return value of main() as the exit status.

The signal state of the new thread shall be initialized as follows:

• The signal mask shall be inherited from the creating thread.

• The set of signals pending for the new thread shall be empty.

XSI The alternate stack shall not be inherited.

The floating-point environment shall be inherited from the creating thread.

If pthread_create() fails, no new thread is created and the contents of the location referenced by
thread are undefined.

TCT If _POSIX_THREAD_CPUTIME is defined, the new thread shall have a CPU-time clock
accessible, and the initial value of this clock shall be set to zero.

The behavior is undefined if the value specified by the attr argument to pthread_create() does not
refer to an initialized thread attributes object.

RETURN VALUE
If successful, the pthread_create() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_create() function shall fail if:

[EAGAIN] The system lacked the necessary resources to create another thread, or the
system-imposed limit on the total number of threads in a process
{PTHREAD_THREADS_MAX} would be exceeded.

[EPERM] The caller does not have appropriate privileges to set the required scheduling
parameters or scheduling policy.

The pthread_create() function shall not return an error code of [EINTR].

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1601

51436

51437

51438

51439

51440

51441

51442

51443

51444

51445

51446

51447

51448

51449

51450

51451

51452

51453

51454

51455

51456

51457

51458

51459

51460

51461

51462

51463

51464

51465

51466

51467

51468

51469

51470

51471

51472

51473

51474

pthread_create() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
There is no requirement on the implementation that the ID of the created thread be available
before the newly created thread starts executing. The calling thread can obtain the ID of the
created thread through the return value of the pthread_create() function, and the newly created
thread can obtain its ID by a call to pthread_self().

RATIONALE
A suggested alternative to pthread_create() would be to define two separate operations: create
and start. Some applications would find such behavior more natural. Ada, in particular,
separates the ‘‘creation’’ of a task from its ‘‘activation’’.

Splitting the operation was rejected by the standard developers for many reasons:

• The number of calls required to start a thread would increase from one to two and thus
place an additional burden on applications that do not require the additional
synchronization. The second call, however, could be avoided by the additional
complication of a start-up state attribute.

• An extra state would be introduced: ‘‘created but not started’’. This would require the
standard to specify the behavior of the thread operations when the target has not yet
started executing.

• For those applications that require such behavior, it is possible to simulate the two separate
steps with the facilities that are currently provided. The start_routine() can synchronize by
waiting on a condition variable that is signaled by the start operation.

An Ada implementor can choose to create the thread at either of two points in the Ada program:
when the task object is created, or when the task is activated (generally at a ‘‘begin’’). If the first
approach is adopted, the start_routine() needs to wait on a condition variable to receive the order
to begin ‘‘activation’’. The second approach requires no such condition variable or extra
synchronization. In either approach, a separate Ada task control block would need to be created
when the task object is created to hold rendezvous queues, and so on.

An extension of the preceding model would be to allow the state of the thread to be modified
between the create and start. This would allow the thread attributes object to be eliminated. This
has been rejected because:

• All state in the thread attributes object has to be able to be set for the thread. This would
require the definition of functions to modify thread attributes. There would be no
reduction in the number of function calls required to set up the thread. In fact, for an
application that creates all threads using identical attributes, the number of function calls
required to set up the threads would be dramatically increased. Use of a thread attributes
object permits the application to make one set of attribute setting function calls.
Otherwise, the set of attribute setting function calls needs to be made for each thread
creation.

• Depending on the implementation architecture, functions to set thread state would require
kernel calls, or for other implementation reasons would not be able to be implemented as
macros, thereby increasing the cost of thread creation.

• The ability for applications to segregate threads by class would be lost.

Another suggested alternative uses a model similar to that for process creation, such as ‘‘thread
fork’’. The fork semantics would provide more flexibility and the ‘‘create’’ function can be
implemented simply by doing a thread fork followed immediately by a call to the desired ‘‘start

1602 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

51475

51476

51477

51478

51479

51480

51481

51482

51483

51484

51485

51486

51487

51488

51489

51490

51491

51492

51493

51494

51495

51496

51497

51498

51499

51500

51501

51502

51503

51504

51505

51506

51507

51508

51509

51510

51511

51512

51513

51514

51515

51516

51517

51518

51519

51520

System Interfaces pthread_create()

routine’’ for the thread. This alternative has these problems:

• For many implementations, the entire stack of the calling thread would need to be
duplicated, since in many architectures there is no way to determine the size of the calling
frame.

• Efficiency is reduced since at least some part of the stack has to be copied, even though in
most cases the thread never needs the copied context, since it merely calls the desired start
routine.

If an implementation detects that the value specified by the attr argument to pthread_create()
does not refer to an initialized thread attributes object, it is recommended that the function
should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
fork(), pthread_exit(), pthread_join()

XBD Section 4.11 (on page 110), <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_create() function is marked as part of the Threads option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EPERM] mandatory error condition is added.

The thread CPU-time clock semantics are added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_create() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The DESCRIPTION is updated to make it explicit that the floating-point environment is
inherited from the creating thread.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/44 is applied, adding text that the
alternate stack is not inherited.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/93 is applied, updating the ERRORS
section to remove the mandatory [EINVAL] error (‘‘The value specified by attr is invalid’’), and
adding the optional [EINVAL] error (‘‘The attributes specified by attr are invalid’’).

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/94 is applied, adding the APPLICATION
USAGE section.

Issue 7
The pthread_create() function is moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this condition
results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1603

51521

51522

51523

51524

51525

51526

51527

51528

51529

51530

51531

51532

51533

51534

51535

51536

51537

51538

51539

51540

51541

51542

51543

51544

51545

51546

51547

51548

51549

51550

51551

51552

51553

51554

51555

51556

51557

51558

pthread_detach() System Interfaces

NAME
pthread_detach — detach a thread

SYNOPSIS
#include <pthread.h>

int pthread_detach(pthread_t thread);

DESCRIPTION
The pthread_detach() function shall indicate to the implementation that storage for the thread
thread can be reclaimed when that thread terminates. If thread has not terminated,
pthread_detach() shall not cause it to terminate.

The behavior is undefined if the value specified by the thread argument to pthread_detach() does
not refer to a joinable thread.

RETURN VALUE
If the call succeeds, pthread_detach() shall return 0; otherwise, an error number shall be returned
to indicate the error.

ERRORS
The pthread_detach() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_join() or pthread_detach() functions should eventually be called for every thread that
is created so that storage associated with the thread may be reclaimed.

It has been suggested that a ‘‘detach’’ function is not necessary; the detachstate thread creation
attribute is sufficient, since a thread need never be dynamically detached. However, need arises
in at least two cases:

1. In a cancellation handler for a pthread_join() it is nearly essential to have a
pthread_detach() function in order to detach the thread on which pthread_join() was
waiting. Without it, it would be necessary to have the handler do another pthread_join() to
attempt to detach the thread, which would both delay the cancellation processing for an
unbounded period and introduce a new call to pthread_join(), which might itself need a
cancellation handler. A dynamic detach is nearly essential in this case.

2. In order to detach the ‘‘initial thread’’ (as may be desirable in processes that set up server
threads).

If an implementation detects that the value specified by the thread argument to pthread_detach()
does not refer to a joinable thread, it is recommended that the function should fail and report an
[EINVAL] error.

If an implementation detects use of a thread ID after the end of its lifetime, it is recommended
that the function should fail and report an [ESRCH] error.

FUTURE DIRECTIONS
None.

1604 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

51559

51560

51561

51562

51563

51564

51565

51566

51567

51568

51569

51570

51571

51572

51573

51574

51575

51576

51577

51578

51579

51580

51581

51582

51583

51584

51585

51586

51587

51588

51589

51590

51591

51592

51593

51594

51595

51596

51597

51598

51599

System Interfaces pthread_detach()

SEE ALSO
pthread_join()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_detach() function is marked as part of the Threads option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/95 is applied, updating the ERRORS
section so that the [EINVAL] and [ESRCH] error cases become optional.

Issue 7
The pthread_detach() function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH] error condition.

The [EINVAL] error for a non-joinable thread is removed; this condition results in undefined
behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1605

51600

51601

51602

51603

51604

51605

51606

51607

51608

51609

51610

51611

51612

51613

pthread_equal() System Interfaces

NAME
pthread_equal — compare thread IDs

SYNOPSIS
#include <pthread.h>

int pthread_equal(pthread_t t1, pthread_t t2);

DESCRIPTION
This function shall compare the thread IDs t1 and t2.

RETURN VALUE
The pthread_equal() function shall return a non-zero value if t1 and t2 are equal; otherwise, zero
shall be returned.

If either t1 or t2 are not valid thread IDs, the behavior is undefined.

ERRORS
No errors are defined.

The pthread_equal() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Implementations may choose to define a thread ID as a structure. This allows additional
flexibility and robustness over using an int. For example, a thread ID could include a sequence
number that allows detection of ‘‘dangling IDs’’ (copies of a thread ID that has been detached).
Since the C language does not support comparison on structure types, the pthread_equal()
function is provided to compare thread IDs.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_self()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_equal() function is marked as part of the Threads option.

Issue 7
The pthread_equal() function is moved from the Threads option to the Base.

1606 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

51614

51615

51616

51617

51618

51619

51620

51621

51622

51623

51624

51625

51626

51627

51628

51629

51630

51631

51632

51633

51634

51635

51636

51637

51638

51639

51640

51641

51642

51643

51644

51645

51646

51647

51648

System Interfaces pthread_exit()

NAME
pthread_exit — thread termination

SYNOPSIS
#include <pthread.h>

void pthread_exit(void *value_ptr);

DESCRIPTION
The pthread_exit() function shall terminate the calling thread and make the value value_ptr
available to any successful join with the terminating thread. Any cancellation cleanup handlers
that have been pushed and not yet popped shall be popped in the reverse order that they were
pushed and then executed. After all cancellation cleanup handlers have been executed, if the
thread has any thread-specific data, appropriate destructor functions shall be called in an
unspecified order. Thread termination does not release any application visible process resources,
including, but not limited to, mutexes and file descriptors, nor does it perform any process-level
cleanup actions, including, but not limited to, calling any atexit() routines that may exist.

An implicit call to pthread_exit() is made when a thread other than the thread in which main()
was first invoked returns from the start routine that was used to create it. The function’s return
value shall serve as the thread’s exit status.

The behavior of pthread_exit() is undefined if called from a cancellation cleanup handler or
destructor function that was invoked as a result of either an implicit or explicit call to
pthread_exit().

After a thread has terminated, the result of access to local (auto) variables of the thread is
undefined. Thus, references to local variables of the exiting thread should not be used for the
pthread_exit() value_ptr parameter value.

The process shall exit with an exit status of 0 after the last thread has been terminated. The
behavior shall be as if the implementation called exit() with a zero argument at thread
termination time.

RETURN VALUE
The pthread_exit() function cannot return to its caller.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The normal mechanism by which a thread terminates is to return from the routine that was
specified in the pthread_create() call that started it. The pthread_exit() function provides the
capability for a thread to terminate without requiring a return from the start routine of that
thread, thereby providing a function analogous to exit().

Regardless of the method of thread termination, any cancellation cleanup handlers that have
been pushed and not yet popped are executed, and the destructors for any existing thread-
specific data are executed. This volume of POSIX.1-2008 requires that cancellation cleanup
handlers be popped and called in order. After all cancellation cleanup handlers have been
executed, thread-specific data destructors are called, in an unspecified order, for each item of
thread-specific data that exists in the thread. This ordering is necessary because cancellation
cleanup handlers may rely on thread-specific data.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1607

51649

51650

51651

51652

51653

51654

51655

51656

51657

51658

51659

51660

51661

51662

51663

51664

51665

51666

51667

51668

51669

51670

51671

51672

51673

51674

51675

51676

51677

51678

51679

51680

51681

51682

51683

51684

51685

51686

51687

51688

51689

51690

51691

51692

51693

51694

pthread_exit() System Interfaces

As the meaning of the status is determined by the application (except when the thread has been
canceled, in which case it is PTHREAD_CANCELED), the implementation has no idea what an
illegal status value is, which is why no address error checking is done.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), pthread_create(), pthread_join()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_exit() function is marked as part of the Threads option.

Issue 7
The pthread_exit() function is moved from the Threads option to the Base.

1608 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

51695

51696

51697

51698

51699

51700

51701

51702

51703

51704

51705

51706

51707

51708

System Interfaces pthread_getconcurrency()

NAME
pthread_getconcurrency, pthread_setconcurrency — get and set the level of concurrency

SYNOPSIS
OB XSI #include <pthread.h>

int pthread_getconcurrency(void);
int pthread_setconcurrency(int new_level);

DESCRIPTION
Unbound threads in a process may or may not be required to be simultaneously active. By
default, the threads implementation ensures that a sufficient number of threads are active so that
the process can continue to make progress. While this conserves system resources, it may not
produce the most effective level of concurrency.

The pthread_setconcurrency() function allows an application to inform the threads
implementation of its desired concurrency level, new_level. The actual level of concurrency
provided by the implementation as a result of this function call is unspecified.

If new_level is zero, it causes the implementation to maintain the concurrency level at its
discretion as if pthread_setconcurrency() had never been called.

The pthread_getconcurrency() function shall return the value set by a previous call to the
pthread_setconcurrency() function. If the pthread_setconcurrency() function was not previously
called, this function shall return zero to indicate that the implementation is maintaining the
concurrency level.

A call to pthread_setconcurrency() shall inform the implementation of its desired concurrency
level. The implementation shall use this as a hint, not a requirement.

If an implementation does not support multiplexing of user threads on top of several kernel-
scheduled entities, the pthread_setconcurrency() and pthread_getconcurrency() functions are
provided for source code compatibility but they shall have no effect when called. To maintain
the function semantics, the new_level parameter is saved when pthread_setconcurrency() is called
so that a subsequent call to pthread_getconcurrency() shall return the same value.

RETURN VALUE
If successful, the pthread_setconcurrency() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

The pthread_getconcurrency() function shall always return the concurrency level set by a previous
call to pthread_setconcurrency(). If the pthread_setconcurrency() function has never been called,
pthread_getconcurrency() shall return zero.

ERRORS
The pthread_setconcurrency() function shall fail if:

[EINVAL] The value specified by new_level is negative.

[EAGAIN] The value specified by new_level would cause a system resource to be
exceeded.

The pthread_setconcurrency() function shall not return an error code of [EINTR].

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1609

51709

51710

51711

51712

51713

51714

51715

51716

51717

51718

51719

51720

51721

51722

51723

51724

51725

51726

51727

51728

51729

51730

51731

51732

51733

51734

51735

51736

51737

51738

51739

51740

51741

51742

51743

51744

51745

51746

51747

pthread_getconcurrency() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
Application developers should note that an implementation can always ignore any calls to
pthread_setconcurrency() and return a constant for pthread_getconcurrency(). For this reason, it is
not recommended that portable applications use this function.

RATIONALE
None.

FUTURE DIRECTIONS
These functions may be removed in a future version.

SEE ALSO
XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 7
SD5-XSH-ERN-184 is applied.

The pthread_getconcurrency() and pthread_setconcurrency() functions are marked obsolescent.

1610 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

51748

51749

51750

51751

51752

51753

51754

51755

51756

51757

51758

51759

51760

51761

51762

51763

51764

System Interfaces pthread_getcpuclockid()

NAME
pthread_getcpuclockid — access a thread CPU-time clock (ADVANCED REALTIME
THREADS)

SYNOPSIS
TCT #include <pthread.h>

#include <time.h>

int pthread_getcpuclockid(pthread_t thread_id, clockid_t *clock_id);

DESCRIPTION
The pthread_getcpuclockid() function shall return in clock_id the clock ID of the CPU-time clock of
the thread specified by thread_id, if the thread specified by thread_id exists.

RETURN VALUE
Upon successful completion, pthread_getcpuclockid() shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The pthread_getcpuclockid() function is part of the Thread CPU-Time Clocks option and need not
be provided on all implementations.

RATIONALE
If an implementation detects use of a thread ID after the end of its lifetime, it is recommended
that the function should fail and report an [ESRCH] error.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getcpuclockid(), clock_getres(), timer_create()

XBD <pthread.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
The pthread_getcpuclockid() function is moved from the Threads option.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH] error condition.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1611

51765

51766

51767

51768

51769

51770

51771

51772

51773

51774

51775

51776

51777

51778

51779

51780

51781

51782

51783

51784

51785

51786

51787

51788

51789

51790

51791

51792

51793

51794

51795

51796

51797

51798

pthread_getschedparam() System Interfaces

NAME
pthread_getschedparam, pthread_setschedparam — dynamic thread scheduling parameters
access (REALTIME THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_getschedparam(pthread_t thread, int *restrict policy,
struct sched_param *restrict param);

int pthread_setschedparam(pthread_t thread, int policy,
const struct sched_param *param);

DESCRIPTION
The pthread_getschedparam() and pthread_setschedparam() functions shall, respectively, get and set
the scheduling policy and parameters of individual threads within a multi-threaded process to
be retrieved and set. For SCHED_FIFO and SCHED_RR, the only required member of the
sched_param structure is the priority sched_priority. For SCHED_OTHER, the affected
scheduling parameters are implementation-defined.

The pthread_getschedparam() function shall retrieve the scheduling policy and scheduling
parameters for the thread whose thread ID is given by thread and shall store those values in
policy and param, respectively. The priority value returned from pthread_getschedparam() shall be
the value specified by the most recent pthread_setschedparam(), pthread_setschedprio(), or
pthread_create() call affecting the target thread. It shall not reflect any temporary adjustments to
its priority as a result of any priority inheritance or ceiling functions. The pthread_setschedparam()
function shall set the scheduling policy and associated scheduling parameters for the thread
whose thread ID is given by thread to the policy and associated parameters provided in policy
and param, respectively.

The policy parameter may have the value SCHED_OTHER, SCHED_FIFO, or SCHED_RR. The
scheduling parameters for the SCHED_OTHER policy are implementation-defined. The
SCHED_FIFO and SCHED_RR policies shall have a single scheduling parameter, priority.

TSP If _POSIX_THREAD_SPORADIC_SERVER is defined, then the policy argument may have the
value SCHED_SPORADIC, with the exception for the pthread_setschedparam() function that if the
scheduling policy was not SCHED_SPORADIC at the time of the call, it is implementation-
defined whether the function is supported; in other words, the implementation need not allow
the application to dynamically change the scheduling policy to SCHED_SPORADIC. The
sporadic server scheduling policy has the associated parameters sched_ss_low_priority,
sched_ss_repl_period, sched_ss_init_budget, sched_priority, and sched_ss_max_repl. The specified
sched_ss_repl_period shall be greater than or equal to the specified sched_ss_init_budget for the
function to succeed; if it is not, then the function shall fail. The value of sched_ss_max_repl shall
be within the inclusive range [1,{SS_REPL_MAX}] for the function to succeed; if not, the function
shall fail. It is unspecified whether the sched_ss_repl_period and sched_ss_init_budget values are
stored as provided by this function or are rounded to align with the resolution of the clock being
used.

If the pthread_setschedparam() function fails, the scheduling parameters shall not be changed for
the target thread.

RETURN VALUE
If successful, the pthread_getschedparam() and pthread_setschedparam() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

1612 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

51799

51800

51801

51802

51803

51804

51805

51806

51807

51808

51809

51810

51811

51812

51813

51814

51815

51816

51817

51818

51819

51820

51821

51822

51823

51824

51825

51826

51827

51828

51829

51830

51831

51832

51833

51834

51835

51836

51837

51838

51839

51840

51841

51842

51843

System Interfaces pthread_getschedparam()

ERRORS
The pthread_setschedparam() function may fail if:

[EINVAL] The value specified by policy or one of the scheduling parameters associated
with the scheduling policy policy is invalid.

[ENOTSUP] An attempt was made to set the policy or scheduling parameters to an
unsupported value.

TSP [ENOTSUP] An attempt was made to dynamically change the scheduling policy to
SCHED_SPORADIC, and the implementation does not support this change.

[EPERM] The caller does not have appropriate privileges to set either the scheduling
parameters or the scheduling policy of the specified thread.

[EPERM] The implementation does not allow the application to modify one of the
parameters to the value specified.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects use of a thread ID after the end of its lifetime, it is recommended
that the function should fail and report an [ESRCH] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_setschedprio(), sched_getparam(), sched_getscheduler()

XBD <pthread.h>, <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_getschedparam() and pthread_setschedparam() functions are marked as part of the
Threads and Thread Execution Scheduling options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Execution Scheduling option.

The Open Group Corrigendum U026/2 is applied, correcting the prototype for the
pthread_setschedparam() function so that its second argument is of type int.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_getschedparam() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The Open Group Corrigendum U047/1 is applied.

IEEE PASC Interpretation 1003.1 #96 is applied, noting that priority values can also be set by a
call to the pthread_setschedprio() function.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1613

51844

51845

51846

51847

51848

51849

51850

51851

51852

51853

51854

51855

51856

51857

51858

51859

51860

51861

51862

51863

51864

51865

51866

51867

51868

51869

51870

51871

51872

51873

51874

51875

51876

51877

51878

51879

51880

51881

51882

51883

pthread_getschedparam() System Interfaces

Issue 7
The pthread_getschedparam() and pthread_setschedparam() functions are moved from the Threads
option.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy requirements
for the sched_ss_repl_period and sched_ss_init_budget values.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH] error condition.

1614 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

51884

51885

51886

51887

51888

51889

System Interfaces pthread_getspecific()

NAME
pthread_getspecific, pthread_setspecific — thread-specific data management

SYNOPSIS
#include <pthread.h>

void *pthread_getspecific(pthread_key_t key);
int pthread_setspecific(pthread_key_t key, const void *value);

DESCRIPTION
The pthread_getspecific() function shall return the value currently bound to the specified key on
behalf of the calling thread.

The pthread_setspecific() function shall associate a thread-specific value with a key obtained via a
previous call to pthread_key_create(). Different threads may bind different values to the same
key. These values are typically pointers to blocks of dynamically allocated memory that have
been reserved for use by the calling thread.

The effect of calling pthread_getspecific() or pthread_setspecific() with a key value not obtained
from pthread_key_create() or after key has been deleted with pthread_key_delete() is undefined.

Both pthread_getspecific() and pthread_setspecific() may be called from a thread-specific data
destructor function. A call to pthread_getspecific() for the thread-specific data key being
destroyed shall return the value NULL, unless the value is changed (after the destructor starts)
by a call to pthread_setspecific(). Calling pthread_setspecific() from a thread-specific data
destructor routine may result either in lost storage (after at least
PTHREAD_DESTRUCTOR_ITERATIONS attempts at destruction) or in an infinite loop.

Both functions may be implemented as macros.

RETURN VALUE
The pthread_getspecific() function shall return the thread-specific data value associated with the
given key. If no thread-specific data value is associated with key, then the value NULL shall be
returned.

If successful, the pthread_setspecific() function shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
No errors are returned from pthread_getspecific().

The pthread_setspecific() function shall fail if:

[ENOMEM] Insufficient memory exists to associate the non-NULL value with the key.

The pthread_setspecific() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Performance and ease-of-use of pthread_getspecific() are critical for functions that rely on
maintaining state in thread-specific data. Since no errors are required to be detected by it, and
since the only error that could be detected is the use of an invalid key, the function to
pthread_getspecific() has been designed to favor speed and simplicity over error reporting.

If an implementation detects that the value specified by the key argument to pthread_setspecific()
does not refer to a a key value obtained from pthread_key_create() or refers to a key that has been

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1615

51890

51891

51892

51893

51894

51895

51896

51897

51898

51899

51900

51901

51902

51903

51904

51905

51906

51907

51908

51909

51910

51911

51912

51913

51914

51915

51916

51917

51918

51919

51920

51921

51922

51923

51924

51925

51926

51927

51928

51929

51930

51931

51932

51933

pthread_getspecific() System Interfaces

deleted with pthread_key_delete(), it is recommended that the function should fail and report an
[EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_key_create()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_getspecific() and pthread_setspecific() functions are marked as part of the Threads
option.

IEEE PASC Interpretation 1003.1c #3 (Part 6) is applied, updating the DESCRIPTION.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/96 is applied, updating the ERRORS
section so that the [ENOMEM] error case is changed from ‘‘to associate the value with the key’’
to ‘‘to associate the non-NULL value with the key’’.

Issue 7
Austin Group Interpretation 1003.1-2001 #063 is applied, updating the ERRORS section.

The pthread_getspecific() and pthread_setspecific() functions are moved from the Threads option to
the Base.

The [EINVAL] error for a key value not obtained from pthread_key_create() or a key deleted with
pthread_key_delete() is removed; this condition results in undefined behavior.

1616 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

51934

51935

51936

51937

51938

51939

51940

51941

51942

51943

51944

51945

51946

51947

51948

51949

51950

51951

51952

51953

51954

51955

System Interfaces pthread_join()

NAME
pthread_join — wait for thread termination

SYNOPSIS
#include <pthread.h>

int pthread_join(pthread_t thread, void **value_ptr);

DESCRIPTION
The pthread_join() function shall suspend execution of the calling thread until the target thread
terminates, unless the target thread has already terminated. On return from a successful
pthread_join() call with a non-NULL value_ptr argument, the value passed to pthread_exit() by
the terminating thread shall be made available in the location referenced by value_ptr. When a
pthread_join() returns successfully, the target thread has been terminated. The results of multiple
simultaneous calls to pthread_join() specifying the same target thread are undefined. If the
thread calling pthread_join() is canceled, then the target thread shall not be detached.

It is unspecified whether a thread that has exited but remains unjoined counts against
{PTHREAD_THREADS_MAX}.

The behavior is undefined if the value specified by the thread argument to pthread_join() does not
refer to a joinable thread.

The behavior is undefined if the value specified by the thread argument to pthread_join() refers to
the calling thread.

RETURN VALUE
If successful, the pthread_join() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_join() function may fail if:

[EDEADLK] A deadlock was detected.

The pthread_join() function shall not return an error code of [EINTR].

EXAMPLES
An example of thread creation and deletion follows:

typedef struct {
int *ar;
long n;

} subarray;

void *
incer(void *arg)
{

long i;

for (i = 0; i < ((subarray *)arg)->n; i++)
((subarray *)arg)->ar[i]++;

}

int main(void)
{

int ar[1000000];
pthread_t th1, th2;
subarray sb1, sb2;

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1617

51956

51957

51958

51959

51960

51961

51962

51963

51964

51965

51966

51967

51968

51969

51970

51971

51972

51973

51974

51975

51976

51977

51978

51979

51980

51981

51982

51983

51984

51985

51986

51987

51988

51989

51990

51991

51992

51993

51994

51995

51996

51997

51998

51999

pthread_join() System Interfaces

sb1.ar = &ar[0];
sb1.n = 500000;
(void) pthread_create(&th1, NULL, incer, &sb1);

sb2.ar = &ar[500000];
sb2.n = 500000;
(void) pthread_create(&th2, NULL, incer, &sb2);

(void) pthread_join(th1, NULL);
(void) pthread_join(th2, NULL);
return 0;

}

APPLICATION USAGE
None.

RATIONALE
The pthread_join() function is a convenience that has proven useful in multi-threaded
applications. It is true that a programmer could simulate this function if it were not provided by
passing extra state as part of the argument to the start_routine(). The terminating thread would
set a flag to indicate termination and broadcast a condition that is part of that state; a joining
thread would wait on that condition variable. While such a technique would allow a thread to
wait on more complex conditions (for example, waiting for multiple threads to terminate),
waiting on individual thread termination is considered widely useful. Also, including the
pthread_join() function in no way precludes a programmer from coding such complex waits.
Thus, while not a primitive, including pthread_join() in this volume of POSIX.1-2008 was
considered valuable.

The pthread_join() function provides a simple mechanism allowing an application to wait for a
thread to terminate. After the thread terminates, the application may then choose to clean up
resources that were used by the thread. For instance, after pthread_join() returns, any
application-provided stack storage could be reclaimed.

The pthread_join() or pthread_detach() function should eventually be called for every thread that
is created with the detachstate attribute set to PTHREAD_CREATE_JOINABLE so that storage
associated with the thread may be reclaimed.

The interaction between pthread_join() and cancellation is well-defined for the following reasons:

• The pthread_join() function, like all other non-async-cancel-safe functions, can only be
called with deferred cancelability type.

• Cancellation cannot occur in the disabled cancelability state.

Thus, only the default cancelability state need be considered. As specified, either the
pthread_join() call is canceled, or it succeeds, but not both. The difference is obvious to the
application, since either a cancellation handler is run or pthread_join() returns. There are no race
conditions since pthread_join() was called in the deferred cancelability state.

If an implementation detects that the value specified by the thread argument to pthread_join()
does not refer to a joinable thread, it is recommended that the function should fail and report an
[EINVAL] error.

If an implementation detects that the value specified by the thread argument to pthread_join()
refers to the calling thread, it is recommended that the function should fail and report an
[EDEADLK] error.

If an implementation detects use of a thread ID after the end of its lifetime, it is recommended

1618 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

52000

52001

52002

52003

52004

52005

52006

52007

52008

52009

52010

52011

52012

52013

52014

52015

52016

52017

52018

52019

52020

52021

52022

52023

52024

52025

52026

52027

52028

52029

52030

52031

52032

52033

52034

52035

52036

52037

52038

52039

52040

52041

52042

52043

52044

System Interfaces pthread_join()

that the function should fail and report an [ESRCH] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), wait()

XBD Section 4.11 (on page 110), <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_join() function is marked as part of the Threads option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/97 is applied, updating the ERRORS
section so that the [EINVAL] error is made optional and the words ‘‘the implementation has
detected’’ are removed from it.

Issue 7
The pthread_join() function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH] error condition.

The [EINVAL] error for a non-joinable thread is removed; this condition results in undefined
behavior.

The [EDEADLK] error for the calling thread is removed; this condition results in undefined
behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1619

52045

52046

52047

52048

52049

52050

52051

52052

52053

52054

52055

52056

52057

52058

52059

52060

52061

52062

52063

52064

pthread_key_create() System Interfaces

NAME
pthread_key_create — thread-specific data key creation

SYNOPSIS
#include <pthread.h>

int pthread_key_create(pthread_key_t *key, void (*destructor)(void*));

DESCRIPTION
The pthread_key_create() function shall create a thread-specific data key visible to all threads in
the process. Key values provided by pthread_key_create() are opaque objects used to locate
thread-specific data. Although the same key value may be used by different threads, the values
bound to the key by pthread_setspecific() are maintained on a per-thread basis and persist for the
life of the calling thread.

Upon key creation, the value NULL shall be associated with the new key in all active threads.
Upon thread creation, the value NULL shall be associated with all defined keys in the new
thread.

An optional destructor function may be associated with each key value. At thread exit, if a key
value has a non-NULL destructor pointer, and the thread has a non-NULL value associated with
that key, the value of the key is set to NULL, and then the function pointed to is called with the
previously associated value as its sole argument. The order of destructor calls is unspecified if
more than one destructor exists for a thread when it exits.

If, after all the destructors have been called for all non-NULL values with associated destructors,
there are still some non-NULL values with associated destructors, then the process is repeated.
If, after at least {PTHREAD_DESTRUCTOR_ITERATIONS} iterations of destructor calls for
outstanding non-NULL values, there are still some non-NULL values with associated
destructors, implementations may stop calling destructors, or they may continue calling
destructors until no non-NULL values with associated destructors exist, even though this might
result in an infinite loop.

RETURN VALUE
If successful, the pthread_key_create() function shall store the newly created key value at *key and
shall return zero. Otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_key_create() function shall fail if:

[EAGAIN] The system lacked the necessary resources to create another thread-specific
data key, or the system-imposed limit on the total number of keys per process
{PTHREAD_KEYS_MAX} has been exceeded.

[ENOMEM] Insufficient memory exists to create the key.

The pthread_key_create() function shall not return an error code of [EINTR].

EXAMPLES
The following example demonstrates a function that initializes a thread-specific data key when it
is first called, and associates a thread-specific object with each calling thread, initializing this
object when necessary.

static pthread_key_t key;
static pthread_once_t key_once = PTHREAD_ONCE_INIT;

static void
make_key()
{

1620 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

52065

52066

52067

52068

52069

52070

52071

52072

52073

52074

52075

52076

52077

52078

52079

52080

52081

52082

52083

52084

52085

52086

52087

52088

52089

52090

52091

52092

52093

52094

52095

52096

52097

52098

52099

52100

52101

52102

52103

52104

52105

52106

52107

52108

52109

System Interfaces pthread_key_create()

(void) pthread_key_create(&key, NULL);
}

func()
{

void *ptr;

(void) pthread_once(&key_once, make_key);
if ((ptr = pthread_getspecific(key)) == NULL) {

ptr = malloc(OBJECT_SIZE);
...
(void) pthread_setspecific(key, ptr);

}
...

}

Note that the key has to be initialized before pthread_getspecific() or pthread_setspecific() can be
used. The pthread_key_create() call could either be explicitly made in a module initialization
routine, or it can be done implicitly by the first call to a module as in this example. Any attempt
to use the key before it is initialized is a programming error, making the code below incorrect.

static pthread_key_t key;

func()
{

void *ptr;

/* KEY NOT INITIALIZED!!! THIS WON’T WORK!!! */
if ((ptr = pthread_getspecific(key)) == NULL &&

pthread_setspecific(key, NULL) != 0) {
pthread_key_create(&key, NULL);
...

}
}

APPLICATION USAGE
None.

RATIONALE

Destructor Functions

Normally, the value bound to a key on behalf of a particular thread is a pointer to storage
allocated dynamically on behalf of the calling thread. The destructor functions specified with
pthread_key_create() are intended to be used to free this storage when the thread exits. Thread
cancellation cleanup handlers cannot be used for this purpose because thread-specific data may
persist outside the lexical scope in which the cancellation cleanup handlers operate.

If the value associated with a key needs to be updated during the lifetime of the thread, it may
be necessary to release the storage associated with the old value before the new value is bound.
Although the pthread_setspecific() function could do this automatically, this feature is not needed
often enough to justify the added complexity. Instead, the programmer is responsible for freeing
the stale storage:

pthread_getspecific(key, &old);
new = allocate();
destructor(old);

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1621

52110

52111

52112

52113

52114

52115

52116

52117

52118

52119

52120

52121

52122

52123

52124

52125

52126

52127

52128

52129

52130

52131

52132

52133

52134

52135

52136

52137

52138

52139

52140

52141

52142

52143

52144

52145

52146

52147

52148

52149

52150

52151

52152

52153

52154

pthread_key_create() System Interfaces

pthread_setspecific(key, new);

Note: The above example could leak storage if run with asynchronous cancellation enabled. No such
problems occur in the default cancellation state if no cancellation points occur between the get
and set.

There is no notion of a destructor-safe function. If an application does not call pthread_exit()
from a signal handler, or if it blocks any signal whose handler may call pthread_exit() while
calling async-unsafe functions, all functions may be safely called from destructors.

Non-Idempotent Data Key Creation

There were requests to make pthread_key_create() idempotent with respect to a given key address
parameter. This would allow applications to call pthread_key_create() multiple times for a given
key address and be guaranteed that only one key would be created. Doing so would require the
key value to be previously initialized (possibly at compile time) to a known null value and
would require that implicit mutual-exclusion be performed based on the address and contents of
the key parameter in order to guarantee that exactly one key would be created.

Unfortunately, the implicit mutual-exclusion would not be limited to only pthread_key_create().
On many implementations, implicit mutual-exclusion would also have to be performed by
pthread_getspecific() and pthread_setspecific() in order to guard against using incompletely stored
or not-yet-visible key values. This could significantly increase the cost of important operations,
particularly pthread_getspecific().

Thus, this proposal was rejected. The pthread_key_create() function performs no implicit
synchronization. It is the responsibility of the programmer to ensure that it is called exactly once
per key before use of the key. Several straightforward mechanisms can already be used to
accomplish this, including calling explicit module initialization functions, using mutexes, and
using pthread_once(). This places no significant burden on the programmer, introduces no
possibly confusing ad hoc implicit synchronization mechanism, and potentially allows
commonly used thread-specific data operations to be more efficient.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_getspecific(), pthread_key_delete()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_key_create() function is marked as part of the Threads option.

IEEE PASC Interpretation 1003.1c #8 is applied, updating the DESCRIPTION.

Issue 7
The pthread_key_create() function is moved from the Threads option to the Base.

1622 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

52155

52156

52157

52158

52159

52160

52161

52162

52163

52164

52165

52166

52167

52168

52169

52170

52171

52172

52173

52174

52175

52176

52177

52178

52179

52180

52181

52182

52183

52184

52185

52186

52187

52188

52189

52190

52191

52192

System Interfaces pthread_key_delete()

NAME
pthread_key_delete — thread-specific data key deletion

SYNOPSIS
#include <pthread.h>

int pthread_key_delete(pthread_key_t key);

DESCRIPTION
The pthread_key_delete() function shall delete a thread-specific data key previously returned by
pthread_key_create(). The thread-specific data values associated with key need not be NULL at
the time pthread_key_delete() is called. It is the responsibility of the application to free any
application storage or perform any cleanup actions for data structures related to the deleted key
or associated thread-specific data in any threads; this cleanup can be done either before or after
pthread_key_delete() is called. Any attempt to use key following the call to pthread_key_delete()
results in undefined behavior.

The pthread_key_delete() function shall be callable from within destructor functions. No
destructor functions shall be invoked by pthread_key_delete(). Any destructor function that may
have been associated with key shall no longer be called upon thread exit.

RETURN VALUE
If successful, the pthread_key_delete() function shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_key_delete() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
A thread-specific data key deletion function has been included in order to allow the resources
associated with an unused thread-specific data key to be freed. Unused thread-specific data keys
can arise, among other scenarios, when a dynamically loaded module that allocated a key is
unloaded.

Conforming applications are responsible for performing any cleanup actions needed for data
structures associated with the key to be deleted, including data referenced by thread-specific
data values. No such cleanup is done by pthread_key_delete(). In particular, destructor functions
are not called. There are several reasons for this division of responsibility:

1. The associated destructor functions used to free thread-specific data at thread exit time
are only guaranteed to work correctly when called in the thread that allocated the thread-
specific data. (Destructors themselves may utilize thread-specific data.) Thus, they cannot
be used to free thread-specific data in other threads at key deletion time. Attempting to
have them called by other threads at key deletion time would require other threads to be
asynchronously interrupted. But since interrupted threads could be in an arbitrary state,
including holding locks necessary for the destructor to run, this approach would fail. In
general, there is no safe mechanism whereby an implementation could free thread-
specific data at key deletion time.

2. Even if there were a means of safely freeing thread-specific data associated with keys to
be deleted, doing so would require that implementations be able to enumerate the
threads with non-NULL data and potentially keep them from creating more thread-

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1623

52193

52194

52195

52196

52197

52198

52199

52200

52201

52202

52203

52204

52205

52206

52207

52208

52209

52210

52211

52212

52213

52214

52215

52216

52217

52218

52219

52220

52221

52222

52223

52224

52225

52226

52227

52228

52229

52230

52231

52232

52233

52234

52235

52236

52237

52238

pthread_key_delete() System Interfaces

specific data while the key deletion is occurring. This special case could cause extra
synchronization in the normal case, which would otherwise be unnecessary.

For an application to know that it is safe to delete a key, it has to know that all the threads that
might potentially ever use the key do not attempt to use it again. For example, it could know
this if all the client threads have called a cleanup procedure declaring that they are through with
the module that is being shut down, perhaps by setting a reference count to zero.

If an implementation detects that the value specified by the key argument to pthread_key_delete()
does not refer to a a key value obtained from pthread_key_create() or refers to a key that has been
deleted with pthread_key_delete(), it is recommended that the function should fail and report an
[EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_key_create()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_key_delete() function is marked as part of the Threads option.

Issue 7
The pthread_key_delete() function is moved from the Threads option to the Base.

The [EINVAL] error for a key value not obtained from pthread_key_create() or a key deleted with
pthread_key_delete() is removed; this condition results in undefined behavior.

1624 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

52239

52240

52241

52242

52243

52244

52245

52246

52247

52248

52249

52250

52251

52252

52253

52254

52255

52256

52257

52258

52259

52260

52261

System Interfaces pthread_kill()

NAME
pthread_kill — send a signal to a thread

SYNOPSIS
CX #include <signal.h>

int pthread_kill(pthread_t thread, int sig);

DESCRIPTION
The pthread_kill() function shall request that a signal be delivered to the specified thread.

As in kill(), if sig is zero, error checking shall be performed but no signal shall actually be sent.

RETURN VALUE
Upon successful completion, the function shall return a value of zero. Otherwise, the function
shall return an error number. If the pthread_kill() function fails, no signal shall be sent.

ERRORS
The pthread_kill() function shall fail if:

[EINVAL] The value of the sig argument is an invalid or unsupported signal number.

The pthread_kill() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
The pthread_kill() function provides a mechanism for asynchronously directing a signal at a
thread in the calling process. This could be used, for example, by one thread to affect broadcast
delivery of a signal to a set of threads.

Note that pthread_kill() only causes the signal to be handled in the context of the given thread;
the signal action (termination or stopping) affects the process as a whole.

RATIONALE
If an implementation detects use of a thread ID after the end of its lifetime, it is recommended
that the function should fail and report an [ESRCH] error.

FUTURE DIRECTIONS
None.

SEE ALSO
kill(), pthread_self(), raise()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_kill() function is marked as part of the Threads option.

The APPLICATION USAGE section is added.

Issue 7
The pthread_kill() function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH] error condition.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1625

52262

52263

52264

52265

52266

52267

52268

52269

52270

52271

52272

52273

52274

52275

52276

52277

52278

52279

52280

52281

52282

52283

52284

52285

52286

52287

52288

52289

52290

52291

52292

52293

52294

52295

52296

52297

52298

52299

52300

pthread_mutex_consistent() System Interfaces

NAME
pthread_mutex_consistent — mark state protected by robust mutex as consistent

SYNOPSIS
#include <pthread.h>

int pthread_mutex_consistent(pthread_mutex_t *mutex);

DESCRIPTION
If mutex is a robust mutex in an inconsistent state, the pthread_mutex_consistent() function can be
used to mark the state protected by the mutex referenced by mutex as consistent again.

If an owner of a robust mutex terminates while holding the mutex, the mutex becomes
inconsistent and the next thread that acquires the mutex lock shall be notified of the state by the
return value [EOWNERDEAD]. In this case, the mutex does not become normally usable again
until the state is marked consistent.

If the thread which acquired the mutex lock with the return value [EOWNERDEAD] terminates
before calling either pthread_mutex_consistent() or pthread_mutex_unlock(), the next thread that
acquires the mutex lock shall be notified about the state of the mutex by the return value
[EOWNERDEAD].

The behavior is undefined if the value specified by the mutex argument to
pthread_mutex_consistent() does not refer to an initialized mutex.

RETURN VALUE
Upon successful completion, the pthread_mutex_consistent() function shall return zero.
Otherwise, an error value shall be returned to indicate the error.

ERRORS
The pthread_mutex_consistent() function shall fail if:

[EINVAL] The mutex object referenced by mutex is not robust or does not protect an
inconsistent state.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
The pthread_mutex_consistent() function is only responsible for notifying the implementation that
the state protected by the mutex has been recovered and that normal operations with the mutex
can be resumed. It is the responsibility of the application to recover the state so it can be reused.
If the application is not able to perform the recovery, it can notify the implementation that the
situation is unrecoverable by a call to pthread_mutex_unlock() without a prior call to
pthread_mutex_consistent(), in which case subsequent threads that attempt to lock the mutex will
fail to acquire the lock and be returned [ENOTRECOVERABLE].

RATIONALE
If an implementation detects that the value specified by the mutex argument to
pthread_mutex_consistent() does not refer to an initialized mutex, it is recommended that the
function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

1626 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

52301

52302

52303

52304

52305

52306

52307

52308

52309

52310

52311

52312

52313

52314

52315

52316

52317

52318

52319

52320

52321

52322

52323

52324

52325

52326

52327

52328

52329

52330

52331

52332

52333

52334

52335

52336

52337

52338

52339

52340

52341

52342

System Interfaces pthread_mutex_consistent()

SEE ALSO
pthread_mutex_lock(), pthread_mutexattr_getrobust()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 7.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1627

52343

52344

52345

52346

52347

pthread_mutex_destroy() System Interfaces

NAME
pthread_mutex_destroy, pthread_mutex_init — destroy and initialize a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

DESCRIPTION
The pthread_mutex_destroy() function shall destroy the mutex object referenced by mutex; the
mutex object becomes, in effect, uninitialized. An implementation may cause
pthread_mutex_destroy() to set the object referenced by mutex to an invalid value.

A destroyed mutex object can be reinitialized using pthread_mutex_init(); the results of otherwise
referencing the object after it has been destroyed are undefined.

It shall be safe to destroy an initialized mutex that is unlocked. Attempting to destroy a locked
mutex or a mutex that is referenced (for example, while being used in a pthread_cond_timedwait()
or pthread_cond_wait()) by another thread results in undefined behavior.

The pthread_mutex_init() function shall initialize the mutex referenced by mutex with attributes
specified by attr. If attr is NULL, the default mutex attributes are used; the effect shall be the
same as passing the address of a default mutex attributes object. Upon successful initialization,
the state of the mutex becomes initialized and unlocked.

Only mutex itself may be used for performing synchronization. The result of referring to copies
of mutex in calls to pthread_mutex_lock(), pthread_mutex_trylock(), pthread_mutex_unlock(), and
pthread_mutex_destroy() is undefined.

Attempting to initialize an already initialized mutex results in undefined behavior.

In cases where default mutex attributes are appropriate, the macro
PTHREAD_MUTEX_INITIALIZER can be used to initialize mutexes that are statically allocated.
The effect shall be equivalent to dynamic initialization by a call to pthread_mutex_init() with
parameter attr specified as NULL, except that no error checks are performed.

The behavior is undefined if the value specified by the mutex argument to
pthread_mutex_destroy() does not refer to an initialized mutex.

The behavior is undefined if the value specified by the attr argument to pthread_mutex_init()
does not refer to an initialized mutex attributes object.

RETURN VALUE
If successful, the pthread_mutex_destroy() and pthread_mutex_init() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutex_init() function shall fail if:

[EAGAIN] The system lacked the necessary resources (other than memory) to initialize
another mutex.

[ENOMEM] Insufficient memory exists to initialize the mutex.

[EPERM] The caller does not have the privilege to perform the operation.

1628 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

52348

52349

52350

52351

52352

52353

52354

52355

52356

52357

52358

52359

52360

52361

52362

52363

52364

52365

52366

52367

52368

52369

52370

52371

52372

52373

52374

52375

52376

52377

52378

52379

52380

52381

52382

52383

52384

52385

52386

52387

52388

52389

System Interfaces pthread_mutex_destroy()

The pthread_mutex_init() function may fail if:

[EINVAL] The attributes object referenced by attr has the robust mutex attribute set
without the process-shared attribute being set.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the mutex argument to
pthread_mutex_destroy() does not refer to an initialized mutex, it is recommended that the
function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the mutex argument to
pthread_mutex_destroy() or pthread_mutex_init() refers to a locked mutex or a mutex that is
referenced (for example, while being used in a pthread_cond_timedwait() or pthread_cond_wait())
by another thread, or detects that the value specified by the mutex argument to
pthread_mutex_init() refers to an already initialized mutex, it is recommended that the function
should fail and report an [EBUSY] error.

If an implementation detects that the value specified by the attr argument to
pthread_mutex_init() does not refer to an initialized mutex attributes object, it is recommended
that the function should fail and report an [EINVAL] error.

Alternate Implementations Possible

This volume of POSIX.1-2008 supports several alternative implementations of mutexes. An
implementation may store the lock directly in the object of type pthread_mutex_t. Alternatively,
an implementation may store the lock in the heap and merely store a pointer, handle, or unique
ID in the mutex object. Either implementation has advantages or may be required on certain
hardware configurations. So that portable code can be written that is invariant to this choice, this
volume of POSIX.1-2008 does not define assignment or equality for this type, and it uses the
term ‘‘initialize’’ to reinforce the (more restrictive) notion that the lock may actually reside in the
mutex object itself.

Note that this precludes an over-specification of the type of the mutex or condition variable and
motivates the opaqueness of the type.

An implementation is permitted, but not required, to have pthread_mutex_destroy() store an
illegal value into the mutex. This may help detect erroneous programs that try to lock (or
otherwise reference) a mutex that has already been destroyed.

Tradeoff Between Error Checks and Performance Supported

Many error conditions that can occur are not required to be detected by the implementation in
order to let implementations trade off performance versus degree of error checking according to
the needs of their specific applications and execution environment. As a general rule, conditions
caused by the system (such as insufficient memory) are required to be detected, but conditions
caused by an erroneously coded application (such as failing to provide adequate
synchronization to prevent a mutex from being deleted while in use) are specified to result in
undefined behavior.

A wide range of implementations is thus made possible. For example, an implementation

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1629

52390

52391

52392

52393

52394

52395

52396

52397

52398

52399

52400

52401

52402

52403

52404

52405

52406

52407

52408

52409

52410

52411

52412

52413

52414

52415

52416

52417

52418

52419

52420

52421

52422

52423

52424

52425

52426

52427

52428

52429

52430

52431

52432

52433

pthread_mutex_destroy() System Interfaces

intended for application debugging may implement all of the error checks, but an
implementation running a single, provably correct application under very tight performance
constraints in an embedded computer might implement minimal checks. An implementation
might even be provided in two versions, similar to the options that compilers provide: a full-
checking, but slower version; and a limited-checking, but faster version. To forbid this
optionality would be a disservice to users.

By carefully limiting the use of ‘‘undefined behavior’’ only to things that an erroneous (badly
coded) application might do, and by defining that resource-not-available errors are mandatory,
this volume of POSIX.1-2008 ensures that a fully-conforming application is portable across the
full range of implementations, while not forcing all implementations to add overhead to check
for numerous things that a correct program never does. When the behavior is undefined, no
error number is specified to be returned on implementations that do detect the condition. This is
because undefined behavior means anything can happen, which includes returning with any
value (which might happen to be a valid, but different, error number). However, since the error
number might be useful to application developers when diagnosing problems during
application development, a recommendation is made in rationale that implementors should
return a particular error number if their implementation does detect the condition.

Why No Limits are Defined

Defining symbols for the maximum number of mutexes and condition variables was considered
but rejected because the number of these objects may change dynamically. Furthermore, many
implementations place these objects into application memory; thus, there is no explicit
maximum.

Static Initializers for Mutexes and Condition Variables

Providing for static initialization of statically allocated synchronization objects allows modules
with private static synchronization variables to avoid runtime initialization tests and overhead.
Furthermore, it simplifies the coding of self-initializing modules. Such modules are common in
C libraries, where for various reasons the design calls for self-initialization instead of requiring
an explicit module initialization function to be called. An example use of static initialization
follows.

Without static initialization, a self-initializing routine foo() might look as follows:

static pthread_once_t foo_once = PTHREAD_ONCE_INIT;
static pthread_mutex_t foo_mutex;

void foo_init()
{

pthread_mutex_init(&foo_mutex, NULL);
}

void foo()
{

pthread_once(&foo_once, foo_init);
pthread_mutex_lock(&foo_mutex);
/* Do work. */
pthread_mutex_unlock(&foo_mutex);

}

With static initialization, the same routine could be coded as follows:

static pthread_mutex_t foo_mutex = PTHREAD_MUTEX_INITIALIZER;

1630 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

52434

52435

52436

52437

52438

52439

52440

52441

52442

52443

52444

52445

52446

52447

52448

52449

52450

52451

52452

52453

52454

52455

52456

52457

52458

52459

52460

52461

52462

52463

52464

52465

52466

52467

52468

52469

52470

52471

52472

52473

52474

52475

52476

52477

52478

System Interfaces pthread_mutex_destroy()

void foo()
{

pthread_mutex_lock(&foo_mutex);
/* Do work. */
pthread_mutex_unlock(&foo_mutex);

}

Note that the static initialization both eliminates the need for the initialization test inside
pthread_once() and the fetch of &foo_mutex to learn the address to be passed to
pthread_mutex_lock() or pthread_mutex_unlock().

Thus, the C code written to initialize static objects is simpler on all systems and is also faster on a
large class of systems; those where the (entire) synchronization object can be stored in
application memory.

Yet the locking performance question is likely to be raised for machines that require mutexes to
be allocated out of special memory. Such machines actually have to have mutexes and possibly
condition variables contain pointers to the actual hardware locks. For static initialization to work
on such machines, pthread_mutex_lock() also has to test whether or not the pointer to the actual
lock has been allocated. If it has not, pthread_mutex_lock() has to initialize it before use. The
reservation of such resources can be made when the program is loaded, and hence return codes
have not been added to mutex locking and condition variable waiting to indicate failure to
complete initialization.

This runtime test in pthread_mutex_lock() would at first seem to be extra work; an extra test is
required to see whether the pointer has been initialized. On most machines this would actually
be implemented as a fetch of the pointer, testing the pointer against zero, and then using the
pointer if it has already been initialized. While the test might seem to add extra work, the extra
effort of testing a register is usually negligible since no extra memory references are actually
done. As more and more machines provide caches, the real expenses are memory references, not
instructions executed.

Alternatively, depending on the machine architecture, there are often ways to eliminate all
overhead in the most important case: on the lock operations that occur after the lock has been
initialized. This can be done by shifting more overhead to the less frequent operation:
initialization. Since out-of-line mutex allocation also means that an address has to be
dereferenced to find the actual lock, one technique that is widely applicable is to have static
initialization store a bogus value for that address; in particular, an address that causes a machine
fault to occur. When such a fault occurs upon the first attempt to lock such a mutex, validity
checks can be done, and then the correct address for the actual lock can be filled in. Subsequent
lock operations incur no extra overhead since they do not ‘‘fault’’. This is merely one technique
that can be used to support static initialization, while not adversely affecting the performance of
lock acquisition. No doubt there are other techniques that are highly machine-dependent.

The locking overhead for machines doing out-of-line mutex allocation is thus similar for
modules being implicitly initialized, where it is improved for those doing mutex allocation
entirely inline. The inline case is thus made much faster, and the out-of-line case is not
significantly worse.

Besides the issue of locking performance for such machines, a concern is raised that it is possible
that threads would serialize contending for initialization locks when attempting to finish
initializing statically allocated mutexes. (Such finishing would typically involve taking an
internal lock, allocating a structure, storing a pointer to the structure in the mutex, and releasing
the internal lock.) First, many implementations would reduce such serialization by hashing on
the mutex address. Second, such serialization can only occur a bounded number of times. In

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1631

52479

52480

52481

52482

52483

52484

52485

52486

52487

52488

52489

52490

52491

52492

52493

52494

52495

52496

52497

52498

52499

52500

52501

52502

52503

52504

52505

52506

52507

52508

52509

52510

52511

52512

52513

52514

52515

52516

52517

52518

52519

52520

52521

52522

52523

52524

52525

52526

pthread_mutex_destroy() System Interfaces

particular, it can happen at most as many times as there are statically allocated synchronization
objects. Dynamically allocated objects would still be initialized via pthread_mutex_init() or
pthread_cond_init().

Finally, if none of the above optimization techniques for out-of-line allocation yields sufficient
performance for an application on some implementation, the application can avoid static
initialization altogether by explicitly initializing all synchronization objects with the
corresponding pthread_*_init() functions, which are supported by all implementations. An
implementation can also document the tradeoffs and advise which initialization technique is
more efficient for that particular implementation.

Destroying Mutexes

A mutex can be destroyed immediately after it is unlocked. For example, consider the following
code:

struct obj {
pthread_mutex_t om;

int refcnt;
...

};

obj_done(struct obj *op)
{

pthread_mutex_lock(&op->om);
if (--op->refcnt == 0) {

pthread_mutex_unlock(&op->om);
(A) pthread_mutex_destroy(&op->om);
(B) free(op);

} else
(C) pthread_mutex_unlock(&op->om);
}

In this case obj is reference counted and obj_done() is called whenever a reference to the object is
dropped. Implementations are required to allow an object to be destroyed and freed and
potentially unmapped (for example, lines A and B) immediately after the object is unlocked (line
C).

Robust Mutexes

Implementations are required to provide robust mutexes for mutexes with the process-shared
attribute set to PTHREAD_PROCESS_SHARED. Implementations are allowed, but not required,
to provide robust mutexes when the process-shared attribute is set to
PTHREAD_PROCESS_PRIVATE.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_getprioceiling(), pthread_mutexattr_getrobust(), pthread_mutex_lock(),
pthread_mutex_timedlock(), pthread_mutexattr_getpshared()

XBD <pthread.h>

1632 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

52527

52528

52529

52530

52531

52532

52533

52534

52535

52536

52537

52538

52539

52540

52541

52542

52543

52544

52545

52546

52547

52548

52549

52550

52551

52552

52553

52554

52555

52556

52557

52558

52559

52560

52561

52562

52563

52564

52565

52566

52567

52568

System Interfaces pthread_mutex_destroy()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_mutex_destroy() and pthread_mutex_init() functions are marked as part of the
Threads option.

The pthread_mutex_timedlock() function is added to the SEE ALSO section for alignment with
IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1c #34 is applied, updating the DESCRIPTION.

The restrict keyword is added to the pthread_mutex_init() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
Changes are made from The Open Group Technical Standard, 2006, Extended API Set Part 3.

The pthread_mutex_destroy() and pthread_mutex_init() functions are moved from the Threads
option to the Base.

The [EINVAL] error for an uninitialized mutex or an uninitialized mutex attributes object is
removed; this condition results in undefined behavior.

The [EBUSY] error for a locked mutex, a mutex that is referenced, or an already initialized mutex
is removed; this condition results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1633

52569

52570

52571

52572

52573

52574

52575

52576

52577

52578

52579

52580

52581

52582

52583

52584

52585

52586

pthread_mutex_getprioceiling() System Interfaces

NAME
pthread_mutex_getprioceiling, pthread_mutex_setprioceiling — get and set the priority ceiling
of a mutex (REALTIME THREADS)

SYNOPSIS
RPP|TPP #include <pthread.h>

int pthread_mutex_getprioceiling(const pthread_mutex_t *restrict mutex,
int *restrict prioceiling);

int pthread_mutex_setprioceiling(pthread_mutex_t *restrict mutex,
int prioceiling, int *restrict old_ceiling);

DESCRIPTION
The pthread_mutex_getprioceiling() function shall return the current priority ceiling of the mutex.

The pthread_mutex_setprioceiling() function shall attempt to lock the mutex as if by a call to
pthread_mutex_lock(), except that the process of locking the mutex need not adhere to the priority
protect protocol. On acquiring the mutex it shall change the mutex’s priority ceiling and then
release the mutex as if by a call to pthread_mutex_unlock(). When the change is successful, the
previous value of the priority ceiling shall be returned in old_ceiling.

If the pthread_mutex_setprioceiling() function fails, the mutex priority ceiling shall not be
changed.

RETURN VALUE
If successful, the pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling() functions shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
These functions shall fail if:

[EINVAL] The protocol attribute of mutex is PTHREAD_PRIO_NONE.

[EPERM] The implementation requires appropriate privileges to perform the operation
and the caller does not have appropriate privileges.

The pthread_mutex_setprioceiling() function shall fail if:

[EAGAIN] The mutex could not be acquired because the maximum number of recursive
locks for mutex has been exceeded.

[EDEADLK] The mutex type is PTHREAD_MUTEX_ERRORCHECK and the current
thread already owns the mutex.

[EINVAL] The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread’s priority is higher than
the mutex’s current priority ceiling, and the implementation adheres to the
priority protect protocol in the process of locking the mutex.

[ENOTRECOVERABLE]
The mutex is a robust mutex and the state protected by the mutex is not
recoverable.

[EOWNERDEAD]
The mutex is a robust mutex and the process containing the previous owning
thread terminated while holding the mutex lock. The mutex lock shall be
acquired by the calling thread and it is up to the new owner to make the state
consistent (see pthread_mutex_lock()).

1634 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

52587

52588

52589

52590

52591

52592

52593

52594

52595

52596

52597

52598

52599

52600

52601

52602

52603

52604

52605

52606

52607

52608

52609

52610

52611

52612

52613

52614

52615

52616

52617

52618

52619

52620

52621

52622

52623

52624

52625

52626

52627

52628

52629

System Interfaces pthread_mutex_getprioceiling()

The pthread_mutex_setprioceiling() function may fail if:

[EDEADLK] A deadlock condition was detected.

[EINVAL] The priority requested by prioceiling is out of range.

[EOWNERDEAD]
The mutex is a robust mutex and the previous owning thread terminated
while holding the mutex lock. The mutex lock shall be acquired by the calling
thread and it is up to the new owner to make the state consistent (see
pthread_mutex_lock()).

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_destroy(), pthread_mutex_lock(), pthread_mutex_timedlock()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling() functions are marked as
part of the Threads and Thread Priority Protection options.

The [ENOSYS] error conditions have been removed.

The pthread_mutex_timedlock() function is added to the SEE ALSO section for alignment with
IEEE Std 1003.1d-1999.

The restrict keyword is added to the pthread_mutex_getprioceiling() and
pthread_mutex_setprioceiling() prototypes for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
SD5-XSH-ERN-39 is applied.

Austin Group Interpretation 1003.1-2001 #052 is applied, adding [EDEADLK] as a ‘‘may fail’’
error.

SD5-XSH-ERN-158 is applied, updating the ERRORS section to include a ‘‘shall fail’’ error case
for when the protocol attribute of mutex is PTHREAD_PRIO_NONE.

The pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling() functions are moved from
the Threads option to require support of either the Robust Mutex Priority Protection option or
the Non-Robust Mutex Priority Protection option.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1635

52630

52631

52632

52633

52634

52635

52636

52637

52638

52639

52640

52641

52642

52643

52644

52645

52646

52647

52648

52649

52650

52651

52652

52653

52654

52655

52656

52657

52658

52659

52660

52661

52662

52663

52664

52665

52666

52667

52668

52669

pthread_mutex_getprioceiling() System Interfaces

The DESCRIPTION and ERRORS sections are updated to account properly for all of the various
mutex types.

1636 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

52670

52671

System Interfaces pthread_mutex_init()

NAME
pthread_mutex_init — destroy and initialize a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

DESCRIPTION
Refer to pthread_mutex_destroy().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1637

52672

52673

52674

52675

52676

52677

52678

52679

52680

pthread_mutex_lock() System Interfaces

NAME
pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock — lock and unlock a
mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

DESCRIPTION
The mutex object referenced by mutex shall be locked by calling pthread_mutex_lock(). If the
mutex is already locked, the calling thread shall block until the mutex becomes available. This
operation shall return with the mutex object referenced by mutex in the locked state with the
calling thread as its owner.

If the mutex type is PTHREAD_MUTEX_NORMAL, deadlock detection shall not be provided.
Attempting to relock the mutex causes deadlock. If a thread attempts to unlock a mutex that it
has not locked or a mutex which is unlocked, undefined behavior results.

If the mutex type is PTHREAD_MUTEX_ERRORCHECK, then error checking shall be provided.
If a thread attempts to relock a mutex that it has already locked, an error shall be returned. If a
thread attempts to unlock a mutex that it has not locked or a mutex which is unlocked, an error
shall be returned.

If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex shall maintain the
concept of a lock count. When a thread successfully acquires a mutex for the first time, the lock
count shall be set to one. Every time a thread relocks this mutex, the lock count shall be
incremented by one. Each time the thread unlocks the mutex, the lock count shall be
decremented by one. When the lock count reaches zero, the mutex shall become available for
other threads to acquire. If a thread attempts to unlock a mutex that it has not locked or a mutex
which is unlocked, an error shall be returned.

If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to recursively lock the mutex
results in undefined behavior. Attempting to unlock the mutex if it was not locked by the calling
thread results in undefined behavior. Attempting to unlock the mutex if it is not locked results in
undefined behavior.

The pthread_mutex_trylock() function shall be equivalent to pthread_mutex_lock(), except that if
the mutex object referenced by mutex is currently locked (by any thread, including the current
thread), the call shall return immediately. If the mutex type is PTHREAD_MUTEX_RECURSIVE
and the mutex is currently owned by the calling thread, the mutex lock count shall be
incremented by one and the pthread_mutex_trylock() function shall immediately return success.

The pthread_mutex_unlock() function shall release the mutex object referenced by mutex. The
manner in which a mutex is released is dependent upon the mutex’s type attribute. If there are
threads blocked on the mutex object referenced by mutex when pthread_mutex_unlock() is called,
resulting in the mutex becoming available, the scheduling policy shall determine which thread
shall acquire the mutex.

(In the case of PTHREAD_MUTEX_RECURSIVE mutexes, the mutex shall become available
when the count reaches zero and the calling thread no longer has any locks on this mutex.)

If a signal is delivered to a thread waiting for a mutex, upon return from the signal handler the
thread shall resume waiting for the mutex as if it was not interrupted.

If mutex is a robust mutex and the process containing the owning thread terminated while

1638 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

52681

52682

52683

52684

52685

52686

52687

52688

52689

52690

52691

52692

52693

52694

52695

52696

52697

52698

52699

52700

52701

52702

52703

52704

52705

52706

52707

52708

52709

52710

52711

52712

52713

52714

52715

52716

52717

52718

52719

52720

52721

52722

52723

52724

52725

52726

System Interfaces pthread_mutex_lock()

holding the mutex lock, a call to pthread_mutex_lock() shall return the error value
[EOWNERDEAD]. If mutex is a robust mutex and the owning thread terminated while holding
the mutex lock, a call to pthread_mutex_lock() may return the error value [EOWNERDEAD] even
if the process in which the owning thread resides has not terminated. In these cases, the mutex is
locked by the thread but the state it protects is marked as inconsistent. The application should
ensure that the state is made consistent for reuse and when that is complete call
pthread_mutex_consistent(). If the application is unable to recover the state, it should unlock the
mutex without a prior call to pthread_mutex_consistent(), after which the mutex is marked
permanently unusable.

If mutex does not refer to an initialized mutex object, the behavior of pthread_mutex_lock(),
pthread_mutex_trylock(), and pthread_mutex_unlock() is undefined.

RETURN VALUE
If successful, the pthread_mutex_lock() and pthread_mutex_unlock() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

The pthread_mutex_trylock() function shall return zero if a lock on the mutex object referenced by
mutex is acquired. Otherwise, an error number is returned to indicate the error.

ERRORS
The pthread_mutex_lock() and pthread_mutex_trylock() functions shall fail if:

[EAGAIN] The mutex could not be acquired because the maximum number of recursive
locks for mutex has been exceeded.

RPP|TPP [EINVAL] The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread’s priority is higher than
the mutex’s current priority ceiling.

[ENOTRECOVERABLE]
The state protected by the mutex is not recoverable.

[EOWNERDEAD]
The mutex is a robust mutex and the process containing the previous owning
thread terminated while holding the mutex lock. The mutex lock shall be
acquired by the calling thread and it is up to the new owner to make the state
consistent.

The pthread_mutex_lock() function shall fail if:

[EDEADLK] The mutex type is PTHREAD_MUTEX_ERRORCHECK and the current
thread already owns the mutex.

The pthread_mutex_trylock() function shall fail if:

[EBUSY] The mutex could not be acquired because it was already locked.

The pthread_mutex_unlock() function shall fail if:

[EPERM] The mutex type is PTHREAD_MUTEX_ERRORCHECK or the mutex is a
robust mutex, and the current thread does not own the mutex.

The pthread_mutex_lock() and pthread_mutex_trylock() functions may fail if:

[EOWNERDEAD]
The mutex is a robust mutex and the previous owning thread terminated
while holding the mutex lock. The mutex lock shall be acquired by the calling
thread and it is up to the new owner to make the state consistent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1639

52727

52728

52729

52730

52731

52732

52733

52734

52735

52736

52737

52738

52739

52740

52741

52742

52743

52744

52745

52746

52747

52748

52749

52750

52751

52752

52753

52754

52755

52756

52757

52758

52759

52760

52761

52762

52763

52764

52765

52766

52767

52768

52769

pthread_mutex_lock() System Interfaces

The pthread_mutex_lock() function may fail if:

[EDEADLK] A deadlock condition was detected.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications that have assumed that non-zero return values are errors will need updating for
use with robust mutexes, since a valid return for a thread acquiring a mutex which is protecting
a currently inconsistent state is [EOWNERDEAD]. Applications that do not check the error
returns, due to ruling out the possibility of such errors arising, should not use robust mutexes. If
an application is supposed to work with normal and robust mutexes it should check all return
values for error conditions and if necessary take appropriate action.

RATIONALE
Mutex objects are intended to serve as a low-level primitive from which other thread
synchronization functions can be built. As such, the implementation of mutexes should be as
efficient as possible, and this has ramifications on the features available at the interface.

The mutex functions and the particular default settings of the mutex attributes have been
motivated by the desire to not preclude fast, inlined implementations of mutex locking and
unlocking.

Since most attributes only need to be checked when a thread is going to be blocked, the use of
attributes does not slow the (common) mutex-locking case.

Likewise, while being able to extract the thread ID of the owner of a mutex might be desirable, it
would require storing the current thread ID when each mutex is locked, and this could incur
unacceptable levels of overhead. Similar arguments apply to a mutex_tryunlock operation.

For further rationale on the extended mutex types, see XRAT Threads Extensions (on page 3573).

If an implementation detects that the value specified by the mutex argument does not refer to an
initialized mutex object, it is recommended that the function should fail and report an [EINVAL]
error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_consistent(), pthread_mutex_destroy(), pthread_mutex_timedlock(),
pthread_mutexattr_getrobust()

XBD Section 4.11 (on page 110), <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_mutex_lock(), pthread_mutex_trylock(), and pthread_mutex_unlock() functions are
marked as part of the Threads option.

1640 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

52770

52771

52772

52773

52774

52775

52776

52777

52778

52779

52780

52781

52782

52783

52784

52785

52786

52787

52788

52789

52790

52791

52792

52793

52794

52795

52796

52797

52798

52799

52800

52801

52802

52803

52804

52805

52806

52807

52808

System Interfaces pthread_mutex_lock()

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The behavior when attempting to relock a mutex is defined.

The pthread_mutex_timedlock() function is added to the SEE ALSO section for alignment with
IEEE Std 1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/98 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition. The
RATIONALE section is also reworded to take into account non-XSI-conformant systems.

Issue 7
SD5-XSH-ERN-43 is applied, marking the ‘‘shall fail’’ case of the [EINVAL] error as dependent
on the Thread Priority Protection option.

Changes are made from The Open Group Technical Standard, 2006, Extended API Set Part 3.

The pthread_mutex_lock(), pthread_mutex_trylock(), and pthread_mutex_unlock() functions are
moved from the Threads option to the Base.

The following extended mutex types are moved from the XSI option to the Base:

PTHREAD_MUTEX_NORMAL
PTHREAD_MUTEX_ERRORCHECK
PTHREAD_MUTEX_RECURSIVE
PTHREAD_MUTEX_DEFAULT

The DESCRIPTION is updated to clarify the behavior when mutex does not refer to an initialized
mutex.

The ERRORS section is updated to account properly for all of the various mutex types.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1641

52809

52810

52811

52812

52813

52814

52815

52816

52817

52818

52819

52820

52821

52822

52823

52824

52825

52826

52827

52828

52829

52830

pthread_mutex_setprioceiling() System Interfaces

NAME
pthread_mutex_setprioceiling — change the priority ceiling of a mutex (REALTIME
THREADS)

SYNOPSIS
RPP|TPP #include <pthread.h>

int pthread_mutex_setprioceiling(pthread_mutex_t *restrict mutex,
int prioceiling, int *restrict old_ceiling);

DESCRIPTION
Refer to pthread_mutex_getprioceiling().

1642 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

52831

52832

52833

52834

52835

52836

52837

52838

52839

System Interfaces pthread_mutex_timedlock()

NAME
pthread_mutex_timedlock — lock a mutex

SYNOPSIS
#include <pthread.h>
#include <time.h>

int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

DESCRIPTION
The pthread_mutex_timedlock() function shall lock the mutex object referenced by mutex. If the
mutex is already locked, the calling thread shall block until the mutex becomes available as in
the pthread_mutex_lock() function. If the mutex cannot be locked without waiting for another
thread to unlock the mutex, this wait shall be terminated when the specified timeout expires.

The timeout shall expire when the absolute time specified by abstime passes, as measured by the
clock on which timeouts are based (that is, when the value of that clock equals or exceeds
abstime), or if the absolute time specified by abstime has already been passed at the time of the
call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall
be the resolution of the clock on which it is based. The timespec data type is defined in the
<time.h> header.

Under no circumstance shall the function fail with a timeout if the mutex can be locked
immediately. The validity of the abstime parameter need not be checked if the mutex can be
locked immediately.

RPI|TPI As a consequence of the priority inheritance rules (for mutexes initialized with the
PRIO_INHERIT protocol), if a timed mutex wait is terminated because its timeout expires, the
priority of the owner of the mutex shall be adjusted as necessary to reflect the fact that this
thread is no longer among the threads waiting for the mutex.

If mutex is a robust mutex and the process containing the owning thread terminated while
holding the mutex lock, a call to pthread_mutex_timedlock() shall return the error value
[EOWNERDEAD]. If mutex is a robust mutex and the owning thread terminated while holding
the mutex lock, a call to pthread_mutex_timedlock() may return the error value [EOWNERDEAD]
even if the process in which the owning thread resides has not terminated. In these cases, the
mutex is locked by the thread but the state it protects is marked as inconsistent. The application
should ensure that the state is made consistent for reuse and when that is complete call
pthread_mutex_consistent(). If the application is unable to recover the state, it should unlock the
mutex without a prior call to pthread_mutex_consistent(), after which the mutex is marked
permanently unusable.

If mutex does not refer to an initialized mutex object, the behavior is undefined.

RETURN VALUE
If successful, the pthread_mutex_timedlock() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_mutex_timedlock() function shall fail if:

[EAGAIN] The mutex could not be acquired because the maximum number of recursive
locks for mutex has been exceeded.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1643

52840

52841

52842

52843

52844

52845

52846

52847

52848

52849

52850

52851

52852

52853

52854

52855

52856

52857

52858

52859

52860

52861

52862

52863

52864

52865

52866

52867

52868

52869

52870

52871

52872

52873

52874

52875

52876

52877

52878

52879

52880

52881

52882

52883

pthread_mutex_timedlock() System Interfaces

[EDEADLK] The mutex type is PTHREAD_MUTEX_ERRORCHECK and the current
thread already owns the mutex.

[EINVAL] The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread’s priority is higher than
the mutex’ current priority ceiling.

[EINVAL] The process or thread would have blocked, and the abstime parameter
specified a nanoseconds field value less than zero or greater than or equal to
1 000 million.

[ENOTRECOVERABLE]
The state protected by the mutex is not recoverable.

[EOWNERDEAD]
The mutex is a robust mutex and the process containing the previous owning
thread terminated while holding the mutex lock. The mutex lock shall be
acquired by the calling thread and it is up to the new owner to make the state
consistent.

[ETIMEDOUT] The mutex could not be locked before the specified timeout expired.

The pthread_mutex_timedlock() function may fail if:

[EDEADLK] A deadlock condition was detected.

[EOWNERDEAD]
The mutex is a robust mutex and the previous owning thread terminated
while holding the mutex lock. The mutex lock shall be acquired by the calling
thread and it is up to the new owner to make the state consistent.

This function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications that have assumed that non-zero return values are errors will need updating for
use with robust mutexes, since a valid return for a thread acquiring a mutex which is protecting
a currently inconsistent state is [EOWNERDEAD]. Applications that do not check the error
returns, due to ruling out the possibility of such errors arising, should not use robust mutexes. If
an application is supposed to work with normal and robust mutexes, it should check all return
values for error conditions and if necessary take appropriate action.

RATIONALE
Refer to pthread_mutex_lock().

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_destroy(), pthread_mutex_lock(), time()

XBD Section 4.11 (on page 110), <pthread.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/99 is applied, marking the last paragraph
in the DESCRIPTION as part of the Thread Priority Inheritance option.

1644 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

52884

52885

52886

52887

52888

52889

52890

52891

52892

52893

52894

52895

52896

52897

52898

52899

52900

52901

52902

52903

52904

52905

52906

52907

52908

52909

52910

52911

52912

52913

52914

52915

52916

52917

52918

52919

52920

52921

52922

52923

52924

52925

52926

System Interfaces pthread_mutex_timedlock()

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/100 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
Changes are made from The Open Group Technical Standard, 2006, Extended API Set Part 3.

The pthread_mutex_timedlock() function is moved from the Timeouts option to the Base.

Functionality relating to the Timers option is moved to the Base.

The DESCRIPTION is updated to clarify the behavior when mutex does not refer to an initialized
mutex.

The ERRORS section is updated to account properly for all of the various mutex types.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1645

52927

52928

52929

52930

52931

52932

52933

52934

52935

pthread_mutex_trylock() System Interfaces

NAME
pthread_mutex_trylock, pthread_mutex_unlock — lock and unlock a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

DESCRIPTION
Refer to pthread_mutex_lock().

1646 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

52936

52937

52938

52939

52940

52941

52942

52943

System Interfaces pthread_mutexattr_destroy()

NAME
pthread_mutexattr_destroy, pthread_mutexattr_init — destroy and initialize the mutex
attributes object

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);
int pthread_mutexattr_init(pthread_mutexattr_t *attr);

DESCRIPTION
The pthread_mutexattr_destroy() function shall destroy a mutex attributes object; the object
becomes, in effect, uninitialized. An implementation may cause pthread_mutexattr_destroy() to
set the object referenced by attr to an invalid value.

A destroyed attr attributes object can be reinitialized using pthread_mutexattr_init(); the results of
otherwise referencing the object after it has been destroyed are undefined.

The pthread_mutexattr_init() function shall initialize a mutex attributes object attr with the
default value for all of the attributes defined by the implementation.

Results are undefined if pthread_mutexattr_init() is called specifying an already initialized attr
attributes object.

After a mutex attributes object has been used to initialize one or more mutexes, any function
affecting the attributes object (including destruction) shall not affect any previously initialized
mutexes.

The behavior is undefined if the value specified by the attr argument to
pthread_mutexattr_destroy() does not refer to an initialized mutex attributes object.

RETURN VALUE
Upon successful completion, pthread_mutexattr_destroy() and pthread_mutexattr_init() shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutexattr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the mutex attributes object.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_mutexattr_destroy() does not refer to an initialized mutex attributes object, it is
recommended that the function should fail and report an [EINVAL] error.

See pthread_attr_destroy() for a general explanation of attributes. Attributes objects allow
implementations to experiment with useful extensions and permit extension of this volume of
POSIX.1-2008 without changing the existing functions. Thus, they provide for future
extensibility of this volume of POSIX.1-2008 and reduce the temptation to standardize
prematurely on semantics that are not yet widely implemented or understood.

Examples of possible additional mutex attributes that have been discussed are spin_only,
limited_spin, no_spin, recursive, and metered. (To explain what the latter attributes might mean:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1647

52944

52945

52946

52947

52948

52949

52950

52951

52952

52953

52954

52955

52956

52957

52958

52959

52960

52961

52962

52963

52964

52965

52966

52967

52968

52969

52970

52971

52972

52973

52974

52975

52976

52977

52978

52979

52980

52981

52982

52983

52984

52985

52986

52987

pthread_mutexattr_destroy() System Interfaces

recursive mutexes would allow for multiple re-locking by the current owner; metered mutexes
would transparently keep records of queue length, wait time, and so on.) Since there is not yet
wide agreement on the usefulness of these resulting from shared implementation and usage
experience, they are not yet specified in this volume of POSIX.1-2008. Mutex attributes objects,
however, make it possible to test out these concepts for possible standardization at a later time.

Mutex Attributes and Performance

Care has been taken to ensure that the default values of the mutex attributes have been defined
such that mutexes initialized with the defaults have simple enough semantics so that the locking
and unlocking can be done with the equivalent of a test-and-set instruction (plus possibly a few
other basic instructions).

There is at least one implementation method that can be used to reduce the cost of testing at
lock-time if a mutex has non-default attributes. One such method that an implementation can
employ (and this can be made fully transparent to fully conforming POSIX applications) is to
secretly pre-lock any mutexes that are initialized to non-default attributes. Any later attempt to
lock such a mutex causes the implementation to branch to the ‘‘slow path’’ as if the mutex were
unavailable; then, on the slow path, the implementation can do the ‘‘real work’’ to lock a non-
default mutex. The underlying unlock operation is more complicated since the implementation
never really wants to release the pre-lock on this kind of mutex. This illustrates that, depending
on the hardware, there may be certain optimizations that can be used so that whatever mutex
attributes are considered ‘‘most frequently used’’ can be processed most efficiently.

Process Shared Memory and Synchronization

The existence of memory mapping functions in this volume of POSIX.1-2008 leads to the
possibility that an application may allocate the synchronization objects from this section in
memory that is accessed by multiple processes (and therefore, by threads of multiple processes).

In order to permit such usage, while at the same time keeping the usual case (that is, usage
within a single process) efficient, a process-shared option has been defined.

If an implementation supports the _POSIX_THREAD_PROCESS_SHARED option, then the
process-shared attribute can be used to indicate that mutexes or condition variables may be
accessed by threads of multiple processes.

The default setting of PTHREAD_PROCESS_PRIVATE has been chosen for the process-shared
attribute so that the most efficient forms of these synchronization objects are created by default.

Synchronization variables that are initialized with the PTHREAD_PROCESS_PRIVATE process-
shared attribute may only be operated on by threads in the process that initialized them.
Synchronization variables that are initialized with the PTHREAD_PROCESS_SHARED process-
shared attribute may be operated on by any thread in any process that has access to it. In
particular, these processes may exist beyond the lifetime of the initializing process. For example,
the following code implements a simple counting semaphore in a mapped file that may be used
by many processes.

/* sem.h */
struct semaphore {

pthread_mutex_t lock;
pthread_cond_t nonzero;
unsigned count;

};
typedef struct semaphore semaphore_t;

1648 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

52988

52989

52990

52991

52992

52993

52994

52995

52996

52997

52998

52999

53000

53001

53002

53003

53004

53005

53006

53007

53008

53009

53010

53011

53012

53013

53014

53015

53016

53017

53018

53019

53020

53021

53022

53023

53024

53025

53026

53027

53028

53029

53030

53031

53032

System Interfaces pthread_mutexattr_destroy()

semaphore_t *semaphore_create(char *semaphore_name);
semaphore_t *semaphore_open(char *semaphore_name);
void semaphore_post(semaphore_t *semap);
void semaphore_wait(semaphore_t *semap);
void semaphore_close(semaphore_t *semap);

/* sem.c */
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <pthread.h>
#include "sem.h"

semaphore_t *
semaphore_create(char *semaphore_name)
{
int fd;

semaphore_t *semap;
pthread_mutexattr_t psharedm;
pthread_condattr_t psharedc;

fd = open(semaphore_name, O_RDWR | O_CREAT | O_EXCL, 0666);
if (fd < 0)

return (NULL);
(void) ftruncate(fd, sizeof(semaphore_t));
(void) pthread_mutexattr_init(&psharedm);
(void) pthread_mutexattr_setpshared(&psharedm,

PTHREAD_PROCESS_SHARED);
(void) pthread_condattr_init(&psharedc);
(void) pthread_condattr_setpshared(&psharedc,

PTHREAD_PROCESS_SHARED);
semap = (semaphore_t *) mmap(NULL, sizeof(semaphore_t),

PROT_READ | PROT_WRITE, MAP_SHARED,
fd, 0);

close (fd);
(void) pthread_mutex_init(&semap->lock, &psharedm);
(void) pthread_cond_init(&semap->nonzero, &psharedc);
semap->count = 0;
return (semap);

}

semaphore_t *
semaphore_open(char *semaphore_name)
{

int fd;
semaphore_t *semap;

fd = open(semaphore_name, O_RDWR, 0666);
if (fd < 0)

return (NULL);
semap = (semaphore_t *) mmap(NULL, sizeof(semaphore_t),

PROT_READ | PROT_WRITE, MAP_SHARED,
fd, 0);

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1649

53033

53034

53035

53036

53037

53038

53039

53040

53041

53042

53043

53044

53045

53046

53047

53048

53049

53050

53051

53052

53053

53054

53055

53056

53057

53058

53059

53060

53061

53062

53063

53064

53065

53066

53067

53068

53069

53070

53071

53072

53073

53074

53075

53076

53077

53078

53079

53080

53081

pthread_mutexattr_destroy() System Interfaces

close (fd);
return (semap);

}

void
semaphore_post(semaphore_t *semap)
{

pthread_mutex_lock(&semap->lock);
if (semap->count == 0)

pthread_cond_signal(&semapx->nonzero);
semap->count++;
pthread_mutex_unlock(&semap->lock);

}

void
semaphore_wait(semaphore_t *semap)
{

pthread_mutex_lock(&semap->lock);
while (semap->count == 0)

pthread_cond_wait(&semap->nonzero, &semap->lock);
semap->count- -;
pthread_mutex_unlock(&semap->lock);

}

void
semaphore_close(semaphore_t *semap)
{

munmap((void *) semap, sizeof(semaphore_t));
}

The following code is for three separate processes that create, post, and wait on a semaphore in
the file /tmp/semaphore. Once the file is created, the post and wait programs increment and
decrement the counting semaphore (waiting and waking as required) even though they did not
initialize the semaphore.

/* create.c */
#include "pthread.h"
#include "sem.h"

int
main()
{

semaphore_t *semap;

semap = semaphore_create("/tmp/semaphore");
if (semap == NULL)

exit(1);
semaphore_close(semap);
return (0);

}

/* post */
#include "pthread.h"
#include "sem.h"

int

1650 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53082

53083

53084

53085

53086

53087

53088

53089

53090

53091

53092

53093

53094

53095

53096

53097

53098

53099

53100

53101

53102

53103

53104

53105

53106

53107

53108

53109

53110

53111

53112

53113

53114

53115

53116

53117

53118

53119

53120

53121

53122

53123

53124

53125

53126

53127

53128

System Interfaces pthread_mutexattr_destroy()

main()
{

semaphore_t *semap;

semap = semaphore_open("/tmp/semaphore");
if (semap == NULL)

exit(1);
semaphore_post(semap);
semaphore_close(semap);
return (0);

}

/* wait */
#include "pthread.h"
#include "sem.h"

int
main()
{

semaphore_t *semap;

semap = semaphore_open("/tmp/semaphore");
if (semap == NULL)

exit(1);
semaphore_wait(semap);
semaphore_close(semap);
return (0);

}

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_mutexattr_destroy() and pthread_mutexattr_init() functions are marked as part of the
Threads option.

IEEE PASC Interpretation 1003.1c #27 is applied, updating the ERRORS section.

Issue 7
The pthread_mutexattr_destroy() and pthread_mutexattr_init() functions are moved from the
Threads option to the Base.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this condition
results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1651

53129

53130

53131

53132

53133

53134

53135

53136

53137

53138

53139

53140

53141

53142

53143

53144

53145

53146

53147

53148

53149

53150

53151

53152

53153

53154

53155

53156

53157

53158

53159

53160

53161

53162

53163

53164

53165

53166

53167

53168

pthread_mutexattr_getprioceiling() System Interfaces

NAME
pthread_mutexattr_getprioceiling, pthread_mutexattr_setprioceiling — get and set the
prioceiling attribute of the mutex attributes object (REALTIME THREADS)

SYNOPSIS
RPP|TPP #include <pthread.h>

int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t
*restrict attr, int *restrict prioceiling);

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,
int prioceiling);

DESCRIPTION
The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling() functions,
respectively, shall get and set the priority ceiling attribute of a mutex attributes object pointed to
by attr which was previously created by the function pthread_mutexattr_init().

The prioceiling attribute contains the priority ceiling of initialized mutexes. The values of
prioceiling are within the maximum range of priorities defined by SCHED_FIFO.

The prioceiling attribute defines the priority ceiling of initialized mutexes, which is the minimum
priority level at which the critical section guarded by the mutex is executed. In order to avoid
priority inversion, the priority ceiling of the mutex shall be set to a priority higher than or equal
to the highest priority of all the threads that may lock that mutex. The values of prioceiling are
within the maximum range of priorities defined under the SCHED_FIFO scheduling policy.

The behavior is undefined if the value specified by the attr argument to
pthread_mutexattr_getprioceiling() or pthread_mutexattr_setprioceiling() does not refer to an
initialized mutex attributes object.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_getprioceiling() and
pthread_mutexattr_setprioceiling() functions shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] The value specified by prioceiling is invalid.

[EPERM] The caller does not have the privilege to perform the operation.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_mutexattr_getprioceiling() or pthread_mutexattr_setprioceiling() does not refer to an
initialized mutex attributes object, it is recommended that the function should fail and report an
[EINVAL] error.

1652 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53169

53170

53171

53172

53173

53174

53175

53176

53177

53178

53179

53180

53181

53182

53183

53184

53185

53186

53187

53188

53189

53190

53191

53192

53193

53194

53195

53196

53197

53198

53199

53200

53201

53202

53203

53204

53205

53206

53207

53208

53209

System Interfaces pthread_mutexattr_getprioceiling()

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling() functions are marked
as part of the Threads and Thread Priority Protection options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Priority Protection option.

The [ENOTSUP] error condition has been removed since these functions do not have a protocol
argument.

The restrict keyword is added to the pthread_mutexattr_getprioceiling() prototype for alignment
with the ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling() functions are moved
from the Threads option to require support of either the Robust Mutex Priority Protection option
or the Non-Robust Mutex Priority Protection option.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this condition
results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1653

53210

53211

53212

53213

53214

53215

53216

53217

53218

53219

53220

53221

53222

53223

53224

53225

53226

53227

53228

53229

53230

53231

53232

pthread_mutexattr_getprotocol() System Interfaces

NAME
pthread_mutexattr_getprotocol, pthread_mutexattr_setprotocol — get and set the protocol
attribute of the mutex attributes object (REALTIME THREADS)

SYNOPSIS
MC1 #include <pthread.h>

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t
*restrict attr, int *restrict protocol);

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
int protocol);

DESCRIPTION
The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions, respectively,
shall get and set the protocol attribute of a mutex attributes object pointed to by attr which was
previously created by the function pthread_mutexattr_init().

The protocol attribute defines the protocol to be followed in utilizing mutexes. The value of
protocol may be one of:

RPI|TPI PTHREAD_PRIO_INHERIT
MC1 PTHREAD_PRIO_NONE
RPP|TPP PTHREAD_PRIO_PROTECT

which are defined in the <pthread.h> header. The default value of the attribute shall be
PTHREAD_PRIO_NONE.

When a thread owns a mutex with the PTHREAD_PRIO_NONE protocol attribute, its priority
and scheduling shall not be affected by its mutex ownership.

RPI When a thread is blocking higher priority threads because of owning one or more robust
mutexes with the PTHREAD_PRIO_INHERIT protocol attribute, it shall execute at the higher of
its priority or the priority of the highest priority thread waiting on any of the robust mutexes
owned by this thread and initialized with this protocol.

TPI When a thread is blocking higher priority threads because of owning one or more non-robust
mutexes with the PTHREAD_PRIO_INHERIT protocol attribute, it shall execute at the higher of
its priority or the priority of the highest priority thread waiting on any of the non-robust
mutexes owned by this thread and initialized with this protocol.

RPP When a thread owns one or more robust mutexes initialized with the
PTHREAD_PRIO_PROTECT protocol, it shall execute at the higher of its priority or the highest
of the priority ceilings of all the robust mutexes owned by this thread and initialized with this
attribute, regardless of whether other threads are blocked on any of these robust mutexes or not.

TPP When a thread owns one or more non-robust mutexes initialized with the
PTHREAD_PRIO_PROTECT protocol, it shall execute at the higher of its priority or the highest
of the priority ceilings of all the non-robust mutexes owned by this thread and initialized with
this attribute, regardless of whether other threads are blocked on any of these non-robust
mutexes or not.

While a thread is holding a mutex which has been initialized with the
PTHREAD_PRIO_INHERIT or PTHREAD_PRIO_PROTECT protocol attributes, it shall not be
subject to being moved to the tail of the scheduling queue at its priority in the event that its
original priority is changed, such as by a call to sched_setparam(). Likewise, when a thread

1654 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53233

53234

53235

53236

53237

53238

53239

53240

53241

53242

53243

53244

53245

53246

53247

53248

53249

53250

53251

53252

53253

53254

53255

53256

53257

53258

53259

53260

53261

53262

53263

53264

53265

53266

53267

53268

53269

53270

53271

53272

53273

53274

53275

System Interfaces pthread_mutexattr_getprotocol()

unlocks a mutex that has been initialized with the PTHREAD_PRIO_INHERIT or
PTHREAD_PRIO_PROTECT protocol attributes, it shall not be subject to being moved to the tail
of the scheduling queue at its priority in the event that its original priority is changed.

If a thread simultaneously owns several mutexes initialized with different protocols, it shall
execute at the highest of the priorities that it would have obtained by each of these protocols.

RPI|TPI When a thread makes a call to pthread_mutex_lock(), the mutex was initialized with the protocol
attribute having the value PTHREAD_PRIO_INHERIT, when the calling thread is blocked
because the mutex is owned by another thread, that owner thread shall inherit the priority level
of the calling thread as long as it continues to own the mutex. The implementation shall update
its execution priority to the maximum of its assigned priority and all its inherited priorities.
Furthermore, if this owner thread itself becomes blocked on another mutex with the protocol
attribute having the value PTHREAD_PRIO_INHERIT, the same priority inheritance effect shall
be propagated to this other owner thread, in a recursive manner.

The behavior is undefined if the value specified by the attr argument to
pthread_mutexattr_getprotocol() or pthread_mutexattr_setprotocol() does not refer to an initialized
mutex attributes object.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_getprotocol() and
pthread_mutexattr_setprotocol() functions shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_mutexattr_setprotocol() function shall fail if:

[ENOTSUP] The value specified by protocol is an unsupported value.

The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions may fail if:

[EINVAL] The value specified by protocol is invalid.

[EPERM] The caller does not have the privilege to perform the operation.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_mutexattr_getprotocol() or pthread_mutexattr_setprotocol() does not refer to an initialized
mutex attributes object, it is recommended that the function should fail and report an [EINVAL]
error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy()

XBD <pthread.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1655

53276

53277

53278

53279

53280

53281

53282

53283

53284

53285

53286

53287

53288

53289

53290

53291

53292

53293

53294

53295

53296

53297

53298

53299

53300

53301

53302

53303

53304

53305

53306

53307

53308

53309

53310

53311

53312

53313

53314

53315

53316

pthread_mutexattr_getprotocol() System Interfaces

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

Issue 6
The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions are marked as
part of the Threads option and either the Thread Priority Protection or Thread Priority
Inheritance options.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Thread Priority Protection or Thread Priority Inheritance
options.

The restrict keyword is added to the pthread_mutexattr_getprotocol() prototype for alignment
with the ISO/IEC 9899: 1999 standard.

Issue 7
SD5-XSH-ERN-135 is applied, updating the DESCRIPTION to define a default value for the
protocol attribute.

SD5-XSH-ERN-188 is applied, updating the DESCRIPTION.

The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions are moved from
the Threads option to require support of either the Non-Robust Mutex Priority Protection option
or the Non-Robust Mutex Priority Inheritance option or the Robust Mutex Priority Protection
option or the Robust Mutex Priority Inheritance option.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this condition
results in undefined behavior.

1656 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53317

53318

53319

53320

53321

53322

53323

53324

53325

53326

53327

53328

53329

53330

53331

53332

53333

53334

53335

53336

53337

53338

System Interfaces pthread_mutexattr_getpshared()

NAME
pthread_mutexattr_getpshared, pthread_mutexattr_setpshared — get and set the process-shared
attribute

SYNOPSIS
TSH #include <pthread.h>

int pthread_mutexattr_getpshared(const pthread_mutexattr_t
*restrict attr, int *restrict pshared);

int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
int pshared);

DESCRIPTION
The pthread_mutexattr_getpshared() function shall obtain the value of the process-shared attribute
from the attributes object referenced by attr.

The pthread_mutexattr_setpshared() function shall set the process-shared attribute in an initialized
attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a mutex to be
operated upon by any thread that has access to the memory where the mutex is allocated, even if
the mutex is allocated in memory that is shared by multiple processes. If the process-shared
attribute is PTHREAD_PROCESS_PRIVATE, the mutex shall only be operated upon by threads
created within the same process as the thread that initialized the mutex; if threads of differing
processes attempt to operate on such a mutex, the behavior is undefined. The default value of
the attribute shall be PTHREAD_PROCESS_PRIVATE.

The behavior is undefined if the value specified by the attr argument to
pthread_mutexattr_getpshared() or pthread_mutexattr_setpshared() does not refer to an initialized
mutex attributes object.

RETURN VALUE
Upon successful completion, pthread_mutexattr_setpshared() shall return zero; otherwise, an error
number shall be returned to indicate the error.

Upon successful completion, pthread_mutexattr_getpshared() shall return zero and store the value
of the process-shared attribute of attr into the object referenced by the pshared parameter.
Otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutexattr_setpshared() function may fail if:

[EINVAL] The new value specified for the attribute is outside the range of legal values
for that attribute.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_mutexattr_getpshared() or pthread_mutexattr_setpshared() does not refer to an initialized
mutex attributes object, it is recommended that the function should fail and report an [EINVAL]
error.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1657

53339

53340

53341

53342

53343

53344

53345

53346

53347

53348

53349

53350

53351

53352

53353

53354

53355

53356

53357

53358

53359

53360

53361

53362

53363

53364

53365

53366

53367

53368

53369

53370

53371

53372

53373

53374

53375

53376

53377

53378

53379

53380

53381

53382

pthread_mutexattr_getpshared() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy(), pthread_mutexattr_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_mutexattr_getpshared() and pthread_mutexattr_setpshared() functions are marked as
part of the Threads and Thread Process-Shared Synchronization options.

The restrict keyword is added to the pthread_mutexattr_getpshared() prototype for alignment
with the ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_mutexattr_getpshared() and pthread_mutexattr_setpshared() functions are moved from
the Threads option.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this condition
results in undefined behavior.

1658 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53383

53384

53385

53386

53387

53388

53389

53390

53391

53392

53393

53394

53395

53396

53397

53398

53399

System Interfaces pthread_mutexattr_getrobust()

NAME
pthread_mutexattr_getrobust, pthread_mutexattr_setrobust — get and set the mutex robust
attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_getrobust(const pthread_mutexattr_t *restrict
attr, int *restrict robust);

int pthread_mutexattr_setrobust(pthread_mutexattr_t *attr,
int robust);

DESCRIPTION
The pthread_mutexattr_getrobust() and pthread_mutexattr_setrobust() functions, respectively, shall
get and set the mutex robust attribute. This attribute is set in the robust parameter. Valid values
for robust include:

PTHREAD_MUTEX_STALLED
No special actions are taken if the owner of the mutex is terminated while holding the
mutex lock. This can lead to deadlocks if no other thread can unlock the mutex.
This is the default value.

PTHREAD_MUTEX_ROBUST
If the process containing the owning thread of a robust mutex terminates while holding the
mutex lock, the next thread that acquires the mutex shall be notified about the termination
by the return value [EOWNERDEAD] from the locking function. If the owning thread of a
robust mutex terminates while holding the mutex lock, the next thread that acquires the
mutex may be notified about the termination by the return value [EOWNERDEAD]. The
notified thread can then attempt to mark the state protected by the mutex as consistent
again by a call to pthread_mutex_consistent(). After a subsequent successful call to
pthread_mutex_unlock(), the mutex lock shall be released and can be used normally by other
threads. If the mutex is unlocked without a call to pthread_mutex_consistent(), it shall be in a
permanently unusable state and all attempts to lock the mutex shall fail with the error
[ENOTRECOVERABLE]. The only permissible operation on such a mutex is
pthread_mutex_destroy().

The behavior is undefined if the value specified by the attr argument to
pthread_mutexattr_getrobust() or pthread_mutexattr_setrobust() does not refer to an initialized
mutex attributes object.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_getrobust() function shall return zero and
store the value of the robust attribute of attr into the object referenced by the robust parameter.
Otherwise, an error value shall be returned to indicate the error. If successful, the
pthread_mutexattr_setrobust() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_mutexattr_setrobust() function shall fail if:

[EINVAL] The value of robust is invalid.

These functions shall not return an error code of [EINTR].

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1659

53400

53401

53402

53403

53404

53405

53406

53407

53408

53409

53410

53411

53412

53413

53414

53415

53416

53417

53418

53419

53420

53421

53422

53423

53424

53425

53426

53427

53428

53429

53430

53431

53432

53433

53434

53435

53436

53437

53438

53439

53440

53441

53442

pthread_mutexattr_getrobust() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The actions required to make the state protected by the mutex consistent again are solely
dependent on the application. If it is not possible to make the state of a mutex consistent, robust
mutexes can be used to notify this situation by calling pthread_mutex_unlock() without a prior
call to pthread_mutex_consistent().

If the state is declared inconsistent by calling pthread_mutex_unlock() without a prior call to
pthread_mutex_consistent(), a possible approach could be to destroy the mutex and then
reinitialize it. However, it should be noted that this is possible only in certain situations where
the state protected by the mutex has to be reinitialized and coordination achieved with other
threads blocked on the mutex, because otherwise a call to a locking function with a reference to a
mutex object invalidated by a call to pthread_mutex_destroy() results in undefined behavior.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_mutexattr_getrobust() or pthread_mutexattr_setrobust() does not refer to an initialized
mutex attributes object, it is recommended that the function should fail and report an [EINVAL]
error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_consistent(), pthread_mutex_destroy(), pthread_mutex_lock()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 7.

1660 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53443

53444

53445

53446

53447

53448

53449

53450

53451

53452

53453

53454

53455

53456

53457

53458

53459

53460

53461

53462

53463

53464

53465

53466

53467

System Interfaces pthread_mutexattr_gettype()

NAME
pthread_mutexattr_gettype, pthread_mutexattr_settype — get and set the mutex type attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict attr,
int *restrict type);

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

DESCRIPTION
The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions, respectively, shall get
and set the mutex type attribute. This attribute is set in the type parameter to these functions. The
default value of the type attribute is PTHREAD_MUTEX_DEFAULT.

The type of mutex is contained in the type attribute of the mutex attributes. Valid mutex types
include:

PTHREAD_MUTEX_NORMAL
This type of mutex does not detect deadlock. A thread attempting to relock this mutex
without first unlocking it shall deadlock. Attempting to unlock a mutex locked by a
different thread results in undefined behavior. Attempting to unlock an unlocked mutex
results in undefined behavior.

PTHREAD_MUTEX_ERRORCHECK
This type of mutex provides error checking. A thread attempting to relock this mutex
without first unlocking it shall return with an error. A thread attempting to unlock a mutex
which another thread has locked shall return with an error. A thread attempting to unlock
an unlocked mutex shall return with an error.

PTHREAD_MUTEX_RECURSIVE
A thread attempting to relock this mutex without first unlocking it shall succeed in locking
the mutex. The relocking deadlock which can occur with mutexes of type
PTHREAD_MUTEX_NORMAL cannot occur with this type of mutex. Multiple locks of this
mutex shall require the same number of unlocks to release the mutex before another thread
can acquire the mutex. A thread attempting to unlock a mutex which another thread has
locked shall return with an error. A thread attempting to unlock an unlocked mutex shall
return with an error.

PTHREAD_MUTEX_DEFAULT
Attempting to recursively lock a mutex of this type results in undefined behavior.
Attempting to unlock a mutex of this type which was not locked by the calling thread
results in undefined behavior. Attempting to unlock a mutex of this type which is not
locked results in undefined behavior. An implementation may map this mutex to one of the
other mutex types.

The behavior is undefined if the value specified by the attr argument to
pthread_mutexattr_gettype() or pthread_mutexattr_settype() does not refer to an initialized mutex
attributes object.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_gettype() function shall return zero and store
the value of the type attribute of attr into the object referenced by the type parameter. Otherwise,
an error shall be returned to indicate the error.

If successful, the pthread_mutexattr_settype() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1661

53468

53469

53470

53471

53472

53473

53474

53475

53476

53477

53478

53479

53480

53481

53482

53483

53484

53485

53486

53487

53488

53489

53490

53491

53492

53493

53494

53495

53496

53497

53498

53499

53500

53501

53502

53503

53504

53505

53506

53507

53508

53509

53510

53511

53512

53513

pthread_mutexattr_gettype() System Interfaces

ERRORS
The pthread_mutexattr_settype() function shall fail if:

[EINVAL] The value type is invalid.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
It is advised that an application should not use a PTHREAD_MUTEX_RECURSIVE mutex with
condition variables because the implicit unlock performed for a pthread_cond_timedwait() or
pthread_cond_wait() may not actually release the mutex (if it had been locked multiple times). If
this happens, no other thread can satisfy the condition of the predicate.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_mutexattr_gettype() or pthread_mutexattr_settype() does not refer to an initialized mutex
attributes object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_timedwait()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The Open Group Corrigendum U033/3 is applied. The SYNOPSIS for
pthread_mutexattr_gettype() is updated so that the first argument is of type const
pthread_mutexattr_t *.

The restrict keyword is added to the pthread_mutexattr_gettype() prototype for alignment with
the ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions are moved from the
XSI option to the Base.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this condition
results in undefined behavior.

1662 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53514

53515

53516

53517

53518

53519

53520

53521

53522

53523

53524

53525

53526

53527

53528

53529

53530

53531

53532

53533

53534

53535

53536

53537

53538

53539

53540

53541

53542

53543

53544

53545

53546

System Interfaces pthread_mutexattr_init()

NAME
pthread_mutexattr_init — initialize the mutex attributes object

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_init(pthread_mutexattr_t *attr);

DESCRIPTION
Refer to pthread_mutexattr_destroy().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1663

53547

53548

53549

53550

53551

53552

53553

pthread_mutexattr_setprioceiling() System Interfaces

NAME
pthread_mutexattr_setprioceiling — set the prioceiling attribute of the mutex attributes object
(REALTIME THREADS)

SYNOPSIS
RPP|TPP #include <pthread.h>

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,
int prioceiling);

DESCRIPTION
Refer to pthread_mutexattr_getprioceiling().

1664 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53554

53555

53556

53557

53558

53559

53560

53561

53562

System Interfaces pthread_mutexattr_setprotocol()

NAME
pthread_mutexattr_setprotocol — set the protocol attribute of the mutex attributes object
(REALTIME THREADS)

SYNOPSIS
MC1 #include <pthread.h>

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
int protocol);

DESCRIPTION
Refer to pthread_mutexattr_getprotocol().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1665

53563

53564

53565

53566

53567

53568

53569

53570

53571

pthread_mutexattr_setpshared() System Interfaces

NAME
pthread_mutexattr_setpshared — set the process-shared attribute

SYNOPSIS
TSH #include <pthread.h>

int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
int pshared);

DESCRIPTION
Refer to pthread_mutexattr_getpshared().

1666 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53572

53573

53574

53575

53576

53577

53578

53579

System Interfaces pthread_mutexattr_setrobust()

NAME
pthread_mutexattr_setrobust — get and set the mutex robust attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_setrobust(pthread_mutexattr_t *attr,
int robust);

DESCRIPTION
Refer to pthread_mutexattr_getrobust().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1667

53580

53581

53582

53583

53584

53585

53586

53587

pthread_mutexattr_settype() System Interfaces

NAME
pthread_mutexattr_settype — set the mutex type attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

DESCRIPTION
Refer to pthread_mutexattr_gettype().

1668 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53588

53589

53590

53591

53592

53593

53594

System Interfaces pthread_once()

NAME
pthread_once — dynamic package initialization

SYNOPSIS
#include <pthread.h>

int pthread_once(pthread_once_t *once_control,
void (*init_routine)(void));

pthread_once_t once_control = PTHREAD_ONCE_INIT;

DESCRIPTION
The first call to pthread_once() by any thread in a process, with a given once_control, shall call the
init_routine with no arguments. Subsequent calls of pthread_once() with the same once_control
shall not call the init_routine. On return from pthread_once(), init_routine shall have completed.
The once_control parameter shall determine whether the associated initialization routine has been
called.

The pthread_once() function is not a cancellation point. However, if init_routine is a cancellation
point and is canceled, the effect on once_control shall be as if pthread_once() was never called.

The constant PTHREAD_ONCE_INIT is defined in the <pthread.h> header.

The behavior of pthread_once() is undefined if once_control has automatic storage duration or is
not initialized by PTHREAD_ONCE_INIT.

RETURN VALUE
Upon successful completion, pthread_once() shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_once() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Some C libraries are designed for dynamic initialization. That is, the global initialization for the
library is performed when the first procedure in the library is called. In a single-threaded
program, this is normally implemented using a static variable whose value is checked on entry
to a routine, as follows:

static int random_is_initialized = 0;
extern int initialize_random();

int random_function()
{

if (random_is_initialized == 0) {
initialize_random();
random_is_initialized = 1;

}
... /* Operations performed after initialization. */

}

To keep the same structure in a multi-threaded program, a new primitive is needed. Otherwise,
library initialization has to be accomplished by an explicit call to a library-exported initialization
function prior to any use of the library.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1669

53595

53596

53597

53598

53599

53600

53601

53602

53603

53604

53605

53606

53607

53608

53609

53610

53611

53612

53613

53614

53615

53616

53617

53618

53619

53620

53621

53622

53623

53624

53625

53626

53627

53628

53629

53630

53631

53632

53633

53634

53635

53636

53637

53638

53639

pthread_once() System Interfaces

For dynamic library initialization in a multi-threaded process, a simple initialization flag is not
sufficient; the flag needs to be protected against modification by multiple threads
simultaneously calling into the library. Protecting the flag requires the use of a mutex; however,
mutexes have to be initialized before they are used. Ensuring that the mutex is only initialized
once requires a recursive solution to this problem.

The use of pthread_once() not only supplies an implementation-guaranteed means of dynamic
initialization, it provides an aid to the reliable construction of multi-threaded and realtime
systems. The preceding example then becomes:

#include <pthread.h>
static pthread_once_t random_is_initialized = PTHREAD_ONCE_INIT;
extern int initialize_random();

int random_function()
{

(void) pthread_once(&random_is_initialized, initialize_random);
... /* Operations performed after initialization. */

}

Note that a pthread_once_t cannot be an array because some compilers do not accept the
construct &<array_name>.

If an implementation detects that the value specified by the once_control argument to
pthread_once() does not refer to a pthread_once_t object initialized by PTHREAD_ONCE_INIT,
it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_once() function is marked as part of the Threads option.

The [EINVAL] error is added as a ‘‘may fail’’ case for if either argument is invalid.

Issue 7
The pthread_once() function is moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized pthread_once_t object is removed; this condition results
in undefined behavior.

1670 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53640

53641

53642

53643

53644

53645

53646

53647

53648

53649

53650

53651

53652

53653

53654

53655

53656

53657

53658

53659

53660

53661

53662

53663

53664

53665

53666

53667

53668

53669

53670

53671

53672

53673

System Interfaces pthread_rwlock_destroy()

NAME
pthread_rwlock_destroy, pthread_rwlock_init — destroy and initialize a read-write lock object

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,

const pthread_rwlockattr_t *restrict attr);
pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

DESCRIPTION
The pthread_rwlock_destroy() function shall destroy the read-write lock object referenced by
rwlock and release any resources used by the lock. The effect of subsequent use of the lock is
undefined until the lock is reinitialized by another call to pthread_rwlock_init(). An
implementation may cause pthread_rwlock_destroy() to set the object referenced by rwlock to an
invalid value. Results are undefined if pthread_rwlock_destroy() is called when any thread holds
rwlock. Attempting to destroy an uninitialized read-write lock results in undefined behavior.

The pthread_rwlock_init() function shall allocate any resources required to use the read-write lock
referenced by rwlock and initializes the lock to an unlocked state with attributes referenced by
attr. If attr is NULL, the default read-write lock attributes shall be used; the effect is the same as
passing the address of a default read-write lock attributes object. Once initialized, the lock can be
used any number of times without being reinitialized. Results are undefined if
pthread_rwlock_init() is called specifying an already initialized read-write lock. Results are
undefined if a read-write lock is used without first being initialized.

If the pthread_rwlock_init() function fails, rwlock shall not be initialized and the contents of rwlock
are undefined.

Only the object referenced by rwlock may be used for performing synchronization. The result of
referring to copies of that object in calls to pthread_rwlock_destroy(), pthread_rwlock_rdlock(),
pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_rwlock_tryrdlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock(), or pthread_rwlock_wrlock() is undefined.

In cases where default read-write lock attributes are appropriate, the macro
PTHREAD_RWLOCK_INITIALIZER can be used to initialize read-write locks that are statically
allocated. The effect shall be equivalent to dynamic initialization by a call to pthread_rwlock_init()
with the attr parameter specified as NULL, except that no error checks are performed.

The behavior is undefined if the value specified by the attr argument to pthread_rwlock_init()
does not refer to an initialized read-write lock attributes object.

RETURN VALUE
If successful, the pthread_rwlock_destroy() and pthread_rwlock_init() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_rwlock_init() function shall fail if:

[EAGAIN] The system lacked the necessary resources (other than memory) to initialize
another read-write lock.

[ENOMEM] Insufficient memory exists to initialize the read-write lock.

[EPERM] The caller does not have the privilege to perform the operation.

These functions shall not return an error code of [EINTR].

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1671

53674

53675

53676

53677

53678

53679

53680

53681

53682

53683

53684

53685

53686

53687

53688

53689

53690

53691

53692

53693

53694

53695

53696

53697

53698

53699

53700

53701

53702

53703

53704

53705

53706

53707

53708

53709

53710

53711

53712

53713

53714

53715

53716

53717

pthread_rwlock_destroy() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
Applications using these and related read-write lock functions may be subject to priority
inversion, as discussed in XBD Section 3.285 (on page 79).

RATIONALE
If an implementation detects that the value specified by the rwlock argument to
pthread_rwlock_destroy() does not refer to an initialized read-write lock object, it is recommended
that the function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the attr argument to
pthread_rwlockr_init() does not refer to an initialized read-write lock attributes object, it is
recommended that the function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the rwlock argument to
pthread_rwlock_destroy() or pthread_rwlock_init() refers to a locked read-write lock object, or
detects that the value specified by the rwlock argument to pthread_rwlock_init() refers to an
already initialized read-write lock object, it is recommended that the function should fail and
report an [EBUSY] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock()

XBD Section 3.285 (on page 79), <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension). The initializer macro is also
deleted from the SYNOPSIS.

• The DESCRIPTION is updated as follows:

— It explicitly notes allocation of resources upon initialization of a read-write lock
object.

— A paragraph is added specifying that copies of read-write lock objects may not be
used.

• An [EINVAL] error is added to the ERRORS section for pthread_rwlock_init(), indicating
that the rwlock value is invalid.

• The SEE ALSO section is updated.

The restrict keyword is added to the pthread_rwlock_init() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/45 is applied, adding APPLICATION
USAGE relating to priority inversion.

1672 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53718

53719

53720

53721

53722

53723

53724

53725

53726

53727

53728

53729

53730

53731

53732

53733

53734

53735

53736

53737

53738

53739

53740

53741

53742

53743

53744

53745

53746

53747

53748

53749

53750

53751

53752

53753

53754

53755

53756

53757

53758

53759

53760

System Interfaces pthread_rwlock_destroy()

Issue 7
Austin Group Interpretation 1003.1-2001 #048 is applied, adding the
PTHREAD_RWLOCK_INITIALIZER macro.

The pthread_rwlock_destroy() and pthread_rwlock_init() functions are moved from the Threads
option to the Base.

The [EINVAL] error for an uninitialized read-write lock object or read-write lock attributes
object is removed; this condition results in undefined behavior.

The [EBUSY] error for a locked read-write lock object or an already initialized read-write lock
object is removed; this condition results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1673

53761

53762

53763

53764

53765

53766

53767

53768

53769

pthread_rwlock_rdlock() System Interfaces

NAME
pthread_rwlock_rdlock, pthread_rwlock_tryrdlock — lock a read-write lock object for reading

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

DESCRIPTION
The pthread_rwlock_rdlock() function shall apply a read lock to the read-write lock referenced by
rwlock. The calling thread acquires the read lock if a writer does not hold the lock and there are
no writers blocked on the lock.

TPS If the Thread Execution Scheduling option is supported, and the threads involved in the lock are
executing with the scheduling policies SCHED_FIFO or SCHED_RR, the calling thread shall not
acquire the lock if a writer holds the lock or if writers of higher or equal priority are blocked on
the lock; otherwise, the calling thread shall acquire the lock.

TPS TSP If the Thread Execution Scheduling option is supported, and the threads involved in the lock are
executing with the SCHED_SPORADIC scheduling policy, the calling thread shall not acquire
the lock if a writer holds the lock or if writers of higher or equal priority are blocked on the lock;
otherwise, the calling thread shall acquire the lock.

If the Thread Execution Scheduling option is not supported, it is implementation-defined
whether the calling thread acquires the lock when a writer does not hold the lock and there are
writers blocked on the lock. If a writer holds the lock, the calling thread shall not acquire the
read lock. If the read lock is not acquired, the calling thread shall block until it can acquire the
lock. The calling thread may deadlock if at the time the call is made it holds a write lock.

A thread may hold multiple concurrent read locks on rwlock (that is, successfully call the
pthread_rwlock_rdlock() function n times). If so, the application shall ensure that the thread
performs matching unlocks (that is, it calls the pthread_rwlock_unlock() function n times).

The maximum number of simultaneous read locks that an implementation guarantees can be
applied to a read-write lock shall be implementation-defined. The pthread_rwlock_rdlock()
function may fail if this maximum would be exceeded.

The pthread_rwlock_tryrdlock() function shall apply a read lock as in the pthread_rwlock_rdlock()
function, with the exception that the function shall fail if the equivalent pthread_rwlock_rdlock()
call would have blocked the calling thread. In no case shall the pthread_rwlock_tryrdlock()
function ever block; it always either acquires the lock or fails and returns immediately.

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for reading, upon return from the
signal handler the thread resumes waiting for the read-write lock for reading as if it was not
interrupted.

RETURN VALUE
If successful, the pthread_rwlock_rdlock() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

The pthread_rwlock_tryrdlock() function shall return zero if the lock for reading on the read-write
lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned to
indicate the error.

1674 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53770

53771

53772

53773

53774

53775

53776

53777

53778

53779

53780

53781

53782

53783

53784

53785

53786

53787

53788

53789

53790

53791

53792

53793

53794

53795

53796

53797

53798

53799

53800

53801

53802

53803

53804

53805

53806

53807

53808

53809

53810

53811

53812

System Interfaces pthread_rwlock_rdlock()

ERRORS
The pthread_rwlock_tryrdlock() function shall fail if:

[EBUSY] The read-write lock could not be acquired for reading because a writer holds
the lock or a writer with the appropriate priority was blocked on it.

The pthread_rwlock_rdlock() and pthread_rwlock_tryrdlock() functions may fail if:

[EAGAIN] The read lock could not be acquired because the maximum number of read
locks for rwlock has been exceeded.

The pthread_rwlock_rdlock() function may fail if:

[EDEADLK] A deadlock condition was detected or the current thread already owns the
read-write lock for writing.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in XBD
Section 3.285 (on page 79).

RATIONALE
If an implementation detects that the value specified by the rwlock argument to
pthread_rwlock_rdlock() or pthread_rwlock_tryrdlock() does not refer to an initialized read-write
lock object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock()

XBD Section 3.285 (on page 79), Section 4.11 (on page 110), <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

• The DESCRIPTION is updated as follows:

— Conditions under which writers have precedence over readers are specified.

— Failure of pthread_rwlock_tryrdlock() is clarified.

— A paragraph on the maximum number of read locks is added.

• In the ERRORS sections, [EBUSY] is modified to take into account write priority, and
[EDEADLK] is deleted as a pthread_rwlock_tryrdlock() error.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1675

53813

53814

53815

53816

53817

53818

53819

53820

53821

53822

53823

53824

53825

53826

53827

53828

53829

53830

53831

53832

53833

53834

53835

53836

53837

53838

53839

53840

53841

53842

53843

53844

53845

53846

53847

53848

53849

53850

53851

pthread_rwlock_rdlock() System Interfaces

• The SEE ALSO section is updated.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/101 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
The pthread_rwlock_rdlock() and pthread_rwlock_tryrdlock() functions are moved from the Threads
option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this condition results
in undefined behavior.

1676 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53852

53853

53854

53855

53856

53857

53858

53859

System Interfaces pthread_rwlock_timedrdlock()

NAME
pthread_rwlock_timedrdlock — lock a read-write lock for reading

SYNOPSIS
#include <pthread.h>
#include <time.h>

int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abstime);

DESCRIPTION
The pthread_rwlock_timedrdlock() function shall apply a read lock to the read-write lock
referenced by rwlock as in the pthread_rwlock_rdlock() function. However, if the lock cannot be
acquired without waiting for other threads to unlock the lock, this wait shall be terminated
when the specified timeout expires. The timeout shall expire when the absolute time specified
by abstime passes, as measured by the clock on which timeouts are based (that is, when the value
of that clock equals or exceeds abstime), or if the absolute time specified by abstime has already
been passed at the time of the call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall
be the resolution of the CLOCK_REALTIME clock. The timespec data type is defined in the
<time.h> header. Under no circumstances shall the function fail with a timeout if the lock can be
acquired immediately. The validity of the abstime parameter need not be checked if the lock can
be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread blocked on a read-
write lock via a call to pthread_rwlock_timedrdlock(), upon return from the signal handler the
thread shall resume waiting for the lock as if it was not interrupted.

The calling thread may deadlock if at the time the call is made it holds a write lock on rwlock.
The results are undefined if this function is called with an uninitialized read-write lock.

RETURN VALUE
The pthread_rwlock_timedrdlock() function shall return zero if the lock for reading on the read-
write lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned
to indicate the error.

ERRORS
The pthread_rwlock_timedrdlock() function shall fail if:

[ETIMEDOUT] The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_timedrdlock() function may fail if:

[EAGAIN] The read lock could not be acquired because the maximum number of read
locks for lock would be exceeded.

[EDEADLK] A deadlock condition was detected or the calling thread already holds a write
lock on rwlock.

[EINVAL] The abstime nanosecond value is less than zero or greater than or equal to 1 000
million.

This function shall not return an error code of [EINTR].

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1677

53860

53861

53862

53863

53864

53865

53866

53867

53868

53869

53870

53871

53872

53873

53874

53875

53876

53877

53878

53879

53880

53881

53882

53883

53884

53885

53886

53887

53888

53889

53890

53891

53892

53893

53894

53895

53896

53897

53898

53899

pthread_rwlock_timedrdlock() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in XBD
Section 3.285 (on page 79).

RATIONALE
If an implementation detects that the value specified by the rwlock argument to
pthread_rwlock_timedrdlock() does not refer to an initialized read-write lock object, it is
recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_rdlock(), pthread_rwlock_timedwrlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock()

XBD Section 3.285 (on page 79), Section 4.11 (on page 110), <pthread.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/102 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
The pthread_rwlock_timedrdlock() function is moved from the Timeouts option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this condition results
in undefined behavior.

1678 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53900

53901

53902

53903

53904

53905

53906

53907

53908

53909

53910

53911

53912

53913

53914

53915

53916

53917

53918

53919

53920

53921

53922

System Interfaces pthread_rwlock_timedwrlock()

NAME
pthread_rwlock_timedwrlock — lock a read-write lock for writing

SYNOPSIS
#include <pthread.h>
#include <time.h>

int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abstime);

DESCRIPTION
The pthread_rwlock_timedwrlock() function shall apply a write lock to the read-write lock
referenced by rwlock as in the pthread_rwlock_wrlock() function. However, if the lock cannot be
acquired without waiting for other threads to unlock the lock, this wait shall be terminated
when the specified timeout expires. The timeout shall expire when the absolute time specified
by abstime passes, as measured by the clock on which timeouts are based (that is, when the value
of that clock equals or exceeds abstime), or if the absolute time specified by abstime has already
been passed at the time of the call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall
be the resolution of the CLOCK_REALTIME clock. The timespec data type is defined in the
<time.h> header. Under no circumstances shall the function fail with a timeout if the lock can be
acquired immediately. The validity of the abstime parameter need not be checked if the lock can
be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread blocked on a read-
write lock via a call to pthread_rwlock_timedwrlock(), upon return from the signal handler the
thread shall resume waiting for the lock as if it was not interrupted.

The calling thread may deadlock if at the time the call is made it holds the read-write lock. The
results are undefined if this function is called with an uninitialized read-write lock.

RETURN VALUE
The pthread_rwlock_timedwrlock() function shall return zero if the lock for writing on the read-
write lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned
to indicate the error.

ERRORS
The pthread_rwlock_timedwrlock() function shall fail if:

[ETIMEDOUT] The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_timedwrlock() function may fail if:

[EDEADLK] A deadlock condition was detected or the calling thread already holds the
rwlock.

[EINVAL] The abstime nanosecond value is less than zero or greater than or equal to 1 000
million.

This function shall not return an error code of [EINTR].

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1679

53923

53924

53925

53926

53927

53928

53929

53930

53931

53932

53933

53934

53935

53936

53937

53938

53939

53940

53941

53942

53943

53944

53945

53946

53947

53948

53949

53950

53951

53952

53953

53954

53955

53956

53957

53958

53959

53960

pthread_rwlock_timedwrlock() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in XBD
Section 3.285 (on page 79).

RATIONALE
If an implementation detects that the value specified by the rwlock argument to
pthread_rwlock_timedwrlock() does not refer to an initialized read-write lock object, it is
recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock()

XBD Section 3.285 (on page 79), Section 4.11 (on page 110), <pthread.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/103 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
The pthread_rwlock_timedwrlock() function is moved from the Timeouts option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this condition results
in undefined behavior.

1680 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53961

53962

53963

53964

53965

53966

53967

53968

53969

53970

53971

53972

53973

53974

53975

53976

53977

53978

53979

53980

53981

53982

53983

System Interfaces pthread_rwlock_tryrdlock()

NAME
pthread_rwlock_tryrdlock — lock a read-write lock object for reading

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

DESCRIPTION
Refer to pthread_rwlock_rdlock().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1681

53984

53985

53986

53987

53988

53989

53990

pthread_rwlock_trywrlock() System Interfaces

NAME
pthread_rwlock_trywrlock, pthread_rwlock_wrlock — lock a read-write lock object for writing

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

DESCRIPTION
The pthread_rwlock_trywrlock() function shall apply a write lock like the pthread_rwlock_wrlock()
function, with the exception that the function shall fail if any thread currently holds rwlock (for
reading or writing).

The pthread_rwlock_wrlock() function shall apply a write lock to the read-write lock referenced by
rwlock. The calling thread acquires the write lock if no other thread (reader or writer) holds the
read-write lock rwlock. Otherwise, the thread shall block until it can acquire the lock. The calling
thread may deadlock if at the time the call is made it holds the read-write lock (whether a read
or write lock).

Implementations may favor writers over readers to avoid writer starvation.

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for writing, upon return from the
signal handler the thread resumes waiting for the read-write lock for writing as if it was not
interrupted.

RETURN VALUE
The pthread_rwlock_trywrlock() function shall return zero if the lock for writing on the read-write
lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned to
indicate the error.

If successful, the pthread_rwlock_wrlock() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The pthread_rwlock_trywrlock() function shall fail if:

[EBUSY] The read-write lock could not be acquired for writing because it was already
locked for reading or writing.

The pthread_rwlock_wrlock() function may fail if:

[EDEADLK] A deadlock condition was detected or the current thread already owns the
read-write lock for writing or reading.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in XBD
Section 3.285 (on page 79).

RATIONALE
If an implementation detects that the value specified by the rwlock argument to
pthread_rwlock_trywrlock() or pthread_rwlock_wrlock() does not refer to an initialized read-write
lock object, it is recommended that the function should fail and report an [EINVAL] error.

1682 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

53991

53992

53993

53994

53995

53996

53997

53998

53999

54000

54001

54002

54003

54004

54005

54006

54007

54008

54009

54010

54011

54012

54013

54014

54015

54016

54017

54018

54019

54020

54021

54022

54023

54024

54025

54026

54027

54028

54029

54030

54031

54032

54033

System Interfaces pthread_rwlock_trywrlock()

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_timedwrlock(), pthread_rwlock_unlock()

XBD Section 3.285 (on page 79), Section 4.11 (on page 110), <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

• The [EDEADLK] error is deleted as a pthread_rwlock_trywrlock() error.

• The SEE ALSO section is updated.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/104 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
The pthread_rwlock_trywrlock() and pthread_rwlock_wrlock() functions are moved from the
Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this condition results
in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1683

54034

54035

54036

54037

54038

54039

54040

54041

54042

54043

54044

54045

54046

54047

54048

54049

54050

54051

54052

54053

54054

54055

pthread_rwlock_unlock() System Interfaces

NAME
pthread_rwlock_unlock — unlock a read-write lock object

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

DESCRIPTION
The pthread_rwlock_unlock() function shall release a lock held on the read-write lock object
referenced by rwlock. Results are undefined if the read-write lock rwlock is not held by the
calling thread.

If this function is called to release a read lock from the read-write lock object and there are other
read locks currently held on this read-write lock object, the read-write lock object remains in the
read locked state. If this function releases the last read lock for this read-write lock object, the
read-write lock object shall be put in the unlocked state with no owners.

If this function is called to release a write lock for this read-write lock object, the read-write lock
object shall be put in the unlocked state.

If there are threads blocked on the lock when it becomes available, the scheduling policy shall
TPS determine which thread(s) shall acquire the lock. If the Thread Execution Scheduling option is

supported, when threads executing with the scheduling policies SCHED_FIFO, SCHED_RR, or
SCHED_SPORADIC are waiting on the lock, they shall acquire the lock in priority order when
the lock becomes available. For equal priority threads, write locks shall take precedence over
read locks. If the Thread Execution Scheduling option is not supported, it is implementation-
defined whether write locks take precedence over read locks.

Results are undefined if this function is called with an uninitialized read-write lock.

RETURN VALUE
If successful, the pthread_rwlock_unlock() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The pthread_rwlock_unlock() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the rwlock argument to
pthread_rwlock_unlock() does not refer to an initialized read-write lock object, it is recommended
that the function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the rwlock argument to
pthread_rwlock_unlock() refers to a read-write lock object for which the current thread does not
hold a lock, it is recommended that the function should fail and report an [EPERM] error.

FUTURE DIRECTIONS
None.

1684 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54056

54057

54058

54059

54060

54061

54062

54063

54064

54065

54066

54067

54068

54069

54070

54071

54072

54073

54074

54075

54076

54077

54078

54079

54080

54081

54082

54083

54084

54085

54086

54087

54088

54089

54090

54091

54092

54093

54094

54095

54096

System Interfaces pthread_rwlock_unlock()

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_timedwrlock(), pthread_rwlock_trywrlock()

XBD Section 4.11 (on page 110), <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

• The DESCRIPTION is updated as follows:

— The conditions under which writers have precedence over readers are specified.

— The concept of read-write lock owner is deleted.

• The SEE ALSO section is updated.

Issue 7
SD5-XSH-ERN-183 is applied.

The pthread_rwlock_unlock() function is moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this condition results
in undefined behavior.

The [EPERM] error for a read-write lock object for which the current thread does not hold a lock
is removed; this condition results in undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1685

54097

54098

54099

54100

54101

54102

54103

54104

54105

54106

54107

54108

54109

54110

54111

54112

54113

54114

54115

54116

54117

54118

pthread_rwlock_wrlock() System Interfaces

NAME
pthread_rwlock_wrlock — lock a read-write lock object for writing

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

DESCRIPTION
Refer to pthread_rwlock_trywrlock().

1686 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54119

54120

54121

54122

54123

54124

54125

System Interfaces pthread_rwlockattr_destroy()

NAME
pthread_rwlockattr_destroy, pthread_rwlockattr_init — destroy and initialize the read-write
lock attributes object

SYNOPSIS
#include <pthread.h>

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);
int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

DESCRIPTION
The pthread_rwlockattr_destroy() function shall destroy a read-write lock attributes object. A
destroyed attr attributes object can be reinitialized using pthread_rwlockattr_init(); the results of
otherwise referencing the object after it has been destroyed are undefined. An implementation
may cause pthread_rwlockattr_destroy() to set the object referenced by attr to an invalid value.

The pthread_rwlockattr_init() function shall initialize a read-write lock attributes object attr with
the default value for all of the attributes defined by the implementation.

Results are undefined if pthread_rwlockattr_init() is called specifying an already initialized attr
attributes object.

After a read-write lock attributes object has been used to initialize one or more read-write locks,
any function affecting the attributes object (including destruction) shall not affect any previously
initialized read-write locks.

The behavior is undefined if the value specified by the attr argument to
pthread_rwlockattr_destroy() does not refer to an initialized read-write lock attributes object.

RETURN VALUE
If successful, the pthread_rwlockattr_destroy() and pthread_rwlockattr_init() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_rwlockattr_init() function shall fail if:

[ENOMEM] Insufficient memory exists to initialize the read-write lock attributes object.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_rwlockattr_destroy() does not refer to an initialized read-write lock attributes object, it is
recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlockattr_getpshared()

XBD <pthread.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1687

54126

54127

54128

54129

54130

54131

54132

54133

54134

54135

54136

54137

54138

54139

54140

54141

54142

54143

54144

54145

54146

54147

54148

54149

54150

54151

54152

54153

54154

54155

54156

54157

54158

54159

54160

54161

54162

54163

54164

54165

54166

pthread_rwlockattr_destroy() System Interfaces

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR to indicate that the functionality is
now part of the Threads option (previously it was part of the Read-Write Locks option in
IEEE Std 1003.1j-2000 and also part of the XSI extension).

• The SEE ALSO section is updated.

Issue 7
The pthread_rwlockattr_destroy() and pthread_rwlockattr_init() functions are moved from the
Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock attributes object is removed; this
condition results in undefined behavior.

1688 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54167

54168

54169

54170

54171

54172

54173

54174

54175

54176

54177

54178

54179

System Interfaces pthread_rwlockattr_getpshared()

NAME
pthread_rwlockattr_getpshared, pthread_rwlockattr_setpshared — get and set the process-
shared attribute of the read-write lock attributes object

SYNOPSIS
TSH #include <pthread.h>

int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t
*restrict attr, int *restrict pshared);

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr,
int pshared);

DESCRIPTION
The pthread_rwlockattr_getpshared() function shall obtain the value of the process-shared attribute
from the initialized attributes object referenced by attr. The pthread_rwlockattr_setpshared()
function shall set the process-shared attribute in an initialized attributes object referenced by attr.

The process-shared attribute shall be set to PTHREAD_PROCESS_SHARED to permit a read-write
lock to be operated upon by any thread that has access to the memory where the read-write lock
is allocated, even if the read-write lock is allocated in memory that is shared by multiple
processes. If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the read-write lock
shall only be operated upon by threads created within the same process as the thread that
initialized the read-write lock; if threads of differing processes attempt to operate on such a
read-write lock, the behavior is undefined. The default value of the process-shared attribute shall
be PTHREAD_PROCESS_PRIVATE.

Additional attributes, their default values, and the names of the associated functions to get and
set those attribute values are implementation-defined.

The behavior is undefined if the value specified by the attr argument to
pthread_rwlockattr_getpshared() or pthread_rwlockattr_setpshared() does not refer to an initialized
read-write lock attributes object.

RETURN VALUE
Upon successful completion, the pthread_rwlockattr_getpshared() function shall return zero and
store the value of the process-shared attribute of attr into the object referenced by the pshared
parameter. Otherwise, an error number shall be returned to indicate the error.

If successful, the pthread_rwlockattr_setpshared() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_rwlockattr_setpshared() function may fail if:

[EINVAL] The new value specified for the attribute is outside the range of legal values
for that attribute.

These functions shall not return an error code of [EINTR].

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1689

54180

54181

54182

54183

54184

54185

54186

54187

54188

54189

54190

54191

54192

54193

54194

54195

54196

54197

54198

54199

54200

54201

54202

54203

54204

54205

54206

54207

54208

54209

54210

54211

54212

54213

54214

54215

54216

pthread_rwlockattr_getpshared() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlockattr_destroy()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6
The following changes are made for alignment with IEEE Std 1003.1j-2000:

• The margin code in the SYNOPSIS is changed to THR TSH to indicate that the
functionality is now part of the Threads option (previously it was part of the Read-Write
Locks option in IEEE Std 1003.1j-2000 and also part of the XSI extension).

• The DESCRIPTION notes that additional attributes are implementation-defined.

• The SEE ALSO section is updated.

The restrict keyword is added to the pthread_rwlockattr_getpshared() prototype for alignment
with the ISO/IEC 9899: 1999 standard.

Issue 7
The pthread_rwlockattr_getpshared() and pthread_rwlockattr_setpshared() functions are moved from
the Threads option.

The [EINVAL] error for an uninitialized read-write lock attributes object is removed; this
condition results in undefined behavior.

1690 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54217

54218

54219

54220

54221

54222

54223

54224

54225

54226

54227

54228

54229

54230

54231

54232

54233

54234

54235

54236

54237

54238

54239

54240

54241

54242

54243

System Interfaces pthread_rwlockattr_init()

NAME
pthread_rwlockattr_init — initialize the read-write lock attributes object

SYNOPSIS
#include <pthread.h>

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

DESCRIPTION
Refer to pthread_rwlockattr_destroy().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1691

54244

54245

54246

54247

54248

54249

54250

pthread_rwlockattr_setpshared() System Interfaces

NAME
pthread_rwlockattr_setpshared — set the process-shared attribute of the read-write lock
attributes object

SYNOPSIS
TSH #include <pthread.h>

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr,
int pshared);

DESCRIPTION
Refer to pthread_rwlockattr_getpshared().

1692 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54251

54252

54253

54254

54255

54256

54257

54258

54259

System Interfaces pthread_self()

NAME
pthread_self — get the calling thread ID

SYNOPSIS
#include <pthread.h>

pthread_t pthread_self(void);

DESCRIPTION
The pthread_self() function shall return the thread ID of the calling thread.

RETURN VALUE
The pthread_self() function shall always be successful and no return value is reserved to indicate
an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_self() function provides a capability similar to the getpid() function for processes
and the rationale is the same: the creation call does not provide the thread ID to the created
thread.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_equal()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_self() function is marked as part of the Threads option.

Issue 7
Austin Group Interpretation 1003.1-2001 #063 is applied, updating the RETURN VALUE section.

The pthread_self() function is moved from the Threads option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1693

54260

54261

54262

54263

54264

54265

54266

54267

54268

54269

54270

54271

54272

54273

54274

54275

54276

54277

54278

54279

54280

54281

54282

54283

54284

54285

54286

54287

54288

54289

54290

54291

pthread_setcancelstate() System Interfaces

NAME
pthread_setcancelstate, pthread_setcanceltype, pthread_testcancel — set cancelability state

SYNOPSIS
#include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);
void pthread_testcancel(void);

DESCRIPTION
The pthread_setcancelstate() function shall atomically both set the calling thread’s cancelability
state to the indicated state and return the previous cancelability state at the location referenced
by oldstate. Legal values for state are PTHREAD_CANCEL_ENABLE and
PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype() function shall atomically both set the calling thread’s cancelability
type to the indicated type and return the previous cancelability type at the location referenced by
oldtype. Legal values for type are PTHREAD_CANCEL_DEFERRED and
PTHREAD_CANCEL_ASYNCHRONOUS.

The cancelability state and type of any newly created threads, including the thread in which
main() was first invoked, shall be PTHREAD_CANCEL_ENABLE and
PTHREAD_CANCEL_DEFERRED respectively.

The pthread_testcancel() function shall create a cancellation point in the calling thread. The
pthread_testcancel() function shall have no effect if cancelability is disabled.

RETURN VALUE
If successful, the pthread_setcancelstate() and pthread_setcanceltype() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_setcancelstate() function may fail if:

[EINVAL] The specified state is not PTHREAD_CANCEL_ENABLE or
PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype() function may fail if:

[EINVAL] The specified type is not PTHREAD_CANCEL_DEFERRED or
PTHREAD_CANCEL_ASYNCHRONOUS.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_setcancelstate() and pthread_setcanceltype() functions control the points at which a
thread may be asynchronously canceled. For cancellation control to be usable in modular
fashion, some rules need to be followed.

An object can be considered to be a generalization of a procedure. It is a set of procedures and
global variables written as a unit and called by clients not known by the object. Objects may
depend on other objects.

First, cancelability should only be disabled on entry to an object, never explicitly enabled. On

1694 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54292

54293

54294

54295

54296

54297

54298

54299

54300

54301

54302

54303

54304

54305

54306

54307

54308

54309

54310

54311

54312

54313

54314

54315

54316

54317

54318

54319

54320

54321

54322

54323

54324

54325

54326

54327

54328

54329

54330

54331

54332

54333

54334

54335

System Interfaces pthread_setcancelstate()

exit from an object, the cancelability state should always be restored to its value on entry to the
object.

This follows from a modularity argument: if the client of an object (or the client of an object that
uses that object) has disabled cancelability, it is because the client does not want to be concerned
about cleaning up if the thread is canceled while executing some sequence of actions. If an object
is called in such a state and it enables cancelability and a cancellation request is pending for that
thread, then the thread is canceled, contrary to the wish of the client that disabled.

Second, the cancelability type may be explicitly set to either deferred or asynchronous upon entry
to an object. But as with the cancelability state, on exit from an object the cancelability type
should always be restored to its value on entry to the object.

Finally, only functions that are cancel-safe may be called from a thread that is asynchronously
cancelable.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cancel()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_setcancelstate(), pthread_setcanceltype(), and pthread_testcancel() functions are marked
as part of the Threads option.

Issue 7
The pthread_setcancelstate(), pthread_setcanceltype(), and pthread_testcancel() functions are moved
from the Threads option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1695

54336

54337

54338

54339

54340

54341

54342

54343

54344

54345

54346

54347

54348

54349

54350

54351

54352

54353

54354

54355

54356

54357

54358

54359

54360

pthread_setconcurrency() System Interfaces

NAME
pthread_setconcurrency — set the level of concurrency

SYNOPSIS
OB XSI #include <pthread.h>

int pthread_setconcurrency(int new_level);

DESCRIPTION
Refer to pthread_getconcurrency().

1696 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54361

54362

54363

54364

54365

54366

54367

System Interfaces pthread_setschedparam()

NAME
pthread_setschedparam — dynamic thread scheduling parameters access (REALTIME
THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_setschedparam(pthread_t thread, int policy,
const struct sched_param *param);

DESCRIPTION
Refer to pthread_getschedparam().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1697

54368

54369

54370

54371

54372

54373

54374

54375

54376

pthread_setschedprio() System Interfaces

NAME
pthread_setschedprio — dynamic thread scheduling parameters access (REALTIME
THREADS)

SYNOPSIS
TPS #include <pthread.h>

int pthread_setschedprio(pthread_t thread, int prio);

DESCRIPTION
The pthread_setschedprio() function shall set the scheduling priority for the thread whose thread
ID is given by thread to the value given by prio. See Scheduling Policies (on page 501) for a
description on how this function call affects the ordering of the thread in the thread list for its
new priority.

If the pthread_setschedprio() function fails, the scheduling priority of the target thread shall not be
changed.

RETURN VALUE
If successful, the pthread_setschedprio() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The pthread_setschedprio() function may fail if:

[EINVAL] The value of prio is invalid for the scheduling policy of the specified thread.

[ENOTSUP] An attempt was made to set the priority to an unsupported value.

[EPERM] The caller does not have appropriate privileges to set the scheduling priority
of the specified thread.

The pthread_setschedprio() function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_setschedprio() function provides a way for an application to temporarily raise its
priority and then lower it again, without having the undesired side-effect of yielding to other
threads of the same priority. This is necessary if the application is to implement its own
strategies for bounding priority inversion, such as priority inheritance or priority ceilings. This
capability is especially important if the implementation does not support the Thread Priority
Protection or Thread Priority Inheritance options, but even if those options are supported it is
needed if the application is to bound priority inheritance for other resources, such as
semaphores.

The standard developers considered that while it might be preferable conceptually to solve this
problem by modifying the specification of pthread_setschedparam(), it was too late to make such a
change, as there may be implementations that would need to be changed. Therefore, this new
function was introduced.

If an implementation detects use of a thread ID after the end of its lifetime, it is recommended
that the function should fail and report an [ESRCH] error.

1698 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54377

54378

54379

54380

54381

54382

54383

54384

54385

54386

54387

54388

54389

54390

54391

54392

54393

54394

54395

54396

54397

54398

54399

54400

54401

54402

54403

54404

54405

54406

54407

54408

54409

54410

54411

54412

54413

54414

54415

54416

54417

54418

System Interfaces pthread_setschedprio()

FUTURE DIRECTIONS
None.

SEE ALSO
Scheduling Policies (on page 501), pthread_getschedparam()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 6. Included as a response to IEEE PASC Interpretation 1003.1 #96.

Issue 7
The pthread_setschedprio() function is moved from the Threads option.

Austin Group Interpretation 1003.1-2001 #069 is applied, updating the [EPERM] error.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH] error condition.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1699

54419

54420

54421

54422

54423

54424

54425

54426

54427

54428

54429

pthread_setspecific() System Interfaces

NAME
pthread_setspecific — thread-specific data management

SYNOPSIS
#include <pthread.h>

int pthread_setspecific(pthread_key_t key, const void *value);

DESCRIPTION
Refer to pthread_getspecific().

1700 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54430

54431

54432

54433

54434

54435

54436

System Interfaces pthread_sigmask()

NAME
pthread_sigmask, sigprocmask — examine and change blocked signals

SYNOPSIS
CX #include <signal.h>

int pthread_sigmask(int how, const sigset_t *restrict set,
sigset_t *restrict oset);

int sigprocmask(int how, const sigset_t *restrict set,
sigset_t *restrict oset);

DESCRIPTION
The pthread_sigmask() function shall examine or change (or both) the calling thread’s signal
mask, regardless of the number of threads in the process. The function shall be equivalent to
sigprocmask(), without the restriction that the call be made in a single-threaded process.

In a single-threaded process, the sigprocmask() function shall examine or change (or both) the
signal mask of the calling thread.

If the argument set is not a null pointer, it points to a set of signals to be used to change the
currently blocked set.

The argument how indicates the way in which the set is changed, and the application shall
ensure it consists of one of the following values:

SIG_BLOCK The resulting set shall be the union of the current set and the signal set
pointed to by set.

SIG_SETMASK The resulting set shall be the signal set pointed to by set.

SIG_UNBLOCK The resulting set shall be the intersection of the current set and the
complement of the signal set pointed to by set.

If the argument oset is not a null pointer, the previous mask shall be stored in the location
pointed to by oset. If set is a null pointer, the value of the argument how is not significant and the
thread’s signal mask shall be unchanged; thus the call can be used to enquire about currently
blocked signals.

If there are any pending unblocked signals after the call to sigprocmask(), at least one of those
signals shall be delivered before the call to sigprocmask() returns.

It is not possible to block those signals which cannot be ignored. This shall be enforced by the
system without causing an error to be indicated.

If any of the SIGFPE, SIGILL, SIGSEGV, or SIGBUS signals are generated while they are blocked,
the result is undefined, unless the signal was generated by the kill() function, the sigqueue()
function, or the raise() function.

If sigprocmask() fails, the thread’s signal mask shall not be changed.

The use of the sigprocmask() function is unspecified in a multi-threaded process.

RETURN VALUE
Upon successful completion pthread_sigmask() shall return 0; otherwise, it shall return the
corresponding error number.

Upon successful completion, sigprocmask() shall return 0; otherwise, −1 shall be returned, errno
shall be set to indicate the error, and the signal mask of the process shall be unchanged.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1701

54437

54438

54439

54440

54441

54442

54443

54444

54445

54446

54447

54448

54449

54450

54451

54452

54453

54454

54455

54456

54457

54458

54459

54460

54461

54462

54463

54464

54465

54466

54467

54468

54469

54470

54471

54472

54473

54474

54475

54476

54477

pthread_sigmask() System Interfaces

ERRORS
The pthread_sigmask() and sigprocmask() functions shall fail if:

[EINVAL] The value of the how argument is not equal to one of the defined values.

The pthread_sigmask() function shall not return an error code of [EINTR].

EXAMPLES

Signaling in a Multi-Threaded Process

This example shows the use of pthread_sigmask() in order to deal with signals in a multi-
threaded process. It provides a fairly general framework that could be easily adapted/extended.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <signal.h>
#include <string.h>
#include <errno.h>
...

static sigset_t signal_mask; /* signals to block */

int main (int argc, char *argv[])
{

pthread_t sig_thr_id; /* signal handler thread ID */
int rc; /* return code */

sigemptyset (&signal_mask);
sigaddset (&signal_mask, SIGINT);
sigaddset (&signal_mask, SIGTERM);
rc = pthread_sigmask (SIG_BLOCK, &signal_mask, NULL);
if (rc != 0) {

/* handle error */
...

}
/* any newly created threads inherit the signal mask */

rc = pthread_create (&sig_thr_id, NULL, signal_thread, NULL);
if (rc != 0) {

/* handle error */
...

}

/* APPLICATION CODE */
...

}

void *signal_thread (void *arg)
{

int sig_caught; /* signal caught */
int rc; /* returned code */

rc = sigwait (&signal_mask, &sig_caught);
if (rc != 0) {

/* handle error */
}

1702 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54478

54479

54480

54481

54482

54483

54484

54485

54486

54487

54488

54489

54490

54491

54492

54493

54494

54495

54496

54497

54498

54499

54500

54501

54502

54503

54504

54505

54506

54507

54508

54509

54510

54511

54512

54513

54514

54515

54516

54517

54518

54519

54520

54521

54522

System Interfaces pthread_sigmask()

switch (sig_caught)
{
case SIGINT: /* process SIGINT */

...
break;

case SIGTERM: /* process SIGTERM */
...
break;

default: /* should normally not happen */
fprintf (stderr, "\nUnexpected signal %d\n", sig_caught);
break;

}
}

APPLICATION USAGE
None.

RATIONALE
When a thread’s signal mask is changed in a signal-catching function that is installed by
sigaction(), the restoration of the signal mask on return from the signal-catching function
overrides that change (see sigaction()). If the signal-catching function was installed with
signal(), it is unspecified whether this occurs.

See kill() for a discussion of the requirement on delivery of signals.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , kill(), sigaction(), sigaddset(), sigdelset(), sigemptyset(), sigfillset(), sigismember(),
sigpending(), sigqueue(), sigsuspend()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

The pthread_sigmask() function is added for alignment with the POSIX Threads Extension.

Issue 6
The pthread_sigmask() function is marked as part of the Threads option.

The SYNOPSIS for sigprocmask() is marked as a CX extension to note that the presence of this
function in the <signal.h> header is an extension to the ISO C standard.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The DESCRIPTION is updated to explicitly state the functions which may generate the
signal.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the pthread_sigmask() and sigprocmask() prototypes for
alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/105 is applied, updating ‘‘process’ signal
mask’’ to ‘‘thread’s signal mask’’ in the DESCRIPTION and RATIONALE sections.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1703

54523

54524

54525

54526

54527

54528

54529

54530

54531

54532

54533

54534

54535

54536

54537

54538

54539

54540

54541

54542

54543

54544

54545

54546

54547

54548

54549

54550

54551

54552

54553

54554

54555

54556

54557

54558

54559

54560

54561

54562

54563

54564

54565

54566

pthread_sigmask() System Interfaces

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/106 is applied, adding the example to the
EXAMPLES section.

Issue 7
The pthread_sigmask() function is moved from the Threads option to the Base.

1704 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54567

54568

54569

54570

System Interfaces pthread_spin_destroy()

NAME
pthread_spin_destroy, pthread_spin_init — destroy or initialize a spin lock object

SYNOPSIS
#include <pthread.h>

int pthread_spin_destroy(pthread_spinlock_t *lock);
int pthread_spin_init(pthread_spinlock_t *lock, int pshared);

DESCRIPTION
The pthread_spin_destroy() function shall destroy the spin lock referenced by lock and release any
resources used by the lock. The effect of subsequent use of the lock is undefined until the lock is
reinitialized by another call to pthread_spin_init(). The results are undefined if
pthread_spin_destroy() is called when a thread holds the lock, or if this function is called with an
uninitialized thread spin lock.

The pthread_spin_init() function shall allocate any resources required to use the spin lock
referenced by lock and initialize the lock to an unlocked state.

TSH If the Thread Process-Shared Synchronization option is supported and the value of pshared is
PTHREAD_PROCESS_SHARED, the implementation shall permit the spin lock to be operated
upon by any thread that has access to the memory where the spin lock is allocated, even if it is
allocated in memory that is shared by multiple processes.

If the Thread Process-Shared Synchronization option is supported and the value of pshared is
PTHREAD_PROCESS_PRIVATE, or if the option is not supported, the spin lock shall only be
operated upon by threads created within the same process as the thread that initialized the spin
lock. If threads of differing processes attempt to operate on such a spin lock, the behavior is
undefined.

The results are undefined if pthread_spin_init() is called specifying an already initialized spin
lock. The results are undefined if a spin lock is used without first being initialized.

If the pthread_spin_init() function fails, the lock is not initialized and the contents of lock are
undefined.

Only the object referenced by lock may be used for performing synchronization.

The result of referring to copies of that object in calls to pthread_spin_destroy(),
pthread_spin_lock(), pthread_spin_trylock(), or pthread_spin_unlock() is undefined.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_spin_init() function shall fail if:

[EAGAIN] The system lacks the necessary resources to initialize another spin lock.

[ENOMEM] Insufficient memory exists to initialize the lock.

These functions shall not return an error code of [EINTR].

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1705

54571

54572

54573

54574

54575

54576

54577

54578

54579

54580

54581

54582

54583

54584

54585

54586

54587

54588

54589

54590

54591

54592

54593

54594

54595

54596

54597

54598

54599

54600

54601

54602

54603

54604

54605

54606

54607

54608

pthread_spin_destroy() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the lock argument to
pthread_spin_destroy() does not refer to an initialized spin lock object, it is recommended that the
function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the lock argument to
pthread_spin_destroy() or pthread_spin_init() refers to a locked spin lock object, or detects that the
value specified by the lock argument to pthread_spin_init() refers to an already initialized spin
lock object, it is recommended that the function should fail and report an [EBUSY] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_spin_lock(), pthread_spin_unlock()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
The pthread_spin_destroy() and pthread_spin_init() functions are moved from the Spin Locks
option to the Base.

The [EINVAL] error for an uninitialized spin lock object is removed; this condition results in
undefined behavior.

The [EBUSY] error for a locked spin lock object or an already initialized spin lock object is
removed; this condition results in undefined behavior.

1706 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54609

54610

54611

54612

54613

54614

54615

54616

54617

54618

54619

54620

54621

54622

54623

54624

54625

54626

54627

54628

54629

54630

54631

54632

54633

54634

54635

System Interfaces pthread_spin_lock()

NAME
pthread_spin_lock, pthread_spin_trylock — lock a spin lock object

SYNOPSIS
#include <pthread.h>

int pthread_spin_lock(pthread_spinlock_t *lock);
int pthread_spin_trylock(pthread_spinlock_t *lock);

DESCRIPTION
The pthread_spin_lock() function shall lock the spin lock referenced by lock. The calling thread
shall acquire the lock if it is not held by another thread. Otherwise, the thread shall spin (that is,
shall not return from the pthread_spin_lock() call) until the lock becomes available. The results are
undefined if the calling thread holds the lock at the time the call is made. The
pthread_spin_trylock() function shall lock the spin lock referenced by lock if it is not held by any
thread. Otherwise, the function shall fail.

The results are undefined if any of these functions is called with an uninitialized spin lock.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_spin_lock() function may fail if:

[EDEADLK] A deadlock condition was detected.

The pthread_spin_trylock() function shall fail if:

[EBUSY] A thread currently holds the lock.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in XBD
Section 3.285 (on page 79).

RATIONALE
If an implementation detects that the value specified by the lock argument to pthread_spin_lock()
or pthread_spin_trylock() does not refer to an initialized spin lock object, it is recommended that
the function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the lock argument to pthread_spin_lock()
refers to a spin lock object for which the calling thread already holds the lock, it is recommended
that the function should fail and report an [EDEADLK] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_spin_destroy(), pthread_spin_unlock()

XBD Section 3.285 (on page 79), Section 4.11 (on page 110), <pthread.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1707

54636

54637

54638

54639

54640

54641

54642

54643

54644

54645

54646

54647

54648

54649

54650

54651

54652

54653

54654

54655

54656

54657

54658

54659

54660

54661

54662

54663

54664

54665

54666

54667

54668

54669

54670

54671

54672

54673

54674

54675

pthread_spin_lock() System Interfaces

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/107 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
The pthread_spin_lock() and pthread_spin_trylock() functions are moved from the Spin Locks
option to the Base.

The [EINVAL] error for an uninitialized spin lock object is removed; this condition results in
undefined behavior.

The [EDEADLK] error for a spin lock object for which the calling thread already holds the lock is
removed; this condition results in undefined behavior.

1708 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54676

54677

54678

54679

54680

54681

54682

54683

54684

54685

54686

54687

System Interfaces pthread_spin_unlock()

NAME
pthread_spin_unlock — unlock a spin lock object

SYNOPSIS
#include <pthread.h>

int pthread_spin_unlock(pthread_spinlock_t *lock);

DESCRIPTION
The pthread_spin_unlock() function shall release the spin lock referenced by lock which was
locked via the pthread_spin_lock() or pthread_spin_trylock() functions.

The results are undefined if the lock is not held by the calling thread.

If there are threads spinning on the lock when pthread_spin_unlock() is called, the lock becomes
available and an unspecified spinning thread shall acquire the lock.

The results are undefined if this function is called with an uninitialized thread spin lock.

RETURN VALUE
Upon successful completion, the pthread_spin_unlock() function shall return zero; otherwise, an
error number shall be returned to indicate the error.

ERRORS
This function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the lock argument to
pthread_spin_unlock() does not refer to an initialized spin lock object, it is recommended that the
function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the lock argument to
pthread_spin_unlock() refers to a spin lock object for which the current thread does not hold the
lock, it is recommended that the function should fail and report an [EPERM] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_spin_destroy(), pthread_spin_lock()

XBD Section 4.11 (on page 110), <pthread.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
The pthread_spin_unlock() function is moved from the Spin Locks option to the Base.

The [EINVAL] error for an uninitialized spin lock object is removed; this condition results in
undefined behavior.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1709

54688

54689

54690

54691

54692

54693

54694

54695

54696

54697

54698

54699

54700

54701

54702

54703

54704

54705

54706

54707

54708

54709

54710

54711

54712

54713

54714

54715

54716

54717

54718

54719

54720

54721

54722

54723

54724

54725

54726

54727

pthread_spin_unlock() System Interfaces

The [EPERM] error for a spin lock object for which the current thread does not hold the lock is
removed; this condition results in undefined behavior.

1710 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54728

54729

System Interfaces pthread_testcancel()

NAME
pthread_testcancel — set cancelability state

SYNOPSIS
#include <pthread.h>

void pthread_testcancel(void);

DESCRIPTION
Refer to pthread_setcancelstate().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1711

54730

54731

54732

54733

54734

54735

54736

ptsname() System Interfaces

NAME
ptsname — get name of the slave pseudo-terminal device

SYNOPSIS
XSI #include <stdlib.h>

char *ptsname(int fildes);

DESCRIPTION
The ptsname() function shall return the name of the slave pseudo-terminal device associated
with a master pseudo-terminal device. The fildes argument is a file descriptor that refers to the
master device. The ptsname() function shall return a pointer to a string containing the pathname
of the corresponding slave device.

The ptsname() function need not be thread-safe.

RETURN VALUE
Upon successful completion, ptsname() shall return a pointer to a string which is the name of the
pseudo-terminal slave device. Upon failure, ptsname() shall return a null pointer. This could
occur if fildes is an invalid file descriptor or if the slave device name does not exist in the file
system.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The value returned may point to a static data area that is overwritten by each call to ptsname().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
grantpt(), open(), ttyname(), unlockpt()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

1712 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54737

54738

54739

54740

54741

54742

54743

54744

54745

54746

54747

54748

54749

54750

54751

54752

54753

54754

54755

54756

54757

54758

54759

54760

54761

54762

54763

54764

54765

54766

54767

54768

54769

54770

54771

54772

System Interfaces putc()

NAME
putc — put a byte on a stream

SYNOPSIS
#include <stdio.h>

int putc(int c, FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The putc() function shall be equivalent to fputc(), except that if it is implemented as a macro it
may evaluate stream more than once, so the argument should never be an expression with side-
effects.

RETURN VALUE
Refer to fputc().

ERRORS
Refer to fputc().

EXAMPLES
None.

APPLICATION USAGE
Since it may be implemented as a macro, putc() may treat a stream argument with side-effects
incorrectly. In particular, putc(c,*f++) does not necessarily work correctly. Therefore, use of this
function is not recommended in such situations; fputc() should be used instead.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fputc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1713

54773

54774

54775

54776

54777

54778

54779

54780

54781

54782

54783

54784

54785

54786

54787

54788

54789

54790

54791

54792

54793

54794

54795

54796

54797

54798

54799

54800

54801

54802

54803

putc_unlocked() System Interfaces

NAME
putc_unlocked — stdio with explicit client locking

SYNOPSIS
CX #include <stdio.h>

int putc_unlocked(int c, FILE *stream);

DESCRIPTION
Refer to getc_unlocked().

1714 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54804

54805

54806

54807

54808

54809

54810

System Interfaces putchar()

NAME
putchar — put a byte on a stdout stream

SYNOPSIS
#include <stdio.h>

int putchar(int c);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The function call putchar(c) shall be equivalent to putc(c,stdout).

RETURN VALUE
Refer to fputc().

ERRORS
Refer to fputc().

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
putc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1715

54811

54812

54813

54814

54815

54816

54817

54818

54819

54820

54821

54822

54823

54824

54825

54826

54827

54828

54829

54830

54831

54832

54833

54834

54835

54836

54837

putchar_unlocked() System Interfaces

NAME
putchar_unlocked — stdio with explicit client locking

SYNOPSIS
CX #include <stdio.h>

int putchar_unlocked(int c);

DESCRIPTION
Refer to getc_unlocked().

1716 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54838

54839

54840

54841

54842

54843

54844

System Interfaces putenv()

NAME
putenv — change or add a value to an environment

SYNOPSIS
XSI #include <stdlib.h>

int putenv(char *string);

DESCRIPTION
The putenv() function shall use the string argument to set environment variable values. The
string argument should point to a string of the form "name=value". The putenv() function shall
make the value of the environment variable name equal to value by altering an existing variable
or creating a new one. In either case, the string pointed to by string shall become part of the
environment, so altering the string shall change the environment. The space used by string is no
longer used once a new string which defines name is passed to putenv().

The putenv() function need not be thread-safe.

RETURN VALUE
Upon successful completion, putenv() shall return 0; otherwise, it shall return a non-zero value
and set errno to indicate the error.

ERRORS
The putenv() function may fail if:

[ENOMEM] Insufficient memory was available.

EXAMPLES

Changing the Value of an Environment Variable

The following example changes the value of the HOME environment variable to the value
/usr/home.

#include <stdlib.h>
...
static char *var = "HOME=/usr/home";
int ret;

ret = putenv(var);

APPLICATION USAGE
The putenv() function manipulates the environment pointed to by environ, and can be used in
conjunction with getenv().

See exec() for restrictions on changing the environment in multi-threaded applications.

This routine may use malloc() to enlarge the environment.

A potential error is to call putenv() with an automatic variable as the argument, then return from
the calling function while string is still part of the environment.

The setenv() function is preferred over this function.

RATIONALE
The standard developers noted that putenv() is the only function available to add to the
environment without permitting memory leaks.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1717

54845

54846

54847

54848

54849

54850

54851

54852

54853

54854

54855

54856

54857

54858

54859

54860

54861

54862

54863

54864

54865

54866

54867

54868

54869

54870

54871

54872

54873

54874

54875

54876

54877

54878

54879

54880

54881

54882

54883

putenv() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getenv(), malloc(), setenv()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The type of the argument to this function is changed from const char * to char *. This was
indicated as a FUTURE DIRECTION in previous issues.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/48 is applied, clarifying wording in the
DESCRIPTION and adding a new paragraph into APPLICATION USAGE referring readers to
exec.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

1718 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54884

54885

54886

54887

54888

54889

54890

54891

54892

54893

54894

54895

54896

54897

54898

54899

54900

System Interfaces putmsg()

NAME
putmsg, putpmsg — send a message on a STREAM (STREAMS)

SYNOPSIS
OB XSR #include <stropts.h>

int putmsg(int fildes, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int flags);

int putpmsg(int fildes, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int band, int flags);

DESCRIPTION
The putmsg() function shall create a message from a process buffer(s) and send the message to a
STREAMS file. The message may contain either a data part, a control part, or both. The data and
control parts are distinguished by placement in separate buffers, as described below. The
semantics of each part are defined by the STREAMS module that receives the message.

The putpmsg() function is equivalent to putmsg(), except that the process can send messages in
different priority bands. Except where noted, all requirements on putmsg() also pertain to
putpmsg().

The fildes argument specifies a file descriptor referencing an open STREAM. The ctlptr and
dataptr arguments each point to a strbuf structure.

The ctlptr argument points to the structure describing the control part, if any, to be included in
the message. The buf member in the strbuf structure points to the buffer where the control
information resides, and the len member indicates the number of bytes to be sent. The maxlen
member is not used by putmsg(). In a similar manner, the argument dataptr specifies the data, if
any, to be included in the message. The flags argument indicates what type of message should be
sent and is described further below.

To send the data part of a message, the application shall ensure that dataptr is not a null pointer
and the len member of dataptr is 0 or greater. To send the control part of a message, the
application shall ensure that the corresponding values are set for ctlptr. No data (control) part
shall be sent if either dataptr(ctlptr) is a null pointer or the len member of dataptr(ctlptr) is set to
−1.

For putmsg(), if a control part is specified and flags is set to RS_HIPRI, a high priority message
shall be sent. If no control part is specified, and flags is set to RS_HIPRI, putmsg() shall fail and
set errno to [EINVAL]. If flags is set to 0, a normal message (priority band equal to 0) shall be
sent. If a control part and data part are not specified and flags is set to 0, no message shall be
sent and 0 shall be returned.

For putpmsg(), the flags are different. The flags argument is a bitmask with the following
mutually-exclusive flags defined: MSG_HIPRI and MSG_BAND. If flags is set to 0, putpmsg()
shall fail and set errno to [EINVAL]. If a control part is specified and flags is set to MSG_HIPRI
and band is set to 0, a high-priority message shall be sent. If flags is set to MSG_HIPRI and either
no control part is specified or band is set to a non-zero value, putpmsg() shall fail and set errno to
[EINVAL]. If flags is set to MSG_BAND, then a message shall be sent in the priority band
specified by band. If a control part and data part are not specified and flags is set to MSG_BAND,
no message shall be sent and 0 shall be returned.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1719

54901

54902

54903

54904

54905

54906

54907

54908

54909

54910

54911

54912

54913

54914

54915

54916

54917

54918

54919

54920

54921

54922

54923

54924

54925

54926

54927

54928

54929

54930

54931

54932

54933

54934

54935

54936

54937

54938

54939

54940

54941

54942

putmsg() System Interfaces

The putmsg() function shall block if the STREAM write queue is full due to internal flow control
conditions, with the following exceptions:

• For high-priority messages, putmsg() shall not block on this condition and continues
processing the message.

• For other messages, putmsg() shall not block but shall fail when the write queue is full and
O_NONBLOCK is set.

The putmsg() function shall also block, unless prevented by lack of internal resources, while
waiting for the availability of message blocks in the STREAM, regardless of priority or whether
O_NONBLOCK has been specified. No partial message shall be sent.

RETURN VALUE
Upon successful completion, putmsg() and putpmsg() shall return 0; otherwise, they shall return
−1 and set errno to indicate the error.

ERRORS
The putmsg() and putpmsg() functions shall fail if:

[EAGAIN] A non-priority message was specified, the O_NONBLOCK flag is set, and the
STREAM write queue is full due to internal flow control conditions; or buffers
could not be allocated for the message that was to be created.

[EBADF] fildes is not a valid file descriptor open for writing.

[EINTR] A signal was caught during putmsg().

[EINVAL] An undefined value is specified in flags, or flags is set to RS_HIPRI or
MSG_HIPRI and no control part is supplied, or the STREAM or multiplexer
referenced by fildes is linked (directly or indirectly) downstream from a
multiplexer, or flags is set to MSG_HIPRI and band is non-zero (for putpmsg()
only).

[ENOSR] Buffers could not be allocated for the message that was to be created due to
insufficient STREAMS memory resources.

[ENOSTR] A STREAM is not associated with fildes.

[ENXIO] A hangup condition was generated downstream for the specified STREAM.

[EPIPE] or [EIO] The fildes argument refers to a STREAMS-based pipe and the other end of the
pipe is closed. A SIGPIPE signal is generated for the calling thread.

[ERANGE] The size of the data part of the message does not fall within the range
specified by the maximum and minimum packet sizes of the topmost
STREAM module. This value is also returned if the control part of the message
is larger than the maximum configured size of the control part of a message,
or if the data part of a message is larger than the maximum configured size of
the data part of a message.

In addition, putmsg() and putpmsg() shall fail if the STREAM head had processed an
asynchronous error before the call. In this case, the value of errno does not reflect the result of
putmsg() or putpmsg(), but reflects the prior error.

1720 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

54943

54944

54945

54946

54947

54948

54949

54950

54951

54952

54953

54954

54955

54956

54957

54958

54959

54960

54961

54962

54963

54964

54965

54966

54967

54968

54969

54970

54971

54972

54973

54974

54975

54976

54977

54978

54979

54980

54981

System Interfaces putmsg()

EXAMPLES

Sending a High-Priority Message

The value of fd is assumed to refer to an open STREAMS file. This call to putmsg() does the
following:

1. Creates a high-priority message with a control part and a data part, using the buffers
pointed to by ctrlbuf and databuf , respectively.

2. Sends the message to the STREAMS file identified by fd.

#include <stropts.h>
#include <string.h>
...
int fd;
char *ctrlbuf = "This is the control part";
char *databuf = "This is the data part";
struct strbuf ctrl;
struct strbuf data;
int ret;

ctrl.buf = ctrlbuf;
ctrl.len = strlen(ctrlbuf);

data.buf = databuf;
data.len = strlen(databuf);

ret = putmsg(fd, &ctrl, &data, MSG_HIPRI);

Using putpmsg()

This example has the same effect as the previous example. In this example, however, the
putpmsg() function creates and sends the message to the STREAMS file.

#include <stropts.h>
#include <string.h>
...
int fd;
char *ctrlbuf = "This is the control part";
char *databuf = "This is the data part";
struct strbuf ctrl;
struct strbuf data;
int ret;

ctrl.buf = ctrlbuf;
ctrl.len = strlen(ctrlbuf);

data.buf = databuf;
data.len = strlen(databuf);

ret = putpmsg(fd, &ctrl, &data, 0, MSG_HIPRI);

APPLICATION USAGE
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1721

54982

54983

54984

54985

54986

54987

54988

54989

54990

54991

54992

54993

54994

54995

54996

54997

54998

54999

55000

55001

55002

55003

55004

55005

55006

55007

55008

55009

55010

55011

55012

55013

55014

55015

55016

55017

55018

55019

55020

55021

putmsg() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
The putmsg() and putpmsg() functions may be removed in a future version.

SEE ALSO
Section 2.6 (on page 494), getmsg(), poll(), read(), write()

XBD <stropts.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The following text is removed from the DESCRIPTION: ‘‘The STREAM head guarantees that the
control part of a message generated by putmsg() is at least 64 bytes in length’’.

Issue 6
This function is marked as part of the XSI STREAMS Option Group.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The putmsg() and putpmsg() functions are marked obsolescent.

1722 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

55022

55023

55024

55025

55026

55027

55028

55029

55030

55031

55032

55033

55034

55035

55036

55037

55038

55039

System Interfaces puts()

NAME
puts — put a string on standard output

SYNOPSIS
#include <stdio.h>

int puts(const char *s);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The puts() function shall write the string pointed to by s, followed by a <newline>, to the
standard output stream stdout. The terminating null byte shall not be written.

CX The last data modification and last file status change timestamps of the file shall be marked for
update between the successful execution of puts() and the next successful completion of a call to
fflush() or fclose() on the same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, puts() shall return a non-negative number. Otherwise, it shall

CX return EOF, shall set an error indicator for the stream, and errno shall be set to indicate the error.

ERRORS
Refer to fputc().

EXAMPLES

Printing to Standard Output

The following example gets the current time, converts it to a string using localtime() and
asctime(), and prints it to standard output using puts(). It then prints the number of minutes to
an event for which it is waiting.

#include <time.h>
#include <stdio.h>
...
time_t now;
int minutes_to_event;
...
time(&now);
printf("The time is ");
puts(asctime(localtime(&now)));
printf("There are %d minutes to the event.\n",

minutes_to_event);
...

APPLICATION USAGE
The puts() function appends a <newline>, while fputs() does not.

RATIONALE
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1723

55040

55041

55042

55043

55044

55045

55046

55047

55048

55049

55050

55051

55052

55053

55054

55055

55056

55057

55058

55059

55060

55061

55062

55063

55064

55065

55066

55067

55068

55069

55070

55071

55072

55073

55074

55075

55076

55077

55078

55079

puts() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), fputs(), putc()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
Changes are made related to support for finegrained timestamps.

1724 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

55080

55081

55082

55083

55084

55085

55086

55087

55088

55089

55090

System Interfaces pututxline()

NAME
pututxline — put an entry into the user accounting database

SYNOPSIS
XSI #include <utmpx.h>

struct utmpx *pututxline(const struct utmpx *utmpx);

DESCRIPTION
Refer to endutxent().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1725

55091

55092

55093

55094

55095

55096

55097

putwc() System Interfaces

NAME
putwc — put a wide character on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t putwc(wchar_t wc, FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The putwc() function shall be equivalent to fputwc(), except that if it is implemented as a macro
it may evaluate stream more than once, so the argument should never be an expression with
side-effects.

RETURN VALUE
Refer to fputwc().

ERRORS
Refer to fputwc().

EXAMPLES
None.

APPLICATION USAGE
Since it may be implemented as a macro, putwc() may treat a stream argument with side-effects
incorrectly. In particular, putwc(wc,*f++) need not work correctly. Therefore, use of this function
is not recommended; fputwc() should be used instead.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fputwc()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the type of argument wc
is changed from wint_t to wchar_t.

The Optional Header (OH) marking is removed from <stdio.h>.

1726 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

55098

55099

55100

55101

55102

55103

55104

55105

55106

55107

55108

55109

55110

55111

55112

55113

55114

55115

55116

55117

55118

55119

55120

55121

55122

55123

55124

55125

55126

55127

55128

55129

55130

55131

55132

55133

System Interfaces putwchar()

NAME
putwchar — put a wide character on a stdout stream

SYNOPSIS
#include <wchar.h>

wint_t putwchar(wchar_t wc);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The function call putwchar(wc) shall be equivalent to putwc(wc,stdout).

RETURN VALUE
Refer to fputwc().

ERRORS
Refer to fputwc().

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fputwc(), putwc()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the type of argument wc
is changed from wint_t to wchar_t.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1727

55134

55135

55136

55137

55138

55139

55140

55141

55142

55143

55144

55145

55146

55147

55148

55149

55150

55151

55152

55153

55154

55155

55156

55157

55158

55159

55160

55161

55162

55163

pwrite() System Interfaces

NAME
pwrite — write on a file

SYNOPSIS
#include <unistd.h>

ssize_t pwrite(int fildes, const void *buf, size_t nbyte,
off_t offset);

DESCRIPTION
Refer to write().

1728 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

55164

55165

55166

55167

55168

55169

55170

55171

System Interfaces qsort()

NAME
qsort — sort a table of data

SYNOPSIS
#include <stdlib.h>

void qsort(void *base, size_t nel, size_t width,
int (*compar)(const void *, const void *));

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The qsort() function shall sort an array of nel objects, the initial element of which is pointed to by
base. The size of each object, in bytes, is specified by the width argument. If the nel argument has
the value zero, the comparison function pointed to by compar shall not be called and no
rearrangement shall take place.

The application shall ensure that the comparison function pointed to by compar does not alter the
contents of the array. The implementation may reorder elements of the array between calls to the
comparison function, but shall not alter the contents of any individual element.

When the same objects (consisting of width bytes, irrespective of their current positions in the
array) are passed more than once to the comparison function, the results shall be consistent with
one another. That is, they shall define a total ordering on the array.

The contents of the array shall be sorted in ascending order according to a comparison function.
The compar argument is a pointer to the comparison function, which is called with two
arguments that point to the elements being compared. The application shall ensure that the
function returns an integer less than, equal to, or greater than 0, if the first argument is
considered respectively less than, equal to, or greater than the second. If two members compare
as equal, their order in the sorted array is unspecified.

RETURN VALUE
The qsort() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.

RATIONALE
The requirement that each argument (hereafter referred to as p) to the comparison function is a
pointer to elements of the array implies that for every call, for each argument separately, all of
the following expressions are non-zero:

((char *)p − (char *)base) % width == 0
(char *)p >= (char *)base
(char *)p < (char *)base + nel * width

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1729

55172

55173

55174

55175

55176

55177

55178

55179

55180

55181

55182

55183

55184

55185

55186

55187

55188

55189

55190

55191

55192

55193

55194

55195

55196

55197

55198

55199

55200

55201

55202

55203

55204

55205

55206

55207

55208

55209

55210

55211

55212

55213

qsort() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
alphasort()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/49 is applied, adding the last sentence to
the first non-shaded paragraph in the DESCRIPTION, and the following two paragraphs. The
RATIONALE is also updated. These changes are for alignment with the ISO C standard.

1730 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

55214

55215

55216

55217

55218

55219

55220

55221

55222

55223

55224

55225

System Interfaces raise()

NAME
raise — send a signal to the executing process

SYNOPSIS
#include <signal.h>

int raise(int sig);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

CX The raise() function shall send the signal sig to the executing thread or process. If a signal
handler is called, the raise() function shall not return until after the signal handler does.

CX The effect of the raise() function shall be equivalent to calling:

pthread_kill(pthread_self(), sig);

RETURN VALUE
CX Upon successful completion, 0 shall be returned. Otherwise, a non-zero value shall be returned

and errno shall be set to indicate the error.

ERRORS
The raise() function shall fail if:

CX [EINVAL] The value of the sig argument is an invalid signal number.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The term ‘‘thread’’ is an extension to the ISO C standard.

FUTURE DIRECTIONS
None.

SEE ALSO
kill(), sigaction()

XBD <signal.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE section, the requirement to set errno on error is added.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1731

55226

55227

55228

55229

55230

55231

55232

55233

55234

55235

55236

55237

55238

55239

55240

55241

55242

55243

55244

55245

55246

55247

55248

55249

55250

55251

55252

55253

55254

55255

55256

55257

55258

55259

55260

55261

55262

55263

55264

raise() System Interfaces

• The [EINVAL] error condition is added.

Issue 7
Functionality relating to the Threads option is moved to the Base.

1732 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

55265

55266

55267

System Interfaces rand()

NAME
rand, rand_r, srand — pseudo-random number generator

SYNOPSIS
#include <stdlib.h>

int rand(void);
OB CX int rand_r(unsigned *seed);

void srand(unsigned seed);

DESCRIPTION
CX For rand() and srand(): The functionality described on this reference page is aligned with the

ISO C standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

The rand() function shall compute a sequence of pseudo-random integers in the range
XSI [0,{RAND_MAX}] with a period of at least 232.

CX The rand() function need not be thread-safe.

OB CX The rand_r() function shall compute a sequence of pseudo-random integers in the range
[0,{RAND_MAX}]. (The value of the {RAND_MAX} macro shall be at least 32 767.)

If rand_r() is called with the same initial value for the object pointed to by seed and that object is
not modified between successive returns and calls to rand_r(), the same sequence shall be
generated.

The srand() function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calls to rand(). If srand() is then called with the same
seed value, the sequence of pseudo-random numbers shall be repeated. If rand() is called before
any calls to srand() are made, the same sequence shall be generated as when srand() is first
called with a seed value of 1.

The implementation shall behave as if no function defined in this volume of POSIX.1-2008 calls
rand() or srand().

RETURN VALUE
The rand() function shall return the next pseudo-random number in the sequence.

OB CX The rand_r() function shall return a pseudo-random integer.

The srand() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES

Generating a Pseudo-Random Number Sequence

The following example demonstrates how to generate a sequence of pseudo-random numbers.

#include <stdio.h>
#include <stdlib.h>
...

long count, i;
char *keystr;
int elementlen, len;
char c;

...

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1733

55268

55269

55270

55271

55272

55273

55274

55275

55276

55277

55278

55279

55280

55281

55282

55283

55284

55285

55286

55287

55288

55289

55290

55291

55292

55293

55294

55295

55296

55297

55298

55299

55300

55301

55302

55303

55304

55305

55306

55307

55308

55309

55310

rand() System Interfaces

/* Initial random number generator. */
srand(1);

/* Create keys using only lowercase characters */
len = 0;
for (i=0; i<count; i++) {

while (len < elementlen) {
c = (char) (rand() % 128);
if (islower(c))

keystr[len++] = c;
}

keystr[len] = ’\0’;
printf("%s Element%0*ld\n", keystr, elementlen, i);
len = 0;

}

Generating the Same Sequence on Different Machines

The following code defines a pair of functions that could be incorporated into applications
wishing to ensure that the same sequence of numbers is generated across different machines.

static unsigned long next = 1;
int myrand(void) /* RAND_MAX assumed to be 32767. */
{

next = next * 1103515245 + 12345;
return((unsigned)(next/65536) % 32768);

}

void mysrand(unsigned seed)
{

next = seed;
}

APPLICATION USAGE
The drand48() function provides a much more elaborate random number generator.

The limitations on the amount of state that can be carried between one function call and another
mean the rand_r() function can never be implemented in a way which satisfies all of the
requirements on a pseudo-random number generator. Therefore this function should be avoided
whenever non-trivial requirements (including safety) have to be fulfilled.

RATIONALE
The ISO C standard rand() and srand() functions allow per-process pseudo-random streams
shared by all threads. Those two functions need not change, but there has to be mutual-
exclusion that prevents interference between two threads concurrently accessing the random
number generator.

With regard to rand(), there are two different behaviors that may be wanted in a multi-threaded
program:

1. A single per-process sequence of pseudo-random numbers that is shared by all threads
that call rand()

2. A different sequence of pseudo-random numbers for each thread that calls rand()

This is provided by the modified thread-safe function based on whether the seed value is global

1734 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

55311

55312

55313

55314

55315

55316

55317

55318

55319

55320

55321

55322

55323

55324

55325

55326

55327

55328

55329

55330

55331

55332

55333

55334

55335

55336

55337

55338

55339

55340

55341

55342

55343

55344

55345

55346

55347

55348

55349

55350

55351

55352

55353

55354

System Interfaces rand()

to the entire process or local to each thread.

This does not address the known deficiencies of the rand() function implementations, which
have been approached by maintaining more state. In effect, this specifies new thread-safe forms
of a deficient function.

FUTURE DIRECTIONS
The rand_r() function may be removed in a future version.

SEE ALSO
drand48()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The rand_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the rand() function need not be reentrant is added to the DESCRIPTION.

Issue 6
Extensions beyond the ISO C standard are marked.

The rand_r() function is marked as part of the Thread-Safe Functions option.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The rand_r() function is marked obsolescent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1735

55355

55356

55357

55358

55359

55360

55361

55362

55363

55364

55365

55366

55367

55368

55369

55370

55371

55372

55373

55374

random() System Interfaces

NAME
random — generate pseudo-random number

SYNOPSIS
XSI #include <stdlib.h>

long random(void);

DESCRIPTION
Refer to initstate().

1736 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

55375

55376

55377

55378

55379

55380

55381

System Interfaces read()

NAME
pread, read — read from a file

SYNOPSIS
#include <unistd.h>

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);
ssize_t read(int fildes, void *buf, size_t nbyte);

DESCRIPTION
The read() function shall attempt to read nbyte bytes from the file associated with the open file
descriptor, fildes, into the buffer pointed to by buf . The behavior of multiple concurrent reads on
the same pipe, FIFO, or terminal device is unspecified.

Before any action described below is taken, and if nbyte is zero, the read() function may detect
and return errors as described below. In the absence of errors, or if error detection is not
performed, the read() function shall return zero and have no other results.

On files that support seeking (for example, a regular file), the read() shall start at a position in
the file given by the file offset associated with fildes. The file offset shall be incremented by the
number of bytes actually read.

Files that do not support seeking—for example, terminals—always read from the current
position. The value of a file offset associated with such a file is undefined.

No data transfer shall occur past the current end-of-file. If the starting position is at or after the
end-of-file, 0 shall be returned. If the file refers to a device special file, the result of subsequent
read() requests is implementation-defined.

If the value of nbyte is greater than {SSIZE_MAX}, the result is implementation-defined.

When attempting to read from an empty pipe or FIFO:

• If no process has the pipe open for writing, read() shall return 0 to indicate end-of-file.

• If some process has the pipe open for writing and O_NONBLOCK is set, read() shall return
−1 and set errno to [EAGAIN].

• If some process has the pipe open for writing and O_NONBLOCK is clear, read() shall
block the calling thread until some data is written or the pipe is closed by all processes that
had the pipe open for writing.

When attempting to read a file (other than a pipe or FIFO) that supports non-blocking reads and
has no data currently available:

• If O_NONBLOCK is set, read() shall return −1 and set errno to [EAGAIN].

• If O_NONBLOCK is clear, read() shall block the calling thread until some data becomes
available.

• The use of the O_NONBLOCK flag has no effect if there is some data available.

The read() function reads data previously written to a file. If any portion of a regular file prior to
the end-of-file has not been written, read() shall return bytes with value 0. For example, lseek()
allows the file offset to be set beyond the end of existing data in the file. If data is later written at
this point, subsequent reads in the gap between the previous end of data and the newly written
data shall return bytes with value 0 until data is written into the gap.

Upon successful completion, where nbyte is greater than 0, read() shall mark for update the last
data access timestamp of the file, and shall return the number of bytes read. This number shall
never be greater than nbyte. The value returned may be less than nbyte if the number of bytes

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1737

55382

55383

55384

55385

55386

55387

55388

55389

55390

55391

55392

55393

55394

55395

55396

55397

55398

55399

55400

55401

55402

55403

55404

55405

55406

55407

55408

55409

55410

55411

55412

55413

55414

55415

55416

55417

55418

55419

55420

55421

55422

55423

55424

read() System Interfaces

left in the file is less than nbyte, if the read() request was interrupted by a signal, or if the file is a
pipe or FIFO or special file and has fewer than nbyte bytes immediately available for reading.
For example, a read() from a file associated with a terminal may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it shall return −1 with errno set to
[EINTR].

If a read() is interrupted by a signal after it has successfully read some data, it shall return the
number of bytes read.

For regular files, no data transfer shall occur past the offset maximum established in the open
file description associated with fildes.

If fildes refers to a socket, read() shall be equivalent to recv() with no flags set.

SIO If the O_DSYNC and O_RSYNC bits have been set, read I/O operations on the file descriptor
shall complete as defined by synchronized I/O data integrity completion. If the O_SYNC and
O_RSYNC bits have been set, read I/O operations on the file descriptor shall complete as
defined by synchronized I/O file integrity completion.

SHM If fildes refers to a shared memory object, the result of the read() function is unspecified.

TYM If fildes refers to a typed memory object, the result of the read() function is unspecified.

OB XSR A read() from a STREAMS file can read data in three different modes: byte-stream mode, message-
nondiscard mode, and message-discard mode. The default shall be byte-stream mode. This can be
changed using the I_SRDOPT ioctl() request, and can be tested with I_GRDOPT ioctl(). In byte-
stream mode, read() shall retrieve data from the STREAM until as many bytes as were requested
are transferred, or until there is no more data to be retrieved. Byte-stream mode ignores
message boundaries.

In STREAMS message-nondiscard mode, read() shall retrieve data until as many bytes as were
requested are transferred, or until a message boundary is reached. If read() does not retrieve all
the data in a message, the remaining data shall be left on the STREAM, and can be retrieved by
the next read() call. Message-discard mode also retrieves data until as many bytes as were
requested are transferred, or a message boundary is reached. However, unread data remaining
in a message after the read() returns shall be discarded, and shall not be available for a
subsequent read(), getmsg(), or getpmsg() call.

How read() handles zero-byte STREAMS messages is determined by the current read mode
setting. In byte-stream mode, read() shall accept data until it has read nbyte bytes, or until there
is no more data to read, or until a zero-byte message block is encountered. The read() function
shall then return the number of bytes read, and place the zero-byte message back on the
STREAM to be retrieved by the next read(), getmsg(), or getpmsg(). In message-nondiscard
mode or message-discard mode, a zero-byte message shall return 0 and the message shall be
removed from the STREAM. When a zero-byte message is read as the first message on a
STREAM, the message shall be removed from the STREAM and 0 shall be returned, regardless
of the read mode.

A read() from a STREAMS file shall return the data in the message at the front of the STREAM
head read queue, regardless of the priority band of the message.

By default, STREAMs are in control-normal mode, in which a read() from a STREAMS file can
only process messages that contain a data part but do not contain a control part. The read() shall
fail if a message containing a control part is encountered at the STREAM head. This default
action can be changed by placing the STREAM in either control-data mode or control-discard
mode with the I_SRDOPT ioctl() command. In control-data mode, read() shall convert any
control part to data and pass it to the application before passing any data part originally present

1738 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

55425

55426

55427

55428

55429

55430

55431

55432

55433

55434

55435

55436

55437

55438

55439

55440

55441

55442

55443

55444

55445

55446

55447

55448

55449

55450

55451

55452

55453

55454

55455

55456

55457

55458

55459

55460

55461

55462

55463

55464

55465

55466

55467

55468

55469

55470

System Interfaces read()

in the same message. In control-discard mode, read() shall discard message control parts but
return to the process any data part in the message.

In addition, read() shall fail if the STREAM head had processed an asynchronous error before
the call. In this case, the value of errno shall not reflect the result of read(), but reflect the prior
error. If a hangup occurs on the STREAM being read, read() shall continue to operate normally
until the STREAM head read queue is empty. Thereafter, it shall return 0.

The pread() function shall be equivalent to read(), except that it shall read from a given position
in the file without changing the file pointer. The first three arguments to pread() are the same as
read() with the addition of a fourth argument offset for the desired position inside the file. An
attempt to perform a pread() on a file that is incapable of seeking shall result in an error.

RETURN VALUE
Upon successful completion, these functions shall return a non-negative integer indicating the
number of bytes actually read. Otherwise, the functions shall return −1 and set errno to indicate
the error.

ERRORS
These functions shall fail if:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the thread would be
delayed.

[EBADF] The fildes argument is not a valid file descriptor open for reading.

OB XSR [EBADMSG] The file is a STREAM file that is set to control-normal mode and the message
waiting to be read includes a control part.

[EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.

OB XSR [EINVAL] The STREAM or multiplexer referenced by fildes is linked (directly or
indirectly) downstream from a multiplexer.

[EIO] The process is a member of a background process group attempting to read
from its controlling terminal, the process is ignoring or blocking the SIGTTIN
signal, or the process group is orphaned. This error may also be generated for
implementation-defined reasons.

XSI [EISDIR] The fildes argument refers to a directory and the implementation does not
allow the directory to be read using read() or pread(). The readdir() function
should be used instead.

[EOVERFLOW] The file is a regular file, nbyte is greater than 0, the starting position is before
the end-of-file, and the starting position is greater than or equal to the offset
maximum established in the open file description associated with fildes.

The read() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The file descriptor is for a socket, is marked O_NONBLOCK, and no data is
waiting to be received.

[ECONNRESET] A read was attempted on a socket and the connection was forcibly closed by
its peer.

[ENOTCONN] A read was attempted on a socket that is not connected.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1739

55471

55472

55473

55474

55475

55476

55477

55478

55479

55480

55481

55482

55483

55484

55485

55486

55487

55488

55489

55490

55491

55492

55493

55494

55495

55496

55497

55498

55499

55500

55501

55502

55503

55504

55505

55506

55507

55508

55509

55510

55511

55512

read() System Interfaces

[ETIMEDOUT] A read was attempted on a socket and a transmission timeout occurred.

These functions may fail if:

[EIO] A physical I/O error has occurred.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

[ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

The pread() function shall fail, and the file pointer shall remain unchanged, if:

[EINVAL] The offset argument is invalid. The value is negative.

[EOVERFLOW] The file is a regular file and an attempt was made to read at or beyond the
offset maximum associated with the file.

[ENXIO] A request was outside the capabilities of the device.

[ESPIPE] fildes is associated with a pipe or FIFO.

EXAMPLES

Reading Data into a Buffer

The following example reads data from the file associated with the file descriptor fd into the
buffer pointed to by buf .

#include <sys/types.h>
#include <unistd.h>
...
char buf[20];
size_t nbytes;
ssize_t bytes_read;
int fd;
...
nbytes = sizeof(buf);
bytes_read = read(fd, buf, nbytes);
...

APPLICATION USAGE
None.

RATIONALE
This volume of POSIX.1-2008 does not specify the value of the file offset after an error is
returned; there are too many cases. For programming errors, such as [EBADF], the concept is
meaningless since no file is involved. For errors that are detected immediately, such as
[EAGAIN], clearly the pointer should not change. After an interrupt or hardware error, however,
an updated value would be very useful and is the behavior of many implementations.

Note that a read() of zero bytes does not modify the last data access timestamp. A read() that
requests more than zero bytes, but returns zero, is required to modify the last data access
timestamp.

Implementations are allowed, but not required, to perform error checking for read() requests of
zero bytes.

1740 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

55513

55514

55515

55516

55517

55518

55519

55520

55521

55522

55523

55524

55525

55526

55527

55528

55529

55530

55531

55532

55533

55534

55535

55536

55537

55538

55539

55540

55541

55542

55543

55544

55545

55546

55547

55548

55549

55550

55551

55552

55553

System Interfaces read()

Input and Output

The use of I/O with large byte counts has always presented problems. Ideas such as lread() and
lwrite() (using and returning longs) were considered at one time. The current solution is to use
abstract types on the ISO C standard function to read() and write(). The abstract types can be
declared so that existing functions work, but can also be declared so that larger types can be
represented in future implementations. It is presumed that whatever constraints limit the
maximum range of size_t also limit portable I/O requests to the same range. This volume of
POSIX.1-2008 also limits the range further by requiring that the byte count be limited so that a
signed return value remains meaningful. Since the return type is also a (signed) abstract type,
the byte count can be defined by the implementation to be larger than an int can hold.

The standard developers considered adding atomicity requirements to a pipe or FIFO, but
recognized that due to the nature of pipes and FIFOs there could be no guarantee of atomicity of
reads of {PIPE_BUF} or any other size that would be an aid to applications portability.

This volume of POSIX.1-2008 requires that no action be taken for read() or write() when nbyte is
zero. This is not intended to take precedence over detection of errors (such as invalid buffer
pointers or file descriptors). This is consistent with the rest of this volume of POSIX.1-2008, but
the phrasing here could be misread to require detection of the zero case before any other errors.
A value of zero is to be considered a correct value, for which the semantics are a no-op.

I/O is intended to be atomic to ordinary files and pipes and FIFOs. Atomic means that all the
bytes from a single operation that started out together end up together, without interleaving
from other I/O operations. It is a known attribute of terminals that this is not honored, and
terminals are explicitly (and implicitly permanently) excepted, making the behavior unspecified.
The behavior for other device types is also left unspecified, but the wording is intended to imply
that future standards might choose to specify atomicity (or not).

There were recommendations to add format parameters to read() and write() in order to handle
networked transfers among heterogeneous file system and base hardware types. Such a facility
may be required for support by the OSI presentation of layer services. However, it was
determined that this should correspond with similar C-language facilities, and that is beyond
the scope of this volume of POSIX.1-2008. The concept was suggested to the developers of the
ISO C standard for their consideration as a possible area for future work.

In 4.3 BSD, a read() or write() that is interrupted by a signal before transferring any data does
not by default return an [EINTR] error, but is restarted. In 4.2 BSD, 4.3 BSD, and the Eighth
Edition, there is an additional function, select(), whose purpose is to pause until specified
activity (data to read, space to write, and so on) is detected on specified file descriptors. It is
common in applications written for those systems for select() to be used before read() in
situations (such as keyboard input) where interruption of I/O due to a signal is desired.

The issue of which files or file types are interruptible is considered an implementation design
issue. This is often affected primarily by hardware and reliability issues.

There are no references to actions taken following an ‘‘unrecoverable error ’’. It is considered
beyond the scope of this volume of POSIX.1-2008 to describe what happens in the case of
hardware errors.

Earlier versions of this standard allowed two very different behaviors with regard to the
handling of interrupts. In order to minimize the resulting confusion, it was decided that
POSIX.1-2008 should support only one of these behaviors. Historical practice on AT&T-derived
systems was to have read() and write() return −1 and set errno to [EINTR] when interrupted after
some, but not all, of the data requested had been transferred. However, the US Department of
Commerce FIPS 151-1 and FIPS 151-2 require the historical BSD behavior, in which read() and

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1741

55554

55555

55556

55557

55558

55559

55560

55561

55562

55563

55564

55565

55566

55567

55568

55569

55570

55571

55572

55573

55574

55575

55576

55577

55578

55579

55580

55581

55582

55583

55584

55585

55586

55587

55588

55589

55590

55591

55592

55593

55594

55595

55596

55597

55598

55599

55600

read() System Interfaces

write() return the number of bytes actually transferred before the interrupt. If −1 is returned
when any data is transferred, it is difficult to recover from the error on a seekable device and
impossible on a non-seekable device. Most new implementations support this behavior. The
behavior required by POSIX.1-2008 is to return the number of bytes transferred.

POSIX.1-2008 does not specify when an implementation that buffers read()s actually moves the
data into the user-supplied buffer, so an implementation may choose to do this at the latest
possible moment. Therefore, an interrupt arriving earlier may not cause read() to return a
partial byte count, but rather to return −1 and set errno to [EINTR].

Consideration was also given to combining the two previous options, and setting errno to
[EINTR] while returning a short count. However, not only is there no existing practice that
implements this, it is also contradictory to the idea that when errno is set, the function
responsible shall return −1.

FUTURE DIRECTIONS
None.

SEE ALSO
fcntl(), ioctl(), lseek(), open(), pipe(), readv()

XBD Chapter 11 (on page 199), <stropts.h>, <sys/uio.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

The pread() function is added.

Issue 6
The DESCRIPTION and ERRORS sections are updated so that references to STREAMS are
marked as part of the XSI STREAMS Option Group.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION now states that if read() is interrupted by a signal after it has
successfully read some data, it returns the number of bytes read. In Issue 3, it was optional
whether read() returned the number of bytes read, or whether it returned −1 with errno set
to [EINTR]. This is a FIPS requirement.

• In the DESCRIPTION, text is added to indicate that for regular files, no data transfer
occurs past the offset maximum established in the open file description associated with
fildes. This change is to support large files.

• The [EOVERFLOW] mandatory error condition is added.

• The [ENXIO] optional error condition is added.

Text referring to sockets is added to the DESCRIPTION.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The effect of reading zero bytes is clarified.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that

1742 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

55601

55602

55603

55604

55605

55606

55607

55608

55609

55610

55611

55612

55613

55614

55615

55616

55617

55618

55619

55620

55621

55622

55623

55624

55625

55626

55627

55628

55629

55630

55631

55632

55633

55634

55635

55636

55637

55638

55639

55640

55641

55642

System Interfaces read()

read() results are unspecified for typed memory objects.

New RATIONALE is added to explain the atomicity requirements for input and output
operations.

The following error conditions are added for operations on sockets: [EAGAIN],
[ECONNRESET], [ENOTCONN], and [ETIMEDOUT].

The [EIO] error is made optional.

The following error conditions are added for operations on sockets: [ENOBUFS] and
[ENOMEM].

The readv() function is split out into a separate reference page.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/108 is applied, updating the [EAGAIN]
error in the ERRORS section from ‘‘the process would be delayed’’ to ‘‘the thread would be
delayed’’.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/109 is applied, making an editorial
correction in the RATIONALE section.

Issue 7
The pread() function is moved from the XSI option to the Base.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Changes are made related to support for finegrained timestamps.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1743

55643

55644

55645

55646

55647

55648

55649

55650

55651

55652

55653

55654

55655

55656

55657

55658

55659

55660

readdir() System Interfaces

NAME
readdir, readdir_r — read a directory

SYNOPSIS
#include <dirent.h>

struct dirent *readdir(DIR *dirp);
int readdir_r(DIR *restrict dirp, struct dirent *restrict entry,

struct dirent **restrict result);

DESCRIPTION
The type DIR, which is defined in the <dirent.h> header, represents a directory stream, which is
an ordered sequence of all the directory entries in a particular directory. Directory entries
represent files; files may be removed from a directory or added to a directory asynchronously to
the operation of readdir().

The readdir() function shall return a pointer to a structure representing the directory entry at the
current position in the directory stream specified by the argument dirp, and position the
directory stream at the next entry. It shall return a null pointer upon reaching the end of the
directory stream. The structure dirent defined in the <dirent.h> header describes a directory
entry. The value of the structure’s d_ino member shall be set to the file serial number of the file
named by the d_name member. If the d_name member names a symbolic link, the value of the
d_ino member shall be set to the file serial number of the symbolic link itself.

The readdir() function shall not return directory entries containing empty names. If entries for
dot or dot-dot exist, one entry shall be returned for dot and one entry shall be returned for dot-
dot; otherwise, they shall not be returned.

The pointer returned by readdir() points to data which may be overwritten by another call to
readdir() on the same directory stream. This data is not overwritten by another call to readdir()
on a different directory stream.

If a file is removed from or added to the directory after the most recent call to opendir() or
rewinddir(), whether a subsequent call to readdir() returns an entry for that file is unspecified.

The readdir() function may buffer several directory entries per actual read operation; readdir()
shall mark for update the last data access timestamp of the directory each time the directory is
actually read.

After a call to fork(), either the parent or child (but not both) may continue processing the
XSI directory stream using readdir(), rewinddir(), or seekdir(). If both the parent and child processes

use these functions, the result is undefined.

The readdir() function need not be thread-safe.

Applications wishing to check for error situations should set errno to 0 before calling readdir(). If
errno is set to non-zero on return, an error occurred.

The readdir_r() function shall initialize the dirent structure referenced by entry to represent the
directory entry at the current position in the directory stream referred to by dirp, store a pointer
to this structure at the location referenced by result, and position the directory stream at the next
entry.

The storage pointed to by entry shall be large enough for a dirent with an array of char d_name
members containing at least {NAME_MAX}+1 elements.

Upon successful return, the pointer returned at *result shall have the same value as the argument
entry. Upon reaching the end of the directory stream, this pointer shall have the value NULL.

The readdir_r() function shall not return directory entries containing empty names.

1744 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

55661

55662

55663

55664

55665

55666

55667

55668

55669

55670

55671

55672

55673

55674

55675

55676

55677

55678

55679

55680

55681

55682

55683

55684

55685

55686

55687

55688

55689

55690

55691

55692

55693

55694

55695

55696

55697

55698

55699

55700

55701

55702

55703

55704

55705

System Interfaces readdir()

If a file is removed from or added to the directory after the most recent call to opendir() or
rewinddir(), whether a subsequent call to readdir_r() returns an entry for that file is unspecified.

The readdir_r() function may buffer several directory entries per actual read operation;
readdir_r() shall mark for update the last data access timestamp of the directory each time the
directory is actually read.

RETURN VALUE
Upon successful completion, readdir() shall return a pointer to an object of type struct dirent.
When an error is encountered, a null pointer shall be returned and errno shall be set to indicate
the error. When the end of the directory is encountered, a null pointer shall be returned and
errno is not changed.

If successful, the readdir_r() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
These functions shall fail if:

[EOVERFLOW] One of the values in the structure to be returned cannot be represented
correctly.

These functions may fail if:

[EBADF] The dirp argument does not refer to an open directory stream.

[ENOENT] The current position of the directory stream is invalid.

EXAMPLES
The following sample program searches the current directory for each of the arguments supplied
on the command line.

#include <dirent.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>

static void lookup(const char *arg)
{

DIR *dirp;
struct dirent *dp;

if ((dirp = opendir(".")) == NULL) {
perror("couldn’t open ’.’");
return;

}

do {
errno = 0;
if ((dp = readdir(dirp)) != NULL) {

if (strcmp(dp->d_name, arg) != 0)
continue;

(void) printf("found %s\n", arg);
(void) closedir(dirp);

return;

}
} while (dp != NULL);

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1745

55706

55707

55708

55709

55710

55711

55712

55713

55714

55715

55716

55717

55718

55719

55720

55721

55722

55723

55724

55725

55726

55727

55728

55729

55730

55731

55732

55733

55734

55735

55736

55737

55738

55739

55740

55741

55742

55743

55744

55745

55746

55747

55748

55749

readdir() System Interfaces

if (errno != 0)
perror("error reading directory");

else
(void) printf("failed to find %s\n", arg);

(void) closedir(dirp);
return;

}

int main(int argc, char *argv[])
{

int i;
for (i = 1; i < argc; i++)

lookup(argv[i]);
return (0);

}

APPLICATION USAGE
The readdir() function should be used in conjunction with opendir(), closedir(), and rewinddir() to
examine the contents of the directory.

The readdir_r() function is thread-safe and shall return values in a user-supplied buffer instead
of possibly using a static data area that may be overwritten by each call.

RATIONALE
The returned value of readdir() merely represents a directory entry. No equivalence should be
inferred.

Historical implementations of readdir() obtain multiple directory entries on a single read
operation, which permits subsequent readdir() operations to operate from the buffered
information. Any wording that required each successful readdir() operation to mark the
directory last data access timestamp for update would disallow such historical performance-
oriented implementations.

When returning a directory entry for the root of a mounted file system, some historical
implementations of readdir() returned the file serial number of the underlying mount point,
rather than of the root of the mounted file system. This behavior is considered to be a bug, since
the underlying file serial number has no significance to applications.

Since readdir() returns NULL when it detects an error and when the end of the directory is
encountered, an application that needs to tell the difference must set errno to zero before the call
and check it if NULL is returned. Since the function must not change errno in the second case
and must set it to a non-zero value in the first case, a zero errno after a call returning NULL
indicates end-of-directory; otherwise, an error.

Routines to deal with this problem more directly were proposed:

int derror (dirp)
DIR *dirp;

void clearderr (dirp)
DIR *dirp;

The first would indicate whether an error had occurred, and the second would clear the error
indication. The simpler method involving errno was adopted instead by requiring that readdir()
not change errno when end-of-directory is encountered.

An error or signal indicating that a directory has changed while open was considered but
rejected.

1746 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

55750

55751

55752

55753

55754

55755

55756

55757

55758

55759

55760

55761

55762

55763

55764

55765

55766

55767

55768

55769

55770

55771

55772

55773

55774

55775

55776

55777

55778

55779

55780

55781

55782

55783

55784

55785

55786

55787

55788

55789

55790

55791

55792

55793

55794

55795

System Interfaces readdir()

The thread-safe version of the directory reading function returns values in a user-supplied buffer
instead of possibly using a static data area that may be overwritten by each call. Either the
{NAME_MAX} compile-time constant or the corresponding pathconf() option can be used to
determine the maximum sizes of returned pathnames.

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), dirfd(), exec , fdopendir(), fstatat(), rewinddir(), symlink()

XBD <dirent.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 2.

Issue 5
Large File Summit extensions are added.

The readdir_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the readdir() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The readdir_r() function is marked as part of the Thread-Safe Functions option.

The Open Group Corrigendum U026/7 is applied, correcting the prototype for readdir_r().

The Open Group Corrigendum U026/8 is applied, clarifying the wording of the successful
return for the readdir_r() function.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• A statement is added to the DESCRIPTION indicating the disposition of certain fields in
struct dirent when an entry refers to a symbolic link.

• The [EOVERFLOW] mandatory error condition is added. This change is to support large
files.

• The [ENOENT] optional error condition is added.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

The restrict keyword is added to the readdir_r() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/50 is applied, replacing the EXAMPLES
section with a new example.

Issue 7
Austin Group Interpretation 1003.1-2001 #059 is applied, updating the ERRORS section.

Austin Group Interpretation 1003.1-2001 #156 is applied.

The readdir_r() function is moved from the Thread-Safe Functions option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1747

55796

55797

55798

55799

55800

55801

55802

55803

55804

55805

55806

55807

55808

55809

55810

55811

55812

55813

55814

55815

55816

55817

55818

55819

55820

55821

55822

55823

55824

55825

55826

55827

55828

55829

55830

55831

55832

55833

55834

55835

55836

readdir() System Interfaces

Changes are made related to support for finegrained timestamps.

The value of the d_ino member is no longer unspecified for symbolic links.

SD5-XSH-ERN-193 is applied.

1748 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

55837

55838

55839

System Interfaces readlink()

NAME
readlink, readlinkat — read the contents of a symbolic link relative to a directory file descriptor

SYNOPSIS
#include <unistd.h>

ssize_t readlink(const char *restrict path, char *restrict buf,
size_t bufsize);

ssize_t readlinkat(int fd, const char *restrict path,
char *restrict buf, size_t bufsize);

DESCRIPTION
The readlink() function shall place the contents of the symbolic link referred to by path in the
buffer buf which has size bufsize. If the number of bytes in the symbolic link is less than bufsize,
the contents of the remainder of buf are unspecified. If the buf argument is not large enough to
contain the link content, the first bufsize bytes shall be placed in buf .

If the value of bufsize is greater than {SSIZE_MAX}, the result is implementation-defined.

Upon successful completion, readlink() shall mark for update the last data access timestamp of
the symbolic link.

The readlinkat() function shall be equivalent to the readlink() function except in the case where
path specifies a relative path. In this case the symbolic link whose content is read is relative to the
directory associated with the file descriptor fd instead of the current working directory. If the file
descriptor was opened without O_SEARCH, the function shall check whether directory searches
are permitted using the current permissions of the directory underlying the file descriptor. If the
file descriptor was opened with O_SEARCH, the function shall not perform the check.

If readlinkat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to readlink().

RETURN VALUE
Upon successful completion, readlink() shall return the count of bytes placed in the buffer.
Otherwise, it shall return a value of −1, leave the buffer unchanged, and set errno to indicate the
error.

Upon successful completion, the readlinkat() function shall return 0. Otherwise, it shall return −1
and set errno to indicate the error.

ERRORS
These functions shall fail if:

[EACCES] Search permission is denied for a component of the path prefix of path.

[EINVAL] The path argument names a file that is not a symbolic link.

[EIO] An I/O error occurred while reading from the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory, or the path argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1749

55840

55841

55842

55843

55844

55845

55846

55847

55848

55849

55850

55851

55852

55853

55854

55855

55856

55857

55858

55859

55860

55861

55862

55863

55864

55865

55866

55867

55868

55869

55870

55871

55872

55873

55874

55875

55876

55877

55878

55879

55880

55881

55882

55883

readlink() System Interfaces

The readlinkat() function shall fail if:

[EACCES] fd was not opened with O_SEARCH and the permissions of the directory
underlying fd do not permit directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

The readlinkat() function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES

Reading the Name of a Symbolic Link

The following example shows how to read the name of a symbolic link named /modules/pass1.

#include <unistd.h>

char buf[1024];
ssizet_t len;
...
if ((len = readlink("/modules/pass1", buf, sizeof(buf)-1)) != -1)

buf[len] = ’\0’;

APPLICATION USAGE
Conforming applications should not assume that the returned contents of the symbolic link are
null-terminated.

RATIONALE
Since POSIX.1-2008 does not require any association of file times with symbolic links, there is no
requirement that file times be updated by readlink(). The type associated with bufsiz is a size_t
in order to be consistent with both the ISO C standard and the definition of read(). The behavior
specified for readlink() when bufsiz is zero represents historical practice. For this case, the
standard developers considered a change whereby readlink() would return the number of non-
null bytes contained in the symbolic link with the buffer buf remaining unchanged; however,
since the stat structure member st_size value can be used to determine the size of buffer
necessary to contain the contents of the symbolic link as returned by readlink(), this proposal
was rejected, and the historical practice retained.

The purpose of the readlinkat() function is to read the content of symbolic links in directories
other than the current working directory without exposure to race conditions. Any part of the
path of a file could be changed in parallel to a call to readlink(), resulting in unspecified behavior.
By opening a file descriptor for the target directory and using the readlinkat() function it can be
guaranteed that the symbolic link read is located relative to the desired directory.

1750 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

55884

55885

55886

55887

55888

55889

55890

55891

55892

55893

55894

55895

55896

55897

55898

55899

55900

55901

55902

55903

55904

55905

55906

55907

55908

55909

55910

55911

55912

55913

55914

55915

55916

55917

55918

55919

55920

55921

55922

55923

55924

55925

System Interfaces readlink()

FUTURE DIRECTIONS
None.

SEE ALSO
fstatat(), symlink()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The return type is changed to ssize_t, to align with the IEEE P1003.1a draft standard.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• This function is made mandatory.

• In this function it is possible for the return value to exceed the range of the type ssize_t
(since size_t has a larger range of positive values than ssize_t). A sentence restricting the
size of the size_t object is added to the description to resolve this conflict.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The FUTURE DIRECTIONS section is changed to None.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

The restrict keyword is added to the readlink() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

SD5-XSH-ERN-189 is applied, updating the ERRORS section.

The readlinkat() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 2.

The [EACCES] error is removed from the ‘‘may fail’’ error conditions.

Changes are made to allow a directory to be opened for searching.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1751

55926

55927

55928

55929

55930

55931

55932

55933

55934

55935

55936

55937

55938

55939

55940

55941

55942

55943

55944

55945

55946

55947

55948

55949

55950

55951

55952

55953

55954

55955

55956

55957

readv() System Interfaces

NAME
readv — read a vector

SYNOPSIS
XSI #include <sys/uio.h>

ssize_t readv(int fildes, const struct iovec *iov, int iovcnt);

DESCRIPTION
The readv() function shall be equivalent to read(), except as described below. The readv()
function shall place the input data into the iovcnt buffers specified by the members of the iov
array: iov[0], iov[1], . . ., iov[iovcnt−1]. The iovcnt argument is valid if greater than 0 and less than
or equal to {IOV_MAX}.

Each iovec entry specifies the base address and length of an area in memory where data should
be placed. The readv() function shall always fill an area completely before proceeding to the
next.

Upon successful completion, readv() shall mark for update the last data access timestamp of the
file.

RETURN VALUE
Refer to read().

ERRORS
Refer to read().

In addition, the readv() function shall fail if:

[EINVAL] The sum of the iov_len values in the iov array overflowed an ssize_t.

The readv() function may fail if:

[EINVAL] The iovcnt argument was less than or equal to 0, or greater than {IOV_MAX}.

EXAMPLES

Reading Data into an Array

The following example reads data from the file associated with the file descriptor fd into the
buffers specified by members of the iov array.

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
...
ssize_t bytes_read;
int fd;
char buf0[20];
char buf1[30];
char buf2[40];
int iovcnt;
struct iovec iov[3];

iov[0].iov_base = buf0;
iov[0].iov_len = sizeof(buf0);
iov[1].iov_base = buf1;
iov[1].iov_len = sizeof(buf1);
iov[2].iov_base = buf2;

1752 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

55958

55959

55960

55961

55962

55963

55964

55965

55966

55967

55968

55969

55970

55971

55972

55973

55974

55975

55976

55977

55978

55979

55980

55981

55982

55983

55984

55985

55986

55987

55988

55989

55990

55991

55992

55993

55994

55995

55996

55997

55998

55999

56000

System Interfaces readv()

iov[2].iov_len = sizeof(buf2);
...
iovcnt = sizeof(iov) / sizeof(struct iovec);

bytes_read = readv(fd, iov, iovcnt);
...

APPLICATION USAGE
None.

RATIONALE
Refer to read().

FUTURE DIRECTIONS
None.

SEE ALSO
read(), writev()

XBD <sys/uio.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 6
Split out from the read() reference page.

Issue 7
Changes are made related to support for finegrained timestamps.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1753

56001

56002

56003

56004

56005

56006

56007

56008

56009

56010

56011

56012

56013

56014

56015

56016

56017

56018

56019

56020

realloc() System Interfaces

NAME
realloc — memory reallocator

SYNOPSIS
#include <stdlib.h>

void *realloc(void *ptr, size_t size);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The realloc() function shall change the size of the memory object pointed to by ptr to the size
specified by size. The contents of the object shall remain unchanged up to the lesser of the new
and old sizes. If the new size of the memory object would require movement of the object, the
space for the previous instantiation of the object is freed. If the new size is larger, the contents of
the newly allocated portion of the object are unspecified. If size is 0 and ptr is not a null pointer,
the object pointed to is freed. If the space cannot be allocated, the object shall remain unchanged.

If ptr is a null pointer, realloc() shall be equivalent to malloc() for the specified size.

If ptr does not match a pointer returned earlier by calloc(), malloc(), or realloc() or if the space has
previously been deallocated by a call to free() or realloc(), the behavior is undefined.

The order and contiguity of storage allocated by successive calls to realloc() is unspecified. The
pointer returned if the allocation succeeds shall be suitably aligned so that it may be assigned to
a pointer to any type of object and then used to access such an object in the space allocated (until
the space is explicitly freed or reallocated). Each such allocation shall yield a pointer to an object
disjoint from any other object. The pointer returned shall point to the start (lowest byte address)
of the allocated space. If the space cannot be allocated, a null pointer shall be returned.

RETURN VALUE
Upon successful completion with a size not equal to 0, realloc() shall return a pointer to the
(possibly moved) allocated space. If size is 0, either a null pointer or a unique pointer that can be
successfully passed to free() shall be returned. If there is not enough available memory, realloc()

CX shall return a null pointer and set errno to [ENOMEM].

ERRORS
The realloc() function shall fail if:

CX [ENOMEM] Insufficient memory is available.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
calloc(), free(), malloc()

XBD <stdlib.h>

1754 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

56021

56022

56023

56024

56025

56026

56027

56028

56029

56030

56031

56032

56033

56034

56035

56036

56037

56038

56039

56040

56041

56042

56043

56044

56045

56046

56047

56048

56049

56050

56051

56052

56053

56054

56055

56056

56057

56058

56059

56060

56061

56062

56063

System Interfaces realloc()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE section, if there is not enough available memory, the setting of
errno to [ENOMEM] is added.

• The [ENOMEM] error condition is added.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1755

56064

56065

56066

56067

56068

56069

56070

56071

56072

realpath() System Interfaces

NAME
realpath — resolve a pathname

SYNOPSIS
XSI #include <stdlib.h>

char *realpath(const char *restrict file_name,
char *restrict resolved_name);

DESCRIPTION
The realpath() function shall derive, from the pathname pointed to by file_name, an absolute
pathname that resolves to the same directory entry, whose resolution does not involve ’.’,
’..’, or symbolic links. If resolved_name is a null pointer, the generated pathname shall be
stored as a null-terminated string in a buffer allocated as if by a call to malloc(). Otherwise, if
{PATH_MAX} is defined as a constant in the <limits.h> header, then the generated pathname
shall be stored as a null-terminated string, up to a maximum of {PATH_MAX} bytes, in the
buffer pointed to by resolved_name.

If resolved_name is not a null pointer and {PATH_MAX} is not defined as a constant in the
<limits.h> header, the behavior is undefined.

RETURN VALUE
Upon successful completion, realpath() shall return a pointer to the buffer containing the
resolved name. Otherwise, realpath() shall return a null pointer and set errno to indicate the
error.

If the resolved_name argument is a null pointer, the pointer returned by realpath() can be passed
to free().

If the resolved_name argument is not a null pointer and the realpath() function fails, the contents
of the buffer pointed to by resolved_name are undefined.

ERRORS
The realpath() function shall fail if:

[EACCES] Read or search permission was denied for a component of file_name.

[EINVAL] The file_name argument is a null pointer.

[EIO] An error occurred while reading from the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the file_name
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of file_name does not name an existing file or file_name points to
an empty string.

[ENOTDIR] A component of the path prefix is not a directory, or the file_name argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

The realpath() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the file_name argument.

1756 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

56073

56074

56075

56076

56077

56078

56079

56080

56081

56082

56083

56084

56085

56086

56087

56088

56089

56090

56091

56092

56093

56094

56095

56096

56097

56098

56099

56100

56101

56102

56103

56104

56105

56106

56107

56108

56109

56110

56111

56112

56113

56114

System Interfaces realpath()

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ENOMEM] Insufficient storage space is available.

EXAMPLES

Generating an Absolute Pathname

The following example generates an absolute pathname for the file identified by the symlinkpath
argument. The generated pathname is stored in the buffer pointed to by actualpath.

#include <stdlib.h>
...
char *symlinkpath = "/tmp/symlink/file";
char *actualpath;

actualpath = realpath(symlinkpath, NULL);
if (actualpath != NULL)
{

... use actualpath ...

free(actualpath);
}
else
{

... handle error ...
}

APPLICATION USAGE
For functions that allocate memory as if by malloc(), the application should release such memory
when it is no longer required by a call to free(). For realpath(), this is the return value.

RATIONALE
Since realpath() has no length argument, if {PATH_MAX} is not defined as a constant in
<limits.h>, applications have no way of determining how large a buffer they need to allocate for
it to be safe to pass to realpath(). A {PATH_MAX} value obtained from a prior pathconf() call is
out-of-date by the time realpath() is called. Hence the only reliable way to use realpath() when
{PATH_MAX} is not defined in <limits.h> is to pass a null pointer for resolved_name so that
realpath() will allocate a buffer of the necessary size.

FUTURE DIRECTIONS
None.

SEE ALSO
fpathconf(), free(), getcwd(), sysconf()

XBD <limits.h>, <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1757

56115

56116

56117

56118

56119

56120

56121

56122

56123

56124

56125

56126

56127

56128

56129

56130

56131

56132

56133

56134

56135

56136

56137

56138

56139

56140

56141

56142

56143

56144

56145

56146

56147

56148

56149

56150

56151

56152

56153

56154

56155

56156

realpath() System Interfaces

Issue 6
The restrict keyword is added to the realpath() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/51 is applied, adding new text to the
DESCRIPTION for the case when resolved_name is a null pointer, changing the [EINVAL] error
text, adding text to the RATIONALE, and adding text to FUTURE DIRECTIONS.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/110 is applied, updating the ERRORS
section to refer to the file_name argument, rather than a nonexistent path argument.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

This function is updated for passing a null pointer to realpath() for the resolved_name argument.

The APPLICATION USAGE section is updated to clarify that memory is allocated as if by
malloc().

1758 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

56157

56158

56159

56160

56161

56162

56163

56164

56165

56166

56167

56168

56169

56170

56171

System Interfaces recv()

NAME
recv — receive a message from a connected socket

SYNOPSIS
#include <sys/socket.h>

ssize_t recv(int socket, void *buffer, size_t length, int flags);

DESCRIPTION
The recv() function shall receive a message from a connection-mode or connectionless-mode
socket. It is normally used with connected sockets because it does not permit the application to
retrieve the source address of received data.

The recv() function takes the following arguments:

socket Specifies the socket file descriptor.

buffer Points to a buffer where the message should be stored.

length Specifies the length in bytes of the buffer pointed to by the buffer argument.

flags Specifies the type of message reception. Values of this argument are formed by
logically OR’ing zero or more of the following values:

MSG_PEEK Peeks at an incoming message. The data is treated as unread and
the next recv() or similar function shall still return this data.

MSG_OOB Requests out-of-band data. The significance and semantics of
out-of-band data are protocol-specific.

MSG_WAITALL On SOCK_STREAM sockets this requests that the function block
until the full amount of data can be returned. The function may
return the smaller amount of data if the socket is a message-
based socket, if a signal is caught, if the connection is terminated,
if MSG_PEEK was specified, or if an error is pending for the
socket.

The recv() function shall return the length of the message written to the buffer pointed to by the
buffer argument. For message-based sockets, such as SOCK_DGRAM and SOCK_SEQPACKET,
the entire message shall be read in a single operation. If a message is too long to fit in the
supplied buffer, and MSG_PEEK is not set in the flags argument, the excess bytes shall be
discarded. For stream-based sockets, such as SOCK_STREAM, message boundaries shall be
ignored. In this case, data shall be returned to the user as soon as it becomes available, and no
data shall be discarded.

If the MSG_WAITALL flag is not set, data shall be returned only up to the end of the first
message.

If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
descriptor, recv() shall block until a message arrives. If no messages are available at the socket
and O_NONBLOCK is set on the socket’s file descriptor, recv() shall fail and set errno to
[EAGAIN] or [EWOULDBLOCK].

RETURN VALUE
Upon successful completion, recv() shall return the length of the message in bytes. If no
messages are available to be received and the peer has performed an orderly shutdown, recv()
shall return 0. Otherwise, −1 shall be returned and errno set to indicate the error.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1759

56172

56173

56174

56175

56176

56177

56178

56179

56180

56181

56182

56183

56184

56185

56186

56187

56188

56189

56190

56191

56192

56193

56194

56195

56196

56197

56198

56199

56200

56201

56202

56203

56204

56205

56206

56207

56208

56209

56210

56211

56212

56213

recv() System Interfaces

ERRORS
The recv() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and no data is waiting
to be received; or MSG_OOB is set and no out-of-band data is available and
either the socket’s file descriptor is marked O_NONBLOCK or the socket does
not support blocking to await out-of-band data.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EINTR] The recv() function was interrupted by a signal that was caught, before any
data was available.

[EINVAL] The MSG_OOB flag is set and no out-of-band data is available.

[ENOTCONN] A receive is attempted on a connection-mode socket that is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The specified flags are not supported for this socket type or protocol.

[ETIMEDOUT] The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

The recv() function may fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

EXAMPLES
None.

APPLICATION USAGE
The recv() function is equivalent to recvfrom() with a zero address_len argument, and to read() if
no flags are used.

The select() and poll() functions can be used to determine when data is available to be received.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
poll(), pselect(), read(), recvmsg(), recvfrom(), send(), sendmsg(), sendto(), shutdown(), socket(),
write()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

1760 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

56214

56215

56216

56217

56218

56219

56220

56221

56222

56223

56224

56225

56226

56227

56228

56229

56230

56231

56232

56233

56234

56235

56236

56237

56238

56239

56240

56241

56242

56243

56244

56245

56246

56247

56248

56249

56250

System Interfaces recvfrom()

NAME
recvfrom — receive a message from a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t recvfrom(int socket, void *restrict buffer, size_t length,
int flags, struct sockaddr *restrict address,
socklen_t *restrict address_len);

DESCRIPTION
The recvfrom() function shall receive a message from a connection-mode or connectionless-mode
socket. It is normally used with connectionless-mode sockets because it permits the application
to retrieve the source address of received data.

The recvfrom() function takes the following arguments:

socket Specifies the socket file descriptor.

buffer Points to the buffer where the message should be stored.

length Specifies the length in bytes of the buffer pointed to by the buffer argument.

flags Specifies the type of message reception. Values of this argument are formed by
logically OR’ing zero or more of the following values:

MSG_PEEK Peeks at an incoming message. The data is treated as unread
and the next recvfrom() or similar function shall still return
this data.

MSG_OOB Requests out-of-band data. The significance and semantics
of out-of-band data are protocol-specific.

MSG_WAITALL On SOCK_STREAM sockets this requests that the function
block until the full amount of data can be returned. The
function may return the smaller amount of data if the socket
is a message-based socket, if a signal is caught, if the
connection is terminated, if MSG_PEEK was specified, or if
an error is pending for the socket.

address A null pointer, or points to a sockaddr structure in which the sending address
is to be stored. The length and format of the address depend on the address
family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

The recvfrom() function shall return the length of the message written to the buffer pointed to by
RS the buffer argument. For message-based sockets, such as SOCK_RAW, SOCK_DGRAM, and

SOCK_SEQPACKET, the entire message shall be read in a single operation. If a message is too
long to fit in the supplied buffer, and MSG_PEEK is not set in the flags argument, the excess
bytes shall be discarded. For stream-based sockets, such as SOCK_STREAM, message
boundaries shall be ignored. In this case, data shall be returned to the user as soon as it becomes
available, and no data shall be discarded.

If the MSG_WAITALL flag is not set, data shall be returned only up to the end of the first
message.

Not all protocols provide the source address for messages. If the address argument is not a null
pointer and the protocol provides the source address of messages, the source address of the

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1761

56251

56252

56253

56254

56255

56256

56257

56258

56259

56260

56261

56262

56263

56264

56265

56266

56267

56268

56269

56270

56271

56272

56273

56274

56275

56276

56277

56278

56279

56280

56281

56282

56283

56284

56285

56286

56287

56288

56289

56290

56291

56292

56293

56294

recvfrom() System Interfaces

received message shall be stored in the sockaddr structure pointed to by the address argument,
and the length of this address shall be stored in the object pointed to by the address_len
argument.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address shall be truncated.

If the address argument is not a null pointer and the protocol does not provide the source address
of messages, the value stored in the object pointed to by address is unspecified.

If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
descriptor, recvfrom() shall block until a message arrives. If no messages are available at the
socket and O_NONBLOCK is set on the socket’s file descriptor, recvfrom() shall fail and set errno
to [EAGAIN] or [EWOULDBLOCK].

RETURN VALUE
Upon successful completion, recvfrom() shall return the length of the message in bytes. If no
messages are available to be received and the peer has performed an orderly shutdown,
recvfrom() shall return 0. Otherwise, the function shall return −1 and set errno to indicate the
error.

ERRORS
The recvfrom() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and no data is waiting
to be received; or MSG_OOB is set and no out-of-band data is available and
either the socket’s file descriptor is marked O_NONBLOCK or the socket does
not support blocking to await out-of-band data.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EINTR] A signal interrupted recvfrom() before any data was available.

[EINVAL] The MSG_OOB flag is set and no out-of-band data is available.

[ENOTCONN] A receive is attempted on a connection-mode socket that is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The specified flags are not supported for this socket type.

[ETIMEDOUT] The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

The recvfrom() function may fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

1762 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

56295

56296

56297

56298

56299

56300

56301

56302

56303

56304

56305

56306

56307

56308

56309

56310

56311

56312

56313

56314

56315

56316

56317

56318

56319

56320

56321

56322

56323

56324

56325

56326

56327

56328

56329

56330

System Interfaces recvfrom()

EXAMPLES
None.

APPLICATION USAGE
The select() and poll() functions can be used to determine when data is available to be received.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
poll(), pselect(), read(), recv(), recvmsg(), send(), sendmsg(), sendto(), shutdown(), socket(), write()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1763

56331

56332

56333

56334

56335

56336

56337

56338

56339

56340

56341

56342

56343

recvmsg() System Interfaces

NAME
recvmsg — receive a message from a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t recvmsg(int socket, struct msghdr *message, int flags);

DESCRIPTION
The recvmsg() function shall receive a message from a connection-mode or connectionless-mode
socket. It is normally used with connectionless-mode sockets because it permits the application
to retrieve the source address of received data.

The recvmsg() function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a msghdr structure, containing both the buffer to store the source
address and the buffers for the incoming message. The length and format of
the address depend on the address family of the socket. The msg_flags member
is ignored on input, but may contain meaningful values on output.

flags Specifies the type of message reception. Values of this argument are formed by
logically OR’ing zero or more of the following values:

MSG_OOB Requests out-of-band data. The significance and semantics
of out-of-band data are protocol-specific.

MSG_PEEK Peeks at the incoming message.

MSG_WAITALL On SOCK_STREAM sockets this requests that the function
block until the full amount of data can be returned. The
function may return the smaller amount of data if the socket
is a message-based socket, if a signal is caught, if the
connection is terminated, if MSG_PEEK was specified, or if
an error is pending for the socket.

The recvmsg() function shall receive messages from unconnected or connected sockets and shall
return the length of the message.

The recvmsg() function shall return the total length of the message. For message-based sockets,
such as SOCK_DGRAM and SOCK_SEQPACKET, the entire message shall be read in a single
operation. If a message is too long to fit in the supplied buffers, and MSG_PEEK is not set in the
flags argument, the excess bytes shall be discarded, and MSG_TRUNC shall be set in the
msg_flags member of the msghdr structure. For stream-based sockets, such as SOCK_STREAM,
message boundaries shall be ignored. In this case, data shall be returned to the user as soon as it
becomes available, and no data shall be discarded.

If the MSG_WAITALL flag is not set, data shall be returned only up to the end of the first
message.

If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
descriptor, recvmsg() shall block until a message arrives. If no messages are available at the
socket and O_NONBLOCK is set on the socket’s file descriptor, the recvmsg() function shall fail
and set errno to [EAGAIN] or [EWOULDBLOCK].

In the msghdr structure, the msg_name and msg_namelen members specify the source address if
the socket is unconnected. If the socket is connected, the msg_name and msg_namelen members
shall be ignored. The msg_name member may be a null pointer if no names are desired or
required. The msg_iov and msg_iovlen fields are used to specify where the received data shall be

1764 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

56344

56345

56346

56347

56348

56349

56350

56351

56352

56353

56354

56355

56356

56357

56358

56359

56360

56361

56362

56363

56364

56365

56366

56367

56368

56369

56370

56371

56372

56373

56374

56375

56376

56377

56378

56379

56380

56381

56382

56383

56384

56385

56386

56387

56388

System Interfaces recvmsg()

stored. msg_iov points to an array of iovec structures; msg_iovlen shall be set to the dimension of
this array. In each iovec structure, the iov_base field specifies a storage area and the iov_len field
gives its size in bytes. Each storage area indicated by msg_iov is filled with received data in turn
until all of the received data is stored or all of the areas have been filled.

Upon successful completion, the msg_flags member of the message header shall be the bitwise-
inclusive OR of all of the following flags that indicate conditions detected for the received
message:

MSG_EOR End-of-record was received (if supported by the protocol).

MSG_OOB Out-of-band data was received.

MSG_TRUNC Normal data was truncated.

MSG_CTRUNC Control data was truncated.

RETURN VALUE
Upon successful completion, recvmsg() shall return the length of the message in bytes. If no
messages are available to be received and the peer has performed an orderly shutdown,
recvmsg() shall return 0. Otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The recvmsg() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and no data is waiting
to be received; or MSG_OOB is set and no out-of-band data is available and
either the socket’s file descriptor is marked O_NONBLOCK or the socket does
not support blocking to await out-of-band data.

[EBADF] The socket argument is not a valid open file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EINTR] This function was interrupted by a signal before any data was available.

[EINVAL] The sum of the iov_len values overflows a ssize_t, or the MSG_OOB flag is set
and no out-of-band data is available.

[EMSGSIZE] The msg_iovlen member of the msghdr structure pointed to by message is less
than or equal to 0, or is greater than {IOV_MAX}.

[ENOTCONN] A receive is attempted on a connection-mode socket that is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The specified flags are not supported for this socket type.

[ETIMEDOUT] The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

The recvmsg() function may fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1765

56389

56390

56391

56392

56393

56394

56395

56396

56397

56398

56399

56400

56401

56402

56403

56404

56405

56406

56407

56408

56409

56410

56411

56412

56413

56414

56415

56416

56417

56418

56419

56420

56421

56422

56423

56424

56425

56426

recvmsg() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The select() and poll() functions can be used to determine when data is available to be received.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
poll(), pselect(), recv(), recvfrom(), send(), sendmsg(), sendto(), shutdown(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

1766 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

56427

56428

56429

56430

56431

56432

56433

56434

56435

56436

56437

56438

56439

System Interfaces regcomp()

NAME
regcomp, regerror, regexec, regfree — regular expression matching

SYNOPSIS
#include <regex.h>

int regcomp(regex_t *restrict preg, const char *restrict pattern,
int cflags);

size_t regerror(int errcode, const regex_t *restrict preg,
char *restrict errbuf, size_t errbuf_size);

int regexec(const regex_t *restrict preg, const char *restrict string,
size_t nmatch, regmatch_t pmatch[restrict], int eflags);

void regfree(regex_t *preg);

DESCRIPTION
These functions interpret basic and extended regular expressions as described in XBD Chapter 9
(on page 181).

The regex_t structure is defined in <regex.h> and contains at least the following member:

Member Type Member Name Description

size_t re_nsub Number of parenthesized
subexpressions.

The regmatch_t structure is defined in <regex.h> and contains at least the following members:

Member Type Member Name Description

regoff_t rm_so Byte offset from start of string to start of
substring.

regoff_t rm_eo Byte offset from start of string of the first
character after the end of substring.

The regcomp() function shall compile the regular expression contained in the string pointed to by
the pattern argument and place the results in the structure pointed to by preg. The cflags
argument is the bitwise-inclusive OR of zero or more of the following flags, which are defined in
the <regex.h> header:

REG_EXTENDED Use Extended Regular Expressions.

REG_ICASE Ignore case in match (see XBD Chapter 9, on page 181).

REG_NOSUB Report only success/fail in regexec().

REG_NEWLINE Change the handling of <newline> characters, as described in the text.

The default regular expression type for pattern is a Basic Regular Expression. The application can
specify Extended Regular Expressions using the REG_EXTENDED cflags flag.

If the REG_NOSUB flag was not set in cflags, then regcomp() shall set re_nsub to the number of
parenthesized subexpressions (delimited by "\(\)" in basic regular expressions or "()" in
extended regular expressions) found in pattern.

The regexec() function compares the null-terminated string specified by string with the compiled
regular expression preg initialized by a previous call to regcomp(). If it finds a match, regexec()
shall return 0; otherwise, it shall return non-zero indicating either no match or an error. The
eflags argument is the bitwise-inclusive OR of zero or more of the following flags, which are
defined in the <regex.h> header:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1767

56440

56441

56442

56443

56444

56445

56446

56447

56448

56449

56450

56451

56452

56453

56454

56455

56456

56457

56458

56459

56460

56461

56462

56463

56464

56465

56466

56467

56468

56469

56470

56471

56472

56473

56474

56475

56476

56477

56478

56479

56480

56481

regcomp() System Interfaces

REG_NOTBOL The first character of the string pointed to by string is not the beginning of
the line. Therefore, the <circumflex> character (’ˆ’), when taken as a
special character, shall not match the beginning of string.

REG_NOTEOL The last character of the string pointed to by string is not the end of the
line. Therefore, the <dollar-sign> (’$’), when taken as a special character,
shall not match the end of string.

If nmatch is 0 or REG_NOSUB was set in the cflags argument to regcomp(), then regexec() shall
ignore the pmatch argument. Otherwise, the application shall ensure that the pmatch argument
points to an array with at least nmatch elements, and regexec() shall fill in the elements of that
array with offsets of the substrings of string that correspond to the parenthesized subexpressions
of pattern: pmatch[i].rm_so shall be the byte offset of the beginning and pmatch[i].rm_eo shall be
one greater than the byte offset of the end of substring i. (Subexpression i begins at the ith
matched open parenthesis, counting from 1.) Offsets in pmatch[0] identify the substring that
corresponds to the entire regular expression. Unused elements of pmatch up to pmatch[nmatch−1]
shall be filled with −1. If there are more than nmatch subexpressions in pattern (pattern itself
counts as a subexpression), then regexec() shall still do the match, but shall record only the first
nmatch substrings.

When matching a basic or extended regular expression, any given parenthesized subexpression
of pattern might participate in the match of several different substrings of string, or it might not
match any substring even though the pattern as a whole did match. The following rules shall be
used to determine which substrings to report in pmatch when matching regular expressions:

1. If subexpression i in a regular expression is not contained within another subexpression,
and it participated in the match several times, then the byte offsets in pmatch[i] shall
delimit the last such match.

2. If subexpression i is not contained within another subexpression, and it did not
participate in an otherwise successful match, the byte offsets in pmatch[i] shall be −1. A
subexpression does not participate in the match when:

’*’ or "\{\}" appears immediately after the subexpression in a basic regular
expression, or ’*’, ’?’, or "{ }" appears immediately after the subexpression in
an extended regular expression, and the subexpression did not match (matched 0
times)

or:

’|’ is used in an extended regular expression to select this subexpression or
another, and the other subexpression matched.

3. If subexpression i is contained within another subexpression j, and i is not contained
within any other subexpression that is contained within j, and a match of subexpression j
is reported in pmatch[j], then the match or non-match of subexpression i reported in
pmatch[i] shall be as described in 1. and 2. above, but within the substring reported in
pmatch[j] rather than the whole string. The offsets in pmatch[i] are still relative to the start
of string.

4. If subexpression i is contained in subexpression j, and the byte offsets in pmatch[j] are −1,
then the pointers in pmatch[i] shall also be −1.

5. If subexpression i matched a zero-length string, then both byte offsets in pmatch[i] shall be
the byte offset of the character or null terminator immediately following the zero-length
string.

1768 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

56482

56483

56484

56485

56486

56487

56488

56489

56490

56491

56492

56493

56494

56495

56496

56497

56498

56499

56500

56501

56502

56503

56504

56505

56506

56507

56508

56509

56510

56511

56512

56513

56514

56515

56516

56517

56518

56519

56520

56521

56522

56523

56524

56525

56526

System Interfaces regcomp()

If, when regexec() is called, the locale is different from when the regular expression was
compiled, the result is undefined.

If REG_NEWLINE is not set in cflags, then a <newline> in pattern or string shall be treated as an
ordinary character. If REG_NEWLINE is set, then <newline> shall be treated as an ordinary
character except as follows:

1. A <newline> in string shall not be matched by a <period> outside a bracket expression or
by any form of a non-matching list (see XBD Chapter 9, on page 181).

2. A <circumflex> (’ˆ’) in pattern, when used to specify expression anchoring (see XBD
Section 9.3.8, on page 187), shall match the zero-length string immediately after a
<newline> in string, regardless of the setting of REG_NOTBOL.

3. A <dollar-sign> (’$’) in pattern, when used to specify expression anchoring, shall match
the zero-length string immediately before a <newline> in string, regardless of the setting
of REG_NOTEOL.

The regfree() function frees any memory allocated by regcomp() associated with preg.

The following constants are defined as error return values:

REG_BADBR Content of "\{\}" invalid: not a number, number too large, more than
two numbers, first larger than second.

REG_BADPAT Invalid regular expression.

REG_BADRPT ’?’, ’*’, or ’+’ not preceded by valid regular expression.

REG_EBRACE "\{\}" imbalance.

REG_EBRACK "[]" imbalance.

REG_ECOLLATE Invalid collating element referenced.

REG_ECTYPE Invalid character class type referenced.

REG_EESCAPE Trailing <backslash> character in pattern.

REG_EPAREN "\(\)" or "()" imbalance.

REG_ERANGE Invalid endpoint in range expression.

REG_ESPACE Out of memory.

REG_ESUBREG Number in "\digit" invalid or in error.

REG_NOMATCH regexec() failed to match.

If more than one error occurs in processing a function call, any one of the possible constants may
be returned, as the order of detection is unspecified.

The regerror() function provides a mapping from error codes returned by regcomp() and
regexec() to unspecified printable strings. It generates a string corresponding to the value of the
errcode argument, which the application shall ensure is the last non-zero value returned by
regcomp() or regexec() with the given value of preg. If errcode is not such a value, the content of
the generated string is unspecified.

If preg is a null pointer, but errcode is a value returned by a previous call to regexec() or regcomp(),
the regerror() still generates an error string corresponding to the value of errcode, but it might not
be as detailed under some implementations.

If the errbuf_size argument is not 0, regerror() shall place the generated string into the buffer of

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1769

56527

56528

56529

56530

56531

56532

56533

56534

56535

56536

56537

56538

56539

56540

56541

56542

56543

56544

56545

56546

56547

56548

56549

56550

56551

56552

56553

56554

56555

56556

56557

56558

56559

56560

56561

56562

56563

56564

56565

56566

regcomp() System Interfaces

size errbuf_size bytes pointed to by errbuf. If the string (including the terminating null) cannot fit
in the buffer, regerror() shall truncate the string and null-terminate the result.

If errbuf_size is 0, regerror() shall ignore the errbuf argument, and return the size of the buffer
needed to hold the generated string.

If the preg argument to regexec() or regfree() is not a compiled regular expression returned by
regcomp(), the result is undefined. A preg is no longer treated as a compiled regular expression
after it is given to regfree().

RETURN VALUE
Upon successful completion, the regcomp() function shall return 0. Otherwise, it shall return an
integer value indicating an error as described in <regex.h>, and the content of preg is undefined.
If a code is returned, the interpretation shall be as given in <regex.h>.

If regcomp() detects an invalid RE, it may return REG_BADPAT, or it may return one of the error
codes that more precisely describes the error.

Upon successful completion, the regexec() function shall return 0. Otherwise, it shall return
REG_NOMATCH to indicate no match.

Upon successful completion, the regerror() function shall return the number of bytes needed to
hold the entire generated string, including the null termination. If the return value is greater
than errbuf_size, the string returned in the buffer pointed to by errbuf has been truncated.

The regfree() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES

#include <regex.h>

/*
* Match string against the extended regular expression in
* pattern, treating errors as no match.
*
* Return 1 for match, 0 for no match.
*/

int
match(const char *string, char *pattern)
{

int status;
regex_t re;

if (regcomp(&re, pattern, REG_EXTENDED|REG_NOSUB) != 0) {
return(0); /* Report error. */

}
status = regexec(&re, string, (size_t) 0, NULL, 0);
regfree(&re);
if (status != 0) {

return(0); /* Report error. */
}
return(1);

}

The following demonstrates how the REG_NOTBOL flag could be used with regexec() to find all

1770 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

56567

56568

56569

56570

56571

56572

56573

56574

56575

56576

56577

56578

56579

56580

56581

56582

56583

56584

56585

56586

56587

56588

56589

56590

56591

56592

56593

56594

56595

56596

56597

56598

56599

56600

56601

56602

56603

56604

56605

56606

56607

56608

56609

56610

56611

System Interfaces regcomp()

substrings in a line that match a pattern supplied by a user. (For simplicity of the example, very
little error checking is done.)

(void) regcomp (&re, pattern, 0);
/* This call to regexec() finds the first match on the line. */
error = regexec (&re, &buffer[0], 1, &pm, 0);
while (error == 0) { /* While matches found. */

/* Substring found between pm.rm_so and pm.rm_eo. */
/* This call to regexec() finds the next match. */
error = regexec (&re, buffer + pm.rm_eo, 1, &pm, REG_NOTBOL);

}

APPLICATION USAGE
An application could use:

regerror(code,preg,(char *)NULL,(size_t)0)

to find out how big a buffer is needed for the generated string, malloc() a buffer to hold the
string, and then call regerror() again to get the string. Alternatively, it could allocate a fixed,
static buffer that is big enough to hold most strings, and then use malloc() to allocate a larger
buffer if it finds that this is too small.

To match a pattern as described in XCU Section 2.13 (on page 2332), use the fnmatch() function.

RATIONALE
The regexec() function must fill in all nmatch elements of pmatch, where nmatch and pmatch are
supplied by the application, even if some elements of pmatch do not correspond to
subexpressions in pattern. The application developer should note that there is probably no
reason for using a value of nmatch that is larger than preg−>re_nsub+1.

The REG_NEWLINE flag supports a use of RE matching that is needed in some applications like
text editors. In such applications, the user supplies an RE asking the application to find a line
that matches the given expression. An anchor in such an RE anchors at the beginning or end of
any line. Such an application can pass a sequence of <newline>-separated lines to regexec() as a
single long string and specify REG_NEWLINE to regcomp() to get the desired behavior. The
application must ensure that there are no explicit <newline> characters in pattern if it wants to
ensure that any match occurs entirely within a single line.

The REG_NEWLINE flag affects the behavior of regexec(), but it is in the cflags parameter to
regcomp() to allow flexibility of implementation. Some implementations will want to generate
the same compiled RE in regcomp() regardless of the setting of REG_NEWLINE and have
regexec() handle anchors differently based on the setting of the flag. Other implementations will
generate different compiled REs based on the REG_NEWLINE.

The REG_ICASE flag supports the operations taken by the grep −i option and the historical
implementations of ex and vi. Including this flag will make it easier for application code to be
written that does the same thing as these utilities.

The substrings reported in pmatch[] are defined using offsets from the start of the string rather
than pointers. This allows type-safe access to both constant and non-constant strings.

The type regoff_t is used for the elements of pmatch[] to ensure that the application can
represent large arrays in memory (important for an application conforming to the Shell and
Utilities volume of POSIX.1-2008).

The 1992 edition of this standard required regoff_t to be at least as wide as off_t, to facilitate
future extensions in which the string to be searched is taken from a file. However, these future
extensions have not appeared. The requirement rules out popular implementations with 32-bit

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1771

56612

56613

56614

56615

56616

56617

56618

56619

56620

56621

56622

56623

56624

56625

56626

56627

56628

56629

56630

56631

56632

56633

56634

56635

56636

56637

56638

56639

56640

56641

56642

56643

56644

56645

56646

56647

56648

56649

56650

56651

56652

56653

56654

56655

56656

56657

regcomp() System Interfaces

regoff_t and 64-bit off_t, so it has been removed.

The standard developers rejected the inclusion of a regsub() function that would be used to do
substitutions for a matched RE. While such a routine would be useful to some applications, its
utility would be much more limited than the matching function described here. Both RE parsing
and substitution are possible to implement without support other than that required by the
ISO C standard, but matching is much more complex than substituting. The only difficult part of
substitution, given the information supplied by regexec(), is finding the next character in a string
when there can be multi-byte characters. That is a much larger issue, and one that needs a more
general solution.

The errno variable has not been used for error returns to avoid filling the errno name space for
this feature.

The interface is defined so that the matched substrings rm_sp and rm_ep are in a separate
regmatch_t structure instead of in regex_t. This allows a single compiled RE to be used
simultaneously in several contexts; in main() and a signal handler, perhaps, or in multiple
threads of lightweight processes. (The preg argument to regexec() is declared with type const, so
the implementation is not permitted to use the structure to store intermediate results.) It also
allows an application to request an arbitrary number of substrings from an RE. The number of
subexpressions in the RE is reported in re_nsub in preg. With this change to regexec(),
consideration was given to dropping the REG_NOSUB flag since the user can now specify this
with a zero nmatch argument to regexec(). However, keeping REG_NOSUB allows an
implementation to use a different (perhaps more efficient) algorithm if it knows in regcomp() that
no subexpressions need be reported. The implementation is only required to fill in pmatch if
nmatch is not zero and if REG_NOSUB is not specified. Note that the size_t type, as defined in
the ISO C standard, is unsigned, so the description of regexec() does not need to address
negative values of nmatch.

REG_NOTBOL was added to allow an application to do repeated searches for the same pattern
in a line. If the pattern contains a <circumflex> character that should match the beginning of a
line, then the pattern should only match when matched against the beginning of the line.
Without the REG_NOTBOL flag, the application could rewrite the expression for subsequent
matches, but in the general case this would require parsing the expression. The need for
REG_NOTEOL is not as clear; it was added for symmetry.

The addition of the regerror() function addresses the historical need for conforming application
programs to have access to error information more than ‘‘Function failed to compile/match your
RE for unknown reasons’’.

This interface provides for two different methods of dealing with error conditions. The specific
error codes (REG_EBRACE, for example), defined in <regex.h>, allow an application to recover
from an error if it is so able. Many applications, especially those that use patterns supplied by a
user, will not try to deal with specific error cases, but will just use regerror() to obtain a human-
readable error message to present to the user.

The regerror() function uses a scheme similar to confstr() to deal with the problem of allocating
memory to hold the generated string. The scheme used by strerror() in the ISO C standard was
considered unacceptable since it creates difficulties for multi-threaded applications.

The preg argument is provided to regerror() to allow an implementation to generate a more
descriptive message than would be possible with errcode alone. An implementation might, for
example, save the character offset of the offending character of the pattern in a field of preg, and
then include that in the generated message string. The implementation may also ignore preg.

A REG_FILENAME flag was considered, but omitted. This flag caused regexec() to match

1772 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

56658

56659

56660

56661

56662

56663

56664

56665

56666

56667

56668

56669

56670

56671

56672

56673

56674

56675

56676

56677

56678

56679

56680

56681

56682

56683

56684

56685

56686

56687

56688

56689

56690

56691

56692

56693

56694

56695

56696

56697

56698

56699

56700

56701

56702

56703

56704

System Interfaces regcomp()

patterns as described in XCU Section 2.13 (on page 2332) instead of REs. This service is now
provided by the fnmatch() function.

Notice that there is a difference in philosophy between the ISO POSIX-2: 1993 standard and
POSIX.1-2008 in how to handle a ‘‘bad’’ regular expression. The ISO POSIX-2: 1993 standard says
that many bad constructs ‘‘produce undefined results’’, or that ‘‘the interpretation is undefined’’.
POSIX.1-2008, however, says that the interpretation of such REs is unspecified. The term
‘‘undefined’’ means that the action by the application is an error, of similar severity to passing a
bad pointer to a function.

The regcomp() and regexec() functions are required to accept any null-terminated string as the
pattern argument. If the meaning of the string is ‘‘undefined’’, the behavior of the function is
‘‘unspecified’’. POSIX.1-2008 does not specify how the functions will interpret the pattern; they
might return error codes, or they might do pattern matching in some completely unexpected
way, but they should not do something like abort the process.

FUTURE DIRECTIONS
None.

SEE ALSO
fnmatch(), glob()

XBD Chapter 9 (on page 181), <regex.h>, <sys/types.h>

XCU Section 2.13 (on page 2332)

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 5
Moved from POSIX2 C-language Binding to BASE.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The REG_ENOSYS constant is removed.

The restrict keyword is added to the regcomp(), regerror(), and regexec() prototypes for
alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #134 is applied, clarifying that if more than one error
occurs in processing a function call, any one of the possible constants may be returned.

SD5-XBD-ERN-60 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1773

56705

56706

56707

56708

56709

56710

56711

56712

56713

56714

56715

56716

56717

56718

56719

56720

56721

56722

56723

56724

56725

56726

56727

56728

56729

56730

56731

56732

56733

56734

56735

56736

56737

56738

56739

56740

56741

56742

remainder() System Interfaces

NAME
remainder, remainderf, remainderl — remainder function

SYNOPSIS
#include <math.h>

double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall return the floating-point remainder r=x−ny when y is non-zero. The value
n is the integral value nearest the exact value x/y. When | n−x/y |=½, the value n is chosen to
be even.

The behavior of remainder() shall be independent of the rounding mode.

RETURN VALUE
Upon successful completion, these functions shall return the floating-point remainder r=x−ny
when y is non-zero.

On systems that do not support the IEC 60559 Floating-Point option, if y is zero, it is
implementation-defined whether a domain error occurs or zero is returned.

MX If x or y is NaN, a NaN shall be returned.

If x is infinite or y is 0 and the other is non-NaN, a domain error shall occur, and either a NaN (if
supported), or an implementation-defined value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is ±Inf, or the y argument is ±0 and the other argument is non-
NaN.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The y argument is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

1774 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

56743

56744

56745

56746

56747

56748

56749

56750

56751

56752

56753

56754

56755

56756

56757

56758

56759

56760

56761

56762

56763

56764

56765

56766

56767

56768

56769

56770

56771

56772

56773

56774

56775

56776

56777

56778

56779

System Interfaces remainder()

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abs(), div(), feclearexcept(), fetestexcept(), ldiv()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The remainder() function is no longer marked as an extension.

The remainderf() and remainderl() functions are added for alignment with the ISO/IEC 9899: 1999
standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #55 (SD5-XSH-ERN-82) is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1775

56780

56781

56782

56783

56784

56785

56786

56787

56788

56789

56790

56791

56792

56793

56794

56795

56796

56797

56798

56799

56800

56801

56802

56803

56804

56805

remove() System Interfaces

NAME
remove — remove a file

SYNOPSIS
#include <stdio.h>

int remove(const char *path);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The remove() function shall cause the file named by the pathname pointed to by path to be no
longer accessible by that name. A subsequent attempt to open that file using that name shall fail,
unless it is created anew.

CX If path does not name a directory, remove(path) shall be equivalent to unlink(path).

If path names a directory, remove(path) shall be equivalent to rmdir(path).

RETURN VALUE
CX Refer to rmdir() or unlink().

ERRORS
CX Refer to rmdir() or unlink().

EXAMPLES

Removing Access to a File

The following example shows how to remove access to a file named /home/cnd/old_mods.

#include <stdio.h>

int status;
...
status = remove("/home/cnd/old_mods");

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
rmdir(), unlink()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard and the ISO C
standard.

Issue 6
Extensions beyond the ISO C standard are marked.

1776 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

56806

56807

56808

56809

56810

56811

56812

56813

56814

56815

56816

56817

56818

56819

56820

56821

56822

56823

56824

56825

56826

56827

56828

56829

56830

56831

56832

56833

56834

56835

56836

56837

56838

56839

56840

56841

56842

56843

56844

System Interfaces remove()

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION, RETURN VALUE, and ERRORS sections are updated so that if path is
not a directory, remove() is equivalent to unlink(), and if it is a directory, it is equivalent to
rmdir().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1777

56845

56846

56847

56848

56849

remque() System Interfaces

NAME
remque — remove an element from a queue

SYNOPSIS
XSI #include <search.h>

void remque(void *element);

DESCRIPTION
Refer to insque().

1778 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

56850

56851

56852

56853

56854

56855

56856

System Interfaces remquo()

NAME
remquo, remquof, remquol — remainder functions

SYNOPSIS
#include <math.h>

double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y, int *quo);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The remquo(), remquof(), and remquol() functions shall compute the same remainder as the
remainder(), remainderf(), and remainderl() functions, respectively. In the object pointed to by quo,
they store a value whose sign is the sign of x/y and whose magnitude is congruent modulo 2n to
the magnitude of the integral quotient of x/y, where n is an implementation-defined integer
greater than or equal to 3. If y is zero, the value stored in the object pointed to by quo is
unspecified.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
These functions shall return x REM y.

On systems that do not support the IEC 60559 Floating-Point option, if y is zero, it is
implementation-defined whether a domain error occurs or zero is returned.

MX If x or y is NaN, a NaN shall be returned.

If x is ±Inf or y is zero and the other argument is non-NaN, a domain error shall occur, and either
a NaN (if supported), or an implementation-defined value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is ±Inf, or the y argument is ±0 and the other argument is non-
NaN.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

Domain Error The y argument is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1779

56857

56858

56859

56860

56861

56862

56863

56864

56865

56866

56867

56868

56869

56870

56871

56872

56873

56874

56875

56876

56877

56878

56879

56880

56881

56882

56883

56884

56885

56886

56887

56888

56889

56890

56891

56892

56893

56894

56895

56896

56897

56898

remquo() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions are intended for implementing argument reductions which can exploit a few
low-order bits of the quotient. Note that x may be so large in magnitude relative to y that an
exact representation of the quotient is not practical.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), remainder()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #56 (SD5-XSH-ERN-83) is applied.

1780 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

56899

56900

56901

56902

56903

56904

56905

56906

56907

56908

56909

56910

56911

56912

56913

56914

56915

56916

System Interfaces rename()

NAME
rename, renameat — rename file relative to directory file descriptor

SYNOPSIS
#include <stdio.h>

int rename(const char *old, const char *new);
CX int renameat(int oldfd, const char *old, int newfd,

const char *new);

DESCRIPTION
CX For rename(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

The rename() function shall change the name of a file. The old argument points to the pathname
CX of the file to be renamed. The new argument points to the new pathname of the file. If the new

argument does not resolve to an existing directory entry for a file of type directory and the new
argument contains at least one non-<slash> character and ends with one or more trailing
<slash> characters after all symbolic links have been processed, rename() shall fail.

If either the old or new argument names a symbolic link, rename() shall operate on the symbolic
link itself, and shall not resolve the last component of the argument. If the old argument and the
new argument resolve to either the same existing directory entry or different directory entries for
the same existing file, rename() shall return successfully and perform no other action.

If the old argument points to the pathname of a file that is not a directory, the new argument shall
not point to the pathname of a directory. If the link named by the new argument exists, it shall be
removed and old renamed to new. In this case, a link named new shall remain visible to other
processes throughout the renaming operation and refer either to the file referred to by new or old
before the operation began. Write access permission is required for both the directory containing
old and the directory containing new.

If the old argument points to the pathname of a directory, the new argument shall not point to the
pathname of a file that is not a directory. If the directory named by the new argument exists, it
shall be removed and old renamed to new. In this case, a link named new shall exist throughout
the renaming operation and shall refer either to the directory referred to by new or old before the
operation began. If new names an existing directory, it shall be required to be an empty directory.

If either pathname argument refers to a path whose final component is either dot or dot-dot,
rename() shall fail.

If the old argument points to a pathname of a symbolic link, the symbolic link shall be renamed.
If the new argument points to a pathname of a symbolic link, the symbolic link shall be removed.

The old pathname shall not name an ancestor directory of the new pathname. Write access
permission is required for the directory containing old and the directory containing new. If the
old argument points to the pathname of a directory, write access permission may be required for
the directory named by old, and, if it exists, the directory named by new.

If the link named by the new argument exists and the file’s link count becomes 0 when it is
removed and no process has the file open, the space occupied by the file shall be freed and the
file shall no longer be accessible. If one or more processes have the file open when the last link is
removed, the link shall be removed before rename() returns, but the removal of the file contents
shall be postponed until all references to the file are closed.

Upon successful completion, rename() shall mark for update the last data modification and last

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1781

56917

56918

56919

56920

56921

56922

56923

56924

56925

56926

56927

56928

56929

56930

56931

56932

56933

56934

56935

56936

56937

56938

56939

56940

56941

56942

56943

56944

56945

56946

56947

56948

56949

56950

56951

56952

56953

56954

56955

56956

56957

56958

56959

56960

56961

rename() System Interfaces

file status change timestamps of the parent directory of each file.

If the rename() function fails for any reason other than [EIO], any file named by new shall be
unaffected.

The renameat() function shall be equivalent to the rename() function except in the case where
either old or new specifies a relative path. If old is a relative path, the file to be renamed is located
relative to the directory associated with the file descriptor oldfd instead of the current working
directory. If new is a relative path, the same happens only relative to the directory associated
with newfd. If the file descriptor was opened without O_SEARCH, the function shall check
whether directory searches are permitted using the current permissions of the directory
underlying the file descriptor. If the file descriptor was opened with O_SEARCH, the function
shall not perform the check.

If renameat() is passed the special value AT_FDCWD in the oldfd or newfd parameter, the current
working directory shall be used in the determination of the file for the respective path parameter.

RETURN VALUE
CX Upon successful completion, the rename() function shall return 0. Otherwise, it shall return −1,

errno shall be set to indicate the error, and neither the file named by old nor the file named by
new shall be changed or created.

CX Upon successful completion, the renameat() function shall return 0. Otherwise, it shall return −1
and set errno to indicate the error.

ERRORS
CX The rename() and renameat() functions shall fail if:

CX [EACCES] A component of either path prefix denies search permission; or one of the
directories containing old or new denies write permissions; or, write
permission is required and is denied for a directory pointed to by the old or
new arguments.

CX [EBUSY] The directory named by old or new is currently in use by the system or another
process, and the implementation considers this an error.

CX [EEXIST] or [ENOTEMPTY]
The link named by new is a directory that is not an empty directory.

CX [EINVAL] The old pathname names an ancestor directory of the new pathname, or either
pathname argument contains a final component that is dot or dot-dot.

CX [EIO] A physical I/O error has occurred.

CX [EISDIR] The new argument points to a directory and the old argument points to a file
that is not a directory.

CX [ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

CX [EMLINK] The file named by old is a directory, and the link count of the parent directory
of new would exceed {LINK_MAX}.

CX [ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

CX [ENOENT] The link named by old does not name an existing file, a component of the path
prefix of new does not exist, or either old or new points to an empty string.

1782 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

56962

56963

56964

56965

56966

56967

56968

56969

56970

56971

56972

56973

56974

56975

56976

56977

56978

56979

56980

56981

56982

56983

56984

56985

56986

56987

56988

56989

56990

56991

56992

56993

56994

56995

56996

56997

56998

56999

57000

57001

57002

57003

System Interfaces rename()

CX [ENOSPC] The directory that would contain new cannot be extended.

CX [ENOTDIR] A component of either path prefix is not a directory; or the old argument
names a directory and the new argument names a non-directory file; or the old
argument contains at least one non-<slash> character and ends with one or
more trailing <slash> characters and the last pathname component names an
existing file that is neither a directory nor a symbolic link to a directory; or the
new argument names a nonexistant file, contains at least one non-<slash>
character, and ends with one or more trailing <slash> characters.

XSI [EPERM] or [EACCES]
The S_ISVTX flag is set on the directory containing the file referred to by old
and the process does not satisfy the criteria specified in XBD Section 4.2 (on
page 107) with respect to old; or new refers to an existing file, the S_ISVTX flag
is set on the directory containing this file, and the process does not satisfy the
criteria specified in XBD Section 4.2 with respect to this file.

CX [EROFS] The requested operation requires writing in a directory on a read-only file
system.

CX [EXDEV] The links named by new and old are on different file systems and the
implementation does not support links between file systems.

CX In addition, the renameat() function shall fail if:

[EACCES] oldfd or newfd was not opened with O_SEARCH and the permissions of the
directory underlying oldfd or newfd respectively do not permit directory
searches.

[EBADF] The old argument does not specify an absolute path and the oldfd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching,
or the new argument does not specify an absolute path and the newfd
argument is neither AT_FDCWD nor a valid file descriptor open for reading
or searching.

CX The rename() and renameat() functions may fail if:

OB XSR [EBUSY] The file named by the old or new arguments is a named STREAM.

CX [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

CX [ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

CX [ETXTBSY] The file to be renamed is a pure procedure (shared text) file that is being
executed.

CX The renameat() function may fail if:

[ENOTDIR] The old argument is not an absolute path and oldfd is neither AT_FDCWD nor
a file descriptor associated with a directory, or the new argument is not an
absolute path and newfd is neither AT_FDCWD nor a file descriptor associated
with a directory.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1783

57004

57005

57006

57007

57008

57009

57010

57011

57012

57013

57014

57015

57016

57017

57018

57019

57020

57021

57022

57023

57024

57025

57026

57027

57028

57029

57030

57031

57032

57033

57034

57035

57036

57037

57038

57039

57040

57041

57042

57043

57044

57045

rename() System Interfaces

EXAMPLES

Renaming a File

The following example shows how to rename a file named /home/cnd/mod1 to
/home/cnd/mod2.

#include <stdio.h>

int status;
...
status = rename("/home/cnd/mod1", "/home/cnd/mod2");

APPLICATION USAGE
Some implementations mark for update the last file status change timestamp of renamed files
and some do not. Applications which make use of the last file status change timestamp may
behave differently with respect to renamed files unless they are designed to allow for either
behavior.

RATIONALE
This rename() function is equivalent for regular files to that defined by the ISO C standard. Its
inclusion here expands that definition to include actions on directories and specifies behavior
when the new parameter names a file that already exists. That specification requires that the
action of the function be atomic.

One of the reasons for introducing this function was to have a means of renaming directories
while permitting implementations to prohibit the use of link() and unlink() with directories,
thus constraining links to directories to those made by mkdir().

The specification that if old and new refer to the same file is intended to guarantee that:

rename("x", "x");

does not remove the file.

Renaming dot or dot-dot is prohibited in order to prevent cyclical file system paths.

See also the descriptions of [ENOTEMPTY] and [ENAMETOOLONG] in rmdir() and [EBUSY] in
unlink(). For a discussion of [EXDEV], see link().

The purpose of the renameat() function is to rename files in directories other than the current
working directory without exposure to race conditions. Any part of the path of a file could be
changed in parallel to a call to rename(), resulting in unspecified behavior. By opening file
descriptors for the source and target directories and using the renameat() function it can be
guaranteed that that renamed file is located correctly and the resulting file is in the desired
directory.

FUTURE DIRECTIONS
None.

SEE ALSO
link(), rmdir(), symlink(), unlink()

XBD Section 4.2 (on page 107), <stdio.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

1784 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57046

57047

57048

57049

57050

57051

57052

57053

57054

57055

57056

57057

57058

57059

57060

57061

57062

57063

57064

57065

57066

57067

57068

57069

57070

57071

57072

57073

57074

57075

57076

57077

57078

57079

57080

57081

57082

57083

57084

57085

System Interfaces rename()

Issue 5
The [EBUSY] error is added to the optional part of the ERRORS section.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] mandatory error condition is added.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

• The [ETXTBSY] optional error condition is added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Details are added regarding the treatment of symbolic links.

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #016 is applied, changing the definition of the
[ENOTDIR] error.

Austin Group Interpretation 1003.1-2001 #076 is applied, clarifying the behavior if the final
component of a path is either dot or dot-dot, and adding the associated [EINVAL] error case.

Austin Group Interpretation 1003.1-2001 #143 is applied.

Austin Group Interpretation 1003.1-2001 #145 is applied, clarifying that the [ENOENT] error
condition also applies to the case in which a component of new does not exist.

Austin Group Interpretations 1003.1-2001 #174 and #181 are applied.

The renameat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1785

57086

57087

57088

57089

57090

57091

57092

57093

57094

57095

57096

57097

57098

57099

57100

57101

57102

57103

57104

57105

57106

57107

57108

57109

57110

57111

57112

rewind() System Interfaces

NAME
rewind — reset the file position indicator in a stream

SYNOPSIS
#include <stdio.h>

void rewind(FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The call:

rewind(stream)

shall be equivalent to:

(void) fseek(stream, 0L, SEEK_SET)

except that rewind() shall also clear the error indicator.

CX Since rewind() does not return a value, an application wishing to detect errors should clear errno,
then call rewind(), and if errno is non-zero, assume an error has occurred.

RETURN VALUE
The rewind() function shall not return a value.

ERRORS
CX Refer to fseek() with the exception of [EINVAL] which does not apply.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fseek()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

1786 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57113

57114

57115

57116

57117

57118

57119

57120

57121

57122

57123

57124

57125

57126

57127

57128

57129

57130

57131

57132

57133

57134

57135

57136

57137

57138

57139

57140

57141

57142

57143

57144

57145

57146

57147

System Interfaces rewinddir()

NAME
rewinddir — reset the position of a directory stream to the beginning of a directory

SYNOPSIS
#include <dirent.h>

void rewinddir(DIR *dirp);

DESCRIPTION
The rewinddir() function shall reset the position of the directory stream to which dirp refers to the
beginning of the directory. It shall also cause the directory stream to refer to the current state of
the corresponding directory, as a call to opendir() would have done. If dirp does not refer to a
directory stream, the effect is undefined.

After a call to the fork() function, either the parent or child (but not both) may continue
XSI processing the directory stream using readdir(), rewinddir(), or seekdir(). If both the parent and

child processes use these functions, the result is undefined.

RETURN VALUE
The rewinddir() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The rewinddir() function should be used in conjunction with opendir(), readdir(), and closedir() to
examine the contents of the directory. This method is recommended for portability.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), fdopendir(), readdir()

XBD <dirent.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 2.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1787

57148

57149

57150

57151

57152

57153

57154

57155

57156

57157

57158

57159

57160

57161

57162

57163

57164

57165

57166

57167

57168

57169

57170

57171

57172

57173

57174

57175

57176

57177

57178

57179

57180

57181

57182

57183

57184

57185

rint() System Interfaces

NAME
rint, rintf, rintl — round-to-nearest integral value

SYNOPSIS
#include <math.h>

double rint(double x);
float rintf(float x);
long double rintl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall return the integral value (represented as a double) nearest x in the
direction of the current rounding mode. The current rounding mode is implementation-defined.

If the current rounding mode rounds toward negative infinity, then rint() shall be equivalent to
floor(). If the current rounding mode rounds toward positive infinity, then rint() shall be
equivalent to ceil().

These functions differ from the nearbyint(), nearbyintf(), and nearbyintl() functions only in that
they may raise the inexact floating-point exception if the result differs in value from the
argument.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the integer (represented as a double
precision number) nearest x in the direction of the current rounding mode.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

XSI If the correct value would cause overflow, a range error shall occur and rint(), rintf(), and rintl()
shall return the value of the macro ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (with the
same sign as x), respectively.

ERRORS
These functions shall fail if:

XSI Range Error The result would cause an overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

1788 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57186

57187

57188

57189

57190

57191

57192

57193

57194

57195

57196

57197

57198

57199

57200

57201

57202

57203

57204

57205

57206

57207

57208

57209

57210

57211

57212

57213

57214

57215

57216

57217

57218

57219

57220

57221

57222

57223

System Interfaces rint()

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abs(), ceil(), feclearexcept(), fetestexcept(), floor(), isnan(), nearbyint()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The rintf() and rintl() functions are added.

• The rint() function is no longer marked as an extension.

• The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard
are marked.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1789

57224

57225

57226

57227

57228

57229

57230

57231

57232

57233

57234

57235

57236

57237

57238

57239

57240

57241

57242

57243

57244

57245

57246

57247

rmdir() System Interfaces

NAME
rmdir — remove a directory

SYNOPSIS
#include <unistd.h>

int rmdir(const char *path);

DESCRIPTION
The rmdir() function shall remove a directory whose name is given by path. The directory shall
be removed only if it is an empty directory.

If the directory is the root directory or the current working directory of any process, it is
unspecified whether the function succeeds, or whether it shall fail and set errno to [EBUSY].

If path names a symbolic link, then rmdir() shall fail and set errno to [ENOTDIR].

If the path argument refers to a path whose final component is either dot or dot-dot, rmdir() shall
fail.

If the directory’s link count becomes 0 and no process has the directory open, the space occupied
by the directory shall be freed and the directory shall no longer be accessible. If one or more
processes have the directory open when the last link is removed, the dot and dot-dot entries, if
present, shall be removed before rmdir() returns and no new entries may be created in the
directory, but the directory shall not be removed until all references to the directory are closed.

If the directory is not an empty directory, rmdir() shall fail and set errno to [EEXIST] or
[ENOTEMPTY].

Upon successful completion, rmdir() shall mark for update the last data modification and last
file status change timestamps of the parent directory.

RETURN VALUE
Upon successful completion, the function rmdir() shall return 0. Otherwise, −1 shall be returned,
and errno set to indicate the error. If −1 is returned, the named directory shall not be changed.

ERRORS
The rmdir() function shall fail if:

[EACCES] Search permission is denied on a component of the path prefix, or write
permission is denied on the parent directory of the directory to be removed.

[EBUSY] The directory to be removed is currently in use by the system or some process
and the implementation considers this to be an error.

[EEXIST] or [ENOTEMPTY]
The path argument names a directory that is not an empty directory, or there
are hard links to the directory other than dot or a single entry in dot-dot.

[EINVAL] The path argument contains a last component that is dot.

[EIO] A physical I/O error has occurred.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file, or the path argument
names a nonexistent directory or points to an empty string.

1790 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57248

57249

57250

57251

57252

57253

57254

57255

57256

57257

57258

57259

57260

57261

57262

57263

57264

57265

57266

57267

57268

57269

57270

57271

57272

57273

57274

57275

57276

57277

57278

57279

57280

57281

57282

57283

57284

57285

57286

57287

57288

57289

System Interfaces rmdir()

[ENOTDIR] A component of path is not a directory.

XSI [EPERM] or [EACCES]
The S_ISVTX flag is set on the directory containing the file referred to by the
path argument and the process does not satisfy the criteria specified in XBD
Section 4.2 (on page 107).

[EROFS] The directory entry to be removed resides on a read-only file system.

The rmdir() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES

Removing a Directory

The following example shows how to remove a directory named /home/cnd/mod1.

#include <unistd.h>

int status;
...
status = rmdir("/home/cnd/mod1");

APPLICATION USAGE
None.

RATIONALE
The rmdir() and rename() functions originated in 4.2 BSD, and they used [ENOTEMPTY] for the
condition when the directory to be removed does not exist or new already exists. When the 1984
/usr/group standard was published, it contained [EEXIST] instead. When these functions were
adopted into System V, the 1984 /usr/group standard was used as a reference. Therefore,
several existing applications and implementations support/use both forms, and no agreement
could be reached on either value. All implementations are required to supply both [EEXIST] and
[ENOTEMPTY] in <errno.h> with distinct values, so that applications can use both values in C-
language case statements.

The meaning of deleting pathname/dot is unclear, because the name of the file (directory) in the
parent directory to be removed is not clear, particularly in the presence of multiple links to a
directory.

The POSIX.1-1990 standard was silent with regard to the behavior of rmdir() when there are
multiple hard links to the directory being removed. The requirement to set errno to [EEXIST] or
[ENOTEMPTY] clarifies the behavior in this case.

If the current working directory of the process is being removed, that should be an allowed
error.

Virtually all existing implementations detect [ENOTEMPTY] or the case of dot-dot. The text in
Section 2.3 (on page 477) about returning any one of the possible errors permits that behavior to
continue. The [ELOOP] error may be returned if more than {SYMLOOP_MAX} symbolic links
are encountered during resolution of the path argument.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1791

57290

57291

57292

57293

57294

57295

57296

57297

57298

57299

57300

57301

57302

57303

57304

57305

57306

57307

57308

57309

57310

57311

57312

57313

57314

57315

57316

57317

57318

57319

57320

57321

57322

57323

57324

57325

57326

57327

57328

57329

57330

57331

57332

rmdir() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.3 (on page 477), mkdir(), remove(), rename(), unlink()

XBD Section 4.2 (on page 107), <unistd.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION is updated to indicate the results of naming a symbolic link in path.

• The [EIO] mandatory error condition is added.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

Austin Group Interpretation 1003.1-2001 #181 is applied, updating the requirements for
operations when the S_ISVTX bit is set.

Changes are made related to support for finegrained timestamps.

1792 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57333

57334

57335

57336

57337

57338

57339

57340

57341

57342

57343

57344

57345

57346

57347

57348

57349

57350

57351

57352

57353

System Interfaces round()

NAME
round, roundf, roundl — round to the nearest integer value in a floating-point format

SYNOPSIS
#include <math.h>

double round(double x);
float roundf(float x);
long double roundl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall round their argument to the nearest integer value in floating-point format,
rounding halfway cases away from zero, regardless of the current rounding direction.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

XSI If the correct value would cause overflow, a range error shall occur and round(), roundf(), and
roundl() shall return the value of the macro ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL
(with the same sign as x), respectively.

ERRORS
These functions may fail if:

XSI Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1793

57354

57355

57356

57357

57358

57359

57360

57361

57362

57363

57364

57365

57366

57367

57368

57369

57370

57371

57372

57373

57374

57375

57376

57377

57378

57379

57380

57381

57382

57383

57384

57385

57386

57387

57388

57389

57390

57391

57392

57393

round() System Interfaces

SEE ALSO
feclearexcept(), fetestexcept()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

1794 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57394

57395

57396

57397

57398

System Interfaces scalbln()

NAME
scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnl — compute exponent using FLT_RADIX

SYNOPSIS
#include <math.h>

double scalbln(double x, long n);
float scalblnf(float x, long n);
long double scalblnl(long double x, long n);
double scalbn(double x, int n);
float scalbnf(float x, int n);
long double scalbnl(long double x, int n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute x * FLT_RADIXn efficiently, not normally by computing
FLT_RADIXn explicitly.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return x * FLT_RADIXn.

If the result would cause overflow, a range error shall occur and these functions shall return
±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (according to the sign of x) as appropriate for
the return type of the function.

If the correct value would cause underflow, and is not representable, a range error may occur,
MX and either 0.0 (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

If n is 0, x shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1795

57399

57400

57401

57402

57403

57404

57405

57406

57407

57408

57409

57410

57411

57412

57413

57414

57415

57416

57417

57418

57419

57420

57421

57422

57423

57424

57425

57426

57427

57428

57429

57430

57431

57432

57433

57434

57435

57436

57437

57438

57439

57440

57441

scalbln() System Interfaces

(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions are named so as to avoid conflicting with the historical definition of the scalb()
function from the Single UNIX Specification. The difference is that the scalb() function has a
second argument of double instead of int. The scalb() function is not part of the ISO C standard.
The three functions whose second type is long are provided because the factor required to scale
from the smallest positive floating-point value to the largest finite one, on many
implementations, is too large to represent in the minimum-width int format.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

1796 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57442

57443

57444

57445

57446

57447

57448

57449

57450

57451

57452

57453

57454

57455

57456

57457

57458

57459

57460

57461

57462

System Interfaces scandir()

NAME
scandir — scan a directory

SYNOPSIS
#include <dirent.h>

int scandir(const char *dir, struct dirent ***namelist,
int (*sel)(const struct dirent *),
int (*compar)(const struct dirent **, const struct dirent **));

DESCRIPTION
Refer to alphasort().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1797

57463

57464

57465

57466

57467

57468

57469

57470

57471

scanf() System Interfaces

NAME
scanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf(const char *restrict format, ...);

DESCRIPTION
Refer to fscanf().

1798 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57472

57473

57474

57475

57476

57477

57478

System Interfaces sched_get_priority_max()

NAME
sched_get_priority_max, sched_get_priority_min — get priority limits (REALTIME)

SYNOPSIS
PS|TPS #include <sched.h>

int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

DESCRIPTION
The sched_get_priority_max() and sched_get_priority_min() functions shall return the appropriate
maximum or minimum, respectively, for the scheduling policy specified by policy.

The value of policy shall be one of the scheduling policy values defined in <sched.h>.

RETURN VALUE
If successful, the sched_get_priority_max() and sched_get_priority_min() functions shall return the
appropriate maximum or minimum values, respectively. If unsuccessful, they shall return a
value of −1 and set errno to indicate the error.

ERRORS
The sched_get_priority_max() and sched_get_priority_min() functions shall fail if:

[EINVAL] The value of the policy parameter does not represent a defined scheduling
policy.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_setparam(), sched_getscheduler(), sched_rr_get_interval(),
sched_setscheduler()

XBD <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
These functions are marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

The [ESRCH] error condition has been removed since these functions do not take a pid
argument.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/52 is applied, changing the PS margin
code in the SYNOPSIS to PS|TPS.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1799

57479

57480

57481

57482

57483

57484

57485

57486

57487

57488

57489

57490

57491

57492

57493

57494

57495

57496

57497

57498

57499

57500

57501

57502

57503

57504

57505

57506

57507

57508

57509

57510

57511

57512

57513

57514

57515

57516

57517

57518

sched_getparam() System Interfaces

NAME
sched_getparam — get scheduling parameters (REALTIME)

SYNOPSIS
PS #include <sched.h>

int sched_getparam(pid_t pid, struct sched_param *param);

DESCRIPTION
The sched_getparam() function shall return the scheduling parameters of a process specified by
pid in the sched_param structure pointed to by param.

If a process specified by pid exists, and if the calling process has permission, the scheduling
parameters for the process whose process ID is equal to pid shall be returned.

If pid is zero, the scheduling parameters for the calling process shall be returned. The behavior of
the sched_getparam() function is unspecified if the value of pid is negative.

RETURN VALUE
Upon successful completion, the sched_getparam() function shall return zero. If the call to
sched_getparam() is unsuccessful, the function shall return a value of −1 and set errno to indicate
the error.

ERRORS
The sched_getparam() function shall fail if:

[EPERM] The requesting process does not have permission to obtain the scheduling
parameters of the specified process.

[ESRCH] No process can be found corresponding to that specified by pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getscheduler(), sched_setparam(), sched_setscheduler()

XBD <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sched_getparam() function is marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

1800 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57519

57520

57521

57522

57523

57524

57525

57526

57527

57528

57529

57530

57531

57532

57533

57534

57535

57536

57537

57538

57539

57540

57541

57542

57543

57544

57545

57546

57547

57548

57549

57550

57551

57552

57553

57554

57555

57556

System Interfaces sched_getscheduler()

NAME
sched_getscheduler — get scheduling policy (REALTIME)

SYNOPSIS
PS #include <sched.h>

int sched_getscheduler(pid_t pid);

DESCRIPTION
The sched_getscheduler() function shall return the scheduling policy of the process specified by
pid. If the value of pid is negative, the behavior of the sched_getscheduler() function is
unspecified.

The values that can be returned by sched_getscheduler() are defined in the <sched.h> header.

If a process specified by pid exists, and if the calling process has permission, the scheduling
policy shall be returned for the process whose process ID is equal to pid.

If pid is zero, the scheduling policy shall be returned for the calling process.

RETURN VALUE
Upon successful completion, the sched_getscheduler() function shall return the scheduling policy
of the specified process. If unsuccessful, the function shall return −1 and set errno to indicate the
error.

ERRORS
The sched_getscheduler() function shall fail if:

[EPERM] The requesting process does not have permission to determine the scheduling
policy of the specified process.

[ESRCH] No process can be found corresponding to that specified by pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_setparam(), sched_setscheduler()

XBD <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sched_getscheduler() function is marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1801

57557

57558

57559

57560

57561

57562

57563

57564

57565

57566

57567

57568

57569

57570

57571

57572

57573

57574

57575

57576

57577

57578

57579

57580

57581

57582

57583

57584

57585

57586

57587

57588

57589

57590

57591

57592

57593

57594

57595

sched_rr_get_interval() System Interfaces

NAME
sched_rr_get_interval — get execution time limits (REALTIME)

SYNOPSIS
PS|TPS #include <sched.h>

int sched_rr_get_interval(pid_t pid, struct timespec *interval);

DESCRIPTION
The sched_rr_get_interval() function shall update the timespec structure referenced by the
interval argument to contain the current execution time limit (that is, time quantum) for the
process specified by pid. If pid is zero, the current execution time limit for the calling process
shall be returned.

RETURN VALUE
If successful, the sched_rr_get_interval() function shall return zero. Otherwise, it shall return a
value of −1 and set errno to indicate the error.

ERRORS
The sched_rr_get_interval() function shall fail if:

[ESRCH] No process can be found corresponding to that specified by pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_get_priority_max(), sched_getscheduler(), sched_setparam(),
sched_setscheduler()

XBD <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sched_rr_get_interval() function is marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

IEEE Std 1003.1-2001/Cor 1-2002, XSH/TC1/D6/53 is applied, changing the PS margin code in
the SYNOPSIS to PS|TPS.

1802 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57596

57597

57598

57599

57600

57601

57602

57603

57604

57605

57606

57607

57608

57609

57610

57611

57612

57613

57614

57615

57616

57617

57618

57619

57620

57621

57622

57623

57624

57625

57626

57627

57628

57629

57630

57631

System Interfaces sched_setparam()

NAME
sched_setparam — set scheduling parameters (REALTIME)

SYNOPSIS
PS #include <sched.h>

int sched_setparam(pid_t pid, const struct sched_param *param);

DESCRIPTION
The sched_setparam() function shall set the scheduling parameters of the process specified by pid
to the values specified by the sched_param structure pointed to by param. The value of the
sched_priority member in the sched_param structure shall be any integer within the inclusive
priority range for the current scheduling policy of the process specified by pid. Higher
numerical values for the priority represent higher priorities. If the value of pid is negative, the
behavior of the sched_setparam() function is unspecified.

If a process specified by pid exists, and if the calling process has permission, the scheduling
parameters shall be set for the process whose process ID is equal to pid.

If pid is zero, the scheduling parameters shall be set for the calling process.

The conditions under which one process has permission to change the scheduling parameters of
another process are implementation-defined.

Implementations may require the requesting process to have appropriate privileges to set its
own scheduling parameters or those of another process.

See Scheduling Policies (on page 501) for a description on how this function affects the
scheduling of the threads within the target process.

SS If the current scheduling policy for the target process is not SCHED_FIFO, SCHED_RR, or
SCHED_SPORADIC, the result is implementation-defined; this case includes the
SCHED_OTHER policy.

SS The specified sched_ss_repl_period shall be greater than or equal to the specified
sched_ss_init_budget for the function to succeed; if it is not, then the function shall fail.

The value of sched_ss_max_repl shall be within the inclusive range [1,{SS_REPL_MAX}] for the
function to succeed; if not, the function shall fail. It is unspecified whether the
sched_ss_repl_period and sched_ss_init_budget values are stored as provided by this function or are
rounded to align with the resolution of the clock being used.

This function is not atomic with respect to other threads in the process. Threads may continue to
execute while this function call is in the process of changing the scheduling policy for the
underlying kernel-scheduled entities used by the process contention scope threads.

RETURN VALUE
If successful, the sched_setparam() function shall return zero.

If the call to sched_setparam() is unsuccessful, the priority shall remain unchanged, and the
function shall return a value of −1 and set errno to indicate the error.

ERRORS
The sched_setparam() function shall fail if:

[EINVAL] One or more of the requested scheduling parameters is outside the range
defined for the scheduling policy of the specified pid.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1803

57632

57633

57634

57635

57636

57637

57638

57639

57640

57641

57642

57643

57644

57645

57646

57647

57648

57649

57650

57651

57652

57653

57654

57655

57656

57657

57658

57659

57660

57661

57662

57663

57664

57665

57666

57667

57668

57669

57670

57671

57672

sched_setparam() System Interfaces

[EPERM] The requesting process does not have permission to set the scheduling
parameters for the specified process, or does not have appropriate privileges
to invoke sched_setparam().

[ESRCH] No process can be found corresponding to that specified by pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Scheduling Policies (on page 501), sched_getparam(), sched_getscheduler(), sched_setscheduler()

XBD <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sched_setparam() function is marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the effect of this function on a thread’s scheduling parameters is
added.

• Sections describing two-level scheduling and atomicity of the function are added.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1 #100 is applied.

Issue 7
Austin Group Interpretation 1003.1-2001 #061 is applied, updating the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy requirements
for the sched_ss_repl_period and sched_ss_init_budget values.

1804 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57673

57674

57675

57676

57677

57678

57679

57680

57681

57682

57683

57684

57685

57686

57687

57688

57689

57690

57691

57692

57693

57694

57695

57696

57697

57698

57699

57700

57701

57702

57703

57704

System Interfaces sched_setscheduler()

NAME
sched_setscheduler — set scheduling policy and parameters (REALTIME)

SYNOPSIS
PS #include <sched.h>

int sched_setscheduler(pid_t pid, int policy,
const struct sched_param *param);

DESCRIPTION
The sched_setscheduler() function shall set the scheduling policy and scheduling parameters of
the process specified by pid to policy and the parameters specified in the sched_param structure
pointed to by param, respectively. The value of the sched_priority member in the sched_param
structure shall be any integer within the inclusive priority range for the scheduling policy
specified by policy. If the value of pid is negative, the behavior of the sched_setscheduler()
function is unspecified.

The possible values for the policy parameter are defined in the <sched.h> header.

If a process specified by pid exists, and if the calling process has permission, the scheduling
policy and scheduling parameters shall be set for the process whose process ID is equal to pid.

If pid is zero, the scheduling policy and scheduling parameters shall be set for the calling
process.

The conditions under which one process has appropriate privileges to change the scheduling
parameters of another process are implementation-defined.

Implementations may require that the requesting process have permission to set its own
scheduling parameters or those of another process. Additionally, implementation-defined
restrictions may apply as to the appropriate privileges required to set the scheduling policy of
the process, or the scheduling policy of another process, to a particular value.

The sched_setscheduler() function shall be considered successful if it succeeds in setting the
scheduling policy and scheduling parameters of the process specified by pid to the values
specified by policy and the structure pointed to by param, respectively.

See Scheduling Policies (on page 501) for a description on how this function affects the
scheduling of the threads within the target process.

SS If the current scheduling policy for the target process is not SCHED_FIFO, SCHED_RR, or
SCHED_SPORADIC, the result is implementation-defined; this case includes the
SCHED_OTHER policy.

SS The specified sched_ss_repl_period shall be greater than or equal to the specified
sched_ss_init_budget for the function to succeed; if it is not, then the function shall fail.

The value of sched_ss_max_repl shall be within the inclusive range [1,{SS_REPL_MAX}] for the
function to succeed; if not, the function shall fail. It is unspecified whether the
sched_ss_repl_period and sched_ss_init_budget values are stored as provided by this function or are
rounded to align with the resolution of the clock being used.

This function is not atomic with respect to other threads in the process. Threads may continue to
execute while this function call is in the process of changing the scheduling policy and
associated scheduling parameters for the underlying kernel-scheduled entities used by the
process contention scope threads.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1805

57705

57706

57707

57708

57709

57710

57711

57712

57713

57714

57715

57716

57717

57718

57719

57720

57721

57722

57723

57724

57725

57726

57727

57728

57729

57730

57731

57732

57733

57734

57735

57736

57737

57738

57739

57740

57741

57742

57743

57744

57745

57746

sched_setscheduler() System Interfaces

RETURN VALUE
Upon successful completion, the function shall return the former scheduling policy of the
specified process. If the sched_setscheduler() function fails to complete successfully, the policy
and scheduling parameters shall remain unchanged, and the function shall return a value of −1
and set errno to indicate the error.

ERRORS
The sched_setscheduler() function shall fail if:

[EINVAL] The value of the policy parameter is invalid, or one or more of the parameters
contained in param is outside the valid range for the specified scheduling
policy.

[EPERM] The requesting process does not have permission to set either or both of the
scheduling parameters or the scheduling policy of the specified process.

[ESRCH] No process can be found corresponding to that specified by pid.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Scheduling Policies (on page 501), sched_getparam(), sched_getscheduler(), sched_setparam()

XBD <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sched_setscheduler() function is marked as part of the Process Scheduling option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Process Scheduling option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the effect of this function on a thread’s scheduling parameters is
added.

• Sections describing two-level scheduling and atomicity of the function are added.

The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std 1003.1d-1999.

Issue 7
Austin Group Interpretation 1003.1-2001 #061 is applied, updating the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy requirements
for the sched_ss_repl_period and sched_ss_init_budget values.

1806 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57747

57748

57749

57750

57751

57752

57753

57754

57755

57756

57757

57758

57759

57760

57761

57762

57763

57764

57765

57766

57767

57768

57769

57770

57771

57772

57773

57774

57775

57776

57777

57778

57779

57780

57781

57782

57783

57784

57785

57786

System Interfaces sched_yield()

NAME
sched_yield — yield the processor

SYNOPSIS
#include <sched.h>

int sched_yield(void);

DESCRIPTION
The sched_yield() function shall force the running thread to relinquish the processor until it again
becomes the head of its thread list. It takes no arguments.

RETURN VALUE
The sched_yield() function shall return 0 if it completes successfully; otherwise, it shall return a
value of −1 and set errno to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The conceptual model for scheduling semantics in POSIX.1-2008 defines a set of thread lists. This
set of thread lists is always present regardless of the scheduling options supported by the
system. On a system where the Process Scheduling option is not supported, portable
applications should not make any assumptions regarding whether threads from other processes
will be on the same thread list.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <sched.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension and the
POSIX Threads Extension.

Issue 6
The sched_yield() function is now marked as part of the Process Scheduling and Threads options.

Issue 7
SD5-XSH-ERN-120 is applied, adding APPLICATION USAGE.

The sched_yield() function is moved to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1807

57787

57788

57789

57790

57791

57792

57793

57794

57795

57796

57797

57798

57799

57800

57801

57802

57803

57804

57805

57806

57807

57808

57809

57810

57811

57812

57813

57814

57815

57816

57817

57818

57819

57820

57821

seed48() System Interfaces

NAME
seed48 — seed a uniformly distributed pseudo-random non-negative long integer generator

SYNOPSIS
XSI #include <stdlib.h>

unsigned short *seed48(unsigned short seed16v[3]);

DESCRIPTION
Refer to drand48().

1808 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57822

57823

57824

57825

57826

57827

57828

System Interfaces seekdir()

NAME
seekdir — set the position of a directory stream

SYNOPSIS
XSI #include <dirent.h>

void seekdir(DIR *dirp, long loc);

DESCRIPTION
The seekdir() function shall set the position of the next readdir() operation on the directory
stream specified by dirp to the position specified by loc. The value of loc should have been
returned from an earlier call to telldir() using the same directory stream. The new position
reverts to the one associated with the directory stream when telldir() was performed.

If the value of loc was not obtained from an earlier call to telldir(), or if a call to rewinddir()
occurred between the call to telldir() and the call to seekdir(), the results of subsequent calls to
readdir() are unspecified.

RETURN VALUE
The seekdir() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The original standard developers perceived that there were restrictions on the use of the
seekdir() and telldir() functions related to implementation details, and for that reason these
functions need not be supported on all POSIX-conforming systems. They are required on
implementations supporting the XSI option.

One of the perceived problems of implementation is that returning to a given point in a directory
is quite difficult to describe formally, in spite of its intuitive appeal, when systems that use B-
trees, hashing functions, or other similar mechanisms to order their directories are considered.
The definition of seekdir() and telldir() does not specify whether, when using these interfaces, a
given directory entry will be seen at all, or more than once.

On systems not supporting these functions, their capability can sometimes be accomplished by
saving a filename found by readdir() and later using rewinddir() and a loop on readdir() to
relocate the position from which the filename was saved.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopendir(), readdir(), telldir()

XBD <dirent.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 2.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1809

57829

57830

57831

57832

57833

57834

57835

57836

57837

57838

57839

57840

57841

57842

57843

57844

57845

57846

57847

57848

57849

57850

57851

57852

57853

57854

57855

57856

57857

57858

57859

57860

57861

57862

57863

57864

57865

57866

57867

57868

57869

seekdir() System Interfaces

Issue 6
In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

Issue 7
SD5-XSH-ERN-200 is applied, updating the DESCRIPTION to note that the value of loc should
have been returned from an earlier call to telldir() using the same directory stream.

1810 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57870

57871

57872

57873

57874

System Interfaces select()

NAME
select — synchronous I/O multiplexing

SYNOPSIS
#include <sys/select.h>

int select(int nfds, fd_set *restrict readfds,
fd_set *restrict writefds, fd_set *restrict errorfds,
struct timeval *restrict timeout);

DESCRIPTION
Refer to pselect().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1811

57875

57876

57877

57878

57879

57880

57881

57882

57883

sem_close() System Interfaces

NAME
sem_close — close a named semaphore

SYNOPSIS
#include <semaphore.h>

int sem_close(sem_t *sem);

DESCRIPTION
The sem_close() function shall indicate that the calling process is finished using the named
semaphore indicated by sem. The effects of calling sem_close() for an unnamed semaphore (one
created by sem_init()) are undefined. The sem_close() function shall deallocate (that is, make
available for reuse by a subsequent sem_open() by this process) any system resources allocated
by the system for use by this process for this semaphore. The effect of subsequent use of the
semaphore indicated by sem by this process is undefined. If the semaphore has not been
removed with a successful call to sem_unlink(), then sem_close() has no effect on the state of the
semaphore. If the sem_unlink() function has been successfully invoked for name after the most
recent call to sem_open() with O_CREAT for this semaphore, then when all processes that have
opened the semaphore close it, the semaphore is no longer accessible.

RETURN VALUE
Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be
returned and errno set to indicate the error.

ERRORS
The sem_close() function may fail if:

[EINVAL] The sem argument is not a valid semaphore descriptor.

EXAMPLES
None.

APPLICATION USAGE
The sem_close() function is part of the Semaphores option and need not be available on all
implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_init(), sem_open(), sem_unlink()

XBD <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_close() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/113 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

1812 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57884

57885

57886

57887

57888

57889

57890

57891

57892

57893

57894

57895

57896

57897

57898

57899

57900

57901

57902

57903

57904

57905

57906

57907

57908

57909

57910

57911

57912

57913

57914

57915

57916

57917

57918

57919

57920

57921

57922

57923

57924

57925

System Interfaces sem_close()

Issue 7
The sem_close() function is moved from the Semaphores option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1813

57926

57927

sem_destroy() System Interfaces

NAME
sem_destroy — destroy an unnamed semaphore

SYNOPSIS
#include <semaphore.h>

int sem_destroy(sem_t *sem);

DESCRIPTION
The sem_destroy() function shall destroy the unnamed semaphore indicated by sem. Only a
semaphore that was created using sem_init() may be destroyed using sem_destroy(); the effect of
calling sem_destroy() with a named semaphore is undefined. The effect of subsequent use of the
semaphore sem is undefined until sem is reinitialized by another call to sem_init().

It is safe to destroy an initialized semaphore upon which no threads are currently blocked. The
effect of destroying a semaphore upon which other threads are currently blocked is undefined.

RETURN VALUE
Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be
returned and errno set to indicate the error.

ERRORS
The sem_destroy() function may fail if:

[EINVAL] The sem argument is not a valid semaphore.

[EBUSY] There are currently processes blocked on the semaphore.

EXAMPLES
None.

APPLICATION USAGE
The sem_destroy() function is part of the Semaphores option and need not be available on all
implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_init(), sem_open()

XBD <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_destroy() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/114 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

1814 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57928

57929

57930

57931

57932

57933

57934

57935

57936

57937

57938

57939

57940

57941

57942

57943

57944

57945

57946

57947

57948

57949

57950

57951

57952

57953

57954

57955

57956

57957

57958

57959

57960

57961

57962

57963

57964

57965

57966

System Interfaces sem_destroy()

Issue 7
The sem_destroy() function is moved from the Semaphores option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1815

57967

57968

sem_getvalue() System Interfaces

NAME
sem_getvalue — get the value of a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_getvalue(sem_t *restrict sem, int *restrict sval);

DESCRIPTION
The sem_getvalue() function shall update the location referenced by the sval argument to have
the value of the semaphore referenced by sem without affecting the state of the semaphore. The
updated value represents an actual semaphore value that occurred at some unspecified time
during the call, but it need not be the actual value of the semaphore when it is returned to the
calling process.

If sem is locked, then the object to which sval points shall either be set to zero or to a negative
number whose absolute value represents the number of processes waiting for the semaphore at
some unspecified time during the call.

RETURN VALUE
Upon successful completion, the sem_getvalue() function shall return a value of zero. Otherwise,
it shall return a value of −1 and set errno to indicate the error.

ERRORS
The sem_getvalue() function may fail if:

[EINVAL] The sem argument does not refer to a valid semaphore.

EXAMPLES
None.

APPLICATION USAGE
The sem_getvalue() function is part of the Semaphores option and need not be available on all
implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_post(), sem_timedwait(), sem_trywait()

XBD <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_getvalue() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

The sem_timedwait() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

The restrict keyword is added to the sem_getvalue() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/54 is applied.

1816 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

57969

57970

57971

57972

57973

57974

57975

57976

57977

57978

57979

57980

57981

57982

57983

57984

57985

57986

57987

57988

57989

57990

57991

57992

57993

57994

57995

57996

57997

57998

57999

58000

58001

58002

58003

58004

58005

58006

58007

58008

58009

58010

58011

System Interfaces sem_getvalue()

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/115 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Issue 7
The sem_getvalue() function is moved from the Semaphores option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1817

58012

58013

58014

58015

sem_init() System Interfaces

NAME
sem_init — initialize an unnamed semaphore

SYNOPSIS
#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned value);

DESCRIPTION
The sem_init() function shall initialize the unnamed semaphore referred to by sem. The value of
the initialized semaphore shall be value. Following a successful call to sem_init(), the semaphore
may be used in subsequent calls to sem_wait(), sem_timedwait(), sem_trywait(), sem_post(), and
sem_destroy(). This semaphore shall remain usable until the semaphore is destroyed.

If the pshared argument has a non-zero value, then the semaphore is shared between processes;
in this case, any process that can access the semaphore sem can use sem for performing
sem_wait(), sem_timedwait(), sem_trywait(), sem_post(), and sem_destroy() operations.

Only sem itself may be used for performing synchronization. The result of referring to copies of
sem in calls to sem_wait(), sem_timedwait(), sem_trywait(), sem_post(), and sem_destroy() is
undefined.

If the pshared argument is zero, then the semaphore is shared between threads of the process; any
thread in this process can use sem for performing sem_wait(), sem_timedwait(), sem_trywait(),
sem_post(), and sem_destroy() operations. The use of the semaphore by threads other than those
created in the same process is undefined.

Attempting to initialize an already initialized semaphore results in undefined behavior.

RETURN VALUE
Upon successful completion, the sem_init() function shall initialize the semaphore in sem and
return 0. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The sem_init() function shall fail if:

[EINVAL] The value argument exceeds {SEM_VALUE_MAX}.

[ENOSPC] A resource required to initialize the semaphore has been exhausted, or the
limit on semaphores ({SEM_NSEMS_MAX}) has been reached.

[EPERM] The process lacks appropriate privileges to initialize the semaphore.

EXAMPLES
None.

APPLICATION USAGE
The sem_init() function is part of the Semaphores option and need not be available on all
implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sem_destroy(), sem_post(), sem_timedwait(), sem_trywait()

XBD <semaphore.h>

1818 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

58016

58017

58018

58019

58020

58021

58022

58023

58024

58025

58026

58027

58028

58029

58030

58031

58032

58033

58034

58035

58036

58037

58038

58039

58040

58041

58042

58043

58044

58045

58046

58047

58048

58049

58050

58051

58052

58053

58054

58055

58056

58057

System Interfaces sem_init()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_init() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

The sem_timedwait() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/116 is applied, updating the
DESCRIPTION to add the sem_timedwait() function for alignment with IEEE Std 1003.1d-1999.

Issue 7
SD5-XSH-ERN-176 is applied.

The sem_init() function is moved from the Semaphores option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1819

58058

58059

58060

58061

58062

58063

58064

58065

58066

58067

58068

58069

58070

sem_open() System Interfaces

NAME
sem_open — initialize and open a named semaphore

SYNOPSIS
#include <semaphore.h>

sem_t *sem_open(const char *name, int oflag, ...);

DESCRIPTION
The sem_open() function shall establish a connection between a named semaphore and a process.
Following a call to sem_open() with semaphore name name, the process may reference the
semaphore associated with name using the address returned from the call. This semaphore may
be used in subsequent calls to sem_wait(), sem_timedwait(), sem_trywait(), sem_post(), and
sem_close(). The semaphore remains usable by this process until the semaphore is closed by a
successful call to sem_close(), _exit(), or one of the exec functions.

The oflag argument controls whether the semaphore is created or merely accessed by the call to
sem_open(). The following flag bits may be set in oflag:

O_CREAT This flag is used to create a semaphore if it does not already exist. If O_CREAT is
set and the semaphore already exists, then O_CREAT has no effect, except as noted
under O_EXCL. Otherwise, sem_open() creates a named semaphore. The O_CREAT
flag requires a third and a fourth argument: mode, which is of type mode_t, and
value, which is of type unsigned. The semaphore is created with an initial value of
value. Valid initial values for semaphores are less than or equal to
{SEM_VALUE_MAX}.

The user ID of the semaphore shall be set to the effective user ID of the process.
The group ID of the semaphore shall be set to the effective group ID of the process;
however, if the name argument is visible in the file system, the group ID may be set
to the group ID of the containing directory. The permission bits of the semaphore
are set to the value of the mode argument except those set in the file mode creation
mask of the process. When bits in mode other than the file permission bits are
specified, the effect is unspecified.

After the semaphore named name has been created by sem_open() with the
O_CREAT flag, other processes can connect to the semaphore by calling
sem_open() with the same value of name.

O_EXCL If O_EXCL and O_CREAT are set, sem_open() fails if the semaphore name exists.
The check for the existence of the semaphore and the creation of the semaphore if it
does not exist are atomic with respect to other processes executing sem_open() with
O_EXCL and O_CREAT set. If O_EXCL is set and O_CREAT is not set, the effect is
undefined.

If flags other than O_CREAT and O_EXCL are specified in the oflag parameter, the
effect is unspecified.

The name argument points to a string naming a semaphore object. It is unspecified whether the
name appears in the file system and is visible to functions that take pathnames as arguments.
The name argument conforms to the construction rules for a pathname, except that the
interpretation of <slash> characters other than the leading <slash> character in name is
implementation-defined, and that the length limits for the name argument are implementation-
defined and need not be the same as the pathname limits {PATH_MAX} and {NAME_MAX}. If
name begins with the <slash> character, then processes calling sem_open() with the same value of
name shall refer to the same semaphore object, as long as that name has not been removed. If
name does not begin with the <slash> character, the effect is implementation-defined.

1820 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

58071

58072

58073

58074

58075

58076

58077

58078

58079

58080

58081

58082

58083

58084

58085

58086

58087

58088

58089

58090

58091

58092

58093

58094

58095

58096

58097

58098

58099

58100

58101

58102

58103

58104

58105

58106

58107

58108

58109

58110

58111

58112

58113

58114

58115

58116

58117

System Interfaces sem_open()

If a process makes multiple successful calls to sem_open() with the same value for name, the same
semaphore address shall be returned for each such successful call, provided that there have been
no calls to sem_unlink() for this semaphore, and at least one previous successful sem_open() call
for this semaphore has not been matched with a sem_close() call.

References to copies of the semaphore produce undefined results.

RETURN VALUE
Upon successful completion, the sem_open() function shall return the address of the semaphore.
Otherwise, it shall return a value of SEM_FAILED and set errno to indicate the error. The symbol
SEM_FAILED is defined in the <semaphore.h> header. No successful return from sem_open()
shall return the value SEM_FAILED.

ERRORS
If any of the following conditions occur, the sem_open() function shall return SEM_FAILED and
set errno to the corresponding value:

[EACCES] The named semaphore exists and the permissions specified by oflag are
denied, or the named semaphore does not exist and permission to create the
named semaphore is denied.

[EEXIST] O_CREAT and O_EXCL are set and the named semaphore already exists.

[EINTR] The sem_open() operation was interrupted by a signal.

[EINVAL] The sem_open() operation is not supported for the given name, or O_CREAT
was specified in oflag and value was greater than {SEM_VALUE_MAX}.

[EMFILE] Too many semaphore descriptors or file descriptors are currently in use by this
process.

[ENFILE] Too many semaphores are currently open in the system.

[ENOENT] O_CREAT is not set and the named semaphore does not exist.

[ENOMEM] There is insufficient memory for the creation of the new named semaphore.

[ENOSPC] There is insufficient space on a storage device for the creation of the new
named semaphore.

If any of the following conditions occur, the sem_open() function may return SEM_FAILED and
set errno to the corresponding value:

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1821

58118

58119

58120

58121

58122

58123

58124

58125

58126

58127

58128

58129

58130

58131

58132

58133

58134

58135

58136

58137

58138

58139

58140

58141

58142

58143

58144

58145

58146

58147

58148

58149

58150

58151

58152

sem_open() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The sem_open() function is part of the Semaphores option and need not be available on all
implementations.

RATIONALE
Early drafts required an error return value of −1 with the type sem_t * for the sem_open()
function, which is not guaranteed to be portable across implementations. The revised text
provides the symbolic error code SEM_FAILED to eliminate the type conflict.

FUTURE DIRECTIONS
A future version might require the sem_open() and sem_unlink() functions to have semantics
similar to normal file system operations.

SEE ALSO
semctl(), semget(), semop(), sem_close(), sem_post(), sem_timedwait(), sem_trywait(), sem_unlink()

XBD <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_open() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

The sem_timedwait() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/117 is applied, updating the
DESCRIPTION to add the sem_timedwait() function for alignment with IEEE Std 1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/118 is applied, updating the
DESCRIPTION to describe the conditions to return the same semaphore address on a call to
sem_open(). The words ‘‘and at least one previous successful sem_open() call for this semaphore
has not been matched with a sem_close() call’’ are added.

Issue 7
Austin Group Interpretation 1003.1-2001 #066 is applied, updating the [ENOSPC] error case and
adding the [ENOMEM] error case.

Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name argument and
adding [ENAMETOOLONG] as a ‘‘may fail’’ error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE DIRECTIONS.

SD5-XSH-ERN-170 is applied, updating the DESCRIPTION to clarify the wording for setting the
user ID and group ID of the semaphore.

The sem_open() function is moved from the Semaphores option to the Base.

1822 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

58153

58154

58155

58156

58157

58158

58159

58160

58161

58162

58163

58164

58165

58166

58167

58168

58169

58170

58171

58172

58173

58174

58175

58176

58177

58178

58179

58180

58181

58182

58183

58184

58185

58186

58187

58188

58189

58190

System Interfaces sem_post()

NAME
sem_post — unlock a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_post(sem_t *sem);

DESCRIPTION
The sem_post() function shall unlock the semaphore referenced by sem by performing a
semaphore unlock operation on that semaphore.

If the semaphore value resulting from this operation is positive, then no threads were blocked
waiting for the semaphore to become unlocked; the semaphore value is simply incremented.

If the value of the semaphore resulting from this operation is zero, then one of the threads
blocked waiting for the semaphore shall be allowed to return successfully from its call to

PS sem_wait(). If the Process Scheduling option is supported, the thread to be unblocked shall be
chosen in a manner appropriate to the scheduling policies and parameters in effect for the
blocked threads. In the case of the schedulers SCHED_FIFO and SCHED_RR, the highest
priority waiting thread shall be unblocked, and if there is more than one highest priority thread
blocked waiting for the semaphore, then the highest priority thread that has been waiting the
longest shall be unblocked. If the Process Scheduling option is not defined, the choice of a thread
to unblock is unspecified.

SS If the Process Sporadic Server option is supported, and the scheduling policy is
SCHED_SPORADIC, the semantics are as per SCHED_FIFO above.

The sem_post() function shall be async-signal-safe and may be invoked from a signal-catching
function.

RETURN VALUE
If successful, the sem_post() function shall return zero; otherwise, the function shall return −1
and set errno to indicate the error.

ERRORS
The sem_post() function may fail if:

[EINVAL] The sem argument does not refer to a valid semaphore.

EXAMPLES
See sem_timedwait().

APPLICATION USAGE
The sem_post() function is part of the Semaphores option and need not be available on all
implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_timedwait(), sem_trywait()

XBD Section 4.11 (on page 110), <semaphore.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1823

58191

58192

58193

58194

58195

58196

58197

58198

58199

58200

58201

58202

58203

58204

58205

58206

58207

58208

58209

58210

58211

58212

58213

58214

58215

58216

58217

58218

58219

58220

58221

58222

58223

58224

58225

58226

58227

58228

58229

58230

58231

sem_post() System Interfaces

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_post() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

The sem_timedwait() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

SCHED_SPORADIC is added to the list of scheduling policies for which the thread that is to be
unblocked is specified for alignment with IEEE Std 1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/119 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

The sem_post() function is moved from the Semaphores option to the Base.

1824 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

58232

58233

58234

58235

58236

58237

58238

58239

58240

58241

58242

58243

58244

58245

58246

System Interfaces sem_timedwait()

NAME
sem_timedwait — lock a semaphore

SYNOPSIS
#include <semaphore.h>
#include <time.h>

int sem_timedwait(sem_t *restrict sem,
const struct timespec *restrict abstime);

DESCRIPTION
The sem_timedwait() function shall lock the semaphore referenced by sem as in the sem_wait()
function. However, if the semaphore cannot be locked without waiting for another process or
thread to unlock the semaphore by performing a sem_post() function, this wait shall be
terminated when the specified timeout expires.

The timeout shall expire when the absolute time specified by abstime passes, as measured by the
clock on which timeouts are based (that is, when the value of that clock equals or exceeds
abstime), or if the absolute time specified by abstime has already been passed at the time of the
call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall
be the resolution of the clock on which it is based. The timespec data type is defined as a
structure in the <time.h> header.

Under no circumstance shall the function fail with a timeout if the semaphore can be locked
immediately. The validity of the abstime need not be checked if the semaphore can be locked
immediately.

RETURN VALUE
The sem_timedwait() function shall return zero if the calling process successfully performed the
semaphore lock operation on the semaphore designated by sem. If the call was unsuccessful, the
state of the semaphore shall be unchanged, and the function shall return a value of −1 and set
errno to indicate the error.

ERRORS
The sem_timedwait() function shall fail if:

[EINVAL] The process or thread would have blocked, and the abstime parameter
specified a nanoseconds field value less than zero or greater than or equal to
1 000 million.

[ETIMEDOUT] The semaphore could not be locked before the specified timeout expired.

The sem_timedwait() function may fail if:

[EDEADLK] A deadlock condition was detected.

[EINTR] A signal interrupted this function.

[EINVAL] The sem argument does not refer to a valid semaphore.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1825

58247

58248

58249

58250

58251

58252

58253

58254

58255

58256

58257

58258

58259

58260

58261

58262

58263

58264

58265

58266

58267

58268

58269

58270

58271

58272

58273

58274

58275

58276

58277

58278

58279

58280

58281

58282

58283

sem_timedwait() System Interfaces

EXAMPLES
The program shown below operates on an unnamed semaphore. The program expects two
command-line arguments. The first argument specifies a seconds value that is used to set an
alarm timer to generate a SIGALRM signal. This handler performs a sem_post(3) to increment the
semaphore that is being waited on in main() using sem_timedwait(). The second command-line
argument specifies the length of the timeout, in seconds, for sem_timedwait().

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <semaphore.h>
#include <time.h>
#include <assert.h>
#include <errno.h>
#include <signal.h>

sem_t sem;

static void
handler(int sig)
{

write(STDOUT_FILENO, "sem_post() from handler\n", 24);
if (sem_post(&sem) == -1) {

write(STDERR_FILENO, "sem_post() failed\n", 18);
_exit(EXIT_FAILURE);

}
}

int
main(int argc, char *argv[])
{

struct sigaction sa;
struct timespec ts;
int s;

if (argc != 3) {
fprintf(stderr, "Usage: %s <alarm-secs> <wait-secs>\n",

argv[0]);
exit(EXIT_FAILURE);

}

if (sem_init(&sem, 0, 0) == -1) {
perror("sem_init");
exit(EXIT_FAILURE);

}

/* Establish SIGALRM handler; set alarm timer using argv[1] */

sa.sa_handler = handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
if (sigaction(SIGALRM, &sa, NULL) == -1) {

perror("sigaction");
exit(EXIT_FAILURE);

}

1826 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

58284

58285

58286

58287

58288

58289

58290

58291

58292

58293

58294

58295

58296

58297

58298

58299

58300

58301

58302

58303

58304

58305

58306

58307

58308

58309

58310

58311

58312

58313

58314

58315

58316

58317

58318

58319

58320

58321

58322

58323

58324

58325

58326

58327

58328

58329

58330

System Interfaces sem_timedwait()

alarm(atoi(argv[1]));

/* Calculate relative interval as current time plus
number of seconds given argv[2] */

if (clock_gettime(CLOCK_REALTIME, &ts) == -1) {
perror("clock_gettime");
exit(EXIT_FAILURE);

}
ts.tv_sec += atoi(argv[2]);

printf("main() about to call sem_timedwait()\n");
while ((s = sem_timedwait(&sem, &ts)) == -1 && errno == EINTR)

continue; /* Restart if interrupted by handler */

/* Check what happened */

if (s == -1) {
if (errno == ETIMEDOUT)

printf("sem_timedwait() timed out\n");
else

perror("sem_timedwait");
} else

printf("sem_timedwait() succeeded\n");

exit((s == 0) ? EXIT_SUCCESS : EXIT_FAILURE);
}

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in XBD
Section 3.285 (on page 79).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sem_post(), sem_trywait(), semctl(), semget(), semop(), time()

XBD Section 3.285 (on page 79), <semaphore.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/120 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Issue 7
The sem_timedwait() function is moved from the Semaphores option to the Base.

Functionality relating to the Timers option is moved to the Base.

An example is added.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1827

58331

58332

58333

58334

58335

58336

58337

58338

58339

58340

58341

58342

58343

58344

58345

58346

58347

58348

58349

58350

58351

58352

58353

58354

58355

58356

58357

58358

58359

58360

58361

58362

58363

58364

58365

58366

58367

58368

58369

sem_trywait() System Interfaces

NAME
sem_trywait, sem_wait — lock a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_trywait(sem_t *sem);
int sem_wait(sem_t *sem);

DESCRIPTION
The sem_trywait() function shall lock the semaphore referenced by sem only if the semaphore is
currently not locked; that is, if the semaphore value is currently positive. Otherwise, it shall not
lock the semaphore.

The sem_wait() function shall lock the semaphore referenced by sem by performing a semaphore
lock operation on that semaphore. If the semaphore value is currently zero, then the calling
thread shall not return from the call to sem_wait() until it either locks the semaphore or the call is
interrupted by a signal.

Upon successful return, the state of the semaphore shall be locked and shall remain locked until
the sem_post() function is executed and returns successfully.

The sem_wait() function is interruptible by the delivery of a signal.

RETURN VALUE
The sem_trywait() and sem_wait() functions shall return zero if the calling process successfully
performed the semaphore lock operation on the semaphore designated by sem. If the call was
unsuccessful, the state of the semaphore shall be unchanged, and the function shall return a
value of −1 and set errno to indicate the error.

ERRORS
The sem_trywait() function shall fail if:

[EAGAIN] The semaphore was already locked, so it cannot be immediately locked by the
sem_trywait() operation.

The sem_trywait() and sem_wait() functions may fail if:

[EDEADLK] A deadlock condition was detected.

[EINTR] A signal interrupted this function.

[EINVAL] The sem argument does not refer to a valid semaphore.

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in XBD
Section 3.285 (on page 79).

The sem_trywait() and sem_wait() functions are part of the Semaphores option and need not be
provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

1828 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

58370

58371

58372

58373

58374

58375

58376

58377

58378

58379

58380

58381

58382

58383

58384

58385

58386

58387

58388

58389

58390

58391

58392

58393

58394

58395

58396

58397

58398

58399

58400

58401

58402

58403

58404

58405

58406

58407

58408

58409

58410

System Interfaces sem_trywait()

SEE ALSO
semctl(), semget(), semop(), sem_post(), sem_timedwait()

XBD Section 3.285 (on page 79), Section 4.11 (on page 110), <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_trywait() and sem_wait() functions are marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

The sem_timedwait() function is added to the SEE ALSO section for alignment with IEEE Std
1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/121 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Issue 7
SD5-XSH-ERN-54 is applied, removing the sem_wait() function from the ‘‘shall fail’’ error cases.

The sem_trywait() and sem_wait() functions are moved from the Semaphores option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1829

58411

58412

58413

58414

58415

58416

58417

58418

58419

58420

58421

58422

58423

58424

58425

58426

sem_unlink() System Interfaces

NAME
sem_unlink — remove a named semaphore

SYNOPSIS
#include <semaphore.h>

int sem_unlink(const char *name);

DESCRIPTION
The sem_unlink() function shall remove the semaphore named by the string name. If the
semaphore named by name is currently referenced by other processes, then sem_unlink() shall
have no effect on the state of the semaphore. If one or more processes have the semaphore open
when sem_unlink() is called, destruction of the semaphore is postponed until all references to the
semaphore have been destroyed by calls to sem_close(), _exit(), or exec. Calls to sem_open() to
recreate or reconnect to the semaphore refer to a new semaphore after sem_unlink() is called. The
sem_unlink() call shall not block until all references have been destroyed; it shall return
immediately.

RETURN VALUE
Upon successful completion, the sem_unlink() function shall return a value of 0. Otherwise, the
semaphore shall not be changed and the function shall return a value of −1 and set errno to
indicate the error.

ERRORS
The sem_unlink() function shall fail if:

[EACCES] Permission is denied to unlink the named semaphore.

[ENOENT] The named semaphore does not exist.

The sem_unlink() function may fail if:

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems. A call to sem_unlink()
with a name argument that contains the same semaphore name as was
previously used in a successful sem_open() call shall not give an
[ENAMETOOLONG] error.

EXAMPLES
None.

APPLICATION USAGE
The sem_unlink() function is part of the Semaphores option and need not be available on all
implementations.

RATIONALE
None.

FUTURE DIRECTIONS
A future version might require the sem_open() and sem_unlink() functions to have semantics
similar to normal file system operations.

1830 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

58427

58428

58429

58430

58431

58432

58433

58434

58435

58436

58437

58438

58439

58440

58441

58442

58443

58444

58445

58446

58447

58448

58449

58450

58451

58452

58453

58454

58455

58456

58457

58458

58459

58460

58461

58462

58463

58464

58465

58466

58467

58468

System Interfaces sem_unlink()

SEE ALSO
semctl(), semget(), semop(), sem_close(), sem_open()

XBD <semaphore.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The sem_unlink() function is marked as part of the Semaphores option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Semaphores option.

Issue 7
Austin Group Interpretation 1003.1-2001 #077 is applied, changing [ENAMETOOLONG] from a
‘‘shall fail’’ to a ‘‘may fail’’ error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE DIRECTIONS.

The sem_unlink() function is moved from the Semaphores option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1831

58469

58470

58471

58472

58473

58474

58475

58476

58477

58478

58479

58480

58481

58482

sem_wait() System Interfaces

NAME
sem_wait — lock a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_wait(sem_t *sem);

DESCRIPTION
Refer to sem_trywait().

1832 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

58483

58484

58485

58486

58487

58488

58489

System Interfaces semctl()

NAME
semctl — XSI semaphore control operations

SYNOPSIS
XSI #include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, ...);

DESCRIPTION
The semctl() function operates on XSI semaphores (see XBD Section 4.16, on page 113). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 497).

The semctl() function provides a variety of semaphore control operations as specified by cmd.
The fourth argument is optional and depends upon the operation requested. If required, it is of
type union semun, which the application shall explicitly declare:

union semun {
int val;
struct semid_ds *buf;
unsigned short *array;

} arg;

The following semaphore control operations as specified by cmd are executed with respect to the
semaphore specified by semid and semnum. The level of permission required for each operation
is shown with each command; see Section 2.7 (on page 496). The symbolic names for the values
of cmd are defined in the <sys/sem.h> header:

GETVAL Return the value of semval; see <sys/sem.h>. Requires read permission.

SETVAL Set the value of semval to arg.val, where arg is the value of the fourth argument
to semctl(). When this command is successfully executed, the semadj value
corresponding to the specified semaphore in all processes is cleared. Requires
alter permission; see Section 2.7 (on page 496).

GETPID Return the value of sempid. Requires read permission.

GETNCNT Return the value of semncnt. Requires read permission.

GETZCNT Return the value of semzcnt. Requires read permission.

The following values of cmd operate on each semval in the set of semaphores:

GETALL Return the value of semval for each semaphore in the semaphore set and place
into the array pointed to by arg.array, where arg is the fourth argument to
semctl(). Requires read permission.

SETALL Set the value of semval for each semaphore in the semaphore set according to
the array pointed to by arg.array, where arg is the fourth argument to semctl().
When this command is successfully executed, the semadj values corresponding
to each specified semaphore in all processes are cleared. Requires alter
permission.

The following values of cmd are also available:

IPC_STAT Place the current value of each member of the semid_ds data structure
associated with semid into the structure pointed to by arg.buf , where arg is the
fourth argument to semctl(). The contents of this structure are defined in
<sys/sem.h>. Requires read permission.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1833

58490

58491

58492

58493

58494

58495

58496

58497

58498

58499

58500

58501

58502

58503

58504

58505

58506

58507

58508

58509

58510

58511

58512

58513

58514

58515

58516

58517

58518

58519

58520

58521

58522

58523

58524

58525

58526

58527

58528

58529

58530

58531

58532

semctl() System Interfaces

IPC_SET Set the value of the following members of the semid_ds data structure
associated with semid to the corresponding value found in the structure
pointed to by arg.buf , where arg is the fourth argument to semctl():

sem_perm.uid
sem_perm.gid
sem_perm.mode

The mode bits specified in Section 2.7.1 (on page 496) are copied into the
corresponding bits of the sem_perm.mode associated with semid. The stored
values of any other bits are unspecified.

This command can only be executed by a process that has an effective user ID
equal to either that of a process with appropriate privileges or to the value of
sem_perm.cuid or sem_perm.uid in the semid_ds data structure associated with
semid.

IPC_RMID Remove the semaphore identifier specified by semid from the system and
destroy the set of semaphores and semid_ds data structure associated with it.
This command can only be executed by a process that has an effective user ID
equal to either that of a process with appropriate privileges or to the value of
sem_perm.cuid or sem_perm.uid in the semid_ds data structure associated with
semid.

RETURN VALUE
If successful, the value returned by semctl() depends on cmd as follows:

GETVAL The value of semval.

GETPID The value of sempid.

GETNCNT The value of semncnt.

GETZCNT The value of semzcnt.

All others 0.

Otherwise, semctl() shall return −1 and set errno to indicate the error.

ERRORS
The semctl() function shall fail if:

[EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page
496).

[EINVAL] The value of semid is not a valid semaphore identifier, or the value of semnum
is less than 0 or greater than or equal to sem_nsems, or the value of cmd is not a
valid command.

[EPERM] The argument cmd is equal to IPC_RMID or IPC_SET and the effective user ID
of the calling process is not equal to that of a process with appropriate
privileges and it is not equal to the value of sem_perm.cuid or sem_perm.uid in
the data structure associated with semid.

[ERANGE] The argument cmd is equal to SETVAL or SETALL and the value to which
semval is to be set is greater than the system-imposed maximum.

1834 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

58533

58534

58535

58536

58537

58538

58539

58540

58541

58542

58543

58544

58545

58546

58547

58548

58549

58550

58551

58552

58553

58554

58555

58556

58557

58558

58559

58560

58561

58562

58563

58564

58565

58566

58567

58568

58569

58570

58571

58572

System Interfaces semctl()

EXAMPLES
None.

APPLICATION USAGE
The fourth parameter in the SYNOPSIS section is now specified as "..." in order to avoid a
clash with the ISO C standard when referring to the union semun (as defined in Issue 3) and for
backwards-compatibility.

The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 (on page 496) can be easily modified to use the
alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 496), Section 2.8 (on page 497), semget(), semop(), sem_close(), sem_destroy(),
sem_getvalue(), sem_init(), sem_open(), sem_post(), sem_trywait(), sem_unlink()

XBD Section 4.16 (on page 113), <sys/sem.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to the APPLICATION USAGE section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1835

58573

58574

58575

58576

58577

58578

58579

58580

58581

58582

58583

58584

58585

58586

58587

58588

58589

58590

58591

58592

58593

58594

58595

semget() System Interfaces

NAME
semget — get set of XSI semaphores

SYNOPSIS
XSI #include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

DESCRIPTION
The semget() function operates on XSI semaphores (see XBD Section 4.16, on page 113). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 497).

The semget() function shall return the semaphore identifier associated with key.

A semaphore identifier with its associated semid_ds data structure and its associated set of
nsems semaphores (see <sys/sem.h>) is created for key if one of the following is true:

• The argument key is equal to IPC_PRIVATE.

• The argument key does not already have a semaphore identifier associated with it and
(semflg &IPC_CREAT) is non-zero.

Upon creation, the semid_ds data structure associated with the new semaphore identifier is
initialized as follows:

• In the operation permissions structure sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and
sem_perm.gid shall be set equal to the effective user ID and effective group ID, respectively,
of the calling process.

• The low-order 9 bits of sem_perm.mode shall be set equal to the low-order 9 bits of semflg.

• The variable sem_nsems shall be set equal to the value of nsems.

• The variable sem_otime shall be set equal to 0 and sem_ctime shall be set equal to the current
time.

• The data structure associated with each semaphore in the set need not be initialized. The
semctl() function with the command SETVAL or SETALL can be used to initialize each
semaphore.

RETURN VALUE
Upon successful completion, semget() shall return a non-negative integer, namely a semaphore
identifier; otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The semget() function shall fail if:

[EACCES] A semaphore identifier exists for key, but operation permission as specified by
the low-order 9 bits of semflg would not be granted; see Section 2.7 (on page
496).

[EEXIST] A semaphore identifier exists for the argument key but ((semflg &IPC_CREAT)
&&(semflg &IPC_EXCL)) is non-zero.

[EINVAL] The value of nsems is either less than or equal to 0 or greater than the system-
imposed limit, or a semaphore identifier exists for the argument key, but the
number of semaphores in the set associated with it is less than nsems and
nsems is not equal to 0.

1836 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

58596

58597

58598

58599

58600

58601

58602

58603

58604

58605

58606

58607

58608

58609

58610

58611

58612

58613

58614

58615

58616

58617

58618

58619

58620

58621

58622

58623

58624

58625

58626

58627

58628

58629

58630

58631

58632

58633

58634

58635

58636

System Interfaces semget()

[ENOENT] A semaphore identifier does not exist for the argument key and (semflg
&IPC_CREAT) is equal to 0.

[ENOSPC] A semaphore identifier is to be created but the system-imposed limit on the
maximum number of allowed semaphores system-wide would be exceeded.

EXAMPLES

Creating a Semaphore Identifier

The following example gets a unique semaphore key using the ftok() function, then gets a
semaphore ID associated with that key using the semget() function (the first call also tests to
make sure the semaphore exists). If the semaphore does not exist, the program creates it, as
shown by the second call to semget(). In creating the semaphore for the queuing process, the
program attempts to create one semaphore with read/write permission for all. It also uses the
IPC_EXCL flag, which forces semget() to fail if the semaphore already exists.

After creating the semaphore, the program uses a call to semop() to initialize it to the values in
the sbuf array. The number of processes that can execute concurrently without queuing is
initially set to 2. The final call to semget() creates a semaphore identifier that can be used later in
the program.

#include <sys/types.h>
#include <stdio.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>
#include <pwd.h>
#include <fcntl.h>
#include <limits.h>
...
key_t semkey;
int semid, pfd, fv;
struct sembuf sbuf;
char *lgn;
char filename[PATH_MAX+1];
struct stat outstat;
struct passwd *pw;
...
/* Get unique key for semaphore. */
if ((semkey = ftok("/tmp", ’a’)) == (key_t) -1) {

perror("IPC error: ftok"); exit(1);
}

/* Get semaphore ID associated with this key. */
if ((semid = semget(semkey, 0, 0)) == -1) {

/* Semaphore does not exist - Create. */
if ((semid = semget(semkey, 1, IPC_CREAT | IPC_EXCL | S_IRUSR |

S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH)) != -1)
{

/* Initialize the semaphore. */

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1837

58637

58638

58639

58640

58641

58642

58643

58644

58645

58646

58647

58648

58649

58650

58651

58652

58653

58654

58655

58656

58657

58658

58659

58660

58661

58662

58663

58664

58665

58666

58667

58668

58669

58670

58671

58672

58673

58674

58675

58676

58677

58678

58679

58680

58681

58682

58683

semget() System Interfaces

sbuf.sem_num = 0;
sbuf.sem_op = 2; /* This is the number of runs

without queuing. */
sbuf.sem_flg = 0;
if (semop(semid, &sbuf, 1) == -1) {

perror("IPC error: semop"); exit(1);
}

}
else if (errno == EEXIST) {

if ((semid = semget(semkey, 0, 0)) == -1) {
perror("IPC error 1: semget"); exit(1);

}
}
else {

perror("IPC error 2: semget"); exit(1);
}

}
...

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 (on page 496) can be easily modified to use the
alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 496), Section 2.8 (on page 497), semctl(), semop(), sem_close(), sem_destroy(),
sem_getvalue(), sem_init(), sem_open(), sem_post(), sem_trywait(), sem_unlink()

XBD Section 4.16 (on page 113), <sys/sem.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Issue 6
IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/122 is applied, updating the
DESCRIPTION from ‘‘each semaphore in the set shall not be initialized’’ to ‘‘each semaphore in
the set need not be initialized’’.

1838 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

58684

58685

58686

58687

58688

58689

58690

58691

58692

58693

58694

58695

58696

58697

58698

58699

58700

58701

58702

58703

58704

58705

58706

58707

58708

58709

58710

58711

58712

58713

58714

58715

58716

58717

58718

58719

58720

58721

58722

58723

System Interfaces semop()

NAME
semop — XSI semaphore operations

SYNOPSIS
XSI #include <sys/sem.h>

int semop(int semid, struct sembuf *sops, size_t nsops);

DESCRIPTION
The semop() function operates on XSI semaphores (see XBD Section 4.16, on page 113). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 497).

The semop() function shall perform atomically a user-defined array of semaphore operations in
array order on the set of semaphores associated with the semaphore identifier specified by the
argument semid.

The argument sops is a pointer to a user-defined array of semaphore operation structures. The
implementation shall not modify elements of this array unless the application uses
implementation-defined extensions.

The argument nsops is the number of such structures in the array.

Each structure, sembuf, includes the following members:

Member Type Member Name Description

short sem_num Semaphore number.
short sem_op Semaphore operation.
short sem_flg Operation flags.

Each semaphore operation specified by sem_op is performed on the corresponding semaphore
specified by semid and sem_num.

The variable sem_op specifies one of three semaphore operations:

1. If sem_op is a negative integer and the calling process has alter permission, one of the
following shall occur:

• If semval(see <sys/sem.h>) is greater than or equal to the absolute value of sem_op,
the absolute value of sem_op is subtracted from semval. Also, if (sem_flg
&SEM_UNDO) is non-zero, the absolute value of sem_op shall be added to the
semadj value of the calling process for the specified semaphore.

• If semval is less than the absolute value of sem_op and (sem_flg &IPC_NOWAIT) is
non-zero, semop() shall return immediately.

• If semval is less than the absolute value of sem_op and (sem_flg &IPC_NOWAIT) is 0,
semop() shall increment the semncnt associated with the specified semaphore and
suspend execution of the calling thread until one of the following conditions occurs:

— The value of semval becomes greater than or equal to the absolute value of
sem_op. When this occurs, the value of semncnt associated with the specified
semaphore shall be decremented, the absolute value of sem_op shall be
subtracted from semval and, if (sem_flg &SEM_UNDO) is non-zero, the
absolute value of sem_op shall be added to the semadj value of the calling
process for the specified semaphore.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1839

58724

58725

58726

58727

58728

58729

58730

58731

58732

58733

58734

58735

58736

58737

58738

58739

58740

58741

58742

58743

58744

58745

58746

58747

58748

58749

58750

58751

58752

58753

58754

58755

58756

58757

58758

58759

58760

58761

58762

58763

58764

semop() System Interfaces

— The semid for which the calling thread is awaiting action is removed from the
system. When this occurs, errno shall be set equal to [EIDRM] and −1 shall be
returned.

— The calling thread receives a signal that is to be caught. When this occurs, the
value of semncnt associated with the specified semaphore shall be
decremented, and the calling thread shall resume execution in the manner
prescribed in sigaction().

2. If sem_op is a positive integer and the calling process has alter permission, the value of
sem_op shall be added to semval and, if (sem_flg &SEM_UNDO) is non-zero, the value of
sem_op shall be subtracted from the semadj value of the calling process for the specified
semaphore.

3. If sem_op is 0 and the calling process has read permission, one of the following shall occur:

• If semval is 0, semop() shall return immediately.

• If semval is non-zero and (sem_flg &IPC_NOWAIT) is non-zero, semop() shall return
immediately.

• If semval is non-zero and (sem_flg &IPC_NOWAIT) is 0, semop() shall increment the
semzcnt associated with the specified semaphore and suspend execution of the
calling thread until one of the following occurs:

— The value of semval becomes 0, at which time the value of semzcnt associated
with the specified semaphore shall be decremented.

— The semid for which the calling thread is awaiting action is removed from the
system. When this occurs, errno shall be set equal to [EIDRM] and −1 shall be
returned.

— The calling thread receives a signal that is to be caught. When this occurs, the
value of semzcnt associated with the specified semaphore shall be
decremented, and the calling thread shall resume execution in the manner
prescribed in sigaction().

Upon successful completion, the value of sempid for each semaphore specified in the array
pointed to by sops shall be set equal to the process ID of the calling process.

RETURN VALUE
Upon successful completion, semop() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The semop() function shall fail if:

[E2BIG] The value of nsops is greater than the system-imposed maximum.

[EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page
496).

[EAGAIN] The operation would result in suspension of the calling process but (sem_flg
&IPC_NOWAIT) is non-zero.

[EFBIG] The value of sem_num is less than 0 or greater than or equal to the number of
semaphores in the set associated with semid.

1840 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

58765

58766

58767

58768

58769

58770

58771

58772

58773

58774

58775

58776

58777

58778

58779

58780

58781

58782

58783

58784

58785

58786

58787

58788

58789

58790

58791

58792

58793

58794

58795

58796

58797

58798

58799

58800

58801

58802

58803

58804

58805

System Interfaces semop()

[EIDRM] The semaphore identifier semid is removed from the system.

[EINTR] The semop() function was interrupted by a signal.

[EINVAL] The value of semid is not a valid semaphore identifier, or the number of
individual semaphores for which the calling process requests a SEM_UNDO
would exceed the system-imposed limit.

[ENOSPC] The limit on the number of individual processes requesting a SEM_UNDO
would be exceeded.

[ERANGE] An operation would cause a semval to overflow the system-imposed limit, or
an operation would cause a semadj value to overflow the system-imposed
limit.

EXAMPLES

Setting Values in Semaphores

The following example sets the values of the two semaphores associated with the semid identifier
to the values contained in the sb array.

#include <sys/sem.h>
...
int semid;
struct sembuf sb[2];
int nsops = 2;
int result;

/* Adjust value of semaphore in the semaphore array semid. */
sb[0].sem_num = 0;
sb[0].sem_op = -1;
sb[0].sem_flg = SEM_UNDO | IPC_NOWAIT;
sb[1].sem_num = 1;
sb[1].sem_op = 1;
sb[1].sem_flg = 0;

result = semop(semid, sb, nsops);

Creating a Semaphore Identifier

The following example gets a unique semaphore key using the ftok() function, then gets a
semaphore ID associated with that key using the semget() function (the first call also tests to
make sure the semaphore exists). If the semaphore does not exist, the program creates it, as
shown by the second call to semget(). In creating the semaphore for the queuing process, the
program attempts to create one semaphore with read/write permission for all. It also uses the
IPC_EXCL flag, which forces semget() to fail if the semaphore already exists.

After creating the semaphore, the program uses a call to semop() to initialize it to the values in
the sbuf array. The number of processes that can execute concurrently without queuing is
initially set to 2. The final call to semget() creates a semaphore identifier that can be used later in
the program.

The final call to semop() acquires the semaphore and waits until it is free; the SEM_UNDO
option releases the semaphore when the process exits, waiting until there are less than two
processes running concurrently.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1841

58806

58807

58808

58809

58810

58811

58812

58813

58814

58815

58816

58817

58818

58819

58820

58821

58822

58823

58824

58825

58826

58827

58828

58829

58830

58831

58832

58833

58834

58835

58836

58837

58838

58839

58840

58841

58842

58843

58844

58845

58846

58847

semop() System Interfaces

#include <sys/types.h>
#include <stdio.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>
#include <pwd.h>
#include <fcntl.h>
#include <limits.h>
...
key_t semkey;
int semid, pfd, fv;
struct sembuf sbuf;
char *lgn;
char filename[PATH_MAX+1];
struct stat outstat;
struct passwd *pw;
...
/* Get unique key for semaphore. */
if ((semkey = ftok("/tmp", ’a’)) == (key_t) -1) {

perror("IPC error: ftok"); exit(1);
}

/* Get semaphore ID associated with this key. */
if ((semid = semget(semkey, 0, 0)) == -1) {

/* Semaphore does not exist - Create. */
if ((semid = semget(semkey, 1, IPC_CREAT | IPC_EXCL | S_IRUSR |

S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH)) != -1)
{

/* Initialize the semaphore. */
sbuf.sem_num = 0;
sbuf.sem_op = 2; /* This is the number of runs without queuing. */
sbuf.sem_flg = 0;
if (semop(semid, &sbuf, 1) == -1) {

perror("IPC error: semop"); exit(1);
}

}
else if (errno == EEXIST) {

if ((semid = semget(semkey, 0, 0)) == -1) {
perror("IPC error 1: semget"); exit(1);

}
}
else {

perror("IPC error 2: semget"); exit(1);
}

}
...
sbuf.sem_num = 0;
sbuf.sem_op = -1;
sbuf.sem_flg = SEM_UNDO;

1842 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

58848

58849

58850

58851

58852

58853

58854

58855

58856

58857

58858

58859

58860

58861

58862

58863

58864

58865

58866

58867

58868

58869

58870

58871

58872

58873

58874

58875

58876

58877

58878

58879

58880

58881

58882

58883

58884

58885

58886

58887

58888

58889

58890

58891

58892

58893

58894

58895

58896

58897

58898

System Interfaces semop()

if (semop(semid, &sbuf, 1) == -1) {
perror("IPC Error: semop"); exit(1);

}

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 (on page 496) can be easily modified to use the
alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 496), Section 2.8 (on page 497), exec , exit(), fork(), semctl(), semget(),
sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(), sem_post(), sem_trywait(),
sem_unlink()

XBD Section 4.16 (on page 113), <sys/ipc.h>, <sys/sem.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Issue 7
SD5-XSH-ERN-171 is applied, updating the DESCRIPTION to clarify the order in which the
operations in sops will be performed when there are multiple operations.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1843

58899

58900

58901

58902

58903

58904

58905

58906

58907

58908

58909

58910

58911

58912

58913

58914

58915

58916

58917

58918

58919

58920

58921

58922

58923

send() System Interfaces

NAME
send — send a message on a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t send(int socket, const void *buffer, size_t length, int flags);

DESCRIPTION
The send() function shall initiate transmission of a message from the specified socket to its peer.
The send() function shall send a message only when the socket is connected. If the socket is a
connectionless-mode socket, the message shall be sent to the pre-specified peer address.

The send() function takes the following arguments:

socket Specifies the socket file descriptor.

buffer Points to the buffer containing the message to send.

length Specifies the length of the message in bytes.

flags Specifies the type of message transmission. Values of this argument are
formed by logically OR’ing zero or more of the following flags:

MSG_EOR Terminates a record (if supported by the protocol).

MSG_OOB Sends out-of-band data on sockets that support out-of-
band communications. The significance and semantics
of out-of-band data are protocol-specific.

MSG_NOSIGNAL Requests not to send the SIGPIPE signal if an attempt to
send is made on a stream-oriented socket that is no
longer connected. The [EPIPE] error shall still be
returned.

The length of the message to be sent is specified by the length argument. If the message is too
long to pass through the underlying protocol, send() shall fail and no data shall be transmitted.

Successful completion of a call to send() does not guarantee delivery of the message. A return
value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted, and the
socket file descriptor does not have O_NONBLOCK set, send() shall block until space is
available. If space is not available at the sending socket to hold the message to be transmitted,
and the socket file descriptor does have O_NONBLOCK set, send() shall fail. The select() and
poll() functions can be used to determine when it is possible to send more data.

The socket in use may require the process to have appropriate privileges to use the send()
function.

RETURN VALUE
Upon successful completion, send() shall return the number of bytes sent. Otherwise, −1 shall be
returned and errno set to indicate the error.

ERRORS
The send() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and the requested
operation would block.

1844 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

58924

58925

58926

58927

58928

58929

58930

58931

58932

58933

58934

58935

58936

58937

58938

58939

58940

58941

58942

58943

58944

58945

58946

58947

58948

58949

58950

58951

58952

58953

58954

58955

58956

58957

58958

58959

58960

58961

58962

58963

58964

58965

System Interfaces send()

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EDESTADDRREQ]
The socket is not connection-mode and no peer address is set.

[EINTR] A signal interrupted send() before any data was transmitted.

[EMSGSIZE] The message is too large to be sent all at once, as the socket requires.

[ENOTCONN] The socket is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket argument is associated with a socket that does not support one or
more of the values set in flags.

[EPIPE] The socket is shut down for writing, or the socket is connection-mode and is
no longer connected. In the latter case, and if the socket is of type
SOCK_STREAM or SOCK_SEQPACKET and the MSG_NOSIGNAL flag is not
set, the SIGPIPE signal is generated to the calling thread.

The send() function may fail if:

[EACCES] The calling process does not have appropriate privileges.

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENETDOWN] The local network interface used to reach the destination is down.

[ENETUNREACH]
No route to the network is present.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

EXAMPLES
None.

APPLICATION USAGE
The send() function is equivalent to sendto() with a null pointer dest_len argument, and to write()
if no flags are used.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
connect(), getsockopt(), poll(), pselect(), recv(), recvfrom(), recvmsg(), sendmsg(), sendto(),
setsockopt(), shutdown(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
Austin Group Interpretation 1003.1-2001 #035 is applied, updating the DESCRIPTION to clarify
the behavior when the socket is a connectionless-mode socket.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1845

58966

58967

58968

58969

58970

58971

58972

58973

58974

58975

58976

58977

58978

58979

58980

58981

58982

58983

58984

58985

58986

58987

58988

58989

58990

58991

58992

58993

58994

58995

58996

58997

58998

58999

59000

59001

59002

59003

59004

send() System Interfaces

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard, 2006, Extended
API Set Part 2.

The [EPIPE] error is modified.

1846 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59005

59006

59007

System Interfaces sendmsg()

NAME
sendmsg — send a message on a socket using a message structure

SYNOPSIS
#include <sys/socket.h>

ssize_t sendmsg(int socket, const struct msghdr *message, int flags);

DESCRIPTION
The sendmsg() function shall send a message through a connection-mode or connectionless-
mode socket. If the socket is a connectionless-mode socket, the message shall be sent to the
address specified by msghdr if no pre-specified peer address has been set. If a peer address has
been pre-specified, either the message shall be sent to the address specified in msghdr
(overriding the pre-specified peer address), or the function shall return −1 and set errno to
[EISCONN]. If the socket is connection-mode, the destination address in msghdr shall be
ignored.

The sendmsg() function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a msghdr structure, containing both the destination address and the
buffers for the outgoing message. The length and format of the address
depend on the address family of the socket. The msg_flags member is ignored.

flags Specifies the type of message transmission. The application may specify 0 or
the following flag:

MSG_EOR Terminates a record (if supported by the protocol).

MSG_OOB Sends out-of-band data on sockets that support out-of-
bound data. The significance and semantics of out-of-
band data are protocol-specific.

MSG_NOSIGNAL Requests not to send the SIGPIPE signal if an attempt to
send is made on a stream-oriented socket that is no
longer connected. The [EPIPE] error shall still be
returned.

The msg_iov and msg_iovlen fields of message specify zero or more buffers containing the data to
be sent. msg_iov points to an array of iovec structures; msg_iovlen shall be set to the dimension of
this array. In each iovec structure, the iov_base field specifies a storage area and the iov_len field
gives its size in bytes. Some of these sizes can be zero. The data from each storage area indicated
by msg_iov is sent in turn.

Successful completion of a call to sendmsg() does not guarantee delivery of the message. A
return value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted and the
socket file descriptor does not have O_NONBLOCK set, the sendmsg() function shall block until
space is available. If space is not available at the sending socket to hold the message to be
transmitted and the socket file descriptor does have O_NONBLOCK set, the sendmsg() function
shall fail.

If the socket protocol supports broadcast and the specified address is a broadcast address for the
socket protocol, sendmsg() shall fail if the SO_BROADCAST option is not set for the socket.

The socket in use may require the process to have appropriate privileges to use the sendmsg()
function.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1847

59008

59009

59010

59011

59012

59013

59014

59015

59016

59017

59018

59019

59020

59021

59022

59023

59024

59025

59026

59027

59028

59029

59030

59031

59032

59033

59034

59035

59036

59037

59038

59039

59040

59041

59042

59043

59044

59045

59046

59047

59048

59049

59050

59051

sendmsg() System Interfaces

RETURN VALUE
Upon successful completion, sendmsg() shall return the number of bytes sent. Otherwise, −1
shall be returned and errno set to indicate the error.

ERRORS
The sendmsg() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and the requested
operation would block.

[EAFNOSUPPORT]
Addresses in the specified address family cannot be used with this socket.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EINTR] A signal interrupted sendmsg() before any data was transmitted.

[EINVAL] The sum of the iov_len values overflows an ssize_t.

[EMSGSIZE] The message is too large to be sent all at once (as the socket requires), or the
msg_iovlen member of the msghdr structure pointed to by message is less than
or equal to 0 or is greater than {IOV_MAX}.

[ENOTCONN] The socket is connection-mode but is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket argument is associated with a socket that does not support one or
more of the values set in flags.

[EPIPE] The socket is shut down for writing, or the socket is connection-mode and is
no longer connected. In the latter case, and if the socket is of type
SOCK_STREAM or SOCK_SEQPACKET and the MSG_NOSIGNAL flag is not
set, the SIGPIPE signal is generated to the calling thread.

If the address family of the socket is AF_UNIX, then sendmsg() shall fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the pathname
in the socket address.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of the pathname does not name an existing file or the path name
is an empty string.

[ENOTDIR] A component of the path prefix of the pathname in the socket address is not a
directory, or the pathname in the socket address contains at least one
non-<slash> character and ends with one or more trailing <slash> characters
and the last pathname component names an existing file that is neither a
directory nor a symbolic link to a directory.

The sendmsg() function may fail if:

[EACCES] Search permission is denied for a component of the path prefix; or write access
to the named socket is denied.

1848 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59052

59053

59054

59055

59056

59057

59058

59059

59060

59061

59062

59063

59064

59065

59066

59067

59068

59069

59070

59071

59072

59073

59074

59075

59076

59077

59078

59079

59080

59081

59082

59083

59084

59085

59086

59087

59088

59089

59090

59091

59092

System Interfaces sendmsg()

[EDESTADDRREQ]
The socket is not connection-mode and does not have its peer address set, and
no destination address was specified.

[EHOSTUNREACH]
The destination host cannot be reached (probably because the host is down or
a remote router cannot reach it).

[EIO] An I/O error occurred while reading from or writing to the file system.

[EISCONN] A destination address was specified and the socket is already connected.

[ENETDOWN] The local network interface used to reach the destination is down.

[ENETUNREACH]
No route to the network is present.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

If the address family of the socket is AF_UNIX, then sendmsg() may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the pathname in the socket address.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES
Done.

APPLICATION USAGE
The select() and poll() functions can be used to determine when it is possible to send more data.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), poll(), pselect(), recv(), recvfrom(), recvmsg(), send(), sendto(), setsockopt(),
shutdown(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #073 is applied, updating the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #143 is applied.

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard, 2006, Extended
API Set Part 2.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1849

59093

59094

59095

59096

59097

59098

59099

59100

59101

59102

59103

59104

59105

59106

59107

59108

59109

59110

59111

59112

59113

59114

59115

59116

59117

59118

59119

59120

59121

59122

59123

59124

59125

59126

59127

59128

59129

59130

59131

59132

59133

sendmsg() System Interfaces

The [EPIPE] error is modified.

1850 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59134

System Interfaces sendto()

NAME
sendto — send a message on a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t sendto(int socket, const void *message, size_t length,
int flags, const struct sockaddr *dest_addr,
socklen_t dest_len);

DESCRIPTION
The sendto() function shall send a message through a connection-mode or connectionless-mode
socket.

If the socket is a connectionless-mode socket, the message shall be sent to the address specified
by dest_addr if no pre-specified peer address has been set. If a peer address has been pre-
specified, either the message shall be sent to the address specified by dest_addr (overriding the
pre-specified peer address), or the function shall return −1 and set errno to [EISCONN].

If the socket is connection-mode, dest_addr shall be ignored.

The sendto() function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a buffer containing the message to be sent.

length Specifies the size of the message in bytes.

flags Specifies the type of message transmission. Values of this argument are
formed by logically OR’ing zero or more of the following flags:

MSG_EOR Terminates a record (if supported by the protocol).

MSG_OOB Sends out-of-band data on sockets that support out-of-
band data. The significance and semantics of out-of-
band data are protocol-specific.

MSG_NOSIGNAL Requests not to send the SIGPIPE signal if an attempt to
send is made on a stream-oriented socket that is no
longer connected. The [EPIPE] error shall still be
returned.

dest_addr Points to a sockaddr structure containing the destination address. The length
and format of the address depend on the address family of the socket.

dest_len Specifies the length of the sockaddr structure pointed to by the dest_addr
argument.

If the socket protocol supports broadcast and the specified address is a broadcast address for the
socket protocol, sendto() shall fail if the SO_BROADCAST option is not set for the socket.

The dest_addr argument specifies the address of the target.

The length argument specifies the length of the message.

Successful completion of a call to sendto() does not guarantee delivery of the message. A return
value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted and the
socket file descriptor does not have O_NONBLOCK set, sendto() shall block until space is
available. If space is not available at the sending socket to hold the message to be transmitted

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1851

59135

59136

59137

59138

59139

59140

59141

59142

59143

59144

59145

59146

59147

59148

59149

59150

59151

59152

59153

59154

59155

59156

59157

59158

59159

59160

59161

59162

59163

59164

59165

59166

59167

59168

59169

59170

59171

59172

59173

59174

59175

59176

sendto() System Interfaces

and the socket file descriptor does have O_NONBLOCK set, sendto() shall fail.

The socket in use may require the process to have appropriate privileges to use the sendto()
function.

RETURN VALUE
Upon successful completion, sendto() shall return the number of bytes sent. Otherwise, −1 shall
be returned and errno set to indicate the error.

ERRORS
The sendto() function shall fail if:

[EAFNOSUPPORT]
Addresses in the specified address family cannot be used with this socket.

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and the requested
operation would block.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EINTR] A signal interrupted sendto() before any data was transmitted.

[EMSGSIZE] The message is too large to be sent all at once, as the socket requires.

[ENOTCONN] The socket is connection-mode but is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket argument is associated with a socket that does not support one or
more of the values set in flags.

[EPIPE] The socket is shut down for writing, or the socket is connection-mode and is
no longer connected. In the latter case, and if the socket is of type
SOCK_STREAM or SOCK_SEQPACKET and the MSG_NOSIGNAL flag is not
set, the SIGPIPE signal is generated to the calling thread.

If the address family of the socket is AF_UNIX, then sendto() shall fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the pathname
in the socket address.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of the pathname does not name an existing file or the pathname
is an empty string.

[ENOTDIR] A component of the path prefix of the pathname in the socket address is not a
directory, or the pathname in the socket address contains at least one
non-<slash> character and ends with one or more trailing <slash> characters
and the last pathname component names an existing file that is neither a
directory nor a symbolic link to a directory.

1852 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59177

59178

59179

59180

59181

59182

59183

59184

59185

59186

59187

59188

59189

59190

59191

59192

59193

59194

59195

59196

59197

59198

59199

59200

59201

59202

59203

59204

59205

59206

59207

59208

59209

59210

59211

59212

59213

59214

System Interfaces sendto()

The sendto() function may fail if:

[EACCES] Search permission is denied for a component of the path prefix; or write access
to the named socket is denied.

[EDESTADDRREQ]
The socket is not connection-mode and does not have its peer address set, and
no destination address was specified.

[EHOSTUNREACH]
The destination host cannot be reached (probably because the host is down or
a remote router cannot reach it).

[EINVAL] The dest_len argument is not a valid length for the address family.

[EIO] An I/O error occurred while reading from or writing to the file system.

[EISCONN] A destination address was specified and the socket is already connected.

[ENETDOWN] The local network interface used to reach the destination is down.

[ENETUNREACH]
No route to the network is present.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

If the address family of the socket is AF_UNIX, then sendto() may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the pathname in the socket address.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
The select() and poll() functions can be used to determine when it is possible to send more data.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), poll(), pselect(), recv(), recvfrom(), recvmsg(), send(), sendmsg(), setsockopt(),
shutdown(), socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1853

59215

59216

59217

59218

59219

59220

59221

59222

59223

59224

59225

59226

59227

59228

59229

59230

59231

59232

59233

59234

59235

59236

59237

59238

59239

59240

59241

59242

59243

59244

59245

59246

59247

59248

59249

59250

59251

59252

59253

59254

sendto() System Interfaces

Issue 7
Austin Group Interpretations 1003.1-2001 #035 and #073 are applied, updating the [EISCONN]
error and the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #143 is applied, clarifying the [ENAMETOOLONG]
error condition.

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard, 2006, Extended
API Set Part 2.

The [EPIPE] error is modified.

1854 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59255

59256

59257

59258

59259

59260

59261

59262

System Interfaces setbuf()

NAME
setbuf — assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf(FILE *restrict stream, char *restrict buf);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

Except that it returns no value, the function call:

setbuf(stream, buf)

shall be equivalent to:

setvbuf(stream, buf, _IOFBF, BUFSIZ)

if buf is not a null pointer, or to:

setvbuf(stream, buf, _IONBF, BUFSIZ)

if buf is a null pointer.

RETURN VALUE
The setbuf() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
A common source of error is allocating buffer space as an ‘‘automatic’’ variable in a code block,
and then failing to close the stream in the same block.

With setbuf(), allocating a buffer of BUFSIZ bytes does not necessarily imply that all of BUFSIZ
bytes are used for the buffer area.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), setvbuf()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The prototype for setbuf() is updated for alignment with the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1855

59263

59264

59265

59266

59267

59268

59269

59270

59271

59272

59273

59274

59275

59276

59277

59278

59279

59280

59281

59282

59283

59284

59285

59286

59287

59288

59289

59290

59291

59292

59293

59294

59295

59296

59297

59298

59299

59300

setegid() System Interfaces

NAME
setegid — set the effective group ID

SYNOPSIS
#include <unistd.h>

int setegid(gid_t gid);

DESCRIPTION
If gid is equal to the real group ID or the saved set-group-ID, or if the process has appropriate
privileges, setegid() shall set the effective group ID of the calling process to gid; the real group
ID, saved set-group-ID, and any supplementary group IDs shall remain unchanged.

The setegid() function shall not affect the supplementary group list in any way.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The setegid() function shall fail if:

[EINVAL] The value of the gid argument is invalid and is not supported by the
implementation.

[EPERM] The process does not have appropriate privileges and gid does not match the
real group ID or the saved set-group-ID.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to the RATIONALE section in setuid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getuid(), seteuid(), setgid(), setregid(), setreuid(), setuid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

1856 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59301

59302

59303

59304

59305

59306

59307

59308

59309

59310

59311

59312

59313

59314

59315

59316

59317

59318

59319

59320

59321

59322

59323

59324

59325

59326

59327

59328

59329

59330

59331

59332

System Interfaces setenv()

NAME
setenv — add or change environment variable

SYNOPSIS
CX #include <stdlib.h>

int setenv(const char *envname, const char *envval, int overwrite);

DESCRIPTION
The setenv() function shall update or add a variable in the environment of the calling process.
The envname argument points to a string containing the name of an environment variable to be
added or altered. The environment variable shall be set to the value to which envval points. The
function shall fail if envname points to a string which contains an ’=’ character. If the
environment variable named by envname already exists and the value of overwrite is non-zero,
the function shall return success and the environment shall be updated. If the environment
variable named by envname already exists and the value of overwrite is zero, the function shall
return success and the environment shall remain unchanged.

If the application modifies environ or the pointers to which it points, the behavior of setenv() is
undefined. The setenv() function shall update the list of pointers to which environ points.

The strings described by envname and envval are copied by this function.

The setenv() function need not be thread-safe.

RETURN VALUE
Upon successful completion, zero shall be returned. Otherwise, −1 shall be returned, errno set to
indicate the error, and the environment shall be unchanged.

ERRORS
The setenv() function shall fail if:

[EINVAL] The name argument is a null pointer, points to an empty string, or points to a
string containing an ’=’ character.

[ENOMEM] Insufficient memory was available to add a variable or its value to the
environment.

EXAMPLES
None.

APPLICATION USAGE
See exec() for restrictions on changing the environment in multi-threaded applications.

RATIONALE
Unanticipated results may occur if setenv() changes the external variable environ. In particular, if
the optional envp argument to main() is present, it is not changed, and thus may point to an
obsolete copy of the environment (as may any other copy of environ). However, other than the
aforementioned restriction, the standard developers intended that the traditional method of
walking through the environment by way of the environ pointer must be supported.

It was decided that setenv() should be required by this version because it addresses a piece of
missing functionality, and does not impose a significant burden on the implementor.

There was considerable debate as to whether the System V putenv() function or the BSD setenv()
function should be required as a mandatory function. The setenv() function was chosen because
it permitted the implementation of the unsetenv() function to delete environmental variables,
without specifying an additional interface. The putenv() function is available as part of the XSI
option.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1857

59333

59334

59335

59336

59337

59338

59339

59340

59341

59342

59343

59344

59345

59346

59347

59348

59349

59350

59351

59352

59353

59354

59355

59356

59357

59358

59359

59360

59361

59362

59363

59364

59365

59366

59367

59368

59369

59370

59371

59372

59373

59374

59375

59376

setenv() System Interfaces

The standard developers considered requiring that setenv() indicate an error when a call to it
would result in exceeding {ARG_MAX}. The requirement was rejected since the condition might
be temporary, with the application eventually reducing the environment size. The ultimate
success or failure depends on the size at the time of a call to exec, which returns an indication of
this error condition.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getenv(), unsetenv()

XBD <stdlib.h>, <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/55 is applied, adding references to exec in
the APPLICATION USAGE and SEE ALSO sections.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

1858 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59377

59378

59379

59380

59381

59382

59383

59384

59385

59386

59387

59388

59389

59390

59391

59392

System Interfaces seteuid()

NAME
seteuid — set effective user ID

SYNOPSIS
#include <unistd.h>

int seteuid(uid_t uid);

DESCRIPTION
If uid is equal to the real user ID or the saved set-user-ID, or if the process has appropriate
privileges, seteuid() shall set the effective user ID of the calling process to uid; the real user ID
and saved set-user-ID shall remain unchanged.

The seteuid() function shall not affect the supplementary group list in any way.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The seteuid() function shall fail if:

[EINVAL] The value of the uid argument is invalid and is not supported by the
implementation.

[EPERM] The process does not have appropriate privileges and uid does not match the
real user ID or the saved set-user-ID.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to the RATIONALE section in setuid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getuid(), setegid(), setgid(), setregid(), setreuid(), setuid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/123 is applied, making an editorial
correction to the [EPERM] error in the ERRORS section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1859

59393

59394

59395

59396

59397

59398

59399

59400

59401

59402

59403

59404

59405

59406

59407

59408

59409

59410

59411

59412

59413

59414

59415

59416

59417

59418

59419

59420

59421

59422

59423

59424

59425

59426

setgid() System Interfaces

NAME
setgid — set-group-ID

SYNOPSIS
#include <unistd.h>

int setgid(gid_t gid);

DESCRIPTION
If the process has appropriate privileges, setgid() shall set the real group ID, effective group ID,
and the saved set-group-ID of the calling process to gid.

If the process does not have appropriate privileges, but gid is equal to the real group ID or the
saved set-group-ID, setgid() shall set the effective group ID to gid; the real group ID and saved
set-group-ID shall remain unchanged.

The setgid() function shall not affect the supplementary group list in any way.

Any supplementary group IDs of the calling process shall remain unchanged.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The setgid() function shall fail if:

[EINVAL] The value of the gid argument is invalid and is not supported by the
implementation.

[EPERM] The process does not have appropriate privileges and gid does not match the
real group ID or the saved set-group-ID.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to the RATIONALE section in setuid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getuid(), setegid(), seteuid(), setregid(), setreuid(), setuid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

1860 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59427

59428

59429

59430

59431

59432

59433

59434

59435

59436

59437

59438

59439

59440

59441

59442

59443

59444

59445

59446

59447

59448

59449

59450

59451

59452

59453

59454

59455

59456

59457

59458

59459

59460

59461

59462

59463

59464

59465

59466

59467

59468

System Interfaces setgid()

• Functionality associated with _POSIX_SAVED_IDS is now mandated. This is a FIPS
requirement.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The effects of setgid() in processes without appropriate privileges are changed.

• A requirement that the supplementary group list is not affected is added.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1861

59469

59470

59471

59472

59473

setgrent() System Interfaces

NAME
setgrent — reset the group database to the first entry

SYNOPSIS
XSI #include <grp.h>

void setgrent(void);

DESCRIPTION
Refer to endgrent().

1862 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59474

59475

59476

59477

59478

59479

59480

System Interfaces sethostent()

NAME
sethostent — network host database functions

SYNOPSIS
#include <netdb.h>

void sethostent(int stayopen);

DESCRIPTION
Refer to endhostent().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1863

59481

59482

59483

59484

59485

59486

59487

setitimer() System Interfaces

NAME
setitimer — set the value of an interval timer

SYNOPSIS
OB XSI #include <sys/time.h>

int setitimer(int which, const struct itimerval *restrict value,
struct itimerval *restrict ovalue);

DESCRIPTION
Refer to getitimer().

1864 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59488

59489

59490

59491

59492

59493

59494

59495

System Interfaces setjmp()

NAME
setjmp — set jump point for a non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp(jmp_buf env);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

A call to setjmp() shall save the calling environment in its env argument for later use by
longjmp().

It is unspecified whether setjmp() is a macro or a function. If a macro definition is suppressed in
order to access an actual function, or a program defines an external identifier with the name
setjmp, the behavior is undefined.

An application shall ensure that an invocation of setjmp() appears in one of the following
contexts only:

• The entire controlling expression of a selection or iteration statement

• One operand of a relational or equality operator with the other operand an integral
constant expression, with the resulting expression being the entire controlling expression
of a selection or iteration statement

• The operand of a unary ’!’ operator with the resulting expression being the entire
controlling expression of a selection or iteration

• The entire expression of an expression statement (possibly cast to void)

If the invocation appears in any other context, the behavior is undefined.

RETURN VALUE
If the return is from a direct invocation, setjmp() shall return 0. If the return is from a call to
longjmp(), setjmp() shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
In general, sigsetjmp() is more useful in dealing with errors and interrupts encountered in a low-
level subroutine of a program.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
longjmp(), sigsetjmp()

XBD <setjmp.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1865

59496

59497

59498

59499

59500

59501

59502

59503

59504

59505

59506

59507

59508

59509

59510

59511

59512

59513

59514

59515

59516

59517

59518

59519

59520

59521

59522

59523

59524

59525

59526

59527

59528

59529

59530

59531

59532

59533

59534

59535

59536

setjmp() System Interfaces

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

1866 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59537

59538

59539

59540

System Interfaces setkey()

NAME
setkey — set encoding key (CRYPT)

SYNOPSIS
XSI #include <stdlib.h>

void setkey(const char *key);

DESCRIPTION
The setkey() function provides access to an implementation-defined encoding algorithm. The
argument of setkey() is an array of length 64 bytes containing only the bytes with numerical
value of 0 and 1. If this string is divided into groups of 8, the low-order bit in each group is
ignored; this gives a 56-bit key which is used by the algorithm. This is the key that shall be used
with the algorithm to encode a string block passed to encrypt().

The setkey() function shall not change the setting of errno if successful. An application wishing to
check for error situations should set errno to 0 before calling setkey(). If errno is non-zero on
return, an error has occurred.

The setkey() function need not be thread-safe.

RETURN VALUE
No values are returned.

ERRORS
The setkey() function shall fail if:

[ENOSYS] The functionality is not supported on this implementation.

EXAMPLES
None.

APPLICATION USAGE
Decoding need not be implemented in all environments. This is related to government
restrictions in some countries on encryption and decryption routines. Historical practice has
been to ship a different version of the encryption library without the decryption feature in the
routines supplied. Thus the exported version of encrypt() does encoding but not decoding.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
crypt(), encrypt()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1867

59541

59542

59543

59544

59545

59546

59547

59548

59549

59550

59551

59552

59553

59554

59555

59556

59557

59558

59559

59560

59561

59562

59563

59564

59565

59566

59567

59568

59569

59570

59571

59572

59573

59574

59575

59576

59577

59578

59579

59580

setlocale() System Interfaces

NAME
setlocale — set program locale

SYNOPSIS
#include <locale.h>

char *setlocale(int category, const char *locale);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The setlocale() function selects the appropriate piece of the locale of the process, as specified by
the category and locale arguments, and may be used to change or query the entire locale of the
process or portions thereof. The value LC_ALL for category names the entire locale of the process;
other values for category name only a part of the locale of the process:

LC_COLLATE Affects the behavior of regular expressions and the collation functions.

LC_CTYPE Affects the behavior of regular expressions, character classification, character
conversion functions, and wide-character functions.

CX LC_MESSAGES Affects what strings are expected by commands and utilities as affirmative or
negative responses.

XSI It also affects what strings are given by commands and utilities as affirmative
or negative responses, and the content of messages.

LC_MONETARY Affects the behavior of functions that handle monetary values.

LC_NUMERIC Affects the behavior of functions that handle numeric values.

LC_TIME Affects the behavior of the time conversion functions.

The locale argument is a pointer to a character string containing the required setting of category.
The contents of this string are implementation-defined. In addition, the following preset values
of locale are defined for all settings of category:

CX "POSIX" Specifies the minimal environment for C-language translation called the
POSIX locale. If setlocale() is not invoked, the POSIX locale is the default at
entry to main().

"C" Equivalent to "POSIX".

CX " " Specifies an implementation-defined native environment. The determination
of the name of the new locale for the specified category depends on the value
of the associated environment variables, LC_* and LANG; see XBD Chapter 7
(on page 135) and Chapter 8 (on page 173).

A null pointer Used to direct setlocale() to query the current internationalized environment
and return the name of the locale.

CX Setting all of the categories of the locale of the process is similar to successively setting each
individual category of the locale of the process, except that all error checking is done before any
actions are performed. To set all the categories of the locale of the process, setlocale() is invoked
as:

setlocale(LC_ALL, "");

In this case, setlocale() shall first verify that the values of all the environment variables it needs
according to the precedence rules (described in XBD Chapter 8, on page 173) indicate supported

1868 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59581

59582

59583

59584

59585

59586

59587

59588

59589

59590

59591

59592

59593

59594

59595

59596

59597

59598

59599

59600

59601

59602

59603

59604

59605

59606

59607

59608

59609

59610

59611

59612

59613

59614

59615

59616

59617

59618

59619

59620

59621

59622

59623

System Interfaces setlocale()

locales. If the value of any of these environment variable searches yields a locale that is not
supported (and non-null), setlocale() shall return a null pointer and the locale of the process shall
not be changed. If all environment variables name supported locales, setlocale() shall proceed as
if it had been called for each category, using the appropriate value from the associated
environment variable or from the implementation-defined default if there is no such value.

The locale state is common to all threads within a process.

RETURN VALUE
Upon successful completion, setlocale() shall return the string associated with the specified
category for the new locale. Otherwise, setlocale() shall return a null pointer and the locale of the
process is not changed.

A null pointer for locale causes setlocale() to return a pointer to the string associated with the
category for the current locale of the process. The locale of the process shall not be changed.

The string returned by setlocale() is such that a subsequent call with that string and its associated
category shall restore that part of the locale of the process. The application shall not modify the
string returned which may be overwritten by a subsequent call to setlocale().

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The following code illustrates how a program can initialize the international environment for
one language, while selectively modifying the locale of the process such that regular expressions
and string operations can be applied to text recorded in a different language:

setlocale(LC_ALL, "De");
setlocale(LC_COLLATE, "Fr@dict");

Internationalized programs must call setlocale() to initiate a specific language operation. This can
be done by calling setlocale() as follows:

setlocale(LC_ALL, "");

Changing the setting of LC_MESSAGES has no effect on catalogs that have already been opened
by calls to catopen().

RATIONALE
The ISO C standard defines a collection of functions to support internationalization. One of the
most significant aspects of these functions is a facility to set and query the international
environment. The international environment is a repository of information that affects the
behavior of certain functionality, namely:

1. Character handling

2. Collating

3. Date/time formatting

4. Numeric editing

5. Monetary formatting

6. Messaging

The setlocale() function provides the application developer with the ability to set all or portions,

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1869

59624

59625

59626

59627

59628

59629

59630

59631

59632

59633

59634

59635

59636

59637

59638

59639

59640

59641

59642

59643

59644

59645

59646

59647

59648

59649

59650

59651

59652

59653

59654

59655

59656

59657

59658

59659

59660

59661

59662

59663

59664

59665

setlocale() System Interfaces

called categories, of the international environment. These categories correspond to the areas of
functionality mentioned above. The syntax for setlocale() is as follows:

char *setlocale(int category, const char *locale);

where category is the name of one of following categories, namely:

LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME

In addition, a special value called LC_ALL directs setlocale() to set all categories.

There are two primary uses of setlocale():

1. Querying the international environment to find out what it is set to

2. Setting the international environment, or locale, to a specific value

The behavior of setlocale() in these two areas is described below. Since it is difficult to describe
the behavior in words, examples are used to illustrate the behavior of specific uses.

To query the international environment, setlocale() is invoked with a specific category and the
null pointer as the locale. The null pointer is a special directive to setlocale() that tells it to query
rather than set the international environment. The following syntax is used to query the name of
the international environment:

setlocale({LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, \
LC_NUMERIC, LC_TIME},(char *) NULL);

The setlocale() function shall return the string corresponding to the current international
environment. This value may be used by a subsequent call to setlocale() to reset the international
environment to this value. However, it should be noted that the return value from setlocale()
may be a pointer to a static area within the function and is not guaranteed to remain unchanged
(that is, it may be modified by a subsequent call to setlocale()). Therefore, if the purpose of
calling setlocale() is to save the value of the current international environment so it can be
changed and reset later, the return value should be copied to an array of char in the calling
program.

There are three ways to set the international environment with setlocale():

setlocale(category, string)
This usage sets a specific category in the international environment to a specific value
corresponding to the value of the string. A specific example is provided below:

setlocale(LC_ALL, "fr_FR.ISO-8859-1");

In this example, all categories of the international environment are set to the locale
corresponding to the string "fr_FR.ISO-8859-1", or to the French language as spoken in
France using the ISO/IEC 8859-1: 1998 standard codeset.

If the string does not correspond to a valid locale, setlocale() shall return a null pointer and
the international environment is not changed. Otherwise, setlocale() shall return the name of
the locale just set.

1870 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59666

59667

59668

59669

59670

59671

59672

59673

59674

59675

59676

59677

59678

59679

59680

59681

59682

59683

59684

59685

59686

59687

59688

59689

59690

59691

59692

59693

59694

59695

59696

59697

59698

59699

59700

59701

59702

59703

59704

59705

59706

System Interfaces setlocale()

setlocale(category, "C")
The ISO C standard states that one locale must exist on all conforming implementations.
The name of the locale is C and corresponds to a minimal international environment needed
to support the C programming language.

setlocale(category, "")
This sets a specific category to an implementation-defined default. This corresponds to the
value of the environment variables.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fprintf(), fscanf(), isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(),
isprint(), ispunct(), isspace(), isupper(), iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswctype(),
iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit(),
isxdigit(), localeconv(), mblen(), mbstowcs(), mbtowc(), nl_langinfo(), setlocale(), strcoll(),
strerror(), strfmon(), strsignal(), strtod(), strxfrm(), tolower(), toupper(), towlower(), towupper(),
uselocale(), wcscoll(), wcstod(), wcstombs(), wcsxfrm(), wctomb()

XBD Chapter 7 (on page 135), Chapter 8 (on page 173), <langinfo.h>, <locale.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/124 is applied, updating the
DESCRIPTION to clarify the behavior of:

setlocale(LC_ALL, "");

Issue 7
Functionality relating to the Threads option is moved to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1871

59707

59708

59709

59710

59711

59712

59713

59714

59715

59716

59717

59718

59719

59720

59721

59722

59723

59724

59725

59726

59727

59728

59729

59730

59731

59732

59733

59734

59735

setlogmask() System Interfaces

NAME
setlogmask — set the log priority mask

SYNOPSIS
XSI #include <syslog.h>

int setlogmask(int maskpri);

DESCRIPTION
Refer to closelog().

1872 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59736

59737

59738

59739

59740

59741

59742

System Interfaces setnetent()

NAME
setnetent — network database function

SYNOPSIS
#include <netdb.h>

void setnetent(int stayopen);

DESCRIPTION
Refer to endnetent().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1873

59743

59744

59745

59746

59747

59748

59749

setpgid() System Interfaces

NAME
setpgid — set process group ID for job control

SYNOPSIS
#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

DESCRIPTION
The setpgid() function shall either join an existing process group or create a new process group
within the session of the calling process.

The process group ID of a session leader shall not change.

Upon successful completion, the process group ID of the process with a process ID that matches
pid shall be set to pgid.

As a special case, if pid is 0, the process ID of the calling process shall be used. Also, if pgid is 0,
the process ID of the indicated process shall be used.

RETURN VALUE
Upon successful completion, setpgid() shall return 0; otherwise, −1 shall be returned and errno
shall be set to indicate the error.

ERRORS
The setpgid() function shall fail if:

[EACCES] The value of the pid argument matches the process ID of a child process of the
calling process and the child process has successfully executed one of the exec
functions.

[EINVAL] The value of the pgid argument is less than 0, or is not a value supported by
the implementation.

[EPERM] The process indicated by the pid argument is a session leader.

[EPERM] The value of the pid argument matches the process ID of a child process of the
calling process and the child process is not in the same session as the calling
process.

[EPERM] The value of the pgid argument is valid but does not match the process ID of
the process indicated by the pid argument and there is no process with a
process group ID that matches the value of the pgid argument in the same
session as the calling process.

[ESRCH] The value of the pid argument does not match the process ID of the calling
process or of a child process of the calling process.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The setpgid() function shall group processes together for the purpose of signaling, placement in
foreground or background, and other job control actions.

The setpgid() function is similar to the setpgrp() function of 4.2 BSD, except that 4.2 BSD allowed
the specified new process group to assume any value. This presents certain security problems
and is more flexible than necessary to support job control.

1874 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59750

59751

59752

59753

59754

59755

59756

59757

59758

59759

59760

59761

59762

59763

59764

59765

59766

59767

59768

59769

59770

59771

59772

59773

59774

59775

59776

59777

59778

59779

59780

59781

59782

59783

59784

59785

59786

59787

59788

59789

59790

59791

59792

System Interfaces setpgid()

To provide tighter security, setpgid() only allows the calling process to join a process group
already in use inside its session or create a new process group whose process group ID was
equal to its process ID.

When a job control shell spawns a new job, the processes in the job must be placed into a new
process group via setpgid(). There are two timing constraints involved in this action:

1. The new process must be placed in the new process group before the appropriate
program is launched via one of the exec functions.

2. The new process must be placed in the new process group before the shell can correctly
send signals to the new process group.

To address these constraints, the following actions are performed. The new processes call
setpgid() to alter their own process groups after fork() but before exec. This satisfies the first
constraint. Under 4.3 BSD, the second constraint is satisfied by the synchronization property of
vfork(); that is, the shell is suspended until the child has completed the exec, thus ensuring that
the child has completed the setpgid(). A new version of fork() with this same synchronization
property was considered, but it was decided instead to merely allow the parent shell process to
adjust the process group of its child processes via setpgid(). Both timing constraints are now
satisfied by having both the parent shell and the child attempt to adjust the process group of the
child process; it does not matter which succeeds first.

Since it would be confusing to an application to have its process group change after it began
executing (that is, after exec), and because the child process would already have adjusted its
process group before this, the [EACCES] error was added to disallow this.

One non-obvious use of setpgid() is to allow a job control shell to return itself to its original
process group (the one in effect when the job control shell was executed). A job control shell
does this before returning control back to its parent when it is terminating or suspending itself as
a way of restoring its job control ‘‘state’’ back to what its parent would expect. (Note that the
original process group of the job control shell typically matches the process group of its parent,
but this is not necessarily always the case.)

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getpgrp(), setsid(), tcsetpgrp()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The setpgid() function is mandatory since _POSIX_JOB_CONTROL is required to be
defined in this version. This is a FIPS requirement.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1875

59793

59794

59795

59796

59797

59798

59799

59800

59801

59802

59803

59804

59805

59806

59807

59808

59809

59810

59811

59812

59813

59814

59815

59816

59817

59818

59819

59820

59821

59822

59823

59824

59825

59826

59827

59828

59829

59830

59831

59832

59833

59834

59835

setpgid() System Interfaces

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/56 is applied, changing the wording in
the DESCRIPTION from ‘‘the process group ID of the indicated process shall be used’’ to ‘‘the
process ID of the indicated process shall be used’’. This change reverts the wording to as in the
ISO POSIX-1: 1996 standard; it appeared to be an unintentional change.

1876 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59836

59837

59838

59839

System Interfaces setpgrp()

NAME
setpgrp — set the process group ID

SYNOPSIS
OB XSI #include <unistd.h>

pid_t setpgrp(void);

DESCRIPTION
If the calling process is not already a session leader, setpgrp() sets the process group ID of the
calling process to the process ID of the calling process. If setpgrp() creates a new session, then the
new session has no controlling terminal.

The setpgrp() function has no effect when the calling process is a session leader.

RETURN VALUE
Upon completion, setpgrp() shall return the process group ID.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
It is unspecified whether this function behaves as setpgid(0,0) or setsid() unless the process is
already a session leader. Therefore, applications are encouraged to use setpgid() or setsid() as
appropriate.

RATIONALE
None.

FUTURE DIRECTIONS
The setpgrp() function may be removed in a future version.

SEE ALSO
exec , fork(), getpid(), getsid(), kill(), setpgid(), setsid()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The setpgrp() function is marked obsolescent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1877

59840

59841

59842

59843

59844

59845

59846

59847

59848

59849

59850

59851

59852

59853

59854

59855

59856

59857

59858

59859

59860

59861

59862

59863

59864

59865

59866

59867

59868

59869

59870

59871

59872

setpriority() System Interfaces

NAME
setpriority — set the nice value

SYNOPSIS
XSI #include <sys/resource.h>

int setpriority(int which, id_t who, int nice);

DESCRIPTION
Refer to getpriority().

1878 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59873

59874

59875

59876

59877

59878

59879

System Interfaces setprotoent()

NAME
setprotoent — network protocol database functions

SYNOPSIS
#include <netdb.h>

void setprotoent(int stayopen);

DESCRIPTION
Refer to endprotoent().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1879

59880

59881

59882

59883

59884

59885

59886

setpwent() System Interfaces

NAME
setpwent — user database function

SYNOPSIS
XSI #include <pwd.h>

void setpwent(void);

DESCRIPTION
Refer to endpwent().

1880 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59887

59888

59889

59890

59891

59892

59893

System Interfaces setregid()

NAME
setregid — set real and effective group IDs

SYNOPSIS
XSI #include <unistd.h>

int setregid(gid_t rgid, gid_t egid);

DESCRIPTION
The setregid() function shall set the real and effective group IDs of the calling process.

If rgid is −1, the real group ID shall not be changed; if egid is −1, the effective group ID shall not
be changed.

The real and effective group IDs may be set to different values in the same call.

Only a process with appropriate privileges can set the real group ID and the effective group ID
to any valid value.

A non-privileged process can set either the real group ID to the saved set-group-ID from one of
the exec family of functions, or the effective group ID to the saved set-group-ID or the real group
ID.

If the real group ID is being set (rgid is not −1), or the effective group ID is being set to a value
not equal to the real group ID, then the saved set-group-ID of the current process shall be set
equal to the new effective group ID.

Any supplementary group IDs of the calling process remain unchanged.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error, and neither of the group IDs are changed.

ERRORS
The setregid() function shall fail if:

[EINVAL] The value of the rgid or egid argument is invalid or out-of-range.

[EPERM] The process does not have appropriate privileges and a change other than
changing the real group ID to the saved set-group-ID, or changing the
effective group ID to the real group ID or the saved set-group-ID, was
requested.

EXAMPLES
None.

APPLICATION USAGE
If a non-privileged set-group-ID process sets its effective group ID to its real group ID, it can
only set its effective group ID back to the previous value if rgid was −1 in the setregid() call, since
the saved-group-ID is not changed in that case. If rgid was equal to the real group ID in the
setregid() call, then the saved set-group-ID will also have been changed to the real user ID.

RATIONALE
Earlier versions of this standard did not specify whether the saved set-group-ID was affected by
setregid() calls. This version specifies common existing practice that constitutes an important
security feature. The ability to set both the effective group ID and saved set-group-ID to be the
same as the real group ID means that any security weakness in code that is executed after that
point cannot result in malicious code being executed with the previous effective group ID.
Privileged applications could already do this using just setgid(), but for non-privileged

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1881

59894

59895

59896

59897

59898

59899

59900

59901

59902

59903

59904

59905

59906

59907

59908

59909

59910

59911

59912

59913

59914

59915

59916

59917

59918

59919

59920

59921

59922

59923

59924

59925

59926

59927

59928

59929

59930

59931

59932

59933

59934

59935

59936

setregid() System Interfaces

applications the only standard method available is to use this feature of setregid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setreuid(), setuid()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is updated to indicate that the saved set-group-ID can be set by any of the
exec family of functions, not just execve().

Issue 7
SD5-XSH-ERN-177 is applied, adding the ability to set both the effective group ID and saved set-
group-ID to be the same as the real group ID.

1882 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59937

59938

59939

59940

59941

59942

59943

59944

59945

59946

59947

59948

59949

59950

59951

System Interfaces setreuid()

NAME
setreuid — set real and effective user IDs

SYNOPSIS
XSI #include <unistd.h>

int setreuid(uid_t ruid, uid_t euid);

DESCRIPTION
The setreuid() function shall set the real and effective user IDs of the current process to the
values specified by the ruid and euid arguments. If ruid or euid is −1, the corresponding effective
or real user ID of the current process shall be left unchanged.

A process with appropriate privileges can set either ID to any value. An unprivileged process
can only set the effective user ID if the euid argument is equal to either the real, effective, or
saved user ID of the process.

If the real user ID is being set (ruid is not −1), or the effective user ID is being set to a value not
equal to the real user ID, then the saved set-user-ID of the current process shall be set equal to
the new effective user ID.

It is unspecified whether a process without appropriate privileges is permitted to change the real
user ID to match the current effective user ID or saved set-user-ID of the process.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The setreuid() function shall fail if:

[EINVAL] The value of the ruid or euid argument is invalid or out-of-range.

[EPERM] The current process does not have appropriate privileges, and either an
attempt was made to change the effective user ID to a value other than the real
user ID or the saved set-user-ID or an attempt was made to change the real
user ID to a value not permitted by the implementation.

EXAMPLES

Setting the Effective User ID to the Real User ID

The following example sets the effective user ID of the calling process to the real user ID, so that
files created later will be owned by the current user. It also sets the saved set-user-ID to the real
user ID, so any future attempt to set the effective user ID back to its previous value will fail.

#include <unistd.h>
#include <sys/types.h>
...
setreuid(getuid(), getuid());
...

APPLICATION USAGE
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1883

59952

59953

59954

59955

59956

59957

59958

59959

59960

59961

59962

59963

59964

59965

59966

59967

59968

59969

59970

59971

59972

59973

59974

59975

59976

59977

59978

59979

59980

59981

59982

59983

59984

59985

59986

59987

59988

59989

59990

setreuid() System Interfaces

RATIONALE
Earlier versions of this standard did not specify whether the saved set-user-ID was affected by
setreuid() calls. This version specifies common existing practice that constitutes an important
security feature. The ability to set both the effective user ID and saved set-user-ID to be the same
as the real user ID means that any security weakness in code that is executed after that point
cannot result in malicious code being executed with the previous effective user ID. Privileged
applications could already do this using just setuid(), but for non-privileged applications the
only standard method available is to use this feature of setreuid().

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), geteuid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setuid()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
SD5-XSH-ERN-177 is applied, adding the ability to set both the effective user ID and the saved
set-user-ID to be the same as the real user ID.

1884 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

59991

59992

59993

59994

59995

59996

59997

59998

59999

60000

60001

60002

60003

60004

60005

60006

60007

60008

60009

60010

System Interfaces setrlimit()

NAME
setrlimit — control maximum resource consumption

SYNOPSIS
XSI #include <sys/resource.h>

int setrlimit(int resource, const struct rlimit *rlp);

DESCRIPTION
Refer to getrlimit().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1885

60011

60012

60013

60014

60015

60016

60017

setservent() System Interfaces

NAME
setservent — network services database functions

SYNOPSIS
#include <netdb.h>

void setservent(int stayopen);

DESCRIPTION
Refer to endservent().

1886 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60018

60019

60020

60021

60022

60023

60024

System Interfaces setsid()

NAME
setsid — create session and set process group ID

SYNOPSIS
#include <unistd.h>

pid_t setsid(void);

DESCRIPTION
The setsid() function shall create a new session, if the calling process is not a process group
leader. Upon return the calling process shall be the session leader of this new session, shall be
the process group leader of a new process group, and shall have no controlling terminal. The
process group ID of the calling process shall be set equal to the process ID of the calling process.
The calling process shall be the only process in the new process group and the only process in
the new session.

RETURN VALUE
Upon successful completion, setsid() shall return the value of the new process group ID of the
calling process. Otherwise, it shall return (pid_t)−1 and set errno to indicate the error.

ERRORS
The setsid() function shall fail if:

[EPERM] The calling process is already a process group leader, or the process group ID
of a process other than the calling process matches the process ID of the
calling process.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The setsid() function is similar to the setpgrp() function of System V. System V, without job
control, groups processes into process groups and creates new process groups via setpgrp(); only
one process group may be part of a login session.

Job control allows multiple process groups within a login session. In order to limit job control
actions so that they can only affect processes in the same login session, this volume of
POSIX.1-2008 adds the concept of a session that is created via setsid(). The setsid() function also
creates the initial process group contained in the session. Additional process groups can be
created via the setpgid() function. A System V process group would correspond to a POSIX
System Interfaces session containing a single POSIX process group. Note that this function
requires that the calling process not be a process group leader. The usual way to ensure this is
true is to create a new process with fork() and have it call setsid(). The fork() function
guarantees that the process ID of the new process does not match any existing process group ID.

FUTURE DIRECTIONS
None.

SEE ALSO
getsid(), setpgid(), setpgrp()

XBD <sys/types.h>, <unistd.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1887

60025

60026

60027

60028

60029

60030

60031

60032

60033

60034

60035

60036

60037

60038

60039

60040

60041

60042

60043

60044

60045

60046

60047

60048

60049

60050

60051

60052

60053

60054

60055

60056

60057

60058

60059

60060

60061

60062

60063

60064

60065

60066

setsid() System Interfaces

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

1888 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60067

60068

60069

60070

60071

60072

60073

60074

60075

System Interfaces setsockopt()

NAME
setsockopt — set the socket options

SYNOPSIS
#include <sys/socket.h>

int setsockopt(int socket, int level, int option_name,
const void *option_value, socklen_t option_len);

DESCRIPTION
The setsockopt() function shall set the option specified by the option_name argument, at the
protocol level specified by the level argument, to the value pointed to by the option_value
argument for the socket associated with the file descriptor specified by the socket argument.

The level argument specifies the protocol level at which the option resides. To set options at the
socket level, specify the level argument as SOL_SOCKET. To set options at other levels, supply
the appropriate level identifier for the protocol controlling the option. For example, to indicate
that an option is interpreted by the TCP (Transport Control Protocol), set level to IPPROTO_TCP
as defined in the <netinet/in.h> header.

The option_name argument specifies a single option to set. It can be one of the socket-level
options defined in <sys/socket.h> and described in Section 2.10.16 (on page 522). If setsockopt()
is called with option_name equal to SO_ACCEPTCONN, SO_ERROR, or SO_TYPE, the behavior
is unspecified.

RETURN VALUE
Upon successful completion, setsockopt() shall return 0. Otherwise, −1 shall be returned and
errno set to indicate the error.

ERRORS
The setsockopt() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EDOM] The send and receive timeout values are too big to fit into the timeout fields in
the socket structure.

[EINVAL] The specified option is invalid at the specified socket level or the socket has
been shut down.

[EISCONN] The socket is already connected, and a specified option cannot be set while the
socket is connected.

[ENOPROTOOPT]
The option is not supported by the protocol.

[ENOTSOCK] The socket argument does not refer to a socket.

The setsockopt() function may fail if:

[ENOMEM] There was insufficient memory available for the operation to complete.

[ENOBUFS] Insufficient resources are available in the system to complete the call.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1889

60076

60077

60078

60079

60080

60081

60082

60083

60084

60085

60086

60087

60088

60089

60090

60091

60092

60093

60094

60095

60096

60097

60098

60099

60100

60101

60102

60103

60104

60105

60106

60107

60108

60109

60110

60111

60112

setsockopt() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The setsockopt() function provides an application program with the means to control socket
behavior. An application program can use setsockopt() to allocate buffer space, control timeouts,
or permit socket data broadcasts. The <sys/socket.h> header defines the socket-level options
available to setsockopt().

Options may exist at multiple protocol levels. The SO_ options are always present at the
uppermost socket level.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.10 (on page 517), bind(), endprotoent(), getsockopt(), socket()

XBD <netinet/in.h>, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/125 is applied, updating the SO_LINGER
option in the DESCRIPTION to refer to the calling thread rather than the process.

Issue 7
Austin Group Interpretation 1003.1-2001 #158 is applied, removing text relating to socket options
that is now in Section 2.10.16 (on page 522).

1890 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60113

60114

60115

60116

60117

60118

60119

60120

60121

60122

60123

60124

60125

60126

60127

60128

60129

60130

60131

60132

60133

60134

60135

System Interfaces setstate()

NAME
setstate — switch pseudo-random number generator state arrays

SYNOPSIS
XSI #include <stdlib.h>

char *setstate(char *state);

DESCRIPTION
Refer to initstate().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1891

60136

60137

60138

60139

60140

60141

60142

setuid() System Interfaces

NAME
setuid — set user ID

SYNOPSIS
#include <unistd.h>

int setuid(uid_t uid);

DESCRIPTION
If the process has appropriate privileges, setuid() shall set the real user ID, effective user ID, and
the saved set-user-ID of the calling process to uid.

If the process does not have appropriate privileges, but uid is equal to the real user ID or the
saved set-user-ID, setuid() shall set the effective user ID to uid; the real user ID and saved set-
user-ID shall remain unchanged.

The setuid() function shall not affect the supplementary group list in any way.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The setuid() function shall fail, return −1, and set errno to the corresponding value if one or more
of the following are true:

[EINVAL] The value of the uid argument is invalid and not supported by the
implementation.

[EPERM] The process does not have appropriate privileges and uid does not match the
real user ID or the saved set-user-ID.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The various behaviors of the setuid() and setgid() functions when called by non-privileged
processes reflect the behavior of different historical implementations. For portability, it is
recommended that new non-privileged applications use the seteuid() and setegid() functions
instead.

The saved set-user-ID capability allows a program to regain the effective user ID established at
the last exec call. Similarly, the saved set-group-ID capability allows a program to regain the
effective group ID established at the last exec call. These capabilities are derived from System V.
Without them, a program might have to run as superuser in order to perform the same
functions, because superuser can write on the user’s files. This is a problem because such a
program can write on any user’s files, and so must be carefully written to emulate the
permissions of the calling process properly. In System V, these capabilities have traditionally
been implemented only via the setuid() and setgid() functions for non-privileged processes. The
fact that the behavior of those functions was different for privileged processes made them
difficult to use. The POSIX.1-1990 standard defined the setuid() function to behave differently
for privileged and unprivileged users. When the caller had appropriate privileges, the function
set the real user ID, effective user ID, and saved set-user ID of the calling process on
implementations that supported it. When the caller did not have appropriate privileges, the
function set only the effective user ID, subject to permission checks. The former use is generally
needed for utilities like login and su, which are not conforming applications and thus outside the

1892 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60143

60144

60145

60146

60147

60148

60149

60150

60151

60152

60153

60154

60155

60156

60157

60158

60159

60160

60161

60162

60163

60164

60165

60166

60167

60168

60169

60170

60171

60172

60173

60174

60175

60176

60177

60178

60179

60180

60181

60182

60183

60184

60185

60186

60187

60188

System Interfaces setuid()

scope of POSIX.1-2008. These utilities wish to change the user ID irrevocably to a new value,
generally that of an unprivileged user. The latter use is needed for conforming applications that
are installed with the set-user-ID bit and need to perform operations using the real user ID.

POSIX.1-2008 augments the latter functionality with a mandatory feature named
_POSIX_SAVED_IDS. This feature permits a set-user-ID application to switch its effective user
ID back and forth between the values of its exec-time real user ID and effective user ID.
Unfortunately, the POSIX.1-1990 standard did not permit a conforming application using this
feature to work properly when it happened to be executed with (implementation-defined)
appropriate privileges. Furthermore, the application did not even have a means to tell whether it
had this privilege. Since the saved set-user-ID feature is quite desirable for applications, as
evidenced by the fact that NIST required it in FIPS 151-2, it has been mandated by POSIX.1-2008.
However, there are implementors who have been reluctant to support it given the limitation
described above.

The 4.3BSD system handles the problem by supporting separate functions: setuid() (which
always sets both the real and effective user IDs, like setuid() in POSIX.1-2008 for privileged
users), and seteuid() (which always sets just the effective user ID, like setuid() in POSIX.1-2008
for non-privileged users). This separation of functionality into distinct functions seems desirable.
4.3BSD does not support the saved set-user-ID feature. It supports similar functionality of
switching the effective user ID back and forth via setreuid(), which permits reversing the real
and effective user IDs. This model seems less desirable than the saved set-user-ID because the
real user ID changes as a side-effect. The current 4.4BSD includes saved effective IDs and uses
them for seteuid() and setegid() as described above. The setreuid() and setregid() functions will be
deprecated or removed.

The solution here is:

• Require that all implementations support the functionality of the saved set-user-ID, which
is set by the exec functions and by privileged calls to setuid().

• Add the seteuid() and setegid() functions as portable alternatives to setuid() and setgid() for
non-privileged and privileged processes.

Historical systems have provided two mechanisms for a set-user-ID process to change its
effective user ID to be the same as its real user ID in such a way that it could return to the
original effective user ID: the use of the setuid() function in the presence of a saved set-user-ID,
or the use of the BSD setreuid() function, which was able to swap the real and effective user IDs.
The changes included in POSIX.1-2008 provide a new mechanism using seteuid() in conjunction
with a saved set-user-ID. Thus, all implementations with the new seteuid() mechanism will have
a saved set-user-ID for each process, and most of the behavior controlled by
_POSIX_SAVED_IDS has been changed to agree with the case where the option was defined.
The kill() function is an exception. Implementors of the new seteuid() mechanism will generally
be required to maintain compatibility with the older mechanisms previously supported by their
systems. However, compatibility with this use of setreuid() and with the _POSIX_SAVED_IDS
behavior of kill() is unfortunately complicated. If an implementation with a saved set-user-ID
allows a process to use setreuid() to swap its real and effective user IDs, but were to leave the
saved set-user-ID unmodified, the process would then have an effective user ID equal to the
original real user ID, and both real and saved set-user-ID would be equal to the original effective
user ID. In that state, the real user would be unable to kill the process, even though the effective
user ID of the process matches that of the real user, if the kill() behavior of _POSIX_SAVED_IDS
was used. This is obviously not acceptable. The alternative choice, which is used in at least one
implementation, is to change the saved set-user-ID to the effective user ID during most calls to
setreuid(). The standard developers considered that alternative to be less correct than the
retention of the old behavior of kill() in such systems. Current conforming applications shall

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1893

60189

60190

60191

60192

60193

60194

60195

60196

60197

60198

60199

60200

60201

60202

60203

60204

60205

60206

60207

60208

60209

60210

60211

60212

60213

60214

60215

60216

60217

60218

60219

60220

60221

60222

60223

60224

60225

60226

60227

60228

60229

60230

60231

60232

60233

60234

60235

60236

60237

setuid() System Interfaces

accommodate either behavior from kill(), and there appears to be no strong reason for kill() to
check the saved set-user-ID rather than the effective user ID.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setreuid()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The functionality associated with _POSIX_SAVED_IDS is now mandatory. This is a FIPS
requirement.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The effects of setuid() in processes without appropriate privileges are changed.

• A requirement that the supplementary group list is not affected is added.

1894 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60238

60239

60240

60241

60242

60243

60244

60245

60246

60247

60248

60249

60250

60251

60252

60253

60254

60255

60256

60257

60258

System Interfaces setutxent()

NAME
setutxent — reset the user accounting database to the first entry

SYNOPSIS
XSI #include <utmpx.h>

void setutxent(void);

DESCRIPTION
Refer to endutxent().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1895

60259

60260

60261

60262

60263

60264

60265

setvbuf() System Interfaces

NAME
setvbuf — assign buffering to a stream

SYNOPSIS
#include <stdio.h>

int setvbuf(FILE *restrict stream, char *restrict buf, int type,
size_t size);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The setvbuf() function may be used after the stream pointed to by stream is associated with an
open file but before any other operation (other than an unsuccessful call to setvbuf()) is
performed on the stream. The argument type determines how stream shall be buffered, as
follows:

• {_IOFBF} shall cause input/output to be fully buffered.

• {_IOLBF} shall cause input/output to be line buffered.

• {_IONBF} shall cause input/output to be unbuffered.

If buf is not a null pointer, the array it points to may be used instead of a buffer allocated by
setvbuf() and the argument size specifies the size of the array; otherwise, size may determine the
size of a buffer allocated by the setvbuf() function. The contents of the array at any time are
unspecified.

For information about streams, see Section 2.5 (on page 490).

RETURN VALUE
Upon successful completion, setvbuf() shall return 0. Otherwise, it shall return a non-zero value

CX if an invalid value is given for type or if the request cannot be honored, and may set errno to
indicate the error.

ERRORS
The setvbuf() function may fail if:

CX [EBADF] The file descriptor underlying stream is not valid.

EXAMPLES
None.

APPLICATION USAGE
A common source of error is allocating buffer space as an ‘‘automatic’’ variable in a code block,
and then failing to close the stream in the same block.

With setvbuf(), allocating a buffer of size bytes does not necessarily imply that all of size bytes are
used for the buffer area.

Applications should note that many implementations only provide line buffering on input from
terminal devices.

RATIONALE
None.

1896 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60266

60267

60268

60269

60270

60271

60272

60273

60274

60275

60276

60277

60278

60279

60280

60281

60282

60283

60284

60285

60286

60287

60288

60289

60290

60291

60292

60293

60294

60295

60296

60297

60298

60299

60300

60301

60302

60303

60304

60305

System Interfaces setvbuf()

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 490), fopen(), setbuf()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The setvbuf() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1897

60306

60307

60308

60309

60310

60311

60312

60313

60314

60315

shm_open() System Interfaces

NAME
shm_open — open a shared memory object (REALTIME)

SYNOPSIS
SHM #include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

DESCRIPTION
The shm_open() function shall establish a connection between a shared memory object and a file
descriptor. It shall create an open file description that refers to the shared memory object and a
file descriptor that refers to that open file description. The file descriptor is used by other
functions to refer to that shared memory object. The name argument points to a string naming a
shared memory object. It is unspecified whether the name appears in the file system and is
visible to other functions that take pathnames as arguments. The name argument conforms to the
construction rules for a pathname, except that the interpretation of <slash> characters other than
the leading <slash> character in name is implementation-defined, and that the length limits for
the name argument are implementation-defined and need not be the same as the pathname limits
{PATH_MAX} and {NAME_MAX}. If name begins with the <slash> character, then processes
calling shm_open() with the same value of name refer to the same shared memory object, as long
as that name has not been removed. If name does not begin with the <slash> character, the effect
is implementation-defined.

If successful, shm_open() shall return a file descriptor for the shared memory object that is the
lowest numbered file descriptor not currently open for that process. The open file description is
new, and therefore the file descriptor does not share it with any other processes. It is unspecified
whether the file offset is set. The FD_CLOEXEC file descriptor flag associated with the new file
descriptor is set.

The file status flags and file access modes of the open file description are according to the value
of oflag. The oflag argument is the bitwise-inclusive OR of the following flags defined in the
<fcntl.h> header. Applications specify exactly one of the first two values (access modes) below
in the value of oflag:

O_RDONLY Open for read access only.

O_RDWR Open for read or write access.

Any combination of the remaining flags may be specified in the value of oflag:

O_CREAT If the shared memory object exists, this flag has no effect, except as noted
under O_EXCL below. Otherwise, the shared memory object is created. The
user ID of the shared memory object shall be set to the effective user ID of the
process. The group ID of the shared memory object shall be set to the effective
group ID of the process; however, if the name argument is visible in the file
system, the group ID may be set to the group ID of the containing directory.
The permission bits of the shared memory object shall be set to the value of
the mode argument except those set in the file mode creation mask of the
process. When bits in mode other than the file permission bits are set, the effect
is unspecified. The mode argument does not affect whether the shared memory
object is opened for reading, for writing, or for both. The shared memory
object has a size of zero.

O_EXCL If O_EXCL and O_CREAT are set, shm_open() fails if the shared memory
object exists. The check for the existence of the shared memory object and the
creation of the object if it does not exist is atomic with respect to other

1898 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60316

60317

60318

60319

60320

60321

60322

60323

60324

60325

60326

60327

60328

60329

60330

60331

60332

60333

60334

60335

60336

60337

60338

60339

60340

60341

60342

60343

60344

60345

60346

60347

60348

60349

60350

60351

60352

60353

60354

60355

60356

60357

60358

60359

60360

60361

System Interfaces shm_open()

processes executing shm_open() naming the same shared memory object with
O_EXCL and O_CREAT set. If O_EXCL is set and O_CREAT is not set, the
result is undefined.

O_TRUNC If the shared memory object exists, and it is successfully opened O_RDWR, the
object shall be truncated to zero length and the mode and owner shall be
unchanged by this function call. The result of using O_TRUNC with
O_RDONLY is undefined.

When a shared memory object is created, the state of the shared memory object, including all
data associated with the shared memory object, persists until the shared memory object is
unlinked and all other references are gone. It is unspecified whether the name and shared
memory object state remain valid after a system reboot.

RETURN VALUE
Upon successful completion, the shm_open() function shall return a non-negative integer
representing the lowest numbered unused file descriptor. Otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
The shm_open() function shall fail if:

[EACCES] The shared memory object exists and the permissions specified by oflag are
denied, or the shared memory object does not exist and permission to create
the shared memory object is denied, or O_TRUNC is specified and write
permission is denied.

[EEXIST] O_CREAT and O_EXCL are set and the named shared memory object already
exists.

[EINTR] The shm_open() operation was interrupted by a signal.

[EINVAL] The shm_open() operation is not supported for the given name.

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] Too many shared memory objects are currently open in the system.

[ENOENT] O_CREAT is not set and the named shared memory object does not exist.

[ENOSPC] There is insufficient space for the creation of the new shared memory object.

The shm_open() function may fail if:

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1899

60362

60363

60364

60365

60366

60367

60368

60369

60370

60371

60372

60373

60374

60375

60376

60377

60378

60379

60380

60381

60382

60383

60384

60385

60386

60387

60388

60389

60390

60391

60392

60393

60394

60395

60396

60397

shm_open() System Interfaces

EXAMPLES

Creating and Mapping a Shared Memory Object

The following code segment demonstrates the use of shm_open() to create a shared memory
object which is then sized using ftruncate() before being mapped into the process address space
using mmap():

#include <unistd.h>
#include <sys/mman.h>
...

#define MAX_LEN 10000
struct region { /* Defines "structure" of shared memory */

int len;
char buf[MAX_LEN];

};
struct region *rptr;
int fd;

/* Create shared memory object and set its size */

fd = shm_open("/myregion", O_CREAT | O_RDWR, S_IRUSR | S_IWUSR);
if (fd == −1)

/* Handle error */;

if (ftruncate(fd, sizeof(struct region)) == −1)
/* Handle error */;

/* Map shared memory object */

rptr = mmap(NULL, sizeof(struct region),
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

if (rptr == MAP_FAILED)
/* Handle error */;

/* Now we can refer to mapped region using fields of rptr;
for example, rptr->len */

...

APPLICATION USAGE
None.

RATIONALE
When the Memory Mapped Files option is supported, the normal open() call is used to obtain a
descriptor to a file to be mapped according to existing practice with mmap(). When the Shared
Memory Objects option is supported, the shm_open() function shall obtain a descriptor to the
shared memory object to be mapped.

There is ample precedent for having a file descriptor represent several types of objects. In the
POSIX.1-1990 standard, a file descriptor can represent a file, a pipe, a FIFO, a tty, or a directory.
Many implementations simply have an operations vector, which is indexed by the file descriptor
type and does very different operations. Note that in some cases the file descriptor passed to
generic operations on file descriptors is returned by open() or creat() and in some cases returned
by alternate functions, such as pipe(). The latter technique is used by shm_open().

Note that such shared memory objects can actually be implemented as mapped files. In both
cases, the size can be set after the open using ftruncate(). The shm_open() function itself does not

1900 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60398

60399

60400

60401

60402

60403

60404

60405

60406

60407

60408

60409

60410

60411

60412

60413

60414

60415

60416

60417

60418

60419

60420

60421

60422

60423

60424

60425

60426

60427

60428

60429

60430

60431

60432

60433

60434

60435

60436

60437

60438

60439

60440

60441

System Interfaces shm_open()

create a shared object of a specified size because this would duplicate an extant function that set
the size of an object referenced by a file descriptor.

On implementations where memory objects are implemented using the existing file system, the
shm_open() function may be implemented using a macro that invokes open(), and the
shm_unlink() function may be implemented using a macro that invokes unlink().

For implementations without a permanent file system, the definition of the name of the memory
objects is allowed not to survive a system reboot. Note that this allows systems with a
permanent file system to implement memory objects as data structures internal to the
implementation as well.

On implementations that choose to implement memory objects using memory directly, a
shm_open() followed by an ftruncate() and close() can be used to preallocate a shared memory
area and to set the size of that preallocation. This may be necessary for systems without virtual
memory hardware support in order to ensure that the memory is contiguous.

The set of valid open flags to shm_open() was restricted to O_RDONLY, O_RDWR, O_CREAT,
and O_TRUNC because these could be easily implemented on most memory mapping systems.
This volume of POSIX.1-2008 is silent on the results if the implementation cannot supply the
requested file access because of implementation-defined reasons, including hardware ones.

The error conditions [EACCES] and [ENOTSUP] are provided to inform the application that the
implementation cannot complete a request.

[EACCES] indicates for implementation-defined reasons, probably hardware-related, that the
implementation cannot comply with a requested mode because it conflicts with another
requested mode. An example might be that an application desires to open a memory object two
times, mapping different areas with different access modes. If the implementation cannot map a
single area into a process space in two places, which would be required if different access modes
were required for the two areas, then the implementation may inform the application at the time
of the second open.

[ENOTSUP] indicates for implementation-defined reasons, probably hardware-related, that the
implementation cannot comply with a requested mode at all. An example would be that the
hardware of the implementation cannot support write-only shared memory areas.

On all implementations, it may be desirable to restrict the location of the memory objects to
specific file systems for performance (such as a RAM disk) or implementation-defined reasons
(shared memory supported directly only on certain file systems). The shm_open() function may
be used to enforce these restrictions. There are a number of methods available to the application
to determine an appropriate name of the file or the location of an appropriate directory. One way
is from the environment via getenv(). Another would be from a configuration file.

This volume of POSIX.1-2008 specifies that memory objects have initial contents of zero when
created. This is consistent with current behavior for both files and newly allocated memory. For
those implementations that use physical memory, it would be possible that such
implementations could simply use available memory and give it to the process uninitialized.
This, however, is not consistent with standard behavior for the uninitialized data area, the stack,
and of course, files. Finally, it is highly desirable to set the allocated memory to zero for security
reasons. Thus, initializing memory objects to zero is required.

FUTURE DIRECTIONS
A future version might require the shm_open() and shm_unlink() functions to have semantics
similar to normal file system operations.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1901

60442

60443

60444

60445

60446

60447

60448

60449

60450

60451

60452

60453

60454

60455

60456

60457

60458

60459

60460

60461

60462

60463

60464

60465

60466

60467

60468

60469

60470

60471

60472

60473

60474

60475

60476

60477

60478

60479

60480

60481

60482

60483

60484

60485

60486

shm_open() System Interfaces

SEE ALSO
close(), dup(), exec , fcntl(), mmap(), shmat(), shmctl(), shmdt(), shm_unlink(), umask()

XBD <fcntl.h>, <sys/mman.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The shm_open() function is marked as part of the Shared Memory Objects option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Shared Memory Objects option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/126 is applied, adding the example to the
EXAMPLES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name argument and
changing [ENAMETOOLONG] from a ‘‘shall fail’’ to a ‘‘may fail’’ error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE DIRECTIONS.

SD5-XSH-ERN-170 is applied, updating the DESCRIPTION to clarify the wording for setting the
user ID and group ID of the shared memory object.

1902 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60487

60488

60489

60490

60491

60492

60493

60494

60495

60496

60497

60498

60499

60500

60501

60502

60503

System Interfaces shm_unlink()

NAME
shm_unlink — remove a shared memory object (REALTIME)

SYNOPSIS
SHM #include <sys/mman.h>

int shm_unlink(const char *name);

DESCRIPTION
The shm_unlink() function shall remove the name of the shared memory object named by the
string pointed to by name.

If one or more references to the shared memory object exist when the object is unlinked, the
name shall be removed before shm_unlink() returns, but the removal of the memory object
contents shall be postponed until all open and map references to the shared memory object have
been removed.

Even if the object continues to exist after the last shm_unlink(), reuse of the name shall
subsequently cause shm_open() to behave as if no shared memory object of this name exists (that
is, shm_open() will fail if O_CREAT is not set, or will create a new shared memory object if
O_CREAT is set).

RETURN VALUE
Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be
returned and errno set to indicate the error. If −1 is returned, the named shared memory object
shall not be changed by this function call.

ERRORS
The shm_unlink() function shall fail if:

[EACCES] Permission is denied to unlink the named shared memory object.

[ENOENT] The named shared memory object does not exist.

The shm_unlink() function may fail if:

[ENAMETOOLONG]
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems

XSI that do not support the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI
systems, or has a pathname component that is longer than

XSI {_POSIX_NAME_MAX} on systems that do not support the XSI option or
longer than {_XOPEN_NAME_MAX} on XSI systems. A call to shm_unlink()
with a name argument that contains the same shared memory object name as
was previously used in a successful shm_open() call shall not give an
[ENAMETOOLONG] error.

EXAMPLES
None.

APPLICATION USAGE
Names of memory objects that were allocated with open() are deleted with unlink() in the usual
fashion. Names of memory objects that were allocated with shm_open() are deleted with
shm_unlink(). Note that the actual memory object is not destroyed until the last close and
unmap on it have occurred if it was already in use.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1903

60504

60505

60506

60507

60508

60509

60510

60511

60512

60513

60514

60515

60516

60517

60518

60519

60520

60521

60522

60523

60524

60525

60526

60527

60528

60529

60530

60531

60532

60533

60534

60535

60536

60537

60538

60539

60540

60541

60542

60543

60544

shm_unlink() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
A future version might require the shm_open() and shm_unlink() functions to have semantics
similar to normal file system operations.

SEE ALSO
close(), mmap(), munmap(), shmat(), shmctl(), shmdt(), shm_open()

XBD <sys/mman.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The shm_unlink() function is marked as part of the Shared Memory Objects option.

In the DESCRIPTION, text is added to clarify that reusing the same name after a shm_unlink()
will not attach to the old shared memory object.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Shared Memory Objects option.

Issue 7
Austin Group Interpretation 1003.1-2001 #077 is applied, changing [ENAMETOOLONG] from a
‘‘shall fail’’ to a ‘‘may fail’’ error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE DIRECTIONS.

1904 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60545

60546

60547

60548

60549

60550

60551

60552

60553

60554

60555

60556

60557

60558

60559

60560

60561

60562

60563

60564

System Interfaces shmat()

NAME
shmat — XSI shared memory attach operation

SYNOPSIS
XSI #include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);

DESCRIPTION
The shmat() function operates on XSI shared memory (see XBD Section 3.340, on page 88). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 497).

The shmat() function attaches the shared memory segment associated with the shared memory
identifier specified by shmid to the address space of the calling process. The segment is attached
at the address specified by one of the following criteria:

• If shmaddr is a null pointer, the segment is attached at the first available address as selected
by the system.

• If shmaddr is not a null pointer and (shmflg &SHM_RND) is non-zero, the segment is
attached at the address given by (shmaddr −((uintptr_t)shmaddr %SHMLBA)). The character
’%’ is the C-language remainder operator.

• If shmaddr is not a null pointer and (shmflg &SHM_RND) is 0, the segment is attached at
the address given by shmaddr.

• The segment is attached for reading if (shmflg &SHM_RDONLY) is non-zero and the
calling process has read permission; otherwise, if it is 0 and the calling process has read
and write permission, the segment is attached for reading and writing.

RETURN VALUE
Upon successful completion, shmat() shall increment the value of shm_nattch in the data
structure associated with the shared memory ID of the attached shared memory segment and
return the segment’s start address.

Otherwise, the shared memory segment shall not be attached, shmat() shall return −1, and errno
shall be set to indicate the error.

ERRORS
The shmat() function shall fail if:

[EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page
496).

[EINVAL] The value of shmid is not a valid shared memory identifier, the shmaddr is not a
null pointer, and the value of (shmaddr −((uintptr_t)shmaddr %SHMLBA)) is an
illegal address for attaching shared memory; or the shmaddr is not a null
pointer, (shmflg &SHM_RND) is 0, and the value of shmaddr is an illegal
address for attaching shared memory.

[EMFILE] The number of shared memory segments attached to the calling process
would exceed the system-imposed limit.

[ENOMEM] The available data space is not large enough to accommodate the shared
memory segment.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1905

60565

60566

60567

60568

60569

60570

60571

60572

60573

60574

60575

60576

60577

60578

60579

60580

60581

60582

60583

60584

60585

60586

60587

60588

60589

60590

60591

60592

60593

60594

60595

60596

60597

60598

60599

60600

60601

60602

60603

60604

60605

shmat() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 (on page 496) can be easily modified to use the
alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 496), Section 2.8 (on page 497), exec , exit(), fork(), shmctl(), shmdt(),
shmget(), shm_open(), shm_unlink()

XBD Section 3.340 (on page 88), <sys/shm.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
Moved from SHARED MEMORY to BASE.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

Issue 6
The Open Group Corrigendum U021/13 is applied.

1906 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60606

60607

60608

60609

60610

60611

60612

60613

60614

60615

60616

60617

60618

60619

60620

60621

60622

60623

60624

60625

60626

60627

60628

System Interfaces shmctl()

NAME
shmctl — XSI shared memory control operations

SYNOPSIS
XSI #include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

DESCRIPTION
The shmctl() function operates on XSI shared memory (see XBD Section 3.340, on page 88). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 497).

The shmctl() function provides a variety of shared memory control operations as specified by
cmd. The following values for cmd are available:

IPC_STAT Place the current value of each member of the shmid_ds data structure
associated with shmid into the structure pointed to by buf . The contents of the
structure are defined in <sys/shm.h>.

IPC_SET Set the value of the following members of the shmid_ds data structure
associated with shmid to the corresponding value found in the structure
pointed to by buf :

shm_perm.uid
shm_perm.gid
shm_perm.mode Low-order nine bits.

IPC_SET can only be executed by a process that has an effective user ID equal
to either that of a process with appropriate privileges or to the value of
shm_perm.cuid or shm_perm.uid in the shmid_ds data structure associated with
shmid.

IPC_RMID Remove the shared memory identifier specified by shmid from the system and
destroy the shared memory segment and shmid_ds data structure associated
with it. IPC_RMID can only be executed by a process that has an effective user
ID equal to either that of a process with appropriate privileges or to the value
of shm_perm.cuid or shm_perm.uid in the shmid_ds data structure associated
with shmid.

RETURN VALUE
Upon successful completion, shmctl() shall return 0; otherwise, it shall return −1 and set errno to
indicate the error.

ERRORS
The shmctl() function shall fail if:

[EACCES] The argument cmd is equal to IPC_STAT and the calling process does not have
read permission; see Section 2.7 (on page 496).

[EINVAL] The value of shmid is not a valid shared memory identifier, or the value of cmd
is not a valid command.

[EPERM] The argument cmd is equal to IPC_RMID or IPC_SET and the effective user ID
of the calling process is not equal to that of a process with appropriate
privileges and it is not equal to the value of shm_perm.cuid or shm_perm.uid in
the data structure associated with shmid.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1907

60629

60630

60631

60632

60633

60634

60635

60636

60637

60638

60639

60640

60641

60642

60643

60644

60645

60646

60647

60648

60649

60650

60651

60652

60653

60654

60655

60656

60657

60658

60659

60660

60661

60662

60663

60664

60665

60666

60667

60668

60669

60670

60671

shmctl() System Interfaces

The shmctl() function may fail if:

[EOVERFLOW] The cmd argument is IPC_STAT and the gid or uid value is too large to be
stored in the structure pointed to by the buf argument.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 (on page 496) can be easily modified to use the
alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 496), Section 2.8 (on page 497), shmat(), shmdt(), shmget(), shm_open(),
shm_unlink()

XBD Section 3.340 (on page 88), <sys/shm.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
Moved from SHARED MEMORY to BASE.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

1908 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60672

60673

60674

60675

60676

60677

60678

60679

60680

60681

60682

60683

60684

60685

60686

60687

60688

60689

60690

60691

60692

60693

60694

60695

System Interfaces shmdt()

NAME
shmdt — XSI shared memory detach operation

SYNOPSIS
XSI #include <sys/shm.h>

int shmdt(const void *shmaddr);

DESCRIPTION
The shmdt() function operates on XSI shared memory (see XBD Section 3.340, on page 88). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 497).

The shmdt() function detaches the shared memory segment located at the address specified by
shmaddr from the address space of the calling process.

RETURN VALUE
Upon successful completion, shmdt() shall decrement the value of shm_nattch in the data
structure associated with the shared memory ID of the attached shared memory segment and
return 0.

Otherwise, the shared memory segment shall not be detached, shmdt() shall return −1, and errno
shall be set to indicate the error.

ERRORS
The shmdt() function shall fail if:

[EINVAL] The value of shmaddr is not the data segment start address of a shared memory
segment.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 (on page 496) can be easily modified to use the
alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 496), Section 2.8 (on page 497), exec , exit(), fork(), shmat(), shmctl(),
shmget(), shm_open(), shm_unlink()

XBD Section 3.340 (on page 88), <sys/shm.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1909

60696

60697

60698

60699

60700

60701

60702

60703

60704

60705

60706

60707

60708

60709

60710

60711

60712

60713

60714

60715

60716

60717

60718

60719

60720

60721

60722

60723

60724

60725

60726

60727

60728

60729

60730

60731

60732

60733

shmdt() System Interfaces

Issue 5
Moved from SHARED MEMORY to BASE.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

1910 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60734

60735

60736

60737

System Interfaces shmget()

NAME
shmget — get an XSI shared memory segment

SYNOPSIS
XSI #include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

DESCRIPTION
The shmget() function operates on XSI shared memory (see XBD Section 3.340, on page 88). It is
unspecified whether this function interoperates with the realtime interprocess communication
facilities defined in Section 2.8 (on page 497).

The shmget() function shall return the shared memory identifier associated with key.

A shared memory identifier, associated data structure, and shared memory segment of at least
size bytes (see <sys/shm.h>) are created for key if one of the following is true:

• The argument key is equal to IPC_PRIVATE.

• The argument key does not already have a shared memory identifier associated with it and
(shmflg &IPC_CREAT) is non-zero.

Upon creation, the data structure associated with the new shared memory identifier shall be
initialized as follows:

• The values of shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and shm_perm.gid are set equal
to the effective user ID and effective group ID, respectively, of the calling process.

• The low-order nine bits of shm_perm.mode are set equal to the low-order nine bits of shmflg.

• The value of shm_segsz is set equal to the value of size.

• The values of shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal to 0.

• The value of shm_ctime is set equal to the current time.

When the shared memory segment is created, it shall be initialized with all zero values.

RETURN VALUE
Upon successful completion, shmget() shall return a non-negative integer, namely a shared
memory identifier; otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The shmget() function shall fail if:

[EACCES] A shared memory identifier exists for key but operation permission as
specified by the low-order nine bits of shmflg would not be granted; see
Section 2.7 (on page 496).

[EEXIST] A shared memory identifier exists for the argument key but (shmflg
&IPC_CREAT) &&(shmflg &IPC_EXCL) is non-zero.

[EINVAL] A shared memory segment is to be created and the value of size is less than
the system-imposed minimum or greater than the system-imposed maximum.

[EINVAL] No shared memory segment is to be created and a shared memory segment
exists for key but the size of the segment associated with it is less than size and
size is not 0.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1911

60738

60739

60740

60741

60742

60743

60744

60745

60746

60747

60748

60749

60750

60751

60752

60753

60754

60755

60756

60757

60758

60759

60760

60761

60762

60763

60764

60765

60766

60767

60768

60769

60770

60771

60772

60773

60774

60775

60776

shmget() System Interfaces

[ENOENT] A shared memory identifier does not exist for the argument key and (shmflg
&IPC_CREAT) is 0.

[ENOMEM] A shared memory identifier and associated shared memory segment shall be
created, but the amount of available physical memory is not sufficient to fill
the request.

[ENOSPC] A shared memory identifier is to be created, but the system-imposed limit on
the maximum number of allowed shared memory identifiers system-wide
would be exceeded.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.7 (on page 496) can be easily modified to use the
alternative interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 496), Section 2.8 (on page 497), shmat(), shmctl(), shmdt(), shm_open(),
shm_unlink()

XBD Section 3.340 (on page 88), <sys/shm.h>

CHANGE HISTORY
First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 5
Moved from SHARED MEMORY to BASE.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

1912 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60777

60778

60779

60780

60781

60782

60783

60784

60785

60786

60787

60788

60789

60790

60791

60792

60793

60794

60795

60796

60797

60798

60799

60800

60801

60802

60803

60804

60805

System Interfaces shutdown()

NAME
shutdown — shut down socket send and receive operations

SYNOPSIS
#include <sys/socket.h>

int shutdown(int socket, int how);

DESCRIPTION
The shutdown() function shall cause all or part of a full-duplex connection on the socket
associated with the file descriptor socket to be shut down.

The shutdown() function takes the following arguments:

socket Specifies the file descriptor of the socket.

how Specifies the type of shutdown. The values are as follows:

SHUT_RD Disables further receive operations.

SHUT_WR Disables further send operations.

SHUT_RDWR Disables further send and receive operations.

The shutdown() function disables subsequent send and/or receive operations on a socket,
depending on the value of the how argument.

RETURN VALUE
Upon successful completion, shutdown() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

ERRORS
The shutdown() function shall fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EINVAL] The how argument is invalid.

[ENOTCONN] The socket is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

The shutdown() function may fail if:

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), pselect(), read(), recv(), recvfrom(), recvmsg(), send(), sendto(), setsockopt(), socket(),
write()

XBD <sys/socket.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1913

60806

60807

60808

60809

60810

60811

60812

60813

60814

60815

60816

60817

60818

60819

60820

60821

60822

60823

60824

60825

60826

60827

60828

60829

60830

60831

60832

60833

60834

60835

60836

60837

60838

60839

60840

60841

60842

60843

60844

shutdown() System Interfaces

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

1914 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60845

60846

System Interfaces sigaction()

NAME
sigaction — examine and change a signal action

SYNOPSIS
CX #include <signal.h>

int sigaction(int sig, const struct sigaction *restrict act,
struct sigaction *restrict oact);

DESCRIPTION
The sigaction() function allows the calling process to examine and/or specify the action to be
associated with a specific signal. The argument sig specifies the signal; acceptable values are
defined in <signal.h>.

The structure sigaction, used to describe an action to be taken, is defined in the <signal.h>
header to include at least the following members:

Member Type Member Name Description

void(*) (int) sa_handler Pointer to a signal-catching function or
one of the macros SIG_IGN or SIG_DFL.

sigset_t sa_mask Additional set of signals to be blocked
during execution of signal-catching
function.

int sa_flags Special flags to affect behavior of signal.
sa_sigaction Pointer to a signal-catching function.void(*) (int,

siginfo_t *, void *)

The storage occupied by sa_handler and sa_sigaction may overlap, and a conforming application
shall not use both simultaneously.

If the argument act is not a null pointer, it points to a structure specifying the action to be
associated with the specified signal. If the argument oact is not a null pointer, the action
previously associated with the signal is stored in the location pointed to by the argument oact. If
the argument act is a null pointer, signal handling is unchanged; thus, the call can be used to
enquire about the current handling of a given signal. The SIGKILL and SIGSTOP signals shall
not be added to the signal mask using this mechanism; this restriction shall be enforced by the
system without causing an error to be indicated.

If the SA_SIGINFO flag (see below) is cleared in the sa_flags field of the sigaction structure, the
sa_handler field identifies the action to be associated with the specified signal. If the
SA_SIGINFO flag is set in the sa_flags field, the sa_sigaction field specifies a signal-catching
function.

The sa_flags field can be used to modify the behavior of the specified signal.

The following flags, defined in the <signal.h> header, can be set in sa_flags:

XSI SA_NOCLDSTOP Do not generate SIGCHLD when children stop or stopped children
continue.

If sig is SIGCHLD and the SA_NOCLDSTOP flag is not set in sa_flags, and
the implementation supports the SIGCHLD signal, then a SIGCHLD
signal shall be generated for the calling process whenever any of its child

XSI processes stop and a SIGCHLD signal may be generated for the calling
process whenever any of its stopped child processes are continued. If sig
is SIGCHLD and the SA_NOCLDSTOP flag is set in sa_flags, then the
implementation shall not generate a SIGCHLD signal in this way.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1915

60847

60848

60849

60850

60851

60852

60853

60854

60855

60856

60857

60858

60859

60860

60861

60862

60863

60864

60865

60866

60867

60868

60869

60870

60871

60872

60873

60874

60875

60876

60877

60878

60879

60880

60881

60882

60883

60884

60885

60886

60887

60888

60889

60890

60891

sigaction() System Interfaces

XSI SA_ONSTACK If set and an alternate signal stack has been declared with sigaltstack(), the
signal shall be delivered to the calling process on that stack. Otherwise,
the signal shall be delivered on the current stack.

SA_RESETHAND If set, the disposition of the signal shall be reset to SIG_DFL and the
SA_SIGINFO flag shall be cleared on entry to the signal handler.

Note: SIGILL and SIGTRAP cannot be automatically reset when delivered;
the system silently enforces this restriction.

Otherwise, the disposition of the signal shall not be modified on entry to
the signal handler.

In addition, if this flag is set, sigaction() may behave as if the
SA_NODEFER flag were also set.

SA_RESTART This flag affects the behavior of interruptible functions; that is, those
specified to fail with errno set to [EINTR]. If set, and a function specified
as interruptible is interrupted by this signal, the function shall restart and
shall not fail with [EINTR] unless otherwise specified. If an interruptible
function which uses a timeout is restarted, the duration of the timeout
following the restart is set to an unspecified value that does not exceed
the original timeout value. If the flag is not set, interruptible functions
interrupted by this signal shall fail with errno set to [EINTR].

SA_SIGINFO If cleared and the signal is caught, the signal-catching function shall be
entered as:

void func(int signo);

where signo is the only argument to the signal-catching function. In this
case, the application shall use the sa_handler member to describe the
signal-catching function and the application shall not modify the
sa_sigaction member.

If SA_SIGINFO is set and the signal is caught, the signal-catching
function shall be entered as:

void func(int signo, siginfo_t *info, void *context);

where two additional arguments are passed to the signal-catching
function. The second argument shall point to an object of type siginfo_t
explaining the reason why the signal was generated; the third argument
can be cast to a pointer to an object of type ucontext_t to refer to the
receiving thread’s context that was interrupted when the signal was
delivered. In this case, the application shall use the sa_sigaction member to
describe the signal-catching function and the application shall not modify
the sa_handler member.

The si_signo member contains the system-generated signal number.

XSI The si_errno member may contain implementation-defined additional
error information; if non-zero, it contains an error number identifying the
condition that caused the signal to be generated.

The si_code member contains a code identifying the cause of the signal, as
described in Section 2.4.3 (on page 486).

1916 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60892

60893

60894

60895

60896

60897

60898

60899

60900

60901

60902

60903

60904

60905

60906

60907

60908

60909

60910

60911

60912

60913

60914

60915

60916

60917

60918

60919

60920

60921

60922

60923

60924

60925

60926

60927

60928

60929

60930

60931

60932

60933

60934

System Interfaces sigaction()

SA_NOCLDWAIT If set, and sig equals SIGCHLD, child processes of the calling processes
shall not be transformed into zombie processes when they terminate. If
the calling process subsequently waits for its children, and the process has
no unwaited-for children that were transformed into zombie processes, it
shall block until all of its children terminate, and wait(), waitid(), and
waitpid() shall fail and set errno to [ECHILD]. Otherwise, terminating
child processes shall be transformed into zombie processes, unless
SIGCHLD is set to SIG_IGN.

SA_NODEFER If set and sig is caught, sig shall not be added to the thread’s signal mask
on entry to the signal handler unless it is included in sa_mask. Otherwise,
sig shall always be added to the thread’s signal mask on entry to the
signal handler.

When a signal is caught by a signal-catching function installed by sigaction(), a new signal mask
is calculated and installed for the duration of the signal-catching function (or until a call to either
sigprocmask() or sigsuspend() is made). This mask is formed by taking the union of the current
signal mask and the value of the sa_mask for the signal being delivered, and unless
SA_NODEFER or SA_RESETHAND is set, then including the signal being delivered. If and
when the user’s signal handler returns normally, the original signal mask is restored.

Once an action is installed for a specific signal, it shall remain installed until another action is
explicitly requested (by another call to sigaction()), until the SA_RESETHAND flag causes
resetting of the handler, or until one of the exec functions is called.

If the previous action for sig had been established by signal(), the values of the fields returned in
the structure pointed to by oact are unspecified, and in particular oact->sa_handler is not
necessarily the same value passed to signal(). However, if a pointer to the same structure or a
copy thereof is passed to a subsequent call to sigaction() via the act argument, handling of the
signal shall be as if the original call to signal() were repeated.

If sigaction() fails, no new signal handler is installed.

It is unspecified whether an attempt to set the action for a signal that cannot be caught or
ignored to SIG_DFL is ignored or causes an error to be returned with errno set to [EINVAL].

If SA_SIGINFO is not set in sa_flags, then the disposition of subsequent occurrences of sig when
it is already pending is implementation-defined; the signal-catching function shall be invoked
with a single argument. If SA_SIGINFO is set in sa_flags, then subsequent occurrences of sig
generated by sigqueue() or as a result of any signal-generating function that supports the
specification of an application-defined value (when sig is already pending) shall be queued in
FIFO order until delivered or accepted; the signal-catching function shall be invoked with three
arguments. The application specified value is passed to the signal-catching function as the
si_value member of the siginfo_t structure.

The result of the use of sigaction() and a sigwait() function concurrently within a process on the
same signal is unspecified.

RETURN VALUE
Upon successful completion, sigaction() shall return 0; otherwise, −1 shall be returned, errno shall
be set to indicate the error, and no new signal-catching function shall be installed.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1917

60935

60936

60937

60938

60939

60940

60941

60942

60943

60944

60945

60946

60947

60948

60949

60950

60951

60952

60953

60954

60955

60956

60957

60958

60959

60960

60961

60962

60963

60964

60965

60966

60967

60968

60969

60970

60971

60972

60973

60974

60975

60976

sigaction() System Interfaces

ERRORS
The sigaction() function shall fail if:

[EINVAL] The sig argument is not a valid signal number or an attempt is made to catch a
signal that cannot be caught or ignore a signal that cannot be ignored.

[ENOTSUP] The SA_SIGINFO bit flag is set in the sa_flags field of the sigaction structure.

The sigaction() function may fail if:

[EINVAL] An attempt was made to set the action to SIG_DFL for a signal that cannot be
caught or ignored (or both).

In addition, the sigaction() function may fail if the SA_SIGINFO flag is set in the sa_flags field of
the sigaction structure for a signal not in the range SIGRTMIN to SIGRTMAX.

EXAMPLES

Establishing a Signal Handler

The following example demonstrates the use of sigaction() to establish a handler for the SIGINT
signal.

#include <signal.h>

static void handler(int signum)
{

/* Take appropriate actions for signal delivery */
}

int main()
{

struct sigaction sa;

sa.sa_handler = handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART; /* Restart functions if

interrupted by handler */
if (sigaction(SIGINT, &sa, NULL) == −1)

/* Handle error */;

/* Further code */
}

APPLICATION USAGE
The sigaction() function supersedes the signal() function, and should be used in preference. In
particular, sigaction() and signal() should not be used in the same process to control the same
signal. The behavior of async-signal-safe functions, as defined in their respective
DESCRIPTION sections, is as specified by this volume of POSIX.1-2008, regardless of invocation
from a signal-catching function. This is the only intended meaning of the statement that async-
signal-safe functions may be used in signal-catching functions without restrictions. Applications
must still consider all effects of such functions on such things as data structures, files, and
process state. In particular, application developers need to consider the restrictions on
interactions when interrupting sleep() and interactions among multiple handles for a file
description. The fact that any specific function is listed as async-signal-safe does not necessarily
mean that invocation of that function from a signal-catching function is recommended.

In order to prevent errors arising from interrupting non-async-signal-safe function calls,
applications should protect calls to these functions either by blocking the appropriate signals or

1918 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

60977

60978

60979

60980

60981

60982

60983

60984

60985

60986

60987

60988

60989

60990

60991

60992

60993

60994

60995

60996

60997

60998

60999

61000

61001

61002

61003

61004

61005

61006

61007

61008

61009

61010

61011

61012

61013

61014

61015

61016

61017

61018

61019

61020

System Interfaces sigaction()

through the use of some programmatic semaphore (see semget(), sem_init(), sem_open(), and so
on). Note in particular that even the ‘‘safe’’ functions may modify errno; the signal-catching
function, if not executing as an independent thread, should save and restore its value in order to
avoid the possibility that delivery of a signal in between an error return from a function that sets
errno and the subsequent examination of errno could result in the signal-catching function
changing the value of errno. Naturally, the same principles apply to the async-signal-safety of
application routines and asynchronous data access. Note that longjmp() and siglongjmp() are not
in the list of async-signal-safe functions. This is because the code executing after longjmp() and
siglongjmp() can call any unsafe functions with the same danger as calling those unsafe
functions directly from the signal handler. Applications that use longjmp() and siglongjmp() from
within signal handlers require rigorous protection in order to be portable. Many of the other
functions that are excluded from the list are traditionally implemented using either malloc() or
free() functions or the standard I/O library, both of which traditionally use data structures in a
non-async-signal-safe manner. Since any combination of different functions using a common
data structure can cause async-signal-safety problems, this volume of POSIX.1-2008 does not
define the behavior when any unsafe function is called in a signal handler that interrupts an
unsafe function.

If the signal occurs other than as the result of calling abort(), kill(), or raise(), the behavior is
undefined if the signal handler calls any function in the standard library other than one of the
functions listed in the table of async-signal-safe functions in Section 2.4.3 (on page 486), or refers
to any object other than errno with static storage duration other than by assigning a value to a
static storage duration variable of type volatile sig_atomic_t. Unless all signal handlers have
errno set on return as it was on entry, the value of errno is unspecified.

Usually, the signal is executed on the stack that was in effect before the signal was delivered. An
alternate stack may be specified to receive a subset of the signals being caught.

When the signal handler returns, the receiving thread resumes execution at the point it was
interrupted unless the signal handler makes other arrangements. If longjmp() or _longjmp() is
used to leave the signal handler, then the signal mask must be explicitly restored.

This volume of POSIX.1-2008 defines the third argument of a signal handling function when
SA_SIGINFO is set as a void * instead of a ucontext_t *, but without requiring type checking.
New applications should explicitly cast the third argument of the signal handling function to
ucontext_t *.

The BSD optional four argument signal handling function is not supported by this volume of
POSIX.1-2008. The BSD declaration would be:

void handler(int sig, int code, struct sigcontext *scp,
char *addr);

where sig is the signal number, code is additional information on certain signals, scp is a pointer
to the sigcontext structure, and addr is additional address information. Much the same
information is available in the objects pointed to by the second argument of the signal handler
specified when SA_SIGINFO is set.

Since the sigaction() function is allowed but not required to set SA_NODEFER when the
application sets the SA_RESETHAND flag, applications which depend on the SA_RESETHAND
functionality for the newly installed signal handler must always explicitly set SA_NODEFER
when they set SA_RESETHAND in order to be portable.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1919

61021

61022

61023

61024

61025

61026

61027

61028

61029

61030

61031

61032

61033

61034

61035

61036

61037

61038

61039

61040

61041

61042

61043

61044

61045

61046

61047

61048

61049

61050

61051

61052

61053

61054

61055

61056

61057

61058

61059

61060

61061

61062

61063

61064

sigaction() System Interfaces

RATIONALE
Although this volume of POSIX.1-2008 requires that signals that cannot be ignored shall not be
added to the signal mask when a signal-catching function is entered, there is no explicit
requirement that subsequent calls to sigaction() reflect this in the information returned in the oact
argument. In other words, if SIGKILL is included in the sa_mask field of act, it is unspecified
whether or not a subsequent call to sigaction() returns with SIGKILL included in the sa_mask
field of oact.

The SA_NOCLDSTOP flag, when supplied in the act->sa_flags parameter, allows overloading
SIGCHLD with the System V semantics that each SIGCLD signal indicates a single terminated
child. Most conforming applications that catch SIGCHLD are expected to install signal-catching
functions that repeatedly call the waitpid() function with the WNOHANG flag set, acting on
each child for which status is returned, until waitpid() returns zero. If stopped children are not of
interest, the use of the SA_NOCLDSTOP flag can prevent the overhead from invoking the
signal-catching routine when they stop.

Some historical implementations also define other mechanisms for stopping processes, such as
the ptrace() function. These implementations usually do not generate a SIGCHLD signal when
processes stop due to this mechanism; however, that is beyond the scope of this volume of
POSIX.1-2008.

This volume of POSIX.1-2008 requires that calls to sigaction() that supply a NULL act argument
succeed, even in the case of signals that cannot be caught or ignored (that is, SIGKILL or
SIGSTOP). The System V signal() and BSD sigvec() functions return [EINVAL] in these cases
and, in this respect, their behavior varies from sigaction().

This volume of POSIX.1-2008 requires that sigaction() properly save and restore a signal action
set up by the ISO C standard signal() function. However, there is no guarantee that the reverse is
true, nor could there be given the greater amount of information conveyed by the sigaction
structure. Because of this, applications should avoid using both functions for the same signal in
the same process. Since this cannot always be avoided in case of general-purpose library
routines, they should always be implemented with sigaction().

It was intended that the signal() function should be implementable as a library routine using
sigaction().

The POSIX Realtime Extension extends the sigaction() function as specified by the POSIX.1-1990
standard to allow the application to request on a per-signal basis via an additional signal action
flag that the extra parameters, including the application-defined signal value, if any, be passed to
the signal-catching function.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 484), exec , kill(), _longjmp(), longjmp(), pthread_sigmask(), raise(), semget(),
sem_init(), sem_open(), sigaddset(), sigaltstack(), sigdelset(), sigemptyset(), sigfillset(),
sigismember(), signal(), sigsuspend(), wait(), waitid()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

1920 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

61065

61066

61067

61068

61069

61070

61071

61072

61073

61074

61075

61076

61077

61078

61079

61080

61081

61082

61083

61084

61085

61086

61087

61088

61089

61090

61091

61092

61093

61094

61095

61096

61097

61098

61099

61100

61101

61102

61103

61104

61105

61106

61107

System Interfaces sigaction()

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and POSIX
Threads Extension.

In the DESCRIPTION, the second argument to func when SA_SIGINFO is set is no longer
permitted to be NULL, and the description of permitted siginfo_t contents is expanded by
reference to <signal.h>.

Since the X/OPEN UNIX Extension functionality is now folded into the BASE, the [ENOTSUP]
error is deleted.

Issue 6
The Open Group Corrigendum U028/7 is applied. In the paragraph entitled ‘‘Signal Effects on
Other Functions’’, a reference to sigpending() is added.

In the DESCRIPTION, the text ‘‘Signal Generation and Delivery’’, ‘‘Signal Actions’’, and ‘‘Signal
Effects on Other Functions’’ are moved to a separate section of this volume of POSIX.1-2008.

Text describing functionality from the Realtime Signals Extension option is marked.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

• The [ENOTSUP] error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the sigaction() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

References to the wait3() function are removed.

The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/57 is applied, changing text in the table
describing the sigaction structure.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/127 is applied, removing text from the
DESCRIPTION duplicated later in the same section.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/128 is applied, updating the
DESCRIPTION and APPLICATION USAGE sections. Changes are made to refer to the thread
rather than the process.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/129 is applied, adding the example to the
EXAMPLES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #004 is applied.

Austin Group Interpretations 1003.1-2001 #065 and #084 are applied, clarifying the role of the
SA_NODEFER flag with respect to the signal mask, and clarifying the SA_RESTART flag for
interrupted functions which use timeouts.

Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XSH-ERN-167 is applied, updating the APPLICATION USAGE section.

SD5-XSH-ERN-172 is applied, updating the DESCRIPTION to make optional the requirement
that when the SA_RESETHAND flag is set, sigaction() shall behave as if the SA_NODEFER flag
were also set.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1921

61108

61109

61110

61111

61112

61113

61114

61115

61116

61117

61118

61119

61120

61121

61122

61123

61124

61125

61126

61127

61128

61129

61130

61131

61132

61133

61134

61135

61136

61137

61138

61139

61140

61141

61142

61143

61144

61145

61146

61147

61148

sigaction() System Interfaces

Functionality relating to the Realtime Signals Extension option is moved to the Base.

The description of the si_code member is replaced with a reference to Section 2.4.3 (on page 486).

1922 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

61149

61150

System Interfaces sigaddset()

NAME
sigaddset — add a signal to a signal set

SYNOPSIS
CX #include <signal.h>

int sigaddset(sigset_t *set, int signo);

DESCRIPTION
The sigaddset() function adds the individual signal specified by the signo to the signal set pointed
to by set.

Applications shall call either sigemptyset() or sigfillset() at least once for each object of type
sigset_t prior to any other use of that object. If such an object is not initialized in this way, but is
nonetheless supplied as an argument to any of pthread_sigmask(), sigaction(), sigaddset(),
sigdelset(), sigismember(), sigpending(), sigprocmask(), sigsuspend(), sigtimedwait(), sigwait(), or
sigwaitinfo(), the results are undefined.

RETURN VALUE
Upon successful completion, sigaddset() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
The sigaddset() function may fail if:

[EINVAL] The value of the signo argument is an invalid or unsupported signal number.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 484), pthread_sigmask(), sigaction(), sigdelset(), sigemptyset(), sigfillset(),
sigismember(), sigpending(), sigsuspend()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1923

61151

61152

61153

61154

61155

61156

61157

61158

61159

61160

61161

61162

61163

61164

61165

61166

61167

61168

61169

61170

61171

61172

61173

61174

61175

61176

61177

61178

61179

61180

61181

61182

61183

61184

61185

61186

61187

61188

61189

61190

sigaltstack() System Interfaces

NAME
sigaltstack — set and get signal alternate stack context

SYNOPSIS
XSI #include <signal.h>

int sigaltstack(const stack_t *restrict ss, stack_t *restrict oss);

DESCRIPTION
The sigaltstack() function allows a process to define and examine the state of an alternate stack
for signal handlers for the current thread. Signals that have been explicitly declared to execute
on the alternate stack shall be delivered on the alternate stack.

If ss is not a null pointer, it points to a stack_t structure that specifies the alternate signal stack
that shall take effect upon return from sigaltstack(). The ss_flags member specifies the new stack
state. If it is set to SS_DISABLE, the stack is disabled and ss_sp and ss_size are ignored.
Otherwise, the stack shall be enabled, and the ss_sp and ss_size members specify the new address
and size of the stack.

The range of addresses starting at ss_sp up to but not including ss_sp+ss_size is available to the
implementation for use as the stack. This function makes no assumptions regarding which end
is the stack base and in which direction the stack grows as items are pushed.

If oss is not a null pointer, upon successful completion it shall point to a stack_t structure that
specifies the alternate signal stack that was in effect prior to the call to sigaltstack(). The ss_sp
and ss_size members specify the address and size of that stack. The ss_flags member specifies the
stack’s state, and may contain one of the following values:

SS_ONSTACK The process is currently executing on the alternate signal stack. Attempts to
modify the alternate signal stack while the process is executing on it fail. This
flag shall not be modified by processes.

SS_DISABLE The alternate signal stack is currently disabled.

The value SIGSTKSZ is a system default specifying the number of bytes that would be used to
cover the usual case when manually allocating an alternate stack area. The value MINSIGSTKSZ
is defined to be the minimum stack size for a signal handler. In computing an alternate stack
size, a program should add that amount to its stack requirements to allow for the system
implementation overhead. The constants SS_ONSTACK, SS_DISABLE, SIGSTKSZ, and
MINSIGSTKSZ are defined in <signal.h>.

After a successful call to one of the exec functions, there are no alternate signal stacks in the new
process image.

In some implementations, a signal (whether or not indicated to execute on the alternate stack)
shall always execute on the alternate stack if it is delivered while another signal is being caught
using the alternate stack.

Use of this function by library threads that are not bound to kernel-scheduled entities results in
undefined behavior.

RETURN VALUE
Upon successful completion, sigaltstack() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

1924 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

61191

61192

61193

61194

61195

61196

61197

61198

61199

61200

61201

61202

61203

61204

61205

61206

61207

61208

61209

61210

61211

61212

61213

61214

61215

61216

61217

61218

61219

61220

61221

61222

61223

61224

61225

61226

61227

61228

61229

61230

61231

System Interfaces sigaltstack()

ERRORS
The sigaltstack() function shall fail if:

[EINVAL] The ss argument is not a null pointer, and the ss_flags member pointed to by ss
contains flags other than SS_DISABLE.

[ENOMEM] The size of the alternate stack area is less than MINSIGSTKSZ.

[EPERM] An attempt was made to modify an active stack.

EXAMPLES

Allocating Memory for an Alternate Stack

The following example illustrates a method for allocating memory for an alternate stack.

#include <signal.h>
...
if ((sigstk.ss_sp = malloc(SIGSTKSZ)) == NULL)

/* Error return. */
sigstk.ss_size = SIGSTKSZ;
sigstk.ss_flags = 0;
if (sigaltstack(&sigstk,(stack_t *)0) < 0)

perror("sigaltstack");

APPLICATION USAGE
On some implementations, stack space is automatically extended as needed. On those
implementations, automatic extension is typically not available for an alternate stack. If the stack
overflows, the behavior is undefined.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 484), exec , sigaction(), sigsetjmp()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The last sentence of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the sigaltstack() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/58 is applied, updating the first sentence
to include ‘‘for the current thread’’.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1925

61232

61233

61234

61235

61236

61237

61238

61239

61240

61241

61242

61243

61244

61245

61246

61247

61248

61249

61250

61251

61252

61253

61254

61255

61256

61257

61258

61259

61260

61261

61262

61263

61264

61265

61266

61267

61268

61269

61270

61271

sigdelset() System Interfaces

NAME
sigdelset — delete a signal from a signal set

SYNOPSIS
CX #include <signal.h>

int sigdelset(sigset_t *set, int signo);

DESCRIPTION
The sigdelset() function deletes the individual signal specified by signo from the signal set
pointed to by set.

Applications should call either sigemptyset() or sigfillset() at least once for each object of type
sigset_t prior to any other use of that object. If such an object is not initialized in this way, but is
nonetheless supplied as an argument to any of pthread_sigmask(), sigaction(), sigaddset(),
sigdelset(), sigismember(), sigpending(), sigprocmask(), sigsuspend(), sigtimedwait(), sigwait(), or
sigwaitinfo(), the results are undefined.

RETURN VALUE
Upon successful completion, sigdelset() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
The sigdelset() function may fail if:

[EINVAL] The signo argument is not a valid signal number, or is an unsupported signal
number.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 484), pthread_sigmask(), sigaction(), sigaddset(), sigemptyset(), sigfillset(),
sigismember(), sigpending(), sigsuspend()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

Issue 6
The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

1926 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

61272

61273

61274

61275

61276

61277

61278

61279

61280

61281

61282

61283

61284

61285

61286

61287

61288

61289

61290

61291

61292

61293

61294

61295

61296

61297

61298

61299

61300

61301

61302

61303

61304

61305

61306

61307

61308

61309

61310

61311

System Interfaces sigemptyset()

NAME
sigemptyset — initialize and empty a signal set

SYNOPSIS
CX #include <signal.h>

int sigemptyset(sigset_t *set);

DESCRIPTION
The sigemptyset() function initializes the signal set pointed to by set, such that all signals defined
in POSIX.1-2008 are excluded.

RETURN VALUE
Upon successful completion, sigemptyset() shall return 0; otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The implementation of the sigemptyset() (or sigfillset()) function could quite trivially clear (or set)
all the bits in the signal set. Alternatively, it would be reasonable to initialize part of the
structure, such as a version field, to permit binary-compatibility between releases where the size
of the set varies. For such reasons, either sigemptyset() or sigfillset() must be called prior to any
other use of the signal set, even if such use is read-only (for example, as an argument to
sigpending()). This function is not intended for dynamic allocation.

The sigfillset() and sigemptyset() functions require that the resulting signal set include (or
exclude) all the signals defined in this volume of POSIX.1-2008. Although it is outside the scope
of this volume of POSIX.1-2008 to place this requirement on signals that are implemented as
extensions, it is recommended that implementation-defined signals also be affected by these
functions. However, there may be a good reason for a particular signal not to be affected. For
example, blocking or ignoring an implementation-defined signal may have undesirable side-
effects, whereas the default action for that signal is harmless. In such a case, it would be
preferable for such a signal to be excluded from the signal set returned by sigfillset().

In early proposals there was no distinction between invalid and unsupported signals (the names
of optional signals that were not supported by an implementation were not defined by that
implementation). The [EINVAL] error was thus specified as a required error for invalid signals.
With that distinction, it is not necessary to require implementations of these functions to
determine whether an optional signal is actually supported, as that could have a significant
performance impact for little value. The error could have been required for invalid signals and
optional for unsupported signals, but this seemed unnecessarily complex. Thus, the error is
optional in both cases.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1927

61312

61313

61314

61315

61316

61317

61318

61319

61320

61321

61322

61323

61324

61325

61326

61327

61328

61329

61330

61331

61332

61333

61334

61335

61336

61337

61338

61339

61340

61341

61342

61343

61344

61345

61346

61347

61348

61349

61350

61351

61352

61353

sigemptyset() System Interfaces

SEE ALSO
Section 2.4 (on page 484), pthread_sigmask(), sigaction(), sigaddset(), sigdelset(), sigfillset(),
sigismember(), sigpending(), sigsuspend()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

1928 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

61354

61355

61356

61357

61358

61359

61360

61361

61362

System Interfaces sigfillset()

NAME
sigfillset — initialize and fill a signal set

SYNOPSIS
CX #include <signal.h>

int sigfillset(sigset_t *set);

DESCRIPTION
The sigfillset() function shall initialize the signal set pointed to by set, such that all signals
defined in this volume of POSIX.1-2008 are included.

RETURN VALUE
Upon successful completion, sigfillset() shall return 0; otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to sigemptyset() (on page 1927).

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 484), pthread_sigmask(), sigaction(), sigaddset(), sigdelset(), sigemptyset(),
sigismember(), sigpending(), sigsuspend()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1929

61363

61364

61365

61366

61367

61368

61369

61370

61371

61372

61373

61374

61375

61376

61377

61378

61379

61380

61381

61382

61383

61384

61385

61386

61387

61388

61389

61390

61391

61392

sighold() System Interfaces

NAME
sighold, sigignore, sigpause, sigrelse, sigset — signal management

SYNOPSIS
OB XSI #include <signal.h>

int sighold(int sig);
int sigignore(int sig);
int sigpause(int sig);
int sigrelse(int sig);
void (*sigset(int sig, void (*disp)(int)))(int);

DESCRIPTION
Use of any of these functions is unspecified in a multi-threaded process.

The sighold(), sigignore(), sigpause(), sigrelse(), and sigset() functions provide simplified signal
management.

The sigset() function shall modify signal dispositions. The sig argument specifies the signal,
which may be any signal except SIGKILL and SIGSTOP. The disp argument specifies the signal’s
disposition, which may be SIG_DFL, SIG_IGN, or the address of a signal handler. If sigset() is
used, and disp is the address of a signal handler, the system shall add sig to the signal mask of
the calling process before executing the signal handler; when the signal handler returns, the
system shall restore the signal mask of the calling process to its state prior to the delivery of the
signal. In addition, if sigset() is used, and disp is equal to SIG_HOLD, sig shall be added to the
signal mask of the calling process and sig’s disposition shall remain unchanged. If sigset() is
used, and disp is not equal to SIG_HOLD, sig shall be removed from the signal mask of the
calling process.

The sighold() function shall add sig to the signal mask of the calling process.

The sigrelse() function shall remove sig from the signal mask of the calling process.

The sigignore() function shall set the disposition of sig to SIG_IGN.

The sigpause() function shall remove sig from the signal mask of the calling process and suspend
the calling process until a signal is received. The sigpause() function shall restore the signal mask
of the process to its original state before returning.

If the action for the SIGCHLD signal is set to SIG_IGN, child processes of the calling processes
shall not be transformed into zombie processes when they terminate. If the calling process
subsequently waits for its children, and the process has no unwaited-for children that were
transformed into zombie processes, it shall block until all of its children terminate, and wait(),
waitid(), and waitpid() shall fail and set errno to [ECHILD].

RETURN VALUE
Upon successful completion, sigset() shall return SIG_HOLD if the signal had been blocked and
the signal’s previous disposition if it had not been blocked. Otherwise, SIG_ERR shall be
returned and errno set to indicate the error.

The sigpause() function shall suspend execution of the thread until a signal is received,
whereupon it shall return −1 and set errno to [EINTR].

For all other functions, upon successful completion, 0 shall be returned. Otherwise, −1 shall be
returned and errno set to indicate the error.

1930 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

61393

61394

61395

61396

61397

61398

61399

61400

61401

61402

61403

61404

61405

61406

61407

61408

61409

61410

61411

61412

61413

61414

61415

61416

61417

61418

61419

61420

61421

61422

61423

61424

61425

61426

61427

61428

61429

61430

61431

61432

61433

61434

System Interfaces sighold()

ERRORS
These functions shall fail if:

[EINVAL] The sig argument is an illegal signal number.

The sigset() and sigignore() functions shall fail if:

[EINVAL] An attempt is made to catch a signal that cannot be caught, or to ignore a
signal that cannot be ignored.

EXAMPLES
None.

APPLICATION USAGE
The sigaction() function provides a more comprehensive and reliable mechanism for controlling
signals; new applications should use the sigaction() function instead of the obsolescent sigset()
function.

The sighold() function, in conjunction with sigrelse() or sigpause(), may be used to establish
critical regions of code that require the delivery of a signal to be temporarily deferred. For
broader portability, the pthread_sigmask() or sigprocmask() functions should be used instead of
the obsolescent sighold() and sigrelse() functions.

For broader portability, the sigsuspend() function should be used instead of the obsolescent
sigpause() function.

RATIONALE
Each of these historic functions has a direct analog in the other functions which are required to
be per-thread and thread-safe (aside from sigprocmask(), which is replaced by pthread_sigmask()).
The sigset() function can be implemented as a simple wrapper for sigaction(). The sighold()
function is equivalent to sigprocmask() or pthread_sigmask() with SIG_BLOCK set. The sigignore()
function is equivalent to sigaction() with SIG_IGN set. The sigpause() function is equivalent to
sigsuspend(). The sigrelse() function is equivalent to sigprocmask() or pthread_sigmask() with
SIG_UNBLOCK set.

FUTURE DIRECTIONS
These functions may be removed in a future version.

SEE ALSO
Section 2.4 (on page 484), exec , pause(), pthread_sigmask(), sigaction(), signal(), sigsuspend(),
wait(), waitid()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is updated to indicate that the sigpause() function restores the signal mask of
the process to its original state before returning.

The RETURN VALUE section is updated to indicate that the sigpause() function suspends
execution of the process until a signal is received, whereupon it returns −1 and sets errno to
[EINTR].

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1931

61435

61436

61437

61438

61439

61440

61441

61442

61443

61444

61445

61446

61447

61448

61449

61450

61451

61452

61453

61454

61455

61456

61457

61458

61459

61460

61461

61462

61463

61464

61465

61466

61467

61468

61469

61470

61471

61472

61473

61474

61475

sighold() System Interfaces

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

References to the wait3() function are removed.

The XSI functions are split out into their own reference page.

Issue 7
SD5-XSH-ERN-113 and SD5-XSH-ERN-42 are applied, marking these functions obsolescent and
updating the APPLICATION USAGE and RATIONALE sections.

1932 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

61476

61477

61478

61479

61480

61481

61482

System Interfaces siginterrupt()

NAME
siginterrupt — allow signals to interrupt functions

SYNOPSIS
OB XSI #include <signal.h>

int siginterrupt(int sig, int flag);

DESCRIPTION
The siginterrupt() function shall change the restart behavior when a function is interrupted by
the specified signal. The function siginterrupt(sig, flag) has an effect as if implemented as:

int siginterrupt(int sig, int flag) {
int ret;
struct sigaction act;

(void) sigaction(sig, NULL, &act);
if (flag)

act.sa_flags &= ˜SA_RESTART;
else

act.sa_flags |= SA_RESTART;
ret = sigaction(sig, &act, NULL);
return ret;

}

RETURN VALUE
Upon successful completion, siginterrupt() shall return 0; otherwise, −1 shall be returned and
errno set to indicate the error.

ERRORS
The siginterrupt() function shall fail if:

[EINVAL] The sig argument is not a valid signal number.

EXAMPLES
None.

APPLICATION USAGE
The siginterrupt() function supports programs written to historical system interfaces.
Applications should use the sigaction() with the SA_RESTART flag instead of the obsolescent
siginterrupt() function.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 484), sigaction()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1933

61483

61484

61485

61486

61487

61488

61489

61490

61491

61492

61493

61494

61495

61496

61497

61498

61499

61500

61501

61502

61503

61504

61505

61506

61507

61508

61509

61510

61511

61512

61513

61514

61515

61516

61517

61518

61519

61520

61521

61522

siginterrupt() System Interfaces

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/59 is applied, correcting the declaration in
the sample implementation given in the DESCRIPTION.

Issue 7
The siginterrupt() function is marked obsolescent.

1934 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

61523

61524

61525

61526

61527

61528

61529

System Interfaces sigismember()

NAME
sigismember — test for a signal in a signal set

SYNOPSIS
CX #include <signal.h>

int sigismember(const sigset_t *set, int signo);

DESCRIPTION
The sigismember() function shall test whether the signal specified by signo is a member of the set
pointed to by set.

Applications should call either sigemptyset() or sigfillset() at least once for each object of type
sigset_t prior to any other use of that object. If such an object is not initialized in this way, but is
nonetheless supplied as an argument to any of pthread_sigmask(), sigaction(), sigaddset(),
sigdelset(), sigismember(), sigpending(), sigprocmask(), sigsuspend(), sigtimedwait(), sigwait(), or
sigwaitinfo(), the results are undefined.

RETURN VALUE
Upon successful completion, sigismember() shall return 1 if the specified signal is a member of
the specified set, or 0 if it is not. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The sigismember() function may fail if:

[EINVAL] The signo argument is not a valid signal number, or is an unsupported signal
number.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 484), pthread_sigmask(), sigaction(), sigaddset(), sigdelset(), sigfillset(),
sigemptyset(), sigpending(), sigsuspend()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

Issue 6
The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1935

61530

61531

61532

61533

61534

61535

61536

61537

61538

61539

61540

61541

61542

61543

61544

61545

61546

61547

61548

61549

61550

61551

61552

61553

61554

61555

61556

61557

61558

61559

61560

61561

61562

61563

61564

61565

61566

61567

61568

61569

siglongjmp() System Interfaces

NAME
siglongjmp — non-local goto with signal handling

SYNOPSIS
CX #include <setjmp.h>

void siglongjmp(sigjmp_buf env, int val);

DESCRIPTION
The siglongjmp() function shall be equivalent to the longjmp() function, except as follows:

• References to setjmp() shall be equivalent to sigsetjmp().

• The siglongjmp() function shall restore the saved signal mask if and only if the env
argument was initialized by a call to sigsetjmp() with a non-zero savemask argument.

RETURN VALUE
After siglongjmp() is completed, program execution shall continue as if the corresponding
invocation of sigsetjmp() had just returned the value specified by val. The siglongjmp() function
shall not cause sigsetjmp() to return 0; if val is 0, sigsetjmp() shall return the value 1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The distinction between setjmp() or longjmp() and sigsetjmp() or siglongjmp() is only significant
for programs which use sigaction(), sigprocmask(), or sigsuspend().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
longjmp(), pthread_sigmask(), setjmp(), sigsetjmp(), sigsuspend()

XBD <setjmp.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the ISO POSIX-1 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The DESCRIPTION is rewritten in terms of longjmp().

The SYNOPSIS is marked CX since the presence of this function in the <setjmp.h> header is an
extension over the ISO C standard.

1936 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

61570

61571

61572

61573

61574

61575

61576

61577

61578

61579

61580

61581

61582

61583

61584

61585

61586

61587

61588

61589

61590

61591

61592

61593

61594

61595

61596

61597

61598

61599

61600

61601

61602

61603

61604

61605

System Interfaces signal()

NAME
signal — signal management

SYNOPSIS
#include <signal.h>

void (*signal(int sig, void (*func)(int)))(int);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

Use of this function is unspecified in a multi-threaded process.

The signal() function chooses one of three ways in which receipt of the signal number sig is to be
subsequently handled. If the value of func is SIG_DFL, default handling for that signal shall
occur. If the value of func is SIG_IGN, the signal shall be ignored. Otherwise, the application
shall ensure that func points to a function to be called when that signal occurs. An invocation of
such a function because of a signal, or (recursively) of any further functions called by that
invocation (other than functions in the standard library), is called a ‘‘signal handler’’.

When a signal occurs, and func points to a function, it is implementation-defined whether the
equivalent of a:

signal(sig, SIG_DFL);

is executed or the implementation prevents some implementation-defined set of signals (at least
including sig) from occurring until the current signal handling has completed. (If the value of sig
is SIGILL, the implementation may alternatively define that no action is taken.) Next the
equivalent of:

(*func)(sig);

is executed. If and when the function returns, if the value of sig was SIGFPE, SIGILL, or
SIGSEGV or any other implementation-defined value corresponding to a computational
exception, the behavior is undefined. Otherwise, the program shall resume execution at the

CX point it was interrupted. If the signal occurs as the result of calling the abort(), raise(), kill(),
pthread_kill(), or sigqueue() function, the signal handler shall not call the raise() function.

CX If the signal occurs other than as the result of calling abort(), raise(), kill(), pthread_kill(), or
sigqueue(), the behavior is undefined if the signal handler refers to any object with static storage
duration other than by assigning a value to an object declared as volatile sig_atomic_t, or if the
signal handler calls any function in the standard library other than one of the functions listed in
Section 2.4 (on page 484). Furthermore, if such a call fails, the value of errno is unspecified.

At program start-up, the equivalent of:

signal(sig, SIG_IGN);

is executed for some signals, and the equivalent of:

signal(sig, SIG_DFL);

CX is executed for all other signals (see exec).

RETURN VALUE
If the request can be honored, signal() shall return the value of func for the most recent call to
signal() for the specified signal sig. Otherwise, SIG_ERR shall be returned and a positive value
shall be stored in errno.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1937

61606

61607

61608

61609

61610

61611

61612

61613

61614

61615

61616

61617

61618

61619

61620

61621

61622

61623

61624

61625

61626

61627

61628

61629

61630

61631

61632

61633

61634

61635

61636

61637

61638

61639

61640

61641

61642

61643

61644

61645

61646

61647

61648

signal() System Interfaces

ERRORS
The signal() function shall fail if:

CX [EINVAL] The sig argument is not a valid signal number or an attempt is made to catch a
signal that cannot be caught or ignore a signal that cannot be ignored.

The signal() function may fail if:

CX [EINVAL] An attempt was made to set the action to SIG_DFL for a signal that cannot be
caught or ignored (or both).

EXAMPLES
None.

APPLICATION USAGE
The sigaction() function provides a more comprehensive and reliable mechanism for controlling
signals; new applications should use sigaction() rather than signal().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 484), exec , pause(), sigaction(), sigsuspend(), waitid()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is updated to indicate that the sigpause() function restores the signal mask of
the process to its original state before returning.

The RETURN VALUE section is updated to indicate that the sigpause() function suspends
execution of the process until a signal is received, whereupon it returns −1 and sets errno to
[EINTR].

Issue 6
Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The DESCRIPTION is updated for alignment with the ISO/IEC 9899: 1999 standard.

References to the wait3() function are removed.

The sighold(), sigignore(), sigrelse(), and sigset() functions are split out onto their own reference
page.

1938 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

61649

61650

61651

61652

61653

61654

61655

61656

61657

61658

61659

61660

61661

61662

61663

61664

61665

61666

61667

61668

61669

61670

61671

61672

61673

61674

61675

61676

61677

61678

61679

61680

61681

61682

61683

System Interfaces signbit()

NAME
signbit — test sign

SYNOPSIS
#include <math.h>

int signbit(real-floating x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The signbit() macro shall determine whether the sign of its argument value is negative. NaNs,
zeros, and infinities have a sign bit.

RETURN VALUE
The signbit() macro shall return a non-zero value if and only if the sign of its argument value is
negative.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isfinite(), isinf(), isnan(), isnormal()

XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1939

61684

61685

61686

61687

61688

61689

61690

61691

61692

61693

61694

61695

61696

61697

61698

61699

61700

61701

61702

61703

61704

61705

61706

61707

61708

61709

61710

61711

61712

signgam() System Interfaces

NAME
signgam — log gamma function

SYNOPSIS
XSI #include <math.h>

extern int signgam;

DESCRIPTION
Refer to lgamma().

1940 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

61713

61714

61715

61716

61717

61718

61719

System Interfaces sigpause()

NAME
sigpause — remove a signal from the signal mask and suspend the thread

SYNOPSIS
OB XSI #include <signal.h>

int sigpause(int sig);

DESCRIPTION
Refer to sighold().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1941

61720

61721

61722

61723

61724

61725

61726

sigpending() System Interfaces

NAME
sigpending — examine pending signals

SYNOPSIS
CX #include <signal.h>

int sigpending(sigset_t *set);

DESCRIPTION
The sigpending() function shall store, in the location referenced by the set argument, the set of
signals that are blocked from delivery to the calling thread and that are pending on the process
or the calling thread.

RETURN VALUE
Upon successful completion, sigpending() shall return 0; otherwise, −1 shall be returned and
errno set to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , pthread_sigmask(), sigaddset(), sigdelset(), sigemptyset(), sigfillset(), sigismember()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

1942 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

61727

61728

61729

61730

61731

61732

61733

61734

61735

61736

61737

61738

61739

61740

61741

61742

61743

61744

61745

61746

61747

61748

61749

61750

61751

61752

61753

61754

61755

61756

61757

61758

System Interfaces sigprocmask()

NAME
sigprocmask — examine and change blocked signals

SYNOPSIS
CX #include <signal.h>

int sigprocmask(int how, const sigset_t *restrict set,
sigset_t *restrict oset);

DESCRIPTION
Refer to pthread_sigmask().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1943

61759

61760

61761

61762

61763

61764

61765

61766

sigqueue() System Interfaces

NAME
sigqueue — queue a signal to a process

SYNOPSIS
CX #include <signal.h>

int sigqueue(pid_t pid, int signo, const union sigval value);

DESCRIPTION
The sigqueue() function shall cause the signal specified by signo to be sent with the value
specified by value to the process specified by pid. If signo is zero (the null signal), error checking
is performed but no signal is actually sent. The null signal can be used to check the validity of
pid.

The conditions required for a process to have permission to queue a signal to another process are
the same as for the kill() function.

The sigqueue() function shall return immediately. If SA_SIGINFO is set for signo and if the
resources were available to queue the signal, the signal shall be queued and sent to the receiving
process. If SA_SIGINFO is not set for signo, then signo shall be sent at least once to the receiving
process; it is unspecified whether value shall be sent to the receiving process as a result of this
call.

If the value of pid causes signo to be generated for the sending process, and if signo is not blocked
for the calling thread and if no other thread has signo unblocked or is waiting in a sigwait()
function for signo, either signo or at least the pending, unblocked signal shall be delivered to the
calling thread before the sigqueue() function returns. Should any multiple pending signals in the
range SIGRTMIN to SIGRTMAX be selected for delivery, it shall be the lowest numbered one.
The selection order between realtime and non-realtime signals, or between multiple pending
non-realtime signals, is unspecified.

RETURN VALUE
Upon successful completion, the specified signal shall have been queued, and the sigqueue()
function shall return a value of zero. Otherwise, the function shall return a value of −1 and set
errno to indicate the error.

ERRORS
The sigqueue() function shall fail if:

[EAGAIN] No resources are available to queue the signal. The process has already
queued {SIGQUEUE_MAX} signals that are still pending at the receiver(s), or
a system-wide resource limit has been exceeded.

[EINVAL] The value of the signo argument is an invalid or unsupported signal number.

[EPERM] The process does not have appropriate privileges to send the signal to the
receiving process.

[ESRCH] The process pid does not exist.

1944 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

61767

61768

61769

61770

61771

61772

61773

61774

61775

61776

61777

61778

61779

61780

61781

61782

61783

61784

61785

61786

61787

61788

61789

61790

61791

61792

61793

61794

61795

61796

61797

61798

61799

61800

61801

61802

61803

System Interfaces sigqueue()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The sigqueue() function allows an application to queue a realtime signal to itself or to another
process, specifying the application-defined value. This is common practice in realtime
applications on existing realtime systems. It was felt that specifying another function in the
sig. . . name space already carved out for signals was preferable to extending the interface to
kill().

Such a function became necessary when the put/get event function of the message queues was
removed. It should be noted that the sigqueue() function implies reduced performance in a
security-conscious implementation as the access permissions between the sender and receiver
have to be checked on each send when the pid is resolved into a target process. Such access
checks were necessary only at message queue open in the previous interface.

The standard developers required that sigqueue() have the same semantics with respect to the
null signal as kill(), and that the same permission checking be used. But because of the difficulty
of implementing the ‘‘broadcast’’ semantic of kill() (for example, to process groups) and the
interaction with resource allocation, this semantic was not adopted. The sigqueue() function
queues a signal to a single process specified by the pid argument.

The sigqueue() function can fail if the system has insufficient resources to queue the signal. An
explicit limit on the number of queued signals that a process could send was introduced. While
the limit is ‘‘per-sender ’’, this volume of POSIX.1-2008 does not specify that the resources be part
of the state of the sender. This would require either that the sender be maintained after exit until
all signals that it had sent to other processes were handled or that all such signals that had not
yet been acted upon be removed from the queue(s) of the receivers. This volume of
POSIX.1-2008 does not preclude this behavior, but an implementation that allocated queuing
resources from a system-wide pool (with per-sender limits) and that leaves queued signals
pending after the sender exits is also permitted.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.8.1 (on page 497)

XBD <signal.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension and the
POSIX Threads Extension.

Issue 6
The sigqueue() function is marked as part of the Realtime Signals Extension option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Realtime Signals Extension option.

Issue 7
The sigqueue() function is moved from the Realtime Signals Extension option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1945

61804

61805

61806

61807

61808

61809

61810

61811

61812

61813

61814

61815

61816

61817

61818

61819

61820

61821

61822

61823

61824

61825

61826

61827

61828

61829

61830

61831

61832

61833

61834

61835

61836

61837

61838

61839

61840

61841

61842

61843

61844

61845

61846

sigrelse() System Interfaces

NAME
sigrelse, sigset — signal management

SYNOPSIS
OB XSI #include <signal.h>

int sigrelse(int sig);
void (*sigset(int sig, void (*disp)(int)))(int);

DESCRIPTION
Refer to sighold().

1946 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

61847

61848

61849

61850

61851

61852

61853

61854

System Interfaces sigsetjmp()

NAME
sigsetjmp — set jump point for a non-local goto

SYNOPSIS
CX #include <setjmp.h>

int sigsetjmp(sigjmp_buf env, int savemask);

DESCRIPTION
The sigsetjmp() function shall be equivalent to the setjmp() function, except as follows:

• References to setjmp() are equivalent to sigsetjmp().

• References to longjmp() are equivalent to siglongjmp().

• If the value of the savemask argument is not 0, sigsetjmp() shall also save the current signal
mask of the calling thread as part of the calling environment.

RETURN VALUE
If the return is from a successful direct invocation, sigsetjmp() shall return 0. If the return is from
a call to siglongjmp(), sigsetjmp() shall return a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The distinction between setjmp()/longjmp() and sigsetjmp()/siglongjmp() is only significant for
programs which use sigaction(), sigprocmask(), or sigsuspend().

Note that since this function is defined in terms of setjmp(), if savemask is zero, it is unspecified
whether the signal mask is saved.

RATIONALE
The ISO C standard specifies various restrictions on the usage of the setjmp() macro in order to
permit implementors to recognize the name in the compiler and not implement an actual
function. These same restrictions apply to the sigsetjmp() macro.

There are processors that cannot easily support these calls, but this was not considered a
sufficient reason to exclude them.

4.2 BSD, 4.3 BSD, and XSI-conformant systems provide functions named _setjmp() and
_longjmp() that, together with setjmp() and longjmp(), provide the same functionality as
sigsetjmp() and siglongjmp(). On those systems, setjmp() and longjmp() save and restore signal
masks, while _setjmp() and _longjmp() do not. On System V Release 3 and in corresponding
issues of the SVID, setjmp() and longjmp() are explicitly defined not to save and restore signal
masks. In order to permit existing practice in both cases, the relation of setjmp() and longjmp() to
signal masks is not specified, and a new set of functions is defined instead.

The longjmp() and siglongjmp() functions operate as in the previous issue provided the matching
setjmp() or sigsetjmp() has been performed in the same thread. Non-local jumps into contexts
saved by other threads would be at best a questionable practice and were not considered worthy
of standardization.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1947

61855

61856

61857

61858

61859

61860

61861

61862

61863

61864

61865

61866

61867

61868

61869

61870

61871

61872

61873

61874

61875

61876

61877

61878

61879

61880

61881

61882

61883

61884

61885

61886

61887

61888

61889

61890

61891

61892

61893

61894

sigsetjmp() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_sigmask(), siglongjmp(), signal(), sigsuspend()

XBD <setjmp.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The DESCRIPTION is reworded in terms of setjmp().

The SYNOPSIS is marked CX since the presence of this function in the <setjmp.h> header is an
extension over the ISO C standard.

1948 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

61895

61896

61897

61898

61899

61900

61901

61902

61903

61904

61905

61906

61907

System Interfaces sigsuspend()

NAME
sigsuspend — wait for a signal

SYNOPSIS
CX #include <signal.h>

int sigsuspend(const sigset_t *sigmask);

DESCRIPTION
The sigsuspend() function shall replace the current signal mask of the calling thread with the set
of signals pointed to by sigmask and then suspend the thread until delivery of a signal whose
action is either to execute a signal-catching function or to terminate the process. This shall not
cause any other signals that may have been pending on the process to become pending on the
thread.

If the action is to terminate the process then sigsuspend() shall never return. If the action is to
execute a signal-catching function, then sigsuspend() shall return after the signal-catching
function returns, with the signal mask restored to the set that existed prior to the sigsuspend()
call.

It is not possible to block signals that cannot be ignored. This is enforced by the system without
causing an error to be indicated.

RETURN VALUE
Since sigsuspend() suspends thread execution indefinitely, there is no successful completion
return value. If a return occurs, −1 shall be returned and errno set to indicate the error.

ERRORS
The sigsuspend() function shall fail if:

[EINTR] A signal is caught by the calling process and control is returned from the
signal-catching function.

EXAMPLES
None.

APPLICATION USAGE
Normally, at the beginning of a critical code section, a specified set of signals is blocked using
the sigprocmask() function. When the thread has completed the critical section and needs to wait
for the previously blocked signal(s), it pauses by calling sigsuspend() with the mask that was
returned by the sigprocmask() call.

RATIONALE
Code which wants to avoid the ambiguity of the signal mask for thread cancellation handlers
can install an additional cancellation handler which resets the signal mask to the expected value.

void cleanup(void *arg)
{

sigset_t *ss = (sigset_t *) arg;
pthread_sigmask(SIG_SETMASK, ss, NULL);

}

int call_sigsuspend(const sigset_t *mask)
{

sigset_t oldmask;
int result;
pthread_sigmask(SIG_SETMASK, NULL, &oldmask);
pthread_cleanup_push(cleanup, &oldmask);

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1949

61908

61909

61910

61911

61912

61913

61914

61915

61916

61917

61918

61919

61920

61921

61922

61923

61924

61925

61926

61927

61928

61929

61930

61931

61932

61933

61934

61935

61936

61937

61938

61939

61940

61941

61942

61943

61944

61945

61946

61947

61948

61949

61950

61951

61952

sigsuspend() System Interfaces

result = sigsuspend(sigmask);
pthread_cleanup_pop(0);
return result;

}

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 484), pause(), sigaction(), sigaddset(), sigdelset(), sigemptyset(), sigfillset()

XBD <signal.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The text in the RETURN VALUE section has been changed from ‘‘suspends process execution’’
to ‘‘suspends thread execution’’. This reflects IEEE PASC Interpretation 1003.1c #40.

Text in the APPLICATION USAGE section has been replaced.

The SYNOPSIS is marked CX since the presence of this function in the <signal.h> header is an
extension over the ISO C standard.

Issue 7
SD5-XSH-ERN-122 is applied, adding the example code in the RATIONALE.

1950 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

61953

61954

61955

61956

61957

61958

61959

61960

61961

61962

61963

61964

61965

61966

61967

61968

61969

61970

61971

61972

61973

System Interfaces sigtimedwait()

NAME
sigtimedwait, sigwaitinfo — wait for queued signals

SYNOPSIS
CX #include <signal.h>

int sigtimedwait(const sigset_t *restrict set,
siginfo_t *restrict info,
const struct timespec *restrict timeout);

int sigwaitinfo(const sigset_t *restrict set,
siginfo_t *restrict info);

DESCRIPTION
The sigtimedwait() function shall be equivalent to sigwaitinfo() except that if none of the signals
specified by set are pending, sigtimedwait() shall wait for the time interval specified in the
timespec structure referenced by timeout. If the timespec structure pointed to by timeout is zero-
valued and if none of the signals specified by set are pending, then sigtimedwait() shall return

MON immediately with an error. If timeout is the null pointer, the behavior is unspecified. If the
Monotonic Clock option is supported, the CLOCK_MONOTONIC clock shall be used to
measure the time interval specified by the timeout argument.

The sigwaitinfo() function selects the pending signal from the set specified by set. Should any of
multiple pending signals in the range SIGRTMIN to SIGRTMAX be selected, it shall be the
lowest numbered one. The selection order between realtime and non-realtime signals, or
between multiple pending non-realtime signals, is unspecified. If no signal in set is pending at
the time of the call, the calling thread shall be suspended until one or more signals in set become
pending or until it is interrupted by an unblocked, caught signal.

The sigwaitinfo() function shall be equivalent to the sigwait() function if the info argument is
NULL. If the info argument is non-NULL, the sigwaitinfo() function shall be equivalent to
sigwait(), except that the selected signal number shall be stored in the si_signo member, and the
cause of the signal shall be stored in the si_code member. If any value is queued to the selected
signal, the first such queued value shall be dequeued and, if the info argument is non-NULL, the
value shall be stored in the si_value member of info. The system resource used to queue the
signal shall be released and returned to the system for other use. If no value is queued, the
content of the si_value member is undefined. If no further signals are queued for the selected
signal, the pending indication for that signal shall be reset.

RETURN VALUE
Upon successful completion (that is, one of the signals specified by set is pending or is
generated) sigwaitinfo() and sigtimedwait() shall return the selected signal number. Otherwise,
the function shall return a value of −1 and set errno to indicate the error.

ERRORS
The sigtimedwait() function shall fail if:

[EAGAIN] No signal specified by set was generated within the specified timeout period.

The sigtimedwait() and sigwaitinfo() functions may fail if:

[EINTR] The wait was interrupted by an unblocked, caught signal. It shall be
documented in system documentation whether this error causes these
functions to fail.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1951

61974

61975

61976

61977

61978

61979

61980

61981

61982

61983

61984

61985

61986

61987

61988

61989

61990

61991

61992

61993

61994

61995

61996

61997

61998

61999

62000

62001

62002

62003

62004

62005

62006

62007

62008

62009

62010

62011

62012

62013

62014

62015

62016

sigtimedwait() System Interfaces

The sigtimedwait() function may also fail if:

[EINVAL] The timeout argument specified a tv_nsec value less than zero or greater than
or equal to 1 000 million.

An implementation should only check for this error if no signal is pending in set and it is
necessary to wait.

EXAMPLES
None.

APPLICATION USAGE
The sigtimedwait() function times out and returns an [EAGAIN] error. Application developers
should note that this is inconsistent with other functions such as pthread_cond_timedwait() that
return [ETIMEDOUT].

RATIONALE
Existing programming practice on realtime systems uses the ability to pause waiting for a
selected set of events and handle the first event that occurs in-line instead of in a signal-handling
function. This allows applications to be written in an event-directed style similar to a state
machine. This style of programming is useful for largescale transaction processing in which the
overall throughput of an application and the ability to clearly track states are more important
than the ability to minimize the response time of individual event handling.

It is possible to construct a signal-waiting macro function out of the realtime signal function
mechanism defined in this volume of POSIX.1-2008. However, such a macro has to include the
definition of a generalized handler for all signals to be waited on. A significant portion of the
overhead of handler processing can be avoided if the signal-waiting function is provided by the
kernel. This volume of POSIX.1-2008 therefore provides two signal-waiting functions—one that
waits indefinitely and one with a timeout—as part of the overall realtime signal function
specification.

The specification of a function with a timeout allows an application to be written that can be
broken out of a wait after a set period of time if no event has occurred. It was argued that setting
a timer event before the wait and recognizing the timer event in the wait would also implement
the same functionality, but at a lower performance level. Because of the performance
degradation associated with the user-level specification of a timer event and the subsequent
cancellation of that timer event after the wait completes for a valid event, and the complexity
associated with handling potential race conditions associated with the user-level method, the
separate function has been included.

Note that the semantics of the sigwaitinfo() function are nearly identical to that of the sigwait()
function defined by this volume of POSIX.1-2008. The only difference is that sigwaitinfo() returns
the queued signal value in the value argument. The return of the queued value is required so that
applications can differentiate between multiple events queued to the same signal number.

The two distinct functions are being maintained because some implementations may choose to
implement the POSIX Threads Extension functions and not implement the queued signals
extensions. Note, though, that sigwaitinfo() does not return the queued value if the value
argument is NULL, so the POSIX Threads Extension sigwait() function can be implemented as a
macro on sigwaitinfo().

The sigtimedwait() function was separated from the sigwaitinfo() function to address concerns
regarding the overloading of the timeout pointer to indicate indefinite wait (no timeout), timed
wait, and immediate return, and concerns regarding consistency with other functions where the
conditional and timed waits were separate functions from the pure blocking function. The
semantics of sigtimedwait() are specified such that sigwaitinfo() could be implemented as a macro

1952 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62017

62018

62019

62020

62021

62022

62023

62024

62025

62026

62027

62028

62029

62030

62031

62032

62033

62034

62035

62036

62037

62038

62039

62040

62041

62042

62043

62044

62045

62046

62047

62048

62049

62050

62051

62052

62053

62054

62055

62056

62057

62058

62059

62060

62061

62062

62063

System Interfaces sigtimedwait()

with a null pointer for timeout.

The sigwait functions provide a synchronous mechanism for threads to wait for asynchronously-
generated signals. One important question was how many threads that are suspended in a call
to a sigwait() function for a signal should return from the call when the signal is sent. Four
choices were considered:

1. Return an error for multiple simultaneous calls to sigwait functions for the same signal.

2. One or more threads return.

3. All waiting threads return.

4. Exactly one thread returns.

Prohibiting multiple calls to sigwait() for the same signal was felt to be overly restrictive. The
‘‘one or more’’ behavior made implementation of conforming packages easy at the expense of
forcing POSIX threads clients to protect against multiple simultaneous calls to sigwait() in
application code in order to achieve predictable behavior. There was concern that the ‘‘all
waiting threads’’ behavior would result in ‘‘signal broadcast storms’’, consuming excessive CPU
resources by replicating the signals in the general case. Furthermore, no convincing examples
could be presented that delivery to all was either simpler or more powerful than delivery to one.

Thus, the consensus was that exactly one thread that was suspended in a call to a sigwait
function for a signal should return when that signal occurs. This is not an onerous restriction as:

• A multi-way signal wait can be built from the single-way wait.

• Signals should only be handled by application-level code, as library routines cannot guess
what the application wants to do with signals generated for the entire process.

• Applications can thus arrange for a single thread to wait for any given signal and call any
needed routines upon its arrival.

In an application that is using signals for interprocess communication, signal processing is
typically done in one place. Alternatively, if the signal is being caught so that process cleanup
can be done, the signal handler thread can call separate process cleanup routines for each
portion of the application. Since the application main line started each portion of the application,
it is at the right abstraction level to tell each portion of the application to clean up.

Certainly, there exist programming styles where it is logical to consider waiting for a single
signal in multiple threads. A simple sigwait_multiple() routine can be constructed to achieve this
goal. A possible implementation would be to have each sigwait_multiple() caller registered as
having expressed interest in a set of signals. The caller then waits on a thread-specific condition
variable. A single server thread calls a sigwait() function on the union of all registered signals.
When the sigwait() function returns, the appropriate state is set and condition variables are
broadcast. New sigwait_multiple() callers may cause the pending sigwait() call to be canceled
and reissued in order to update the set of signals being waited for.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.8.1 (on page 497), pause(), pthread_sigmask(), sigaction(), sigpending(), sigsuspend(),
sigwait()

XBD <signal.h>, <time.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1953

62064

62065

62066

62067

62068

62069

62070

62071

62072

62073

62074

62075

62076

62077

62078

62079

62080

62081

62082

62083

62084

62085

62086

62087

62088

62089

62090

62091

62092

62093

62094

62095

62096

62097

62098

62099

62100

62101

62102

62103

62104

62105

sigtimedwait() System Interfaces

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension and the
POSIX Threads Extension.

Issue 6
These functions are marked as part of the Realtime Signals Extension option.

The Open Group Corrigendum U035/3 is applied. The SYNOPSIS of the sigwaitinfo() function
has been corrected so that the second argument is of type siginfo_t *.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Realtime Signals Extension option.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that the
CLOCK_MONOTONIC clock, if supported, is used to measure timeout intervals.

The restrict keyword is added to the sigtimedwait() and sigwaitinfo() prototypes for alignment
with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/130 is applied, restoring wording in the
RETURN VALUE section to that in the original base document (‘‘An implementation should
only check for this error if no signal is pending in set and it is necessary to wait’’).

Issue 7
The sigtimedwait() and sigwaitinfo() functions are moved from the Realtime Signals Extension
option to the Base.

1954 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62106

62107

62108

62109

62110

62111

62112

62113

62114

62115

62116

62117

62118

62119

62120

62121

62122

62123

62124

System Interfaces sigwait()

NAME
sigwait — wait for queued signals

SYNOPSIS
CX #include <signal.h>

int sigwait(const sigset_t *restrict set, int *restrict sig);

DESCRIPTION
The sigwait() function shall select a pending signal from set, atomically clear it from the system’s
set of pending signals, and return that signal number in the location referenced by sig. If prior to
the call to sigwait() there are multiple pending instances of a single signal number, it is
implementation-defined whether upon successful return there are any remaining pending
signals for that signal number. If the implementation supports queued signals and there are
multiple signals queued for the signal number selected, the first such queued signal shall cause a
return from sigwait() and the remainder shall remain queued. If no signal in set is pending at the
time of the call, the thread shall be suspended until one or more becomes pending. The signals
defined by set shall have been blocked at the time of the call to sigwait(); otherwise, the behavior
is undefined. The effect of sigwait() on the signal actions for the signals in set is unspecified.

If more than one thread is using sigwait() to wait for the same signal, no more than one of these
threads shall return from sigwait() with the signal number. If more than a single thread is
blocked in sigwait() for a signal when that signal is generated for the process, it is unspecified
which of the waiting threads returns from sigwait(). If the signal is generated for a specific
thread, as by pthread_kill(), only that thread shall return.

Should any of the multiple pending signals in the range SIGRTMIN to SIGRTMAX be selected, it
shall be the lowest numbered one. The selection order between realtime and non-realtime
signals, or between multiple pending non-realtime signals, is unspecified.

RETURN VALUE
Upon successful completion, sigwait() shall store the signal number of the received signal at the
location referenced by sig and return zero. Otherwise, an error number shall be returned to
indicate the error.

ERRORS
The sigwait() function may fail if:

[EINVAL] The set argument contains an invalid or unsupported signal number.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
To provide a convenient way for a thread to wait for a signal, this volume of POSIX.1-2008
provides the sigwait() function. For most cases where a thread has to wait for a signal, the
sigwait() function should be quite convenient, efficient, and adequate.

However, requests were made for a lower-level primitive than sigwait() and for semaphores that
could be used by threads. After some consideration, threads were allowed to use semaphores
and sem_post() was defined to be async-signal and async-cancel-safe.

In summary, when it is necessary for code run in response to an asynchronous signal to notify a
thread, sigwait() should be used to handle the signal. Alternatively, if the implementation
provides semaphores, they also can be used, either following sigwait() or from within a signal

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1955

62125

62126

62127

62128

62129

62130

62131

62132

62133

62134

62135

62136

62137

62138

62139

62140

62141

62142

62143

62144

62145

62146

62147

62148

62149

62150

62151

62152

62153

62154

62155

62156

62157

62158

62159

62160

62161

62162

62163

62164

62165

62166

62167

62168

62169

sigwait() System Interfaces

handling routine previously registered with sigaction().

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4 (on page 484), Section 2.8.1 (on page 497), pause(), pthread_sigmask(), sigaction(),
sigpending(), sigsuspend(), sigtimedwait()

XBD <signal.h>, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension and the
POSIX Threads Extension.

Issue 6
The restrict keyword is added to the sigwait() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/131 is applied, updating the
DESCRIPTION to state that if more than a single thread is blocked in sigwait(), it is unspecified
which of the waiting threads returns, and that if a signal is generated for a specific thread only
that thread shall return.

Issue 7
Functionality relating to the Realtime Signals Extension option is moved to the Base.

1956 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62170

62171

62172

62173

62174

62175

62176

62177

62178

62179

62180

62181

62182

62183

62184

62185

62186

62187

62188

System Interfaces sigwaitinfo()

NAME
sigwaitinfo — wait for queued signals

SYNOPSIS
#include <signal.h>

int sigwaitinfo(const sigset_t *restrict set, siginfo_t *restrict info);

DESCRIPTION
Refer to sigtimedwait().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1957

62189

62190

62191

62192

62193

62194

62195

sin() System Interfaces

NAME
sin, sinf, sinl — sine function

SYNOPSIS
#include <math.h>

double sin(double x);
float sinf(float x);
long double sinl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the sine of their argument x, measured in radians.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the sine of x.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is subnormal, a range error may occur and x should be returned.

If x is ±Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The x argument is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

These functions may fail if:

MX Range Error The value of x is subnormal

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

1958 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62196

62197

62198

62199

62200

62201

62202

62203

62204

62205

62206

62207

62208

62209

62210

62211

62212

62213

62214

62215

62216

62217

62218

62219

62220

62221

62222

62223

62224

62225

62226

62227

62228

62229

62230

62231

System Interfaces sin()

EXAMPLES

Taking the Sine of a 45-Degree Angle

#include <math.h>
...
double radians = 45.0 * M_PI / 180;
double result;
...
result = sin(radians);

APPLICATION USAGE
These functions may lose accuracy when their argument is near a multiple of π or is far from 0.0.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asin(), feclearexcept(), fetestexcept(), isnan()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The last two paragraphs of the DESCRIPTION were included as APPLICATION USAGE notes
in previous issues.

Issue 6
The sinf() and sinl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1959

62232

62233

62234

62235

62236

62237

62238

62239

62240

62241

62242

62243

62244

62245

62246

62247

62248

62249

62250

62251

62252

62253

62254

62255

62256

62257

62258

62259

62260

62261

sinh() System Interfaces

NAME
sinh, sinhf, sinhl — hyperbolic sine functions

SYNOPSIS
#include <math.h>

double sinh(double x);
float sinhf(float x);
long double sinhl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the hyperbolic sine of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the hyperbolic sine of x.

If the result would cause an overflow, a range error shall occur and ±HUGE_VAL,
±HUGE_VALF, and ±HUGE_VALL (with the same sign as x) shall be returned as appropriate for
the type of the function.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

If x is subnormal, a range error may occur and x should be returned.

ERRORS
These functions shall fail if:

Range Error The result would cause an overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

MX Range Error The value x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

1960 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62262

62263

62264

62265

62266

62267

62268

62269

62270

62271

62272

62273

62274

62275

62276

62277

62278

62279

62280

62281

62282

62283

62284

62285

62286

62287

62288

62289

62290

62291

62292

62293

62294

62295

62296

62297

62298

System Interfaces sinh()

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asinh(), cosh(), feclearexcept(), fetestexcept(), isnan(), tanh()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The sinhf() and sinhl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1961

62299

62300

62301

62302

62303

62304

62305

62306

62307

62308

62309

62310

62311

62312

62313

62314

62315

62316

62317

62318

62319

62320

62321

sinl() System Interfaces

NAME
sinl — sine function

SYNOPSIS
#include <math.h>

long double sinl(long double x);

DESCRIPTION
Refer to sin().

1962 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62322

62323

62324

62325

62326

62327

62328

System Interfaces sleep()

NAME
sleep — suspend execution for an interval of time

SYNOPSIS
#include <unistd.h>

unsigned sleep(unsigned seconds);

DESCRIPTION
The sleep() function shall cause the calling thread to be suspended from execution until either
the number of realtime seconds specified by the argument seconds has elapsed or a signal is
delivered to the calling thread and its action is to invoke a signal-catching function or to
terminate the process. The suspension time may be longer than requested due to the scheduling
of other activity by the system.

If a SIGALRM signal is generated for the calling process during execution of sleep() and if the
SIGALRM signal is being ignored or blocked from delivery, it is unspecified whether sleep()
returns when the SIGALRM signal is scheduled. If the signal is being blocked, it is also
unspecified whether it remains pending after sleep() returns or it is discarded.

If a SIGALRM signal is generated for the calling process during execution of sleep(), except as a
result of a prior call to alarm(), and if the SIGALRM signal is not being ignored or blocked from
delivery, it is unspecified whether that signal has any effect other than causing sleep() to return.

If a signal-catching function interrupts sleep() and examines or changes either the time a
SIGALRM is scheduled to be generated, the action associated with the SIGALRM signal, or
whether the SIGALRM signal is blocked from delivery, the results are unspecified.

If a signal-catching function interrupts sleep() and calls siglongjmp() or longjmp() to restore an
environment saved prior to the sleep() call, the action associated with the SIGALRM signal and
the time at which a SIGALRM signal is scheduled to be generated are unspecified. It is also
unspecified whether the SIGALRM signal is blocked, unless the signal mask of the process is
restored as part of the environment.

XSI Interactions between sleep() and setitimer() are unspecified.

RETURN VALUE
If sleep() returns because the requested time has elapsed, the value returned shall be 0. If sleep()
returns due to delivery of a signal, the return value shall be the ‘‘unslept’’ amount (the requested
time minus the time actually slept) in seconds.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
There are two general approaches to the implementation of the sleep() function. One is to use the
alarm() function to schedule a SIGALRM signal and then suspend the calling thread waiting for
that signal. The other is to implement an independent facility. This volume of POSIX.1-2008
permits either approach.

In order to comply with the requirement that no primitive shall change a process attribute unless
explicitly described by this volume of POSIX.1-2008, an implementation using SIGALRM must
carefully take into account any SIGALRM signal scheduled by previous alarm() calls, the action

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1963

62329

62330

62331

62332

62333

62334

62335

62336

62337

62338

62339

62340

62341

62342

62343

62344

62345

62346

62347

62348

62349

62350

62351

62352

62353

62354

62355

62356

62357

62358

62359

62360

62361

62362

62363

62364

62365

62366

62367

62368

62369

62370

62371

62372

62373

sleep() System Interfaces

previously established for SIGALRM, and whether SIGALRM was blocked. If a SIGALRM has
been scheduled before the sleep() would ordinarily complete, the sleep() must be shortened to
that time and a SIGALRM generated (possibly simulated by direct invocation of the signal-
catching function) before sleep() returns. If a SIGALRM has been scheduled after the sleep()
would ordinarily complete, it must be rescheduled for the same time before sleep() returns. The
action and blocking for SIGALRM must be saved and restored.

Historical implementations often implement the SIGALRM-based version using alarm() and
pause(). One such implementation is prone to infinite hangups, as described in pause().
Another such implementation uses the C-language setjmp() and longjmp() functions to avoid
that window. That implementation introduces a different problem: when the SIGALRM signal
interrupts a signal-catching function installed by the user to catch a different signal, the
longjmp() aborts that signal-catching function. An implementation based on sigprocmask(),
alarm(), and sigsuspend() can avoid these problems.

Despite all reasonable care, there are several very subtle, but detectable and unavoidable,
differences between the two types of implementations. These are the cases mentioned in this
volume of POSIX.1-2008 where some other activity relating to SIGALRM takes place, and the
results are stated to be unspecified. All of these cases are sufficiently unusual as not to be of
concern to most applications.

See also the discussion of the term realtime in alarm().

Since sleep() can be implemented using alarm(), the discussion about alarms occurring early
under alarm() applies to sleep() as well.

Application developers should note that the type of the argument seconds and the return value of
sleep() is unsigned. That means that a Strictly Conforming POSIX System Interfaces Application
cannot pass a value greater than the minimum guaranteed value for {UINT_MAX}, which the
ISO C standard sets as 65 535, and any application passing a larger value is restricting its
portability. A different type was considered, but historical implementations, including those
with a 16-bit int type, consistently use either unsigned or int.

Scheduling delays may cause the process to return from the sleep() function significantly after
the requested time. In such cases, the return value should be set to zero, since the formula
(requested time minus the time actually spent) yields a negative number and sleep() returns an
unsigned.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), getitimer(), nanosleep(), pause(), sigaction(), sigsetjmp()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/132 is applied, making a correction in the
RATIONALE section.

1964 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62374

62375

62376

62377

62378

62379

62380

62381

62382

62383

62384

62385

62386

62387

62388

62389

62390

62391

62392

62393

62394

62395

62396

62397

62398

62399

62400

62401

62402

62403

62404

62405

62406

62407

62408

62409

62410

62411

62412

62413

62414

62415

62416

System Interfaces snprintf()

NAME
snprintf — print formatted output

SYNOPSIS
#include <stdio.h>

int snprintf(char *restrict s, size_t n,
const char *restrict format, ...);

DESCRIPTION
Refer to fprintf().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1965

62417

62418

62419

62420

62421

62422

62423

62424

sockatmark() System Interfaces

NAME
sockatmark — determine whether a socket is at the out-of-band mark

SYNOPSIS
#include <sys/socket.h>

int sockatmark(int s);

DESCRIPTION
The sockatmark() function shall determine whether the socket specified by the descriptor s is at
the out-of-band data mark (see Section 2.10.12, on page 520). If the protocol for the socket
supports out-of-band data by marking the stream with an out-of-band data mark, the
sockatmark() function shall return 1 when all data preceding the mark has been read and the out-
of-band data mark is the first element in the receive queue. The sockatmark() function shall not
remove the mark from the stream.

RETURN VALUE
Upon successful completion, the sockatmark() function shall return a value indicating whether
the socket is at an out-of-band data mark. If the protocol has marked the data stream and all data
preceding the mark has been read, the return value shall be 1; if there is no mark, or if data
precedes the mark in the receive queue, the sockatmark() function shall return 0. Otherwise, it
shall return a value of −1 and set errno to indicate the error.

ERRORS
The sockatmark() function shall fail if:

[EBADF] The s argument is not a valid file descriptor.

[ENOTTY] The file associated with the s argument is not a socket.

EXAMPLES
None.

APPLICATION USAGE
The use of this function between receive operations allows an application to determine which
received data precedes the out-of-band data and which follows the out-of-band data.

There is an inherent race condition in the use of this function. On an empty receive queue, the
current read of the location might well be at the ‘‘mark’’, but the system has no way of knowing
that the next data segment that will arrive from the network will carry the mark, and
sockatmark() will return false, and the next read operation will silently consume the mark.

Hence, this function can only be used reliably when the application already knows that the out-
of-band data has been seen by the system or that it is known that there is data waiting to be read
at the socket (via SIGURG or select()). See Section 2.10.11 (on page 520), Section 2.10.12 (on page
520), Section 2.10.14 (on page 521), and pselect() for details.

RATIONALE
The sockatmark() function replaces the historical SIOCATMARK command to ioctl() which
implemented the same functionality on many implementations. Using a wrapper function
follows the adopted conventions to avoid specifying commands to the ioctl() function, other
than those now included to support XSI STREAMS. The sockatmark() function could be
implemented as follows:

#include <sys/ioctl.h>

int sockatmark(int s)
{

int val;

1966 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62425

62426

62427

62428

62429

62430

62431

62432

62433

62434

62435

62436

62437

62438

62439

62440

62441

62442

62443

62444

62445

62446

62447

62448

62449

62450

62451

62452

62453

62454

62455

62456

62457

62458

62459

62460

62461

62462

62463

62464

62465

62466

62467

62468

62469

System Interfaces sockatmark()

if (ioctl(s,SIOCATMARK,&val)==−1)
return(−1);

return(val);
}

The use of [ENOTTY] to indicate an incorrect descriptor type matches the historical behavior of
SIOCATMARK.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.10.12 (on page 520), pselect(), recv(), recvmsg()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7
SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error condition.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1967

62470

62471

62472

62473

62474

62475

62476

62477

62478

62479

62480

62481

62482

62483

62484

socket() System Interfaces

NAME
socket — create an endpoint for communication

SYNOPSIS
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
The socket() function shall create an unbound socket in a communications domain, and return a
file descriptor that can be used in later function calls that operate on sockets.

The socket() function takes the following arguments:

domain Specifies the communications domain in which a socket is to be created.

type Specifies the type of socket to be created.

protocol Specifies a particular protocol to be used with the socket. Specifying a protocol
of 0 causes socket() to use an unspecified default protocol appropriate for the
requested socket type.

The domain argument specifies the address family used in the communications domain. The
address families supported by the system are implementation-defined.

Symbolic constants that can be used for the domain argument are defined in the <sys/socket.h>
header.

The type argument specifies the socket type, which determines the semantics of communication
over the socket. The following socket types are defined; implementations may specify additional
socket types:

SOCK_STREAM Provides sequenced, reliable, bidirectional, connection-mode byte streams,
and may provide a transmission mechanism for out-of-band data.

SOCK_DGRAM Provides datagrams, which are connectionless-mode, unreliable messages of
fixed maximum length.

SOCK_SEQPACKET
Provides sequenced, reliable, bidirectional, connection-mode transmission
paths for records. A record can be sent using one or more output operations
and received using one or more input operations, but a single operation never
transfers part of more than one record. Record boundaries are visible to the
receiver via the MSG_EOR flag.

If the protocol argument is non-zero, it shall specify a protocol that is supported by the address
family. If the protocol argument is zero, the default protocol for this address family and type shall
be used. The protocols supported by the system are implementation-defined.

The process may need to have appropriate privileges to use the socket() function or to create
some sockets.

RETURN VALUE
Upon successful completion, socket() shall return a non-negative integer, the socket file
descriptor. Otherwise, a value of −1 shall be returned and errno set to indicate the error.

1968 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62485

62486

62487

62488

62489

62490

62491

62492

62493

62494

62495

62496

62497

62498

62499

62500

62501

62502

62503

62504

62505

62506

62507

62508

62509

62510

62511

62512

62513

62514

62515

62516

62517

62518

62519

62520

62521

62522

62523

System Interfaces socket()

ERRORS
The socket() function shall fail if:

[EAFNOSUPPORT]
The implementation does not support the specified address family.

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] No more file descriptors are available for the system.

[EPROTONOSUPPORT]
The protocol is not supported by the address family, or the protocol is not
supported by the implementation.

[EPROTOTYPE] The socket type is not supported by the protocol.

The socket() function may fail if:

[EACCES] The process does not have appropriate privileges.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

EXAMPLES
None.

APPLICATION USAGE
The documentation for specific address families specifies which protocols each address family
supports. The documentation for specific protocols specifies which socket types each protocol
supports.

The application can determine whether an address family is supported by trying to create a
socket with domain set to the protocol in question.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), bind(), connect(), getsockname(), getsockopt(), listen(), recv(), recvfrom(), recvmsg(),
send(), sendmsg(), setsockopt(), shutdown(), socketpair()

XBD <netinet/in.h>, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1969

62524

62525

62526

62527

62528

62529

62530

62531

62532

62533

62534

62535

62536

62537

62538

62539

62540

62541

62542

62543

62544

62545

62546

62547

62548

62549

62550

62551

62552

62553

62554

62555

socketpair() System Interfaces

NAME
socketpair — create a pair of connected sockets

SYNOPSIS
#include <sys/socket.h>

int socketpair(int domain, int type, int protocol,
int socket_vector[2]);

DESCRIPTION
The socketpair() function shall create an unbound pair of connected sockets in a specified domain,
of a specified type, under the protocol optionally specified by the protocol argument. The two
sockets shall be identical. The file descriptors used in referencing the created sockets shall be
returned in socket_vector[0] and socket_vector[1].

The socketpair() function takes the following arguments:

domain Specifies the communications domain in which the sockets are to be created.

type Specifies the type of sockets to be created.

protocol Specifies a particular protocol to be used with the sockets. Specifying a
protocol of 0 causes socketpair() to use an unspecified default protocol
appropriate for the requested socket type.

socket_vector Specifies a 2-integer array to hold the file descriptors of the created socket pair.

The type argument specifies the socket type, which determines the semantics of communications
over the socket. The following socket types are defined; implementations may specify additional
socket types:

SOCK_STREAM Provides sequenced, reliable, bidirectional, connection-mode byte
streams, and may provide a transmission mechanism for out-of-band
data.

SOCK_DGRAM Provides datagrams, which are connectionless-mode, unreliable messages
of fixed maximum length.

SOCK_SEQPACKET Provides sequenced, reliable, bidirectional, connection-mode transmission
paths for records. A record can be sent using one or more output
operations and received using one or more input operations, but a single
operation never transfers part of more than one record. Record
boundaries are visible to the receiver via the MSG_EOR flag.

If the protocol argument is non-zero, it shall specify a protocol that is supported by the address
family. If the protocol argument is zero, the default protocol for this address family and type shall
be used. The protocols supported by the system are implementation-defined.

The process may need to have appropriate privileges to use the socketpair() function or to create
some sockets.

RETURN VALUE
Upon successful completion, this function shall return 0; otherwise, −1 shall be returned and
errno set to indicate the error.

ERRORS
The socketpair() function shall fail if:

[EAFNOSUPPORT]
The implementation does not support the specified address family.

1970 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62556

62557

62558

62559

62560

62561

62562

62563

62564

62565

62566

62567

62568

62569

62570

62571

62572

62573

62574

62575

62576

62577

62578

62579

62580

62581

62582

62583

62584

62585

62586

62587

62588

62589

62590

62591

62592

62593

62594

62595

62596

62597

62598

System Interfaces socketpair()

[EMFILE] All, or all but one, of the file descriptors available to the process are currently
open.

[ENFILE] No more file descriptors are available for the system.

[EOPNOTSUPP] The specified protocol does not permit creation of socket pairs.

[EPROTONOSUPPORT]
The protocol is not supported by the address family, or the protocol is not
supported by the implementation.

[EPROTOTYPE] The socket type is not supported by the protocol.

The socketpair() function may fail if:

[EACCES] The process does not have appropriate privileges.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

EXAMPLES
None.

APPLICATION USAGE
The documentation for specific address families specifies which protocols each address family
supports. The documentation for specific protocols specifies which socket types each protocol
supports.

The socketpair() function is used primarily with UNIX domain sockets and need not be
supported for other domains.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
socket()

XBD <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7
The description of the [EMFILE] error condition is aligned with the pipe() function.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1971

62599

62600

62601

62602

62603

62604

62605

62606

62607

62608

62609

62610

62611

62612

62613

62614

62615

62616

62617

62618

62619

62620

62621

62622

62623

62624

62625

62626

62627

62628

62629

sprintf() System Interfaces

NAME
sprintf — print formatted output

SYNOPSIS
#include <stdio.h>

int sprintf(char *restrict s, const char *restrict format, ...);

DESCRIPTION
Refer to fprintf().

1972 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62630

62631

62632

62633

62634

62635

62636

System Interfaces sqrt()

NAME
sqrt, sqrtf, sqrtl — square root function

SYNOPSIS
#include <math.h>

double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the square root of their argument x, √ x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the square root of x.

MX For finite values of x < −0, a domain error shall occur, and either a NaN (if supported), or an
implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or +Inf, x shall be returned.

If x is −Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The finite value of x is < −0, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

EXAMPLES

Taking the Square Root of 9.0

#include <math.h>
...
double x = 9.0;
double result;
...
result = sqrt(x);

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1973

62637

62638

62639

62640

62641

62642

62643

62644

62645

62646

62647

62648

62649

62650

62651

62652

62653

62654

62655

62656

62657

62658

62659

62660

62661

62662

62663

62664

62665

62666

62667

62668

62669

62670

62671

62672

62673

62674

62675

sqrt() System Interfaces

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan()

XBD Section 4.19 (on page 116), <math.h>, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The sqrtf() and sqrtl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

1974 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62676

62677

62678

62679

62680

62681

62682

62683

62684

62685

62686

62687

62688

62689

62690

62691

62692

62693

62694

62695

62696

System Interfaces srand()

NAME
srand — pseudo-random number generator

SYNOPSIS
#include <stdlib.h>

void srand(unsigned seed);

DESCRIPTION
Refer to rand().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1975

62697

62698

62699

62700

62701

62702

62703

srand48() System Interfaces

NAME
srand48 — seed the uniformly distributed double-precision pseudo-random number generator

SYNOPSIS
XSI #include <stdlib.h>

void srand48(long seedval);

DESCRIPTION
Refer to drand48().

1976 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62704

62705

62706

62707

62708

62709

62710

System Interfaces srandom()

NAME
srandom — seed pseudo-random number generator

SYNOPSIS
XSI #include <stdlib.h>

void srandom(unsigned seed);

DESCRIPTION
Refer to initstate().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1977

62711

62712

62713

62714

62715

62716

62717

sscanf() System Interfaces

NAME
sscanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int sscanf(const char *restrict s, const char *restrict format, ...);

DESCRIPTION
Refer to fscanf().

1978 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62718

62719

62720

62721

62722

62723

62724

System Interfaces stat()

NAME
stat — get file status

SYNOPSIS
#include <sys/stat.h>

int stat(const char *restrict path, struct stat *restrict buf);

DESCRIPTION
Refer to fstatat().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1979

62725

62726

62727

62728

62729

62730

62731

statvfs() System Interfaces

NAME
statvfs — get file system information

SYNOPSIS
#include <sys/statvfs.h>

int statvfs(const char *restrict path, struct statvfs *restrict buf);

DESCRIPTION
Refer to fstatvfs().

1980 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62732

62733

62734

62735

62736

62737

62738

System Interfaces stdin

NAME
stderr, stdin, stdout — standard I/O streams

SYNOPSIS
#include <stdio.h>

extern FILE *stderr, *stdin, *stdout;

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

A file with associated buffering is called a stream and is declared to be a pointer to a defined type
FILE. The fopen() function shall create certain descriptive data for a stream and return a pointer
to designate the stream in all further transactions. Normally, there are three open streams with
constant pointers declared in the <stdio.h> header and associated with the standard open files.

At program start-up, three streams shall be predefined and need not be opened explicitly:
standard input (for reading conventional input), standard output (for writing conventional output),
and standard error (for writing diagnostic output). When opened, the standard error stream is not
fully buffered; the standard input and standard output streams are fully buffered if and only if
the stream can be determined not to refer to an interactive device.

CX The following symbolic values in <unistd.h> define the file descriptors that shall be associated
with the C-language stdin, stdout, and stderr when the application is started:

STDIN_FILENO Standard input value, stdin. Its value is 0.

STDOUT_FILENO Standard output value, stdout. Its value is 1.

STDERR_FILENO Standard error value, stderr. Its value is 2.

The stderr stream is expected to be open for reading and writing.

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fclose(), feof(), ferror(), fileno(), fopen(), fprintf(), fread(), fscanf(), fseek(), getc(), gets(), popen(),
putc(), puts(), read(), setbuf(), setvbuf(), tmpfile(), ungetc(), vfprintf()

XBD <stdio.h>, <unistd.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1981

62739

62740

62741

62742

62743

62744

62745

62746

62747

62748

62749

62750

62751

62752

62753

62754

62755

62756

62757

62758

62759

62760

62761

62762

62763

62764

62765

62766

62767

62768

62769

62770

62771

62772

62773

62774

62775

62776

62777

62778

stdin System Interfaces

CHANGE HISTORY
First released in Issue 1.

Issue 6
Extensions beyond the ISO C standard are marked.

A note that stderr is expected to be open for reading and writing is added to the DESCRIPTION.

1982 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62779

62780

62781

62782

62783

System Interfaces stpcpy()

NAME
stpcpy — copy a string and return a pointer to the end of the result

SYNOPSIS
CX #include <string.h>

char *stpcpy(char *restrict s1, const char *restrict s2);

DESCRIPTION
Refer to strcpy().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1983

62784

62785

62786

62787

62788

62789

62790

stpncpy() System Interfaces

NAME
stpncpy — copy fixed length string, returning a pointer to the array end

SYNOPSIS
CX #include <string.h>

char *stpncpy(char *restrict s1, const char *restrict s2, size_t size);

DESCRIPTION
Refer to strncpy().

1984 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62791

62792

62793

62794

62795

62796

62797

System Interfaces strcasecmp()

NAME
strcasecmp, strcasecmp_l, strncasecmp, strncasecmp_l — case-insensitive string comparisons

SYNOPSIS
#include <strings.h>

int strcasecmp(const char *s1, const char *s2);
int strcasecmp_l(const char *s1, const char *s2,

locale_t locale);
int strncasecmp(const char *s1, const char *s2, size_t n);
int strncasecmp_l(const char *s1, const char *s2,

size_t n, locale_t locale);

DESCRIPTION
The strcasecmp() and strcasecmp_l() functions shall compare, while ignoring differences in case,
the string pointed to by s1 to the string pointed to by s2. The strncasecmp() and strncasecmp_l()
functions shall compare, while ignoring differences in case, not more than n bytes from the
string pointed to by s1 to the string pointed to by s2.

The strcasecmp() and strncasecmp() functions use the current locale of the process to determine
the case of the characters.

The strcasecmp_l() and strncasecmp_l() functions use the locale represented by locale to determine
the case of the characters.

When the LC_CTYPE category of the current locale is from the POSIX locale, strcasecmp() and
strncasecmp() shall behave as if the strings had been converted to lowercase and then a byte
comparison performed. Otherwise, the results are unspecified.

RETURN VALUE
Upon completion, strcasecmp() and strcasecmp_l() shall return an integer greater than, equal to,
or less than 0, if the string pointed to by s1 is, ignoring case, greater than, equal to, or less than
the string pointed to by s2, respectively.

Upon successful completion, strncasecmp() and strncasecmp_l() shall return an integer greater
than, equal to, or less than 0, if the possibly null-terminated array pointed to by s1 is, ignoring
case, greater than, equal to, or less than the possibly null-terminated array pointed to by s2,
respectively.

ERRORS
The strcasecmp_l() and strncasecmp_l() functions may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1985

62798

62799

62800

62801

62802

62803

62804

62805

62806

62807

62808

62809

62810

62811

62812

62813

62814

62815

62816

62817

62818

62819

62820

62821

62822

62823

62824

62825

62826

62827

62828

62829

62830

62831

62832

62833

62834

62835

62836

62837

62838

strcasecmp() System Interfaces

SEE ALSO
wcscasecmp()

XBD <strings.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
The strcasecmp() and strncasecmp() functions are moved from the XSI option to the Base.

The strcasecmp_l() and strncasecmp_l() functions are added from The Open Group Technical
Standard, 2006, Extended API Set Part 4.

1986 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62839

62840

62841

62842

62843

62844

62845

62846

62847

62848

62849

System Interfaces strcat()

NAME
strcat — concatenate two strings

SYNOPSIS
#include <string.h>

char *strcat(char *restrict s1, const char *restrict s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The strcat() function shall append a copy of the string pointed to by s2 (including the
terminating NUL character) to the end of the string pointed to by s1. The initial byte of s2
overwrites the NUL character at the end of s1. If copying takes place between objects that
overlap, the behavior is undefined.

RETURN VALUE
The strcat() function shall return s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This version is aligned with the ISO C standard; this does not affect compatibility with XPG3
applications. Reliable error detection by this function was never guaranteed.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncat()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The strcat() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1987

62850

62851

62852

62853

62854

62855

62856

62857

62858

62859

62860

62861

62862

62863

62864

62865

62866

62867

62868

62869

62870

62871

62872

62873

62874

62875

62876

62877

62878

62879

62880

62881

62882

strchr() System Interfaces

NAME
strchr — string scanning operation

SYNOPSIS
#include <string.h>

char *strchr(const char *s, int c);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The strchr() function shall locate the first occurrence of c (converted to a char) in the string
pointed to by s. The terminating NUL character is considered to be part of the string.

RETURN VALUE
Upon completion, strchr() shall return a pointer to the byte, or a null pointer if the byte was not
found.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strrchr()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

1988 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62883

62884

62885

62886

62887

62888

62889

62890

62891

62892

62893

62894

62895

62896

62897

62898

62899

62900

62901

62902

62903

62904

62905

62906

62907

62908

62909

62910

62911

62912

62913

System Interfaces strcmp()

NAME
strcmp — compare two strings

SYNOPSIS
#include <string.h>

int strcmp(const char *s1, const char *s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The strcmp() function shall compare the string pointed to by s1 to the string pointed to by s2.

The sign of a non-zero return value shall be determined by the sign of the difference between the
values of the first pair of bytes (both interpreted as type unsigned char) that differ in the strings
being compared.

RETURN VALUE
Upon completion, strcmp() shall return an integer greater than, equal to, or less than 0, if the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2,
respectively.

ERRORS
No errors are defined.

EXAMPLES

Checking a Password Entry

The following example compares the information read from standard input to the value of the
name of the user entry. If the strcmp() function returns 0 (indicating a match), a further check
will be made to see if the user entered the proper old password. The crypt() function shall
encrypt the old password entered by the user, using the value of the encrypted password in the
passwd structure as the salt. If this value matches the value of the encrypted passwd in the
structure, the entered password oldpasswd is the correct user’s password. Finally, the program
encrypts the new password so that it can store the information in the passwd structure.

#include <string.h>
#include <unistd.h>
#include <stdio.h>
...
int valid_change;
struct passwd *p;
char user[100];
char oldpasswd[100];
char newpasswd[100];
char savepasswd[100];
...
if (strcmp(p->pw_name, user) == 0) {

if (strcmp(p->pw_passwd, crypt(oldpasswd, p->pw_passwd)) == 0) {
strcpy(savepasswd, crypt(newpasswd, user));
p->pw_passwd = savepasswd;
valid_change = 1;

}
else {

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1989

62914

62915

62916

62917

62918

62919

62920

62921

62922

62923

62924

62925

62926

62927

62928

62929

62930

62931

62932

62933

62934

62935

62936

62937

62938

62939

62940

62941

62942

62943

62944

62945

62946

62947

62948

62949

62950

62951

62952

62953

62954

62955

62956

62957

62958

62959

strcmp() System Interfaces

fprintf(stderr, "Old password is not valid\n");
}

}
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncmp()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

1990 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

62960

62961

62962

62963

62964

62965

62966

62967

62968

62969

62970

62971

62972

62973

62974

62975

62976

System Interfaces strcoll()

NAME
strcoll, strcoll_l — string comparison using collating information

SYNOPSIS
#include <string.h>

int strcoll(const char *s1, const char *s2);
CX int strcoll_l(const char *s1, const char *s2,

locale_t locale);

DESCRIPTION
CX For strcoll(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The strcoll() and strcoll_l() functions shall compare the string pointed to by s1 to the string
pointed to by s2, both interpreted as appropriate to the LC_COLLATE category of the current

CX locale, or of the locale represented by locale, respectively.

CX The strcoll() and strcoll_l() functions shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
CX situations should set errno to 0, then call strcoll(), or strcoll_l() then check errno.

RETURN VALUE
Upon successful completion, strcoll() shall return an integer greater than, equal to, or less than 0,
according to whether the string pointed to by s1 is greater than, equal to, or less than the string

CX pointed to by s2 when both are interpreted as appropriate to the current locale. On error,
strcoll() may set errno, but no return value is reserved to indicate an error.

Upon successful completion, strcoll_l() shall return an integer greater than, equal to, or less than
0, according to whether the string pointed to by s1 is greater than, equal to, or less than the
string pointed to by s2 when both are interpreted as appropriate to the locale represented by
locale. On error, strcoll_l() may set errno, but no return value is reserved to indicate an error.

ERRORS
These functions may fail if:

CX [EINVAL] The s1 or s2 arguments contain characters outside the domain of the collating
sequence.

The strcoll_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES

Comparing Nodes

The following example uses an application-defined function, node_compare(), to compare two
nodes based on an alphabetical ordering of the string field.

#include <string.h>
...
struct node { /* These are stored in the table. */

char *string;
int length;

};
...

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1991

62977

62978

62979

62980

62981

62982

62983

62984

62985

62986

62987

62988

62989

62990

62991

62992

62993

62994

62995

62996

62997

62998

62999

63000

63001

63002

63003

63004

63005

63006

63007

63008

63009

63010

63011

63012

63013

63014

63015

63016

63017

63018

63019

strcoll() System Interfaces

int node_compare(const void *node1, const void *node2)
{

return strcoll(((const struct node *)node1)->string,
((const struct node *)node2)->string);

}
...

APPLICATION USAGE
The strxfrm() and strcmp() functions should be used for sorting large lists.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
alphasort(), strcmp(), strxfrm()

XBD <string.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated to indicate that errno does not change if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EINVAL] optional error condition is added.

An example is added.

Issue 7
The strcoll_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

1992 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

63020

63021

63022

63023

63024

63025

63026

63027

63028

63029

63030

63031

63032

63033

63034

63035

63036

63037

63038

63039

63040

63041

63042

63043

63044

63045

63046

63047

System Interfaces strcpy()

NAME
stpcpy, strcpy — copy a string and return a pointer to the end of the result

SYNOPSIS
#include <string.h>

CX char *stpcpy(char *restrict s1, const char *restrict s2);
char *strcpy(char *restrict s1, const char *restrict s2);

DESCRIPTION
CX For strcpy(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The stpcpy() and strcpy() functions shall copy the string pointed to by s2 (including the
terminating NUL character) into the array pointed to by s1.

If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
CX The stpcpy() function shall return a pointer to the terminating NUL character copied into the s1

buffer.

The strcpy() function shall return s1.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES

Construction of a Multi-Part Message in a Single Buffer

#include <string.h>
#include <stdio.h>

int
main (void)
{

char buffer [10];
char *name = buffer;

name = stpcpy (stpcpy (stpcpy (name, "ice"),"-"), "cream");
puts (buffer);
return 0;

}

Initializing a String

The following example copies the string "----------" into the permstring variable.

#include <string.h>
...
static char permstring[11];
...
strcpy(permstring, "----------");
...

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1993

63048

63049

63050

63051

63052

63053

63054

63055

63056

63057

63058

63059

63060

63061

63062

63063

63064

63065

63066

63067

63068

63069

63070

63071

63072

63073

63074

63075

63076

63077

63078

63079

63080

63081

63082

63083

63084

63085

63086

63087

63088

strcpy() System Interfaces

Storing a Key and Data

The following example allocates space for a key using malloc() then uses strcpy() to place the
key there. Then it allocates space for data using malloc(), and uses strcpy() to place data there.
(The user-defined function dbfree() frees memory previously allocated to an array of type struct
element *.)

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
...
/* Structure used to read data and store it. */
struct element {

char *key;
char *data;

};

struct element *tbl, *curtbl;
char *key, *data;
int count;
...
void dbfree(struct element *, int);
...
if ((curtbl->key = malloc(strlen(key) + 1)) == NULL) {

perror("malloc"); dbfree(tbl, count); return NULL;
}
strcpy(curtbl->key, key);

if ((curtbl->data = malloc(strlen(data) + 1)) == NULL) {
perror("malloc"); free(curtbl->key); dbfree(tbl, count); return NULL;

}
strcpy(curtbl->data, data);
...

APPLICATION USAGE
Character movement is performed differently in different implementations. Thus, overlapping
moves may yield surprises.

This version is aligned with the ISO C standard; this does not affect compatibility with XPG3
applications. Reliable error detection by this function was never guaranteed.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncpy(), wcscpy()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

1994 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

63089

63090

63091

63092

63093

63094

63095

63096

63097

63098

63099

63100

63101

63102

63103

63104

63105

63106

63107

63108

63109

63110

63111

63112

63113

63114

63115

63116

63117

63118

63119

63120

63121

63122

63123

63124

63125

63126

63127

63128

63129

63130

63131

System Interfaces strcpy()

Issue 6
The strcpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The stpcpy() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1995

63132

63133

63134

63135

63136

strcspn() System Interfaces

NAME
strcspn — get the length of a complementary substring

SYNOPSIS
#include <string.h>

size_t strcspn(const char *s1, const char *s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The strcspn() function shall compute the length (in bytes) of the maximum initial segment of the
string pointed to by s1 which consists entirely of bytes not from the string pointed to by s2.

RETURN VALUE
The strcspn() function shall return the length of the computed segment of the string pointed to
by s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strspn()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The RETURN VALUE section is updated to indicate that strcspn() returns the length of s1, and
not s1 itself as was previously stated.

Issue 6
The Open Group Corrigendum U030/1 is applied. The text of the RETURN VALUE section is
updated to indicate that the computed segment length is returned, not the s1 length.

1996 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

63137

63138

63139

63140

63141

63142

63143

63144

63145

63146

63147

63148

63149

63150

63151

63152

63153

63154

63155

63156

63157

63158

63159

63160

63161

63162

63163

63164

63165

63166

63167

63168

63169

63170

63171

System Interfaces strdup()

NAME
strdup, strndup — duplicate a specific number of bytes from a string

SYNOPSIS
CX #include <string.h>

char *strdup(const char *s);
char *strndup(const char *s, size_t size);

DESCRIPTION
The strdup() function shall return a pointer to a new string, which is a duplicate of the string
pointed to by s. The returned pointer can be passed to free(). A null pointer is returned if the
new string cannot be created.

The strndup() function shall be equivalent to the strdup() function, duplicating the provided s in
a new block of memory allocated as if by using malloc(), with the exception being that strndup()
copies at most size plus one bytes into the newly allocated memory, terminating the new string
with a NUL character. If the length of s is larger than size, only size bytes shall be duplicated. If
size is larger than the length of s, all bytes in s shall be copied into the new memory buffer,
including the terminating NUL character. The newly created string shall always be properly
terminated.

RETURN VALUE
The strdup() function shall return a pointer to a new string on success. Otherwise, it shall return
a null pointer and set errno to indicate the error.

Upon successful completion, the strndup() function shall return a pointer to the newly allocated
memory containing the duplicated string. Otherwise, it shall return a null pointer and set errno
to indicate the error.

ERRORS
These functions shall fail if:

[ENOMEM] Storage space available is insufficient.

EXAMPLES
None.

APPLICATION USAGE
For functions that allocate memory as if by malloc(), the application should release such memory
when it is no longer required by a call to free(). For strdup() and strndup(), this is the return
value.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
free(), wcsdup()

XBD <string.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1997

63172

63173

63174

63175

63176

63177

63178

63179

63180

63181

63182

63183

63184

63185

63186

63187

63188

63189

63190

63191

63192

63193

63194

63195

63196

63197

63198

63199

63200

63201

63202

63203

63204

63205

63206

63207

63208

63209

63210

63211

63212

strdup() System Interfaces

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 7
Austin Group Interpretation 1003.1-2001 #044 is applied, changing the ‘‘may fail’’ [ENOMEM]
error to become a ‘‘shall fail’’ error.

The strdup() function is moved from the XSI option to the Base.

The strndup() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

The APPLICATION USAGE section is updated to clarify that memory is allocated as if by
malloc().

1998 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

63213

63214

63215

63216

63217

63218

63219

63220

63221

63222

System Interfaces strerror()

NAME
strerror, strerror_l, strerror_r — get error message string

SYNOPSIS
#include <string.h>

char *strerror(int errnum);
CX char *strerror_l(int errnum, locale_t locale);

int strerror_r(int errnum, char *strerrbuf, size_t buflen);

DESCRIPTION
CX For strerror(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

The strerror() function shall map the error number in errnum to a locale-dependent error
message string and shall return a pointer to it. Typically, the values for errnum come from errno,
but strerror() shall map any value of type int to a message.

The string pointed to shall not be modified by the application. The string may be overwritten by
a subsequent call to strerror().

CX The string may be overwritten by a subsequent call to strerror_l() in the same thread.

The contents of the error message strings returned by strerror() should be determined by the
setting of the LC_MESSAGES category in the current locale.

The implementation shall behave as if no function defined in this volume of POSIX.1-2008 calls
strerror().

CX The strerror() and strerror_l() functions shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call strerror(), then check errno.

The strerror() function need not be thread-safe.

The strerror_l() function shall map the error number in errnum to a locale-dependent error
message string in the locale represented by locale and shall return a pointer to it.

The strerror_r() function shall map the error number in errnum to a locale-dependent error
message string and shall return the string in the buffer pointed to by strerrbuf , with length
buflen.

CX If the value of errnum is a valid error number, the message string shall indicate what error
occurred; otherwise, if these functions complete successfully, the message string shall indicate
that an unknown error occurred.

RETURN VALUE
Upon completion, whether successful or not, strerror() shall return a pointer to the generated

CX message string. On error errno may be set, but no return value is reserved to indicate an error.

Upon successful completion, strerror_l() shall return a pointer to the generated message string. If
errnum is not a valid error number, errno may be set to [EINVAL], but a pointer to a message
string shall still be returned. If any other error occurs, errno shall be set to indicate the error and
a null pointer shall be returned.

Upon successful completion, strerror_r() shall return 0. Otherwise, an error number shall be
returned to indicate the error.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 1999

63223

63224

63225

63226

63227

63228

63229

63230

63231

63232

63233

63234

63235

63236

63237

63238

63239

63240

63241

63242

63243

63244

63245

63246

63247

63248

63249

63250

63251

63252

63253

63254

63255

63256

63257

63258

63259

63260

63261

63262

63263

63264

strerror() System Interfaces

ERRORS
These functions may fail if:

CX [EINVAL] The value of errnum is not a valid error number.

The strerror_l() function may fail if:

CX [EINVAL] The locale argument is not a valid locale object handle.

The strerror_r() function may fail if:

CX [ERANGE] Insufficient storage was supplied via strerrbuf and buflen to contain the
generated message string.

EXAMPLES
None.

APPLICATION USAGE
Historically in some implementations, calls to perror() would overwrite the string that the
pointer returned by strerror() points to. Such implementations did not conform to the ISO C
standard; however, application developers should be aware of this behavior if they wish their
applications to be portable to such implementations.

RATIONALE
The strerror_l() function is required to be thread-safe, thereby eliminating the need for an
equivalent to the strerror_r() function.

Earlier versions of this standard did not explicitly require that the error message strings returned
by strerror() and strerror_r() provide any information about the error. This version of the
standard requires a meaningful message for any successful completion.

Since no return value is reserved to indicate a strerror() error, but all calls (whether successful or
not) must return a pointer to a message string, on error strerror() can return a pointer to an
empty string or a pointer to a meaningful string that can be printed.

Note that the [EINVAL] error condition is a may fail error. If an invalid error number is supplied
as the value of errnum, applications should be prepared to handle any of the following:

1. Error (with no meaningful message): errno is set to [EINVAL], the return value is a pointer
to an empty string.

2. Successful completion: errno is unchanged and the return value points to a string like
"unknown error" or "error number xxx" (where xxx is the value of errnum).

3. Combination of #1 and #2: errno is set to [EINVAL] and the return value points to a string
like "unknown error" or "error number xxx" (where xxx is the value of errnum).
Since applications frequently use the return value of strerror() as an argument to
functions like fprintf() (without checking the return value) and since applications have no
way to parse an error message string to determine whether errnum represents a valid
error number, implementations are encouraged to implement #3. Similarly,
implementations are encouraged to have strerror_r() return [EINVAL] and put a string
like "unknown error" or "error number xxx" in the buffer pointed to by strerrbuf
when the value of errnum is not a valid error number.

FUTURE DIRECTIONS
None.

2000 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

63265

63266

63267

63268

63269

63270

63271

63272

63273

63274

63275

63276

63277

63278

63279

63280

63281

63282

63283

63284

63285

63286

63287

63288

63289

63290

63291

63292

63293

63294

63295

63296

63297

63298

63299

63300

63301

63302

63303

63304

63305

System Interfaces strerror()

SEE ALSO
perror()

XBD <string.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

A note indicating that the strerror() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE section, the fact that errno may be set is added.

• The [EINVAL] optional error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The strerror_r() function is added in response to IEEE PASC Interpretation 1003.1c #39.

The strerror_r() function is marked as part of the Thread-Safe Functions option.

Issue 7
Austin Group Interpretation 1003.1-2001 #072 is applied, updating the ERRORS section.

Austin Group Interpretation 1003.1-2001 #156 is applied.

Austin Group Interpretation 1003.1-2001 #187 is applied, clarifying the behavior when the
generated error message is an empty string.

SD5-XSH-ERN-191 is applied, updating the APPLICATION USAGE section.

The strerror_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

The strerror_r() function is moved from the Thread-Safe Functions option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2001

63306

63307

63308

63309

63310

63311

63312

63313

63314

63315

63316

63317

63318

63319

63320

63321

63322

63323

63324

63325

63326

63327

63328

63329

63330

63331

63332

strfmon() System Interfaces

NAME
strfmon, strfmon_l — convert monetary value to a string

SYNOPSIS
#include <monetary.h>

ssize_t strfmon(char *restrict s, size_t maxsize,
const char *restrict format, ...);

ssize_t strfmon_l(char *restrict s, size_t maxsize,
locale_t locale, const char *restrict format, ...);

DESCRIPTION
The strfmon() function shall place characters into the array pointed to by s as controlled by the
string pointed to by format. No more than maxsize bytes are placed into the array.

The format is a character string, beginning and ending in its initial state, if any, that contains two
types of objects: plain characters, which are simply copied to the output stream, and conversion
specifications, each of which shall result in the fetching of zero or more arguments which are
converted and formatted. The results are undefined if there are insufficient arguments for the
format. If the format is exhausted while arguments remain, the excess arguments are simply
ignored.

The application shall ensure that a conversion specification consists of the following sequence:

• A ’%’ character

• Optional flags

• Optional field width

• Optional left precision

• Optional right precision

• A required conversion specifier character that determines the conversion to be performed

The strfmon_l() function shall be equivalent to the strfmon() function, except that the locale data
used is from the locale represented by locale.

Flags

One or more of the following optional flags can be specified to control the conversion:

=f An ’=’ followed by a single character f which is used as the numeric fill character. In
order to work with precision or width counts, the fill character shall be a single byte
character; if not, the behavior is undefined. The default numeric fill character is the
<space>. This flag does not affect field width filling which always uses the <space>.
This flag is ignored unless a left precision (see below) is specified.

ˆ Do not format the currency amount with grouping characters. The default is to insert
the grouping characters if defined for the current locale.

+ or (Specify the style of representing positive and negative currency amounts. Only one of
’+’ or ’(’ may be specified. If ’+’ is specified, the locale’s equivalent of ’+’ and ’−’
are used (for example, in many locales, the empty string if positive and ’−’ if
negative). If ’(’ is specified, negative amounts are enclosed within parentheses. If
neither flag is specified, the ’+’ style is used.

! Suppress the currency symbol from the output conversion.

2002 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

63333

63334

63335

63336

63337

63338

63339

63340

63341

63342

63343

63344

63345

63346

63347

63348

63349

63350

63351

63352

63353

63354

63355

63356

63357

63358

63359

63360

63361

63362

63363

63364

63365

63366

63367

63368

63369

63370

63371

63372

63373

System Interfaces strfmon()

− Specify the alignment. If this flag is present the result of the conversion is left-justified
(padded to the right) rather than right-justified. This flag shall be ignored unless a field
width (see below) is specified.

Field Width

w A decimal digit string w specifying a minimum field width in bytes in which the result
of the conversion is right-justified (or left-justified if the flag ’−’ is specified). The
default is 0.

Left Precision

#n A ’#’ followed by a decimal digit string n specifying a maximum number of digits
expected to be formatted to the left of the radix character. This option can be used to
keep the formatted output from multiple calls to the strfmon() function aligned in the
same columns. It can also be used to fill unused positions with a special character as in
"$***123.45". This option causes an amount to be formatted as if it has the number
of digits specified by n. If more than n digit positions are required, this conversion
specification is ignored. Digit positions in excess of those actually required are filled
with the numeric fill character (see the =f flag above).

If grouping has not been suppressed with the ’ˆ’ flag, and it is defined for the current
locale, grouping separators are inserted before the fill characters (if any) are added.
Grouping separators are not applied to fill characters even if the fill character is a digit.

To ensure alignment, any characters appearing before or after the number in the
formatted output such as currency or sign symbols are padded as necessary with
<space> characters to make their positive and negative formats an equal length.

Right Precision

.p A <period> followed by a decimal digit string p specifying the number of digits after
the radix character. If the value of the right precision p is 0, no radix character appears.
If a right precision is not included, a default specified by the current locale is used. The
amount being formatted is rounded to the specified number of digits prior to
formatting.

Conversion Specifier Characters

The conversion specifier characters and their meanings are:

i The double argument is formatted according to the locale’s international currency
format (for example, in the US: USD 1,234.56). If the argument is ±Inf or NaN, the result
of the conversion is unspecified.

n The double argument is formatted according to the locale’s national currency format
(for example, in the US: $1,234.56). If the argument is ±Inf or NaN, the result of the
conversion is unspecified.

% Convert to a ’%’; no argument is converted. The entire conversion specification shall
be %%.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2003

63374

63375

63376

63377

63378

63379

63380

63381

63382

63383

63384

63385

63386

63387

63388

63389

63390

63391

63392

63393

63394

63395

63396

63397

63398

63399

63400

63401

63402

63403

63404

63405

63406

63407

63408

63409

63410

63411

strfmon() System Interfaces

Locale Information

The LC_MONETARY category of the locale of the process affects the behavior of this function
including the monetary radix character (which may be different from the numeric radix
character affected by the LC_NUMERIC category), the grouping separator, the currency symbols,
and formats. The international currency symbol should be conformant with the ISO 4217: 2001
standard.

If the value of maxsize is greater than {SSIZE_MAX}, the result is implementation-defined.

RETURN VALUE
If the total number of resulting bytes including the terminating null byte is not more than
maxsize, these functions shall return the number of bytes placed into the array pointed to by s,
not including the terminating NUL character. Otherwise, −1 shall be returned, the contents of the
array are unspecified, and errno shall be set to indicate the error.

ERRORS
These functions shall fail if:

[E2BIG] Conversion stopped due to lack of space in the buffer.

The strfmon_l() function may fail if:

[EINVAL] locale is not a valid locale object.

EXAMPLES
Given a locale for the US and the values 123.45, −123.45, and 3456.781, the following output
might be produced. Square brackets ("[]") are used in this example to delimit the output.

%n [$123.45] Default formatting
[-$123.45]
[$3,456.78]

%11n [$123.45] Right align within an 11-character field
[-$123.45]
[$3,456.78]

%#5n [$ 123.45] Aligned columns for values up to 99 999
[-$ 123.45]
[$ 3,456.78]

%=*#5n [$***123.45] Specify a fill character
[-$***123.45]
[$*3,456.78]

%=0#5n [$000123.45] Fill characters do not use grouping
[-$000123.45] even if the fill character is a digit
[$03,456.78]

%ˆ#5n [$ 123.45] Disable the grouping separator
[-$ 123.45]
[$ 3456.78]

%ˆ#5.0n [$ 123] Round off to whole units
[-$ 123]
[$ 3457]

%ˆ#5.4n [$ 123.4500] Increase the precision
[-$ 123.4500]
[$ 3456.7810]

2004 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

63412

63413

63414

63415

63416

63417

63418

63419

63420

63421

63422

63423

63424

63425

63426

63427

63428

63429

63430

63431

63432

63433

63434

63435

63436

63437

63438

63439

63440

63441

63442

63443

63444

63445

63446

63447

63448

63449

63450

63451

63452

63453

63454

63455

System Interfaces strfmon()

%(#5n [$ 123.45] Use an alternative pos/neg style
[($ 123.45)]
[$ 3,456.78]

%!(#5n [123.45] Disable the currency symbol
[(123.45)]
[3,456.78]

%-14#5.4n [$ 123.4500] Left-justify the output
[-$ 123.4500]
[$ 3,456.7810]

%14#5.4n [$ 123.4500] Corresponding right-justified output
[-$ 123.4500]
[$ 3,456.7810]

See also the EXAMPLES section in fprintf().

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
Lowercase conversion characters are reserved for future standards use and uppercase for
implementation-defined use.

SEE ALSO
fprintf(), localeconv()

XBD <monetary.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
Moved from ENHANCED I18N to BASE.

The [ENOSYS] error is removed.

Text is added to the DESCRIPTION warning about values of maxsize that are greater than
{SSIZE_MAX}.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the strfmon() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The EXAMPLES section is reworked, clarifying the output format.

Issue 7
SD5-XSH-ERN-29 is applied, updating the examples for %(#5n and %!(#5n.

SD5-XSH-ERN-233 is applied, changing the definition of the ’+’ or ’(’ flags to refer to
multiple locales.

The strfmon() function is moved from the XSI option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2005

63456

63457

63458

63459

63460

63461

63462

63463

63464

63465

63466

63467

63468

63469

63470

63471

63472

63473

63474

63475

63476

63477

63478

63479

63480

63481

63482

63483

63484

63485

63486

63487

63488

63489

63490

63491

63492

63493

63494

63495

strfmon() System Interfaces

The strfmon_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

2006 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

63496

63497

System Interfaces strftime()

NAME
strftime, strftime_l — convert date and time to a string

SYNOPSIS
#include <time.h>

size_t strftime(char *restrict s, size_t maxsize,
const char *restrict format, const struct tm *restrict timeptr);

CX size_t strftime_l(char *restrict s, size_t maxsize,
const char *restrict format, const struct tm *restrict timeptr,
locale_t locale);

DESCRIPTION
CX For strftime(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

The strftime() function shall place bytes into the array pointed to by s as controlled by the string
pointed to by format. The format is a character string, beginning and ending in its initial shift
state, if any. The format string consists of zero or more conversion specifications and ordinary
characters.

Each conversion specification is introduced by the ’%’ character after which the following
appear in sequence:

CX • An optional flag:

0 The zero character (’0’), which specifies that the character used as the padding
character is ’0’,

+ The <plus-sign> character (’+’), which specifies that the character used as the
padding character is ’0’, and that if and only if the field being produced consumes
more than four bytes to represent a year (for %F, %G, or %Y) or more than two bytes to
represent the year divided by 100 (for %C) then a leading <plus-sign> character shall
be included if the year being processed is greater than or equal to zero or a leading
minus-sign character (’−’) shall be included if the year is less than zero.

The default padding character is unspecified.

• An optional minimum field width. If the converted value, including any leading ’+’ or
’−’ sign, has fewer bytes than the minimum field width and the padding character is not
the NUL character, the output shall be padded on the left (after any leading ’+’ or ’−’
sign) with the padding character.

• An optional E or O modifier.

• A terminating conversion specifier character that indicates the type of conversion to be
applied.

CX The results are unspecified if more than one flag character is specified, a flag character is
specified without a minimum field width; a minimum field width is specified without a flag
character; a modifier is specified with a flag or with a minimum field width; or if a minimum
field width is specified for any conversion specifier other than C, F, G, or Y.

All ordinary characters (including the terminating NUL character) are copied unchanged into
the array. If copying takes place between objects that overlap, the behavior is undefined. No
more than maxsize bytes are placed into the array. Each conversion specifier is replaced by
appropriate characters as described in the following list. The appropriate characters are

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2007

63498

63499

63500

63501

63502

63503

63504

63505

63506

63507

63508

63509

63510

63511

63512

63513

63514

63515

63516

63517

63518

63519

63520

63521

63522

63523

63524

63525

63526

63527

63528

63529

63530

63531

63532

63533

63534

63535

63536

63537

63538

63539

63540

63541

strftime() System Interfaces

determined using the LC_TIME category of the current locale and by the values of zero or more
members of the broken-down time structure pointed to by timeptr, as specified in brackets in the
description. If any of the specified values are outside the normal range, the characters stored are
unspecified.

CX The strftime_l() function shall be equivalent to the strftime() function, except that the locale data
used is from the locale represented by locale.

Local timezone information is used as though strftime() called tzset().

The following conversion specifiers shall be supported:

a Replaced by the locale’s abbreviated weekday name. [tm_wday]

A Replaced by the locale’s full weekday name. [tm_wday]

b Replaced by the locale’s abbreviated month name. [tm_mon]

B Replaced by the locale’s full month name. [tm_mon]

c Replaced by the locale’s appropriate date and time representation. (See the Base
Definitions volume of POSIX.1-2008, <time.h>.)

C Replaced by the year divided by 100 and truncated to an integer, as a decimal number.
[tm_year]

If a minimum field width is not specified, the number of characters placed into the
array pointed to by s will be the number of digits in the year divided by 100 or two,

CX whichever is greater. If a minimum field width is specified, the number of characters
placed into the array pointed to by s will be the number of digits in the year divided by
100 or the minimum field width, whichever is greater.

d Replaced by the day of the month as a decimal number [01,31]. [tm_mday]

D Equivalent to %m/%d/%y. [tm_mon, tm_mday, tm_year]

e Replaced by the day of the month as a decimal number [1,31]; a single digit is preceded
by a space. [tm_mday]

CX F Equivalent to %+4Y-%m-%d if no flag and no minimum field width are specified.
[tm_year, tm_mon, tm_mday]

CX If a minimum field width of x is specified, the year shall be output as if by the Y
specifier (described below) with whatever flag was given and a minimum field width
of x−6. If x is less than 6, the behavior shall be as if x equalled 6.

If the minimum field width is specified to be 10, and the year is four digits long, then
the output string produced will match the ISO 8601: 2004 standard subclause 4.1.2.2
complete representation, extended format date representation of a specific day. If a +
flag is specified, a minimum field width of x is specified, and x−7 bytes are sufficient to
hold the digits of the year (not including any needed sign character), then the output
will match the ISO 8601: 2004 standard subclause 4.1.2.4 complete representation,
expanded format date representation of a specific day.

g Replaced by the last 2 digits of the week-based year (see below) as a decimal number
[00,99]. [tm_year, tm_wday, tm_yday]

G Replaced by the week-based year (see below) as a decimal number (for example, 1977).
[tm_year, tm_wday, tm_yday]

2008 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

63542

63543

63544

63545

63546

63547

63548

63549

63550

63551

63552

63553

63554

63555

63556

63557

63558

63559

63560

63561

63562

63563

63564

63565

63566

63567

63568

63569

63570

63571

63572

63573

63574

63575

63576

63577

63578

63579

63580

63581

63582

System Interfaces strftime()

CX If a minimum field width is specified, the number of characters placed into the array
pointed to by s will be the number of digits and leading sign characters (if any) in the
year, or the minimum field width, whichever is greater.

h Equivalent to %b. [tm_mon]

H Replaced by the hour (24-hour clock) as a decimal number [00,23]. [tm_hour]

I Replaced by the hour (12-hour clock) as a decimal number [01,12]. [tm_hour]

j Replaced by the day of the year as a decimal number [001,366]. [tm_yday]

m Replaced by the month as a decimal number [01,12]. [tm_mon]

M Replaced by the minute as a decimal number [00,59]. [tm_min]

n Replaced by a <newline>.

p Replaced by the locale’s equivalent of either a.m. or p.m. [tm_hour]

CX r Replaced by the time in a.m. and p.m. notation; in the POSIX locale this shall be
equivalent to %I:%M:%S %p. [tm_hour, tm_min, tm_sec]

R Replaced by the time in 24-hour notation (%H:%M). [tm_hour, tm_min]

S Replaced by the second as a decimal number [00,60]. [tm_sec]

t Replaced by a <tab>.

T Replaced by the time (%H:%M:%S). [tm_hour, tm_min, tm_sec]

u Replaced by the weekday as a decimal number [1,7], with 1 representing Monday.
[tm_wday]

U Replaced by the week number of the year as a decimal number [00,53]. The first
Sunday of January is the first day of week 1; days in the new year before this are in
week 0. [tm_year, tm_wday, tm_yday]

V Replaced by the week number of the year (Monday as the first day of the week) as a
decimal number [01,53]. If the week containing 1 January has four or more days in the
new year, then it is considered week 1. Otherwise, it is the last week of the previous
year, and the next week is week 1. Both January 4th and the first Thursday of January
are always in week 1. [tm_year, tm_wday, tm_yday]

w Replaced by the weekday as a decimal number [0,6], with 0 representing Sunday.
[tm_wday]

W Replaced by the week number of the year as a decimal number [00,53]. The first
Monday of January is the first day of week 1; days in the new year before this are in
week 0. [tm_year, tm_wday, tm_yday]

x Replaced by the locale’s appropriate date representation. (See the Base Definitions
volume of POSIX.1-2008, <time.h>.)

X Replaced by the locale’s appropriate time representation. (See the Base Definitions
volume of POSIX.1-2008, <time.h>.)

y Replaced by the last two digits of the year as a decimal number [00,99]. [tm_year]

Y Replaced by the year as a decimal number (for example, 1997). [tm_year]

CX If a minimum field width is specified, the number of characters placed into the array
pointed to by s will be the number of digits and leading sign characters (if any) in the

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2009

63583

63584

63585

63586

63587

63588

63589

63590

63591

63592

63593

63594

63595

63596

63597

63598

63599

63600

63601

63602

63603

63604

63605

63606

63607

63608

63609

63610

63611

63612

63613

63614

63615

63616

63617

63618

63619

63620

63621

63622

strftime() System Interfaces

year, or the minimum field width, whichever is greater.

z Replaced by the offset from UTC in the ISO 8601: 2004 standard format (+hhmm or
−hhmm), or by no characters if no timezone is determinable. For example, "−0430"

CX means 4 hours 30 minutes behind UTC (west of Greenwich). If tm_isdst is zero, the
standard time offset is used. If tm_isdst is greater than zero, the daylight savings time
offset is used. If tm_isdst is negative, no characters are returned. [tm_isdst]

Z Replaced by the timezone name or abbreviation, or by no bytes if no timezone
information exists. [tm_isdst]

% Replaced by %.

If a conversion specification does not correspond to any of the above, the behavior is undefined.

CX If a struct tm broken-down time structure is created by localtime() or localtime_r(), or modified
by mktime(), and the value of TZ is subsequently modified, the results of the %Z and %z
strftime() conversion specifiers are undefined, when strftime() is called with such a broken-down
time structure.

If a struct tm broken-down time structure is created or modified by gmtime() or gmtime_r(), it is
unspecified whether the result of the %Z and %z conversion specifiers shall refer to UTC or the
current local timezone, when strftime() is called with such a broken-down time structure.

Modified Conversion Specifiers

Some conversion specifiers can be modified by the E or O modifier characters to indicate that an
alternative format or specification should be used rather than the one normally used by the
unmodified conversion specifier. If the alternative format or specification does not exist for the
current locale (see ERA in XBD Section 7.3.5, on page 158), the behavior shall be as if the
unmodified conversion specification were used.

%Ec Replaced by the locale’s alternative appropriate date and time representation.

%EC Replaced by the name of the base year (period) in the locale’s alternative
representation.

%Ex Replaced by the locale’s alternative date representation.

%EX Replaced by the locale’s alternative time representation.

%Ey Replaced by the offset from %EC (year only) in the locale’s alternative representation.

%EY Replaced by the full alternative year representation.

%Od Replaced by the day of the month, using the locale’s alternative numeric symbols, filled
as needed with leading zeros if there is any alternative symbol for zero; otherwise, with
leading <space> characters.

%Oe Replaced by the day of the month, using the locale’s alternative numeric symbols, filled
as needed with leading <space> characters.

%OH Replaced by the hour (24-hour clock) using the locale’s alternative numeric symbols.

%OI Replaced by the hour (12-hour clock) using the locale’s alternative numeric symbols.

%Om Replaced by the month using the locale’s alternative numeric symbols.

%OM Replaced by the minutes using the locale’s alternative numeric symbols.

2010 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

63623

63624

63625

63626

63627

63628

63629

63630

63631

63632

63633

63634

63635

63636

63637

63638

63639

63640

63641

63642

63643

63644

63645

63646

63647

63648

63649

63650

63651

63652

63653

63654

63655

63656

63657

63658

63659

63660

63661

System Interfaces strftime()

%OS Replaced by the seconds using the locale’s alternative numeric symbols.

%Ou Replaced by the weekday as a number in the locale’s alternative representation
(Monday=1).

%OU Replaced by the week number of the year (Sunday as the first day of the week, rules
corresponding to %U) using the locale’s alternative numeric symbols.

%OV Replaced by the week number of the year (Monday as the first day of the week, rules
corresponding to %V) using the locale’s alternative numeric symbols.

%Ow Replaced by the number of the weekday (Sunday=0) using the locale’s alternative
numeric symbols.

%OW Replaced by the week number of the year (Monday as the first day of the week) using
the locale’s alternative numeric symbols.

%Oy Replaced by the year (offset from %C) using the locale’s alternative numeric symbols.

%g, %G, and %V give values according to the ISO 8601: 2004 standard week-based year. In this
system, weeks begin on a Monday and week 1 of the year is the week that includes January 4th,
which is also the week that includes the first Thursday of the year, and is also the first week that
contains at least four days in the year. If the first Monday of January is the 2nd, 3rd, or 4th, the
preceding days are part of the last week of the preceding year; thus, for Saturday 2nd January
1999, %G is replaced by 1998 and %V is replaced by 53. If December 29th, 30th, or 31st is a
Monday, it and any following days are part of week 1 of the following year. Thus, for Tuesday
30th December 1997, %G is replaced by 1998 and %V is replaced by 01.

If a conversion specifier is not one of the above, the behavior is undefined.

RETURN VALUE
If the total number of resulting bytes including the terminating null byte is not more than
maxsize, these functions shall return the number of bytes placed into the array pointed to by s,
not including the terminating NUL character. Otherwise, 0 shall be returned and the contents of
the array are unspecified.

ERRORS
The strftime_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES

Getting a Localized Date String

The following example first sets the locale to the user’s default. The locale information will be
used in the nl_langinfo() and strftime() functions. The nl_langinfo() function returns the localized
date string which specifies how the date is laid out. The strftime() function takes this
information and, using the tm structure for values, places the date and time information into
datestring.

#include <time.h>
#include <locale.h>
#include <langinfo.h>
...
struct tm *tm;
char datestring[256];
...
setlocale (LC_ALL, "");

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2011

63662

63663

63664

63665

63666

63667

63668

63669

63670

63671

63672

63673

63674

63675

63676

63677

63678

63679

63680

63681

63682

63683

63684

63685

63686

63687

63688

63689

63690

63691

63692

63693

63694

63695

63696

63697

63698

63699

63700

63701

63702

63703

63704

63705

strftime() System Interfaces

...
strftime (datestring, sizeof(datestring), nl_langinfo (D_T_FMT), tm);
...

APPLICATION USAGE
The range of values for %S is [00,60] rather than [00,59] to allow for the occasional leap second.

Some of the conversion specifications are duplicates of others. They are included for
compatibility with nl_cxtime() and nl_ascxtime(), which were published in Issue 2.

The %C, %F, %G, and %Y format specifiers in strftime() always print full values, but the strptime()
%C, %F, and %Y format specifiers only scan two digits (assumed to be the first two digits of a
four-digit year) for %C and four digits (assumed to be the entire (four-digit) year) for %F and %Y.
This mimics the behavior of printf() and scanf(); that is:

printf("%2d", x = 1000);

prints "1000", but:

scanf(%2d", &x);

when given "1000" as input will only store 10 in x). Applications using extended ranges of
years must be sure that the number of digits specified for scanning years with strptime() matches
the number of digits that will actually be present in the input stream. Historic implementations
of the %Y conversion specification (with no flags and no minimum field width) produced
different output formats. Some always produced at least four digits (with 0 fill for years from 0
through 999) while others only produced the number of digits present in the year (with no fill
and no padding). These two forms can be produced with the ’0’ flag and a minimum field
width options using the conversions specifications %04Y and %01Y, respectively.

In the past, the C and POSIX standards specified that %F produced an ISO 8601: 2004 standard
date format, but didn’t specify which one. For years in the range [0001,9999], POSIX.1-2008
requires that the output produced match the ISO 8601: 2004 standard complete representation
extended format (YYYY-MM-DD) and for years outside of this range produce output that
matches the ISO 8601: 2004 standard expanded representation extended format
(<+/-><Underline>Y</Underline>YYYY-MM-DD). To fully meet ISO 8601: 2004 standard
requirements, the producer and consumer must agree on a date format that has a specific
number of bytes reserved to hold the characters used to represent the years that is sufficiently
large to hold all values that will be shared. For example, the %+13F conversion specification will
produce output matching the format "<+/->YYYYYY-MM-DD" (a leading ’+’ or ’−’ sign; a six-
digit, 0-filled year; a ’−’; a two-digit, leading 0-filled month; another ’−’; and the two-digit,
leading 0-filled day within the month).

Note that if the year being printed is greater than 9999, the resulting string from the unadorned
%F conversion specifications will not conform to the ISO 8601: 2004 standard extended format,
complete representation for a date and will instead be an extended format, expanded
representation (presumably without the required agreement between the date’s producer and
consumer).

In the C locale, the E and O modifiers are ignored and the replacement strings for the following
specifiers are:

%a The first three characters of %A.

%A One of Sunday, Monday, . . ., Saturday.

2012 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

63706

63707

63708

63709

63710

63711

63712

63713

63714

63715

63716

63717

63718

63719

63720

63721

63722

63723

63724

63725

63726

63727

63728

63729

63730

63731

63732

63733

63734

63735

63736

63737

63738

63739

63740

63741

63742

63743

63744

63745

63746

63747

63748

System Interfaces strftime()

%b The first three characters of %B.

%B One of January, February, . . ., December.

%c Equivalent to %a %b %e %T %Y.

%p One of AM or PM.

%r Equivalent to %I:%M:%S %p.

%x Equivalent to %m/%d/%y.

%X Equivalent to %T.

%Z Implementation-defined.

RATIONALE
The %Y conversion specification to strftime() was frequently assumed to be a four-digit year, but
the ISO C standard does not specify that %Y is restricted to any subset of allowed values from the
tm_year field. Similarly, the %C conversion specification was assumed to be a two-digit field and
the first part of the output from the %F conversion specification was assumed to be a four-digit
field. With tm_year being a signed 32 or more-bit int and with many current implementations
supporting 64-bit time_t types in one or more programming environments, these assumptions
are clearly wrong.

POSIX.1-2008 now allows the format specifications %0xC, %0xF, %0xG, and %0xY (where ’x’ is
a string of decimal digits used to specify printing and scanning of a string of x decimal digits)
with leading zero fill characters. Allowing applications to set the field width enables them to
agree on the number of digits to be printed and scanned in the ISO 8601: 2004 standard
expanded representation of a year (for %F, %G, and %Y) or all but the last two digits of the year
(for %C). This is based on a feature in some versions of GNU libc’s strftime(). The GNU version
allows specifying space, zero, or no-fill characters in strftime() format strings, but does not allow
any flags to be specified in strptime() format strings. These implementations also allow these
flags to be specified for any numeric field. POSIX.1-2008 only requires the zero fill flag (’0’) and
only requires that it be recognized when processing %C, %F, %G, and %Y specifications when a
minimum field width is also specified. The ’0’ flag is the only flag needed to produce and scan
the ISO 8601: 2004 standard year fields using the extended format forms. POSIX.1-2008 also
allows applications to specify the same flag and field width specifiers to be used in both
strftime() and strptime() format strings for symmetry. Systems may provide other flag characters
and may accept flags in conjunction with conversion specifiers other than %C, %F, %G, and %Y;
but portable applications cannot depend on such extensions.

POSIX.1-2008 now also allows the format specifications %+xC, %+xF, %+xG, and %+xY (where
’x’ is a string of decimal digits used to specify printing and scanning of a string of ’x’ decimal
digits) with leading zero fill characters and a leading ’+’ sign character if the year being
converted is more than four digits or a minimum field width is specified that allows room for
more than four digits for the year. This allows date providers and consumers to agree on a
specific number of digits to represent a year as required by the ISO 8601: 2004 standard
expanded representation formats. The expanded representation formats all require the year to
begin with a leading ’+’ or ’−’ sign. (All of these specifiers can also provide a leading ’−’
sign for negative years. Since negative years and the year 0 don’t fit well with the Gregorian or
Julian calendars, the normal ranges of dates start with year 1. The ISO C standard allows tm_year
to assume values corresponding to years before year 1, but the use of such years provided
unspecified results.)

Some earlier version of this standard specified that applications wanting to use strptime() to scan
dates and times printed by strftime() should provide non-digit characters between fields to

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2013

63749

63750

63751

63752

63753

63754

63755

63756

63757

63758

63759

63760

63761

63762

63763

63764

63765

63766

63767

63768

63769

63770

63771

63772

63773

63774

63775

63776

63777

63778

63779

63780

63781

63782

63783

63784

63785

63786

63787

63788

63789

63790

63791

63792

63793

63794

strftime() System Interfaces

separate years from months and days. It also supported %F to print and scan the ISO 8601: 2004
standard extended format, complete representation date for years 1 through 9999 (i.e., YYYY-
MM-DD). However, many applications were written to print (using strftime()) and scan (using
strptime()) dates written using the basic format complete representation (four-digit years) and
truncated representation (two-digit years) specified by the ISO 8601: 2004 standard
representation of dates and times which do not have any separation characters between fields.
The ISO 8601: 2004 standard also specifies basic format expanded representation where the
creator and consumer of these fields agree beforehand to represent years as leading zero-filled
strings of an agreed length of more than four digits to represent a year (again with no separation
characters when year, month, and day are all displayed). Applications producing and
consuming expanded representations are encouraged to use the ’+’ flag and an appropriate
maximum field width to scan the year including the leading sign. Note that even without the
’+’ flag, years less than zero may be represented with a leading minus-sign for %F, %G,and %Y
conversion specifications. Using negative years results in unspecified behavior.

If a format specification %+xF with the field width x greater than 11 is specified and the width is
large enough to display the full year, the output string produced will match the ISO 8601: 2004
standard subclause 4.1.2.4 expanded representation, extended format date representation for a
specific day. (For years in the range [1,99 999], %+12F is sufficient for an agreed five-digit year
with a leading sign using the ISO 8601: 2004 standard expanded representation, extended format
for a specific day "<+/->YYYYY-MM-DD".) Note also that years less than 0 may produce a
leading minus-sign (’−’) when using %Y or %C whether or not the ’0’ or ’+’ flags are used.

The difference between the ’0’ flag and the ’+’ flag is whether the leading ’+’ character will
be provided for years >9999 as required for the ISO 8601: 2004 standard extended representation
format containing a year. For example:

strftime() strptime()
Year Conversion Specification Output Scan Back

1970 %Y 1970 1970

1970 %+4Y 1970 1970

27 %Y 27 or 0027 27

270 %Y 270 or 0270 270

270 %+4Y 0270 270

17 %C%y 0017 17

270 %C%y 0270 270

12345 %Y 12345 1234*

12345 %+4Y +12345 123*

12345 %05%Y 12345 12345

270 %+5Y or %+3C%y +0270 270

12345 %+5Y or %+3C%y1+12345 1234*

12345 %06Y or %04C%y 012345 12345

12345 %+6Y or %+4C%y +12345 12345

123456 %08Y or %06C%y 00123456 123456

123456 %+8Y or %+6C%y +0123456 123456

In the cases above marked with a * in the strptime() scan back field, the implied or specified
number of characters scanned by strptime() was less than the number of characters output by
strftime() using the same format; so the remaining digits of the year were dropped when the
output date produced by strftime() was scanned back in by strptime().

2014 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

63795

63796

63797

63798

63799

63800

63801

63802

63803

63804

63805

63806

63807

63808

63809

63810

63811

63812

63813

63814

63815

63816

63817

63818

63819

63820

63821

63822

63823

63824

63825

63826

63827

63828

63829

63830

63831

63832

63833

63834

63835

63836

63837

63838

63839

63840

System Interfaces strftime()

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), difftime(), getdate(), gmtime(), localtime(), mktime(), strptime(), time(),
tzset(), uselocale(), utime()

XBD Section 7.3.5 (on page 158), <time.h>

CHANGE HISTORY
First released in Issue 3.

Issue 5
The description of %OV is changed to be consistent with %V and defines Monday as the first day
of the week.

The description of %Oy is clarified.

Issue 6
Extensions beyond the ISO C standard are marked.

The Open Group Corrigendum U033/8 is applied. The %V conversion specifier is changed from
‘‘Otherwise, it is week 53 of the previous year, and the next week is week 1’’ to ‘‘Otherwise, it is
the last week of the previous year, and the next week is week 1’’.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The %C, %D, %e, %h, %n, %r, %R, %t, and %T conversion specifiers are added.

• The modified conversion specifiers are added for consistency with the ISO POSIX-2
standard date utility.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The strftime() prototype is updated.

• The DESCRIPTION is extensively revised.

• The %z conversion specifier is added.

An example is added.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/60 is applied.

Issue 7
Austin Group Interpretation 1003.1-2001 #163 is applied.

The strftime_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2015

63841

63842

63843

63844

63845

63846

63847

63848

63849

63850

63851

63852

63853

63854

63855

63856

63857

63858

63859

63860

63861

63862

63863

63864

63865

63866

63867

63868

63869

63870

63871

63872

strlen() System Interfaces

NAME
strlen, strnlen — get length of fixed size string

SYNOPSIS
#include <string.h>

size_t strlen(const char *s);
CX size_t strnlen(const char *s, size_t maxlen);

DESCRIPTION
CX For strlen(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

The strlen() function shall compute the number of bytes in the string to which s points, not
including the terminating NUL character.

CX The strnlen() function shall compute the smaller of the number of bytes in the array to which s
points, not including the terminating NUL character, or the value of the maxlen argument. The
strnlen() function shall never examine more than maxlen bytes of the array pointed to by s.

RETURN VALUE
The strlen() function shall return the length of s; no return value shall be reserved to indicate an
error.

CX The strnlen() function shall return an integer containing the smaller of either the length of the
string pointed to by s or maxlen.

ERRORS
No errors are defined.

EXAMPLES

Getting String Lengths

The following example sets the maximum length of key and data by using strlen() to get the
lengths of those strings.

#include <string.h>
...
struct element {

char *key;
char *data;

};
...
char *key, *data;
int len;

*keylength = *datalength = 0;
...
if ((len = strlen(key)) > *keylength)

*keylength = len;
if ((len = strlen(data)) > *datalength)

*datalength = len;
...

2016 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

63873

63874

63875

63876

63877

63878

63879

63880

63881

63882

63883

63884

63885

63886

63887

63888

63889

63890

63891

63892

63893

63894

63895

63896

63897

63898

63899

63900

63901

63902

63903

63904

63905

63906

63907

63908

63909

63910

63911

63912

63913

63914

System Interfaces strlen()

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcslen()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The RETURN VALUE section is updated to indicate that strlen() returns the length of s, and not
s itself as was previously stated.

Issue 7
The strnlen() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2017

63915

63916

63917

63918

63919

63920

63921

63922

63923

63924

63925

63926

63927

63928

63929

63930

63931

strncasecmp() System Interfaces

NAME
strncasecmp, strncasecmp_l — case-insensitive string comparisons

SYNOPSIS
#include <strings.h>

int strncasecmp(const char *s1, const char *s2, size_t n);
int strncasecmp_l(const char *s1, const char *s2,

size_t n, locale_t locale);

DESCRIPTION
Refer to strcasecmp().

2018 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

63932

63933

63934

63935

63936

63937

63938

63939

63940

System Interfaces strncat()

NAME
strncat — concatenate a string with part of another

SYNOPSIS
#include <string.h>

char *strncat(char *restrict s1, const char *restrict s2, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The strncat() function shall append not more than n bytes (a NUL character and bytes that
follow it are not appended) from the array pointed to by s2 to the end of the string pointed to by
s1. The initial byte of s2 overwrites the NUL character at the end of s1. A terminating NUL
character is always appended to the result. If copying takes place between objects that overlap,
the behavior is undefined.

RETURN VALUE
The strncat() function shall return s1; no return value shall be reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcat()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The strncat() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2019

63941

63942

63943

63944

63945

63946

63947

63948

63949

63950

63951

63952

63953

63954

63955

63956

63957

63958

63959

63960

63961

63962

63963

63964

63965

63966

63967

63968

63969

63970

63971

63972

63973

strncmp() System Interfaces

NAME
strncmp — compare part of two strings

SYNOPSIS
#include <string.h>

int strncmp(const char *s1, const char *s2, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The strncmp() function shall compare not more than n bytes (bytes that follow a NUL character
are not compared) from the array pointed to by s1 to the array pointed to by s2.

The sign of a non-zero return value is determined by the sign of the difference between the
values of the first pair of bytes (both interpreted as type unsigned char) that differ in the strings
being compared.

RETURN VALUE
Upon successful completion, strncmp() shall return an integer greater than, equal to, or less than
0, if the possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the
possibly null-terminated array pointed to by s2 respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcmp()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

2020 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

63974

63975

63976

63977

63978

63979

63980

63981

63982

63983

63984

63985

63986

63987

63988

63989

63990

63991

63992

63993

63994

63995

63996

63997

63998

63999

64000

64001

64002

64003

64004

64005

64006

64007

64008

System Interfaces strncpy()

NAME
stpncpy, strncpy — copy fixed length string, returning a pointer to the array end

SYNOPSIS
#include <string.h>

CX char *stpncpy(char *restrict s1, const char *restrict s2, size_t n);
char *strncpy(char *restrict s1, const char *restrict s2, size_t n);

DESCRIPTION
CX For strncpy(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The stpncpy() and strncpy() functions shall copy not more than n bytes (bytes that follow a NUL
character are not copied) from the array pointed to by s2 to the array pointed to by s1.

If the array pointed to by s2 is a string that is shorter than n bytes, NUL characters shall be
appended to the copy in the array pointed to by s1, until n bytes in all are written.

If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
CX If a NUL character is written to the destination, the stpncpy() function shall return the address of

the first such NUL character. Otherwise, it shall return &s1[n].

The strncpy() function shall return s1.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications must provide the space in s1 for the n bytes to be transferred, as well as ensure that
the s2 and s1 arrays do not overlap.

Character movement is performed differently in different implementations. Thus, overlapping
moves may yield surprises.

If there is no NUL character byte in the first n bytes of the array pointed to by s2, the result is not
null-terminated.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcpy(), wcsncpy()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2021

64009

64010

64011

64012

64013

64014

64015

64016

64017

64018

64019

64020

64021

64022

64023

64024

64025

64026

64027

64028

64029

64030

64031

64032

64033

64034

64035

64036

64037

64038

64039

64040

64041

64042

64043

64044

64045

64046

64047

64048

strncpy() System Interfaces

Issue 6
The strncpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The stpncpy() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

2022 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64049

64050

64051

64052

64053

System Interfaces strndup()

NAME
strndup — duplicate a specific number of bytes from a string

SYNOPSIS
CX #include <string.h>

char *strndup(const char *s, size_t size);

DESCRIPTION
Refer to strdup().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2023

64054

64055

64056

64057

64058

64059

64060

strnlen() System Interfaces

NAME
strnlen — get length of fixed size string

SYNOPSIS
CX #include <string.h>

size_t strnlen(const char *s, size_t maxlen);

DESCRIPTION
Refer to strlen().

2024 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64061

64062

64063

64064

64065

64066

64067

System Interfaces strpbrk()

NAME
strpbrk — scan a string for a byte

SYNOPSIS
#include <string.h>

char *strpbrk(const char *s1, const char *s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The strpbrk() function shall locate the first occurrence in the string pointed to by s1 of any byte
from the string pointed to by s2.

RETURN VALUE
Upon successful completion, strpbrk() shall return a pointer to the byte or a null pointer if no
byte from s2 occurs in s1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strchr(), strrchr()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2025

64068

64069

64070

64071

64072

64073

64074

64075

64076

64077

64078

64079

64080

64081

64082

64083

64084

64085

64086

64087

64088

64089

64090

64091

64092

64093

64094

64095

64096

strptime() System Interfaces

NAME
strptime — date and time conversion

SYNOPSIS
XSI #include <time.h>

char *strptime(const char *restrict buf, const char *restrict format,
struct tm *restrict tm);

DESCRIPTION
The strptime() function shall convert the character string pointed to by buf to values which are
stored in the tm structure pointed to by tm, using the format specified by format.

The format is composed of zero or more directives. Each directive is composed of one of the
following: one or more white-space characters (as specified by isspace()); an ordinary character
(neither ’%’ nor a white-space character); or a conversion specification.

Each conversion specification is introduced by the ’%’ character after which the following
appear in sequence:

• An optional flag, the zero character (’0’) or the <plus-sign> character (’+’), which is
ignored.

• An optional field width. If a field width is specified, it shall be interpreted as a string of
decimal digits that will determine the maximum number of bytes converted for the
conversion rather than the number of bytes specified below in the description of the
conversion specifiers.

• An optional E or O modifier.

• A terminating conversion specifier character that indicates the type of conversion to be
applied.

The conversions are determined using the LC_TIME category of the current locale. The
application shall ensure that there is white-space or other non-alphanumeric characters between
any two conversion specifications unless all of the adjacent conversion specifications convert a
known, fixed number of characters. In the following list, the maximum number of characters
scanned (excluding the one matching the next directive) is as follows:

• If a maximum field width is specified, then that number

• Otherwise, the pattern "{x}" indicates that the maximum is x

• Otherwise, the pattern "[x,y]" indicates that the value shall fall within the range given
(both bounds being inclusive), and the maximum number of characters scanned shall be
the maximum required to represent any value in the range without leading zeros and
without a leading <plus-sign>

The following conversion specifiers are supported.

The results are unspecified if a modifier is specified with a flag or with a minimum field width,
or if a field width is specified for any conversion specifier other than C, F, or Y.

a The day of the week, using the locale’s weekday names; either the abbreviated or full
name may be specified.

A Equivalent to %a.

2026 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64097

64098

64099

64100

64101

64102

64103

64104

64105

64106

64107

64108

64109

64110

64111

64112

64113

64114

64115

64116

64117

64118

64119

64120

64121

64122

64123

64124

64125

64126

64127

64128

64129

64130

64131

64132

64133

64134

64135

64136

System Interfaces strptime()

b The month, using the locale’s month names; either the abbreviated or full name may be
specified.

B Equivalent to %b.

c Replaced by the locale’s appropriate date and time representation.

C All but the last two digits of the year {2}; leading zeros shall be permitted but shall not
be required. A leading ’+’ or ’−’ character shall be permitted before any leading zeros
but shall not be required.

d The day of the month [01,31]; leading zeros shall be permitted but shall not be required.

D The date as %m/%d/%y.

e Equivalent to %d.

h Equivalent to %b.

H The hour (24-hour clock) [00,23]; leading zeros shall be permitted but shall not be
required.

I The hour (12-hour clock) [01,12]; leading zeros shall be permitted but shall not be
required.

j The day number of the year [001,366]; leading zeros shall be permitted but shall not be
required.

m The month number [01,12]; leading zeros shall be permitted but shall not be required.

M The minute [00,59]; leading zeros shall be permitted but shall not be required.

n Any white space.

p The locale’s equivalent of a.m. or p.m.

r 12-hour clock time using the AM/PM notation if t_fmt_ampm is not an empty string in
the LC_TIME portion of the current locale; in the POSIX locale, this shall be equivalent
to %I:%M:%S %p.

R The time as %H:%M.

S The seconds [00,60]; leading zeros shall be permitted but shall not be required.

t Any white space.

T The time as %H:%M:%S.

U The week number of the year (Sunday as the first day of the week) as a decimal
number [00,53]; leading zeros shall be permitted but shall not be required.

w The weekday as a decimal number [0,6], with 0 representing Sunday.

W The week number of the year (Monday as the first day of the week) as a decimal
number [00,53]; leading zeros shall be permitted but shall not be required.

x The date, using the locale’s date format.

X The time, using the locale’s time format.

y The last two digits of the year. When format contains neither a C conversion specifier
nor a Y conversion specifier, values in the range [69,99] shall refer to years 1969 to 1999
inclusive and values in the range [00,68] shall refer to years 2000 to 2068 inclusive;
leading zeros shall be permitted but shall not be required. A leading ’+’ or ’−’

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2027

64137

64138

64139

64140

64141

64142

64143

64144

64145

64146

64147

64148

64149

64150

64151

64152

64153

64154

64155

64156

64157

64158

64159

64160

64161

64162

64163

64164

64165

64166

64167

64168

64169

64170

64171

64172

64173

64174

64175

strptime() System Interfaces

character shall be permitted before any leading zeros but shall not be required.

Note: It is expected that in a future version of this standard the default century inferred
from a 2-digit year will change. (This would apply to all commands accepting a
2-digit year as input.)

Y The full year {4}; leading zeros shall be permitted but shall not be required. A leading
’+’ or ’−’ character shall be permitted before any leading zeros but shall not be
required.

% Replaced by %.

Modified Conversion Specifiers

Some conversion specifiers can be modified by the E and O modifier characters to indicate that
an alternative format or specification should be used rather than the one normally used by the
unmodified conversion specifier. If the alternative format or specification does not exist in the
current locale, the behavior shall be as if the unmodified conversion specification were used.

%Ec The locale’s alternative appropriate date and time representation.

%EC The name of the base year (period) in the locale’s alternative representation.

%Ex The locale’s alternative date representation.

%EX The locale’s alternative time representation.

%Ey The offset from %EC (year only) in the locale’s alternative representation.

%EY The full alternative year representation.

%Od The day of the month using the locale’s alternative numeric symbols; leading zeros
shall be permitted but shall not be required.

%Oe Equivalent to %Od.

%OH The hour (24-hour clock) using the locale’s alternative numeric symbols.

%OI The hour (12-hour clock) using the locale’s alternative numeric symbols.

%Om The month using the locale’s alternative numeric symbols.

%OM The minutes using the locale’s alternative numeric symbols.

%OS The seconds using the locale’s alternative numeric symbols.

%OU The week number of the year (Sunday as the first day of the week) using the locale’s
alternative numeric symbols.

%Ow The number of the weekday (Sunday=0) using the locale’s alternative numeric
symbols.

%OW The week number of the year (Monday as the first day of the week) using the locale’s
alternative numeric symbols.

%Oy The year (offset from %C) using the locale’s alternative numeric symbols.

A conversion specification composed of white-space characters is executed by scanning input up
to the first character that is not white-space (which remains unscanned), or until no more
characters can be scanned.

A conversion specification that is an ordinary character is executed by scanning the next
character from the buffer. If the character scanned from the buffer differs from the one
comprising the directive, the directive fails, and the differing and subsequent characters remain

2028 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64176

64177

64178

64179

64180

64181

64182

64183

64184

64185

64186

64187

64188

64189

64190

64191

64192

64193

64194

64195

64196

64197

64198

64199

64200

64201

64202

64203

64204

64205

64206

64207

64208

64209

64210

64211

64212

64213

64214

64215

System Interfaces strptime()

unscanned.

A series of conversion specifications composed of %n, %t, white-space characters, or any
combination is executed by scanning up to the first character that is not white space (which
remains unscanned), or until no more characters can be scanned.

Any other conversion specification is executed by scanning characters until a character matching
the next directive is scanned, or until no more characters can be scanned. These characters,
except the one matching the next directive, are then compared to the locale values associated
with the conversion specifier. If a match is found, values for the appropriate tm structure
members are set to values corresponding to the locale information. Case is ignored when
matching items in buf such as month or weekday names. If no match is found, strptime() fails
and no more characters are scanned.

RETURN VALUE
Upon successful completion, strptime() shall return a pointer to the character following the last
character parsed. Otherwise, a null pointer shall be returned.

ERRORS
No errors are defined.

EXAMPLES

Convert a Data-Plus-Time String to Broken-Down Time and Then into Seconds

The following example demonstrates the use of strptime() to convert a string into broken-down
time. The broken-down time is then converted into seconds since the Epoch using mktime().

#include <time.h>
...

struct tm tm;
time_t t;

if (strptime("6 Dec 2001 12:33:45", "%d %b %Y %H:%M:%S", &tm) == NULL)
/* Handle error */;

printf("year: %d; month: %d; day: %d;\n",
tm.tm_year, tm.tm_mon, tm.tm_mday);

printf("hour: %d; minute: %d; second: %d\n",
tm.tm_hour, tm.tm_min, tm.tm_sec);

printf("week day: %d; year day: %d\n", tm.tm_wday, tm.tm_yday);

tm.tm_isdst = −1; /* Not set by strptime(); tells mktime()
to determine whether daylight saving time
is in effect */

t = mktime(&tm);
if (t == −1)

/* Handle error */;
printf("seconds since the Epoch: %ld\n", (long) t);"

APPLICATION USAGE
Several ‘‘equivalent to’’ formats and the special processing of white-space characters are
provided in order to ease the use of identical format strings for strftime() and strptime().

It should be noted that dates constructed by the strftime() function with the %Y or %C%y
conversion specifiers may have values larger than 9 999. If the strptime() function is used to read
such values using %C%y or %Y, the year values will be truncated to four digits. Applications

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2029

64216

64217

64218

64219

64220

64221

64222

64223

64224

64225

64226

64227

64228

64229

64230

64231

64232

64233

64234

64235

64236

64237

64238

64239

64240

64241

64242

64243

64244

64245

64246

64247

64248

64249

64250

64251

64252

64253

64254

64255

64256

64257

64258

64259

strptime() System Interfaces

should use %+w%y or %+xY with w and x set large enough to contain the full value of any years
that will be printed or scanned.

See also the APPLICATION USAGE section in strftime().

It is unspecified whether multiple calls to strptime() using the same tm structure will update the
current contents of the structure or overwrite all contents of the structure. Conforming
applications should make a single call to strptime() with a format and all data needed to
completely specify the date and time being converted.

RATIONALE
See the RATIONALE section for strftime().

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf(), fscanf(), strftime(), time()

XBD <time.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
Moved from ENHANCED I18N to BASE.

The [ENOSYS] error is removed.

The exact meaning of the %y and %Oy specifiers is clarified in the DESCRIPTION.

Issue 6
The Open Group Corrigendum U033/5 is applied. The %r specifier description is reworded.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the strptime() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

The Open Group Corrigendum U047/2 is applied.

The DESCRIPTION is updated to use the terms ‘‘conversion specifier’’ and ‘‘conversion
specification’’ for consistency with strftime().

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/133 is applied, adding the example to the
EXAMPLES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #041 is applied, updating the DESCRIPTION and
APPLICATION USAGE sections.

Austin Group Interpretation 1003.1-2001 #163 is applied.

SD5-XSH-ERN-67 is applied, correcting the APPLICATION USAGE to remove the impression
that %Y is 4-digit years.

2030 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64260

64261

64262

64263

64264

64265

64266

64267

64268

64269

64270

64271

64272

64273

64274

64275

64276

64277

64278

64279

64280

64281

64282

64283

64284

64285

64286

64287

64288

64289

64290

64291

64292

64293

64294

64295

System Interfaces strrchr()

NAME
strrchr — string scanning operation

SYNOPSIS
#include <string.h>

char *strrchr(const char *s, int c);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The strrchr() function shall locate the last occurrence of c (converted to a char) in the string
pointed to by s. The terminating NUL character is considered to be part of the string.

RETURN VALUE
Upon successful completion, strrchr() shall return a pointer to the byte or a null pointer if c does
not occur in the string.

ERRORS
No errors are defined.

EXAMPLES

Finding the Base Name of a File

The following example uses strrchr() to get a pointer to the base name of a file. The strrchr()
function searches backwards through the name of the file to find the last ’/’ character in name.
This pointer (plus one) will point to the base name of the file.

#include <string.h>
...
const char *name;
char *basename;
...
basename = strrchr(name, ’/’) + 1;
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strchr()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2031

64296

64297

64298

64299

64300

64301

64302

64303

64304

64305

64306

64307

64308

64309

64310

64311

64312

64313

64314

64315

64316

64317

64318

64319

64320

64321

64322

64323

64324

64325

64326

64327

64328

64329

64330

64331

64332

64333

64334

strsignal() System Interfaces

NAME
strsignal — get name of signal

SYNOPSIS
CX #include <string.h>

char *strsignal(int signum);

DESCRIPTION
The strsignal() function shall map the signal number in signum to an implementation-defined
string and shall return a pointer to it. It shall use the same set of messages as the psignal()
function.

The string pointed to shall not be modified by the application, but may be overwritten by a
subsequent call to strsignal() or setlocale().

The contents of the message strings returned by strsignal() should be determined by the setting
of the LC_MESSAGES category in the current locale.

The implementation shall behave as if no function defined in this standard calls strsignal().

Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call strsignal(), then check errno.

The strsignal() function need not be thread-safe.

RETURN VALUE
Upon successful completion, strsignal() shall return a pointer to a string. Otherwise, if signum is
not a valid signal number, the return value is unspecified.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If signum is not a valid signal number, some implementations return NULL, while for others the
strsignal() function returns a pointer to a string containing an unspecified message denoting an
unknown signal. POSIX.1-2008 leaves this return value unspecified.

FUTURE DIRECTIONS
None.

SEE ALSO
psiginfo(), setlocale()

XBD <string.h>

CHANGE HISTORY
First released in Issue 7.

2032 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64335

64336

64337

64338

64339

64340

64341

64342

64343

64344

64345

64346

64347

64348

64349

64350

64351

64352

64353

64354

64355

64356

64357

64358

64359

64360

64361

64362

64363

64364

64365

64366

64367

64368

64369

64370

64371

System Interfaces strspn()

NAME
strspn — get length of a substring

SYNOPSIS
#include <string.h>

size_t strspn(const char *s1, const char *s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The strspn() function shall compute the length (in bytes) of the maximum initial segment of the
string pointed to by s1 which consists entirely of bytes from the string pointed to by s2.

RETURN VALUE
The strspn() function shall return the computed length; no return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcspn()

XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The RETURN VALUE section is updated to indicate that strspn() returns the length of s, and not
s itself as was previously stated.

Issue 7
SD5-XSH-ERN-182 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2033

64372

64373

64374

64375

64376

64377

64378

64379

64380

64381

64382

64383

64384

64385

64386

64387

64388

64389

64390

64391

64392

64393

64394

64395

64396

64397

64398

64399

64400

64401

64402

64403

64404

64405

strstr() System Interfaces

NAME
strstr — find a substring

SYNOPSIS
#include <string.h>

char *strstr(const char *s1, const char *s2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The strstr() function shall locate the first occurrence in the string pointed to by s1 of the
sequence of bytes (excluding the terminating NUL character) in the string pointed to by s2.

RETURN VALUE
Upon successful completion, strstr() shall return a pointer to the located string or a null pointer
if the string is not found.

If s2 points to a string with zero length, the function shall return s1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strchr()

XBD <string.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the ANSI C standard.

2034 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64406

64407

64408

64409

64410

64411

64412

64413

64414

64415

64416

64417

64418

64419

64420

64421

64422

64423

64424

64425

64426

64427

64428

64429

64430

64431

64432

64433

64434

64435

System Interfaces strtod()

NAME
strtod, strtof, strtold — convert a string to a double-precision number

SYNOPSIS
#include <stdlib.h>

double strtod(const char *restrict nptr, char **restrict endptr);
float strtof(const char *restrict nptr, char **restrict endptr);
long double strtold(const char *restrict nptr, char **restrict endptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall convert the initial portion of the string pointed to by nptr to double, float,
and long double representation, respectively. First, they decompose the input string into three
parts:

1. An initial, possibly empty, sequence of white-space characters (as specified by isspace())

2. A subject sequence interpreted as a floating-point constant or representing infinity or
NaN

3. A final string of one or more unrecognized characters, including the terminating NUL
character of the input string

Then they shall attempt to convert the subject sequence to a floating-point number, and return
the result.

The expected form of the subject sequence is an optional ’+’ or ’−’ sign, then one of the
following:

• A non-empty sequence of decimal digits optionally containing a radix character; then an
optional exponent part consisting of the character ’e’ or the character ’E’, optionally
followed by a ’+’ or ’−’ character, and then followed by one or more decimal digits

• A 0x or 0X, then a non-empty sequence of hexadecimal digits optionally containing a radix
character; then an optional binary exponent part consisting of the character ’p’ or the
character ’P’, optionally followed by a ’+’ or ’−’ character, and then followed by one or
more decimal digits

• One of INF or INFINITY, ignoring case

• One of NAN or NAN(n-char-sequenceopt), ignoring case in the NAN part, where:

n-char-sequence:
digit
nondigit
n-char-sequence digit
n-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character, that is of the expected form. The subject sequence
contains no characters if the input string is not of the expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of
characters starting with the first digit or the decimal-point character (whichever occurs first)
shall be interpreted as a floating constant of the C language, except that the radix character shall
be used in place of a period, and that if neither an exponent part nor a radix character appears in

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2035

64436

64437

64438

64439

64440

64441

64442

64443

64444

64445

64446

64447

64448

64449

64450

64451

64452

64453

64454

64455

64456

64457

64458

64459

64460

64461

64462

64463

64464

64465

64466

64467

64468

64469

64470

64471

64472

64473

64474

64475

64476

64477

64478

64479

strtod() System Interfaces

a decimal floating-point number, or if a binary exponent part does not appear in a hexadecimal
floating-point number, an exponent part of the appropriate type with value zero is assumed to
follow the last digit in the string. If the subject sequence begins with a minus-sign, the sequence
shall be interpreted as negated. A character sequence INF or INFINITY shall be interpreted as an
infinity, if representable in the return type, else as if it were a floating constant that is too large
for the range of the return type. A character sequence NAN or NAN(n-char-sequenceopt) shall be
interpreted as a quiet NaN, if supported in the return type, else as if it were a subject sequence
part that does not have the expected form; the meaning of the n-char sequences is
implementation-defined. A pointer to the final string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the value
resulting from the conversion is correctly rounded.

CX The radix character is defined in the locale of the process (category LC_NUMERIC). In the
POSIX locale, or in a locale where the radix character is not defined, the radix character shall
default to a <period> (’.’).

CX In other than the C or POSIX locales, other implementation-defined subject sequences may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be
performed; the value of str is stored in the object pointed to by endptr, provided that endptr is not
a null pointer.

CX The strtod() function shall not change the setting of errno if successful.

Since 0 is returned on error and is also a valid return on success, an application wishing to check
for error situations should set errno to 0, then call strtod(), strtof(), or strtold(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value. If no conversion
could be performed, 0 shall be returned, and errno may be set to [EINVAL].

If the correct value is outside the range of representable values, ±HUGE_VAL, ±HUGE_VALF, or
±HUGE_VALL shall be returned (according to the sign of the value), and errno shall be set to
[ERANGE].

If the correct value would cause an underflow, a value whose magnitude is no greater than the
smallest normalized positive number in the return type shall be returned and errno set to
[ERANGE].

ERRORS
These functions shall fail if:

CX [ERANGE] The value to be returned would cause overflow or underflow.

These functions may fail if:

CX [EINVAL] No conversion could be performed.

2036 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64480

64481

64482

64483

64484

64485

64486

64487

64488

64489

64490

64491

64492

64493

64494

64495

64496

64497

64498

64499

64500

64501

64502

64503

64504

64505

64506

64507

64508

64509

64510

64511

64512

64513

64514

64515

64516

System Interfaces strtod()

EXAMPLES
None.

APPLICATION USAGE
If the subject sequence has the hexadecimal form and FLT_RADIX is not a power of 2, and the
result is not exactly representable, the result should be one of the two numbers in the
appropriate internal format that are adjacent to the hexadecimal floating source value, with the
extra stipulation that the error should have a correct sign for the current rounding direction.

If the subject sequence has the decimal form and at most DECIMAL_DIG (defined in <float.h>)
significant digits, the result should be correctly rounded. If the subject sequence D has the
decimal form and more than DECIMAL_DIG significant digits, consider the two bounding,
adjacent decimal strings L and U, both having DECIMAL_DIG significant digits, such that the
values of L, D, and U satisfy L <= D <= U. The result should be one of the (equal or adjacent)
values that would be obtained by correctly rounding L and U according to the current rounding
direction, with the extra stipulation that the error with respect to D should have a correct sign
for the current rounding direction.

The changes to strtod() introduced by the ISO/IEC 9899: 1999 standard can alter the behavior of
well-formed applications complying with the ISO/IEC 9899: 1990 standard and thus earlier
versions of this standard. One such example would be:

int
what_kind_of_number (char *s)
{

char *endp;
double d;
long l;

d = strtod(s, &endp);
if (s != endp && *endp == ‘\0’)

printf("It’s a float with value %g\n", d);
else
{

l = strtol(s, &endp, 0);
if (s != endp && *endp == ‘\0’)

printf("It’s an integer with value %ld\n", 1);
else

return 1;
}
return 0;

}

If the function is called with:

what_kind_of_number ("0x10")

an ISO/IEC 9899: 1990 standard-compliant library will result in the function printing:

It’s an integer with value 16

With the ISO/IEC 9899: 1999 standard, the result is:

It’s a float with value 16

The change in behavior is due to the inclusion of floating-point numbers in hexadecimal
notation without requiring that either a decimal point or the binary exponent be present.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2037

64517

64518

64519

64520

64521

64522

64523

64524

64525

64526

64527

64528

64529

64530

64531

64532

64533

64534

64535

64536

64537

64538

64539

64540

64541

64542

64543

64544

64545

64546

64547

64548

64549

64550

64551

64552

64553

64554

64555

64556

64557

64558

64559

64560

64561

strtod() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), isspace(), localeconv(), setlocale(), strtol()

XBD Chapter 7 (on page 135), <float.h>, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The strtod() function is updated.

• The strtof() and strtold() functions are added.

• The DESCRIPTION is extensively revised.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/61 is applied, correcting the second
paragraph in the RETURN VALUE section. This change clarifies the sign of the return value.

Issue 7
Austin Group Interpretation 1003.1-2001 #015 is applied.

2038 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64562

64563

64564

64565

64566

64567

64568

64569

64570

64571

64572

64573

64574

64575

64576

64577

64578

64579

64580

64581

64582

64583

64584

64585

64586

64587

System Interfaces strtoimax()

NAME
strtoimax, strtoumax — convert string to integer type

SYNOPSIS
#include <inttypes.h>

intmax_t strtoimax(const char *restrict nptr, char **restrict endptr,
int base);

uintmax_t strtoumax(const char *restrict nptr, char **restrict endptr,
int base);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall be equivalent to the strtol(), strtoll(), strtoul(), and strtoull() functions,
except that the initial portion of the string shall be converted to intmax_t and uintmax_t
representation, respectively.

RETURN VALUE
These functions shall return the converted value, if any.

If no conversion could be performed, zero shall be returned.

If the correct value is outside the range of representable values, {INTMAX_MAX},
{INTMAX_MIN}, or {UINTMAX_MAX} shall be returned (according to the return type and sign
of the value, if any), and errno shall be set to [ERANGE].

ERRORS
These functions shall fail if:

[ERANGE] The value to be returned is not representable.

These functions may fail if:

[EINVAL] The value of base is not supported.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtol(), strtoul()

XBD <inttypes.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2039

64588

64589

64590

64591

64592

64593

64594

64595

64596

64597

64598

64599

64600

64601

64602

64603

64604

64605

64606

64607

64608

64609

64610

64611

64612

64613

64614

64615

64616

64617

64618

64619

64620

64621

64622

64623

64624

64625

64626

strtok() System Interfaces

NAME
strtok, strtok_r — split string into tokens

SYNOPSIS
#include <string.h>

char *strtok(char *restrict s1, const char *restrict s2);
CX char *strtok_r(char *restrict s, const char *restrict sep,

char **restrict lasts);

DESCRIPTION
CX For strtok(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

A sequence of calls to strtok() breaks the string pointed to by s1 into a sequence of tokens, each
of which is delimited by a byte from the string pointed to by s2. The first call in the sequence
has s1 as its first argument, and is followed by calls with a null pointer as their first argument.
The separator string pointed to by s2 may be different from call to call.

The first call in the sequence searches the string pointed to by s1 for the first byte that is not
contained in the current separator string pointed to by s2. If no such byte is found, then there
are no tokens in the string pointed to by s1 and strtok() shall return a null pointer. If such a byte
is found, it is the start of the first token.

The strtok() function then searches from there for a byte that is contained in the current separator
string. If no such byte is found, the current token extends to the end of the string pointed to by
s1, and subsequent searches for a token shall return a null pointer. If such a byte is found, it is
overwritten by a NUL character, which terminates the current token. The strtok() function saves
a pointer to the following byte, from which the next search for a token shall start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from
the saved pointer and behaves as described above.

The implementation shall behave as if no function defined in this volume of POSIX.1-2008 calls
strtok().

CX The strtok() function need not be thread-safe.

The strtok_r() function considers the null-terminated string s as a sequence of zero or more text
tokens separated by spans of one or more characters from the separator string sep. The
argument lasts points to a user-provided pointer which points to stored information necessary
for strtok_r() to continue scanning the same string.

In the first call to strtok_r(), s points to a null-terminated string, sep to a null-terminated string of
separator characters, and the value pointed to by lasts is ignored. The strtok_r() function shall
return a pointer to the first character of the first token, write a null character into s immediately
following the returned token, and update the pointer to which lasts points.

In subsequent calls, s is a null pointer and lasts shall be unchanged from the previous call so that
subsequent calls shall move through the string s, returning successive tokens until no tokens
remain. The separator string sep may be different from call to call. When no token remains in s, a
null pointer shall be returned.

2040 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64627

64628

64629

64630

64631

64632

64633

64634

64635

64636

64637

64638

64639

64640

64641

64642

64643

64644

64645

64646

64647

64648

64649

64650

64651

64652

64653

64654

64655

64656

64657

64658

64659

64660

64661

64662

64663

64664

64665

64666

64667

System Interfaces strtok()

RETURN VALUE
Upon successful completion, strtok() shall return a pointer to the first byte of a token. Otherwise,
if there is no token, strtok() shall return a null pointer.

CX The strtok_r() function shall return a pointer to the token found, or a null pointer when no token
is found.

ERRORS
No errors are defined.

EXAMPLES

Searching for Word Separators

The following example searches for tokens separated by <space> characters.

#include <string.h>
...
char *token;
char line[] = "LINE TO BE SEPARATED";
char *search = " ";

/* Token will point to "LINE". */
token = strtok(line, search);

/* Token will point to "TO". */
token = strtok(NULL, search);

Breaking a Line

The following example uses strtok() to break a line into two character strings separated by any
combination of <space>, <tab>, or <newline> characters.

#include <string.h>
...
struct element {

char *key;
char *data;

};
...
char line[LINE_MAX];
char *key, *data;
...
key = strtok(line, " \n");
data = strtok(NULL, " \n");
...

APPLICATION USAGE
The strtok_r() function is thread-safe and stores its state in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by an unrelated call from another
thread.

RATIONALE
The strtok() function searches for a separator string within a larger string. It returns a pointer to
the last substring between separator strings. This function uses static storage to keep track of
the current string position between calls. The new function, strtok_r(), takes an additional
argument, lasts, to keep track of the current position in the string.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2041

64668

64669

64670

64671

64672

64673

64674

64675

64676

64677

64678

64679

64680

64681

64682

64683

64684

64685

64686

64687

64688

64689

64690

64691

64692

64693

64694

64695

64696

64697

64698

64699

64700

64701

64702

64703

64704

64705

64706

64707

64708

64709

64710

64711

strtok() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <string.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The strtok_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the strtok() function need not be reentrant is added to the DESCRIPTION.

Issue 6
Extensions beyond the ISO C standard are marked.

The strtok_r() function is marked as part of the Thread-Safe Functions option.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

The restrict keyword is added to the strtok() and strtok_r() prototypes for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XSH-ERN-235 is applied, correcting an example.

The strtok_r() function is moved from the Thread-Safe Functions option to the Base.

2042 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64712

64713

64714

64715

64716

64717

64718

64719

64720

64721

64722

64723

64724

64725

64726

64727

64728

64729

64730

64731

64732

System Interfaces strtol()

NAME
strtol, strtoll — convert a string to a long integer

SYNOPSIS
#include <stdlib.h>

long strtol(const char *restrict str, char **restrict endptr, int base);
long long strtoll(const char *restrict str, char **restrict endptr,

int base)

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall convert the initial portion of the string pointed to by str to a type long and
long long representation, respectively. First, they decompose the input string into three parts:

1. An initial, possibly empty, sequence of white-space characters (as specified by isspace())

2. A subject sequence interpreted as an integer represented in some radix determined by the
value of base

3. A final string of one or more unrecognized characters, including the terminating NUL
character of the input string.

Then they shall attempt to convert the subject sequence to an integer, and return the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant,
octal constant, or hexadecimal constant, any of which may be preceded by a ’+’ or ’−’ sign. A
decimal constant begins with a non-zero digit, and consists of a sequence of decimal digits. An
octal constant consists of the prefix ’0’ optionally followed by a sequence of the digits ’0’ to
’7’ only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the
decimal digits and letters ’a’ (or ’A’) to ’f’ (or ’F’) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally preceded
by a ’+’ or ’−’ sign. The letters from ’a’ (or ’A’) to ’z’ (or ’Z’) inclusive are ascribed the
values 10 to 35; only letters whose ascribed values are less than that of base are permitted. If the
value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and
digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character that is of the expected form. The subject sequence shall
contain no characters if the input string is empty or consists entirely of white-space characters,
or if the first non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence of
characters starting with the first digit shall be interpreted as an integer constant. If the subject
sequence has the expected form and the value of base is between 2 and 36, it shall be used as the
base for conversion, ascribing to each letter its value as given above. If the subject sequence
begins with a minus-sign, the value resulting from the conversion shall be negated. A pointer to
the final string shall be stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

CX In other than the C or POSIX locales, other implementation-defined subject sequences may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2043

64733

64734

64735

64736

64737

64738

64739

64740

64741

64742

64743

64744

64745

64746

64747

64748

64749

64750

64751

64752

64753

64754

64755

64756

64757

64758

64759

64760

64761

64762

64763

64764

64765

64766

64767

64768

64769

64770

64771

64772

64773

64774

64775

64776

64777

strtol() System Interfaces

the value of str is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

CX The strtol() function shall not change the setting of errno if successful.

Since 0, {LONG_MIN} or {LLONG_MIN}, and {LONG_MAX} or {LLONG_MAX} are returned
on error and are also valid returns on success, an application wishing to check for error
situations should set errno to 0, then call strtol() or strtoll(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value, if any. If no

CX conversion could be performed, 0 shall be returned and errno may be set to [EINVAL].

If the correct value is outside the range of representable values, {LONG_MIN}, {LONG_MAX},
{LLONG_MIN}, or {LLONG_MAX} shall be returned (according to the sign of the value), and
errno set to [ERANGE].

ERRORS
These functions shall fail if:

[ERANGE] The value to be returned is not representable.

These functions may fail if:

CX [EINVAL] The value of base is not supported.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), isalpha(), strtod()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

2044 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64778

64779

64780

64781

64782

64783

64784

64785

64786

64787

64788

64789

64790

64791

64792

64793

64794

64795

64796

64797

64798

64799

64800

64801

64802

64803

64804

64805

64806

64807

64808

64809

64810

64811

64812

64813

64814

64815

System Interfaces strtol()

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The strtol() prototype is updated.

• The strtoll() function is added.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2045

64816

64817

64818

strtold() System Interfaces

NAME
strtold — convert a string to a double-precision number

SYNOPSIS
#include <stdlib.h>

long double strtold(const char *restrict nptr, char **restrict endptr);

DESCRIPTION
Refer to strtod().

2046 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64819

64820

64821

64822

64823

64824

64825

System Interfaces strtoll()

NAME
strtoll — convert a string to a long integer

SYNOPSIS
#include <stdlib.h>

long long strtoll(const char *restrict str, char **restrict endptr,
int base);

DESCRIPTION
Refer to strtol().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2047

64826

64827

64828

64829

64830

64831

64832

64833

strtoul() System Interfaces

NAME
strtoul, strtoull — convert a string to an unsigned long

SYNOPSIS
#include <stdlib.h>

unsigned long strtoul(const char *restrict str,
char **restrict endptr, int base);

unsigned long long strtoull(const char *restrict str,
char **restrict endptr, int base);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall convert the initial portion of the string pointed to by str to a type unsigned
long and unsigned long long representation, respectively. First, they decompose the input string
into three parts:

1. An initial, possibly empty, sequence of white-space characters (as specified by isspace())

2. A subject sequence interpreted as an integer represented in some radix determined by the
value of base

3. A final string of one or more unrecognized characters, including the terminating NUL
character of the input string

Then they shall attempt to convert the subject sequence to an unsigned integer, and return the
result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant,
octal constant, or hexadecimal constant, any of which may be preceded by a ’+’ or ’−’ sign. A
decimal constant begins with a non-zero digit, and consists of a sequence of decimal digits. An
octal constant consists of the prefix ’0’ optionally followed by a sequence of the digits ’0’ to
’7’ only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the
decimal digits and letters ’a’ (or ’A’) to ’f’ (or ’F’) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally preceded
by a ’+’ or ’−’ sign. The letters from ’a’ (or ’A’) to ’z’ (or ’Z’) inclusive are ascribed the
values 10 to 35; only letters whose ascribed values are less than that of base are permitted. If the
value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and
digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character that is of the expected form. The subject sequence shall
contain no characters if the input string is empty or consists entirely of white-space characters,
or if the first non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence of
characters starting with the first digit shall be interpreted as an integer constant. If the subject
sequence has the expected form and the value of base is between 2 and 36, it shall be used as the
base for conversion, ascribing to each letter its value as given above. If the subject sequence
begins with a minus-sign, the value resulting from the conversion shall be negated. A pointer to
the final string shall be stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

2048 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64834

64835

64836

64837

64838

64839

64840

64841

64842

64843

64844

64845

64846

64847

64848

64849

64850

64851

64852

64853

64854

64855

64856

64857

64858

64859

64860

64861

64862

64863

64864

64865

64866

64867

64868

64869

64870

64871

64872

64873

64874

64875

64876

64877

64878

System Interfaces strtoul()

CX In other than the C or POSIX locales, other implementation-defined subject sequences may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be
performed; the value of str shall be stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

CX The strtoul() function shall not change the setting of errno if successful.

Since 0, {ULONG_MAX}, and {ULLONG_MAX} are returned on error and are also valid returns
on success, an application wishing to check for error situations should set errno to 0, then call
strtoul() or strtoull(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value, if any. If no

CX conversion could be performed, 0 shall be returned and errno may be set to [EINVAL]. If the
correct value is outside the range of representable values, {ULONG_MAX} or {ULLONG_MAX}
shall be returned and errno set to [ERANGE].

ERRORS
These functions shall fail if:

CX [EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

These functions may fail if:

CX [EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), isalpha(), strtod(), strtol()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EINVAL] error condition is added for when the value of base is not supported.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2049

64879

64880

64881

64882

64883

64884

64885

64886

64887

64888

64889

64890

64891

64892

64893

64894

64895

64896

64897

64898

64899

64900

64901

64902

64903

64904

64905

64906

64907

64908

64909

64910

64911

64912

64913

64914

64915

64916

64917

64918

strtoul() System Interfaces

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The strtoul() prototype is updated.

• The strtoull() function is added.

2050 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64919

64920

64921

64922

64923

System Interfaces strtoumax()

NAME
strtoumax — convert a string to an integer type

SYNOPSIS
#include <inttypes.h>

uintmax_t strtoumax(const char *restrict nptr, char **restrict endptr,
int base);

DESCRIPTION
Refer to strtoimax().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2051

64924

64925

64926

64927

64928

64929

64930

64931

strxfrm() System Interfaces

NAME
strxfrm, strxfrm_l — string transformation

SYNOPSIS
#include <string.h>

size_t strxfrm(char *restrict s1, const char *restrict s2, size_t n);
CX size_t strxfrm_l(char *restrict s1, const char *restrict s2,

size_t n, locale_t locale);

DESCRIPTION
CX For strxfrm(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The strxfrm() and strxfrm_l() functions shall transform the string pointed to by s2 and place the
resulting string into the array pointed to by s1. The transformation is such that if strcmp() is
applied to two transformed strings, it shall return a value greater than, equal to, or less than 0,

CX corresponding to the result of strcoll() or strcoll_l(), respectively, applied to the same two
CX original strings with the same locale. No more than n bytes are placed into the resulting array

pointed to by s1, including the terminating NUL character. If n is 0, s1 is permitted to be a null
pointer. If copying takes place between objects that overlap, the behavior is undefined.

CX The strxfrm() and strxfrm_l() functions shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
CX situations should set errno to 0, then call strxfrm() or strxfrm_l(), then check errno.

RETURN VALUE
CX Upon successful completion, strxfrm() and strxfrm_l() shall return the length of the

transformed string (not including the terminating NUL character). If the value returned is n or
more, the contents of the array pointed to by s1 are unspecified.

CX On error, strxfrm() and strxfrm_l() may set errno but no return value is reserved to indicate an
error.

ERRORS
These functions may fail if:

CX [EINVAL] The string pointed to by the s2 argument contains characters outside the
domain of the collating sequence.

The strxfrm_l() function may fail if:

CX [EINVAL] locale is not a valid locale object.

EXAMPLES
None.

APPLICATION USAGE
The transformation function is such that two transformed strings can be ordered by strcmp() as
appropriate to collating sequence information in the locale of the process (category
LC_COLLATE).

The fact that when n is 0 s1 is permitted to be a null pointer is useful to determine the size of the
s1 array prior to making the transformation.

2052 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64932

64933

64934

64935

64936

64937

64938

64939

64940

64941

64942

64943

64944

64945

64946

64947

64948

64949

64950

64951

64952

64953

64954

64955

64956

64957

64958

64959

64960

64961

64962

64963

64964

64965

64966

64967

64968

64969

64970

64971

64972

System Interfaces strxfrm()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcmp(), strcoll()

XBD <string.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the ISO C standard.

Issue 5
The DESCRIPTION is updated to indicate that errno does not change if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The strxfrm() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The strxfrm_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2053

64973

64974

64975

64976

64977

64978

64979

64980

64981

64982

64983

64984

64985

64986

64987

64988

64989

64990

64991

64992

64993

swab() System Interfaces

NAME
swab — swap bytes

SYNOPSIS
XSI #include <unistd.h>

void swab(const void *restrict src, void *restrict dest,
ssize_t nbytes);

DESCRIPTION
The swab() function shall copy nbytes bytes, which are pointed to by src, to the object pointed to
by dest, exchanging adjacent bytes. The nbytes argument should be even. If nbytes is odd, swab()
copies and exchanges nbytes−1 bytes and the disposition of the last byte is unspecified. If
copying takes place between objects that overlap, the behavior is undefined. If nbytes is
negative, swab() does nothing.

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The restrict keyword is added to the swab() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

2054 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

64994

64995

64996

64997

64998

64999

65000

65001

65002

65003

65004

65005

65006

65007

65008

65009

65010

65011

65012

65013

65014

65015

65016

65017

65018

65019

65020

65021

65022

65023

65024

System Interfaces swprintf()

NAME
swprintf — print formatted wide-character output

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int swprintf(wchar_t *restrict ws, size_t n,
const wchar_t *restrict format, ...);

DESCRIPTION
Refer to fwprintf().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2055

65025

65026

65027

65028

65029

65030

65031

65032

65033

swscanf() System Interfaces

NAME
swscanf — convert formatted wide-character input

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int swscanf(const wchar_t *restrict ws,
const wchar_t *restrict format, ...);

DESCRIPTION
Refer to fwscanf().

2056 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

65034

65035

65036

65037

65038

65039

65040

65041

65042

System Interfaces symlink()

NAME
symlink, symlinkat — make a symbolic link relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int symlink(const char *path1, const char *path2);
int symlinkat(const char *path1, int fd, const char *path2);

DESCRIPTION
The symlink() function shall create a symbolic link called path2 that contains the string pointed to
by path1 (path2 is the name of the symbolic link created, path1 is the string contained in the
symbolic link).

The string pointed to by path1 shall be treated only as a character string and shall not be
validated as a pathname.

If the symlink() function fails for any reason other than [EIO], any file named by path2 shall be
unaffected.

The symbolic link’s user ID shall be set to the process’ effective user ID. The symbolic link’s
group ID shall be set to the group ID of the parent directory or to the effective group ID of the
process. Implementations shall provide a way to initialize the symbolic link’s group ID to the
group ID of the parent directory. Implementations may, but need not, provide an
implementation-defined way to initialize the symbolic link’s group ID to the effective group ID
of the calling process.

The values of the file mode bits for the created symbolic link are unspecified. All interfaces
specified by POSIX.1-2008 shall behave as if the contents of symbolic links can always be read,
except that the value of the file mode bits returned in the st_mode field of the stat structure is
unspecified.

Upon successful completion, symlink() shall mark for update the last data access, last data
modification, and last file status change timestamps of the symbolic link. Also, the last data
modification and last file status change timestamps of the directory that contains the new entry
shall be marked for update.

The symlinkat() function shall be equivalent to the symlink() function except in the case where
path2 specifies a relative path. In this case the symbolic link is created relative to the directory
associated with the file descriptor fd instead of the current working directory. If the file
descriptor was opened without O_SEARCH, the function shall check whether directory searches
are permitted using the current permissions of the directory underlying the file descriptor. If the
file descriptor was opened with O_SEARCH, the function shall not perform the check.

If symlinkat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to symlink().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error.

ERRORS
These functions shall fail if:

[EACCES] Write permission is denied in the directory where the symbolic link is being
created, or search permission is denied for a component of the path prefix of
path2.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2057

65043

65044

65045

65046

65047

65048

65049

65050

65051

65052

65053

65054

65055

65056

65057

65058

65059

65060

65061

65062

65063

65064

65065

65066

65067

65068

65069

65070

65071

65072

65073

65074

65075

65076

65077

65078

65079

65080

65081

65082

65083

65084

65085

65086

symlink() System Interfaces

[EEXIST] The path2 argument names an existing file or symbolic link.

[EIO] An I/O error occurs while reading from or writing to the file system.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path2
argument.

[ENAMETOOLONG]
The length of a component of the pathname specified by the path2 argument is
longer than {NAME_MAX} or the length of the path1 argument is longer than
{SYMLINK_MAX}.

[ENOENT] A component of path2 does not name an existing file or path2 is an empty
string.

[ENOSPC] The directory in which the entry for the new symbolic link is being placed
cannot be extended because no space is left on the file system containing the
directory, or the new symbolic link cannot be created because no space is left
on the file system which shall contain the link, or the file system is out of file-
allocation resources.

[ENOTDIR] A component of the path prefix of path2 is not a directory.

[EROFS] The new symbolic link would reside on a read-only file system.

The symlinkat() function shall fail if:

[EACCES] fd was not opened with O_SEARCH and the permissions of the directory
underlying fd do not permit directory searches.

[EBADF] The path2 argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

These functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path2 argument.

[ENAMETOOLONG]
The length of the path2 argument exceeds {PATH_MAX} or pathname
resolution of a symbolic link in the path2 argument produced an intermediate
result with a length that exceeds {PATH_MAX}.

The symlinkat() function may fail if:

[ENOTDIR] The path2 argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES
None.

APPLICATION USAGE
Like a hard link, a symbolic link allows a file to have multiple logical names. The presence of a
hard link guarantees the existence of a file, even after the original name has been removed. A
symbolic link provides no such assurance; in fact, the file named by the path1 argument need not
exist when the link is created. A symbolic link can cross file system boundaries.

Normal permission checks are made on each component of the symbolic link pathname during
its resolution.

2058 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

65087

65088

65089

65090

65091

65092

65093

65094

65095

65096

65097

65098

65099

65100

65101

65102

65103

65104

65105

65106

65107

65108

65109

65110

65111

65112

65113

65114

65115

65116

65117

65118

65119

65120

65121

65122

65123

65124

65125

65126

65127

System Interfaces symlink()

RATIONALE
Since POSIX.1-2008 does not require any association of file times with symbolic links, there is no
requirement that file times be updated by symlink().

The purpose of the symlinkat() function is to create symbolic links in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to symlink(), resulting in unspecified behavior. By opening
a file descriptor for the target directory and using the symlinkat() function it can be guaranteed
that the created symbolic link is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopendir(), fstatat(), lchown(), link(), open(), readlink(), rename(), unlink()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The following changes were made to align with the IEEE P1003.1a draft standard:

• The DESCRIPTION text is updated.

• The [ELOOP] optional error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The symlinkat() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 2.

Additions have been made describing how symlink() sets the user and group IDs and file mode
of the symbolic link, and its effect on timestamps.

Changes are made to allow a directory to be opened for searching.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2059

65128

65129

65130

65131

65132

65133

65134

65135

65136

65137

65138

65139

65140

65141

65142

65143

65144

65145

65146

65147

65148

65149

65150

65151

65152

65153

65154

65155

sync() System Interfaces

NAME
sync — schedule file system updates

SYNOPSIS
XSI #include <unistd.h>

void sync(void);

DESCRIPTION
The sync() function shall cause all information in memory that updates file systems to be
scheduled for writing out to all file systems.

The writing, although scheduled, is not necessarily complete upon return from sync().

RETURN VALUE
The sync() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fsync()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

2060 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

65156

65157

65158

65159

65160

65161

65162

65163

65164

65165

65166

65167

65168

65169

65170

65171

65172

65173

65174

65175

65176

65177

65178

65179

65180

65181

65182

65183

System Interfaces sysconf()

NAME
sysconf — get configurable system variables

SYNOPSIS
#include <unistd.h>

long sysconf(int name);

DESCRIPTION
The sysconf() function provides a method for the application to determine the current value of a
configurable system limit or option (variable). The implementation shall support all of the
variables listed in the following table and may support others.

The name argument represents the system variable to be queried. The following table lists the
minimal set of system variables from <limits.h> or <unistd.h> that can be returned by sysconf(),
and the symbolic constants defined in <unistd.h> that are the corresponding values used for
name.

Variable Value of Name

{AIO_LISTIO_MAX} _SC_AIO_LISTIO_MAX
{AIO_MAX} _SC_AIO_MAX
{AIO_PRIO_DELTA_MAX} _SC_AIO_PRIO_DELTA_MAX
{ARG_MAX} _SC_ARG_MAX
{ATEXIT_MAX} _SC_ATEXIT_MAX
{BC_BASE_MAX} _SC_BC_BASE_MAX
{BC_DIM_MAX} _SC_BC_DIM_MAX
{BC_SCALE_MAX} _SC_BC_SCALE_MAX
{BC_STRING_MAX} _SC_BC_STRING_MAX
{CHILD_MAX} _SC_CHILD_MAX
Clock ticks/second _SC_CLK_TCK
{COLL_WEIGHTS_MAX} _SC_COLL_WEIGHTS_MAX
{DELAYTIMER_MAX} _SC_DELAYTIMER_MAX
{EXPR_NEST_MAX} _SC_EXPR_NEST_MAX
{HOST_NAME_MAX} _SC_HOST_NAME_MAX
{IOV_MAX} _SC_IOV_MAX
{LINE_MAX} _SC_LINE_MAX
{LOGIN_NAME_MAX} _SC_LOGIN_NAME_MAX
{NGROUPS_MAX} _SC_NGROUPS_MAX
Initial size of getgrgid_r() and _SC_GETGR_R_SIZE_MAX
getgrnam_r() data buffers
Initial size of getpwuid_r() and _SC_GETPW_R_SIZE_MAX
getpwnam_r() data buffers
{MQ_OPEN_MAX} _SC_MQ_OPEN_MAX
{MQ_PRIO_MAX} _SC_MQ_PRIO_MAX
{OPEN_MAX} _SC_OPEN_MAX
_POSIX_ADVISORY_INFO _SC_ADVISORY_INFO
_POSIX_BARRIERS _SC_BARRIERS
_POSIX_ASYNCHRONOUS_IO _SC_ASYNCHRONOUS_IO
_POSIX_CLOCK_SELECTION _SC_CLOCK_SELECTION
_POSIX_CPUTIME _SC_CPUTIME
_POSIX_FSYNC _SC_FSYNC
_POSIX_IPV6 _SC_IPV6
_POSIX_JOB_CONTROL _SC_JOB_CONTROL

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2061

65184

65185

65186

65187

65188

65189

65190

65191

65192

65193

65194

65195

65196

65197

65198

65199

65200

65201

65202

65203

65204

65205

65206

65207

65208

65209

65210

65211

65212

65213

65214

65215

65216

65217

65218

65219

65220

65221

65222

65223

65224

65225

65226

65227

65228

65229

65230

65231

sysconf() System Interfaces

Variable Value of Name

_POSIX_MAPPED_FILES _SC_MAPPED_FILES
_POSIX_MEMLOCK _SC_MEMLOCK
_POSIX_MEMLOCK_RANGE _SC_MEMLOCK_RANGE
_POSIX_MEMORY_PROTECTION _SC_MEMORY_PROTECTION
_POSIX_MESSAGE_PASSING _SC_MESSAGE_PASSING
_POSIX_MONOTONIC_CLOCK _SC_MONOTONIC_CLOCK
_POSIX_PRIORITIZED_IO _SC_PRIORITIZED_IO
_POSIX_PRIORITY_SCHEDULING _SC_PRIORITY_SCHEDULING
_POSIX_RAW_SOCKETS _SC_RAW_SOCKETS
_POSIX_READER_WRITER_LOCKS _SC_READER_WRITER_LOCKS
_POSIX_REALTIME_SIGNALS _SC_REALTIME_SIGNALS
_POSIX_REGEXP _SC_REGEXP
_POSIX_SAVED_IDS _SC_SAVED_IDS
_POSIX_SEMAPHORES _SC_SEMAPHORES
_POSIX_SHARED_MEMORY_OBJECTS _SC_SHARED_MEMORY_OBJECTS
_POSIX_SHELL _SC_SHELL
_POSIX_SPAWN _SC_SPAWN
_POSIX_SPIN_LOCKS _SC_SPIN_LOCKS
_POSIX_SPORADIC_SERVER _SC_SPORADIC_SERVER
_POSIX_SS_REPL_MAX _SC_SS_REPL_MAX
_POSIX_SYNCHRONIZED_IO _SC_SYNCHRONIZED_IO
_POSIX_THREAD_ATTR_STACKADDR _SC_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE _SC_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_CPUTIME _SC_THREAD_CPUTIME
_POSIX_THREAD_PRIO_INHERIT _SC_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT _SC_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING _SC_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_PROCESS_SHARED _SC_THREAD_PROCESS_SHARED
_POSIX_THREAD_ROBUST_PRIO_INHERIT _SC_THREAD_ROBUST_PRIO_INHERIT
_POSIX_THREAD_ROBUST_PRIO_PROTECT _SC_THREAD_ROBUST_PRIO_PROTECT
_POSIX_THREAD_SAFE_FUNCTIONS _SC_THREAD_SAFE_FUNCTIONS
_POSIX_THREAD_SPORADIC_SERVER _SC_THREAD_SPORADIC_SERVER
_POSIX_THREADS _SC_THREADS
_POSIX_TIMEOUTS _SC_TIMEOUTS
_POSIX_TIMERS _SC_TIMERS
_POSIX_TRACE _SC_TRACE
_POSIX_TRACE_EVENT_FILTER _SC_TRACE_EVENT_FILTER
_POSIX_TRACE_EVENT_NAME_MAX _SC_TRACE_EVENT_NAME_MAX
_POSIX_TRACE_INHERIT _SC_TRACE_INHERIT
_POSIX_TRACE_LOG _SC_TRACE_LOG
_POSIX_TRACE_NAME_MAX _SC_TRACE_NAME_MAX
_POSIX_TRACE_SYS_MAX _SC_TRACE_SYS_MAX
_POSIX_TRACE_USER_EVENT_MAX _SC_TRACE_USER_EVENT_MAX
_POSIX_TYPED_MEMORY_OBJECTS _SC_TYPED_MEMORY_OBJECTS
_POSIX_VERSION _SC_VERSION
_POSIX_V7_ILP32_OFF32 _SC_V7_ILP32_OFF32
_POSIX_V7_ILP32_OFFBIG _SC_V7_ILP32_OFFBIG
_POSIX_V7_LP64_OFF64 _SC_V7_LP64_OFF64
_POSIX_V7_LPBIG_OFFBIG _SC_V7_LPBIG_OFFBIG

2062 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

65232

65233

65234

65235

65236

65237

65238

65239

65240

65241

65242

65243

65244

65245

65246

65247

65248

65249

65250

65251

65252

65253

65254

65255

65256

65257

65258

65259

65260

65261

65262

65263

65264

65265

65266

65267

65268

65269

65270

65271

65272

65273

65274

65275

65276

65277

65278

65279

65280

65281

System Interfaces sysconf()

Variable Value of Name

OB _POSIX_V6_ILP32_OFF32 _SC_V6_ILP32_OFF32
_POSIX_V6_ILP32_OFFBIG _SC_V6_ILP32_OFFBIG
_POSIX_V6_LP64_OFF64 _SC_V6_LP64_OFF64
_POSIX_V6_LPBIG_OFFBIG _SC_V6_LPBIG_OFFBIG
_POSIX2_C_BIND _SC_2_C_BIND
_POSIX2_C_DEV _SC_2_C_DEV
_POSIX2_CHAR_TERM _SC_2_CHAR_TERM
_POSIX2_FORT_DEV _SC_2_FORT_DEV
_POSIX2_FORT_RUN _SC_2_FORT_RUN
_POSIX2_LOCALEDEF _SC_2_LOCALEDEF
_POSIX2_PBS _SC_2_PBS
_POSIX2_PBS_ACCOUNTING _SC_2_PBS_ACCOUNTING
_POSIX2_PBS_CHECKPOINT _SC_2_PBS_CHECKPOINT
_POSIX2_PBS_LOCATE _SC_2_PBS_LOCATE
_POSIX2_PBS_MESSAGE _SC_2_PBS_MESSAGE
_POSIX2_PBS_TRACK _SC_2_PBS_TRACK
_POSIX2_SW_DEV _SC_2_SW_DEV
_POSIX2_UPE _SC_2_UPE
_POSIX2_VERSION _SC_2_VERSION
{PAGE_SIZE} _SC_PAGE_SIZE
{PAGESIZE} _SC_PAGESIZE
{PTHREAD_DESTRUCTOR_ITERATIONS} _SC_THREAD_DESTRUCTOR_ITERATIONS
{PTHREAD_KEYS_MAX} _SC_THREAD_KEYS_MAX
{PTHREAD_STACK_MIN} _SC_THREAD_STACK_MIN
{PTHREAD_THREADS_MAX} _SC_THREAD_THREADS_MAX
{RE_DUP_MAX} _SC_RE_DUP_MAX
{RTSIG_MAX} _SC_RTSIG_MAX
{SEM_NSEMS_MAX} _SC_SEM_NSEMS_MAX
{SEM_VALUE_MAX} _SC_SEM_VALUE_MAX
{SIGQUEUE_MAX} _SC_SIGQUEUE_MAX
{STREAM_MAX} _SC_STREAM_MAX
{SYMLOOP_MAX} _SC_SYMLOOP_MAX
{TIMER_MAX} _SC_TIMER_MAX
{TTY_NAME_MAX} _SC_TTY_NAME_MAX
{TZNAME_MAX} _SC_TZNAME_MAX
_XOPEN_CRYPT _SC_XOPEN_CRYPT
_XOPEN_ENH_I18N _SC_XOPEN_ENH_I18N
_XOPEN_REALTIME _SC_XOPEN_REALTIME
_XOPEN_REALTIME_THREADS _SC_XOPEN_REALTIME_THREADS
_XOPEN_SHM _SC_XOPEN_SHM
_XOPEN_STREAMS _SC_XOPEN_STREAMS
_XOPEN_UNIX _SC_XOPEN_UNIX
_XOPEN_UUCP _SC_XOPEN_UUCP
_XOPEN_VERSION _SC_XOPEN_VERSION

RETURN VALUE
If name is an invalid value, sysconf() shall return −1 and set errno to indicate the error. If the
variable corresponding to name is described in <limits.h> as a maximum or minimum value and
the variable has no limit, sysconf() shall return −1 without changing the value of errno. Note that
indefinite limits do not imply infinite limits; see <limits.h>.

Otherwise, sysconf() shall return the current variable value on the system. The value returned

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2063

65282

65283

65284

65285

65286

65287

65288

65289

65290

65291

65292

65293

65294

65295

65296

65297

65298

65299

65300

65301

65302

65303

65304

65305

65306

65307

65308

65309

65310

65311

65312

65313

65314

65315

65316

65317

65318

65319

65320

65321

65322

65323

65324

65325

65326

65327

65328

65329

65330

65331

65332

sysconf() System Interfaces

shall not be more restrictive than the corresponding value described to the application when it
was compiled with the implementation’s <limits.h> or <unistd.h>. The value shall not change

XSI during the lifetime of the calling process, except that sysconf(_SC_OPEN_MAX) may return
different values before and after a call to setrlimit() which changes the RLIMIT_NOFILE soft
limit.

If the variable corresponding to name is dependent on an unsupported option, the results are
unspecified.

ERRORS
The sysconf() function shall fail if:

[EINVAL] The value of the name argument is invalid.

EXAMPLES
None.

APPLICATION USAGE
As −1 is a permissible return value in a successful situation, an application wishing to check for
error situations should set errno to 0, then call sysconf(), and, if it returns −1, check to see if errno
is non-zero.

Application developers should check whether an option, such as _POSIX_TRACE, is supported
prior to obtaining and using values for related variables, such as _POSIX_TRACE_NAME_MAX.

RATIONALE
This functionality was added in response to requirements of application developers and of
system vendors who deal with many international system configurations. It is closely related to
pathconf() and fpathconf().

Although a conforming application can run on all systems by never demanding more resources
than the minimum values published in this volume of POSIX.1-2008, it is useful for that
application to be able to use the actual value for the quantity of a resource available on any
given system. To do this, the application makes use of the value of a symbolic constant in
<limits.h> or <unistd.h>.

However, once compiled, the application must still be able to cope if the amount of resource
available is increased. To that end, an application may need a means of determining the quantity
of a resource, or the presence of an option, at execution time.

Two examples are offered:

1. Applications may wish to act differently on systems with or without job control.
Applications vendors who wish to distribute only a single binary package to all instances
of a computer architecture would be forced to assume job control is never available if it
were to rely solely on the <unistd.h> value published in this volume of POSIX.1-2008.

2. International applications vendors occasionally require knowledge of the number of clock
ticks per second. Without these facilities, they would be required to either distribute their
applications partially in source form or to have 50 Hz and 60 Hz versions for the various
countries in which they operate.

It is the knowledge that many applications are actually distributed widely in executable form
that leads to this facility. If limited to the most restrictive values in the headers, such applications
would have to be prepared to accept the most limited environments offered by the smallest
microcomputers. Although this is entirely portable, there was a consensus that they should be
able to take advantage of the facilities offered by large systems, without the restrictions
associated with source and object distributions.

2064 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

65333

65334

65335

65336

65337

65338

65339

65340

65341

65342

65343

65344

65345

65346

65347

65348

65349

65350

65351

65352

65353

65354

65355

65356

65357

65358

65359

65360

65361

65362

65363

65364

65365

65366

65367

65368

65369

65370

65371

65372

65373

65374

65375

65376

65377

System Interfaces sysconf()

During the discussions of this feature, it was pointed out that it is almost always possible for an
application to discern what a value might be at runtime by suitably testing the various functions
themselves. And, in any event, it could always be written to adequately deal with error returns
from the various functions. In the end, it was felt that this imposed an unreasonable level of
complication and sophistication on the application developer.

This runtime facility is not meant to provide ever-changing values that applications have to
check multiple times. The values are seen as changing no more frequently than once per system
initialization, such as by a system administrator or operator with an automatic configuration
program. This volume of POSIX.1-2008 specifies that they shall not change within the lifetime of
the process.

Some values apply to the system overall and others vary at the file system or directory level. The
latter are described in fpathconf().

Note that all values returned must be expressible as integers. String values were considered, but
the additional flexibility of this approach was rejected due to its added complexity of
implementation and use.

Some values, such as {PATH_MAX}, are sometimes so large that they must not be used to, say,
allocate arrays. The sysconf() function returns a negative value to show that this symbolic
constant is not even defined in this case.

Similar to pathconf(), this permits the implementation not to have a limit. When one resource is
infinite, returning an error indicating that some other resource limit has been reached is
conforming behavior.

FUTURE DIRECTIONS
None.

SEE ALSO
confstr(), fpathconf()

XBD <limits.h>, <unistd.h>

XCU getconf

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

The _XBS_ variables and name values are added to the table of system variables in the
DESCRIPTION. These are all marked EX.

Issue 6
The symbol CLK_TCK is obsolescent and removed. It is replaced with the phrase ‘‘clock ticks
per second’’.

The symbol {PASS_MAX} is removed.

The following changes were made to align with the IEEE P1003.1a draft standard:

• Table entries are added for the following variables: _SC_REGEXP, _SC_SHELL,
_SC_REGEX_VERSION, _SC_SYMLOOP_MAX.

The following sysconf() variables and their associated names are added for alignment with
IEEE Std 1003.1d-1999:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2065

65378

65379

65380

65381

65382

65383

65384

65385

65386

65387

65388

65389

65390

65391

65392

65393

65394

65395

65396

65397

65398

65399

65400

65401

65402

65403

65404

65405

65406

65407

65408

65409

65410

65411

65412

65413

65414

65415

65416

65417

65418

65419

65420

sysconf() System Interfaces

_POSIX_ADVISORY_INFO
_POSIX_CPUTIME
_POSIX_SPAWN
_POSIX_SPORADIC_SERVER
_POSIX_THREAD_CPUTIME
_POSIX_THREAD_SPORADIC_SERVER
_POSIX_TIMEOUTS

The following changes are made to the DESCRIPTION for alignment with IEEE Std 1003.1j-2000:

• A statement expressing the dependency of support for some system variables on
implementation options is added.

• The following system variables are added:

_POSIX_BARRIERS
_POSIX_CLOCK_SELECTION
_POSIX_MONOTONIC_CLOCK
_POSIX_READER_WRITER_LOCKS
_POSIX_SPIN_LOCKS
_POSIX_TYPED_MEMORY_OBJECTS

The following system variables are added for alignment with IEEE Std 1003.2d-1994:

_POSIX2_PBS
_POSIX2_PBS_ACCOUNTING
_POSIX2_PBS_LOCATE
_POSIX2_PBS_MESSAGE
_POSIX2_PBS_TRACK

The following sysconf() variables and their associated names are added for alignment with
IEEE Std 1003.1q-2000:

_POSIX_TRACE
_POSIX_TRACE_EVENT_FILTER
_POSIX_TRACE_INHERIT
_POSIX_TRACE_LOG

The macros associated with the c89 programming models are marked LEGACY, and new
equivalent macros associated with c99 are introduced.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/62 is applied, updating the
DESCRIPTION to denote that the _PC* and _SC* symbols are now required to be supported. A
corresponding change has been made in the Base Definitions volume of POSIX.1-2008. The
deletion in the second paragraph removes some duplicated text. Additional symbols that were
erroneously omitted from this reference page have been added.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/63 is applied, making it clear in the
RETURN VALUE section that the value returned for sysconf(_SC_OPEN_MAX) may change if a
call to setrlimit() adjusts the RLIMIT_NOFILE soft limit.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/134 is applied, updating the
DESCRIPTION to remove an erroneous entry for _POSIX_SYMLOOP_MAX. This corrects an
error in IEEE Std 1003.1-2001/Cor 1-2002.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/135 is applied, removing

2066 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

65421

65422

65423

65424

65425

65426

65427

65428

65429

65430

65431

65432

65433

65434

65435

65436

65437

65438

65439

65440

65441

65442

65443

65444

65445

65446

65447

65448

65449

65450

65451

65452

65453

65454

65455

65456

65457

65458

65459

65460

65461

65462

65463

System Interfaces sysconf()

_POSIX_FILE_LOCKING, _POSIX_MULTI_PROCESS, _POSIX2_C_VERSION, and
_XOPEN_XCU_VERSION (and their associated _SC_* variables) from the DESCRIPTION and
APPLICATION USAGE sections.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/136 is applied, adding the following
constants (and their associated _SC_* variables) to the DESCRIPTION:

_POSIX_SS_REPL_MAX
_POSIX_TRACE_EVENT_NAME_MAX
_POSIX_TRACE_NAME_MAX
_POSIX_TRACE_SYS_MAX
_POSIX_TRACE_USER_EVENT_MAX

The RETURN VALUE and APPLICATION USAGE sections are updated to note that if variables
are dependent on unsupported options, the results are unspecified.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/137 is applied, removing
_REGEX_VERSION and _SC_REGEX_VERSION.

Issue 7
Austin Group Interpretation 1003.1-2001 #160 is applied.

SD5-XSH-ERN-166 is applied, changing ‘‘Maximum size’’ to ‘‘Initial size’’ for the ‘‘Maximum
size of ...’’ entries in the table in the DESCRIPTION.

The variables for the supported programming environments are updated to be V7 and the
LEGACY variables are removed.

The following constants are added:

_POSIX_THREAD_ROBUST_PRIO_INHERIT
_POSIX_THREAD_ROBUST_PRIO_PROTECT

The _XOPEN_UUCP variable and its associated _SC_XOPEN_UUCP value is added to the table
of system variables.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2067

65464

65465

65466

65467

65468

65469

65470

65471

65472

65473

65474

65475

65476

65477

65478

65479

65480

65481

65482

65483

65484

65485

65486

65487

65488

syslog() System Interfaces

NAME
syslog — log a message

SYNOPSIS
XSI #include <syslog.h>

void syslog(int priority, const char *message, ... /* argument */);

DESCRIPTION
Refer to closelog().

2068 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

65489

65490

65491

65492

65493

65494

65495

System Interfaces system()

NAME
system — issue a command

SYNOPSIS
#include <stdlib.h>

int system(const char *command);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

If command is a null pointer, the system() function shall determine whether the host environment
has a command processor. If command is not a null pointer, the system() function shall pass the
string pointed to by command to that command processor to be executed in an implementation-
defined manner; this might then cause the program calling system() to behave in a non-
conforming manner or to terminate.

CX The system() function shall behave as if a child process were created using fork(), and the child
process invoked the sh utility using execl() as follows:

execl(<shell path>, "sh", "-c", command, (char *)0);

where <shell path> is an unspecified pathname for the sh utility. It is unspecified whether the
handlers registered with pthread_atfork() are called as part of the creation of the child process.

The system() function shall ignore the SIGINT and SIGQUIT signals, and shall block the
SIGCHLD signal, while waiting for the command to terminate. If this might cause the
application to miss a signal that would have killed it, then the application should examine the
return value from system() and take whatever action is appropriate to the application if the
command terminated due to receipt of a signal.

The system() function shall not affect the termination status of any child of the calling processes
other than the process or processes it itself creates.

The system() function shall not return until the child process has terminated.

The system() function need not be thread-safe.

RETURN VALUE
If command is a null pointer, system() shall return non-zero to indicate that a command processor

CX is available, or zero if none is available. The system() function shall always return non-zero
when command is NULL.

CX If command is not a null pointer, system() shall return the termination status of the command
language interpreter in the format specified by waitpid(). The termination status shall be as
defined for the sh utility; otherwise, the termination status is unspecified. If some error prevents
the command language interpreter from executing after the child process is created, the return
value from system() shall be as if the command language interpreter had terminated using
exit(127) or _exit(127). If a child process cannot be created, or if the termination status for the
command language interpreter cannot be obtained, system() shall return −1 and set errno to
indicate the error.

ERRORS
CX The system() function may set errno values as described by fork().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2069

65496

65497

65498

65499

65500

65501

65502

65503

65504

65505

65506

65507

65508

65509

65510

65511

65512

65513

65514

65515

65516

65517

65518

65519

65520

65521

65522

65523

65524

65525

65526

65527

65528

65529

65530

65531

65532

65533

65534

65535

65536

65537

system() System Interfaces

In addition, system() may fail if:

CX [ECHILD] The status of the child process created by system() is no longer available.

EXAMPLES
None.

APPLICATION USAGE
If the return value of system() is not −1, its value can be decoded through the use of the macros
described in <sys/wait.h>. For convenience, these macros are also provided in <stdlib.h>.

Note that, while system() must ignore SIGINT and SIGQUIT and block SIGCHLD while waiting
for the child to terminate, the handling of signals in the executed command is as specified by
fork() and exec. For example, if SIGINT is being caught or is set to SIG_DFL when system() is
called, then the child is started with SIGINT handling set to SIG_DFL.

Ignoring SIGINT and SIGQUIT in the parent process prevents coordination problems (two
processes reading from the same terminal, for example) when the executed command ignores or
catches one of the signals. It is also usually the correct action when the user has given a
command to the application to be executed synchronously (as in the ’!’ command in many
interactive applications). In either case, the signal should be delivered only to the child process,
not to the application itself. There is one situation where ignoring the signals might have less
than the desired effect. This is when the application uses system() to perform some task invisible
to the user. If the user typed the interrupt character ("ˆC", for example) while system() is being
used in this way, one would expect the application to be killed, but only the executed command
is killed. Applications that use system() in this way should carefully check the return status from
system() to see if the executed command was successful, and should take appropriate action
when the command fails.

Blocking SIGCHLD while waiting for the child to terminate prevents the application from
catching the signal and obtaining status from system()’s child process before system() can get the
status itself.

The context in which the utility is ultimately executed may differ from that in which system()
was called. For example, file descriptors that have the FD_CLOEXEC flag set are closed, and the
process ID and parent process ID are different. Also, if the executed utility changes its
environment variables or its current working directory, that change is not reflected in the caller’s
context.

There is no defined way for an application to find the specific path for the shell. However,
confstr() can provide a value for PA TH that is guaranteed to find the sh utility.

Using the system() function in more than one thread in a process or when the SIGCHLD signal is
being manipulated by more than one thread in a process may produce unexpected results.

RATIONALE
The system() function should not be used by programs that have set user (or group) ID
privileges. The fork() and exec family of functions (except execlp() and execvp()), should be used
instead. This prevents any unforeseen manipulation of the environment of the user that could
cause execution of commands not anticipated by the calling program.

There are three levels of specification for the system() function. The ISO C standard gives the
most basic. It requires that the function exists, and defines a way for an application to query
whether a command language interpreter exists. It says nothing about the command language
or the environment in which the command is interpreted.

POSIX.1-2008 places additional restrictions on system(). It requires that if there is a command
language interpreter, the environment must be as specified by fork() and exec. This ensures, for

2070 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

65538

65539

65540

65541

65542

65543

65544

65545

65546

65547

65548

65549

65550

65551

65552

65553

65554

65555

65556

65557

65558

65559

65560

65561

65562

65563

65564

65565

65566

65567

65568

65569

65570

65571

65572

65573

65574

65575

65576

65577

65578

65579

65580

65581

65582

65583

System Interfaces system()

example, that close-on-exec works, that file locks are not inherited, and that the process ID is
different. It also specifies the return value from system() when the command line can be run,
thus giving the application some information about the command’s completion status.

Finally, POSIX.1-2008 requires the command to be interpreted as in the shell command language
defined in the Shell and Utilities volume of POSIX.1-2008.

Note that, system(NULL) is required to return non-zero, indicating that there is a command
language interpreter. At first glance, this would seem to conflict with the ISO C standard which
allows system(NULL) to return zero. There is no conflict, however. A system must have a
command language interpreter, and is non-conforming if none is present. It is therefore
permissible for the system() function on such a system to implement the behavior specified by
the ISO C standard as long as it is understood that the implementation does not conform to
POSIX.1-2008 if system(NULL) returns zero.

It was explicitly decided that when command is NULL, system() should not be required to check
to make sure that the command language interpreter actually exists with the correct mode, that
there are enough processes to execute it, and so on. The call system(NULL) could, theoretically,
check for such problems as too many existing child processes, and return zero. However, it
would be inappropriate to return zero due to such a (presumably) transient condition. If some
condition exists that is not under the control of this application and that would cause any
system() call to fail, that system has been rendered non-conforming.

Early drafts required, or allowed, system() to return with errno set to [EINTR] if it was
interrupted with a signal. This error return was removed, and a requirement that system() not
return until the child has terminated was added. This means that if a waitpid() call in system()
exits with errno set to [EINTR], system() must reissue the waitpid(). This change was made for
two reasons:

1. There is no way for an application to clean up if system() returns [EINTR], short of calling
wait(), and that could have the undesirable effect of returning the status of children other
than the one started by system().

2. While it might require a change in some historical implementations, those
implementations already have to be changed because they use wait() instead of waitpid().

Note that if the application is catching SIGCHLD signals, it will receive such a signal before a
successful system() call returns.

To conform to POSIX.1-2008, system() must use waitpid(), or some similar function, instead of
wait().

The following code sample illustrates how system() might be implemented on an
implementation conforming to POSIX.1-2008.

#include <signal.h>
int system(const char *cmd)
{

int stat;
pid_t pid;
struct sigaction sa, savintr, savequit;
sigset_t saveblock;
if (cmd == NULL)

return(1);
sa.sa_handler = SIG_IGN;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2071

65584

65585

65586

65587

65588

65589

65590

65591

65592

65593

65594

65595

65596

65597

65598

65599

65600

65601

65602

65603

65604

65605

65606

65607

65608

65609

65610

65611

65612

65613

65614

65615

65616

65617

65618

65619

65620

65621

65622

65623

65624

65625

65626

65627

65628

65629

65630

system() System Interfaces

sigemptyset(&savintr.sa_mask);
sigemptyset(&savequit.sa_mask);
sigaction(SIGINT, &sa, &savintr);
sigaction(SIGQUIT, &sa, &savequit);
sigaddset(&sa.sa_mask, SIGCHLD);
sigprocmask(SIG_BLOCK, &sa.sa_mask, &saveblock);
if ((pid = fork()) == 0) {

sigaction(SIGINT, &savintr, (struct sigaction *)0);
sigaction(SIGQUIT, &savequit, (struct sigaction *)0);
sigprocmask(SIG_SETMASK, &saveblock, (sigset_t *)0);
execl("/bin/sh", "sh", "-c", cmd, (char *)0);
_exit(127);

}
if (pid == -1) {

stat = -1; /* errno comes from fork() */
} else {

while (waitpid(pid, &stat, 0) == -1) {
if (errno != EINTR){

stat = -1;
break;

}
}

}
sigaction(SIGINT, &savintr, (struct sigaction *)0);
sigaction(SIGQUIT, &savequit, (struct sigaction *)0);
sigprocmask(SIG_SETMASK, &saveblock, (sigset_t *)0);
return(stat);

}

Note that, while a particular implementation of system() (such as the one above) can assume a
particular path for the shell, such a path is not necessarily valid on another system. The above
example is not portable, and is not intended to be.

One reviewer suggested that an implementation of system() might want to use an environment
variable such as SHELL to determine which command interpreter to use. The supposed
implementation would use the default command interpreter if the one specified by the
environment variable was not available. This would allow a user, when using an application that
prompts for command lines to be processed using system(), to specify a different command
interpreter. Such an implementation is discouraged. If the alternate command interpreter did not
follow the command line syntax specified in the Shell and Utilities volume of POSIX.1-2008, then
changing SHELL would render system() non-conforming. This would affect applications that
expected the specified behavior from system(), and since the Shell and Utilities volume of
POSIX.1-2008 does not mention that SHELL affects system(), the application would not know
that it needed to unset SHELL.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , pipe(), pthread_atfork(), wait()

XBD <limits.h>, <signal.h>, <stdlib.h>, <sys/wait.h>

XCU sh

2072 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

65631

65632

65633

65634

65635

65636

65637

65638

65639

65640

65641

65642

65643

65644

65645

65646

65647

65648

65649

65650

65651

65652

65653

65654

65655

65656

65657

65658

65659

65660

65661

65662

65663

65664

65665

65666

65667

65668

65669

65670

65671

65672

65673

65674

65675

65676

65677

65678

System Interfaces system()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
Austin Group Interpretation 1003.1-2001 #055 is applied, clarifying the thread-safety of this
function and treatment of at_fork() handlers.

Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XSH-ERN-30 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2073

65679

65680

65681

65682

65683

65684

65685

65686

65687

tan() System Interfaces

NAME
tan, tanf, tanl — tangent function

SYNOPSIS
#include <math.h>

double tan(double x);
float tanf(float x);
long double tanl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the tangent of their argument x, measured in radians.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the tangent of x.

If the correct value would cause underflow, and is not representable, a range error may occur,
MX and either 0.0 (if supported), or an implementation-defined value shall be returned.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is subnormal, a range error may occur and x should be returned.

If x is ±Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and
the correct value shall be returned.

XSI If the correct value would cause overflow, a range error shall occur and tan(), tanf(), and tanl()
shall return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL, respectively, with the same sign
as the correct value of the function.

ERRORS
These functions shall fail if:

MX Domain Error The value of x is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

XSI Range Error The result overflows

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

2074 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

65688

65689

65690

65691

65692

65693

65694

65695

65696

65697

65698

65699

65700

65701

65702

65703

65704

65705

65706

65707

65708

65709

65710

65711

65712

65713

65714

65715

65716

65717

65718

65719

65720

65721

65722

65723

65724

65725

65726

65727

65728

65729

System Interfaces tan()

These functions may fail if:

MX Range Error The result underflows, or the value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES

Taking the Tangent of a 45-Degree Angle

#include <math.h>
...
double radians = 45.0 * M_PI / 180;
double result;
...
result = tan (radians);

APPLICATION USAGE
There are no known floating-point representations such that for a normal argument, tan(x) is
either overflow or underflow.

These functions may lose accuracy when their argument is near a multiple of π/2 or is far from
0.0.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atan(), feclearexcept(), fetestexcept(), isnan()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The last two paragraphs of the DESCRIPTION were included as APPLICATION USAGE notes
in previous issues.

Issue 6
The tanf() and tanl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/64 is applied, correcting the last
paragraph in the RETURN VALUE section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2075

65730

65731

65732

65733

65734

65735

65736

65737

65738

65739

65740

65741

65742

65743

65744

65745

65746

65747

65748

65749

65750

65751

65752

65753

65754

65755

65756

65757

65758

65759

65760

65761

65762

65763

65764

65765

65766

65767

65768

65769

65770

tanh() System Interfaces

NAME
tanh, tanhf, tanhl — hyperbolic tangent functions

SYNOPSIS
#include <math.h>

double tanh(double x);
float tanhf(float x);
long double tanhl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the hyperbolic tangent of their argument x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the hyperbolic tangent of x.

MX If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, ±1 shall be returned.

If x is subnormal, a range error may occur and x should be returned.

ERRORS
These functions may fail if:

MX Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atanh(), feclearexcept(), fetestexcept(), isnan(), tan()

XBD Section 4.19 (on page 116), <math.h>

2076 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

65771

65772

65773

65774

65775

65776

65777

65778

65779

65780

65781

65782

65783

65784

65785

65786

65787

65788

65789

65790

65791

65792

65793

65794

65795

65796

65797

65798

65799

65800

65801

65802

65803

65804

65805

65806

65807

65808

65809

65810

65811

System Interfaces tanh()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The tanhf() and tanhl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION, RETURN VALUE, ERRORS, and APPLICATION USAGE sections are
revised to align with the ISO/IEC 9899: 1999 standard.

IEC 60559: 1989 standard floating-point extensions over the ISO/IEC 9899: 1999 standard are
marked.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2077

65812

65813

65814

65815

65816

65817

65818

65819

65820

65821

65822

tanl() System Interfaces

NAME
tanl — tangent function

SYNOPSIS
#include <math.h>

long double tanl(long double x);

DESCRIPTION
Refer to tan().

2078 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

65823

65824

65825

65826

65827

65828

65829

System Interfaces tcdrain()

NAME
tcdrain — wait for transmission of output

SYNOPSIS
#include <termios.h>

int tcdrain(int fildes);

DESCRIPTION
The tcdrain() function shall block until all output written to the object referred to by fildes is
transmitted. The fildes argument is an open file descriptor associated with a terminal.

Any attempts to use tcdrain() from a process which is a member of a background process group
on a fildes associated with its controlling terminal, shall cause the process group to be sent a
SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process
shall be allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcdrain() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINTR] A signal interrupted tcdrain().

[ENOTTY] The file associated with fildes is not a terminal.

The tcdrain() function may fail if:

[EIO] The process group of the writing process is orphaned, and the writing process
is not ignoring or blocking SIGTTOU.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tcflush()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2079

65830

65831

65832

65833

65834

65835

65836

65837

65838

65839

65840

65841

65842

65843

65844

65845

65846

65847

65848

65849

65850

65851

65852

65853

65854

65855

65856

65857

65858

65859

65860

65861

65862

65863

65864

65865

tcdrain() System Interfaces

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the final paragraph is no longer conditional on
_POSIX_JOB_CONTROL. This is a FIPS requirement.

• The [EIO] error is added.

2080 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

65866

65867

65868

65869

65870

65871

System Interfaces tcflow()

NAME
tcflow — suspend or restart the transmission or reception of data

SYNOPSIS
#include <termios.h>

int tcflow(int fildes, int action);

DESCRIPTION
The tcflow() function shall suspend or restart transmission or reception of data on the object
referred to by fildes, depending on the value of action. The fildes argument is an open file
descriptor associated with a terminal.

• If action is TCOOFF, output shall be suspended.

• If action is TCOON, suspended output shall be restarted.

• If action is TCIOFF and fildes refers to a terminal device, the system shall transmit a STOP
character, which is intended to cause the terminal device to stop transmitting data to the
system. If fildes is associated with a pseudo-terminal, the STOP character need not be
transmitted.

• If action is TCION and fildes refers to a terminal device, the system shall transmit a START
character, which is intended to cause the terminal device to start transmitting data to the
system. If fildes is associated with a pseudo-terminal, the START character need not be
transmitted.

The default on the opening of a terminal file is that neither its input nor its output are
suspended.

Attempts to use tcflow() from a process which is a member of a background process group on a
fildes associated with its controlling terminal, shall cause the process group to be sent a
SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process
shall be allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcflow() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The action argument is not a supported value.

[ENOTTY] The file associated with fildes is not a terminal.

The tcflow() function may fail if:

[EIO] The process group of the writing process is orphaned, and the writing process
is not ignoring or blocking SIGTTOU.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2081

65872

65873

65874

65875

65876

65877

65878

65879

65880

65881

65882

65883

65884

65885

65886

65887

65888

65889

65890

65891

65892

65893

65894

65895

65896

65897

65898

65899

65900

65901

65902

65903

65904

65905

65906

65907

tcflow() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tcsendbreak()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EIO] error is added.

Issue 7
SD5-XSH-ERN-190 is applied, clarifying in the DESCRIPTION the transmission of START and
STOP characters.

2082 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

65908

65909

65910

65911

65912

65913

65914

65915

65916

65917

65918

65919

65920

65921

65922

65923

65924

65925

65926

65927

System Interfaces tcflush()

NAME
tcflush — flush non-transmitted output data, non-read input data, or both

SYNOPSIS
#include <termios.h>

int tcflush(int fildes, int queue_selector);

DESCRIPTION
Upon successful completion, tcflush() shall discard data written to the object referred to by fildes
(an open file descriptor associated with a terminal) but not transmitted, or data received but not
read, depending on the value of queue_selector:

• If queue_selector is TCIFLUSH, it shall flush data received but not read.

• If queue_selector is TCOFLUSH, it shall flush data written but not transmitted.

• If queue_selector is TCIOFLUSH, it shall flush both data received but not read and data
written but not transmitted.

Attempts to use tcflush() from a process which is a member of a background process group on a
fildes associated with its controlling terminal shall cause the process group to be sent a SIGTTOU
signal. If the calling process is blocking or ignoring SIGTTOU signals, the process shall be
allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcflush() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The queue_selector argument is not a supported value.

[ENOTTY] The file associated with fildes is not a terminal.

The tcflush() function may fail if:

[EIO] The process group of the writing process is orphaned, and the writing process
is not ignoring or blocking SIGTTOU.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tcdrain()

XBD Chapter 11 (on page 199), <termios.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2083

65928

65929

65930

65931

65932

65933

65934

65935

65936

65937

65938

65939

65940

65941

65942

65943

65944

65945

65946

65947

65948

65949

65950

65951

65952

65953

65954

65955

65956

65957

65958

65959

65960

65961

65962

65963

65964

65965

65966

tcflush() System Interfaces

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The Open Group Corrigendum U035/1 is applied. In the ERRORS and APPLICATION USAGE
sections, references to tcflow() are replaced with tcflush().

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the final paragraph is no longer conditional on
_POSIX_JOB_CONTROL. This is a FIPS requirement.

• The [EIO] error is added.

2084 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

65967

65968

65969

65970

65971

65972

65973

65974

65975

65976

System Interfaces tcgetattr()

NAME
tcgetattr — get the parameters associated with the terminal

SYNOPSIS
#include <termios.h>

int tcgetattr(int fildes, struct termios *termios_p);

DESCRIPTION
The tcgetattr() function shall get the parameters associated with the terminal referred to by fildes
and store them in the termios structure referenced by termios_p. The fildes argument is an open
file descriptor associated with a terminal.

The termios_p argument is a pointer to a termios structure.

The tcgetattr() operation is allowed from any process.

If the terminal device supports different input and output baud rates, the baud rates stored in
the termios structure returned by tcgetattr() shall reflect the actual baud rates, even if they are
equal. If differing baud rates are not supported, the rate returned as the output baud rate shall
be the actual baud rate. If the terminal device does not support split baud rates, the input baud
rate stored in the termios structure shall be the output rate (as one of the symbolic values).

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcgetattr() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The file associated with fildes is not a terminal.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Care must be taken when changing the terminal attributes. Applications should always do a
tcgetattr(), save the termios structure values returned, and then do a tcsetattr(), changing only
the necessary fields. The application should use the values saved from the tcgetattr() to reset the
terminal state whenever it is done with the terminal. This is necessary because terminal
attributes apply to the underlying port and not to each individual open instance; that is, all
processes that have used the terminal see the latest attribute changes.

A program that uses these functions should be written to catch all signals and take other
appropriate actions to ensure that when the program terminates, whether planned or not, the
terminal device’s state is restored to its original state.

Existing practice dealing with error returns when only part of a request can be honored is based
on calls to the ioctl() function. In historical BSD and System V implementations, the
corresponding ioctl() returns zero if the requested actions were semantically correct, even if
some of the requested changes could not be made. Many existing applications assume this
behavior and would no longer work correctly if the return value were changed from zero to −1
in this case.

Note that either specification has a problem. When zero is returned, it implies everything

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2085

65977

65978

65979

65980

65981

65982

65983

65984

65985

65986

65987

65988

65989

65990

65991

65992

65993

65994

65995

65996

65997

65998

65999

66000

66001

66002

66003

66004

66005

66006

66007

66008

66009

66010

66011

66012

66013

66014

66015

66016

66017

66018

66019

66020

tcgetattr() System Interfaces

succeeded even if some of the changes were not made. When −1 is returned, it implies
everything failed even though some of the changes were made.

Applications that need all of the requested changes made to work properly should follow
tcsetattr() with a call to tcgetattr() and compare the appropriate field values.

FUTURE DIRECTIONS
None.

SEE ALSO
tcsetattr()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the DESCRIPTION, the rate returned as the input baud rate shall be the output rate.
Previously, the number zero was also allowed but was obsolescent.

2086 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

66021

66022

66023

66024

66025

66026

66027

66028

66029

66030

66031

66032

66033

66034

System Interfaces tcgetpgrp()

NAME
tcgetpgrp — get the foreground process group ID

SYNOPSIS
#include <unistd.h>

pid_t tcgetpgrp(int fildes);

DESCRIPTION
The tcgetpgrp() function shall return the value of the process group ID of the foreground process
group associated with the terminal.

If there is no foreground process group, tcgetpgrp() shall return a value greater than 1 that does
not match the process group ID of any existing process group.

The tcgetpgrp() function is allowed from a process that is a member of a background process
group; however, the information may be subsequently changed by a process that is a member of
a foreground process group.

RETURN VALUE
Upon successful completion, tcgetpgrp() shall return the value of the process group ID of the
foreground process associated with the terminal. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcgetpgrp() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The calling process does not have a controlling terminal, or the file is not the
controlling terminal.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setsid(), setpgid(), tcsetpgrp()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2087

66035

66036

66037

66038

66039

66040

66041

66042

66043

66044

66045

66046

66047

66048

66049

66050

66051

66052

66053

66054

66055

66056

66057

66058

66059

66060

66061

66062

66063

66064

66065

66066

66067

66068

66069

66070

66071

66072

66073

66074

66075

66076

tcgetpgrp() System Interfaces

• In the DESCRIPTION, text previously conditional on support for _POSIX_JOB_CONTROL
is now mandatory. This is a FIPS requirement.

2088 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

66077

66078

System Interfaces tcgetsid()

NAME
tcgetsid — get the process group ID for the session leader for the controlling terminal

SYNOPSIS
#include <termios.h>

pid_t tcgetsid(int fildes);

DESCRIPTION
The tcgetsid() function shall obtain the process group ID of the session for which the terminal
specified by fildes is the controlling terminal.

RETURN VALUE
Upon successful completion, tcgetsid() shall return the process group ID of the session
associated with the terminal. Otherwise, a value of (pid_t)−1 shall be returned and errno set to
indicate the error.

ERRORS
The tcgetsid() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The calling process does not have a controlling terminal, or the file is not the
controlling terminal.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <termios.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The [EACCES] error has been removed from the list of mandatory errors, and the description of
[ENOTTY] has been reworded.

Issue 7
SD5-XSH-ERN-180 is applied, clarifying the RETURN VALUE section.

The tcgetsid() function is moved from the XSI option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2089

66079

66080

66081

66082

66083

66084

66085

66086

66087

66088

66089

66090

66091

66092

66093

66094

66095

66096

66097

66098

66099

66100

66101

66102

66103

66104

66105

66106

66107

66108

66109

66110

66111

66112

66113

66114

tcsendbreak() System Interfaces

NAME
tcsendbreak — send a break for a specific duration

SYNOPSIS
#include <termios.h>

int tcsendbreak(int fildes, int duration);

DESCRIPTION
If the terminal is using asynchronous serial data transmission, tcsendbreak() shall cause
transmission of a continuous stream of zero-valued bits for a specific duration. If duration is 0, it
shall cause transmission of zero-valued bits for at least 0.25 seconds, and not more than 0.5
seconds. If duration is not 0, it shall send zero-valued bits for an implementation-defined period
of time.

The fildes argument is an open file descriptor associated with a terminal.

If the terminal is not using asynchronous serial data transmission, it is implementation-defined
whether tcsendbreak() sends data to generate a break condition or returns without taking any
action.

Attempts to use tcsendbreak() from a process which is a member of a background process group
on a fildes associated with its controlling terminal shall cause the process group to be sent a
SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process
shall be allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcsendbreak() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The file associated with fildes is not a terminal.

The tcsendbreak() function may fail if:

[EIO] The process group of the writing process is orphaned, and the writing process
is not ignoring or blocking SIGTTOU.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

2090 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

66115

66116

66117

66118

66119

66120

66121

66122

66123

66124

66125

66126

66127

66128

66129

66130

66131

66132

66133

66134

66135

66136

66137

66138

66139

66140

66141

66142

66143

66144

66145

66146

66147

66148

66149

66150

66151

66152

66153

66154

66155

System Interfaces tcsendbreak()

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text previously conditional on _POSIX_JOB_CONTROL is now
mandated. This is a FIPS requirement.

• The [EIO] error is added.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2091

66156

66157

66158

66159

66160

66161

tcsetattr() System Interfaces

NAME
tcsetattr — set the parameters associated with the terminal

SYNOPSIS
#include <termios.h>

int tcsetattr(int fildes, int optional_actions,
const struct termios *termios_p);

DESCRIPTION
The tcsetattr() function shall set the parameters associated with the terminal referred to by the
open file descriptor fildes (an open file descriptor associated with a terminal) from the termios
structure referenced by termios_p as follows:

• If optional_actions is TCSANOW, the change shall occur immediately.

• If optional_actions is TCSADRAIN, the change shall occur after all output written to fildes is
transmitted. This function should be used when changing parameters that affect output.

• If optional_actions is TCSAFLUSH, the change shall occur after all output written to fildes is
transmitted, and all input so far received but not read shall be discarded before the change
is made.

If the output baud rate stored in the termios structure pointed to by termios_p is the zero baud
rate, B0, the modem control lines shall no longer be asserted. Normally, this shall disconnect the
line.

If the input baud rate stored in the termios structure pointed to by termios_p is 0, the input baud
rate given to the hardware is the same as the output baud rate stored in the termios structure.

The tcsetattr() function shall return successfully if it was able to perform any of the requested
actions, even if some of the requested actions could not be performed. It shall set all the
attributes that the implementation supports as requested and leave all the attributes not
supported by the implementation unchanged. If no part of the request can be honored, it shall
return −1 and set errno to [EINVAL]. If the input and output baud rates differ and are a
combination that is not supported, neither baud rate shall be changed. A subsequent call to
tcgetattr() shall return the actual state of the terminal device (reflecting both the changes made
and not made in the previous tcsetattr() call). The tcsetattr() function shall not change the values
found in the termios structure under any circumstances.

The effect of tcsetattr() is undefined if the value of the termios structure pointed to by termios_p
was not derived from the result of a call to tcgetattr() on fildes; an application should modify
only fields and flags defined by this volume of POSIX.1-2008 between the call to tcgetattr() and
tcsetattr(), leaving all other fields and flags unmodified.

No actions defined by this volume of POSIX.1-2008, other than a call to tcsetattr(), a close of the
last file descriptor in the system associated with this terminal device, or an open of the first file
descriptor in the system associated with this terminal device (using the O_TTY_INIT flag if it is
non-zero and the device is not a pseudo-terminal), shall cause any of the terminal attributes
defined by this volume of POSIX.1-2008 to change.

If tcsetattr() is called from a process which is a member of a background process group on a fildes
associated with its controlling terminal:

• If the calling process is blocking or ignoring SIGTTOU signals, the operation completes
normally and no signal is sent.

2092 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

66162

66163

66164

66165

66166

66167

66168

66169

66170

66171

66172

66173

66174

66175

66176

66177

66178

66179

66180

66181

66182

66183

66184

66185

66186

66187

66188

66189

66190

66191

66192

66193

66194

66195

66196

66197

66198

66199

66200

66201

66202

66203

66204

System Interfaces tcsetattr()

• Otherwise, a SIGTTOU signal shall be sent to the process group.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcsetattr() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINTR] A signal interrupted tcsetattr().

[EINVAL] The optional_actions argument is not a supported value, or an attempt was
made to change an attribute represented in the termios structure to an
unsupported value.

[ENOTTY] The file associated with fildes is not a terminal.

The tcsetattr() function may fail if:

[EIO] The process group of the writing process is orphaned, and the writing process
is not ignoring or blocking SIGTTOU.

EXAMPLES
None.

APPLICATION USAGE
If trying to change baud rates, applications should call tcsetattr() then call tcgetattr() in order to
determine what baud rates were actually selected.

In general, there are two reasons for an application to change the parameters associated with a
terminal device:

1. The device already has working parameter settings but the application needs a different
behavior, such as non-canonical mode instead of canonical mode. The application sets (or
clears) only a few flags or c_cc[] values. Typically, the terminal device in this case is either
the controlling terminal for the process or a pseudo-terminal.

2. The device is a modem or similar piece of equipment connected by a serial line, and it
was not open before the application opened it. In this case, the application needs to
initialize all of the parameter settings ‘‘from scratch’’. However, since the termios
structure may include both standard and non-standard parameters, the application
cannot just initialize the whole structure in an arbitrary way (e.g., using memset()) as this
may cause some of the non-standard parameters to be set incorrectly, resulting in non-
conforming behavior of the terminal device. Conversely, the application cannot just set
the standard parameters, assuming that the non-standard parameters will already have
suitable values, as the device might previously have been used with non-conforming
parameter settings (and some implementations retain the settings from one use to the
next). The solution is to open the terminal device using the O_TTY_INIT flag to initialize
the terminal device to have conforming parameter settings, obtain those settings using
tcgetattr(), and then set all of the standard parameters to the desired settings.

RATIONALE
The tcsetattr() function can be interrupted in the following situations:

• It is interrupted while waiting for output to drain.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2093

66205

66206

66207

66208

66209

66210

66211

66212

66213

66214

66215

66216

66217

66218

66219

66220

66221

66222

66223

66224

66225

66226

66227

66228

66229

66230

66231

66232

66233

66234

66235

66236

66237

66238

66239

66240

66241

66242

66243

66244

66245

66246

tcsetattr() System Interfaces

• It is called from a process in a background process group and SIGTTOU is caught.

See also the RATIONALE section in tcgetattr().

FUTURE DIRECTIONS
Using an input baud rate of 0 to set the input rate equal to the output rate may not necessarily be
supported in a future version of this volume of POSIX.1-2008.

SEE ALSO
cfgetispeed(), tcgetattr()

XBD Chapter 11 (on page 199), <termios.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, text previously conditional on _POSIX_JOB_CONTROL is now
mandated. This is a FIPS requirement.

• The [EIO] error is added.

In the DESCRIPTION, the text describing use of tcsetattr() from a process which is a member of
a background process group is clarified.

Issue 7
Austin Group Interpretation 1003.1-2001 #144 is applied.

2094 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

66247

66248

66249

66250

66251

66252

66253

66254

66255

66256

66257

66258

66259

66260

66261

66262

66263

66264

66265

66266

System Interfaces tcsetpgrp()

NAME
tcsetpgrp — set the foreground process group ID

SYNOPSIS
#include <unistd.h>

int tcsetpgrp(int fildes, pid_t pgid_id);

DESCRIPTION
If the process has a controlling terminal, tcsetpgrp() shall set the foreground process group ID
associated with the terminal to pgid_id. The application shall ensure that the file associated with
fildes is the controlling terminal of the calling process and the controlling terminal is currently
associated with the session of the calling process. The application shall ensure that the value of
pgid_id matches a process group ID of a process in the same session as the calling process.

Attempts to use tcsetpgrp() from a process which is a member of a background process group on
a fildes associated with its controlling terminal shall cause the process group to be sent a
SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process
shall be allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The tcsetpgrp() function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] This implementation does not support the value in the pgid_id argument.

[ENOTTY] The calling process does not have a controlling terminal, or the file is not the
controlling terminal, or the controlling terminal is no longer associated with
the session of the calling process.

[EPERM] The value of pgid_id is a value supported by the implementation, but does not
match the process group ID of a process in the same session as the calling
process.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tcgetpgrp()

XBD <sys/types.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2095

66267

66268

66269

66270

66271

66272

66273

66274

66275

66276

66277

66278

66279

66280

66281

66282

66283

66284

66285

66286

66287

66288

66289

66290

66291

66292

66293

66294

66295

66296

66297

66298

66299

66300

66301

66302

66303

66304

66305

66306

66307

tcsetpgrp() System Interfaces

Issue 6
In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• In the DESCRIPTION and ERRORS sections, text previously conditional on
_POSIX_JOB_CONTROL is now mandated. This is a FIPS requirement.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The Open Group Corrigendum U047/4 is applied.

2096 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

66308

66309

66310

66311

66312

66313

66314

66315

66316

66317

66318

System Interfaces tdelete()

NAME
tdelete, tfind, tsearch, twalk — manage a binary search tree

SYNOPSIS
XSI #include <search.h>

void *tdelete(const void *restrict key, void **restrict rootp,
int(*compar)(const void *, const void *));

void *tfind(const void *key, void *const *rootp,
int(*compar)(const void *, const void *));

void *tsearch(const void *key, void **rootp,
int (*compar)(const void *, const void *));

void twalk(const void *root,
void (*action)(const void *, VISIT, int));

DESCRIPTION
The tdelete(), tfind(), tsearch(), and twalk() functions manipulate binary search trees.
Comparisons are made with a user-supplied routine, the address of which is passed as the
compar argument. This routine is called with two arguments, which are the pointers to the
elements being compared. The application shall ensure that the user-supplied routine returns an
integer less than, equal to, or greater than 0, according to whether the first argument is to be
considered less than, equal to, or greater than the second argument. The comparison function
need not compare every byte, so arbitrary data may be contained in the elements in addition to
the values being compared.

The tsearch() function shall build and access the tree. The key argument is a pointer to an element
to be accessed or stored. If there is a node in the tree whose element is equal to the value pointed
to by key, a pointer to this found node shall be returned. Otherwise, the value pointed to by key
shall be inserted (that is, a new node is created and the value of key is copied to this node), and a
pointer to this node returned. Only pointers are copied, so the application shall ensure that the
calling routine stores the data. The rootp argument points to a variable that points to the root
node of the tree. A null pointer value for the variable pointed to by rootp denotes an empty tree;
in this case, the variable shall be set to point to the node which shall be at the root of the new
tree.

Like tsearch(), tfind() shall search for a node in the tree, returning a pointer to it if found.
However, if it is not found, tfind() shall return a null pointer. The arguments for tfind() are the
same as for tsearch().

The tdelete() function shall delete a node from a binary search tree. The arguments are the same
as for tsearch(). The variable pointed to by rootp shall be changed if the deleted node was the
root of the tree. The tdelete() function shall return a pointer to the parent of the deleted node, or
an unspecified non-null pointer if the deleted node was the root node, or a null pointer if the
node is not found.

If tsearch() adds an element to a tree, or tdelete() successfully deletes an element from a tree, the
concurrent use of that tree in another thread, or use of pointers produced by a previous call to
tfind() or tsearch(), produces undefined results.

The twalk() function shall traverse a binary search tree. The root argument is a pointer to the root
node of the tree to be traversed. (Any node in a tree may be used as the root for a walk below
that node.) The argument action is the name of a routine to be invoked at each node. This routine
is, in turn, called with three arguments. The first argument shall be the address of the node being
visited. The structure pointed to by this argument is unspecified and shall not be modified by
the application, but it shall be possible to cast a pointer-to-node into a pointer-to-pointer-to-

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2097

66319

66320

66321

66322

66323

66324

66325

66326

66327

66328

66329

66330

66331

66332

66333

66334

66335

66336

66337

66338

66339

66340

66341

66342

66343

66344

66345

66346

66347

66348

66349

66350

66351

66352

66353

66354

66355

66356

66357

66358

66359

66360

66361

66362

66363

66364

66365

tdelete() System Interfaces

element to access the element stored in the node. The second argument shall be a value from an
enumeration data type:

typedef enum { preorder, postorder, endorder, leaf } VISIT;

(defined in <search.h>), depending on whether this is the first, second, or third time that the
node is visited (during a depth-first, left-to-right traversal of the tree), or whether the node is a
leaf. The third argument shall be the level of the node in the tree, with the root being level 0.

If the calling function alters the pointer to the root, the result is undefined.

If the functions pointed to by action or compar (for any of these binary search functions) change
the tree, the results are undefined.

These functions are thread-safe only as long as multiple threads do not access the same tree.

RETURN VALUE
If the node is found, both tsearch() and tfind() shall return a pointer to it. If not, tfind() shall
return a null pointer, and tsearch() shall return a pointer to the inserted item.

A null pointer shall be returned by tsearch() if there is not enough space available to create a new
node.

A null pointer shall be returned by tdelete(), tfind(), and tsearch() if rootp is a null pointer on
entry.

The tdelete() function shall return a pointer to the parent of the deleted node, or an unspecified
non-null pointer if the deleted node was the root node, or a null pointer if the node is not found.

The twalk() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
The following code reads in strings and stores structures containing a pointer to each string and
a count of its length. It then walks the tree, printing out the stored strings and their lengths in
alphabetical order.

#include <search.h>
#include <string.h>
#include <stdio.h>

#define STRSZ 10000
#define NODSZ 500

struct node { /* Pointers to these are stored in the tree. */
char *string;
int length;

};

char string_space[STRSZ]; /* Space to store strings. */
struct node nodes[NODSZ]; /* Nodes to store. */
void *root = NULL; /* This points to the root. */

int main(int argc, char *argv[])
{

char *strptr = string_space;
struct node *nodeptr = nodes;
void print_node(const void *, VISIT, int);

2098 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

66366

66367

66368

66369

66370

66371

66372

66373

66374

66375

66376

66377

66378

66379

66380

66381

66382

66383

66384

66385

66386

66387

66388

66389

66390

66391

66392

66393

66394

66395

66396

66397

66398

66399

66400

66401

66402

66403

66404

66405

66406

66407

66408

System Interfaces tdelete()

int i = 0, node_compare(const void *, const void *);

while (gets(strptr) != NULL && i++ < NODSZ) {
/* Set node. */
nodeptr−>string = strptr;
nodeptr−>length = strlen(strptr);
/* Put node into the tree. */
(void) tsearch((void *)nodeptr, (void **)&root,

node_compare);
/* Adjust pointers, so we do not overwrite tree. */
strptr += nodeptr−>length + 1;
nodeptr++;

}
twalk(root, print_node);
return 0;

}

/*
* This routine compares two nodes, based on an
* alphabetical ordering of the string field.
*/
int
node_compare(const void *node1, const void *node2)
{

return strcmp(((const struct node *) node1)−>string,
((const struct node *) node2)−>string);

}

/*
* This routine prints out a node, the second time
* twalk encounters it or if it is a leaf.
*/
void
print_node(const void *ptr, VISIT order, int level)
{

const struct node *p = *(const struct node **) ptr;

if (order == postorder order == leaf) {
(void) printf("string = %s, length = %d\n",

p->string, p->length);
}

}

APPLICATION USAGE
The root argument to twalk() is one level of indirection less than the rootp arguments to tdelete()
and tsearch().

There are two nomenclatures used to refer to the order in which tree nodes are visited. The
tsearch() function uses preorder, postorder, and endorder to refer respectively to visiting a node
before any of its children, after its left child and before its right, and after both its children. The
alternative nomenclature uses preorder, inorder, and postorder to refer to the same visits, which
could result in some confusion over the meaning of postorder.

Since the return value of tdelete() is an unspecified non-null pointer in the case that the root of
the tree has been deleted, applications should only use the return value of tdelete() as indication

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2099

66409

66410

66411

66412

66413

66414

66415

66416

66417

66418

66419

66420

66421

66422

66423

66424

66425

66426

66427

66428

66429

66430

66431

66432

66433

66434

66435

66436

66437

66438

66439

66440

66441

66442

66443

66444

66445

66446

66447

66448

66449

66450

66451

66452

66453

66454

66455

66456

tdelete() System Interfaces

of success or failure and should not assume it can be dereferenced. Some implementations in this
case will return a pointer to the new root of the tree (or to an empty tree if the deleted root node
was the only node in the tree); other implementations return arbitrary non-null pointers.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
hcreate(), lsearch()

XBD <search.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the tdelete() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #149 is applied, clarifying concurrent use of the tree in
another thread.

Austin Group Interpretation 1003.1-2001 #151 is applied, clarifying behavior for tdelete() when
the deleted node is the root node.

Austin Group Interpretation 1003.1-2001 #153 is applied.

2100 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

66457

66458

66459

66460

66461

66462

66463

66464

66465

66466

66467

66468

66469

66470

66471

66472

66473

66474

66475

66476

66477

66478

66479

66480

66481

System Interfaces telldir()

NAME
telldir — current location of a named directory stream

SYNOPSIS
XSI #include <dirent.h>

long telldir(DIR *dirp);

DESCRIPTION
The telldir() function shall obtain the current location associated with the directory stream
specified by dirp.

If the most recent operation on the directory stream was a seekdir(), the directory position
returned from the telldir() shall be the same as that supplied as a loc argument for seekdir().

RETURN VALUE
Upon successful completion, telldir() shall return the current location of the specified directory
stream.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopendir(), readdir(), seekdir()

XBD <dirent.h>

CHANGE HISTORY
First released in Issue 2.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2101

66482

66483

66484

66485

66486

66487

66488

66489

66490

66491

66492

66493

66494

66495

66496

66497

66498

66499

66500

66501

66502

66503

66504

66505

66506

66507

66508

66509

tempnam() System Interfaces

NAME
tempnam — create a name for a temporary file

SYNOPSIS
OB XSI #include <stdio.h>

char *tempnam(const char *dir, const char *pfx);

DESCRIPTION
The tempnam() function shall generate a pathname that may be used for a temporary file.

The tempnam() function allows the user to control the choice of a directory. The dir argument
points to the name of the directory in which the file is to be created. If dir is a null pointer or
points to a string which is not a name for an appropriate directory, the path prefix defined as
P_tmpdir in the <stdio.h> header shall be used. If that directory is not accessible, an
implementation-defined directory may be used.

Many applications prefer their temporary files to have certain initial letter sequences in their
names. The pfx argument should be used for this. This argument may be a null pointer or point
to a string of up to five bytes to be used as the beginning of the filename.

Some implementations of tempnam() may use tmpnam() internally. On such implementations, if
called more than {TMP_MAX} times in a single process, the behavior is implementation-defined.

RETURN VALUE
Upon successful completion, tempnam() shall allocate space for a string, put the generated
pathname in that space, and return a pointer to it. The pointer shall be suitable for use in a
subsequent call to free(). Otherwise, it shall return a null pointer and set errno to indicate the
error.

ERRORS
The tempnam() function shall fail if:

[ENOMEM] Insufficient storage space is available.

EXAMPLES

Generating a Pathname

The following example generates a pathname for a temporary file in directory /tmp, with the
prefix file. After the filename has been created, the call to free() deallocates the space used to
store the filename.

#include <stdio.h>
#include <stdlib.h>
...
char *directory = "/tmp";
char *fileprefix = "file";
char *file;

file = tempnam(directory, fileprefix);
free(file);

APPLICATION USAGE
This function only creates pathnames. It is the application’s responsibility to create and remove
the files. Between the time a pathname is created and the file is opened, it is possible for some
other process to create a file with the same name. Applications may find tmpfile() more useful.

Applications should use the tmpfile(), mkdtemp(), or mkstemp() functions instead of the

2102 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

66510

66511

66512

66513

66514

66515

66516

66517

66518

66519

66520

66521

66522

66523

66524

66525

66526

66527

66528

66529

66530

66531

66532

66533

66534

66535

66536

66537

66538

66539

66540

66541

66542

66543

66544

66545

66546

66547

66548

66549

66550

66551

66552

System Interfaces tempnam()

obsolescent tempnam() function.

RATIONALE
None.

FUTURE DIRECTIONS
The tempnam() function may be removed in a future version.

SEE ALSO
fopen(), free(), open(), tmpfile(), tmpnam(), unlink()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

Issue 7
The tempnam() function is marked obsolescent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2103

66553

66554

66555

66556

66557

66558

66559

66560

66561

66562

66563

66564

66565

66566

66567

tfind() System Interfaces

NAME
tfind — search binary search tree

SYNOPSIS
XSI #include <search.h>

void *tfind(const void *key, void *const *rootp,
int (*compar)(const void *, const void *));

DESCRIPTION
Refer to tdelete().

2104 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

66568

66569

66570

66571

66572

66573

66574

66575

System Interfaces tgamma()

NAME
tgamma, tgammaf, tgammal — compute gamma() function

SYNOPSIS
#include <math.h>

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall compute the gamma() function of x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return Gamma(x).

CX If x is a negative integer, a domain error may occur and either a NaN (if supported) or an
MX implementation-defined value shall be returned. On systems that support the IEC 60559

Floating-Point option, a domain error shall occur and a NaN shall be returned.

If x is ±0, tgamma(), tgammaf(), and tgammal() shall return ±HUGE_VAL, ±HUGE_VALF, and
MX ±HUGE_VALL, respectively. On systems that support the IEC 60559 Floating-Point option, a

pole error shall occur;
CX otherwise, a pole error may occur.

If the correct value would cause overflow, a range error shall occur and tgamma(), tgammaf(),
and tgammal() shall return ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL, respectively, with
the same sign as the correct value of the function.

MX If x is NaN, a NaN shall be returned.

If x is +Inf, x shall be returned.

If x is −Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-
defined value shall be returned.

ERRORS
These functions shall fail if:

MX Domain Error The value of x is a negative integer, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

MX Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2105

66576

66577

66578

66579

66580

66581

66582

66583

66584

66585

66586

66587

66588

66589

66590

66591

66592

66593

66594

66595

66596

66597

66598

66599

66600

66601

66602

66603

66604

66605

66606

66607

66608

66609

66610

66611

66612

66613

66614

66615

66616

66617

66618

66619

tgamma() System Interfaces

Range Error The value overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

These functions may fail if:

Domain Error The value of x is a negative integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
For IEEE Std 754-1985 double, overflow happens when 0 < x < 1/DBL_MAX, and 171.7 < x.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
This function is named tgamma() in order to avoid conflicts with the historical gamma() and
lgamma() functions.

FUTURE DIRECTIONS
It is possible that the error response for a negative integer argument may be changed to a pole
error and a return value of ±Inf.

SEE ALSO
feclearexcept(), fetestexcept(), lgamma()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/65 is applied, correcting the third
paragraph in the RETURN VALUE section.

Issue 7
ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #52 (SD5-XSH-ERN-85) is applied.

2106 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

66620

66621

66622

66623

66624

66625

66626

66627

66628

66629

66630

66631

66632

66633

66634

66635

66636

66637

66638

66639

66640

66641

66642

66643

66644

66645

66646

66647

66648

66649

66650

66651

66652

66653

66654

66655

66656

System Interfaces time()

NAME
time — get time

SYNOPSIS
#include <time.h>

time_t time(time_t *tloc);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

CX The time() function shall return the value of time in seconds since the Epoch.

The tloc argument points to an area where the return value is also stored. If tloc is a null pointer,
no value is stored.

RETURN VALUE
Upon successful completion, time() shall return the value of time. Otherwise, (time_t)−1 shall be
returned.

ERRORS
No errors are defined.

EXAMPLES

Getting the Current Time

The following example uses the time() function to calculate the time elapsed, in seconds, since
the Epoch, localtime() to convert that value to a broken-down time, and asctime() to convert the
broken-down time values into a printable string.

#include <stdio.h>
#include <time.h>

int main(void)
{
time_t result;

result = time(NULL);
printf("%s%ju secs since the Epoch\n",

asctime(localtime(&result)),
(uintmax_t)result);

return(0);
}

This example writes the current time to stdout in a form like this:

Wed Jun 26 10:32:15 1996
835810335 secs since the Epoch

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2107

66657

66658

66659

66660

66661

66662

66663

66664

66665

66666

66667

66668

66669

66670

66671

66672

66673

66674

66675

66676

66677

66678

66679

66680

66681

66682

66683

66684

66685

66686

66687

66688

66689

66690

66691

66692

time() System Interfaces

Timing an Event

The following example gets the current time, prints it out in the user’s format, and prints the
number of minutes to an event being timed.

#include <time.h>
#include <stdio.h>
...
time_t now;
int minutes_to_event;
...
time(&now);
minutes_to_event = ...;
printf("The time is ");
puts(asctime(localtime(&now)));
printf("There are %d minutes to the event.\n",

minutes_to_event);
...

APPLICATION USAGE
None.

RATIONALE
The time() function returns a value in seconds (type time_t) while times() returns a set of values
in clock ticks (type clock_t). Some historical implementations, such as 4.3 BSD, have
mechanisms capable of returning more precise times (see below). A generalized timing scheme
to unify these various timing mechanisms has been proposed but not adopted.

Implementations in which time_t is a 32-bit signed integer (many historical implementations)
fail in the year 2038. POSIX.1-2008 does not address this problem. However, the use of the time_t
type is mandated in order to ease the eventual fix.

The use of the <time.h> header instead of <sys/types.h> allows compatibility with the ISO C
standard.

Many historical implementations (including Version 7) and the 1984 /usr/group standard use
long instead of time_t. This volume of POSIX.1-2008 uses the latter type in order to agree with
the ISO C standard.

4.3 BSD includes time() only as an alternate function to the more flexible gettimeofday() function.

FUTURE DIRECTIONS
In a future version of this volume of POSIX.1-2008, time_t is likely to be required to be capable
of representing times far in the future. Whether this will be mandated as a 64-bit type or a
requirement that a specific date in the future be representable (for example, 10000 AD) is not yet
determined. Systems purchased after the approval of this volume of POSIX.1-2008 should be
evaluated to determine whether their lifetime will extend past 2038.

SEE ALSO
asctime(), clock(), ctime(), difftime(), gettimeofday(), gmtime(), localtime(), mktime(), strftime(),
strptime(), utime()

XBD <time.h>

2108 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

66693

66694

66695

66696

66697

66698

66699

66700

66701

66702

66703

66704

66705

66706

66707

66708

66709

66710

66711

66712

66713

66714

66715

66716

66717

66718

66719

66720

66721

66722

66723

66724

66725

66726

66727

66728

66729

66730

66731

66732

66733

66734

System Interfaces time()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The EXAMPLES, RATIONALE, and FUTURE DIRECTIONS sections are added.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2109

66735

66736

66737

66738

66739

timer_create() System Interfaces

NAME
timer_create — create a per-process timer

SYNOPSIS
CX #include <signal.h>

#include <time.h>

int timer_create(clockid_t clockid, struct sigevent *restrict evp,
timer_t *restrict timerid);

DESCRIPTION
The timer_create() function shall create a per-process timer using the specified clock, clock_id, as
the timing base. The timer_create() function shall return, in the location referenced by timerid, a
timer ID of type timer_t used to identify the timer in timer requests. This timer ID shall be
unique within the calling process until the timer is deleted. The particular clock, clock_id, is
defined in <time.h>. The timer whose ID is returned shall be in a disarmed state upon return
from timer_create().

The evp argument, if non-NULL, points to a sigevent structure. This structure, allocated by the
application, defines the asynchronous notification to occur as specified in Section 2.4.1 (on page
484) when the timer expires. If the evp argument is NULL, the effect is as if the evp argument
pointed to a sigevent structure with the sigev_notify member having the value SIGEV_SIGNAL,
the sigev_signo having a default signal number, and the sigev_value member having the value of
the timer ID.

Each implementation shall define a set of clocks that can be used as timing bases for per-process
MON timers. All implementations shall support a clock_id of CLOCK_REALTIME. If the Monotonic

Clock option is supported, implementations shall support a clock_id of CLOCK_MONOTONIC.

Per-process timers shall not be inherited by a child process across a fork() and shall be disarmed
and deleted by an exec.

CPT If _POSIX_CPUTIME is defined, implementations shall support clock_id values representing the
CPU-time clock of the calling process.

TCT If _POSIX_THREAD_CPUTIME is defined, implementations shall support clock_id values
representing the CPU-time clock of the calling thread.

CPT|TCT It is implementation-defined whether a timer_create() function will succeed if the value defined
by clock_id corresponds to the CPU-time clock of a process or thread different from the process
or thread invoking the function.

TSA If evp−>sigev_sigev_notify is SIGEV_THREAD and sev−>sigev_notify_attributes is not NULL, if the
attribute pointed to by sev−>sigev_notify_attributes has a thread stack address specified by a call
to pthread_attr_setstack(), the results are unspecified if the signal is generated more than once.

RETURN VALUE
If the call succeeds, timer_create() shall return zero and update the location referenced by timerid
to a timer_t, which can be passed to the per-process timer calls. If an error occurs, the function
shall return a value of −1 and set errno to indicate the error. The value of timerid is undefined if
an error occurs.

ERRORS
The timer_create() function shall fail if:

[EAGAIN] The system lacks sufficient signal queuing resources to honor the request.

2110 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

66740

66741

66742

66743

66744

66745

66746

66747

66748

66749

66750

66751

66752

66753

66754

66755

66756

66757

66758

66759

66760

66761

66762

66763

66764

66765

66766

66767

66768

66769

66770

66771

66772

66773

66774

66775

66776

66777

66778

66779

66780

66781

66782

System Interfaces timer_create()

[EAGAIN] The calling process has already created all of the timers it is allowed by this
implementation.

[EINVAL] The specified clock ID is not defined.

CPT|TCT [ENOTSUP] The implementation does not support the creation of a timer attached to the
CPU-time clock that is specified by clock_id and associated with a process or
thread different from the process or thread invoking timer_create().

EXAMPLES
None.

APPLICATION USAGE
If a timer is created which has evp−>sigev_sigev_notify set to SIGEV_THREAD and the attribute
pointed to by evp−>sigev_notify_attributes has a thread stack address specified by a call to
pthread_attr_setstack(), the memory dedicated as a thread stack cannot be recovered. The reason
for this is that the threads created in response to a timer expiration are created detached, or in an
unspecified way if the thread attribute’s detachstate is PTHREAD_CREATE_JOINABLE. In
neither case is it valid to call pthread_join(), which makes it impossible to determine the lifetime
of the created thread which thus means the stack memory cannot be reused.

RATIONALE

Periodic Timer Overrun and Resource Allocation

The specified timer facilities may deliver realtime signals (that is, queued signals) on
implementations that support this option. Since realtime applications cannot afford to lose
notifications of asynchronous events, like timer expirations or asynchronous I/O completions, it
must be possible to ensure that sufficient resources exist to deliver the signal when the event
occurs. In general, this is not a difficulty because there is a one-to-one correspondence between a
request and a subsequent signal generation. If the request cannot allocate the signal delivery
resources, it can fail the call with an [EAGAIN] error.

Periodic timers are a special case. A single request can generate an unspecified number of
signals. This is not a problem if the requesting process can service the signals as fast as they are
generated, thus making the signal delivery resources available for delivery of subsequent
periodic timer expiration signals. But, in general, this cannot be assured—processing of periodic
timer signals may ‘‘overrun’’; that is, subsequent periodic timer expirations may occur before the
currently pending signal has been delivered.

Also, for signals, according to the POSIX.1-1990 standard, if subsequent occurrences of a
pending signal are generated, it is implementation-defined whether a signal is delivered for each
occurrence. This is not adequate for some realtime applications. So a mechanism is required to
allow applications to detect how many timer expirations were delayed without requiring an
indefinite amount of system resources to store the delayed expirations.

The specified facilities provide for an overrun count. The overrun count is defined as the
number of extra timer expirations that occurred between the time a timer expiration signal is
generated and the time the signal is delivered. The signal-catching function, if it is concerned
with overruns, can retrieve this count on entry. With this method, a periodic timer only needs
one ‘‘signal queuing resource’’ that can be allocated at the time of the timer_create() function call.

A function is defined to retrieve the overrun count so that an application need not allocate static
storage to contain the count, and an implementation need not update this storage
asynchronously on timer expirations. But, for some high-frequency periodic applications, the
overhead of an additional system call on each timer expiration may be prohibitive. The
functions, as defined, permit an implementation to maintain the overrun count in user space,

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2111

66783

66784

66785

66786

66787

66788

66789

66790

66791

66792

66793

66794

66795

66796

66797

66798

66799

66800

66801

66802

66803

66804

66805

66806

66807

66808

66809

66810

66811

66812

66813

66814

66815

66816

66817

66818

66819

66820

66821

66822

66823

66824

66825

66826

66827

66828

timer_create() System Interfaces

associated with the timerid. The timer_getoverrun() function can then be implemented as a macro
that uses the timerid argument (which may just be a pointer to a user space structure containing
the counter) to locate the overrun count with no system call overhead. Other implementations,
less concerned with this class of applications, can avoid the asynchronous update of user space
by maintaining the count in a system structure at the cost of the extra system call to obtain it.

Timer Expiration Signal Parameters

The Realtime Signals Extension option supports an application-specific datum that is delivered
to the extended signal handler. This value is explicitly specified by the application, along with
the signal number to be delivered, in a sigevent structure. The type of the application-defined
value can be either an integer constant or a pointer. This explicit specification of the value, as
opposed to always sending the timer ID, was selected based on existing practice.

It is common practice for realtime applications (on non-POSIX systems or realtime extended
POSIX systems) to use the parameters of event handlers as the case label of a switch statement or
as a pointer to an application-defined data structure. Since timer_ids are dynamically allocated
by the timer_create() function, they can be used for neither of these functions without additional
application overhead in the signal handler; for example, to search an array of saved timer IDs to
associate the ID with a constant or application data structure.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres(), timer_delete(), timer_getoverrun()

XBD <signal.h>, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The timer_create() function is marked as part of the Timers option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Timers option.

CPU-time clocks are added for alignment with IEEE Std 1003.1d-1999.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding the
requirement for the CLOCK_MONOTONIC clock under the Monotonic Clock option.

The restrict keyword is added to the timer_create() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/138 is applied, updating the
DESCRIPTION and APPLICATION USAGE sections to describe the case when a timer is created
with the notification method set to SIGEV_THREAD.

Issue 7
The timer_create() function is moved from the Timers option to the Base.

2112 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

66829

66830

66831

66832

66833

66834

66835

66836

66837

66838

66839

66840

66841

66842

66843

66844

66845

66846

66847

66848

66849

66850

66851

66852

66853

66854

66855

66856

66857

66858

66859

66860

66861

66862

66863

66864

66865

66866

System Interfaces timer_delete()

NAME
timer_delete — delete a per-process timer

SYNOPSIS
CX #include <time.h>

int timer_delete(timer_t timerid);

DESCRIPTION
The timer_delete() function deletes the specified timer, timerid, previously created by the
timer_create() function. If the timer is armed when timer_delete() is called, the behavior shall be
as if the timer is automatically disarmed before removal. The disposition of pending signals for
the deleted timer is unspecified.

RETURN VALUE
If successful, the timer_delete() function shall return a value of zero. Otherwise, the function shall
return a value of −1 and set errno to indicate the error.

ERRORS
The timer_delete() function may fail if:

[EINVAL] The timer ID specified by timerid is not a valid timer ID.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
timer_create()

XBD <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The timer_delete() function is marked as part of the Timers option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Timers option.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/139 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Issue 7
The timer_delete() function is moved from the Timers option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2113

66867

66868

66869

66870

66871

66872

66873

66874

66875

66876

66877

66878

66879

66880

66881

66882

66883

66884

66885

66886

66887

66888

66889

66890

66891

66892

66893

66894

66895

66896

66897

66898

66899

66900

66901

66902

66903

timer_getoverrun() System Interfaces

NAME
timer_getoverrun, timer_gettime, timer_settime — per-process timers

SYNOPSIS
CX #include <time.h>

int timer_getoverrun(timer_t timerid);
int timer_gettime(timer_t timerid, struct itimerspec *value);
int timer_settime(timer_t timerid, int flags,

const struct itimerspec *restrict value,
struct itimerspec *restrict ovalue);

DESCRIPTION
The timer_gettime() function shall store the amount of time until the specified timer, timerid,
expires and the reload value of the timer into the space pointed to by the value argument. The
it_value member of this structure shall contain the amount of time before the timer expires, or
zero if the timer is disarmed. This value is returned as the interval until timer expiration, even if
the timer was armed with absolute time. The it_interval member of value shall contain the reload
value last set by timer_settime().

The timer_settime() function shall set the time until the next expiration of the timer specified by
timerid from the it_value member of the value argument and arm the timer if the it_value member
of value is non-zero. If the specified timer was already armed when timer_settime() is called, this
call shall reset the time until next expiration to the value specified. If the it_value member of value
is zero, the timer shall be disarmed. The effect of disarming or resetting a timer with pending
expiration notifications is unspecified.

If the flag TIMER_ABSTIME is not set in the argument flags, timer_settime() shall behave as if the
time until next expiration is set to be equal to the interval specified by the it_value member of
value. That is, the timer shall expire in it_value nanoseconds from when the call is made. If the
flag TIMER_ABSTIME is set in the argument flags, timer_settime() shall behave as if the time
until next expiration is set to be equal to the difference between the absolute time specified by
the it_value member of value and the current value of the clock associated with timerid. That is,
the timer shall expire when the clock reaches the value specified by the it_value member of value.
If the specified time has already passed, the function shall succeed and the expiration
notification shall be made.

The reload value of the timer shall be set to the value specified by the it_interval member of
value. When a timer is armed with a non-zero it_interval, a periodic (or repetitive) timer is
specified.

Time values that are between two consecutive non-negative integer multiples of the resolution of
the specified timer shall be rounded up to the larger multiple of the resolution. Quantization
error shall not cause the timer to expire earlier than the rounded time value.

If the argument ovalue is not NULL, the timer_settime() function shall store, in the location
referenced by ovalue, a value representing the previous amount of time before the timer would
have expired, or zero if the timer was disarmed, together with the previous timer reload value.
Timers shall not expire before their scheduled time.

Only a single signal shall be queued to the process for a given timer at any point in time. When a
timer for which a signal is still pending expires, no signal shall be queued, and a timer overrun
shall occur. When a timer expiration signal is delivered to or accepted by a process, the
timer_getoverrun() function shall return the timer expiration overrun count for the specified
timer. The overrun count returned contains the number of extra timer expirations that occurred
between the time the signal was generated (queued) and when it was delivered or accepted, up

2114 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

66904

66905

66906

66907

66908

66909

66910

66911

66912

66913

66914

66915

66916

66917

66918

66919

66920

66921

66922

66923

66924

66925

66926

66927

66928

66929

66930

66931

66932

66933

66934

66935

66936

66937

66938

66939

66940

66941

66942

66943

66944

66945

66946

66947

66948

66949

66950

System Interfaces timer_getoverrun()

to but not including an implementation-defined maximum of {DELAYTIMER_MAX}. If the
number of such extra expirations is greater than or equal to {DELAYTIMER_MAX}, then the
overrun count shall be set to {DELAYTIMER_MAX}. The value returned by timer_getoverrun()
shall apply to the most recent expiration signal delivery or acceptance for the timer. If no
expiration signal has been delivered for the timer, the return value of timer_getoverrun() is
unspecified.

RETURN VALUE
If the timer_getoverrun() function succeeds, it shall return the timer expiration overrun count as
explained above.

If the timer_gettime() or timer_settime() functions succeed, a value of 0 shall be returned.

If an error occurs for any of these functions, the value −1 shall be returned, and errno set to
indicate the error.

ERRORS
The timer_settime() function shall fail if:

[EINVAL] A value structure specified a nanosecond value less than zero or greater than
or equal to 1 000 million, and the it_value member of that structure did not
specify zero seconds and nanoseconds.

These functions may fail if:

[EINVAL] The timerid argument does not correspond to an ID returned by timer_create()
but not yet deleted by timer_delete().

The timer_settime() function may fail if:

[EINVAL] The it_interval member of value is not zero and the timer was created with
notification by creation of a new thread (sigev_sigev_notify was
SIGEV_THREAD) and a fixed stack address has been set in the thread
attribute pointed to by sigev_notify_attributes.

EXAMPLES
None.

APPLICATION USAGE
Using fixed stack addresses is problematic when timer expiration is signaled by the creation of a
new thread. Since it cannot be assumed that the thread created for one expiration is finished
before the next expiration of the timer, it could happen that two threads use the same memory as
a stack at the same time. This is invalid and produces undefined results.

RATIONALE
Practical clocks tick at a finite rate, with rates of 100 hertz and 1 000 hertz being common. The
inverse of this tick rate is the clock resolution, also called the clock granularity, which in either
case is expressed as a time duration, being 10 milliseconds and 1 millisecond respectively for
these common rates. The granularity of practical clocks implies that if one reads a given clock
twice in rapid succession, one may get the same time value twice; and that timers must wait for
the next clock tick after the theoretical expiration time, to ensure that a timer never returns too
soon. Note also that the granularity of the clock may be significantly coarser than the resolution
of the data format used to set and get time and interval values. Also note that some
implementations may choose to adjust time and/or interval values to exactly match the ticks of
the underlying clock.

This volume of POSIX.1-2008 defines functions that allow an application to determine the
implementation-supported resolution for the clocks and requires an implementation to

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2115

66951

66952

66953

66954

66955

66956

66957

66958

66959

66960

66961

66962

66963

66964

66965

66966

66967

66968

66969

66970

66971

66972

66973

66974

66975

66976

66977

66978

66979

66980

66981

66982

66983

66984

66985

66986

66987

66988

66989

66990

66991

66992

66993

66994

66995

timer_getoverrun() System Interfaces

document the resolution supported for timers and nanosleep() if they differ from the supported
clock resolution. This is more of a procurement issue than a runtime application issue.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres(), timer_create()

XBD <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The timer_getoverrun(), timer_gettime(), and timer_settime() functions are marked as part of the
Timers option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Timers option.

The [EINVAL] error condition is updated to include the following: ‘‘and the it_value member of
that structure did not specify zero seconds and nanoseconds.’’ This change is for IEEE PASC
Interpretation 1003.1 #89.

The DESCRIPTION for timer_getoverrun() is updated to clarify that ‘‘If no expiration signal has
been delivered for the timer, or if the Realtime Signals Extension is not supported, the return
value of timer_getoverrun() is unspecified’’.

The restrict keyword is added to the timer_settime() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/140 is applied, updating the ERRORS
section so that the mandatory [EINVAL] error (‘‘The timerid argument does not correspond to an
ID returned by timer_create() but not yet deleted by timer_delete()’’) becomes optional.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/141 is applied, updating the ERRORS
section to include an optional [EINVAL] error for the case when a timer is created with the
notification method set to SIGEV_THREAD. APPLICATION USAGE text is also added.

Issue 7
The timer_getoverrun(), timer_gettime(), and timer_settime() functions are moved from the Timers
option to the Base.

Functionality relating to the Realtime Signals Extension option is moved to the Base.

2116 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

66996

66997

66998

66999

67000

67001

67002

67003

67004

67005

67006

67007

67008

67009

67010

67011

67012

67013

67014

67015

67016

67017

67018

67019

67020

67021

67022

67023

67024

67025

67026

67027

System Interfaces times()

NAME
times — get process and waited-for child process times

SYNOPSIS
#include <sys/times.h>

clock_t times(struct tms *buffer);

DESCRIPTION
The times() function shall fill the tms structure pointed to by buffer with time-accounting
information. The tms structure is defined in <sys/times.h>.

All times are measured in terms of the number of clock ticks used.

The times of a terminated child process shall be included in the tms_cutime and tms_cstime
elements of the parent when wait(), waitid(), or waitpid() returns the process ID of this
terminated child. If a child process has not waited for its children, their times shall not be
included in its times.

• The tms_utime structure member is the CPU time charged for the execution of user
instructions of the calling process.

• The tms_stime structure member is the CPU time charged for execution by the system on
behalf of the calling process.

• The tms_cutime structure member is the sum of the tms_utime and tms_cutime times of the
child processes.

• The tms_cstime structure member is the sum of the tms_stime and tms_cstime times of the
child processes.

RETURN VALUE
Upon successful completion, times() shall return the elapsed real time, in clock ticks, since an
arbitrary point in the past (for example, system start-up time). This point does not change from
one invocation of times() within the process to another. The return value may overflow the
possible range of type clock_t. If times() fails, (clock_t)−1 shall be returned and errno set to
indicate the error.

ERRORS
No errors are defined.

EXAMPLES

Timing a Database Lookup

The following example defines two functions, start_clock() and end_clock(), that are used to time
a lookup. It also defines variables of type clock_t and tms to measure the duration of
transactions. The start_clock() function saves the beginning times given by the times() function.
The end_clock() function gets the ending times and prints the difference between the two times.

#include <sys/times.h>
#include <stdio.h>
...
void start_clock(void);
void end_clock(char *msg);
...
static clock_t st_time;
static clock_t en_time;
static struct tms st_cpu;

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2117

67028

67029

67030

67031

67032

67033

67034

67035

67036

67037

67038

67039

67040

67041

67042

67043

67044

67045

67046

67047

67048

67049

67050

67051

67052

67053

67054

67055

67056

67057

67058

67059

67060

67061

67062

67063

67064

67065

67066

67067

67068

67069

67070

67071

times() System Interfaces

static struct tms en_cpu;
...
void
start_clock()
{

st_time = times(&st_cpu);
}

/* This example assumes that the result of each subtraction
is within the range of values that can be represented in
an integer type. */

void
end_clock(char *msg)
{

en_time = times(&en_cpu);

fputs(msg,stdout);
printf("Real Time: %jd, User Time %jd, System Time %jd\n",

(intmax_t)(en_time - st_time),
(intmax_t)(en_cpu.tms_utime - st_cpu.tms_utime),
(intmax_t)(en_cpu.tms_stime - st_cpu.tms_stime));

}

APPLICATION USAGE
Applications should use sysconf(_SC_CLK_TCK) to determine the number of clock ticks per
second as it may vary from system to system.

RATIONALE
The accuracy of the times reported is intentionally left unspecified to allow implementations
flexibility in design, from uniprocessor to multi-processor networks.

The inclusion of times of child processes is recursive, so that a parent process may collect the
total times of all of its descendants. But the times of a child are only added to those of its parent
when its parent successfully waits on the child. Thus, it is not guaranteed that a parent process
can always see the total times of all its descendants; see also the discussion of the term
‘‘realtime’’ in alarm().

If the type clock_t is defined to be a signed 32-bit integer, it overflows in somewhat more than a
year if there are 60 clock ticks per second, or less than a year if there are 100. There are individual
systems that run continuously for longer than that. This volume of POSIX.1-2008 permits an
implementation to make the reference point for the returned value be the start-up time of the
process, rather than system start-up time.

The term ‘‘charge’’ in this context has nothing to do with billing for services. The operating
system accounts for time used in this way. That information must be correct, regardless of how
that information is used.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), exec , fork(), sysconf(), time(), wait(), waitid()

XBD <sys/times.h>

2118 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67072

67073

67074

67075

67076

67077

67078

67079

67080

67081

67082

67083

67084

67085

67086

67087

67088

67089

67090

67091

67092

67093

67094

67095

67096

67097

67098

67099

67100

67101

67102

67103

67104

67105

67106

67107

67108

67109

67110

67111

67112

67113

67114

67115

System Interfaces times()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2119

67116

67117

timezone() System Interfaces

NAME
timezone — difference from UTC and local standard time

SYNOPSIS
XSI #include <time.h>

extern long timezone;

DESCRIPTION
Refer to tzset().

2120 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67118

67119

67120

67121

67122

67123

67124

System Interfaces tmpfile()

NAME
tmpfile — create a temporary file

SYNOPSIS
#include <stdio.h>

FILE *tmpfile(void);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The tmpfile() function shall create a temporary file and open a corresponding stream. The file
shall be automatically deleted when all references to the file are closed. The file is opened as in
fopen() for update (w+), except that implementations may restrict the permissions, either by
clearing the file mode bits or setting them to the value S_IRUSR | S_IWUSR.

CX In some implementations, a permanent file may be left behind if the process calling tmpfile() is
killed while it is processing a call to tmpfile().

An error message may be written to standard error if the stream cannot be opened.

RETURN VALUE
Upon successful completion, tmpfile() shall return a pointer to the stream of the file that is

CX created. Otherwise, it shall return a null pointer and set errno to indicate the error.

ERRORS
The tmpfile() function shall fail if:

CX [EINTR] A signal was caught during tmpfile().

CX [EMFILE] All file descriptors available to the process are currently open.

CX [EMFILE] {STREAM_MAX} streams are currently open in the calling process.

CX [ENFILE] The maximum allowable number of files is currently open in the system.

CX [ENOSPC] The directory or file system which would contain the new file cannot be
expanded.

CX [EOVERFLOW] The file is a regular file and the size of the file cannot be represented correctly
in an object of type off_t.

The tmpfile() function may fail if:

CX [EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

CX [ENOMEM] Insufficient storage space is available.

EXAMPLES

Creating a Temporary File

The following example creates a temporary file for update, and returns a pointer to a stream for
the created file in the fp variable.

#include <stdio.h>
...
FILE *fp;

fp = tmpfile ();

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2121

67125

67126

67127

67128

67129

67130

67131

67132

67133

67134

67135

67136

67137

67138

67139

67140

67141

67142

67143

67144

67145

67146

67147

67148

67149

67150

67151

67152

67153

67154

67155

67156

67157

67158

67159

67160

67161

67162

67163

67164

tmpfile() System Interfaces

APPLICATION USAGE
It should be possible to open at least {TMP_MAX} temporary files during the lifetime of the
program (this limit may be shared with tmpnam()) and there should be no limit on the number
simultaneously open other than this limit and any limit on the number of open file descriptors
or streams ({OPEN_MAX}, {FOPEN_MAX}, {STREAM_MAX}).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), mkdtemp(), tmpnam(), unlink()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
Large File Summit extensions are added.

The last two paragraphs of the DESCRIPTION were included as APPLICATION USAGE notes
in previous issues.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
large files.

• The [EMFILE] optional error condition is added.

The APPLICATION USAGE section is added for alignment with the ISO/IEC 9899: 1999
standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #025 is applied, clarifying that implementations may
restrict the permissions of the file created.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-149 is applied, adding the mandatory [EMFILE] error condition for
{STREAM_MAX} streams open.

2122 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67165

67166

67167

67168

67169

67170

67171

67172

67173

67174

67175

67176

67177

67178

67179

67180

67181

67182

67183

67184

67185

67186

67187

67188

67189

67190

67191

67192

67193

67194

67195

67196

67197

System Interfaces tmpnam()

NAME
tmpnam — create a name for a temporary file

SYNOPSIS
OB #include <stdio.h>

char *tmpnam(char *s);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The tmpnam() function shall generate a string that is a valid filename and that is not the same as
the name of an existing file. The function is potentially capable of generating {TMP_MAX}
different strings, but any or all of them may already be in use by existing files and thus not be
suitable return values.

The tmpnam() function generates a different string each time it is called from the same process,
up to {TMP_MAX} times. If it is called more than {TMP_MAX} times, the behavior is
implementation-defined.

The implementation shall behave as if no function defined in this volume of POSIX.1-2008,
except tempnam(), calls tmpnam().

CX The tmpnam() function need not be thread-safe if called with a NULL parameter.

RETURN VALUE
Upon successful completion, tmpnam() shall return a pointer to a string. If no suitable string can
be generated, the tmpnam() function shall return a null pointer.

If the argument s is a null pointer, tmpnam() shall leave its result in an internal static object and
return a pointer to that object. Subsequent calls to tmpnam() may modify the same object. If the
argument s is not a null pointer, it is presumed to point to an array of at least L_tmpnam chars;
tmpnam() shall write its result in that array and shall return the argument as its value.

ERRORS
No errors are defined.

EXAMPLES

Generating a Filename

The following example generates a unique filename and stores it in the array pointed to by ptr.

#include <stdio.h>
...
char filename[L_tmpnam+1];
char *ptr;

ptr = tmpnam(filename);

APPLICATION USAGE
This function only creates filenames. It is the application’s responsibility to create and remove
the files.

Between the time a pathname is created and the file is opened, it is possible for some other
process to create a file with the same name. Applications may find tmpfile() more useful.

Applications should use the tmpfile(), mkstemp(), or mkdtemp() functions instead of the

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2123

67198

67199

67200

67201

67202

67203

67204

67205

67206

67207

67208

67209

67210

67211

67212

67213

67214

67215

67216

67217

67218

67219

67220

67221

67222

67223

67224

67225

67226

67227

67228

67229

67230

67231

67232

67233

67234

67235

67236

67237

67238

67239

tmpnam() System Interfaces

obsolescent tmpnam() function.

RATIONALE
None.

FUTURE DIRECTIONS
The tmpnam() function may be removed in a future version.

SEE ALSO
fopen(), open(), mkdtemp(), tempnam(), tmpfile(), unlink()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The DESCRIPTION is expanded for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/142 is applied, updating the
DESCRIPTION to allow implementations of the tempnam() function to call tmpnam().

Issue 7
Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying that the tmpnam() function
need not be thread-safe if called with a NULL parameter.

The tmpnam() function is marked obsolescent.

2124 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67240

67241

67242

67243

67244

67245

67246

67247

67248

67249

67250

67251

67252

67253

67254

67255

67256

67257

67258

67259

67260

67261

System Interfaces toascii()

NAME
toascii — translate an integer to a 7-bit ASCII character

SYNOPSIS
OB XSI #include <ctype.h>

int toascii(int c);

DESCRIPTION
The toascii() function shall convert its argument into a 7-bit ASCII character.

RETURN VALUE
The toascii() function shall return the value (c &0x7f).

ERRORS
No errors are returned.

EXAMPLES
None.

APPLICATION USAGE
The toascii() function cannot be used portably in a localized application.

RATIONALE
None.

FUTURE DIRECTIONS
The toascii() function may be removed in a future version.

SEE ALSO
isascii()

XBD <ctype.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7
The toascii() function is marked obsolescent.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2125

67262

67263

67264

67265

67266

67267

67268

67269

67270

67271

67272

67273

67274

67275

67276

67277

67278

67279

67280

67281

67282

67283

67284

67285

67286

67287

tolower() System Interfaces

NAME
tolower, tolower_l — transliterate uppercase characters to lowercase

SYNOPSIS
#include <ctype.h>

int tolower(int c);
CX int tolower_l(int c, locale_t locale);

DESCRIPTION
CX For tolower(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The tolower() and tolower_l() functions have as a domain a type int, the value of which is
representable as an unsigned char or the value of EOF. If the argument has any other value, the

CX behavior is undefined. If the argument of tolower() or tolower_l() represents an uppercase letter,
and there exists a corresponding lowercase letter as defined by character type information in the

CX program locale or in the locale represented by locale, respectively (category LC_CTYPE), the
result shall be the corresponding lowercase letter. All other arguments in the domain are
returned unchanged.

RETURN VALUE
CX Upon successful completion, the tolower() and tolower_l() functions shall return the lowercase

letter corresponding to the argument passed; otherwise, they shall return the argument
unchanged.

ERRORS
The tolower_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale()

XBD Chapter 7 (on page 135), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
The tolower_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

2126 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67288

67289

67290

67291

67292

67293

67294

67295

67296

67297

67298

67299

67300

67301

67302

67303

67304

67305

67306

67307

67308

67309

67310

67311

67312

67313

67314

67315

67316

67317

67318

67319

67320

67321

67322

67323

67324

67325

67326

67327

67328

67329

System Interfaces toupper()

NAME
toupper, toupper_l — transliterate lowercase characters to uppercase

SYNOPSIS
#include <ctype.h>

int toupper(int c);
CX int toupper_l(int c, locale_t locale);

DESCRIPTION
CX For toupper(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The toupper() and toupper_l() functions have as a domain a type int, the value of which is
representable as an unsigned char or the value of EOF. If the argument has any other value, the
behavior is undefined.

CX If the argument of toupper() or toupper_l() represents a lowercase letter, and there exists a
CX corresponding uppercase letter as defined by character type information in the program locale

or in the locale represented by locale, respectively (category LC_CTYPE), the result shall be the
corresponding uppercase letter.

All other arguments in the domain are returned unchanged.

RETURN VALUE
CX Upon successful completion, toupper() and toupper_l() shall return the uppercase letter

corresponding to the argument passed; otherwise, they shall return the argument unchanged.

ERRORS
The toupper_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale()

XBD Chapter 7 (on page 135), <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2127

67330

67331

67332

67333

67334

67335

67336

67337

67338

67339

67340

67341

67342

67343

67344

67345

67346

67347

67348

67349

67350

67351

67352

67353

67354

67355

67356

67357

67358

67359

67360

67361

67362

67363

67364

67365

67366

67367

67368

toupper() System Interfaces

Issue 7
SD5-XSH-ERN-181 is applied, clarifying the RETURN VALUE section.

The toupper_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

2128 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67369

67370

67371

67372

System Interfaces towctrans()

NAME
towctrans, towctrans_l — wide-character transliteration

SYNOPSIS
#include <wctype.h>

wint_t towctrans(wint_t wc, wctrans_t desc);
CX wint_t towctrans_l(wint_t wc, wctrans_t desc,

locale_t locale);

DESCRIPTION
CX For towctrans(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The towctrans() and towctrans_l() functions shall transliterate the wide-character code wc using
the mapping described by desc.

CX The current setting of the LC_CTYPE category in the current locale of the process or in the locale
CX represented by locale, respectively, should be the same as during the call to wctrans() or

wctrans_l() that returned the value desc.

If the value of desc is invalid (that is, not obtained by a call to wctrans() or desc is invalidated by a
subsequent call to setlocale() that has affected category LC_CTYPE), the result is unspecified.

CX If the value of desc is invalid (that is, not obtained by a call to wctrans_l() with the same locale
object locale) the result is unspecified.

CX An application wishing to check for error situations should set errno to 0 before calling
towctrans() or towctrans_l().

If errno is non-zero on return, an error has occurred.

RETURN VALUE
CX If successful, the towctrans() and towctrans_l() functions shall return the mapped value of wc

using the mapping described by desc. Otherwise, they shall return wc unchanged.

ERRORS
These functions may fail if:

CX [EINVAL] desc contains an invalid transliteration descriptor.

The towctrans_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The strings "tolower" and "toupper" are reserved for the standard mapping names. In the
table below, the functions in the left column are equivalent to the functions in the right column.

towlower(wc) towctrans(wc, wctrans("tolower"))
towlower_l(wc, locale) towctrans_l(wc, wctrans("tolower"), locale)
towupper(wc) towctrans(wc, wctrans("toupper"))
towupper_l(wc, locale) towctrans_l(wc, wctrans("toupper"), locale)

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2129

67373

67374

67375

67376

67377

67378

67379

67380

67381

67382

67383

67384

67385

67386

67387

67388

67389

67390

67391

67392

67393

67394

67395

67396

67397

67398

67399

67400

67401

67402

67403

67404

67405

67406

67407

67408

67409

67410

67411

67412

towctrans() System Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
towlower(), towupper(), wctrans()

XBD <wctype.h>

CHANGE HISTORY
First released in Issue 5. Derived from ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Issue 6
Extensions beyond the ISO C standard are marked.

Issue 7
The towctrans_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

2130 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67413

67414

67415

67416

67417

67418

67419

67420

67421

67422

67423

67424

67425

67426

System Interfaces towlower()

NAME
towlower, towlower_l — transliterate uppercase wide-character code to lowercase

SYNOPSIS
#include <wctype.h>

wint_t towlower(wint_t wc);
CX wint_t towlower_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For towlower(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The towlower() and towlower_l() functions have as a domain a type wint_t, the value of which
the application shall ensure is a character representable as a wchar_t, and a wide-character code
corresponding to a valid character in the current locale or the value of WEOF. If the argument

CX has any other value, the behavior is undefined. If the argument of towlower() or towlower_l()
represents an uppercase wide-character code, and there exists a corresponding lowercase wide-

CX character code as defined by character type information in the locale of the process or in the
locale represented by locale, respectively (category LC_CTYPE), the result shall be the
corresponding lowercase wide-character code. All other arguments in the domain are returned
unchanged.

RETURN VALUE
CX Upon successful completion, the towlower() and towlower_l() functions shall return the

lowercase letter corresponding to the argument passed; otherwise, they shall return the
argument unchanged.

ERRORS
The towlower_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale()

XBD Chapter 7 (on page 135), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2131

67427

67428

67429

67430

67431

67432

67433

67434

67435

67436

67437

67438

67439

67440

67441

67442

67443

67444

67445

67446

67447

67448

67449

67450

67451

67452

67453

67454

67455

67456

67457

67458

67459

67460

67461

67462

67463

67464

67465

towlower() System Interfaces

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The towlower_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

2132 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67466

67467

67468

67469

67470

67471

67472

67473

67474

67475

System Interfaces towupper()

NAME
towupper, towupper_l — transliterate lowercase wide-character code to uppercase

SYNOPSIS
#include <wctype.h>

wint_t towupper(wint_t wc);
CX wint_t towupper_l(wint_t wc, locale_t locale);

DESCRIPTION
CX For towupper(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The towupper() and towupper_l() functions have as a domain a type wint_t, the value of which
the application shall ensure is a character representable as a wchar_t, and a wide-character code
corresponding to a valid character in the current locale or the value of WEOF. If the argument

CX has any other value, the behavior is undefined. If the argument of towupper() or towupper_l()
represents a lowercase wide-character code, and there exists a corresponding uppercase wide-

CX character code as defined by character type information in the locale of the process or in the
locale represented by locale, respectively (category LC_CTYPE), the result shall be the
corresponding uppercase wide-character code. All other arguments in the domain are returned
unchanged.

RETURN VALUE
CX Upon successful completion, the towupper() and towupper_l() functions shall return the

uppercase letter corresponding to the argument passed. Otherwise, they shall return the
argument unchanged.

ERRORS
The towupper_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale()

XBD Chapter 7 (on page 135), <locale.h>, <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2133

67476

67477

67478

67479

67480

67481

67482

67483

67484

67485

67486

67487

67488

67489

67490

67491

67492

67493

67494

67495

67496

67497

67498

67499

67500

67501

67502

67503

67504

67505

67506

67507

67508

67509

67510

67511

67512

67513

67514

towupper() System Interfaces

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The towupper_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

2134 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67515

67516

67517

67518

67519

67520

67521

67522

67523

67524

System Interfaces trunc()

NAME
trunc, truncf, truncl — round to truncated integer value

SYNOPSIS
#include <math.h>

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall round their argument to the integer value, in floating format, nearest to but
no larger in magnitude than the argument.

RETURN VALUE
Upon successful completion, these functions shall return the truncated integer value.

MX If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2135

67525

67526

67527

67528

67529

67530

67531

67532

67533

67534

67535

67536

67537

67538

67539

67540

67541

67542

67543

67544

67545

67546

67547

67548

67549

67550

67551

67552

67553

67554

67555

truncate() System Interfaces

NAME
truncate — truncate a file to a specified length

SYNOPSIS
#include <unistd.h>

int truncate(const char *path, off_t length);

DESCRIPTION
The truncate() function shall cause the regular file named by path to have a size which shall be
equal to length bytes.

If the file previously was larger than length, the extra data is discarded. If the file was previously
shorter than length, its size is increased, and the extended area appears as if it were zero-filled.

The application shall ensure that the process has write permission for the file.

XSI If the request would cause the file size to exceed the soft file size limit for the process, the
request shall fail and the implementation shall generate the SIGXFSZ signal for the process.

The truncate() function shall not modify the file offset for any open file descriptions associated
with the file. Upon successful completion, if the file size is changed, truncate() shall mark for
update the last data modification and last file status change timestamps of the file, and the
S_ISUID and S_ISGID bits of the file mode may be cleared.

RETURN VALUE
Upon successful completion, truncate() shall return 0. Otherwise, −1 shall be returned, and errno
set to indicate the error.

ERRORS
The truncate() function shall fail if:

[EINTR] A signal was caught during execution.

[EINVAL] The length argument was less than 0.

[EFBIG] or [EINVAL]
The length argument was greater than the maximum file size.

[EIO] An I/O error occurred while reading from or writing to a file system.

[EACCES] A component of the path prefix denies search permission, or write permission
is denied on the file.

[EISDIR] The named file is a directory.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory, or the path argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

[EROFS] The named file resides on a read-only file system.

2136 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67556

67557

67558

67559

67560

67561

67562

67563

67564

67565

67566

67567

67568

67569

67570

67571

67572

67573

67574

67575

67576

67577

67578

67579

67580

67581

67582

67583

67584

67585

67586

67587

67588

67589

67590

67591

67592

67593

67594

67595

System Interfaces truncate()

The truncate() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
open()

XBD <unistd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Large File Summit extensions are added.

Issue 6
This reference page is split out from the ftruncate() reference page.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The truncate() function is moved from the XSI option to the Base.

Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2137

67596

67597

67598

67599

67600

67601

67602

67603

67604

67605

67606

67607

67608

67609

67610

67611

67612

67613

67614

67615

67616

67617

67618

67619

67620

67621

67622

67623

67624

67625

67626

67627

67628

67629

truncf() System Interfaces

NAME
truncf, truncl — round to truncated integer value

SYNOPSIS
#include <math.h>

float truncf(float x);
long double truncl(long double x);

DESCRIPTION
Refer to trunc().

2138 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67630

67631

67632

67633

67634

67635

67636

67637

System Interfaces tsearch()

NAME
tsearch — search a binary search tree

SYNOPSIS
XSI #include <search.h>

void *tsearch(const void *key, void **rootp,
int (*compar)(const void *, const void *));

DESCRIPTION
Refer to tdelete().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2139

67638

67639

67640

67641

67642

67643

67644

67645

ttyname() System Interfaces

NAME
ttyname, ttyname_r — find the pathname of a terminal

SYNOPSIS
#include <unistd.h>

char *ttyname(int fildes);
int ttyname_r(int fildes, char *name, size_t namesize);

DESCRIPTION
The ttyname() function shall return a pointer to a string containing a null-terminated pathname
of the terminal associated with file descriptor fildes. The return value may point to static data
whose content is overwritten by each call.

The ttyname() function need not be thread-safe.

The ttyname_r() function shall store the null-terminated pathname of the terminal associated
with the file descriptor fildes in the character array referenced by name. The array is namesize
characters long and should have space for the name and the terminating null character. The
maximum length of the terminal name shall be {TTY_NAME_MAX}.

RETURN VALUE
Upon successful completion, ttyname() shall return a pointer to a string. Otherwise, a null
pointer shall be returned and errno set to indicate the error.

If successful, the ttyname_r() function shall return zero. Otherwise, an error number shall be
returned to indicate the error.

ERRORS
The ttyname() function may fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The file associated with the fildes argument is not a terminal.

The ttyname_r() function may fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The file associated with the fildes argument is not a terminal.

[ERANGE] The value of namesize is smaller than the length of the string to be returned
including the terminating null character.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The term ‘‘terminal’’ is used instead of the historical term ‘‘terminal device’’ in order to avoid a
reference to an undefined term.

The thread-safe version places the terminal name in a user-supplied buffer and returns a non-
zero value if it fails. The non-thread-safe version may return the name in a static data area that
may be overwritten by each call.

2140 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67646

67647

67648

67649

67650

67651

67652

67653

67654

67655

67656

67657

67658

67659

67660

67661

67662

67663

67664

67665

67666

67667

67668

67669

67670

67671

67672

67673

67674

67675

67676

67677

67678

67679

67680

67681

67682

67683

67684

System Interfaces ttyname()

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The ttyname_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the ttyname() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The ttyname_r() function is marked as part of the Thread-Safe Functions option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The statement that errno is set on error is added.

• The [EBADF] and [ENOTTY] optional error conditions are added.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error condition.

The ttyname_r() function is moved from the Thread-Safe Functions option to the Base.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2141

67685

67686

67687

67688

67689

67690

67691

67692

67693

67694

67695

67696

67697

67698

67699

67700

67701

67702

67703

67704

twalk() System Interfaces

NAME
twalk — traverse a binary search tree

SYNOPSIS
XSI #include <search.h>

void twalk(const void *root,
void (*action)(const void *, VISIT, int));

DESCRIPTION
Refer to tdelete().

2142 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67705

67706

67707

67708

67709

67710

67711

67712

System Interfaces tzset()

NAME
daylight, timezone, tzname, tzset — set timezone conversion information

SYNOPSIS
#include <time.h>

XSI extern int daylight;
extern long timezone;

CX extern char *tzname[2];
void tzset(void);

DESCRIPTION
The tzset() function shall use the value of the environment variable TZ to set time conversion
information used by ctime(), localtime(), mktime(), and strftime(). If TZ is absent from the
environment, implementation-defined default timezone information shall be used.

The tzset() function shall set the external variable tzname as follows:

tzname[0] = "std";
tzname[1] = "dst";

where std and dst are as described in XBD Chapter 8 (on page 173).

XSI The tzset() function also shall set the external variable daylight to 0 if Daylight Savings Time
conversions should never be applied for the timezone in use; otherwise, non-zero. The external
variable timezone shall be set to the difference, in seconds, between Coordinated Universal Time
(UTC) and local standard time.

RETURN VALUE
The tzset() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
Example TZ variables and their timezone differences are given in the table below:

TZ timezone

EST5EDT 5*60*60
GMT0 0*60*60
JST-9 −9*60*60
MET-1MEST −1*60*60
MST7MDT 7*60*60
PST8PDT 8*60*60

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ctime(), localtime(), mktime(), strftime()

XBD Chapter 8 (on page 173), <time.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2143

67713

67714

67715

67716

67717

67718

67719

67720

67721

67722

67723

67724

67725

67726

67727

67728

67729

67730

67731

67732

67733

67734

67735

67736

67737

67738

67739

67740

67741

67742

67743

67744

67745

67746

67747

67748

67749

67750

67751

67752

67753

67754

tzset() System Interfaces

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The example is corrected.

2144 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67755

67756

67757

67758

System Interfaces ulimit()

NAME
ulimit — get and set process limits

SYNOPSIS
OB XSI #include <ulimit.h>

long ulimit(int cmd, ...);

DESCRIPTION
The ulimit() function shall control process limits. The process limits that can be controlled by
this function include the maximum size of a single file that can be written (this is equivalent to
using setrlimit() with RLIMIT_FSIZE). The cmd values, defined in <ulimit.h>, include:

UL_GETFSIZE Return the file size limit (RLIMIT_FSIZE) of the process. The limit shall be in
units of 512-byte blocks and shall be inherited by child processes. Files of any
size can be read. The return value shall be the integer part of the soft file size
limit divided by 512. If the result cannot be represented as a long, the result is
unspecified.

UL_SETFSIZE Set the file size limit for output operations of the process to the value of the
second argument, taken as a long, multiplied by 512. If the result would
overflow an rlim_t, the actual value set is unspecified. Any process may
decrease its own limit, but only a process with appropriate privileges may
increase the limit. The return value shall be the integer part of the new file size
limit divided by 512.

The ulimit() function shall not change the setting of errno if successful.

As all return values are permissible in a successful situation, an application wishing to check for
error situations should set errno to 0, then call ulimit(), and, if it returns −1, check to see if errno is
non-zero.

RETURN VALUE
Upon successful completion, ulimit() shall return the value of the requested limit. Otherwise, −1
shall be returned and errno set to indicate the error.

ERRORS
The ulimit() function shall fail and the limit shall be unchanged if:

[EINVAL] The cmd argument is not valid.

[EPERM] A process not having appropriate privileges attempts to increase its file size
limit.

EXAMPLES
None.

APPLICATION USAGE
Since the ulimit() function uses type long rather than rlim_t, this function is not sufficient for file
sizes on many current systems. Applications should use the getrlimit() or setrlimit() functions
instead of the obsolescent ulimit() function.

RATIONALE
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2145

67759

67760

67761

67762

67763

67764

67765

67766

67767

67768

67769

67770

67771

67772

67773

67774

67775

67776

67777

67778

67779

67780

67781

67782

67783

67784

67785

67786

67787

67788

67789

67790

67791

67792

67793

67794

67795

67796

67797

67798

ulimit() System Interfaces

FUTURE DIRECTIONS
The ulimit() function may be removed in a future version.

SEE ALSO
exec , getrlimit(), write()

XBD <ulimit.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
In the description of UL_SETFSIZE, the text is corrected to refer to rlim_t rather than the
spurious rlimit_t.

The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 7
The ulimit() function is marked obsolescent.

2146 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67799

67800

67801

67802

67803

67804

67805

67806

67807

67808

67809

67810

67811

System Interfaces umask()

NAME
umask — set and get the file mode creation mask

SYNOPSIS
#include <sys/stat.h>

mode_t umask(mode_t cmask);

DESCRIPTION
The umask() function shall set the file mode creation mask of the process to cmask and return the
previous value of the mask. Only the file permission bits of cmask (see <sys/stat.h>) are used; the
meaning of the other bits is implementation-defined.

The file mode creation mask of the process is used to turn off permission bits in the mode
argument supplied during calls to the following functions:

• open(), openat(), creat(), mkdir(), mkdirat(), mkfifo(), and mkfifoat()

XSI • mknod(), mknodat()

MSG • mq_open()

• sem_open()

Bit positions that are set in cmask are cleared in the mode of the created file.

RETURN VALUE
The file permission bits in the value returned by umask() shall be the previous value of the file
mode creation mask. The state of any other bits in that value is unspecified, except that a
subsequent call to umask() with the returned value as cmask shall leave the state of the mask the
same as its state before the first call, including any unspecified use of those bits.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Unsigned argument and return types for umask() were proposed. The return type and the
argument were both changed to mode_t.

Historical implementations have made use of additional bits in cmask for their implementation-
defined purposes. The addition of the text that the meaning of other bits of the field is
implementation-defined permits these implementations to conform to this volume of
POSIX.1-2008.

FUTURE DIRECTIONS
None.

SEE ALSO
creat(), exec , mkdir(), mkfifo(), mknod(), mq_open(), open(), sem_open()

XBD <sys/stat.h>, <sys/types.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2147

67812

67813

67814

67815

67816

67817

67818

67819

67820

67821

67822

67823

67824

67825

67826

67827

67828

67829

67830

67831

67832

67833

67834

67835

67836

67837

67838

67839

67840

67841

67842

67843

67844

67845

67846

67847

67848

67849

67850

umask() System Interfaces

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
In the SYNOPSIS, the optional include of the <sys/types.h> header is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/143 is applied, adding the mknod(),
mq_open(), and sem_open() functions to the DESCRIPTION and SEE ALSO sections.

2148 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67851

67852

67853

67854

67855

67856

67857

67858

67859

67860

67861

System Interfaces uname()

NAME
uname — get the name of the current system

SYNOPSIS
#include <sys/utsname.h>

int uname(struct utsname *name);

DESCRIPTION
The uname() function shall store information identifying the current system in the structure
pointed to by name.

The uname() function uses the utsname structure defined in <sys/utsname.h>.

The uname() function shall return a string naming the current system in the character array
sysname. Similarly, nodename shall contain the name of this node within an implementation-
defined communications network. The arrays release and version shall further identify the
operating system. The array machine shall contain a name that identifies the hardware that the
system is running on.

The format of each member is implementation-defined.

RETURN VALUE
Upon successful completion, a non-negative value shall be returned. Otherwise, −1 shall be
returned and errno set to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The inclusion of the nodename member in this structure does not imply that it is sufficient
information for interfacing to communications networks.

RATIONALE
The values of the structure members are not constrained to have any relation to the version of
this volume of POSIX.1-2008 implemented in the operating system. An application should
instead depend on _POSIX_VERSION and related constants defined in <unistd.h>.

This volume of POSIX.1-2008 does not define the sizes of the members of the structure and
permits them to be of different sizes, although most implementations define them all to be the
same size: eight bytes plus one byte for the string terminator. That size for nodename is not
enough for use with many networks.

The uname() function originated in System III, System V, and related implementations, and it
does not exist in Version 7 or 4.3 BSD. The values it returns are set at system compile time in
those historical implementations.

4.3 BSD has gethostname() and gethostid(), which return a symbolic name and a numeric value,
respectively. There are related sethostname() and sethostid() functions that are used to set the
values the other two functions return. The former functions are included in this specification, the
latter are not.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2149

67862

67863

67864

67865

67866

67867

67868

67869

67870

67871

67872

67873

67874

67875

67876

67877

67878

67879

67880

67881

67882

67883

67884

67885

67886

67887

67888

67889

67890

67891

67892

67893

67894

67895

67896

67897

67898

67899

67900

67901

67902

67903

uname() System Interfaces

SEE ALSO
XBD <sys/utsname.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

2150 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67904

67905

67906

67907

System Interfaces ungetc()

NAME
ungetc — push byte back into input stream

SYNOPSIS
#include <stdio.h>

int ungetc(int c, FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The ungetc() function shall push the byte specified by c (converted to an unsigned char) back
onto the input stream pointed to by stream. The pushed-back bytes shall be returned by
subsequent reads on that stream in the reverse order of their pushing. A successful intervening
call (with the stream pointed to by stream) to a file-positioning function (fseek(), fsetpos(), or
rewind()) shall discard any pushed-back bytes for the stream. The external storage
corresponding to the stream shall be unchanged.

One byte of push-back shall be provided. If ungetc() is called too many times on the same stream
without an intervening read or file-positioning operation on that stream, the operation may fail.

If the value of c equals that of the macro EOF, the operation shall fail and the input stream shall
be left unchanged.

A successful call to ungetc() shall clear the end-of-file indicator for the stream. The value of the
file-position indicator for the stream after reading or discarding all pushed-back bytes shall be
the same as it was before the bytes were pushed back. The file-position indicator is decremented
by each successful call to ungetc(); if its value was 0 before a call, its value is unspecified after
the call.

RETURN VALUE
Upon successful completion, ungetc() shall return the byte pushed back after conversion.
Otherwise, it shall return EOF.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fseek(), getc(), fsetpos(), read(), rewind(), setbuf()

XBD <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2151

67908

67909

67910

67911

67912

67913

67914

67915

67916

67917

67918

67919

67920

67921

67922

67923

67924

67925

67926

67927

67928

67929

67930

67931

67932

67933

67934

67935

67936

67937

67938

67939

67940

67941

67942

67943

67944

67945

67946

67947

67948

67949

ungetwc() System Interfaces

NAME
ungetwc — push wide-character code back into the input stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t ungetwc(wint_t wc, FILE *stream);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The ungetwc() function shall push the character corresponding to the wide-character code
specified by wc back onto the input stream pointed to by stream. The pushed-back characters
shall be returned by subsequent reads on that stream in the reverse order of their pushing. A
successful intervening call (with the stream pointed to by stream) to a file-positioning function
(fseek(), fsetpos(), or rewind()) discards any pushed-back characters for the stream. The external
storage corresponding to the stream is unchanged.

At least one character of push-back shall be provided. If ungetwc() is called too many times on
the same stream without an intervening read or file-positioning operation on that stream, the
operation may fail.

If the value of wc equals that of the macro WEOF, the operation shall fail and the input stream
shall be left unchanged.

A successful call to ungetwc() shall clear the end-of-file indicator for the stream. The value of the
file-position indicator for the stream after reading or discarding all pushed-back characters shall
be the same as it was before the characters were pushed back. The file-position indicator is
decremented (by one or more) by each successful call to ungetwc(); if its value was 0 before a
call, its value is unspecified after the call.

RETURN VALUE
Upon successful completion, ungetwc() shall return the wide-character code corresponding to
the pushed-back character. Otherwise, it shall return WEOF.

ERRORS
The ungetwc() function may fail if:

CX [EILSEQ] An invalid character sequence is detected, or a wide-character code does not
correspond to a valid character.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

2152 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

67950

67951

67952

67953

67954

67955

67956

67957

67958

67959

67960

67961

67962

67963

67964

67965

67966

67967

67968

67969

67970

67971

67972

67973

67974

67975

67976

67977

67978

67979

67980

67981

67982

67983

67984

67985

67986

67987

67988

67989

67990

System Interfaces ungetwc()

SEE ALSO
fseek(), fsetpos(), read(), rewind(), setbuf()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

Issue 6
The [EILSEQ] optional error condition is marked CX.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2153

67991

67992

67993

67994

67995

67996

67997

67998

67999

unlink() System Interfaces

NAME
unlink, unlinkat — remove a directory entry relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int unlink(const char *path);
int unlinkat(int fd, const char *path, int flag);

DESCRIPTION
The unlink() function shall remove a link to a file. If path names a symbolic link, unlink() shall
remove the symbolic link named by path and shall not affect any file or directory named by the
contents of the symbolic link. Otherwise, unlink() shall remove the link named by the pathname
pointed to by path and shall decrement the link count of the file referenced by the link.

When the file’s link count becomes 0 and no process has the file open, the space occupied by the
file shall be freed and the file shall no longer be accessible. If one or more processes have the file
open when the last link is removed, the link shall be removed before unlink() returns, but the
removal of the file contents shall be postponed until all references to the file are closed.

The path argument shall not name a directory unless the process has appropriate privileges and
the implementation supports using unlink() on directories.

Upon successful completion, unlink() shall mark for update the last data modification and last
file status change timestamps of the parent directory. Also, if the file’s link count is not 0, the last
file status change timestamp of the file shall be marked for update.

The unlinkat() function shall be equivalent to the unlink() or rmdir() function except in the case
where path specifies a relative path. In this case the directory entry to be removed is determined
relative to the directory associated with the file descriptor fd instead of the current working
directory. If the file descriptor was opened without O_SEARCH, the function shall check
whether directory searches are permitted using the current permissions of the directory
underlying the file descriptor. If the file descriptor was opened with O_SEARCH, the function
shall not perform the check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_REMOVEDIR
Remove the directory entry specified by fd and path as a directory, not a normal file.

If unlinkat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to unlink() or rmdir() respectively,
depending on whether or not the AT_REMOVEDIR bit is set in flag.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall
return −1 and set errno to indicate the error. If −1 is returned, the named file shall not be changed.

ERRORS
These functions shall fail and shall not unlink the file if:

[EACCES] Search permission is denied for a component of the path prefix, or write
permission is denied on the directory containing the directory entry to be
removed.

[EBUSY] The file named by the path argument cannot be unlinked because it is being
used by the system or another process and the implementation considers this
an error.

2154 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68000

68001

68002

68003

68004

68005

68006

68007

68008

68009

68010

68011

68012

68013

68014

68015

68016

68017

68018

68019

68020

68021

68022

68023

68024

68025

68026

68027

68028

68029

68030

68031

68032

68033

68034

68035

68036

68037

68038

68039

68040

68041

68042

68043

68044

System Interfaces unlink()

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory, or the path argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

[EPERM] The file named by path is a directory, and either the calling process does not
have appropriate privileges, or the implementation prohibits using unlink() on
directories.

XSI [EPERM] or [EACCES]
The S_ISVTX flag is set on the directory containing the file referred to by the
path argument and the process does not satisfy the criteria specified in XBD
Section 4.2 (on page 107).

[EROFS] The directory entry to be unlinked is part of a read-only file system.

The unlinkat() function shall fail if:

[EACCES] fd was not opened with O_SEARCH and the permissions of the directory
underlying fd do not permit directory searches.

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for reading or searching.

[EEXIST] or [ENOTEMPTY]
The flag parameter has the AT_REMOVEDIR bit set and the path argument
names a directory that is not an empty directory, or there are hard links to the
directory other than dot or a single entry in dot-dot.

[ENOTDIR] The flag parameter has the AT_REMOVEDIR bit set and path does not name a
directory.

These functions may fail and not unlink the file if:

XSI [EBUSY] The file named by path is a named STREAM.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ETXTBSY] The entry to be unlinked is the last directory entry to a pure procedure (shared
text) file that is being executed.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2155

68045

68046

68047

68048

68049

68050

68051

68052

68053

68054

68055

68056

68057

68058

68059

68060

68061

68062

68063

68064

68065

68066

68067

68068

68069

68070

68071

68072

68073

68074

68075

68076

68077

68078

68079

68080

68081

68082

unlink() System Interfaces

The unlinkat() function may fail if:

[EINVAL] The value of the flag argument is not valid.

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES

Removing a Link to a File

The following example shows how to remove a link to a file named /home/cnd/mod1 by
removing the entry named /modules/pass1.

#include <unistd.h>

char *path = "/modules/pass1";
int status;
...
status = unlink(path);

Checking for an Error

The following example fragment creates a temporary password lock file named LOCKFILE,
which is defined as /etc/ptmp, and gets a file descriptor for it. If the file cannot be opened for
writing, unlink() is used to remove the link between the file descriptor and LOCKFILE.

#include <sys/types.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <sys/stat.h>

#define LOCKFILE "/etc/ptmp"

int pfd; /* Integer for file descriptor returned by open call. */
FILE *fpfd; /* File pointer for use in putpwent(). */
...
/* Open password Lock file. If it exists, this is an error. */
if ((pfd = open(LOCKFILE, O_WRONLY| O_CREAT | O_EXCL, S_IRUSR

| S_IWUSR | S_IRGRP | S_IROTH)) == -1) {
fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
exit(1);

}

/* Lock file created; proceed with fdopen of lock file so that
putpwent() can be used.

*/
if ((fpfd = fdopen(pfd, "w")) == NULL) {

close(pfd);
unlink(LOCKFILE);
exit(1);

}

2156 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68083

68084

68085

68086

68087

68088

68089

68090

68091

68092

68093

68094

68095

68096

68097

68098

68099

68100

68101

68102

68103

68104

68105

68106

68107

68108

68109

68110

68111

68112

68113

68114

68115

68116

68117

68118

68119

68120

68121

68122

68123

System Interfaces unlink()

Replacing Files

The following example fragment uses unlink() to discard links to files, so that they can be
replaced with new versions of the files. The first call removes the link to LOCKFILE if an error
occurs. Successive calls remove the links to SAVEFILE and PASSWDFILE so that new links can
be created, then removes the link to LOCKFILE when it is no longer needed.

#include <sys/types.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <sys/stat.h>

#define LOCKFILE "/etc/ptmp"
#define PASSWDFILE "/etc/passwd"
#define SAVEFILE "/etc/opasswd"
...
/* If no change was made, assume error and leave passwd unchanged. */
if (!valid_change) {

fprintf(stderr, "Could not change password for user %s\n", user);
unlink(LOCKFILE);
exit(1);

}

/* Change permissions on new password file. */
chmod(LOCKFILE, S_IRUSR | S_IRGRP | S_IROTH);

/* Remove saved password file. */
unlink(SAVEFILE);

/* Save current password file. */
link(PASSWDFILE, SAVEFILE);

/* Remove current password file. */
unlink(PASSWDFILE);

/* Save new password file as current password file. */
link(LOCKFILE,PASSWDFILE);

/* Remove lock file. */
unlink(LOCKFILE);

exit(0);

APPLICATION USAGE
Applications should use rmdir() to remove a directory.

RATIONALE
Unlinking a directory is restricted to the superuser in many historical implementations for
reasons given in link() (see also rename()).

The meaning of [EBUSY] in historical implementations is ‘‘mount point busy’’. Since this volume
of POSIX.1-2008 does not cover the system administration concepts of mounting and
unmounting, the description of the error was changed to ‘‘resource busy’’. (This meaning is used
by some device drivers when a second process tries to open an exclusive use device.) The
wording is also intended to allow implementations to refuse to remove a directory if it is the root
or current working directory of any process.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2157

68124

68125

68126

68127

68128

68129

68130

68131

68132

68133

68134

68135

68136

68137

68138

68139

68140

68141

68142

68143

68144

68145

68146

68147

68148

68149

68150

68151

68152

68153

68154

68155

68156

68157

68158

68159

68160

68161

68162

68163

68164

68165

68166

68167

68168

unlink() System Interfaces

The standard developers reviewed TR 24715-2006 and noted that LSB-conforming
implementations may return [EISDIR] instead of [EPERM] when unlinking a directory. A change
to permit this behavior by changing the requirement for [EPERM] to [EPERM] or [EISDIR] was
considered, but decided against since it would break existing strictly conforming and
conforming applications. Applications written for portability to both POSIX.1-2008 and the LSB
should be prepared to handle either error code.

The purpose of the unlinkat() function is to remove directory entries in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to unlink(), resulting in unspecified behavior. By opening a
file descriptor for the target directory and using the unlinkat() function it can be guaranteed that
the removed directory entry is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), link(), remove(), rename(), rmdir(), symlink()

XBD Section 4.2 (on page 107), <fcntl.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The [EBUSY] error is added to the optional part of the ERRORS section.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the effect is specified if path specifies a symbolic link.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

• The [ETXTBSY] optional error condition is added.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

Austin Group Interpretation 1003.1-2001 #181 is applied, updating the requirements for
operations when the S_ISVTX bit is set.

Text arising from the LSB Conflicts TR is added to the RATIONALE about the use of [EPERM]
and [EISDIR].

The unlinkat() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Changes are made related to support for finegrained timestamps.

Changes are made to allow a directory to be opened for searching.

2158 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68169

68170

68171

68172

68173

68174

68175

68176

68177

68178

68179

68180

68181

68182

68183

68184

68185

68186

68187

68188

68189

68190

68191

68192

68193

68194

68195

68196

68197

68198

68199

68200

68201

68202

68203

68204

68205

68206

68207

68208

System Interfaces unlink()

The [ENOTDIR] error condition is clarified to cover the condition where the last component of a
pathname exists but is not a directory or a symbolic link to a directory.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2159

68209

68210

unlockpt() System Interfaces

NAME
unlockpt — unlock a pseudo-terminal master/slave pair

SYNOPSIS
XSI #include <stdlib.h>

int unlockpt(int fildes);

DESCRIPTION
The unlockpt() function shall unlock the slave pseudo-terminal device associated with the master
to which fildes refers.

Conforming applications shall ensure that they call unlockpt() before opening the slave side of a
pseudo-terminal device.

RETURN VALUE
Upon successful completion, unlockpt() shall return 0. Otherwise, it shall return −1 and set errno
to indicate the error.

ERRORS
The unlockpt() function may fail if:

[EBADF] The fildes argument is not a file descriptor open for writing.

[EINVAL] The fildes argument is not associated with a master pseudo-terminal device.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
grantpt(), open(), ptsname()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

2160 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68211

68212

68213

68214

68215

68216

68217

68218

68219

68220

68221

68222

68223

68224

68225

68226

68227

68228

68229

68230

68231

68232

68233

68234

68235

68236

68237

68238

68239

68240

68241

68242

68243

68244

System Interfaces unsetenv()

NAME
unsetenv — remove an environment variable

SYNOPSIS
CX #include <stdlib.h>

int unsetenv(const char *name);

DESCRIPTION
The unsetenv() function shall remove an environment variable from the environment of the
calling process. The name argument points to a string, which is the name of the variable to be
removed. The named argument shall not contain an ’=’ character. If the named variable does
not exist in the current environment, the environment shall be unchanged and the function is
considered to have completed successfully.

If the application modifies environ or the pointers to which it points, the behavior of unsetenv() is
undefined. The unsetenv() function shall update the list of pointers to which environ points.

The unsetenv() function need not be thread-safe.

RETURN VALUE
Upon successful completion, zero shall be returned. Otherwise, −1 shall be returned, errno set to
indicate the error, and the environment shall be unchanged.

ERRORS
The unsetenv() function shall fail if:

[EINVAL] The name argument is a null pointer, points to an empty string, or points to a
string containing an ’=’ character.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to the RATIONALE section in setenv().

FUTURE DIRECTIONS
None.

SEE ALSO
getenv(), setenv()

XBD <stdlib.h>, <sys/types.h>

CHANGE HISTORY
First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2161

68245

68246

68247

68248

68249

68250

68251

68252

68253

68254

68255

68256

68257

68258

68259

68260

68261

68262

68263

68264

68265

68266

68267

68268

68269

68270

68271

68272

68273

68274

68275

68276

68277

68278

68279

68280

uselocale() System Interfaces

NAME
uselocale — use locale in current thread

SYNOPSIS
CX #include <locale.h>

locale_t uselocale(locale_t newloc);

DESCRIPTION
The uselocale() function shall set the current locale for the current thread to the locale
represented by newloc.

The value for the newloc argument shall be one of the following:

1. A value returned by the newlocale() or duplocale() functions

2. The special locale object descriptor LC_GLOBAL_LOCALE

3. (locale_t)0

Once the uselocale() function has been called to install a thread-local locale, the behavior of every
interface using data from the current locale shall be affected for the calling thread. The current
locale for other threads shall remain unchanged.

If the newloc argument is a null pointer, the object returned is the current locale or
LC_GLOBAL_LOCALE if there has been no previous call to uselocale() for the current thread.

If the newloc argument is LC_GLOBAL_LOCALE, the thread shall use the global locale
determined by the setlocale() function.

RETURN VALUE
The uselocale() function returns the locale handle from the previous call for the current thread. If
there was no such previous call, the function shall return the value LC_GLOBAL_LOCALE.

ERRORS
The uselocale() function may fail if:

[EINVAL] locale is not a valid locale object.

EXAMPLES
None.

APPLICATION USAGE
Unlike the setlocale() function, the uselocale() function does not allow replacing some locale
categories only. Applications that need to install a locale which differs only in a few categories
must use newlocale() to change a locale object equivalent to the currently used locale and install
it.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
duplocale(), freelocale(), newlocale(), setlocale()

XBD <locale.h>

2162 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68281

68282

68283

68284

68285

68286

68287

68288

68289

68290

68291

68292

68293

68294

68295

68296

68297

68298

68299

68300

68301

68302

68303

68304

68305

68306

68307

68308

68309

68310

68311

68312

68313

68314

68315

68316

68317

68318

68319

System Interfaces uselocale()

CHANGE HISTORY
First released in Issue 7.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2163

68320

68321

utime() System Interfaces

NAME
utime — set file access and modification times

SYNOPSIS
OB #include <utime.h>

int utime(const char *path, const struct utimbuf *times);

DESCRIPTION
The utime() function shall set the access and modification times of the file named by the path
argument.

If times is a null pointer, the access and modification times of the file shall be set to the current
time. The effective user ID of the process shall match the owner of the file, or the process has
write permission to the file or has appropriate privileges, to use utime() in this manner.

If times is not a null pointer, times shall be interpreted as a pointer to a utimbuf structure and the
access and modification times shall be set to the values contained in the designated structure.
Only a process with the effective user ID equal to the user ID of the file or a process with
appropriate privileges may use utime() this way.

The utimbuf structure is defined in the <utime.h> header. The times in the structure utimbuf
are measured in seconds since the Epoch.

Upon successful completion, the utime() function shall mark the last file status change
timestamp for update; see <sys/stat.h>.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno shall
be set to indicate the error, and the file times shall not be affected.

ERRORS
The utime() function shall fail if:

[EACCES] Search permission is denied by a component of the path prefix; or the times
argument is a null pointer and the effective user ID of the process does not
match the owner of the file, the process does not have write permission for the
file, and the process does not have appropriate privileges.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory, or the path argument
contains at least one non-<slash> character and ends with one or more trailing
<slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

[EPERM] The times argument is not a null pointer and the effective user ID of the calling
process does not match the owner of the file and the calling process does not
have appropriate privileges.

[EROFS] The file system containing the file is read-only.

2164 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68322

68323

68324

68325

68326

68327

68328

68329

68330

68331

68332

68333

68334

68335

68336

68337

68338

68339

68340

68341

68342

68343

68344

68345

68346

68347

68348

68349

68350

68351

68352

68353

68354

68355

68356

68357

68358

68359

68360

68361

68362

System Interfaces utime()

The utime() function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
Since the utimbuf structure only contains time_t variables and is not accurate to fractions of a
second, applications should use the utimensat() function instead of the obsolescent utime()
function.

RATIONALE
The actime structure member must be present so that an application may set it, even though an
implementation may ignore it and not change the last data access timestamp on the file. If an
application intends to leave one of the times of a file unchanged while changing the other, it
should use stat() or fstat() to retrieve the file’s st_atim and st_mtim parameters, set actime and
modtime in the buffer, and change one of them before making the utime() call.

FUTURE DIRECTIONS
The utime() function may be removed in a future version.

SEE ALSO
fstat(), fstatat(), futimens()

XBD <sys/stat.h>, <utime.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

• The [ELOOP] mandatory error condition is added.

• A second [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The [ELOOP] optional error condition is added.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

The utime() function is marked obsolescent.

Changes are made related to support for finegrained timestamps.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2165

68363

68364

68365

68366

68367

68368

68369

68370

68371

68372

68373

68374

68375

68376

68377

68378

68379

68380

68381

68382

68383

68384

68385

68386

68387

68388

68389

68390

68391

68392

68393

68394

68395

68396

68397

68398

68399

68400

68401

68402

68403

utimensat() System Interfaces

NAME
utimensat, utimes — set file access and modification times relative to directory file descriptor

SYNOPSIS
#include <sys/stat.h>

int utimensat(int fd, const char *path, const struct timespec times[2],
int flag);

XSI #include <sys/time.h>

int utimes(const char *path, const struct timeval times[2]);

DESCRIPTION
Refer to futimens().

2166 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68404

68405

68406

68407

68408

68409

68410

68411

68412

68413

System Interfaces va_arg()

NAME
va_arg, va_copy, va_end, va_start — handle variable argument list

SYNOPSIS
#include <stdarg.h>

type va_arg(va_list ap, type);
void va_copy(va_list dest, va_list src);
void va_end(va_list ap);
void va_start(va_list ap, argN);

DESCRIPTION
Refer to XBD <stdarg.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2167

68414

68415

68416

68417

68418

68419

68420

68421

68422

68423

vfprintf() System Interfaces

NAME
vdprintf, vfprintf, vprintf, vsnprintf, vsprintf — format output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

CX int vdprintf(int fildes, const char *restrict format, va_list ap);
int vfprintf(FILE *restrict stream, const char *restrict format,

va_list ap);
int vprintf(const char *restrict format, va_list ap);
int vsnprintf(char *restrict s, size_t n, const char *restrict format,

va_list ap);
int vsprintf(char *restrict s, const char *restrict format, va_list ap);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

CX The vdprintf(), vfprintf(), vprintf(), vsnprintf(), and vsprintf() functions shall be equivalent to the
CX dprintf(), fprintf(), printf(), snprintf(), and sprintf() functions respectively, except that instead of

being called with a variable number of arguments, they are called with an argument list as
defined by <stdarg.h>.

These functions shall not invoke the va_end macro. As these functions invoke the va_arg macro,
the value of ap after the return is unspecified.

RETURN VALUE
Refer to fprintf().

ERRORS
Refer to fprintf().

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf()

XBD <stdarg.h>, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The vsnprintf() function is added.

2168 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68424

68425

68426

68427

68428

68429

68430

68431

68432

68433

68434

68435

68436

68437

68438

68439

68440

68441

68442

68443

68444

68445

68446

68447

68448

68449

68450

68451

68452

68453

68454

68455

68456

68457

68458

68459

68460

68461

68462

68463

68464

System Interfaces vfprintf()

Issue 6
The vfprintf(), vprintf(), vsnprintf(), and vsprintf() functions are updated for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
The vdprintf() function is added to complement the dprintf() function from The Open Group
Technical Standard, 2006, Extended API Set Part 1.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2169

68465

68466

68467

68468

68469

68470

vfscanf() System Interfaces

NAME
vfscanf, vscanf, vsscanf — format input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vfscanf(FILE *restrict stream, const char *restrict format,
va_list arg);

int vscanf(const char *restrict format, va_list arg);
int vsscanf(const char *restrict s, const char *restrict format,

va_list arg);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The vscanf(), vfscanf(), and vsscanf() functions shall be equivalent to the scanf(), fscanf(), and
sscanf() functions, respectively, except that instead of being called with a variable number of
arguments, they are called with an argument list as defined in the <stdarg.h> header. These
functions shall not invoke the va_end macro. As these functions invoke the va_arg macro, the
value of ap after the return is unspecified.

RETURN VALUE
Refer to fscanf().

ERRORS
Refer to fscanf().

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf()

XBD <stdarg.h>, <stdio.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

2170 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68471

68472

68473

68474

68475

68476

68477

68478

68479

68480

68481

68482

68483

68484

68485

68486

68487

68488

68489

68490

68491

68492

68493

68494

68495

68496

68497

68498

68499

68500

68501

68502

68503

68504

68505

68506

System Interfaces vfwprintf()

NAME
vfwprintf, vswprintf, vwprintf — wide-character formatted output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vfwprintf(FILE *restrict stream, const wchar_t *restrict format,
va_list arg);

int vswprintf(wchar_t *restrict ws, size_t n,
const wchar_t *restrict format, va_list arg);

int vwprintf(const wchar_t *restrict format, va_list arg);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The vfwprintf(), vswprintf(), and vwprintf() functions shall be equivalent to fwprintf(), swprintf(),
and wprintf() respectively, except that instead of being called with a variable number of
arguments, they are called with an argument list as defined by <stdarg.h>.

These functions shall not invoke the va_end macro. However, as these functions do invoke the
va_arg macro, the value of ap after the return is unspecified.

RETURN VALUE
Refer to fwprintf().

ERRORS
Refer to fwprintf().

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fwprintf()

XBD <stdarg.h>, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The vfwprintf(), vswprintf(), and vwprintf() prototypes are updated for alignment with the
ISO/IEC 9899: 1999 standard. ()

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2171

68507

68508

68509

68510

68511

68512

68513

68514

68515

68516

68517

68518

68519

68520

68521

68522

68523

68524

68525

68526

68527

68528

68529

68530

68531

68532

68533

68534

68535

68536

68537

68538

68539

68540

68541

68542

68543

68544

68545

68546

68547

vfwscanf() System Interfaces

NAME
vfwscanf, vswscanf, vwscanf — wide-character formatted input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vfwscanf(FILE *restrict stream, const wchar_t *restrict format,
va_list arg);

int vswscanf(const wchar_t *restrict ws, const wchar_t *restrict format,
va_list arg);

int vwscanf(const wchar_t *restrict format, va_list arg);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The vfwscanf(), vswscanf(), and vwscanf() functions shall be equivalent to the fwscanf(),
swscanf(), and wscanf() functions, respectively, except that instead of being called with a variable
number of arguments, they are called with an argument list as defined in the <stdarg.h> header.
These functions shall not invoke the va_end macro. As these functions invoke the va_arg macro,
the value of ap after the return is unspecified.

RETURN VALUE
Refer to fwscanf().

ERRORS
Refer to fwscanf().

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fwscanf()

XBD <stdarg.h>, <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

2172 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68548

68549

68550

68551

68552

68553

68554

68555

68556

68557

68558

68559

68560

68561

68562

68563

68564

68565

68566

68567

68568

68569

68570

68571

68572

68573

68574

68575

68576

68577

68578

68579

68580

68581

68582

68583

68584

System Interfaces vprintf()

NAME
vprintf — format the output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vprintf(const char *restrict format, va_list ap);

DESCRIPTION
Refer to vfprintf().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2173

68585

68586

68587

68588

68589

68590

68591

68592

vscanf() System Interfaces

NAME
vscanf — format input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vscanf(const char *restrict format, va_list arg);

DESCRIPTION
Refer to vfscanf().

2174 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68593

68594

68595

68596

68597

68598

68599

68600

System Interfaces vsnprintf()

NAME
vsnprintf, vsprintf — format output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vsnprintf(char *restrict s, size_t n,
const char *restrict format, va_list ap);

int vsprintf(char *restrict s, const char *restrict format,
va_list ap);

DESCRIPTION
Refer to vfprintf().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2175

68601

68602

68603

68604

68605

68606

68607

68608

68609

68610

68611

vsscanf() System Interfaces

NAME
vsscanf — format input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vsscanf(const char *restrict s, const char *restrict format,
va_list arg);

DESCRIPTION
Refer to vfscanf().

2176 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68612

68613

68614

68615

68616

68617

68618

68619

68620

System Interfaces vswprintf()

NAME
vswprintf — wide-character formatted output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vswprintf(wchar_t *restrict ws, size_t n,
const wchar_t *restrict format, va_list arg);

DESCRIPTION
Refer to vfwprintf().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2177

68621

68622

68623

68624

68625

68626

68627

68628

68629

68630

vswscanf() System Interfaces

NAME
vswscanf — wide-character formatted input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vswscanf(const wchar_t *restrict ws, const wchar_t *restrict format,
va_list arg);

DESCRIPTION
Refer to vfwscanf().

2178 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68631

68632

68633

68634

68635

68636

68637

68638

68639

68640

System Interfaces vwprintf()

NAME
vwprintf — wide-character formatted output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vwprintf(const wchar_t *restrict format, va_list arg);

DESCRIPTION
Refer to vfwprintf().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2179

68641

68642

68643

68644

68645

68646

68647

68648

68649

vwscanf() System Interfaces

NAME
vwscanf — wide-character formatted input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vwscanf(const wchar_t *restrict format, va_list arg);

DESCRIPTION
Refer to vfwscanf().

2180 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68650

68651

68652

68653

68654

68655

68656

68657

68658

System Interfaces wait()

NAME
wait, waitpid — wait for a child process to stop or terminate

SYNOPSIS
#include <sys/wait.h>

pid_t wait(int *stat_loc);
pid_t waitpid(pid_t pid, int *stat_loc, int options);

DESCRIPTION
The wait() and waitpid() functions shall obtain status information pertaining to one of the
caller ’s child processes. Various options permit status information to be obtained for child
processes that have terminated or stopped. If status information is available for two or more
child processes, the order in which their status is reported is unspecified.

The wait() function shall suspend execution of the calling thread until status information for one
of the terminated child processes of the calling process is available, or until delivery of a signal
whose action is either to execute a signal-catching function or to terminate the process. If more
than one thread is suspended in wait() or waitpid() awaiting termination of the same process,
exactly one thread shall return the process status at the time of the target process termination. If
status information is available prior to the call to wait(), return shall be immediate.

The waitpid() function shall be equivalent to wait() if the pid argument is (pid_t)−1 and the
options argument is 0. Otherwise, its behavior shall be modified by the values of the pid and
options arguments.

The pid argument specifies a set of child processes for which status is requested. The waitpid()
function shall only return the status of a child process from this set:

• If pid is equal to (pid_t)−1, status is requested for any child process. In this respect,
waitpid() is then equivalent to wait().

• If pid is greater than 0, it specifies the process ID of a single child process for which status is
requested.

• If pid is 0, status is requested for any child process whose process group ID is equal to that
of the calling process.

• If pid is less than (pid_t)−1, status is requested for any child process whose process group
ID is equal to the absolute value of pid.

The options argument is constructed from the bitwise-inclusive OR of zero or more of the
following flags, defined in the <sys/wait.h> header:

XSI WCONTINUED The waitpid() function shall report the status of any continued child process
specified by pid whose status has not been reported since it continued from a
job control stop.

WNOHANG The waitpid() function shall not suspend execution of the calling thread if
status is not immediately available for one of the child processes specified by
pid.

WUNTRACED The status of any child processes specified by pid that are stopped, and whose
status has not yet been reported since they stopped, shall also be reported to
the requesting process.

XSI If the calling process has SA_NOCLDWAIT set or has SIGCHLD set to SIG_IGN, and the process
has no unwaited-for children that were transformed into zombie processes, the calling thread
shall block until all of the children of the process containing the calling thread terminate, and
wait() and waitpid() shall fail and set errno to [ECHILD].

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2181

68659

68660

68661

68662

68663

68664

68665

68666

68667

68668

68669

68670

68671

68672

68673

68674

68675

68676

68677

68678

68679

68680

68681

68682

68683

68684

68685

68686

68687

68688

68689

68690

68691

68692

68693

68694

68695

68696

68697

68698

68699

68700

68701

68702

68703

wait() System Interfaces

If wait() or waitpid() return because the status of a child process is available, these functions
shall return a value equal to the process ID of the child process. In this case, if the value of the
argument stat_loc is not a null pointer, information shall be stored in the location pointed to by
stat_loc. The value stored at the location pointed to by stat_loc shall be 0 if and only if the status
returned is from a terminated child process that terminated by one of the following means:

1. The process returned 0 from main().

2. The process called _exit() or exit() with a status argument of 0.

3. The process was terminated because the last thread in the process terminated.

Regardless of its value, this information may be interpreted using the following macros, which
are defined in <sys/wait.h> and evaluate to integral expressions; the stat_val argument is the
integer value pointed to by stat_loc.

WIFEXITED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that terminated
normally.

WEXITSTATUS(stat_val)
If the value of WIFEXITED(stat_val) is non-zero, this macro evaluates to the low-order 8 bits
of the status argument that the child process passed to _exit() or exit(), or the value the child
process returned from main().

WIFSIGNALED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that terminated due
to the receipt of a signal that was not caught (see <signal.h>).

WTERMSIG(stat_val)
If the value of WIFSIGNALED(stat_val) is non-zero, this macro evaluates to the number of
the signal that caused the termination of the child process.

WIFSTOPPED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that is currently
stopped.

WSTOPSIG(stat_val)
If the value of WIFSTOPPED(stat_val) is non-zero, this macro evaluates to the number of the
signal that caused the child process to stop.

XSI WIFCONTINUED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that has continued
from a job control stop.

SPN It is unspecified whether the status value returned by calls to wait() or waitpid() for processes
created by posix_spawn() or posix_spawnp() can indicate a WIFSTOPPED(stat_val) before
subsequent calls to wait() or waitpid() indicate WIFEXITED(stat_val) as the result of an error
detected before the new process image starts executing.

It is unspecified whether the status value returned by calls to wait() or waitpid() for processes
created by posix_spawn() or posix_spawnp() can indicate a WIFSIGNALED(stat_val) if a signal is
sent to the parent’s process group after posix_spawn() or posix_spawnp() is called.

If the information pointed to by stat_loc was stored by a call to waitpid() that specified the
XSI WUNTRACED flag and did not specify the WCONTINUED flag, exactly one of the macros

WIFEXITED(*stat_loc), WIFSIGNALED(*stat_loc), and WIFSTOPPED(*stat_loc) shall evaluate to a
non-zero value.

2182 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68704

68705

68706

68707

68708

68709

68710

68711

68712

68713

68714

68715

68716

68717

68718

68719

68720

68721

68722

68723

68724

68725

68726

68727

68728

68729

68730

68731

68732

68733

68734

68735

68736

68737

68738

68739

68740

68741

68742

68743

68744

68745

68746

68747

System Interfaces wait()

If the information pointed to by stat_loc was stored by a call to waitpid() that specified the
XSI WUNTRACED and WCONTINUED flags, exactly one of the macros WIFEXITED(*stat_loc),
XSI WIFSIGNALED(*stat_loc), WIFSTOPPED(*stat_loc), and WIFCONTINUED(*stat_loc) shall

evaluate to a non-zero value.

If the information pointed to by stat_loc was stored by a call to waitpid() that did not specify the
XSI WUNTRACED or WCONTINUED flags, or by a call to the wait() function, exactly one of the

macros WIFEXITED(*stat_loc) and WIFSIGNALED(*stat_loc) shall evaluate to a non-zero value.

If the information pointed to by stat_loc was stored by a call to waitpid() that did not specify the
XSI WUNTRACED flag and specified the WCONTINUED flag, or by a call to the wait() function,
XSI exactly one of the macros WIFEXITED(*stat_loc), WIFSIGNALED(*stat_loc), and

WIFCONTINUED(*stat_loc) shall evaluate to a non-zero value.

If _POSIX_REALTIME_SIGNALS is defined, and the implementation queues the SIGCHLD
signal, then if wait() or waitpid() returns because the status of a child process is available, any
pending SIGCHLD signal associated with the process ID of the child process shall be discarded.
Any other pending SIGCHLD signals shall remain pending.

Otherwise, if SIGCHLD is blocked, if wait() or waitpid() return because the status of a child
process is available, any pending SIGCHLD signal shall be cleared unless the status of another
child process is available.

For all other conditions, it is unspecified whether child status will be available when a SIGCHLD
signal is delivered.

There may be additional implementation-defined circumstances under which wait() or waitpid()
report status. This shall not occur unless the calling process or one of its child processes
explicitly makes use of a non-standard extension. In these cases the interpretation of the
reported status is implementation-defined.

If a parent process terminates without waiting for all of its child processes to terminate, the
remaining child processes shall be assigned a new parent process ID corresponding to an
implementation-defined system process.

RETURN VALUE
If wait() or waitpid() returns because the status of a child process is available, these functions
shall return a value equal to the process ID of the child process for which status is reported. If
wait() or waitpid() returns due to the delivery of a signal to the calling process, −1 shall be
returned and errno set to [EINTR]. If waitpid() was invoked with WNOHANG set in options, it
has at least one child process specified by pid for which status is not available, and status is not
available for any process specified by pid, 0 is returned. Otherwise, (pid_t)−1 shall be returned,
and errno set to indicate the error.

ERRORS
The wait() function shall fail if:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EINTR] The function was interrupted by a signal. The value of the location pointed to
by stat_loc is undefined.

The waitpid() function shall fail if:

[ECHILD] The process specified by pid does not exist or is not a child of the calling
process, or the process group specified by pid does not exist or does not have
any member process that is a child of the calling process.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2183

68748

68749

68750

68751

68752

68753

68754

68755

68756

68757

68758

68759

68760

68761

68762

68763

68764

68765

68766

68767

68768

68769

68770

68771

68772

68773

68774

68775

68776

68777

68778

68779

68780

68781

68782

68783

68784

68785

68786

68787

68788

68789

68790

68791

wait() System Interfaces

[EINTR] The function was interrupted by a signal. The value of the location pointed to
by stat_loc is undefined.

[EINVAL] The options argument is not valid.

EXAMPLES

Waiting for a Child Process and then Checking its Status

The following example demonstrates the use of waitpid(), fork(), and the macros used to
interpret the status value returned by waitpid() (and wait()). The code segment creates a child
process which does some unspecified work. Meanwhile the parent loops performing calls to
waitpid() to monitor the status of the child. The loop terminates when child termination is
detected.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
...

pid_t child_pid, wpid;
int status;

child_pid = fork();
if (child_pid == −1) { /* fork() failed */

perror("fork");
exit(EXIT_FAILURE);

}

if (child_pid == 0) { /* This is the child */
/* Child does some work and then terminates */
...

} else { /* This is the parent */
do {

wpid = waitpid(child_pid, &status, WUNTRACED
#ifdef WCONTINUED /* Not all implementations support this */

| WCONTINUED
#endif

);
if (wpid == −1) {

perror("waitpid");
exit(EXIT_FAILURE);

}

if (WIFEXITED(status)) {
printf("child exited, status=%d\n", WEXITSTATUS(status));

} else if (WIFSIGNALED(status)) {
printf("child killed (signal %d)\n", WTERMSIG(status));

} else if (WIFSTOPPED(status)) {
printf("child stopped (signal %d)\n", WSTOPSIG(status));

#ifdef WIFCONTINUED /* Not all implementations support this */
} else if (WIFCONTINUED(status)) {

printf("child continued\n");

2184 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68792

68793

68794

68795

68796

68797

68798

68799

68800

68801

68802

68803

68804

68805

68806

68807

68808

68809

68810

68811

68812

68813

68814

68815

68816

68817

68818

68819

68820

68821

68822

68823

68824

68825

68826

68827

68828

68829

68830

68831

68832

68833

68834

68835

68836

System Interfaces wait()

#endif
} else { /* Non-standard case -- may never happen */

printf("Unexpected status (0x%x)\n", status);
}

} while (!WIFEXITED(status) && !WIFSIGNALED(status));
}

Waiting for a Child Process in a Signal Handler for SIGCHLD

The following example demonstrates how to use waitpid() in a signal handler for SIGCHLD
without passing −1 as the pid argument. (See the APPLICATION USAGE section below for the
reasons why passing a pid of −1 is not recommended.) The method used here relies on the
standard behavior of waitpid() when SIGCHLD is blocked. On historical non-conforming
systems, the status of some child processes might not be reported.

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

#define CHILDREN 10

static void
handle_sigchld(int signum, siginfo_t *sinfo, void *unused)
{

int status;

/*
* Obtain status information for the child which
* caused the SIGCHLD signal and write its exit code
* to stdout.
*/
if (sinfo->si_code != CLD_EXITED)
{

static char msg[] = "wrong si_code\n";
write(2, msg, sizeof msg − 1);

}
else if (waitpid(sinfo->si_pid, &status, 0) == −1)
{

static char msg[] = "waitpid() failed\n";
write(2, msg, sizeof msg − 1);

}
else if (!WIFEXITED(status))
{

static char msg[] = "WIFEXITED was false\n";
write(2, msg, sizeof msg − 1);

}
else
{

int code = WEXITSTATUS(status);
char buf[2];
buf[0] = ’0’ + code;

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2185

68837

68838

68839

68840

68841

68842

68843

68844

68845

68846

68847

68848

68849

68850

68851

68852

68853

68854

68855

68856

68857

68858

68859

68860

68861

68862

68863

68864

68865

68866

68867

68868

68869

68870

68871

68872

68873

68874

68875

68876

68877

68878

68879

68880

68881

68882

68883

68884

wait() System Interfaces

buf[1] = ’\n’;
write(1, buf, 2);

}
}

int
main(void)
{

int i;
pid_t pid;
struct sigaction sa;

sa.sa_flags = SA_SIGINFO;
sa.sa_sigaction = handle_sigchld;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGCHLD, &sa, NULL) == −1)
{

perror("sigaction");
exit(EXIT_FAILURE);

}

for (i = 0; i < CHILDREN; i++)
{

switch (pid = fork())
{
case −1:

perror("fork");
exit(EXIT_FAILURE);

case 0:
sleep(2);
_exit(i);

}
}

/* Wait for all the SIGCHLD signals, then terminate on SIGALRM */
alarm(3);
for (;;)

pause();
}

APPLICATION USAGE
Calls to wait() will collect information about any child process. This may result in interactions
with other interfaces that may be waiting for their own children (such as by use of system()). For
this and other reasons it is recommended that portable applications not use wait(), but instead
use waitpid(). For these same reasons, the use of waitpid() with a pid argument of −1, and the use
of waitid() with the idtype argument set to P_ALL, are also not recommended for portable
applications.

RATIONALE
A call to the wait() or waitpid() function only returns status on an immediate child process of the
calling process; that is, a child that was produced by a single fork() call (perhaps followed by an
exec or other function calls) from the parent. If a child produces grandchildren by further use of
fork(), none of those grandchildren nor any of their descendants affect the behavior of a wait()
from the original parent process. Nothing in this volume of POSIX.1-2008 prevents an
implementation from providing extensions that permit a process to get status from a grandchild

2186 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68885

68886

68887

68888

68889

68890

68891

68892

68893

68894

68895

68896

68897

68898

68899

68900

68901

68902

68903

68904

68905

68906

68907

68908

68909

68910

68911

68912

68913

68914

68915

68916

68917

68918

68919

68920

68921

68922

68923

68924

68925

68926

68927

68928

68929

68930

68931

68932

68933

System Interfaces wait()

or any other process, but a process that does not use such extensions must be guaranteed to see
status from only its direct children.

The waitpid() function is provided for three reasons:

1. To support job control

2. To permit a non-blocking version of the wait() function

3. To permit a library routine, such as system() or pclose(), to wait for its children without
interfering with other terminated children for which the process has not waited

The first two of these facilities are based on the wait3() function provided by 4.3 BSD. The
function uses the options argument, which is equivalent to an argument to wait3(). The
WUNTRACED flag is used only in conjunction with job control on systems supporting job
control. Its name comes from 4.3 BSD and refers to the fact that there are two types of stopped
processes in that implementation: processes being traced via the ptrace() debugging facility and
(untraced) processes stopped by job control signals. Since ptrace() is not part of this volume of
POSIX.1-2008, only the second type is relevant. The name WUNTRACED was retained because
its usage is the same, even though the name is not intuitively meaningful in this context.

The third reason for the waitpid() function is to permit independent sections of a process to
spawn and wait for children without interfering with each other. For example, the following
problem occurs in developing a portable shell, or command interpreter:

stream = popen("/bin/true");
(void) system("sleep 100");
(void) pclose(stream);

On all historical implementations, the final pclose() fails to reap the wait() status of the popen().

The status values are retrieved by macros, rather than given as specific bit encodings as they are
in most historical implementations (and thus expected by existing programs). This was
necessary to eliminate a limitation on the number of signals an implementation can support that
was inherent in the traditional encodings. This volume of POSIX.1-2008 does require that a status
value of zero corresponds to a process calling _exit(0), as this is the most common encoding
expected by existing programs. Some of the macro names were adopted from 4.3 BSD.

These macros syntactically operate on an arbitrary integer value. The behavior is undefined
unless that value is one stored by a successful call to wait() or waitpid() in the location pointed to
by the stat_loc argument. An early proposal attempted to make this clearer by specifying each
argument as *stat_loc rather than stat_val. However, that did not follow the conventions of other
specifications in this volume of POSIX.1-2008 or traditional usage. It also could have implied
that the argument to the macro must literally be *stat_loc; in fact, that value can be stored or
passed as an argument to other functions before being interpreted by these macros.

The extension that affects wait() and waitpid() and is common in historical implementations is
the ptrace() function. It is called by a child process and causes that child to stop and return a
status that appears identical to the status indicated by WIFSTOPPED. The status of ptrace()
children is traditionally returned regardless of the WUNTRACED flag (or by the wait()
function). Most applications do not need to concern themselves with such extensions because
they have control over what extensions they or their children use. However, applications, such
as command interpreters, that invoke arbitrary processes may see this behavior when those
arbitrary processes misuse such extensions.

Implementations that support core file creation or other implementation-defined actions on
termination of some processes traditionally provide a bit in the status returned by wait() to
indicate that such actions have occurred.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2187

68934

68935

68936

68937

68938

68939

68940

68941

68942

68943

68944

68945

68946

68947

68948

68949

68950

68951

68952

68953

68954

68955

68956

68957

68958

68959

68960

68961

68962

68963

68964

68965

68966

68967

68968

68969

68970

68971

68972

68973

68974

68975

68976

68977

68978

68979

wait() System Interfaces

Allowing the wait() family of functions to discard a pending SIGCHLD signal that is associated
with a successfully waited-for child process puts them into the sigwait() and sigwaitinfo()
category with respect to SIGCHLD.

This definition allows implementations to treat a pending SIGCHLD signal as accepted by the
process in wait(), with the same meaning of ‘‘accepted’’ as when that word is applied to the
sigwait() family of functions.

Allowing the wait() family of functions to behave this way permits an implementation to be able
to deal precisely with SIGCHLD signals.

In particular, an implementation that does accept (discard) the SIGCHLD signal can make the
following guarantees regardless of the queuing depth of signals in general (the list of waitable
children can hold the SIGCHLD queue):

1. If a SIGCHLD signal handler is established via sigaction() without the SA_RESETHAND
flag, SIGCHLD signals can be accurately counted; that is, exactly one SIGCHLD signal
will be delivered to or accepted by the process for every child process that terminates.

2. A single wait() issued from a SIGCHLD signal handler can be guaranteed to return
immediately with status information for a child process.

3. When SA_SIGINFO is requested, the SIGCHLD signal handler can be guaranteed to
receive a non-null pointer to a siginfo_t structure that describes a child process for which
a wait via waitpid() or waitid() will not block or fail.

4. The system() function will not cause the SIGCHLD handler of a process to be called as a
result of the fork()/exec executed within system() because system() will accept the
SIGCHLD signal when it performs a waitpid() for its child process. This is a desirable
behavior of system() so that it can be used in a library without causing side-effects to the
application linked with the library.

An implementation that does not permit the wait() family of functions to accept (discard) a
pending SIGCHLD signal associated with a successfully waited-for child, cannot make the
guarantees described above for the following reasons:

Guarantee #1
Although it might be assumed that reliable queuing of all SIGCHLD signals generated by
the system can make this guarantee, the counter-example is the case of a process that blocks
SIGCHLD and performs an indefinite loop of fork()/wait() operations. If the
implementation supports queued signals, then eventually the system will run out of
memory for the queue. The guarantee cannot be made because there must be some limit to
the depth of queuing.

Guarantees #2 and #3
These cannot be guaranteed unless the wait() family of functions accepts the SIGCHLD
signal. Otherwise, a fork()/wait() executed while SIGCHLD is blocked (as in the system()
function) will result in an invocation of the handler when SIGCHLD is unblocked, after the
process has disappeared.

Guarantee #4
Although possible to make this guarantee, system() would have to set the SIGCHLD
handler to SIG_DFL so that the SIGCHLD signal generated by its fork() would be discarded
(the SIGCHLD default action is to be ignored), then restore it to its previous setting. This
would have the undesirable side-effect of discarding all SIGCHLD signals pending to the
process.

2188 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

68980

68981

68982

68983

68984

68985

68986

68987

68988

68989

68990

68991

68992

68993

68994

68995

68996

68997

68998

68999

69000

69001

69002

69003

69004

69005

69006

69007

69008

69009

69010

69011

69012

69013

69014

69015

69016

69017

69018

69019

69020

69021

69022

69023

69024

System Interfaces wait()

FUTURE DIRECTIONS
None.

SEE ALSO
exec , exit(), fork(), system(), waitid()

XBD Section 4.11 (on page 110), <signal.h>, <sys/wait.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The processing of the SIGCHLD signal and the [ECHILD] error is clarified.

The semantics of WIFSTOPPED(stat_val), WIFEXITED(stat_val), and WIFSIGNALED(stat_val)
are defined with respect to posix_spawn() or posix_spawnp() for alignment with IEEE Std
1003.1d-1999.

The DESCRIPTION is updated for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/145 is applied, adding the example to the
EXAMPLES section.

Issue 7
SD5-XSH-ERN-202 is applied.

APPLICATION USAGE is added, recommending that the wait() function not be used.

An additional example for waitpid() is added.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2189

69025

69026

69027

69028

69029

69030

69031

69032

69033

69034

69035

69036

69037

69038

69039

69040

69041

69042

69043

69044

69045

69046

69047

69048

69049

69050

69051

waitid() System Interfaces

NAME
waitid — wait for a child process to change state

SYNOPSIS
#include <sys/wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

DESCRIPTION
The waitid() function shall suspend the calling thread until one child of the process containing
the calling thread changes state. It records the current state of a child in the structure pointed to
by infop. The fields of the structure pointed to by infop are filled in as described for the
SIGCHLD signal in <signal.h>. If a child process changed state prior to the call to waitid(),
waitid() shall return immediately. If more than one thread is suspended in wait(), waitid(), or
waitpid() waiting for termination of the same process, exactly one thread shall return the process
status at the time of the target process termination.

The idtype and id arguments are used to specify which children waitid() waits for.

If idtype is P_PID, waitid() shall wait for the child with a process ID equal to (pid_t)id.

If idtype is P_PGID, waitid() shall wait for any child with a process group ID equal to (pid_t)id.

If idtype is P_ALL, waitid() shall wait for any children and id is ignored.

The options argument is used to specify which state changes waitid() shall wait for. It is formed
by OR’ing together the following flags:

WCONTINUED Status shall be returned for any child that was stopped and has been
continued.

WEXITED Wait for processes that have exited.

WNOHANG Do not hang if no status is available; return immediately.

WNOWAIT Keep the process whose status is returned in infop in a waitable state. This
shall not affect the state of the process; the process may be waited for again
after this call completes.

WSTOPPED Status shall be returned for any child that has stopped upon receipt of a signal.

Applications shall specify at least one of the flags WEXITED, WSTOPPED, or WCONTINUED to
be OR’ed in with the options argument.

The application shall ensure that the infop argument points to a siginfo_t structure. If waitid()
returns because a child process was found that satisfied the conditions indicated by the
arguments idtype and options, then the structure pointed to by infop shall be filled in by the
system with the status of the process. The si_signo member shall always be equal to SIGCHLD.

RETURN VALUE
If WNOHANG was specified and status is not available for any process specified by idtype and
id, 0 shall be returned. If waitid() returns due to the change of state of one of its children, 0 shall
be returned. Otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The waitid() function shall fail if:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EINTR] The waitid() function was interrupted by a signal.

2190 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69052

69053

69054

69055

69056

69057

69058

69059

69060

69061

69062

69063

69064

69065

69066

69067

69068

69069

69070

69071

69072

69073

69074

69075

69076

69077

69078

69079

69080

69081

69082

69083

69084

69085

69086

69087

69088

69089

69090

69091

69092

System Interfaces waitid()

[EINVAL] An invalid value was specified for options, or idtype and id specify an invalid
set of processes.

EXAMPLES
None.

APPLICATION USAGE
Calls to waitid() with idtype equal to P_ALL will collect information about any child process.
This may result in interactions with other interfaces that may be waiting for their own children
(such as by use of system()). For this reason it is recommended that portable applications not
use waitid() with idtype of P_ALL. See also APPLICATION USAGE for wait().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , exit(), wait()

XBD <signal.h>, <sys/wait.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #060 is applied, updating the DESCRIPTION.

The waitid() function is moved from the XSI option to the Base.

APPLICATION USAGE is added, recommending that the waitid() function not be used with
idtype equal to P_ALL.

The description of the WNOHANG flag is updated.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2191

69093

69094

69095

69096

69097

69098

69099

69100

69101

69102

69103

69104

69105

69106

69107

69108

69109

69110

69111

69112

69113

69114

69115

69116

69117

69118

69119

69120

69121

waitpid() System Interfaces

NAME
waitpid — wait for a child process to stop or terminate

SYNOPSIS
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *stat_loc, int options);

DESCRIPTION
Refer to wait().

2192 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69122

69123

69124

69125

69126

69127

69128

System Interfaces wcpcpy()

NAME
wcpcpy — copy a wide-character string, returning a pointer to its end

SYNOPSIS
CX #include <wchar.h>

wchar_t *wcpcpy(wchar_t *restrict ws1, const wchar_t *restrict ws2);

DESCRIPTION
Refer to wcscpy().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2193

69129

69130

69131

69132

69133

69134

69135

wcpncpy() System Interfaces

NAME
wcpncpy — copy a fixed-size wide-character string, returning a pointer to its end

SYNOPSIS
CX #include <wchar.h>

wchar_t *wcpncpy(wchar_t restrict *ws1, const wchar_t *restrict ws2,
size_t n);

DESCRIPTION
Refer to wcsncpy().

2194 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69136

69137

69138

69139

69140

69141

69142

69143

System Interfaces wcrtomb()

NAME
wcrtomb — convert a wide-character code to a character (restartable)

SYNOPSIS
#include <stdio.h>

size_t wcrtomb(char *restrict s, wchar_t wc, mbstate_t *restrict ps);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

If s is a null pointer, the wcrtomb() function shall be equivalent to the call:

wcrtomb(buf, L’\0’, ps)

where buf is an internal buffer.

If s is not a null pointer, the wcrtomb() function shall determine the number of bytes needed to
represent the character that corresponds to the wide character given by wc (including any shift
sequences), and store the resulting bytes in the array whose first element is pointed to by s. At
most {MB_CUR_MAX} bytes are stored. If wc is a null wide character, a null byte shall be stored,
preceded by any shift sequence needed to restore the initial shift state. The resulting state
described shall be the initial conversion state.

If ps is a null pointer, the wcrtomb() function shall use its own internal mbstate_t object, which is
initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence. The implementation shall behave as if no function defined in this
volume of POSIX.1-2008 calls wcrtomb().

CX The wcrtomb() function need not be thread-safe if called with a NULL ps argument.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The wcrtomb() function shall return the number of bytes stored in the array object (including any
shift sequences). When wc is not a valid wide character, an encoding error shall occur. In this
case, the function shall store the value of the macro [EILSEQ] in errno and shall return (size_t)−1;
the conversion state shall be undefined.

ERRORS
The wcrtomb() function shall fail if:

[EILSEQ] An invalid wide-character code is detected.

The wcrtomb() function may fail if:

CX [EINVAL] ps points to an object that contains an invalid conversion state.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2195

69144

69145

69146

69147

69148

69149

69150

69151

69152

69153

69154

69155

69156

69157

69158

69159

69160

69161

69162

69163

69164

69165

69166

69167

69168

69169

69170

69171

69172

69173

69174

69175

69176

69177

69178

wcrtomb() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), wcsrtombs()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
In the DESCRIPTION, a note on using this function in a threaded application is added.

Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wcrtomb() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying that the wcrtomb() function
need not be thread-safe if called with a NULL ps argument.

Austin Group Interpretation 1003.1-2001 #170 is applied.

2196 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69179

69180

69181

69182

69183

69184

69185

69186

69187

69188

69189

69190

69191

69192

69193

69194

69195

69196

69197

69198

69199

69200

69201

System Interfaces wcscasecmp()

NAME
wcscasecmp, wcscasecmp_l, wcsncasecmp, wcsncasecmp_l — case-insensitive wide-character
string comparison

SYNOPSIS
CX #include <wchar.h>

int wcscasecmp(const wchar_t *ws1, const wchar_t *ws2);
int wcscasecmp_l(const wchar_t *ws1, const wchar_t *ws2,

locale_t locale);
int wcsncasecmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);
int wcsncasecmp_l(const wchar_t *ws1, const wchar_t *ws2,

size_t n, locale_t locale);

DESCRIPTION
The wcscasecmp() and wcsncasecmp() functions are the wide-character equivalent of the
strcasecmp() and strncasecmp() functions, respectively.

The wcscasecmp() and wcscasecmp_l() functions shall compare, while ignoring differences in case,
the wide-character string pointed to by ws1 to the wide-character string pointed to by ws2.

The wcsncasecmp() and wcsncasecmp_l() functions shall compare, while ignoring differences in
case, not more than n wide-characters from the wide-character string pointed to by ws1 to the
wide-character string pointed to by ws2.

When the LC_CTIME category of the current locale is from the POSIX locale, these functions
shall behave as if the strings had been converted to lowercase and then a byte comparison
performed. Otherwise, the results are unspecified.

The information for wcscasecmp_l() and wcsncasecmp_l() about the case of the characters comes
from the locale represented by locale.

RETURN VALUE
Upon completion, the wcscasecmp() and wcscasecmp_l() functions shall return an integer greater
than, equal to, or less than 0 if the wide-character string pointed to by ws1 is, ignoring case,
greater than, equal to, or less than the wide-character string pointed to by ws2, respectively.

Upon completion, the wcsncasecmp() and wcsncasecmp_l() functions shall return an integer
greater than, equal to, or less than 0 if the possibly null wide-character terminated string pointed
to by ws1 is, ignoring case, greater than, equal to, or less than the possibly null wide-character
terminated string pointed to by ws2, respectively.

No return values are reserved to indicate an error.

ERRORS
The wcscasecmp_l() and wcsncasecmp_l() functions may fail if:

[EINVAL] locale is not a valid locale object handle.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2197

69202

69203

69204

69205

69206

69207

69208

69209

69210

69211

69212

69213

69214

69215

69216

69217

69218

69219

69220

69221

69222

69223

69224

69225

69226

69227

69228

69229

69230

69231

69232

69233

69234

69235

69236

69237

wcscasecmp() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcasecmp(), wcscmp(), wcsncmp()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 7.

2198 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69238

69239

69240

69241

69242

69243

69244

69245

69246

69247

69248

69249

69250

System Interfaces wcscat()

NAME
wcscat — concatenate two wide-character strings

SYNOPSIS
#include <wchar.h>

wchar_t *wcscat(wchar_t *restrict ws1, const wchar_t *restrict ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wcscat() function shall append a copy of the wide-character string pointed to by ws2
(including the terminating null wide-character code) to the end of the wide-character string
pointed to by ws1. The initial wide-character code of ws2 shall overwrite the null wide-character
code at the end of ws1. If copying takes place between objects that overlap, the behavior is
undefined.

RETURN VALUE
The wcscat() function shall return ws1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsncat()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The Open Group Corrigendum U040/2 is applied. In the RETURN VALUE section, s1 is
changed to ws1.

The wcscat() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2199

69251

69252

69253

69254

69255

69256

69257

69258

69259

69260

69261

69262

69263

69264

69265

69266

69267

69268

69269

69270

69271

69272

69273

69274

69275

69276

69277

69278

69279

69280

69281

69282

69283

69284

69285

wcschr() System Interfaces

NAME
wcschr — wide-character string scanning operation

SYNOPSIS
#include <wchar.h>

wchar_t *wcschr(const wchar_t *ws, wchar_t wc);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wcschr() function shall locate the first occurrence of wc in the wide-character string pointed
to by ws. The application shall ensure that the value of wc is a character representable as a type
wchar_t and a wide-character code corresponding to a valid character in the current locale. The
terminating null wide-character code is considered to be part of the wide-character string.

RETURN VALUE
Upon completion, wcschr() shall return a pointer to the wide-character code, or a null pointer if
the wide-character code is not found.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsrchr()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

2200 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69286

69287

69288

69289

69290

69291

69292

69293

69294

69295

69296

69297

69298

69299

69300

69301

69302

69303

69304

69305

69306

69307

69308

69309

69310

69311

69312

69313

69314

69315

69316

69317

69318

System Interfaces wcscmp()

NAME
wcscmp — compare two wide-character strings

SYNOPSIS
#include <wchar.h>

int wcscmp(const wchar_t *ws1, const wchar_t *ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wcscmp() function shall compare the wide-character string pointed to by ws1 to the wide-
character string pointed to by ws2.

The sign of a non-zero return value shall be determined by the sign of the difference between the
values of the first pair of wide-character codes that differ in the objects being compared.

RETURN VALUE
Upon completion, wcscmp() shall return an integer greater than, equal to, or less than 0, if the
wide-character string pointed to by ws1 is greater than, equal to, or less than the wide-character
string pointed to by ws2, respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscasecmp(), wcsncmp()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2201

69319

69320

69321

69322

69323

69324

69325

69326

69327

69328

69329

69330

69331

69332

69333

69334

69335

69336

69337

69338

69339

69340

69341

69342

69343

69344

69345

69346

69347

69348

69349

69350

wcscoll() System Interfaces

NAME
wcscoll, wcscoll_l — wide-character string comparison using collating information

SYNOPSIS
#include <wchar.h>

int wcscoll(const wchar_t *ws1, const wchar_t *ws2);
CX int wcscoll_l(const wchar_t *ws1, const wchar_t *ws2,

locale_t locale);

DESCRIPTION
CX For wcscoll(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The wcscoll() and wcscoll_l() functions shall compare the wide-character string pointed to by
ws1 to the wide-character string pointed to by ws2, both interpreted as appropriate to the

CX LC_COLLATE category of the current locale of the process, or the locale represented by locale,
respectively.

CX The wcscoll() and wcscoll_l() functions shall not change the setting of errno if successful.

CX An application wishing to check for error situations should set errno to 0 before calling wcscoll()
or wcscoll_l(). If errno is non-zero on return, an error has occurred.

RETURN VALUE
CX Upon successful completion, wcscoll() and wcscoll_l() shall return an integer greater than, equal

to, or less than 0, according to whether the wide-character string pointed to by ws1 is greater
than, equal to, or less than the wide-character string pointed to by ws2, when both are

CX interpreted as appropriate to the current locale, or to the locale represented by locale,
CX respectively. On error, wcscoll() and wcscoll_l() shall set errno, but no return value is reserved

to indicate an error.

ERRORS
These functions may fail if:

CX [EINVAL] The ws1 or ws2 arguments contain wide-character codes outside the domain of
the collating sequence.

The wcscoll_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The wcsxfrm() and wcscmp() functions should be used for sorting large lists.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscmp(), wcsxfrm()

XBD <wchar.h>

2202 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69351

69352

69353

69354

69355

69356

69357

69358

69359

69360

69361

69362

69363

69364

69365

69366

69367

69368

69369

69370

69371

69372

69373

69374

69375

69376

69377

69378

69379

69380

69381

69382

69383

69384

69385

69386

69387

69388

69389

69390

69391

69392

System Interfaces wcscoll()

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 7
The wcscoll_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2203

69393

69394

69395

69396

69397

69398

69399

69400

wcscpy() System Interfaces

NAME
wcpcpy, wcscpy — copy a wide-character string, returning a pointer to its end

SYNOPSIS
#include <wchar.h>

CX wchar_t *wcpcpy(wchar_t *restrict ws1, const wchar_t *restrict ws2);
wchar_t *wcscpy(wchar_t *restrict ws1, const wchar_t *restrict ws2);

DESCRIPTION
CX For wcscpy(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The wcpcpy() and wcscpy() functions shall copy the wide-character string pointed to by ws2
(including the terminating null wide-character code) into the array pointed to by ws1.

The application shall ensure that there is room for at least wcslen(ws2)+1 wide characters in the
ws1 array, and that the ws2 and ws1 arrays do not overlap.

If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
CX The wcpcpy() function shall return a pointer to the terminating null wide-character code copied

into the ws1 buffer.

The wcscpy() function shall return ws1.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcpy(), wcsdup(), wcsncpy()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The wcscpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The wcpcpy() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

2204 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69401

69402

69403

69404

69405

69406

69407

69408

69409

69410

69411

69412

69413

69414

69415

69416

69417

69418

69419

69420

69421

69422

69423

69424

69425

69426

69427

69428

69429

69430

69431

69432

69433

69434

69435

69436

69437

69438

69439

69440

System Interfaces wcscspn()

NAME
wcscspn — get the length of a complementary wide substring

SYNOPSIS
#include <wchar.h>

size_t wcscspn(const wchar_t *ws1, const wchar_t *ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wcscspn() function shall compute the length (in wide characters) of the maximum initial
segment of the wide-character string pointed to by ws1 which consists entirely of wide-character
codes not from the wide-character string pointed to by ws2.

RETURN VALUE
The wcscspn() function shall return the length of the initial substring of ws1; no return value is
reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsspn()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The RETURN VALUE section is updated to indicate that wcscspn() returns the length of ws1,
rather than ws1 itself.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2205

69441

69442

69443

69444

69445

69446

69447

69448

69449

69450

69451

69452

69453

69454

69455

69456

69457

69458

69459

69460

69461

69462

69463

69464

69465

69466

69467

69468

69469

69470

69471

69472

69473

wcsdup() System Interfaces

NAME
wcsdup — duplicate a wide-character string

SYNOPSIS
CX #include <wchar.h>

wchar_t *wcsdup(const wchar_t *string);

DESCRIPTION
The wcsdup() function is the wide-character equivalent of the strdup() function.

The wcsdup() function shall return a pointer to a new wide-character string, allocated as if by a
call to malloc(), which is the duplicate of the wide-character string string. The returned pointer
can be passed to free(). A null pointer is returned if the new wide-character string cannot be
created.

RETURN VALUE
Upon successful completion, the wcsdup() function shall return a pointer to the newly allocated
wide-character string. Otherwise, it shall return a null pointer and set errno to indicate the error.

ERRORS
The wcsdup() function shall fail if:

[ENOMEM] Memory large enough for the duplicate string could not be allocated.

EXAMPLES
None.

APPLICATION USAGE
For functions that allocate memory as if by malloc(), the application should release such memory
when it is no longer required by a call to free(). For wcsdup(), this is the return value.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
free(), strdup(), wcscpy()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 7.

2206 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69474

69475

69476

69477

69478

69479

69480

69481

69482

69483

69484

69485

69486

69487

69488

69489

69490

69491

69492

69493

69494

69495

69496

69497

69498

69499

69500

69501

69502

69503

69504

System Interfaces wcsftime()

NAME
wcsftime — convert date and time to a wide-character string

SYNOPSIS
#include <wchar.h>

size_t wcsftime(wchar_t *restrict wcs, size_t maxsize,
const wchar_t *restrict format, const struct tm *restrict timeptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wcsftime() function shall be equivalent to the strftime() function, except that:

• The argument wcs points to the initial element of an array of wide characters into which
the generated output is to be placed.

• The argument maxsize indicates the maximum number of wide characters to be placed in
the output array.

• The argument format is a wide-character string and the conversion specifications are
replaced by corresponding sequences of wide characters.

• The return value indicates the number of wide characters placed in the output array.

If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
If the total number of resulting wide-character codes including the terminating null wide-
character code is no more than maxsize, wcsftime() shall return the number of wide-character
codes placed into the array pointed to by wcs, not including the terminating null wide-character
code. Otherwise, zero is returned and the contents of the array are unspecified.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strftime()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2207

69505

69506

69507

69508

69509

69510

69511

69512

69513

69514

69515

69516

69517

69518

69519

69520

69521

69522

69523

69524

69525

69526

69527

69528

69529

69530

69531

69532

69533

69534

69535

69536

69537

69538

69539

69540

69541

69542

69543

wcsftime() System Interfaces

Issue 5
Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the type of the format
argument is changed from const char * to const wchar_t *.

Issue 6
The wcsftime() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

2208 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69544

69545

69546

69547

69548

69549

System Interfaces wcslen()

NAME
wcslen, wcsnlen — get length of a fixed-sized wide-character string

SYNOPSIS
#include <wchar.h>

size_t wcslen(const wchar_t *ws);
CX size_t wcsnlen(const wchar_t *ws, size_t maxlen);

DESCRIPTION
CX For wcslen(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

The wcslen() function shall compute the number of wide-character codes in the wide-character
string to which ws points, not including the terminating null wide-character code.

CX The wcsnlen() function shall compute the smaller of the number of wide characters in the string
to which ws points, not including the terminating null wide-character code, and the value of
maxlen. The wcsnlen() function shall never examine more than the first maxlen characters of the
wide-character string pointed to by ws.

RETURN VALUE
The wcslen() function shall return the length of ws.

CX The wcsnlen() function shall return an integer containing the smaller of either the length of the
wide-character string pointed to by ws or maxlen.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strlen()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 7
The wcsnlen() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2209

69550

69551

69552

69553

69554

69555

69556

69557

69558

69559

69560

69561

69562

69563

69564

69565

69566

69567

69568

69569

69570

69571

69572

69573

69574

69575

69576

69577

69578

69579

69580

69581

69582

69583

69584

69585

69586

69587

69588

wcsncasecmp() System Interfaces

NAME
wcsncasecmp, wcsncasecmp_l — case-insensitive wide-character string comparison

SYNOPSIS
CX #include <wchar.h>

int wcsncasecmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);
int wcsncasecmp_l(const wchar_t *ws1, const wchar_t *ws2,

size_t n, locale_t locale);

DESCRIPTION
Refer to wcscasecmp().

2210 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69589

69590

69591

69592

69593

69594

69595

69596

69597

System Interfaces wcsncat()

NAME
wcsncat — concatenate a wide-character string with part of another

SYNOPSIS
#include <wchar.h>

wchar_t *wcsncat(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wcsncat() function shall append not more than n wide-character codes (a null wide-
character code and wide-character codes that follow it are not appended) from the array pointed
to by ws2 to the end of the wide-character string pointed to by ws1. The initial wide-character
code of ws2 shall overwrite the null wide-character code at the end of ws1. A terminating null
wide-character code shall always be appended to the result. If copying takes place between
objects that overlap, the behavior is undefined.

RETURN VALUE
The wcsncat() function shall return ws1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscat()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The wcsncat() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2211

69598

69599

69600

69601

69602

69603

69604

69605

69606

69607

69608

69609

69610

69611

69612

69613

69614

69615

69616

69617

69618

69619

69620

69621

69622

69623

69624

69625

69626

69627

69628

69629

69630

69631

69632

wcsncmp() System Interfaces

NAME
wcsncmp — compare part of two wide-character strings

SYNOPSIS
#include <wchar.h>

int wcsncmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wcsncmp() function shall compare not more than n wide-character codes (wide-character
codes that follow a null wide-character code are not compared) from the array pointed to by ws1
to the array pointed to by ws2.

The sign of a non-zero return value shall be determined by the sign of the difference between the
values of the first pair of wide-character codes that differ in the objects being compared.

RETURN VALUE
Upon successful completion, wcsncmp() shall return an integer greater than, equal to, or less
than 0, if the possibly null-terminated array pointed to by ws1 is greater than, equal to, or less
than the possibly null-terminated array pointed to by ws2, respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscasecmp(), wcscmp()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

2212 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69633

69634

69635

69636

69637

69638

69639

69640

69641

69642

69643

69644

69645

69646

69647

69648

69649

69650

69651

69652

69653

69654

69655

69656

69657

69658

69659

69660

69661

69662

69663

69664

69665

System Interfaces wcsncpy()

NAME
wcpncpy, wcsncpy — copy a fixed-size wide-character string, returning a pointer to its end

SYNOPSIS
#include <wchar.h>

CX wchar_t *wcpncpy(wchar_t restrict *ws1, const wchar_t *restrict ws2,
size_t n);

wchar_t *wcsncpy(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n);

DESCRIPTION
CX For wcsncpy(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The wcpncpy() and wcsncpy() functions shall copy not more than n wide-character codes (wide-
character codes that follow a null wide-character code are not copied) from the array pointed to
by ws2 to the array pointed to by ws1. If copying takes place between objects that overlap, the
behavior is undefined.

If the array pointed to by ws2 is a wide-character string that is shorter than n wide-character
codes, null wide-character codes shall be appended to the copy in the array pointed to by ws1,
until n wide-character codes in all are written.

RETURN VALUE
CX If any null wide-character codes were written into the destination, the wcpncpy() function shall

return the address of the first such null wide-character code. Otherwise, it shall return &ws1[n].

The wcsncpy() function shall return ws1.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
If there is no null wide-character code in the first n wide-character codes of the array pointed to
by ws2, the result is not null-terminated.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncpy(), wcscpy()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2213

69666

69667

69668

69669

69670

69671

69672

69673

69674

69675

69676

69677

69678

69679

69680

69681

69682

69683

69684

69685

69686

69687

69688

69689

69690

69691

69692

69693

69694

69695

69696

69697

69698

69699

69700

69701

69702

69703

69704

69705

wcsncpy() System Interfaces

Issue 6
The wcsncpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The wcpncpy() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 1.

2214 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69706

69707

69708

69709

69710

System Interfaces wcsnlen()

NAME
wcsnlen — get length of a fixed-sized wide-character string

SYNOPSIS
CX #include <wchar.h>

size_t wcsnlen(const wchar_t *ws, size_t maxlen);

DESCRIPTION
Refer to wcslen().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2215

69711

69712

69713

69714

69715

69716

69717

wcsnrtombs() System Interfaces

NAME
wcsnrtombs — convert wide-character string to multi-byte string

SYNOPSIS
CX #include <wchar.h>

size_t wcsnrtombs(char *restrict dst, const wchar_t **restrict src,
size_t nwc, size_t len, mbstate_t *restrict ps);

DESCRIPTION
Refer to wcsrtombs().

2216 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69718

69719

69720

69721

69722

69723

69724

69725

System Interfaces wcspbrk()

NAME
wcspbrk — scan a wide-character string for a wide-character code

SYNOPSIS
#include <wchar.h>

wchar_t *wcspbrk(const wchar_t *ws1, const wchar_t *ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wcspbrk() function shall locate the first occurrence in the wide-character string pointed to by
ws1 of any wide-character code from the wide-character string pointed to by ws2.

RETURN VALUE
Upon successful completion, wcspbrk() shall return a pointer to the wide-character code or a null
pointer if no wide-character code from ws2 occurs in ws1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcschr(), wcsrchr()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2217

69726

69727

69728

69729

69730

69731

69732

69733

69734

69735

69736

69737

69738

69739

69740

69741

69742

69743

69744

69745

69746

69747

69748

69749

69750

69751

69752

69753

69754

wcsrchr() System Interfaces

NAME
wcsrchr — wide-character string scanning operation

SYNOPSIS
#include <wchar.h>

wchar_t *wcsrchr(const wchar_t *ws, wchar_t wc);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wcsrchr() function shall locate the last occurrence of wc in the wide-character string pointed
to by ws. The application shall ensure that the value of wc is a character representable as a type
wchar_t and a wide-character code corresponding to a valid character in the current locale. The
terminating null wide-character code shall be considered to be part of the wide-character string.

RETURN VALUE
Upon successful completion, wcsrchr() shall return a pointer to the wide-character code or a null
pointer if wc does not occur in the wide-character string.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcschr()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

2218 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69755

69756

69757

69758

69759

69760

69761

69762

69763

69764

69765

69766

69767

69768

69769

69770

69771

69772

69773

69774

69775

69776

69777

69778

69779

69780

69781

69782

69783

69784

69785

69786

69787

System Interfaces wcsrtombs()

NAME
wcsnrtombs, wcsrtombs — convert a wide-character string to a character string (restartable)

SYNOPSIS
#include <wchar.h>

CX size_t wcsnrtombs(char *restrict dst, const wchar_t **restrict src,
size_t nwc, size_t len, mbstate_t *restrict ps);

size_t wcsrtombs(char *restrict dst, const wchar_t **restrict src,
size_t len, mbstate_t *restrict ps);

DESCRIPTION
CX For wcsrtombs(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

The wcsrtombs() function shall convert a sequence of wide characters from the array indirectly
pointed to by src into a sequence of corresponding characters, beginning in the conversion state
described by the object pointed to by ps. If dst is not a null pointer, the converted characters
shall then be stored into the array pointed to by dst. Conversion continues up to and including a
terminating null wide character, which shall also be stored. Conversion shall stop earlier in the
following cases:

• When a code is reached that does not correspond to a valid character

• When the next character would exceed the limit of len total bytes to be stored in the array
pointed to by dst (and dst is not a null pointer)

Each conversion shall take place as if by a call to the wcrtomb() function.

If dst is not a null pointer, the pointer object pointed to by src shall be assigned either a null
pointer (if conversion stopped due to reaching a terminating null wide character) or the address
just past the last wide character converted (if any). If conversion stopped due to reaching a
terminating null wide character, the resulting state described shall be the initial conversion state.

If ps is a null pointer, the wcsrtombs() function shall use its own internal mbstate_t object, which
is initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence.

CX The wcsrtombs() function need not be thread-safe if called with a NULL ps argument.

The wcsnrtombs() function shall be equivalent to the wcsrtombs() function, except that the
conversion is limited to the first nwc wide characters.

The behavior of these functions shall be affected by the LC_CTYPE category of the current locale.

The implementation shall behave as if no function defined in System Interfaces volume of
POSIX.1-2008 calls these functions.

RETURN VALUE
If conversion stops because a code is reached that does not correspond to a valid character, an
encoding error occurs. In this case, these functions shall store the value of the macro [EILSEQ] in
errno and return (size_t)−1; the conversion state is undefined. Otherwise, these functions shall
return the number of bytes in the resulting character sequence, not including the terminating
null (if any).

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2219

69788

69789

69790

69791

69792

69793

69794

69795

69796

69797

69798

69799

69800

69801

69802

69803

69804

69805

69806

69807

69808

69809

69810

69811

69812

69813

69814

69815

69816

69817

69818

69819

69820

69821

69822

69823

69824

69825

69826

69827

69828

69829

wcsrtombs() System Interfaces

ERRORS
These functions shall fail if:

[EILSEQ] A wide-character code does not correspond to a valid character.

These functions may fail if:

CX [EINVAL] ps points to an object that contains an invalid conversion state.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), wcrtomb()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
In the DESCRIPTION, a note on using this function in a threaded application is added.

Extensions beyond the ISO C standard are marked.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wcsrtombs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying that the wcsrtombs() function
need not be thread-safe if called with a NULL ps argument.

Austin Group Interpretation 1003.1-2001 #170 is applied.

The wcnsrtombs() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 1.

2220 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69830

69831

69832

69833

69834

69835

69836

69837

69838

69839

69840

69841

69842

69843

69844

69845

69846

69847

69848

69849

69850

69851

69852

69853

69854

69855

69856

69857

69858

69859

System Interfaces wcsspn()

NAME
wcsspn — get the length of a wide substring

SYNOPSIS
#include <wchar.h>

size_t wcsspn(const wchar_t *ws1, const wchar_t *ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wcsspn() function shall compute the length (in wide characters) of the maximum initial
segment of the wide-character string pointed to by ws1 which consists entirely of wide-character
codes from the wide-character string pointed to by ws2.

RETURN VALUE
The wcsspn() function shall return the length of the initial substring of ws1; no return value is
reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscspn()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The RETURN VALUE section is updated to indicate that wcsspn() returns the length of ws1
rather that ws1 itself.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2221

69860

69861

69862

69863

69864

69865

69866

69867

69868

69869

69870

69871

69872

69873

69874

69875

69876

69877

69878

69879

69880

69881

69882

69883

69884

69885

69886

69887

69888

69889

69890

69891

69892

wcsstr() System Interfaces

NAME
wcsstr — find a wide-character substring

SYNOPSIS
#include <wchar.h>

wchar_t *wcsstr(const wchar_t *restrict ws1,
const wchar_t *restrict ws2);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wcsstr() function shall locate the first occurrence in the wide-character string pointed to by
ws1 of the sequence of wide characters (excluding the terminating null wide character) in the
wide-character string pointed to by ws2.

RETURN VALUE
Upon successful completion, wcsstr() shall return a pointer to the located wide-character string,
or a null pointer if the wide-character string is not found.

If ws2 points to a wide-character string with zero length, the function shall return ws1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcschr()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The wcsstr() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

2222 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69893

69894

69895

69896

69897

69898

69899

69900

69901

69902

69903

69904

69905

69906

69907

69908

69909

69910

69911

69912

69913

69914

69915

69916

69917

69918

69919

69920

69921

69922

69923

69924

69925

69926

69927

System Interfaces wcstod()

NAME
wcstod, wcstof, wcstold — convert a wide-character string to a double-precision number

SYNOPSIS
#include <wchar.h>

double wcstod(const wchar_t *restrict nptr, wchar_t **restrict endptr);
float wcstof(const wchar_t *restrict nptr, wchar_t **restrict endptr);
long double wcstold(const wchar_t *restrict nptr,

wchar_t **restrict endptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall convert the initial portion of the wide-character string pointed to by nptr to
double, float, and long double representation, respectively. First, they shall decompose the
input wide-character string into three parts:

1. An initial, possibly empty, sequence of white-space wide-character codes (as specified by
iswspace())

2. A subject sequence interpreted as a floating-point constant or representing infinity or
NaN

3. A final wide-character string of one or more unrecognized wide-character codes,
including the terminating null wide-character code of the input wide-character string

Then they shall attempt to convert the subject sequence to a floating-point number, and return
the result.

The expected form of the subject sequence is an optional ’+’ or ’−’ sign, then one of the
following:

• A non-empty sequence of decimal digits optionally containing a radix character; then an
optional exponent part consisting of the wide character ’e’ or the wide character ’E’,
optionally followed by a ’+’ or ’−’ wide character, and then followed by one or more
decimal digits

• A 0x or 0X, then a non-empty sequence of hexadecimal digits optionally containing a radix
character; then an optional binary exponent part consisting of the wide character ’p’ or
the wide character ’P’, optionally followed by a ’+’ or ’−’ wide character, and then
followed by one or more decimal digits

• One of INF or INFINITY, or any other wide string equivalent except for case

• One of NAN or NAN(n-wchar-sequenceopt), or any other wide string ignoring case in the
NAN part, where:

n-wchar-sequence:
digit
nondigit
n-wchar-sequence digit
n-wchar-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input wide string,
starting with the first non-white-space wide character, that is of the expected form. The subject
sequence contains no wide characters if the input wide string is not of the expected form.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2223

69928

69929

69930

69931

69932

69933

69934

69935

69936

69937

69938

69939

69940

69941

69942

69943

69944

69945

69946

69947

69948

69949

69950

69951

69952

69953

69954

69955

69956

69957

69958

69959

69960

69961

69962

69963

69964

69965

69966

69967

69968

69969

69970

69971

wcstod() System Interfaces

If the subject sequence has the expected form for a floating-point number, the sequence of wide
characters starting with the first digit or the radix character (whichever occurs first) shall be
interpreted as a floating constant according to the rules of the C language, except that the radix
character shall be used in place of a period, and that if neither an exponent part nor a radix
character appears in a decimal floating-point number, or if a binary exponent part does not
appear in a hexadecimal floating-point number, an exponent part of the appropriate type with
value zero shall be assumed to follow the last digit in the string. If the subject sequence begins
with a minus-sign, the sequence shall be interpreted as negated. A wide-character sequence INF
or INFINITY shall be interpreted as an infinity, if representable in the return type, else as if it
were a floating constant that is too large for the range of the return type. A wide-character
sequence NAN or NAN(n-wchar-sequenceopt) shall be interpreted as a quiet NaN, if supported in
the return type, else as if it were a subject sequence part that does not have the expected form;
the meaning of the n-wchar sequences is implementation-defined. A pointer to the final wide
string shall be stored in the object pointed to by endptr, provided that endptr is not a null pointer.

If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the
conversion shall be rounded in an implementation-defined manner.

CX The radix character shall be as defined in the locale of the process (category LC_NUMERIC). In
the POSIX locale, or in a locale where the radix character is not defined, the radix character shall
default to a <period> (’.’).

CX In other than the C or POSIX locales, other implementation-defined subject sequences may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be
performed; the value of nptr shall be stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

CX The wcstod() function shall not change the setting of errno if successful.

Since 0 is returned on error and is also a valid return on success, an application wishing to check
for error situations should set errno to 0, then call wcstod(), wcstof(), or wcstold(), then check
errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value. If no conversion

CX could be performed, 0 shall be returned and errno may be set to [EINVAL].

If the correct value is outside the range of representable values, ±HUGE_VAL, ±HUGE_VALF, or
±HUGE_VALL shall be returned (according to the sign of the value), and errno shall be set to
[ERANGE].

If the correct value would cause underflow, a value whose magnitude is no greater than the
smallest normalized positive number in the return type shall be returned and errno set to
[ERANGE].

ERRORS
The wcstod() function shall fail if:

[ERANGE] The value to be returned would cause overflow or underflow.

The wcstod() function may fail if:

CX [EINVAL] No conversion could be performed.

2224 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

69972

69973

69974

69975

69976

69977

69978

69979

69980

69981

69982

69983

69984

69985

69986

69987

69988

69989

69990

69991

69992

69993

69994

69995

69996

69997

69998

69999

70000

70001

70002

70003

70004

70005

70006

70007

70008

70009

70010

70011

70012

70013

System Interfaces wcstod()

EXAMPLES
None.

APPLICATION USAGE
If the subject sequence has the hexadecimal form and FLT_RADIX is not a power of 2, and the
result is not exactly representable, the result should be one of the two numbers in the
appropriate internal format that are adjacent to the hexadecimal floating source value, with the
extra stipulation that the error should have a correct sign for the current rounding direction.

If the subject sequence has the decimal form and at most DECIMAL_DIG (defined in <float.h>)
significant digits, the result should be correctly rounded. If the subject sequence D has the
decimal form and more than DECIMAL_DIG significant digits, consider the two bounding,
adjacent decimal strings L and U, both having DECIMAL_DIG significant digits, such that the
values of L, D, and U satisfy "L <= D <= U". The result should be one of the (equal or
adjacent) values that would be obtained by correctly rounding L and U according to the current
rounding direction, with the extra stipulation that the error with respect to D should have a
correct sign for the current rounding direction.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), iswspace(), localeconv(), setlocale(), wcstol()

XBD Chapter 7 (on page 135), <float.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The wcstod() prototype is updated.

• The wcstof() and wcstold() functions are added.

• If the correct value for wcstod() would cause underflow, the return value changed from 0
(as specified in Issue 5) to the smallest normalized positive number.

• The DESCRIPTION, RETURN VALUE, and APPLICATION USAGE sections are
extensively updated.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 1 is incorporated.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/66 is applied, correcting the second
paragraph in the RETURN VALUE section.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2225

70014

70015

70016

70017

70018

70019

70020

70021

70022

70023

70024

70025

70026

70027

70028

70029

70030

70031

70032

70033

70034

70035

70036

70037

70038

70039

70040

70041

70042

70043

70044

70045

70046

70047

70048

70049

70050

70051

70052

70053

70054

70055

wcstod() System Interfaces

Issue 7
Austin Group Interpretation 1003.1-2001 #015 is applied.

2226 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70056

70057

System Interfaces wcstoimax()

NAME
wcstoimax, wcstoumax — convert a wide-character string to an integer type

SYNOPSIS
#include <stddef.h>
#include <inttypes.h>

intmax_t wcstoimax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

uintmax_t wcstoumax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall be equivalent to the wcstol(), wcstoll(), wcstoul(), and wcstoull() functions,
respectively, except that the initial portion of the wide string shall be converted to intmax_t and
uintmax_t representation, respectively.

RETURN VALUE
These functions shall return the converted value, if any.

If no conversion could be performed, zero shall be returned. If the correct value is outside the
range of representable values, {INTMAX_MAX}, {INTMAX_MIN}, or {UINTMAX_MAX} shall
be returned (according to the return type and sign of the value, if any), and errno shall be set to
[ERANGE].

ERRORS
These functions shall fail if:

[EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

These functions may fail if:

[EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcstol(), wcstoul()

XBD <inttypes.h>, <stddef.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2227

70058

70059

70060

70061

70062

70063

70064

70065

70066

70067

70068

70069

70070

70071

70072

70073

70074

70075

70076

70077

70078

70079

70080

70081

70082

70083

70084

70085

70086

70087

70088

70089

70090

70091

70092

70093

70094

70095

70096

70097

70098

wcstok() System Interfaces

NAME
wcstok — split a wide-character string into tokens

SYNOPSIS
#include <wchar.h>

wchar_t *wcstok(wchar_t *restrict ws1, const wchar_t *restrict ws2,
wchar_t **restrict ptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

A sequence of calls to wcstok() shall break the wide-character string pointed to by ws1 into a
sequence of tokens, each of which shall be delimited by a wide-character code from the wide-
character string pointed to by ws2. The ptr argument points to a caller-provided wchar_t pointer
into which the wcstok() function shall store information necessary for it to continue scanning the
same wide-character string.

The first call in the sequence has ws1 as its first argument, and is followed by calls with a null
pointer as their first argument. The separator string pointed to by ws2 may be different from call
to call.

The first call in the sequence shall search the wide-character string pointed to by ws1 for the first
wide-character code that is not contained in the current separator string pointed to by ws2. If no
such wide-character code is found, then there are no tokens in the wide-character string pointed
to by ws1 and wcstok() shall return a null pointer. If such a wide-character code is found, it shall
be the start of the first token.

The wcstok() function shall then search from there for a wide-character code that is contained in
the current separator string. If no such wide-character code is found, the current token extends
to the end of the wide-character string pointed to by ws1, and subsequent searches for a token
shall return a null pointer. If such a wide-character code is found, it shall be overwritten by a
null wide character, which terminates the current token. The wcstok() function shall save a
pointer to the following wide-character code, from which the next search for a token shall start.

Each subsequent call, with a null pointer as the value of the first argument, shall start searching
from the saved pointer and behave as described above.

The implementation shall behave as if no function calls wcstok().

RETURN VALUE
Upon successful completion, the wcstok() function shall return a pointer to the first wide-
character code of a token. Otherwise, if there is no token, wcstok() shall return a null pointer.

ERRORS
No errors are defined.

2228 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70099

70100

70101

70102

70103

70104

70105

70106

70107

70108

70109

70110

70111

70112

70113

70114

70115

70116

70117

70118

70119

70120

70121

70122

70123

70124

70125

70126

70127

70128

70129

70130

70131

70132

70133

70134

70135

System Interfaces wcstok()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, a third argument is
added to the definition of wcstok() in the SYNOPSIS.

Issue 6
The wcstok() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2229

70136

70137

70138

70139

70140

70141

70142

70143

70144

70145

70146

70147

70148

70149

70150

70151

70152

wcstol() System Interfaces

NAME
wcstol, wcstoll — convert a wide-character string to a long integer

SYNOPSIS
#include <wchar.h>

long wcstol(const wchar_t *restrict nptr, wchar_t **restrict endptr,
int base);

long long wcstoll(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

These functions shall convert the initial portion of the wide-character string pointed to by nptr to
long and long long, respectively. First, they shall decompose the input string into three parts:

1. An initial, possibly empty, sequence of white-space wide-character codes (as specified by
iswspace())

2. A subject sequence interpreted as an integer represented in some radix determined by the
value of base

3. A final wide-character string of one or more unrecognized wide-character codes,
including the terminating null wide-character code of the input wide-character string

Then they shall attempt to convert the subject sequence to an integer, and return the result.

If base is 0, the expected form of the subject sequence is that of a decimal constant, octal constant,
or hexadecimal constant, any of which may be preceded by a ’+’ or ’−’ sign. A decimal
constant begins with a non-zero digit, and consists of a sequence of decimal digits. An octal
constant consists of the prefix ’0’ optionally followed by a sequence of the digits ’0’ to ’7’
only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the
decimal digits and letters ’a’ (or ’A’) to ’f’ (or ’F’) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally preceded
by a ’+’ or ’−’ sign, but not including an integer suffix. The letters from ’a’ (or ’A’) to ’z’
(or ’Z’) inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less
than that of base shall be permitted. If the value of base is 16, the wide-character code
representations of 0x or 0X may optionally precede the sequence of letters and digits, following
the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide-character
string, starting with the first non-white-space wide-character code that is of the expected form.
The subject sequence contains no wide-character codes if the input wide-character string is
empty or consists entirely of white-space wide-character code, or if the first non-white-space
wide-character code is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and base is 0, the sequence of wide-character codes
starting with the first digit shall be interpreted as an integer constant. If the subject sequence has
the expected form and the value of base is between 2 and 36, it shall be used as the base for
conversion, ascribing to each letter its value as given above. If the subject sequence begins with a
minus-sign, the value resulting from the conversion shall be negated. A pointer to the final
wide-character string shall be stored in the object pointed to by endptr, provided that endptr is
not a null pointer.

2230 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70153

70154

70155

70156

70157

70158

70159

70160

70161

70162

70163

70164

70165

70166

70167

70168

70169

70170

70171

70172

70173

70174

70175

70176

70177

70178

70179

70180

70181

70182

70183

70184

70185

70186

70187

70188

70189

70190

70191

70192

70193

70194

70195

70196

70197

70198

System Interfaces wcstol()

CX In other than the C or POSIX locales, other implementation-defined subject sequences may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be
performed; the value of nptr shall be stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

CX These functions shall not change the setting of errno if successful.

Since 0, {LONG_MIN} or {LLONG_MIN} and {LONG_MAX} or {LLONG_MAX} are returned on
error and are also valid returns on success, an application wishing to check for error situations
should set errno to 0, then call wcstol() or wcstoll(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value, if any. If no

CX conversion could be performed, 0 shall be returned and errno may be set to indicate the error. If
the correct value is outside the range of representable values, {LONG_MIN}, {LONG_MAX},
{LLONG_MIN}, or {LLONG_MAX} shall be returned (according to the sign of the value), and
errno set to [ERANGE].

ERRORS
These functions shall fail if:

CX [EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

These functions may fail if:

CX [EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), iswalpha(), wcstod()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2231

70199

70200

70201

70202

70203

70204

70205

70206

70207

70208

70209

70210

70211

70212

70213

70214

70215

70216

70217

70218

70219

70220

70221

70222

70223

70224

70225

70226

70227

70228

70229

70230

70231

70232

70233

70234

70235

70236

wcstol() System Interfaces

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The wcstol() prototype is updated.

• The wcstoll() function is added.

Issue 7
SD5-XSH-ERN-56 is applied, removing the reference to unsigned long and unsigned long long
from the DESCRIPTION.

2232 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70237

70238

70239

70240

70241

70242

70243

70244

70245

70246

System Interfaces wcstold()

NAME
wcstold — convert a wide-character string to a double-precision number

SYNOPSIS
#include <wchar.h>

long double wcstold(const wchar_t *restrict nptr,
wchar_t **restrict endptr);

DESCRIPTION
Refer to wcstod().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2233

70247

70248

70249

70250

70251

70252

70253

70254

wcstoll() System Interfaces

NAME
wcstoll — convert a wide-character string to a long integer

SYNOPSIS
#include <wchar.h>

long long wcstoll(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
Refer to wcstol().

2234 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70255

70256

70257

70258

70259

70260

70261

70262

System Interfaces wcstombs()

NAME
wcstombs — convert a wide-character string to a character string

SYNOPSIS
#include <stdlib.h>

size_t wcstombs(char *restrict s, const wchar_t *restrict pwcs,
size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wcstombs() function shall convert the sequence of wide-character codes that are in the array
pointed to by pwcs into a sequence of characters that begins in the initial shift state and store
these characters into the array pointed to by s, stopping if a character would exceed the limit of n
total bytes or if a null byte is stored. Each wide-character code shall be converted as if by a call to
wctomb(), except that the shift state of wctomb() shall not be affected.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

No more than n bytes shall be modified in the array pointed to by s. If copying takes place
CX between objects that overlap, the behavior is undefined. If s is a null pointer, wcstombs() shall

return the length required to convert the entire array regardless of the value of n, but no values
are stored.

The wcstombs() function need not be thread-safe.

RETURN VALUE
If a wide-character code is encountered that does not correspond to a valid character (of one or
more bytes each), wcstombs() shall return (size_t)−1. Otherwise, wcstombs() shall return the
number of bytes stored in the character array, not including any terminating null byte. The array
shall not be null-terminated if the value returned is n.

ERRORS
The wcstombs() function shall fail if:

CX [EILSEQ] A wide-character code does not correspond to a valid character.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mblen(), mbtowc(), mbstowcs(), wctomb()

XBD <stdlib.h>

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2235

70263

70264

70265

70266

70267

70268

70269

70270

70271

70272

70273

70274

70275

70276

70277

70278

70279

70280

70281

70282

70283

70284

70285

70286

70287

70288

70289

70290

70291

70292

70293

70294

70295

70296

70297

70298

70299

70300

70301

70302

wcstombs() System Interfaces

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION states the effect of when s is a null pointer.

• The [EILSEQ] error condition is added.

The wcstombs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretations 1003.1-2001 #156 and #170 are applied.

2236 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70303

70304

70305

70306

70307

70308

70309

70310

70311

70312

System Interfaces wcstoul()

NAME
wcstoul, wcstoull — convert a wide-character string to an unsigned long

SYNOPSIS
#include <wchar.h>

unsigned long wcstoul(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

unsigned long long wcstoull(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wcstoul() and wcstoull() functions shall convert the initial portion of the wide-character
string pointed to by nptr to unsigned long and unsigned long long representation, respectively.
First, they shall decompose the input wide-character string into three parts:

1. An initial, possibly empty, sequence of white-space wide-character codes (as specified by
iswspace())

2. A subject sequence interpreted as an integer represented in some radix determined by the
value of base

3. A final wide-character string of one or more unrecognized wide-character codes,
including the terminating null wide-character code of the input wide-character string

Then they shall attempt to convert the subject sequence to an unsigned integer, and return the
result.

If base is 0, the expected form of the subject sequence is that of a decimal constant, octal constant,
or hexadecimal constant, any of which may be preceded by a ’+’ or ’−’ sign. A decimal
constant begins with a non-zero digit, and consists of a sequence of decimal digits. An octal
constant consists of the prefix ’0’ optionally followed by a sequence of the digits ’0’ to ’7’
only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the
decimal digits and letters ’a’ (or ’A’) to ’f’ (or ’F’) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally preceded
by a ’+’ or ’−’ sign, but not including an integer suffix. The letters from ’a’ (or ’A’) to ’z’
(or ’Z’) inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less
than that of base shall be permitted. If the value of base is 16, the wide-character codes 0x or 0X
may optionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide-character
string, starting with the first wide-character code that is not white space and is of the expected
form. The subject sequence contains no wide-character codes if the input wide-character string is
empty or consists entirely of white-space wide-character codes, or if the first wide-character
code that is not white space is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and base is 0, the sequence of wide-character codes
starting with the first digit shall be interpreted as an integer constant. If the subject sequence has
the expected form and the value of base is between 2 and 36, it shall be used as the base for
conversion, ascribing to each letter its value as given above. If the subject sequence begins with a
minus-sign, the value resulting from the conversion shall be negated. A pointer to the final
wide-character string shall be stored in the object pointed to by endptr, provided that endptr is

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2237

70313

70314

70315

70316

70317

70318

70319

70320

70321

70322

70323

70324

70325

70326

70327

70328

70329

70330

70331

70332

70333

70334

70335

70336

70337

70338

70339

70340

70341

70342

70343

70344

70345

70346

70347

70348

70349

70350

70351

70352

70353

70354

70355

70356

70357

70358

wcstoul() System Interfaces

not a null pointer.

CX In other than the C or POSIX locales, other implementation-defined subject sequences may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be
performed; the value of nptr shall be stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

CX The wcstoul() function shall not change the setting of errno if successful.

Since 0, {ULONG_MAX}, and {ULLONG_MAX} are returned on error and 0 is also a valid return
on success, an application wishing to check for error situations should set errno to 0, then call
wcstoul() or wcstoull(), then check errno.

RETURN VALUE
Upon successful completion, the wcstoul() and wcstoull() functions shall return the converted

CX value, if any. If no conversion could be performed, 0 shall be returned and errno may be set to
indicate the error. If the correct value is outside the range of representable values,
{ULONG_MAX} or {ULLONG_MAX} respectively shall be returned and errno set to [ERANGE].

ERRORS
These functions shall fail if:

CX [EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

These functions may fail if:

CX [EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), iswalpha(), wcstod(), wcstol()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
Extensions beyond the ISO C standard are marked.

2238 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70359

70360

70361

70362

70363

70364

70365

70366

70367

70368

70369

70370

70371

70372

70373

70374

70375

70376

70377

70378

70379

70380

70381

70382

70383

70384

70385

70386

70387

70388

70389

70390

70391

70392

70393

70394

70395

70396

System Interfaces wcstoul()

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The [EINVAL] error condition is added for when the value of base is not supported.

In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

• The wcstoul() prototype is updated.

• The wcstoull() function is added.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2239

70397

70398

70399

70400

70401

70402

70403

70404

wcstoumax() System Interfaces

NAME
wcstoumax — convert a wide-character string to an integer type

SYNOPSIS
#include <stddef.h>
#include <inttypes.h>

uintmax_t wcstoumax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
Refer to wcstoimax().

2240 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70405

70406

70407

70408

70409

70410

70411

70412

70413

System Interfaces wcswidth()

NAME
wcswidth — number of column positions of a wide-character string

SYNOPSIS
XSI #include <wchar.h>

int wcswidth(const wchar_t *pwcs, size_t n);

DESCRIPTION
The wcswidth() function shall determine the number of column positions required for n wide-
character codes (or fewer than n wide-character codes if a null wide-character code is
encountered before n wide-character codes are exhausted) in the string pointed to by pwcs.

RETURN VALUE
The wcswidth() function either shall return 0 (if pwcs points to a null wide-character code), or
return the number of column positions to be occupied by the wide-character string pointed to by
pwcs, or return −1 (if any of the first n wide-character codes in the wide-character string pointed
to by pwcs is not a printable wide-character code).

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This function was removed from the final ISO/IEC 9899: 1990/Amendment 1: 1995 (E), and the
return value for a non-printable wide character is not specified.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcwidth()

XBD Section 3.103 (on page 50), <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 6
The Open Group Corrigendum U021/11 is applied. The function is marked as an extension.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2241

70414

70415

70416

70417

70418

70419

70420

70421

70422

70423

70424

70425

70426

70427

70428

70429

70430

70431

70432

70433

70434

70435

70436

70437

70438

70439

70440

70441

70442

70443

70444

70445

wcsxfrm() System Interfaces

NAME
wcsxfrm, wcsxfrm_l — wide-character string transformation

SYNOPSIS
#include <wchar.h>

size_t wcsxfrm(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n);

CX size_t wcsxfrm_l(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n, locale_t locale);

DESCRIPTION
CX For wcsxfrm(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The wcsxfrm() and wcsxfrm_l() functions shall transform the wide-character string pointed to
by ws2 and place the resulting wide-character string into the array pointed to by ws1. The
transformation shall be such that if wcscmp() is applied to two transformed wide strings, it shall

CX return a value greater than, equal to, or less than 0, corresponding to the result of wcscoll() and
wcscoll_l() applied to the same two original wide-character strings, and the same LC_COLLATE

CX category of the locale of the process or the locale object locale, respectively. No more than n
wide-character codes shall be placed into the resulting array pointed to by ws1, including the
terminating null wide-character code. If n is 0, ws1 is permitted to be a null pointer. If copying
takes place between objects that overlap, the behavior is undefined.

CX The wcsxfrm() and wcsxfrm_l() functions shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call wcsxfrm() or wcsxfrm_l(), then check errno.

RETURN VALUE
CX The wcsxfrm() and wcsxfrm_l() functions shall return the length of the transformed wide-

character string (not including the terminating null wide-character code). If the value returned is
n or more, the contents of the array pointed to by ws1 are unspecified.

CX On error, the wcsxfrm() and wcsxfrm_l() functions may set errno, but no return value is reserved
to indicate an error.

ERRORS
These functions may fail if:

CX [EINVAL] The wide-character string pointed to by ws2 contains wide-character codes
outside the domain of the collating sequence.

The wcsxfrm_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

2242 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70446

70447

70448

70449

70450

70451

70452

70453

70454

70455

70456

70457

70458

70459

70460

70461

70462

70463

70464

70465

70466

70467

70468

70469

70470

70471

70472

70473

70474

70475

70476

70477

70478

70479

70480

70481

System Interfaces wcsxfrm()

EXAMPLES
None.

APPLICATION USAGE
The transformation function is such that two transformed wide-character strings can be ordered
by wcscmp() as appropriate to collating sequence information in the locale of the process
(category LC_COLLATE).

The fact that when n is 0 ws1 is permitted to be a null pointer is useful to determine the size of
the ws1 array prior to making the transformation.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscmp(), wcscoll()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 4. Derived from the MSE working draft.

Issue 5
Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

Issue 6
In earlier versions, this function was required to return −1 on error.

Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
added if no conversion could be performed.

The wcsxfrm() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

Issue 7
The wcsxfrm_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2243

70482

70483

70484

70485

70486

70487

70488

70489

70490

70491

70492

70493

70494

70495

70496

70497

70498

70499

70500

70501

70502

70503

70504

70505

70506

70507

70508

70509

70510

70511

70512

wctob() System Interfaces

NAME
wctob — wide-character to single-byte conversion

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wctob(wint_t c);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wctob() function shall determine whether c corresponds to a member of the extended
character set whose character representation is a single byte when in the initial shift state.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The wctob() function shall return EOF if c does not correspond to a character with length one in
the initial shift state. Otherwise, it shall return the single-byte representation of that character as
an unsigned char converted to int.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
btowc()

XBD <stdio.h>, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

2244 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70513

70514

70515

70516

70517

70518

70519

70520

70521

70522

70523

70524

70525

70526

70527

70528

70529

70530

70531

70532

70533

70534

70535

70536

70537

70538

70539

70540

70541

70542

70543

70544

70545

System Interfaces wctomb()

NAME
wctomb — convert a wide-character code to a character

SYNOPSIS
#include <stdlib.h>

int wctomb(char *s, wchar_t wchar);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wctomb() function shall determine the number of bytes needed to represent the character
corresponding to the wide-character code whose value is wchar (including any change in the
shift state). It shall store the character representation (possibly multiple bytes and any special
bytes to change shift state) in the array object pointed to by s (if s is not a null pointer). At most
{MB_CUR_MAX} bytes shall be stored. If wchar is 0, a null byte shall be stored, preceded by any
shift sequence needed to restore the initial shift state, and wctomb() shall be left in the initial shift
state.

CX The behavior of this function is affected by the LC_CTYPE category of the current locale. For a
state-dependent encoding, this function shall be placed into its initial state by a call for which its
character pointer argument, s, is a null pointer. Subsequent calls with s as other than a null
pointer shall cause the internal state of the function to be altered as necessary. A call with s as a
null pointer shall cause this function to return a non-zero value if encodings have state
dependency, and 0 otherwise. Changing the LC_CTYPE category causes the shift state of this
function to be unspecified.

The wctomb() function need not be thread-safe.

The implementation shall behave as if no function defined in this volume of POSIX.1-2008 calls
wctomb().

RETURN VALUE
If s is a null pointer, wctomb() shall return a non-zero or 0 value, if character encodings,
respectively, do or do not have state-dependent encodings. If s is not a null pointer, wctomb()
shall return −1 if the value of wchar does not correspond to a valid character, or return the
number of bytes that constitute the character corresponding to the value of wchar.

In no case shall the value returned be greater than the value of the {MB_CUR_MAX} macro.

ERRORS
The wctomb() function shall fail if:

CX [EILSEQ] An invalid wide-character code is detected.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2245

70546

70547

70548

70549

70550

70551

70552

70553

70554

70555

70556

70557

70558

70559

70560

70561

70562

70563

70564

70565

70566

70567

70568

70569

70570

70571

70572

70573

70574

70575

70576

70577

70578

70579

70580

70581

70582

70583

70584

70585

70586

wctomb() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
mblen(), mbtowc(), mbstowcs(), wcstombs()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 6
Extensions beyond the ISO C standard are marked.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

Issue 7
Austin Group Interpretations 1003.1-2001 #156 and #170 are applied.

2246 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70587

70588

70589

70590

70591

70592

70593

70594

70595

70596

70597

70598

System Interfaces wctrans()

NAME
wctrans, wctrans_l — define character mapping

SYNOPSIS
#include <wctype.h>

wctrans_t wctrans(const char *charclass);
CX wctrans_t wctrans_l(const char *charclass, locale_t locale);

DESCRIPTION
CX For wctrans(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The wctrans() and wctrans_l() functions are defined for valid character mapping names
identified in the current locale. The charclass is a string identifying a generic character mapping
name for which codeset-specific information is required. The following character mapping
names are defined in all locales: tolower and toupper.

These functions shall return a value of type wctrans_t, which can be used as the second
CX argument to subsequent calls of towctrans() and towctrans_l().

CX The wctrans() and wctrans_l() functions shall determine values of wctrans_t according to the
rules of the coded character set defined by character mapping information in the locale of the

CX process or in the locale represented by locale, respectively (category LC_CTYPE).

The values returned by wctrans() shall be valid until a call to setlocale() that modifies the
category LC_CTYPE.

CX The values returned by wctrans_l() shall be valid only in calls to wctrans_l() with a locale
represented by locale with the same LC_CTYPE category value.

RETURN VALUE
CX The wctrans() and wctrans_l() functions shall return 0 and may set errno to indicate the error if

the given character mapping name is not valid for the current locale (category LC_CTYPE);
otherwise, they shall return a non-zero object of type wctrans_t that can be used in calls to

CX towctrans() and towctrans_l().

ERRORS
These functions may fail if:

CX [EINVAL] The character mapping name pointed to by charclass is not valid in the current
locale.

The wctrans_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2247

70599

70600

70601

70602

70603

70604

70605

70606

70607

70608

70609

70610

70611

70612

70613

70614

70615

70616

70617

70618

70619

70620

70621

70622

70623

70624

70625

70626

70627

70628

70629

70630

70631

70632

70633

70634

70635

70636

70637

70638

wctrans() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
towctrans()

XBD <wctype.h>

CHANGE HISTORY
First released in Issue 5. Derived from ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Issue 7
The wctrans_l() function is added from The Open Group Technical Standard, 2006, Extended
API Set Part 4.

2248 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70639

70640

70641

70642

70643

70644

70645

70646

70647

70648

System Interfaces wctype()

NAME
wctype, wctype_l — define character class

SYNOPSIS
#include <wctype.h>

wctype_t wctype(const char *property);
CX wctype_t wctype_l(const char *property, locale_t locale);

DESCRIPTION
CX For wctype(): The functionality described on this reference page is aligned with the ISO C

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

CX The wctype() and wctype_l() functions are defined for valid character class names as defined in
CX the current locale or in the locale represented by locale, respectively.

The property argument is a string identifying a generic character class for which codeset-specific
type information is required. The following character class names shall be defined in all locales:

alnum
alpha
blank
cntrl

digit
graph
lower
print

punct
space
upper
xdigit

Additional character class names defined in the locale definition file (category LC_CTYPE) can
also be specified.

These functions shall return a value of type wctype_t, which can be used as the second
CX argument to subsequent calls of iswctype() and iswctype_l().

CX The wctype() and wctype_l() functions shall determine values of wctype_t according to the
rules of the coded character set defined by character type information in the locale of the process

CX or in the locale represented by locale, respectively (category LC_CTYPE).

The values returned by wctype() shall be valid until a call to setlocale() that modifies the category
LC_CTYPE.

CX The values returned by wctype_l() shall be valid only in calls to iswctype_l() with a locale
represented by locale with the same LC_CTYPE category value.

RETURN VALUE
CX The wctype() and wctype_l() functions shall return 0 if the given character class name is not

valid for the current locale (category LC_CTYPE); otherwise, they shall return an object of type
CX wctype_t that can be used in calls to iswctype() and iswctype_l().

ERRORS
The wctype_l() function may fail if:

CX [EINVAL] locale is not a valid locale object handle.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2249

70649

70650

70651

70652

70653

70654

70655

70656

70657

70658

70659

70660

70661

70662

70663

70664

70665

70666

70667

70668

70669

70670

70671

70672

70673

70674

70675

70676

70677

70678

70679

70680

70681

70682

70683

70684

wctype() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswctype()

XBD <wctype.h>

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this version for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

• The SYNOPSIS has been changed to indicate that this function and associated data types
are now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

Issue 7
The wctype_l() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 4.

2250 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70685

70686

70687

70688

70689

70690

70691

70692

70693

70694

70695

70696

70697

70698

70699

70700

70701

70702

70703

70704

70705

System Interfaces wcwidth()

NAME
wcwidth — number of column positions of a wide-character code

SYNOPSIS
XSI #include <wchar.h>

int wcwidth(wchar_t wc);

DESCRIPTION
The wcwidth() function shall determine the number of column positions required for the wide
character wc. The application shall ensure that the value of wc is a character representable as a
wchar_t, and is a wide-character code corresponding to a valid character in the current locale.

RETURN VALUE
The wcwidth() function shall either return 0 (if wc is a null wide-character code), or return the
number of column positions to be occupied by the wide-character code wc, or return −1 (if wc
does not correspond to a printable wide-character code).

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This function was removed from the final ISO/IEC 9899: 1990/Amendment 1: 1995 (E), and the
return value for a non-printable wide character is not specified.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcswidth()

XBD <wchar.h>

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4. Derived from the MSE working
draft.

Issue 6
The Open Group Corrigendum U021/12 is applied. This function is marked as an extension.

The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2251

70706

70707

70708

70709

70710

70711

70712

70713

70714

70715

70716

70717

70718

70719

70720

70721

70722

70723

70724

70725

70726

70727

70728

70729

70730

70731

70732

70733

70734

70735

70736

70737

70738

wmemchr() System Interfaces

NAME
wmemchr — find a wide character in memory

SYNOPSIS
#include <wchar.h>

wchar_t *wmemchr(const wchar_t *ws, wchar_t wc, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wmemchr() function shall locate the first occurrence of wc in the initial n wide characters of
the object pointed to by ws. This function shall not be affected by locale and all wchar_t values
shall be treated identically. The null wide character and wchar_t values not corresponding to
valid characters shall not be treated specially.

If n is zero, the application shall ensure that ws is a valid pointer and the function behaves as if
no valid occurrence of wc is found.

RETURN VALUE
The wmemchr() function shall return a pointer to the located wide character, or a null pointer if
the wide character does not occur in the object.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemcmp(), wmemcpy(), wmemmove(), wmemset()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

2252 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70739

70740

70741

70742

70743

70744

70745

70746

70747

70748

70749

70750

70751

70752

70753

70754

70755

70756

70757

70758

70759

70760

70761

70762

70763

70764

70765

70766

70767

70768

70769

70770

70771

70772

70773

70774

System Interfaces wmemcmp()

NAME
wmemcmp — compare wide characters in memory

SYNOPSIS
#include <wchar.h>

int wmemcmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wmemcmp() function shall compare the first n wide characters of the object pointed to by
ws1 to the first n wide characters of the object pointed to by ws2. This function shall not be
affected by locale and all wchar_t values shall be treated identically. The null wide character and
wchar_t values not corresponding to valid characters shall not be treated specially.

If n is zero, the application shall ensure that ws1 and ws2 are valid pointers, and the function
shall behave as if the two objects compare equal.

RETURN VALUE
The wmemcmp() function shall return an integer greater than, equal to, or less than zero,
respectively, as the object pointed to by ws1 is greater than, equal to, or less than the object
pointed to by ws2.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemchr(), wmemcpy(), wmemmove(), wmemset()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2253

70775

70776

70777

70778

70779

70780

70781

70782

70783

70784

70785

70786

70787

70788

70789

70790

70791

70792

70793

70794

70795

70796

70797

70798

70799

70800

70801

70802

70803

70804

70805

70806

70807

70808

70809

70810

70811

wmemcpy() System Interfaces

NAME
wmemcpy — copy wide characters in memory

SYNOPSIS
#include <wchar.h>

wchar_t *wmemcpy(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wmemcpy() function shall copy n wide characters from the object pointed to by ws2 to the
object pointed to by ws1. This function shall not be affected by locale and all wchar_t values
shall be treated identically. The null wide character and wchar_t values not corresponding to
valid characters shall not be treated specially.

If n is zero, the application shall ensure that ws1 and ws2 are valid pointers, and the function
shall copy zero wide characters.

RETURN VALUE
The wmemcpy() function shall return the value of ws1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemchr(), wmemcmp(), wmemmove(), wmemset()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The wmemcpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard.

2254 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70812

70813

70814

70815

70816

70817

70818

70819

70820

70821

70822

70823

70824

70825

70826

70827

70828

70829

70830

70831

70832

70833

70834

70835

70836

70837

70838

70839

70840

70841

70842

70843

70844

70845

70846

70847

70848

System Interfaces wmemmove()

NAME
wmemmove — copy wide characters in memory with overlapping areas

SYNOPSIS
#include <wchar.h>

wchar_t *wmemmove(wchar_t *ws1, const wchar_t *ws2, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wmemmove() function shall copy n wide characters from the object pointed to by ws2 to the
object pointed to by ws1. Copying shall take place as if the n wide characters from the object
pointed to by ws2 are first copied into a temporary array of n wide characters that does not
overlap the objects pointed to by ws1 or ws2, and then the n wide characters from the temporary
array are copied into the object pointed to by ws1.

This function shall not be affected by locale and all wchar_t values shall be treated identically.
The null wide character and wchar_t values not corresponding to valid characters shall not be
treated specially.

If n is zero, the application shall ensure that ws1 and ws2 are valid pointers, and the function
shall copy zero wide characters.

RETURN VALUE
The wmemmove() function shall return the value of ws1.

ERRORS
No errors are defined

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemchr(), wmemcmp(), wmemcpy(), wmemset()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2255

70849

70850

70851

70852

70853

70854

70855

70856

70857

70858

70859

70860

70861

70862

70863

70864

70865

70866

70867

70868

70869

70870

70871

70872

70873

70874

70875

70876

70877

70878

70879

70880

70881

70882

70883

70884

70885

70886

70887

wmemset() System Interfaces

NAME
wmemset — set wide characters in memory

SYNOPSIS
#include <wchar.h>

wchar_t *wmemset(wchar_t *ws, wchar_t wc, size_t n);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2008 defers to the ISO C standard.

The wmemset() function shall copy the value of wc into each of the first n wide characters of the
object pointed to by ws. This function shall not be affected by locale and all wchar_t values shall
be treated identically. The null wide character and wchar_t values not corresponding to valid
characters shall not be treated specially.

If n is zero, the application shall ensure that ws is a valid pointer, and the function shall copy
zero wide characters.

RETURN VALUE
The wmemset() functions shall return the value of ws.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemchr(), wmemcmp(), wmemcpy(), wmemmove()

XBD <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
(E).

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

2256 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70888

70889

70890

70891

70892

70893

70894

70895

70896

70897

70898

70899

70900

70901

70902

70903

70904

70905

70906

70907

70908

70909

70910

70911

70912

70913

70914

70915

70916

70917

70918

70919

70920

70921

70922

System Interfaces wordexp()

NAME
wordexp, wordfree — perform word expansions

SYNOPSIS
#include <wordexp.h>

int wordexp(const char *restrict words, wordexp_t *restrict pwordexp,
int flags);

void wordfree(wordexp_t *pwordexp);

DESCRIPTION
The wordexp() function shall perform word expansions as described in XCU Section 2.6 (on page
2305), subject to quoting as described in XCU Section 2.2 (on page 2298), and place the list of
expanded words into the structure pointed to by pwordexp.

The words argument is a pointer to a string containing one or more words to be expanded. The
expansions shall be the same as would be performed by the command line interpreter if words
were the part of a command line representing the arguments to a utility. Therefore, the
application shall ensure that words does not contain an unquoted <newline> character or any of
the unquoted shell special characters ’|’, ’&’, ’;’, ’<’, ’>’ except in the context of command
substitution as specified in XCU Section 2.6.3 (on page 2309). It also shall not contain unquoted
parentheses or braces, except in the context of command or variable substitution. The
application shall ensure that every member of words which it expects to have expanded by
wordexp() does not contain an unquoted initial comment character. The application shall also
ensure that any words which it intends to be ignored (because they begin or continue a
comment) are deleted from words. If the argument words contains an unquoted comment
character (<number-sign>) that is the beginning of a token, wordexp() shall either treat the
comment character as a regular character, or interpret it as a comment indicator and ignore the
remainder of words.

The structure type wordexp_t is defined in the <wordexp.h> header and includes at least the
following members:

Member Type Member Name Description

size_t we_wordc Count of words matched by words.
char ** we_wordv Pointer to list of expanded words.
size_t we_offs Slots to reserve at the beginning of

pwordexp−>we_wordv.

The wordexp() function shall store the number of generated words into pwordexp−>we_wordc and
a pointer to a list of pointers to words in pwordexp−>we_wordv. Each individual field created
during field splitting (see XCU Section 2.6.5, on page 2311) or pathname expansion (see XCU
Section 2.6.6, on page 2311) shall be a separate word in the pwordexp−>we_wordv list. The words
shall be in order as described in XCU Section 2.6 (on page 2305). The first pointer after the last
word pointer shall be a null pointer. The expansion of special parameters described in XCU
Section 2.5.2 (on page 2302) is unspecified.

It is the caller’s responsibility to allocate the storage pointed to by pwordexp. The wordexp()
function shall allocate other space as needed, including memory pointed to by
pwordexp−>we_wordv. The wordfree() function frees any memory associated with pwordexp from a
previous call to wordexp().

The flags argument is used to control the behavior of wordexp(). The value of flags is the bitwise-
inclusive OR of zero or more of the following constants, which are defined in <wordexp.h>:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2257

70923

70924

70925

70926

70927

70928

70929

70930

70931

70932

70933

70934

70935

70936

70937

70938

70939

70940

70941

70942

70943

70944

70945

70946

70947

70948

70949

70950

70951

70952

70953

70954

70955

70956

70957

70958

70959

70960

70961

70962

70963

70964

70965

70966

70967

wordexp() System Interfaces

WRDE_APPEND Append words generated to the ones from a previous call to wordexp().

WRDE_DOOFFS Make use of pwordexp−>we_offs. If this flag is set, pwordexp−>we_offs is
used to specify how many null pointers to add to the beginning of
pwordexp−>we_wordv. In other words, pwordexp−>we_wordv shall point to
pwordexp−>we_offs null pointers, followed by pwordexp−>we_wordc word
pointers, followed by a null pointer.

WRDE_NOCMD If the implementation supports the utilities defined in the Shell and
Utilities volume of POSIX.1-2008, fail if command substitution, as
specified in XCU Section 2.6.3 (on page 2309), is requested.

WRDE_REUSE The pwordexp argument was passed to a previous successful call to
wordexp(), and has not been passed to wordfree(). The result shall be the
same as if the application had called wordfree() and then called wordexp()
without WRDE_REUSE.

WRDE_SHOWERR Do not redirect stderr to /dev/null.

WRDE_UNDEF Report error on an attempt to expand an undefined shell variable.

The WRDE_APPEND flag can be used to append a new set of words to those generated by a
previous call to wordexp(). The following rules apply to applications when two or more calls to
wordexp() are made with the same value of pwordexp and without intervening calls to wordfree():

1. The first such call shall not set WRDE_APPEND. All subsequent calls shall set it.

2. All of the calls shall set WRDE_DOOFFS, or all shall not set it.

3. After the second and each subsequent call, pwordexp−>we_wordv shall point to a list
containing the following:

a. Zero or more null pointers, as specified by WRDE_DOOFFS and
pwordexp−>we_offs

b. Pointers to the words that were in the pwordexp−>we_wordv list before the call, in
the same order as before

c. Pointers to the new words generated by the latest call, in the specified order

4. The count returned in pwordexp−>we_wordc shall be the total number of words from all of
the calls.

5. The application can change any of the fields after a call to wordexp(), but if it does it shall
reset them to the original value before a subsequent call, using the same pwordexp value,
to wordfree() or wordexp() with the WRDE_APPEND or WRDE_REUSE flag.

If the implementation supports the utilities defined in the Shell and Utilities volume of
POSIX.1-2008, and words contains an unquoted character—<newline>, ’|’, ’&’, ’;’, ’<’, ’>’,
’(’, ’)’, ’{’, ’}’—in an inappropriate context, wordexp() shall fail, and the number of
expanded words shall be 0.

Unless WRDE_SHOWERR is set in flags, wordexp() shall redirect stderr to /dev/null for any
utilities executed as a result of command substitution while expanding words. If
WRDE_SHOWERR is set, wordexp() may write messages to stderr if syntax errors are detected
while expanding words.

The application shall ensure that if WRDE_DOOFFS is set, then pwordexp−>we_offs has the same
value for each wordexp() call and wordfree() call using a given pwordexp.

2258 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

70968

70969

70970

70971

70972

70973

70974

70975

70976

70977

70978

70979

70980

70981

70982

70983

70984

70985

70986

70987

70988

70989

70990

70991

70992

70993

70994

70995

70996

70997

70998

70999

71000

71001

71002

71003

71004

71005

71006

71007

71008

71009

System Interfaces wordexp()

The following constants are defined as error return values:

WRDE_BADCHAR One of the unquoted characters—<newline>, ’|’, ’&’, ’;’, ’<’, ’>’,
’(’, ’)’, ’{’, ’}’—appears in words in an inappropriate context.

WRDE_BADVAL Reference to undefined shell variable when WRDE_UNDEF is set in flags.

WRDE_CMDSUB Command substitution requested when WRDE_NOCMD was set in flags.

WRDE_NOSPACE Attempt to allocate memory failed.

WRDE_SYNTAX Shell syntax error, such as unbalanced parentheses or unterminated
string.

RETURN VALUE
Upon successful completion, wordexp() shall return 0. Otherwise, a non-zero value, as described
in <wordexp.h>, shall be returned to indicate an error. If wordexp() returns the value
WRDE_NOSPACE, then pwordexp−>we_wordc and pwordexp−>we_wordv shall be updated to
reflect any words that were successfully expanded. In other cases, they shall not be modified.

The wordfree() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The wordexp() function is intended to be used by an application that wants to do all of the shell’s
expansions on a word or words obtained from a user. For example, if the application prompts
for a filename (or list of filenames) and then uses wordexp() to process the input, the user could
respond with anything that would be valid as input to the shell.

The WRDE_NOCMD flag is provided for applications that, for security or other reasons, want to
prevent a user from executing shell commands. Disallowing unquoted shell special characters
also prevents unwanted side-effects, such as executing a command or writing a file.

POSIX.1-2008 does not require the wordexp() function to be thread-safe if passed an expression
referencing an environment variable while any other thread is concurrently modifying any
environment variable; see exec (on page 772).

RATIONALE
This function was included as an alternative to glob(). There had been continuing controversy
over exactly what features should be included in glob(). It is hoped that by providing wordexp()
(which provides all of the shell word expansions, but which may be slow to execute) and glob()
(which is faster, but which only performs pathname expansion, without tilde or parameter
expansion) this will satisfy the majority of applications.

While wordexp() could be implemented entirely as a library routine, it is expected that most
implementations run a shell in a subprocess to do the expansion.

Two different approaches have been proposed for how the required information might be
presented to the shell and the results returned. They are presented here as examples.

One proposal is to extend the echo utility by adding a −q option. This option would cause echo to
add a <backslash> before each <backslash> and <blank> that occurs within an argument. The
wordexp() function could then invoke the shell as follows:

(void) strcpy(buffer, "echo -q");

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2259

71010

71011

71012

71013

71014

71015

71016

71017

71018

71019

71020

71021

71022

71023

71024

71025

71026

71027

71028

71029

71030

71031

71032

71033

71034

71035

71036

71037

71038

71039

71040

71041

71042

71043

71044

71045

71046

71047

71048

71049

71050

71051

71052

wordexp() System Interfaces

(void) strcat(buffer, words);
if ((flags & WRDE_SHOWERR) == 0)

(void) strcat(buffer, "2>/dev/null");
f = popen(buffer, "r");

The wordexp() function would read the resulting output, remove unquoted <backslash>
characters, and break into words at unquoted <blank> characters. If the WRDE_NOCMD flag
was set, wordexp() would have to scan words before starting the subshell to make sure that there
would be no command substitution. In any case, it would have to scan words for unquoted
special characters.

Another proposal is to add the following options to sh:

−w wordlist
This option provides a wordlist expansion service to applications. The words in wordlist
shall be expanded and the following written to standard output:

1. The count of the number of words after expansion, in decimal, followed by a null
byte

2. The number of bytes needed to represent the expanded words (not including null
separators), in decimal, followed by a null byte

3. The expanded words, each terminated by a null byte

If an error is encountered during word expansion, sh exits with a non-zero status after
writing the former to report any words successfully expanded

−P Run in ‘‘protected’’ mode. If specified with the −w option, no command substitution shall
be performed.

With these options, wordexp() could be implemented fairly simply by creating a subprocess
using fork() and executing sh using the line:

execl(<shell path>, "sh", "-P", "-w", words, (char *)0);

after directing standard error to /dev/null.

It seemed objectionable for a library routine to write messages to standard error, unless explicitly
requested, so wordexp() is required to redirect standard error to /dev/null to ensure that no
messages are generated, even for commands executed for command substitution. The
WRDE_SHOWERR flag can be specified to request that error messages be written.

The WRDE_REUSE flag allows the implementation to avoid the expense of freeing and
reallocating memory, if that is possible. A minimal implementation can call wordfree() when
WRDE_REUSE is set.

FUTURE DIRECTIONS
None.

SEE ALSO
fnmatch(), glob()

XBD <wordexp.h>

XCU Chapter 2 (on page 2297)

2260 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

71053

71054

71055

71056

71057

71058

71059

71060

71061

71062

71063

71064

71065

71066

71067

71068

71069

71070

71071

71072

71073

71074

71075

71076

71077

71078

71079

71080

71081

71082

71083

71084

71085

71086

71087

71088

71089

71090

71091

System Interfaces wordexp()

CHANGE HISTORY
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 5
Moved from POSIX2 C-language Binding to BASE.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The restrict keyword is added to the wordexp() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #148 is applied, adding APPLICATION USAGE.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2261

71092

71093

71094

71095

71096

71097

71098

71099

71100

71101

wprintf() System Interfaces

NAME
wprintf — print formatted wide-character output

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wprintf(const wchar_t *restrict format, ...);

DESCRIPTION
Refer to fwprintf().

2262 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

71102

71103

71104

71105

71106

71107

71108

71109

System Interfaces write()

NAME
pwrite, write — write on a file

SYNOPSIS
#include <unistd.h>

ssize_t pwrite(int fildes, const void *buf, size_t nbyte,
off_t offset);

ssize_t write(int fildes, const void *buf, size_t nbyte);

DESCRIPTION
The write() function shall attempt to write nbyte bytes from the buffer pointed to by buf to the
file associated with the open file descriptor, fildes.

Before any action described below is taken, and if nbyte is zero and the file is a regular file, the
write() function may detect and return errors as described below. In the absence of errors, or if
error detection is not performed, the write() function shall return zero and have no other results.
If nbyte is zero and the file is not a regular file, the results are unspecified.

On a regular file or other file capable of seeking, the actual writing of data shall proceed from
the position in the file indicated by the file offset associated with fildes. Before successful return
from write(), the file offset shall be incremented by the number of bytes actually written. On a
regular file, if the position of the last byte written is greater than or equal to the length of the file,
the length of the file shall be set to this position plus one.

On a file not capable of seeking, writing shall always take place starting at the current position.
The value of a file offset associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file offset shall be set to the end of the file
prior to each write and no intervening file modification operation shall occur between changing
the file offset and the write operation.

XSI If a write() requests that more bytes be written than there is room for (for example, the file size
limit of the process or the physical end of a medium), only as many bytes as there is room for
shall be written. For example, suppose there is space for 20 bytes more in a file before reaching a
limit. A write of 512 bytes will return 20. The next write of a non-zero number of bytes would
give a failure return (except as noted below).

XSI If the request would cause the file size to exceed the soft file size limit for the process and there
is no room for any bytes to be written, the request shall fail and the implementation shall
generate the SIGXFSZ signal for the thread.

If write() is interrupted by a signal before it writes any data, it shall return −1 with errno set to
[EINTR].

If write() is interrupted by a signal after it successfully writes some data, it shall return the
number of bytes written.

If the value of nbyte is greater than {SSIZE_MAX}, the result is implementation-defined.

After a write() to a regular file has successfully returned:

• Any successful read() from each byte position in the file that was modified by that write
shall return the data specified by the write() for that position until such byte positions are
again modified.

• Any subsequent successful write() to the same byte position in the file shall overwrite that
file data.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2263

71110

71111

71112

71113

71114

71115

71116

71117

71118

71119

71120

71121

71122

71123

71124

71125

71126

71127

71128

71129

71130

71131

71132

71133

71134

71135

71136

71137

71138

71139

71140

71141

71142

71143

71144

71145

71146

71147

71148

71149

71150

71151

71152

write() System Interfaces

Write requests to a pipe or FIFO shall be handled in the same way as a regular file with the
following exceptions:

• There is no file offset associated with a pipe, hence each write request shall append to the
end of the pipe.

• Write requests of {PIPE_BUF} bytes or less shall not be interleaved with data from other
processes doing writes on the same pipe. Writes of greater than {PIPE_BUF} bytes may
have data interleaved, on arbitrary boundaries, with writes by other processes, whether or
not the O_NONBLOCK flag of the file status flags is set.

• If the O_NONBLOCK flag is clear, a write request may cause the thread to block, but on
normal completion it shall return nbyte.

• If the O_NONBLOCK flag is set, write() requests shall be handled differently, in the
following ways:

— The write() function shall not block the thread.

— A write request for {PIPE_BUF} or fewer bytes shall have the following effect: if there
is sufficient space available in the pipe, write() shall transfer all the data and return
the number of bytes requested. Otherwise, write() shall transfer no data and return
−1 with errno set to [EAGAIN].

— A write request for more than {PIPE_BUF} bytes shall cause one of the following:

— When at least one byte can be written, transfer what it can and return the
number of bytes written. When all data previously written to the pipe is read, it
shall transfer at least {PIPE_BUF} bytes.

— When no data can be written, transfer no data, and return −1 with errno set to
[EAGAIN].

When attempting to write to a file descriptor (other than a pipe or FIFO) that supports non-
blocking writes and cannot accept the data immediately:

• If the O_NONBLOCK flag is clear, write() shall block the calling thread until the data can
be accepted.

• If the O_NONBLOCK flag is set, write() shall not block the thread. If some data can be
written without blocking the thread, write() shall write what it can and return the number
of bytes written. Otherwise, it shall return −1 and set errno to [EAGAIN].

Upon successful completion, where nbyte is greater than 0, write() shall mark for update the last
data modification and last file status change timestamps of the file, and if the file is a regular file,
the S_ISUID and S_ISGID bits of the file mode may be cleared.

For regular files, no data transfer shall occur past the offset maximum established in the open
file description associated with fildes.

If fildes refers to a socket, write() shall be equivalent to send() with no flags set.

SIO If the O_DSYNC bit has been set, write I/O operations on the file descriptor shall complete as
defined by synchronized I/O data integrity completion.

If the O_SYNC bit has been set, write I/O operations on the file descriptor shall complete as
defined by synchronized I/O file integrity completion.

SHM If fildes refers to a shared memory object, the result of the write() function is unspecified.

2264 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

71153

71154

71155

71156

71157

71158

71159

71160

71161

71162

71163

71164

71165

71166

71167

71168

71169

71170

71171

71172

71173

71174

71175

71176

71177

71178

71179

71180

71181

71182

71183

71184

71185

71186

71187

71188

71189

71190

71191

71192

71193

System Interfaces write()

TYM If fildes refers to a typed memory object, the result of the write() function is unspecified.

OB XSR If fildes refers to a STREAM, the operation of write() shall be determined by the values of the
minimum and maximum nbyte range (packet size) accepted by the STREAM. These values are
determined by the topmost STREAM module. If nbyte falls within the packet size range, nbyte
bytes shall be written. If nbyte does not fall within the range and the minimum packet size value
is 0, write() shall break the buffer into maximum packet size segments prior to sending the data
downstream (the last segment may contain less than the maximum packet size). If nbyte does not
fall within the range and the minimum value is non-zero, write() shall fail with errno set to
[ERANGE]. Writing a zero-length buffer (nbyte is 0) to a STREAMS device sends 0 bytes with 0
returned. However, writing a zero-length buffer to a STREAMS-based pipe or FIFO sends no
message and 0 is returned. The process may issue I_SWROPT ioctl() to enable zero-length
messages to be sent across the pipe or FIFO.

When writing to a STREAM, data messages are created with a priority band of 0. When writing
to a STREAM that is not a pipe or FIFO:

• If O_NONBLOCK is clear, and the STREAM cannot accept data (the STREAM write queue
is full due to internal flow control conditions), write() shall block until data can be
accepted.

• If O_NONBLOCK is set and the STREAM cannot accept data, write() shall return −1 and
set errno to [EAGAIN].

• If O_NONBLOCK is set and part of the buffer has been written while a condition in which
the STREAM cannot accept additional data occurs, write() shall terminate and return the
number of bytes written.

In addition, write() shall fail if the STREAM head has processed an asynchronous error before
the call. In this case, the value of errno does not reflect the result of write(), but reflects the prior
error.

The pwrite() function shall be equivalent to write(), except that it writes into a given position
and does not change the file offset (regardless of whether O_APPEND is set). The first three
arguments to pwrite() are the same as write() with the addition of a fourth argument offset for
the desired position inside the file.

RETURN VALUE
Upon successful completion, these functions shall return the number of bytes actually written to
the file associated with fildes. This number shall never be greater than nbyte. Otherwise, −1 shall
be returned and errno set to indicate the error.

ERRORS
These functions shall fail if:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the thread would be
delayed in the write() operation.

[EBADF] The fildes argument is not a valid file descriptor open for writing.

[EFBIG] An attempt was made to write a file that exceeds the implementation-defined
XSI maximum file size or the file size limit of the process, and there was no room

for any bytes to be written.

[EFBIG] The file is a regular file, nbyte is greater than 0, and the starting position is
greater than or equal to the offset maximum established in the open file
description associated with fildes.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2265

71194

71195

71196

71197

71198

71199

71200

71201

71202

71203

71204

71205

71206

71207

71208

71209

71210

71211

71212

71213

71214

71215

71216

71217

71218

71219

71220

71221

71222

71223

71224

71225

71226

71227

71228

71229

71230

71231

71232

71233

71234

71235

71236

71237

write() System Interfaces

[EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

[EIO] The process is a member of a background process group attempting to write to
its controlling terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU, and the process group of the process is orphaned. This
error may also be returned under implementation-defined conditions.

[ENOSPC] There was no free space remaining on the device containing the file.

[EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process, or that only has one end open. A SIGPIPE signal shall also be sent
to the thread.

OB XSR [ERANGE] The transfer request size was outside the range supported by the STREAMS
file associated with fildes.

The write() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
The file descriptor is for a socket, is marked O_NONBLOCK, and write would
block.

[ECONNRESET] A write was attempted on a socket that is not connected.

[EPIPE] A write was attempted on a socket that is shut down for writing, or is no
longer connected. In the latter case, if the socket is of type SOCK_STREAM, a
SIGPIPE signal shall also be sent to the thread.

These functions may fail if:

OB XSR [EINVAL] The STREAM or multiplexer referenced by fildes is linked (directly or
indirectly) downstream from a multiplexer.

[EIO] A physical I/O error has occurred.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

OB XSR [ENXIO] A hangup occurred on the STREAM being written to.

OB XSR A write to a STREAMS file may fail if an error message has been received at the STREAM head.
In this case, errno is set to the value included in the error message.

The write() function may fail if:

[EACCES] A write was attempted on a socket and the calling process does not have
appropriate privileges.

[ENETDOWN] A write was attempted on a socket and the local network interface used to
reach the destination is down.

[ENETUNREACH]
A write was attempted on a socket and no route to the network is present.

The pwrite() function shall fail and the file pointer remain unchanged if:

[EINVAL] The offset argument is invalid. The value is negative.

2266 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

71238

71239

71240

71241

71242

71243

71244

71245

71246

71247

71248

71249

71250

71251

71252

71253

71254

71255

71256

71257

71258

71259

71260

71261

71262

71263

71264

71265

71266

71267

71268

71269

71270

71271

71272

71273

71274

71275

71276

System Interfaces write()

[ESPIPE] fildes is associated with a pipe or FIFO.

EXAMPLES

Writing from a Buffer

The following example writes data from the buffer pointed to by buf to the file associated with
the file descriptor fd.

#include <sys/types.h>
#include <string.h>
...
char buf[20];
size_t nbytes;
ssize_t bytes_written;
int fd;
...
strcpy(buf, "This is a test\n");
nbytes = strlen(buf);

bytes_written = write(fd, buf, nbytes);
...

APPLICATION USAGE
None.

RATIONALE
See also the RATIONALE section in read().

An attempt to write to a pipe or FIFO has several major characteristics:

• Atomic/non-atomic: A write is atomic if the whole amount written in one operation is not
interleaved with data from any other process. This is useful when there are multiple
writers sending data to a single reader. Applications need to know how large a write
request can be expected to be performed atomically. This maximum is called {PIPE_BUF}.
This volume of POSIX.1-2008 does not say whether write requests for more than
{PIPE_BUF} bytes are atomic, but requires that writes of {PIPE_BUF} or fewer bytes shall
be atomic.

• Blocking/immediate: Blocking is only possible with O_NONBLOCK clear. If there is enough
space for all the data requested to be written immediately, the implementation should do
so. Otherwise, the calling thread may block; that is, pause until enough space is available
for writing. The effective size of a pipe or FIFO (the maximum amount that can be written
in one operation without blocking) may vary dynamically, depending on the
implementation, so it is not possible to specify a fixed value for it.

• Complete/partial/deferred: A write request:

int fildes;
size_t nbyte;
ssize_t ret;
char *buf;

ret = write(fildes, buf, nbyte);

may return:

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2267

71277

71278

71279

71280

71281

71282

71283

71284

71285

71286

71287

71288

71289

71290

71291

71292

71293

71294

71295

71296

71297

71298

71299

71300

71301

71302

71303

71304

71305

71306

71307

71308

71309

71310

71311

71312

71313

71314

71315

71316

71317

71318

write() System Interfaces

Complete ret=nbyte

Partial ret<nbyte

This shall never happen if nbyte≤{PIPE_BUF}. If it does happen (with
nbyte>{PIPE_BUF}), this volume of POSIX.1-2008 does not guarantee
atomicity, even if ret≤{PIPE_BUF}, because atomicity is guaranteed according
to the amount requested, not the amount written.

Deferred: ret=−1, errno=[EAGAIN]

This error indicates that a later request may succeed. It does not indicate that
it shall succeed, even if nbyte≤{PIPE_BUF}, because if no process reads from
the pipe or FIFO, the write never succeeds. An application could usefully
count the number of times [EAGAIN] is caused by a particular value of
nbyte>{PIPE_BUF} and perhaps do later writes with a smaller value, on the
assumption that the effective size of the pipe may have decreased.

Partial and deferred writes are only possible with O_NONBLOCK set.

The relations of these properties are shown in the following tables:

Write to a Pipe or FIFO with O_NONBLOCK clear

Immediately Writable: None Some nbyte

nbyte≤{PIPE_BUF} Atomic blocking Atomic blocking Atomic immediate
nbyte nbyte nbyte

nbyte>{PIPE_BUF} Blocking nbyte Blocking nbyte Blocking nbyte

If the O_NONBLOCK flag is clear, a write request shall block if the amount writable
immediately is less than that requested. If the flag is set (by fcntl()), a write request shall never
block.

Write to a Pipe or FIFO with O_NONBLOCK set

Immediately Writable: None Some nbyte

nbyte≤{PIPE_BUF} −1, [EAGAIN] −1, [EAGAIN] Atomic nbyte

nbyte>{PIPE_BUF} −1, [EAGAIN] <nbyte or −1, ≤nbyte or −1,
[EAGAIN] [EAGAIN]

There is no exception regarding partial writes when O_NONBLOCK is set. With the exception
of writing to an empty pipe, this volume of POSIX.1-2008 does not specify exactly when a partial
write is performed since that would require specifying internal details of the implementation.
Every application should be prepared to handle partial writes when O_NONBLOCK is set and
the requested amount is greater than {PIPE_BUF}, just as every application should be prepared
to handle partial writes on other kinds of file descriptors.

The intent of forcing writing at least one byte if any can be written is to assure that each write
makes progress if there is any room in the pipe. If the pipe is empty, {PIPE_BUF} bytes must be
written; if not, at least some progress must have been made.

Where this volume of POSIX.1-2008 requires −1 to be returned and errno set to [EAGAIN], most
historical implementations return zero (with the O_NDELAY flag set, which is the historical
predecessor of O_NONBLOCK, but is not itself in this volume of POSIX.1-2008). The error
indications in this volume of POSIX.1-2008 were chosen so that an application can distinguish
these cases from end-of-file. While write() cannot receive an indication of end-of-file, read() can,
and the two functions have similar return values. Also, some existing systems (for example,
Eighth Edition) permit a write of zero bytes to mean that the reader should get an end-of-file

2268 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

71319

71320

71321

71322

71323

71324

71325

71326

71327

71328

71329

71330

71331

71332

71333

71334

71335

71336

71337

71338

71339

71340

71341

71342

71343

71344

71345

71346

71347

71348

71349

71350

71351

71352

71353

71354

71355

71356

71357

71358

71359

71360

71361

71362

System Interfaces write()

indication; for those systems, a return value of zero from write() indicates a successful write of
an end-of-file indication.

Implementations are allowed, but not required, to perform error checking for write() requests of
zero bytes.

The concept of a {PIPE_MAX} limit (indicating the maximum number of bytes that can be
written to a pipe in a single operation) was considered, but rejected, because this concept would
unnecessarily limit application writing.

See also the discussion of O_NONBLOCK in read().

Writes can be serialized with respect to other reads and writes. If a read() of file data can be
proven (by any means) to occur after a write() of the data, it must reflect that write(), even if the
calls are made by different processes. A similar requirement applies to multiple write operations
to the same file position. This is needed to guarantee the propagation of data from write() calls
to subsequent read() calls. This requirement is particularly significant for networked file
systems, where some caching schemes violate these semantics.

Note that this is specified in terms of read() and write(). The XSI extensions readv() and writev()
also obey these semantics. A new ‘‘high-performance’’ write analog that did not follow these
serialization requirements would also be permitted by this wording. This volume of
POSIX.1-2008 is also silent about any effects of application-level caching (such as that done by
stdio).

This volume of POSIX.1-2008 does not specify the value of the file offset after an error is
returned; there are too many cases. For programming errors, such as [EBADF], the concept is
meaningless since no file is involved. For errors that are detected immediately, such as
[EAGAIN], clearly the pointer should not change. After an interrupt or hardware error, however,
an updated value would be very useful and is the behavior of many implementations.

This volume of POSIX.1-2008 does not specify behavior of concurrent writes to a file from
multiple processes. Applications should use some form of concurrency control.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), creat(), dup(), fcntl(), getrlimit(), lseek(), open(), pipe(), read(), ulimit(), writev()

XBD <limits.h>, <stropts.h>, <sys/uio.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

The pwrite() function is added.

Issue 6
The DESCRIPTION states that the write() function does not block the thread. Previously this
said ‘‘process’’ rather than ‘‘thread’’.

The DESCRIPTION and ERRORS sections are updated so that references to STREAMS are
marked as part of the XSI STREAMS Option Group.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2269

71363

71364

71365

71366

71367

71368

71369

71370

71371

71372

71373

71374

71375

71376

71377

71378

71379

71380

71381

71382

71383

71384

71385

71386

71387

71388

71389

71390

71391

71392

71393

71394

71395

71396

71397

71398

71399

71400

71401

71402

71403

71404

71405

write() System Interfaces

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The DESCRIPTION now states that if write() is interrupted by a signal after it has
successfully written some data, it returns the number of bytes written. In the POSIX.1-1988
standard, it was optional whether write() returned the number of bytes written, or whether
it returned −1 with errno set to [EINTR]. This is a FIPS requirement.

• The following changes are made to support large files:

— For regular files, no data transfer occurs past the offset maximum established in the
open file description associated with the fildes.

— A second [EFBIG] error condition is added.

• The [EIO] error condition is added.

• The [EPIPE] error condition is added for when a pipe has only one end open.

• The [ENXIO] optional error condition is added.

Text referring to sockets is added to the DESCRIPTION.

The following changes were made to align with the IEEE P1003.1a draft standard:

• The effect of reading zero bytes is clarified.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by specifying that
write() results are unspecified for typed memory objects.

The following error conditions are added for operations on sockets: [EAGAIN],
[EWOULDBLOCK], [ECONNRESET], [ENOTCONN], and [EPIPE].

The [EIO] error is made optional.

The [ENOBUFS] error is added for sockets.

The following error conditions are added for operations on sockets: [EACCES], [ENETDOWN],
and [ENETUNREACH].

The writev() function is split out into a separate reference page.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/146 is applied, updating text in the
ERRORS section from ‘‘a SIGPIPE signal is generated to the calling process’’ to ‘‘a SIGPIPE
signal shall also be sent to the thread’’.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/147 is applied, making a correction to the
RATIONALE.

Issue 7
The pwrite() function is moved from the XSI option to the Base.

Functionality relating to the XSI STREAMS option is marked obsolescent.

SD5-XSH-ERN-160 is applied, updating the DESCRIPTION to clarify the requirements for the
pwrite() function, and to change the use of the phrase ‘‘file pointer’’ to ‘‘file offset’’.

2270 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

71406

71407

71408

71409

71410

71411

71412

71413

71414

71415

71416

71417

71418

71419

71420

71421

71422

71423

71424

71425

71426

71427

71428

71429

71430

71431

71432

71433

71434

71435

71436

71437

71438

71439

71440

System Interfaces writev()

NAME
writev — write a vector

SYNOPSIS
XSI #include <sys/uio.h>

ssize_t writev(int fildes, const struct iovec *iov, int iovcnt);

DESCRIPTION
The writev() function shall be equivalent to write(), except as described below. The writev()
function shall gather output data from the iovcnt buffers specified by the members of the iov
array: iov[0], iov[1], . . ., iov[iovcnt−1]. The iovcnt argument is valid if greater than 0 and less than
or equal to {IOV_MAX}, as defined in <limits.h>.

Each iovec entry specifies the base address and length of an area in memory from which data
should be written. The writev() function shall always write a complete area before proceeding to
the next.

If fildes refers to a regular file and all of the iov_len members in the array pointed to by iov are 0,
writev() shall return 0 and have no other effect. For other file types, the behavior is unspecified.

If the sum of the iov_len values is greater than {SSIZE_MAX}, the operation shall fail and no data
shall be transferred.

RETURN VALUE
Upon successful completion, writev() shall return the number of bytes actually written.
Otherwise, it shall return a value of −1, the file-pointer shall remain unchanged, and errno shall
be set to indicate an error.

ERRORS
Refer to write().

In addition, the writev() function shall fail if:

[EINVAL] The sum of the iov_len values in the iov array would overflow an ssize_t.

The writev() function may fail and set errno to:

[EINVAL] The iovcnt argument was less than or equal to 0, or greater than {IOV_MAX}.

EXAMPLES

Writing Data from an Array

The following example writes data from the buffers specified by members of the iov array to the
file associated with the file descriptor fd.

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
...
ssize_t bytes_written;
int fd;
char *buf0 = "short string\n";
char *buf1 = "This is a longer string\n";
char *buf2 = "This is the longest string in this example\n";
int iovcnt;
struct iovec iov[3];

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2271

71441

71442

71443

71444

71445

71446

71447

71448

71449

71450

71451

71452

71453

71454

71455

71456

71457

71458

71459

71460

71461

71462

71463

71464

71465

71466

71467

71468

71469

71470

71471

71472

71473

71474

71475

71476

71477

71478

71479

71480

71481

71482

writev() System Interfaces

iov[0].iov_base = buf0;
iov[0].iov_len = strlen(buf0);
iov[1].iov_base = buf1;
iov[1].iov_len = strlen(buf1);
iov[2].iov_base = buf2;
iov[2].iov_len = strlen(buf2);
...
iovcnt = sizeof(iov) / sizeof(struct iovec);

bytes_written = writev(fd, iov, iovcnt);
...

APPLICATION USAGE
None.

RATIONALE
Refer to write().

FUTURE DIRECTIONS
None.

SEE ALSO
readv(), write()

XBD <limits.h>, <sys/uio.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 6
Split out from the write() reference page.

2272 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

71483

71484

71485

71486

71487

71488

71489

71490

71491

71492

71493

71494

71495

71496

71497

71498

71499

71500

71501

71502

71503

71504

71505

System Interfaces wscanf()

NAME
wscanf — convert formatted wide-character input

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wscanf(const wchar_t *restrict format, ...);

DESCRIPTION
Refer to fwscanf().

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2273

71506

71507

71508

71509

71510

71511

71512

71513

y0() System Interfaces

NAME
y0, y1, yn — Bessel functions of the second kind

SYNOPSIS
XSI #include <math.h>

double y0(double x);
double y1(double x);
double yn(int n, double x);

DESCRIPTION
The y0(), y1(), and yn() functions shall compute Bessel functions of x of the second kind of
orders 0, 1, and n, respectively.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-
zero, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the relevant Bessel value of x of the
second kind.

If x is NaN, NaN shall be returned.

If the x argument to these functions is negative, −HUGE_VAL or NaN shall be returned, and a
domain error may occur.

If x is 0.0, −HUGE_VAL shall be returned and a pole error may occur.

If the correct result would cause underflow, 0.0 shall be returned and a range error may occur.

If the correct result would cause overflow, −HUGE_VAL or 0.0 shall be returned and a range
error may occur.

ERRORS
These functions may fail if:

Domain Error The value of x is negative.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [EDOM]. If the integer expression (math_errhandling
& MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception
shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception shall be raised.

Range Error The correct result would cause overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the overflow
floating-point exception shall be raised.

2274 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

71514

71515

71516

71517

71518

71519

71520

71521

71522

71523

71524

71525

71526

71527

71528

71529

71530

71531

71532

71533

71534

71535

71536

71537

71538

71539

71540

71541

71542

71543

71544

71545

71546

71547

71548

71549

71550

71551

71552

71553

71554

System Interfaces y0()

Range Error The value of x is too large in magnitude, or the correct result would cause
underflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero,
then errno shall be set to [ERANGE]. If the integer expression
(math_errhandling & MATH_ERREXCEPT) is non-zero, then the underflow
floating-point exception shall be raised.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling &
MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), j0()

XBD Section 4.19 (on page 116), <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The normative text is updated to avoid use of the term ‘‘must’’ for application requirements.

The RETURN VALUE and ERRORS sections are reworked for alignment of the error handling
with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/148 is applied, updating the RETURN
VALUE and ERRORS sections. The changes are made for consistency with the general rules
stated in ‘‘Treatment of Error Conditions for Mathematical Functions’’ in the Base Definitions
volume of POSIX.1-2008.

Vol. 2: System Interfaces, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2275

71555

71556

71557

71558

71559

71560

71561

71562

71563

71564

71565

71566

71567

71568

71569

71570

71571

71572

71573

71574

71575

71576

71577

71578

71579

71580

71581

71582

71583

71584

71585

System Interfaces

2276 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 7

Technical Standard

Vol. 3:

Shell and Utilities, Issue 7

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2277

71586

71587

71588

71589

71590

2278 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

Chapter 1

Introduction

The Shell and Utilities volume of POSIX.1-2008 describes the commands and utilities offered to
application programs by POSIX-conformant systems.

1.1 Relationship to Other Documents

1.1.1 System Interfaces

This subsection describes some of the features provided by the System Interfaces volume of
POSIX.1-2008 that are assumed to be globally available on all systems conforming to this volume
of POSIX.1-2008. This subsection does not attempt to detail all of the features defined in the
System Interfaces volume of POSIX.1-2008 that are required by all of the utilities defined in this
volume of POSIX.1-2008; the utility and function descriptions point out additional functionality
required to provide the corresponding specific features needed by each.

The following subsections describe frequently used concepts. Many of these concepts are
described in the Base Definitions volume of POSIX.1-2008. Utility and function description
statements override these defaults when appropriate.

1.1.1.1 Process Attributes

The following process attributes, as described in the System Interfaces volume of POSIX.1-2008,
are assumed to be supported for all processes in this volume of POSIX.1-2008:

Controlling Terminal
Current Working Directory
Effective Group ID
Effective User ID
File Descriptors
File Mode Creation Mask
Process Group ID
Process ID

Real Group ID
Real User ID
Root Directory
Saved Set-Group-ID
Saved Set-User-ID
Session Membership
Supplementary Group IDs

A conforming implementation may include additional process attributes.

1.1.1.2 Concurrent Execution of Processes

The following functionality of the fork() function defined in the System Interfaces volume of
POSIX.1-2008 shall be available on all systems conforming to this volume of POSIX.1-2008:

1. Independent processes shall be capable of executing independently without either
process terminating.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2279

71591

71592

71593

71594

71595

71596

71597

71598

71599

71600

71601

71602

71603

71604

71605

71606

71607

71608

71609

71610

71611

71612

71613

71614

71615

71616

71617

71618

71619

71620

71621

71622

Relationship to Other Documents Introduction

2. A process shall be able to create a new process with all of the attributes referenced in
Section 1.1.1.1 (on page 2279), determined according to the semantics of a call to the fork()
function defined in the System Interfaces volume of POSIX.1-2008 followed by a call in
the child process to one of the exec functions defined in the System Interfaces volume of
POSIX.1-2008.

1.1.1.3 File Access Permissions

The file access control mechanism described by XBD Section 4.4 (on page 108) shall apply to all
files on an implementation conforming to this volume of POSIX.1-2008.

1.1.1.4 File Read, Write, and Creation

If a file that does not exist is to be written, it shall be created as described below, unless the
utility description states otherwise.

When a file that does not exist is created, the following features defined in the System Interfaces
volume of POSIX.1-2008 shall apply unless the utility or function description states otherwise:

1. The user ID of the file shall be set to the effective user ID of the calling process.

2. The group ID of the file shall be set to the effective group ID of the calling process or the
group ID of the directory in which the file is being created.

3. If the file is a regular file, the permission bits of the file shall be set to:

S_IROTH | S_IWOTH | S_IRGRP | S_IWGRP | S_IRUSR | S_IWUSR

(see the description of File Modes in XBD Chapter 13 (on page 219), <sys/stat.h>) except
that the bits specified by the file mode creation mask of the process shall be cleared. If the
file is a directory, the permission bits shall be set to:

S_IRWXU | S_IRWXG | S_IRWXO

except that the bits specified by the file mode creation mask of the process shall be
cleared.

4. The last data access, last data modification, and last file status change timestamps of the
file shall be updated as specified in XBD Section 4.8 (on page 109).

5. If the file is a directory, it shall be an empty directory; otherwise, the file shall have length
zero.

6. If the file is a symbolic link, the effect shall be undefined unless the {POSIX2_SYMLINKS}
variable is in effect for the directory in which the symbolic link would be created.

7. Unless otherwise specified, the file created shall be a regular file.

When an attempt is made to create a file that already exists, the utility shall take the action
indicated in Table 1-1 (on page 2281) corresponding to the type of the file the utility is trying to
create and the type of the existing file, unless the utility description states otherwise.

2280 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

71623

71624

71625

71626

71627

71628

71629

71630

71631

71632

71633

71634

71635

71636

71637

71638

71639

71640

71641

71642

71643

71644

71645

71646

71647

71648

71649

71650

71651

71652

71653

71654

71655

71656

Introduction Relationship to Other Documents

Table 1-1 Actions when Creating a File that Already Exists

New Type Function
Existing Type B C D F L M P Q R S T Creating New

A fattach()-ed STREAM F F F F F — — — OF — U N/A
B Block Special F F F F F U U U OF U U mknod()**
C Character Special F F F F F U U U OF U U mknod()**
D Directory F F F F F — — — F — U mkdir()
F FIFO Special File F F F F F — — — O — U mkfifo()
L Symbolic Link F F F F F — — — FL — U symlink()
M Shared Memory F F F F F — — — — — U shm_open()
P Semaphore F F F F F — — — — — U sem_open()
Q Message Queue F F F F F — — — — — U mq_open()
R Regular File F F F F F — — — RF — U open()
S Socket F F F F F — — — — — U bind()
T Typed Memory F F F F F U U U U U U *

The following codes are used in Table 1-1:

F Fail. The attempt to create the new file shall fail and the utility shall either continue with its
operation or exit immediately with a non-zero exit status, depending on the description of
the utility.

FL Follow link. Unless otherwise specified, the symbolic link shall be followed as specified for
pathname resolution, and the operation performed shall be as if the target of the symbolic
link (after all resolution) had been named. If the target of the symbolic link does not exist, it
shall be as if that nonexistent target had been named directly.

O Open FIFO. When attempting to create a regular file, and the existing file is a FIFO special
file:

1. If the FIFO is not already open for reading, the attempt shall block until the FIFO is
opened for reading.

2. Once the FIFO is open for reading, the utility shall open the FIFO for writing and
continue with its operation.

OF The named file shall be opened with the consequences defined for that file type.

RF Regular file. When attempting to create a regular file, and the existing file is a regular file:

1. The user ID, group ID, and permission bits of the file shall not be changed.

2. The file shall be truncated to zero length.

3. The last data modification and last file status change timestamps shall be marked for
update.

— The effect is implementation-defined unless specified by the utility description.

U The effect is unspecified unless specified by the utility description.

* There is no portable way to create a file of this type.

** Not portable.

When a file is to be appended, the file shall be opened in a manner equivalent to using the
O_APPEND flag, without the O_TRUNC flag, in the open() function defined in the System
Interfaces volume of POSIX.1-2008.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2281

71657

71658

71659

71660

71661

71662

71663

71664

71665

71666

71667

71668

71669

71670

71671

71672

71673

71674

71675

71676

71677

71678

71679

71680

71681

71682

71683

71684

71685

71686

71687

71688

71689

71690

71691

71692

71693

71694

71695

71696

71697

71698

Relationship to Other Documents Introduction

When a file is to be read or written, the file shall be opened with an access mode corresponding
to the operation to be performed. If file access permissions deny access, the requested operation
shall fail.

1.1.1.5 File Removal

When a directory that is the root directory or current working directory of any process is
removed, the effect is implementation-defined. If file access permissions deny access, the
requested operation shall fail. Otherwise, when a file is removed:

1. Its directory entry shall be removed from the file system.

2. The link count of the file shall be decremented.

3. If the file is an empty directory (see XBD Section 3.144, on page 56):

a. If no process has the directory open, the space occupied by the directory shall be
freed and the directory shall no longer be accessible.

b. If one or more processes have the directory open, the directory contents shall be
preserved until all references to the file have been closed.

4. If the file is a directory that is not empty, the last file status change timestamp shall be
marked for update.

5. If the file is not a directory:

a. If the link count becomes zero:

i. If no process has the file open, the space occupied by the file shall be freed
and the file shall no longer be accessible.

ii. If one or more processes have the file open, the file contents shall be
preserved until all references to the file have been closed.

b. If the link count is not reduced to zero, the last file status change timestamp shall
be marked for update.

6. The last data modification and last file status change timestamps of the containing
directory shall be marked for update.

1.1.1.6 File Time Values

All files shall have the three time values described by XBD Section 4.8 (on page 109).

1.1.1.7 File Contents

When a reference is made to the contents of a file, pathname, this means the equivalent of all of
the data placed in the space pointed to by buf when performing the read() function calls in the
following operations defined in the System Interfaces volume of POSIX.1-2008:

while (read (fildes, buf, nbytes) > 0)
;

If the file is indicated by a pathname pathname, the file descriptor shall be determined by the
equivalent of the following operation defined in the System Interfaces volume of POSIX.1-2008:

fildes = open (pathname, O_RDONLY);

The value of nbytes in the above sequence is unspecified; if the file is of a type where the data

2282 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

71699

71700

71701

71702

71703

71704

71705

71706

71707

71708

71709

71710

71711

71712

71713

71714

71715

71716

71717

71718

71719

71720

71721

71722

71723

71724

71725

71726

71727

71728

71729

71730

71731

71732

71733

71734

71735

71736

Introduction Relationship to Other Documents

returned by read() would vary with different values, the value shall be one that results in the
most data being returned.

If the read() function calls would return an error, it is unspecified whether the contents of the file
are considered to include any data from offsets in the file beyond where the error would be
returned.

1.1.1.8 Pathname Resolution

The pathname resolution algorithm, described by XBD Section 4.12 (on page 111), shall be used
by implementations conforming to this volume of POSIX.1-2008; see also XBD Section 4.5 (on
page 108).

1.1.1.9 Changing the Current Working Directory

When the current working directory (see XBD Section 3.122, on page 53) is to be changed, unless
the utility or function description states otherwise, the operation shall succeed unless a call to
the chdir() function defined in the System Interfaces volume of POSIX.1-2008 would fail when
invoked with the new working directory pathname as its argument.

1.1.1.10 Establish the Locale

The functionality of the setlocale() function defined in the System Interfaces volume of
POSIX.1-2008 shall be available on all systems conforming to this volume of POSIX.1-2008; that
is, utilities that require the capability of establishing an international operating environment
shall be permitted to set the specified category of the international environment.

1.1.1.11 Actions Equivalent to Functions

Some utility descriptions specify that a utility performs actions equivalent to a function defined
in the System Interfaces volume of POSIX.1-2008. Such specifications require only that the
external effects be equivalent, not that any effect within the utility and visible only to the utility
be equivalent.

1.1.2 Concepts Derived from the ISO C Standard

Some of the standard utilities perform complex data manipulation using their own procedure
and arithmetic languages, as defined in their EXTENDED DESCRIPTION or OPERANDS
sections. Unless otherwise noted, the arithmetic and semantic concepts (precision, type
conversion, control flow, and so on) shall be equivalent to those defined in the ISO C standard,
as described in the following sections. Note that there is no requirement that the standard
utilities be implemented in any particular programming language.

1.1.2.1 Arithmetic Precision and Operations

Integer variables and constants, including the values of operands and option-arguments, used
by the standard utilities listed in this volume of POSIX.1-2008 shall be implemented as
equivalent to the ISO C standard signed long data type; floating point shall be implemented as
equivalent to the ISO C standard double type. Conversions between types shall be as described
in the ISO C standard. All variables shall be initialized to zero if they are not otherwise assigned
by the input to the application.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2283

71737

71738

71739

71740

71741

71742

71743

71744

71745

71746

71747

71748

71749

71750

71751

71752

71753

71754

71755

71756

71757

71758

71759

71760

71761

71762

71763

71764

71765

71766

71767

71768

71769

71770

71771

71772

71773

71774

Relationship to Other Documents Introduction

Arithmetic operators and control flow keywords shall be implemented as equivalent to those in
the cited ISO C standard section, as listed in Table 1-2.

Table 1-2 Selected ISO C Standard Operators and Control Flow Keywords

Operation ISO C Standard Equivalent Reference

() Section 6.5.1, Primary Expressions

postfix ++ Section 6.5.2, Postfix Operators
postfix - -

unary + Section 6.5.3, Unary Operators
unary -
prefix ++
prefix - -
˜
!
sizeof()

* Section 6.5.5, Multiplicative Operators
/
%

+ Section 6.5.6, Additive Operators
-

<< Section 6.5.7, Bitwise Shift Operators
>>

<, <= Section 6.5.8, Relational Operators
>, >=

= = Section 6.5.9, Equality Operators
!=

& Section 6.5.10, Bitwise AND Operator

ˆ Section 6.5.11, Bitwise Exclusive OR Operator

| Section 6.5.12, Bitwise Inclusive OR Operator

&& Section 6.5.13, Logical AND Operator

| | Section 6.5.14, Logical OR Operator

expr?expr:expr Section 6.5.15, Conditional Operator

=, *=, /=, %=, +=, -= Section 6.5.16, Assignment Operators
<<=, >>=, &=, ˆ=, |=

if () Section 6.8.4, Selection Statements
if () . . . else
switch ()

while () Section 6.8.5, Iteration Statements
do . . . while ()
for ()

goto Section 6.8.6, Jump Statements
continue
break
return

2284 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

71775

71776

71777

71778

71779

71780

71781

71782

71783

71784

71785

71786

71787

71788

71789

71790

71791

71792

71793

71794

71795

71796

71797

71798

71799

71800

71801

71802

71803

71804

71805

71806

71807

71808

71809

71810

71811

71812

71813

71814

71815

71816

71817

Introduction Relationship to Other Documents

The evaluation of arithmetic expressions shall be equivalent to that described in Section 6.5,
Expressions, of the ISO C standard.

1.1.2.2 Mathematical Functions

Any mathematical functions with the same names as those in the following sections of the ISO C
standard:

• Section 7.12, Mathematics, <math.h>

• Section 7.20.2, Pseudo-Random Sequence Generation Functions

shall be implemented to return the results equivalent to those returned from a call to the
corresponding function described in the ISO C standard.

1.2 Utility Limits

This section lists magnitude limitations imposed by a specific implementation. The braces
notation, {LIMIT}, is used in this volume of POSIX.1-2008 to indicate these values, but the braces
are not part of the name.

Table 1-3 Utility Limit Minimum Values

Name Description Value

{POSIX2_BC_BASE_MAX} 99The maximum obase value allowed by the bc
utility.

{POSIX2_BC_DIM_MAX} 2 048The maximum number of elements permitted in
an array by the bc utility.

{POSIX2_BC_SCALE_MAX} 99The maximum scale value allowed by the bc
utility.

{POSIX2_BC_STRING_MAX} 1 000The maximum length of a string constant
accepted by the bc utility.

{POSIX2_COLL_WEIGHTS_MAX} 2The maximum number of weights that can be
assigned to an entry of the LC_COLLATE order
keyword in the locale definition file; see the
border_start keyword in XBD Section 7.3.2 (on
page 146).

{POSIX2_EXPR_NEST_MAX} 32The maximum number of expressions that can
be nested within parentheses by the expr utility.

{POSIX2_LINE_MAX} 2 048Unless otherwise noted, the maximum length, in
bytes, of the input line of a utility (either
standard input or another file), when the utility
is described as processing text files. The length
includes room for the trailing <newline>.

{POSIX2_RE_DUP_MAX} 255The maximum number of repeated occurrences
of a BRE permitted when using the interval
notation \{m,n\}; see XBD Section 9.3.6 (on page
186).

The values specified in Table 1-3 represent the lowest values conforming implementations shall
provide and, consequently, the largest values on which an application can rely without further

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2285

71818

71819

71820

71821

71822

71823

71824

71825

71826

71827

71828

71829

71830

71831

71832

71833

71834

71835

71836

71837

71838

71839

71840

71841

71842

71843

71844

71845

71846

71847

71848

71849

71850

71851

71852

71853

71854

71855

71856

71857

71858

Utility Limits Introduction

enquiries, as described below. These values shall be accessible to applications via the getconf
utility (see getconf , on page 2772).

Implementations may provide more liberal, or less restrictive, values than shown in Table 1-3
(on page 2285). These possibly more liberal values are accessible using the symbols in Table 1-4.

The sysconf() function defined in the System Interfaces volume of POSIX.1-2008 or the getconf
utility return the value of each symbol on each specific implementation. The value so retrieved is
the largest, or most liberal, value that is available throughout the session lifetime, as determined
at session creation. The literal names shown in the table apply only to the getconf utility; the
high-level language binding describes the exact form of each name to be used by the interfaces
in that binding.

All numeric limits defined by the System Interfaces volume of POSIX.1-2008, such as
{PATH_MAX}, shall also apply to this volume of POSIX.1-2008. All the utilities defined by this
volume of POSIX.1-2008 are implicitly limited by these values, unless otherwise noted in the
utility descriptions.

It is not guaranteed that the application can actually reach the specified limit of an
implementation in any given case, or at all, as a lack of virtual memory or other resources may
prevent this. The limit value indicates only that the implementation does not specifically impose
any arbitrary, more restrictive limit.

Table 1-4 Symbolic Utility Limits

Name Description Minimum Value

{BC_BASE_MAX} {POSIX2_BC_BASE_MAX}The maximum obase value
allowed by the bc utility.

{BC_DIM_MAX} {POSIX2_BC_DIM_MAX}The maximum number of
elements permitted in an
array by the bc utility.

{BC_SCALE_MAX} {POSIX2_BC_SCALE_MAX}The maximum scale value
allowed by the bc utility.

{BC_STRING_MAX} {POSIX2_BC_STRING_MAX}The maximum length of a
string constant accepted by
the bc utility.

{COLL_WEIGHTS_MAX} {POSIX2_COLL_WEIGHTS_MAX}The maximum number of
weights that can be
assigned to an entry of the
LC_COLLATE order
keyword in the locale
definition file; see the
order_start keyword in XBD
Section 7.3.2 (on page 146).

{EXPR_NEST_MAX} {POSIX2_EXPR_NEST_MAX}The maximum number of
expressions that can be
nested within parentheses
by the expr utility.

2286 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

71859

71860

71861

71862

71863

71864

71865

71866

71867

71868

71869

71870

71871

71872

71873

71874

71875

71876

71877

71878

71879

71880

71881

71882

71883

71884

71885

71886

71887

71888

71889

71890

71891

71892

71893

71894

71895

71896

71897

71898

71899

71900

Introduction Utility Limits

Name Description Minimum Value

{LINE_MAX} {POSIX2_LINE_MAX}Unless otherwise noted, the
maximum length, in bytes,
of the input line of a utility
(either standard input or
another file), when the
utility is described as
processing text files. The
length includes room for the
trailing <newline>.

{RE_DUP_MAX} {POSIX2_RE_DUP_MAX}The maximum number of
repeated occurrences of a
BRE permitted when using
the interval notation
\{m,n\}; see XBD Section
9.3.6 (on page 186).

The following value may be a constant within an implementation or may vary from one
pathname to another.

{POSIX2_SYMLINKS}
When referring to a directory, the system supports the creation of symbolic links within that
directory; for non-directory files, the meaning of {POSIX2_SYMLINKS} is undefined.

1.3 Grammar Conventions

Portions of this volume of POSIX.1-2008 are expressed in terms of a special grammar notation. It
is used to portray the complex syntax of certain program input. The grammar is based on the
syntax used by the yacc utility. However, it does not represent fully functional yacc input,
suitable for program use; the lexical processing and all semantic requirements are described only
in textual form. The grammar is not based on source used in any traditional implementation and
has not been tested with the semantic code that would normally be required to accompany it.
Furthermore, there is no implication that the partial yacc code presented represents the most
efficient, or only, means of supporting the complex syntax within the utility. Implementations
may use other programming languages or algorithms, as long as the syntax supported is the
same as that represented by the grammar.

The following typographical conventions are used in the grammar; they have no significance
except to aid in reading.

• The identifiers for the reserved words of the language are shown with a leading capital
letter. (These are terminals in the grammar; for example, While, Case.)

• The identifiers for terminals in the grammar are all named with uppercase letters and
underscores; for example, NEWLINE, ASSIGN_OP, NAME.

• The identifiers for non-terminals are all lowercase.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2287

71901

71902

71903

71904

71905

71906

71907

71908

71909

71910

71911

71912

71913

71914

71915

71916

71917

71918

71919

71920

71921

71922

71923

71924

71925

71926

71927

71928

71929

71930

71931

71932

71933

71934

71935

71936

71937

71938

71939

Utility Description Defaults Introduction

1.4 Utility Description Defaults

This section describes all of the subsections used within the utility descriptions, including:

• Intended usage of the section

• Global defaults that affect all the standard utilities

• The meanings of notations used in this volume of POSIX.1-2008 that are specific to
individual utility sections

NAME
This section gives the name or names of the utility and briefly states its purpose.

SYNOPSIS
The SYNOPSIS section summarizes the syntax of the calling sequence for the utility,
including options, option-arguments, and operands. Standards for utility naming are
described in XBD Section 12.2 (on page 215); for describing the utility’s arguments in
XBD Section 12.1 (on page 213).

DESCRIPTION
The DESCRIPTION section describes the actions of the utility. If the utility has a very
complex set of subcommands or its own procedural language, an EXTENDED
DESCRIPTION section is also provided. Most explanations of optional functionality are
omitted here, as they are usually explained in the OPTIONS section.

As stated in Section 1.1.1.11 (on page 2283), some functions are described in terms of
equivalent functionality. When specific functions are cited, the implementation shall
provide equivalent functionality including side-effects associated with successful
execution of the function. The treatment of errors and intermediate results from the
individual functions cited is generally not specified by this volume of POSIX.1-2008.
See the utility’s EXIT STATUS and CONSEQUENCES OF ERRORS sections for all
actions associated with errors encountered by the utility.

OPTIONS
The OPTIONS section describes the utility options and option-arguments, and how
they modify the actions of the utility. Standard utilities that have options either fully
comply with XBD Section 12.2 (on page 215) or describe all deviations. Apparent
disagreements between functionality descriptions in the OPTIONS and DESCRIPTION
(or EXTENDED DESCRIPTION) sections are always resolved in favor of the OPTIONS
section.

Each OPTIONS section that uses the phrase ‘‘The . . . utility shall conform to the Utility
Syntax Guidelines . . .’’ refers only to the use of the utility as specified by this volume of
POSIX.1-2008; implementation extensions should also conform to the guidelines, but
may allow exceptions for historical practice.

Unless otherwise stated in the utility description, when given an option unrecognized
by the implementation, or when a required option-argument is not provided, standard
utilities shall issue a diagnostic message to standard error and exit with a non-zero exit
status.

All utilities in this volume of POSIX.1-2008 shall be capable of processing arguments
using eight-bit transparency.

Default Behavior: When this section is listed as ‘‘None.’’, it means that the
implementation need not support any options. Standard utilities that do not accept
options, but that do accept operands, shall recognize "− −" as a first argument to be
discarded.

2288 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

71940

71941

71942

71943

71944

71945

71946

71947

71948

71949

71950

71951

71952

71953

71954

71955

71956

71957

71958

71959

71960

71961

71962

71963

71964

71965

71966

71967

71968

71969

71970

71971

71972

71973

71974

71975

71976

71977

71978

71979

71980

71981

71982

71983

71984

71985

Introduction Utility Description Defaults

The requirement for recognizing "− −" is because conforming applications need a way
to shield their operands from any arbitrary options that the implementation may
provide as an extension. For example, if the standard utility foo is listed as taking no
options, and the application needed to give it a pathname with a leading <hyphen>, it
could safely do it as:

foo − − −myfile

and avoid any problems with −m used as an extension.

OPERANDS
The OPERANDS section describes the utility operands, and how they affect the actions
of the utility. Apparent disagreements between functionality descriptions in the
OPERANDS and DESCRIPTION (or EXTENDED DESCRIPTION) sections shall be
resolved in favor of the OPERANDS section.

If an operand naming a file can be specified as ’−’, which means to use the standard
input instead of a named file, this is explicitly stated in this section. Unless otherwise
stated, the use of multiple instances of ’−’ to mean standard input in a single
command produces unspecified results.

Unless otherwise stated, the standard utilities that accept operands shall process those
operands in the order specified in the command line.

Default Behavior: When this section is listed as ‘‘None.’’, it means that the
implementation need not support any operands.

STDIN
The STDIN section describes the standard input of the utility. This section is frequently
merely a reference to the following section, as many utilities treat standard input and
input files in the same manner. Unless otherwise stated, all restrictions described in the
INPUT FILES section shall apply to this section as well.

Use of a terminal for standard input can cause any of the standard utilities that read
standard input to stop when used in the background. For this reason, applications
should not use interactive features in scripts to be placed in the background.

The specified standard input format of the standard utilities shall not depend on the
existence or value of the environment variables defined in this volume of POSIX.1-2008,
except as provided by this volume of POSIX.1-2008.

Default Behavior: When this section is listed as ‘‘Not used.’’, it means that the standard
input shall not be read when the utility is used as described by this volume of
POSIX.1-2008.

INPUT FILES
The INPUT FILES section describes the files, other than the standard input, used as
input by the utility. It includes files named as operands and option-arguments as well
as other files that are referred to, such as start-up and initialization files, databases, and
so on. Commonly-used files are generally described in one place and cross-referenced
by other utilities.

All utilities in this volume of POSIX.1-2008 shall be capable of processing input files
using eight-bit transparency.

When a standard utility reads a seekable input file and terminates without an error
before it reaches end-of-file, the utility shall ensure that the file offset in the open file
description is properly positioned just past the last byte processed by the utility. For
files that are not seekable, the state of the file offset in the open file description for that

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2289

71986

71987

71988

71989

71990

71991

71992

71993

71994

71995

71996

71997

71998

71999

72000

72001

72002

72003

72004

72005

72006

72007

72008

72009

72010

72011

72012

72013

72014

72015

72016

72017

72018

72019

72020

72021

72022

72023

72024

72025

72026

72027

72028

72029

72030

72031

Utility Description Defaults Introduction

file is unspecified. A conforming application shall not assume that the following three
commands are equivalent:

tail −n +2 file
(sed −n 1q; cat) < file
cat file | (sed −n 1q; cat)

The second command is equivalent to the first only when the file is seekable. The third
command leaves the file offset in the open file description in an unspecified state. Other
utilities, such as head, read, and sh, have similar properties.

Some of the standard utilities, such as filters, process input files a line or a block at a
time and have no restrictions on the maximum input file size. Some utilities may have
size limitations that are not as obvious as file space or memory limitations. Such
limitations should reflect resource limitations of some sort, not arbitrary limits set by
implementors. Implementations shall document those utilities that are limited by
constraints other than file system space, available memory, and other limits specifically
cited by this volume of POSIX.1-2008, and identify what the constraint is and indicate a
way of estimating when the constraint would be reached. Similarly, some utilities
descend the directory tree (recursively). Implementations shall also document any
limits that they may have in descending the directory tree that are beyond limits cited
by this volume of POSIX.1-2008.

When an input file is described as a ‘‘text file’’, the utility produces undefined results if
given input that is not from a text file, unless otherwise stated. Some utilities (for
example, make, read, sh) allow for continued input lines using an escaped <newline>
convention; unless otherwise stated, the utility need not be able to accumulate more
than {LINE_MAX} bytes from a set of multiple, continued input lines. Thus, for a
conforming application the total of all the continued lines in a set cannot exceed
{LINE_MAX}. If a utility using the escaped <newline> convention detects an end-of-
file condition immediately after an escaped <newline>, the results are unspecified.

Record formats are described in a notation similar to that used by the C-language
function, printf(). See XBD Chapter 5 (on page 121) for a description of this notation.
The format description is intended to be sufficiently rigorous to allow other
applications to generate these input files. However, since <blank>s can legitimately be
included in some of the fields described by the standard utilities, particularly in locales
other than the POSIX locale, this intent is not always realized.

Default Behavior: When this section is listed as ‘‘None.’’, it means that no input files
are required to be supplied when the utility is used as described by this volume of
POSIX.1-2008.

ENVIRONMENT VARIABLES
The ENVIRONMENT VARIABLES section lists what variables affect the utility’s
execution.

The entire manner in which environment variables described in this volume of
POSIX.1-2008 affect the behavior of each utility is described in the ENVIRONMENT
VARIABLES section for that utility, in conjunction with the global effects of the LANG,

XSI LC_ALL, and NLSPATH environment variables described in XBD Chapter 8 (on page
173). The existence or value of environment variables described in this volume of
POSIX.1-2008 shall not otherwise affect the specified behavior of the standard utilities.
Any effects of the existence or value of environment variables not described by this
volume of POSIX.1-2008 upon the standard utilities are unspecified.

For those standard utilities that use environment variables as a means for selecting a

2290 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

72032

72033

72034

72035

72036

72037

72038

72039

72040

72041

72042

72043

72044

72045

72046

72047

72048

72049

72050

72051

72052

72053

72054

72055

72056

72057

72058

72059

72060

72061

72062

72063

72064

72065

72066

72067

72068

72069

72070

72071

72072

72073

72074

72075

72076

72077

72078

72079

Introduction Utility Description Defaults

utility to execute (such as CC in make), the string provided to the utility is subjected to
the path search described for PA TH in XBD Chapter 8 (on page 173).

All utilities in this volume of POSIX.1-2008 shall be capable of processing environment
variable names and values using eight-bit transparency.

Default Behavior: When this section is listed as ‘‘None.’’, it means that the behavior of
the utility is not directly affected by environment variables described by this volume of
POSIX.1-2008 when the utility is used as described by this volume of POSIX.1-2008.

ASYNCHRONOUS EVENTS
The ASYNCHRONOUS EVENTS section lists how the utility reacts to such events as
signals and what signals are caught.

Default Behavior: When this section is listed as ‘‘Default.’’, or it refers to ‘‘the standard
action for all other signals; see Section 1.4 (on page 2288)’’ it means that the action taken
as a result of the signal shall be one of the following:

1. The action shall be that inherited from the parent according to the rules of
inheritance of signal actions defined in the System Interfaces volume of
POSIX.1-2008.

2. When no action has been taken to change the default, the default action shall be
that specified by the System Interfaces volume of POSIX.1-2008.

3. The result of the utility’s execution is as if default actions had been taken.

A utility is permitted to catch a signal, perform some additional processing (such as
deleting temporary files), restore the default signal action (or action inherited from the
parent process), and resignal itself.

STDOUT
The STDOUT section completely describes the standard output of the utility. This
section is frequently merely a reference to the following section, OUTPUT FILES,
because many utilities treat standard output and output files in the same manner.

Use of a terminal for standard output may cause any of the standard utilities that write
standard output to stop when used in the background. For this reason, applications
should not use interactive features in scripts to be placed in the background.

Record formats are described in a notation similar to that used by the C-language
function, printf(). See XBD Chapter 5 (on page 121) for a description of this notation.

The specified standard output of the standard utilities shall not depend on the
existence or value of the environment variables defined in this volume of POSIX.1-2008,
except as provided by this volume of POSIX.1-2008.

Some of the standard utilities describe their output using the verb display, defined in
XBD Section 3.133 (on page 54). Output described in the STDOUT sections of such
utilities may be produced using means other than standard output. When standard
output is directed to a terminal, the output described shall be written directly to the
terminal. Otherwise, the results are undefined.

Default Behavior: When this section is listed as ‘‘Not used.’’, it means that the standard
output shall not be written when the utility is used as described by this volume of
POSIX.1-2008.

STDERR
The STDERR section describes the standard error output of the utility. Only those
messages that are purposely sent by the utility are described.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2291

72080

72081

72082

72083

72084

72085

72086

72087

72088

72089

72090

72091

72092

72093

72094

72095

72096

72097

72098

72099

72100

72101

72102

72103

72104

72105

72106

72107

72108

72109

72110

72111

72112

72113

72114

72115

72116

72117

72118

72119

72120

72121

72122

72123

72124

Utility Description Defaults Introduction

Use of a terminal for standard error may cause any of the standard utilities that write
standard error output to stop when used in the background. For this reason,
applications should not use interactive features in scripts to be placed in the
background.

The format of diagnostic messages for most utilities is unspecified, but the language
and cultural conventions of diagnostic and informative messages whose format is
unspecified by this volume of POSIX.1-2008 should be affected by the setting of

XSI LC_MESSAGES and NLSPATH.

The specified standard error output of standard utilities shall not depend on the
existence or value of the environment variables defined in this volume of POSIX.1-2008,
except as provided by this volume of POSIX.1-2008.

Default Behavior: When this section is listed as ‘‘The standard error shall be used only
for diagnostic messages.’’, it means that, unless otherwise stated, the diagnostic
messages shall be sent to the standard error only when the exit status indicates that an
error occurred and the utility is used as described by this volume of POSIX.1-2008.

When this section is listed as ‘‘Not used.’’, it means that the standard error shall not be
used when the utility is used as described in this volume of POSIX.1-2008.

OUTPUT FILES
The OUTPUT FILES section completely describes the files created or modified by the
utility. Temporary or system files that are created for internal usage by this utility or
other parts of the implementation (for example, spool, log, and audit files) are not
described in this, or any, section. The utilities creating such files and the names of such
files are unspecified. If applications are written to use temporary or intermediate files,
they should use the TMPDIR environment variable, if it is set and represents an
accessible directory, to select the location of temporary files.

Implementations shall ensure that temporary files, when used by the standard utilities,
are named so that different utilities or multiple instances of the same utility can operate
simultaneously without regard to their working directories, or any other process
characteristic other than process ID. There are two exceptions to this rule:

1. Resources for temporary files other than the name space (for example, disk
space, available directory entries, or number of processes allowed) are not
guaranteed.

2. Certain standard utilities generate output files that are intended as input for
other utilities (for example, lex generates lex.yy.c), and these cannot have unique
names. These cases are explicitly identified in the descriptions of the respective
utilities.

Any temporary file created by the implementation shall be removed by the
implementation upon a utility’s successful exit, exit because of errors, or before
termination by any of the SIGHUP, SIGINT, or SIGTERM signals, unless specified
otherwise by the utility description.

Receipt of the SIGQUIT signal should generally cause termination (unless in some
debugging mode) that would bypass any attempted recovery actions.

Record formats are described in a notation similar to that used by the C-language
function, printf(); see XBD Chapter 5 (on page 121) for a description of this notation.

Default Behavior: When this section is listed as ‘‘None.’’, it means that no files are
created or modified as a consequence of direct action on the part of the utility when the
utility is used as described by this volume of POSIX.1-2008. However, the utility may

2292 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

72125

72126

72127

72128

72129

72130

72131

72132

72133

72134

72135

72136

72137

72138

72139

72140

72141

72142

72143

72144

72145

72146

72147

72148

72149

72150

72151

72152

72153

72154

72155

72156

72157

72158

72159

72160

72161

72162

72163

72164

72165

72166

72167

72168

72169

72170

72171

Introduction Utility Description Defaults

create or modify system files, such as log files, that are outside the utility’s normal
execution environment.

EXTENDED DESCRIPTION
The EXTENDED DESCRIPTION section provides a place for describing the actions of
very complicated utilities, such as text editors or language processors, which typically
have elaborate command languages.

Default Behavior: When this section is listed as ‘‘None.’’, no further description is
necessary.

EXIT STATUS
The EXIT STATUS section describes the values the utility shall return to the calling
program, or shell, and the conditions that cause these values to be returned. Usually,
utilities return zero for successful completion and values greater than zero for various
error conditions. If specific numeric values are listed in this section, the system shall
use those values for the errors described. In some cases, status values are listed more
loosely, such as >0. A strictly conforming application shall not rely on any specific
value in the range shown and shall be prepared to receive any value in the range.

For example, a utility may list zero as a successful return, 1 as a failure for a specific
reason, and >1 as ‘‘an error occurred’’. In this case, unspecified conditions may cause a
2 or 3, or other value, to be returned. A conforming application should be written so
that it tests for successful exit status values (zero in this case), rather than relying upon
the single specific error value listed in this volume of POSIX.1-2008. In that way, it has
maximum portability, even on implementations with extensions.

Unspecified error conditions may be represented by specific values not listed in this
volume of POSIX.1-2008.

CONSEQUENCES OF ERRORS
The CONSEQUENCES OF ERRORS section describes the effects on the environment,
file systems, process state, and so on, when error conditions occur. It does not describe
error messages produced or exit status values used.

The many reasons for failure of a utility are generally not specified by the utility
descriptions. Utilities may terminate prematurely if they encounter: invalid usage of
options, arguments, or environment variables; invalid usage of the complex syntaxes
expressed in EXTENDED DESCRIPTION sections; difficulties accessing, creating,
reading, or writing files; or difficulties associated with the privileges of the process.

The following shall apply to each utility, unless otherwise stated:

• If the requested action cannot be performed on an operand representing a file,
directory, user, process, and so on, the utility shall issue a diagnostic message to
standard error and continue processing the next operand in sequence, but the
final exit status shall be returned as non-zero.

For a utility that recursively traverses a file hierarchy (such as find or chown −R), if
the requested action cannot be performed on a file or directory encountered in the
hierarchy, the utility shall issue a diagnostic message to standard error and
continue processing the remaining files in the hierarchy, but the final exit status
shall be returned as non-zero.

• If the requested action characterized by an option or option-argument cannot be
performed, the utility shall issue a diagnostic message to standard error and the
exit status returned shall be non-zero.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2293

72172

72173

72174

72175

72176

72177

72178

72179

72180

72181

72182

72183

72184

72185

72186

72187

72188

72189

72190

72191

72192

72193

72194

72195

72196

72197

72198

72199

72200

72201

72202

72203

72204

72205

72206

72207

72208

72209

72210

72211

72212

72213

72214

72215

72216

72217

Utility Description Defaults Introduction

• When an unrecoverable error condition is encountered, the utility shall exit with a
non-zero exit status.

• A diagnostic message shall be written to standard error whenever an error
condition occurs.

When a utility encounters an error condition several actions are possible, depending on
the severity of the error and the state of the utility. Included in the possible actions of
various utilities are: deletion of temporary or intermediate work files; deletion of
incomplete files; validity checking of the file system or directory.

Default Behavior: When this section is listed as ‘‘Default.’’, it means that any changes
to the environment are unspecified.

APPLICATION USAGE
This section is informative.

The APPLICATION USAGE section gives advice to the application programmer or
user about the way the utility should be used.

EXAMPLES
This section is informative.

The EXAMPLES section gives one or more examples of usage, where appropriate. In
the event of conflict between an example and a normative part of the specification, the
normative material is to be taken as correct.

In all examples, quoting has been used, showing how sample commands (utility names
combined with arguments) could be passed correctly to a shell (see sh) or as a string to
the system() function defined in the System Interfaces volume of POSIX.1-2008. Such
quoting would not be used if the utility is invoked using one of the exec functions
defined in the System Interfaces volume of POSIX.1-2008.

RATIONALE
This section is informative.

This section contains historical information concerning the contents of this volume of
POSIX.1-2008 and why features were included or discarded by the standard
developers.

FUTURE DIRECTIONS
This section is informative.

The FUTURE DIRECTIONS section should be used as a guide to current thinking; there
is not necessarily a commitment to implement all of these future directions in their
entirety.

SEE ALSO
This section is informative.

The SEE ALSO section lists related entries.

CHANGE HISTORY
This section is informative.

This section shows the derivation of the entry and any significant changes that have
been made to it.

Certain of the standard utilities describe how they can invoke other utilities or applications, such
as by passing a command string to the command interpreter. The external influences (STDIN,
ENVIRONMENT VARIABLES, and so on) and external effects (STDOUT, CONSEQUENCES OF

2294 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

72218

72219

72220

72221

72222

72223

72224

72225

72226

72227

72228

72229

72230

72231

72232

72233

72234

72235

72236

72237

72238

72239

72240

72241

72242

72243

72244

72245

72246

72247

72248

72249

72250

72251

72252

72253

72254

72255

72256

72257

72258

72259

72260

72261

Introduction Utility Description Defaults

ERRORS, and so on) of such invoked utilities are not described in the section concerning the
standard utility that invokes them.

1.5 Considerations for Utilities in Support of Files of Arbitrary Size

The following utilities support files of any size up to the maximum that can be created by the
implementation. This support includes correct writing of file size-related values (such as file
sizes and offsets, line numbers, and block counts) and correct interpretation of command line
arguments that contain such values.

basename Return non-directory portion of pathname.

cat Concatenate and print files.

cd Change working directory.

chgrp Change file group ownership.

chmod Change file modes.

chown Change file ownership.

cksum Write file checksums and sizes.

cmp Compare two files.

cp Copy files.

dd Convert and copy a file.

df Report free disk space.

dirname Return directory portion of pathname.

du Estimate file space usage.

find Find files.

ln Link files.

ls List directory contents.

mkdir Make directories.

mv Move files.

pathchk Check pathnames.

pwd Return working directory name.

rm Remove directory entries.

rmdir Remove directories.

sh Shell, the standard command language interpreter.

sum Print checksum and block or byte count of a file.

test Evaluate expression.

touch Change file access and modification times.

ulimit Set or report file size limit.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2295

72262

72263

72264

72265

72266

72267

72268

72269

72270

72271

72272

72273

72274

72275

72276

72277

72278

72279

72280

72281

72282

72283

72284

72285

72286

72287

72288

72289

72290

72291

72292

72293

72294

72295

Considerations for Utilities in Support of Files of Arbitrary Size Introduction

Exceptions to the requirement that utilities support files of any size up to the maximum are as
follows:

1. Uses of files as command scripts, or for configuration or control, are exempt. For example,
it is not required that sh be able to read an arbitrarily large .profile.

2. Shell input and output redirection are exempt. For example, it is not required that the
redirections sum < file or echo foo > file succeed for an arbitrarily large existing file.

1.6 Built-In Utilities

Any of the standard utilities may be implemented as regular built-in utilities within the
command language interpreter. This is usually done to increase the performance of frequently
used utilities or to achieve functionality that would be more difficult in a separate environment.
The utilities named in Table 1-5 are frequently provided in built-in form. All of the utilities
named in the table have special properties in terms of command search order within the shell, as
described in Section 2.9.1.1 (on page 2317).

Table 1-5 Regular Built-In Utilities

alias
bg
cd
command

false
fc
fg
getopts

jobs
kill
newgrp
pwd

read
true
umask
unalias

wait

However, all of the standard utilities, including the regular built-ins in the table, but not the
special built-ins described in Section 2.14 (on page 2334), shall be implemented in a manner so
that they can be accessed via the exec family of functions as defined in the System Interfaces
volume of POSIX.1-2008 and can be invoked directly by those standard utilities that require it
(env, find, nice, nohup, time, xargs).

2296 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

72296

72297

72298

72299

72300

72301

72302

72303

72304

72305

72306

72307

72308

72309

72310

72311

72312

72313

72314

72315

72316

72317

72318

Chapter 2

Shell Command Language

This chapter contains the definition of the Shell Command Language.

2.1 Shell Introduction

The shell is a command language interpreter. This chapter describes the syntax of that command
language as it is used by the sh utility and the system() and popen() functions defined in the
System Interfaces volume of POSIX.1-2008.

The shell operates according to the following general overview of operations. The specific
details are included in the cited sections of this chapter.

1. The shell reads its input from a file (see sh), from the −c option or from the system() and
popen() functions defined in the System Interfaces volume of POSIX.1-2008. If the first
line of a file of shell commands starts with the characters "#!", the results are
unspecified.

2. The shell breaks the input into tokens: words and operators; see Section 2.3 (on page
2299).

3. The shell parses the input into simple commands (see Section 2.9.1, on page 2316) and
compound commands (see Section 2.9.4, on page 2321).

4. The shell performs various expansions (separately) on different parts of each command,
resulting in a list of pathnames and fields to be treated as a command and arguments; see
Section 2.6 (on page 2305).

5. The shell performs redirection (see Section 2.7, on page 2312) and removes redirection
operators and their operands from the parameter list.

6. The shell executes a function (see Section 2.9.5, on page 2324), built-in (see Section 2.14,
on page 2334), executable file, or script, giving the names of the arguments as positional
parameters numbered 1 to n, and the name of the command (or in the case of a function
within a script, the name of the script) as the positional parameter numbered 0 (see
Section 2.9.1.1, on page 2317).

7. The shell optionally waits for the command to complete and collects the exit status (see
Section 2.8.2, on page 2315).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2297

72319

72320

72321

72322

72323

72324

72325

72326

72327

72328

72329

72330

72331

72332

72333

72334

72335

72336

72337

72338

72339

72340

72341

72342

72343

72344

72345

72346

72347

Quoting Shell Command Language

2.2 Quoting

Quoting is used to remove the special meaning of certain characters or words to the shell.
Quoting can be used to preserve the literal meaning of the special characters in the next
paragraph, prevent reserved words from being recognized as such, and prevent parameter
expansion and command substitution within here-document processing (see Section 2.7.4, on
page 2313).

The application shall quote the following characters if they are to represent themselves:

| & ; < > () $ ‘ \ " ’ <space> <tab> <newline>

and the following may need to be quoted under certain circumstances. That is, these characters
may be special depending on conditions described elsewhere in this volume of POSIX.1-2008:

* ? [# ˜ = %

The various quoting mechanisms are the escape character, single-quotes, and double-quotes. The
here-document represents another form of quoting; see Section 2.7.4 (on page 2313).

2.2.1 Escape Character (Backslash)

A <backslash> that is not quoted shall preserve the literal value of the following character, with
the exception of a <newline>. If a <newline> follows the <backslash>, the shell shall interpret
this as line continuation. The <backslash> and <newline> shall be removed before splitting the
input into tokens. Since the escaped <newline> is removed entirely from the input and is not
replaced by any white space, it cannot serve as a token separator.

2.2.2 Single-Quotes

Enclosing characters in single-quotes (’’) shall preserve the literal value of each character
within the single-quotes. A single-quote cannot occur within single-quotes.

2.2.3 Double-Quotes

Enclosing characters in double-quotes ("") shall preserve the literal value of all characters
within the double-quotes, with the exception of the characters backquote, <dollar-sign>, and
<backslash>, as follows:

$ The <dollar-sign> shall retain its special meaning introducing parameter expansion (see
Section 2.6.2, on page 2306), a form of command substitution (see Section 2.6.3, on page
2309), and arithmetic expansion (see Section 2.6.4, on page 2310).

The input characters within the quoted string that are also enclosed between "$(" and the
matching ’)’ shall not be affected by the double-quotes, but rather shall define that
command whose output replaces the "$(...)" when the word is expanded. The
tokenizing rules in Section 2.3 (on page 2299), not including the alias substitutions in
Section 2.3.1 (on page 2300), shall be applied recursively to find the matching ’)’.

Within the string of characters from an enclosed "${" to the matching ’}’, an even number
of unescaped double-quotes or single-quotes, if any, shall occur. A preceding <backslash>
character shall be used to escape a literal ’{’ or ’}’. The rule in Section 2.6.2 (on page
2306) shall be used to determine the matching ’}’.

2298 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

72348

72349

72350

72351

72352

72353

72354

72355

72356

72357

72358

72359

72360

72361

72362

72363

72364

72365

72366

72367

72368

72369

72370

72371

72372

72373

72374

72375

72376

72377

72378

72379

72380

72381

72382

72383

72384

72385

Shell Command Language Quoting

‘ The backquote shall retain its special meaning introducing the other form of command
substitution (see Section 2.6.3, on page 2309). The portion of the quoted string from the
initial backquote and the characters up to the next backquote that is not preceded by a
<backslash>, having escape characters removed, defines that command whose output
replaces "‘...‘" when the word is expanded. Either of the following cases produces
undefined results:

• A single-quoted or double-quoted string that begins, but does not end, within the
"‘...‘" sequence

• A "‘...‘" sequence that begins, but does not end, within the same double-quoted
string

\ The <backslash> shall retain its special meaning as an escape character (see Section 2.2.1, on
page 2298) only when followed by one of the following characters when considered special:

$ ‘ " \ <newline>

The application shall ensure that a double-quote is preceded by a <backslash> to be included
within double-quotes. The parameter ’@’ has special meaning inside double-quotes and is
described in Section 2.5.2 (on page 2302).

2.3 Token Recognition

The shell shall read its input in terms of lines from a file, from a terminal in the case of an
interactive shell, or from a string in the case of sh −c or system(). The input lines can be of
unlimited length. These lines shall be parsed using two major modes: ordinary token recognition
and processing of here-documents.

When an io_here token has been recognized by the grammar (see Section 2.10, on page 2325),
one or more of the subsequent lines immediately following the next NEWLINE token form the
body of one or more here-documents and shall be parsed according to the rules of Section 2.7.4
(on page 2313).

When it is not processing an io_here, the shell shall break its input into tokens by applying the
first applicable rule below to the next character in its input. The token shall be from the current
position in the input until a token is delimited according to one of the rules below; the characters
forming the token are exactly those in the input, including any quoting characters. If it is
indicated that a token is delimited, and no characters have been included in a token, processing
shall continue until an actual token is delimited.

1. If the end of input is recognized, the current token shall be delimited. If there is no
current token, the end-of-input indicator shall be returned as the token.

2. If the previous character was used as part of an operator and the current character is not
quoted and can be used with the current characters to form an operator, it shall be used as
part of that (operator) token.

3. If the previous character was used as part of an operator and the current character cannot
be used with the current characters to form an operator, the operator containing the
previous character shall be delimited.

4. If the current character is <backslash>, single-quote, or double-quote and it is not quoted,
it shall affect quoting for subsequent characters up to the end of the quoted text. The rules
for quoting are as described in Section 2.2 (on page 2298). During token recognition no
substitutions shall be actually performed, and the result token shall contain exactly the
characters that appear in the input (except for <newline> joining), unmodified, including

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2299

72386

72387

72388

72389

72390

72391

72392

72393

72394

72395

72396

72397

72398

72399

72400

72401

72402

72403

72404

72405

72406

72407

72408

72409

72410

72411

72412

72413

72414

72415

72416

72417

72418

72419

72420

72421

72422

72423

72424

72425

72426

72427

72428

72429

Token Recognition Shell Command Language

any embedded or enclosing quotes or substitution operators, between the <quotation-
mark> and the end of the quoted text. The token shall not be delimited by the end of the
quoted field.

5. If the current character is an unquoted ’$’ or ’‘’, the shell shall identify the start of any
candidates for parameter expansion (Section 2.6.2, on page 2306), command substitution
(Section 2.6.3, on page 2309), or arithmetic expansion (Section 2.6.4, on page 2310) from
their introductory unquoted character sequences: ’$’ or "${", "$(" or ’‘’, and "$((",
respectively. The shell shall read sufficient input to determine the end of the unit to be
expanded (as explained in the cited sections). While processing the characters, if
instances of expansions or quoting are found nested within the substitution, the shell
shall recursively process them in the manner specified for the construct that is found. The
characters found from the beginning of the substitution to its end, allowing for any
recursion necessary to recognize embedded constructs, shall be included unmodified in
the result token, including any embedded or enclosing substitution operators or quotes.
The token shall not be delimited by the end of the substitution.

6. If the current character is not quoted and can be used as the first character of a new
operator, the current token (if any) shall be delimited. The current character shall be used
as the beginning of the next (operator) token.

7. If the current character is an unquoted <newline>, the current token shall be delimited.

8. If the current character is an unquoted <blank>, any token containing the previous
character is delimited and the current character shall be discarded.

9. If the previous character was part of a word, the current character shall be appended to
that word.

10. If the current character is a ’#’, it and all subsequent characters up to, but excluding, the
next <newline> shall be discarded as a comment. The <newline> that ends the line is not
considered part of the comment.

11. The current character is used as the start of a new word.

Once a token is delimited, it is categorized as required by the grammar in Section 2.10 (on page
2325).

2.3.1 Alias Substitution

After a token has been delimited, but before applying the grammatical rules in Section 2.10 (on
page 2325), a resulting word that is identified to be the command name word of a simple
command shall be examined to determine whether it is an unquoted, valid alias name. However,
reserved words in correct grammatical context shall not be candidates for alias substitution. A
valid alias name (see XBD Section 3.10, on page 34) shall be one that has been defined by the
alias utility and not subsequently undefined using unalias. Implementations also may provide
predefined valid aliases that are in effect when the shell is invoked. To prevent infinite loops in
recursive aliasing, if the shell is not currently processing an alias of the same name, the word
shall be replaced by the value of the alias; otherwise, it shall not be replaced.

If the value of the alias replacing the word ends in a <blank>, the shell shall check the next
command word for alias substitution; this process shall continue until a word is found that is
not a valid alias or an alias value does not end in a <blank>.

When used as specified by this volume of POSIX.1-2008, alias definitions shall not be inherited
by separate invocations of the shell or by the utility execution environments invoked by the
shell; see Section 2.12 (on page 2331).

2300 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

72430

72431

72432

72433

72434

72435

72436

72437

72438

72439

72440

72441

72442

72443

72444

72445

72446

72447

72448

72449

72450

72451

72452

72453

72454

72455

72456

72457

72458

72459

72460

72461

72462

72463

72464

72465

72466

72467

72468

72469

72470

72471

72472

72473

72474

Shell Command Language Reserved Words

2.4 Reserved Words

Reserved words are words that have special meaning to the shell; see Section 2.9 (on page 2316).
The following words shall be recognized as reserved words:

!
{
}
case

do
done
elif
else

esac
fi
for
if

in
then
until
while

This recognition shall only occur when none of the characters is quoted and when the word is
used as:

• The first word of a command

• The first word following one of the reserved words other than case, for, or in

• The third word in a case command (only in is valid in this case)

• The third word in a for command (only in and do are valid in this case)

See the grammar in Section 2.10 (on page 2325).

The following words may be recognized as reserved words on some implementations (when
none of the characters are quoted), causing unspecified results:

[[]] function select

Words that are the concatenation of a name and a <colon> (’:’) are reserved; their use produces
unspecified results.

2.5 Parameters and Variables

A parameter can be denoted by a name, a number, or one of the special characters listed in
Section 2.5.2 (on page 2302). A variable is a parameter denoted by a name.

A parameter is set if it has an assigned value (null is a valid value). Once a variable is set, it can
only be unset by using the unset special built-in command.

2.5.1 Positional Parameters

A positional parameter is a parameter denoted by the decimal value represented by one or more
digits, other than the single digit 0. The digits denoting the positional parameters shall always
be interpreted as a decimal value, even if there is a leading zero. When a positional parameter
with more than one digit is specified, the application shall enclose the digits in braces (see
Section 2.6.2, on page 2306). Positional parameters are initially assigned when the shell is
invoked (see sh), temporarily replaced when a shell function is invoked (see Section 2.9.5, on
page 2324), and can be reassigned with the set special built-in command.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2301

72475

72476

72477

72478

72479

72480

72481

72482

72483

72484

72485

72486

72487

72488

72489

72490

72491

72492

72493

72494

72495

72496

72497

72498

72499

72500

72501

72502

72503

72504

72505

72506

Parameters and Variables Shell Command Language

2.5.2 Special Parameters

Listed below are the special parameters and the values to which they shall expand. Only the
values of the special parameters are listed; see Section 2.6 (on page 2305) for a detailed summary
of all the stages involved in expanding words.

@ Expands to the positional parameters, starting from one. When the expansion occurs within
double-quotes, and where field splitting (see Section 2.6.5, on page 2311) is performed, each
positional parameter shall expand as a separate field, with the provision that the expansion
of the first parameter shall still be joined with the beginning part of the original word
(assuming that the expanded parameter was embedded within a word), and the expansion
of the last parameter shall still be joined with the last part of the original word. If there are
no positional parameters, the expansion of ’@’ shall generate zero fields, even when ’@’ is
double-quoted.

* Expands to the positional parameters, starting from one. When the expansion occurs within
a double-quoted string (see Section 2.2.3, on page 2298), it shall expand to a single field with
the value of each parameter separated by the first character of the IFS variable, or by a
<space> if IFS is unset. If IFS is set to a null string, this is not equivalent to unsetting it; its
first character does not exist, so the parameter values are concatenated.

Expands to the decimal number of positional parameters. The command name (parameter
0) shall not be counted in the number given by ’#’ because it is a special parameter, not a
positional parameter.

? Expands to the decimal exit status of the most recent pipeline (see Section 2.9.2, on page
2318).

− (Hyphen.) Expands to the current option flags (the single-letter option names concatenated
into a string) as specified on invocation, by the set special built-in command, or implicitly
by the shell.

$ Expands to the decimal process ID of the invoked shell. In a subshell (see Section 2.12, on
page 2331), ’$’ shall expand to the same value as that of the current shell.

! Expands to the decimal process ID of the most recent background command (see Section
2.9.3, on page 2319) executed from the current shell. (For example, background commands
executed from subshells do not affect the value of "$!" in the current shell environment.)
For a pipeline, the process ID is that of the last command in the pipeline.

0 (Zero.) Expands to the name of the shell or shell script. See sh (on page 3163) for a detailed
description of how this name is derived.

See the description of the IFS variable in Section 2.5.3.

2.5.3 Shell Variables

Variables shall be initialized from the environment (as defined by XBD Chapter 8 (on page 173)
and the exec function in the System Interfaces volume of POSIX.1-2008) and can be given new
values with variable assignment commands. If a variable is initialized from the environment, it
shall be marked for export immediately; see the export special built-in. New variables can be
defined and initialized with variable assignments, with the read or getopts utilities, with the name
parameter in a for loop, with the ${name=word} expansion, or with other mechanisms provided
as implementation extensions.

2302 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

72507

72508

72509

72510

72511

72512

72513

72514

72515

72516

72517

72518

72519

72520

72521

72522

72523

72524

72525

72526

72527

72528

72529

72530

72531

72532

72533

72534

72535

72536

72537

72538

72539

72540

72541

72542

72543

72544

72545

72546

72547

72548

Shell Command Language Parameters and Variables

The following variables shall affect the execution of the shell:

UP XSI ENV The processing of the ENV shell variable shall be supported on all XSI-
conformant systems or if the system supports the User Portability Utilities
option.

This variable, when and only when an interactive shell is invoked, shall be
subjected to parameter expansion (see Section 2.6.2, on page 2306) by the shell
and the resulting value shall be used as a pathname of a file containing shell
commands to execute in the current environment. The file need not be
executable. If the expanded value of ENV is not an absolute pathname, the
results are unspecified. ENV shall be ignored if the user’s real and effective
user IDs or real and effective group IDs are different.

HOME The pathname of the user’s home directory. The contents of HOME are used in
tilde expansion (see Section 2.6.1, on page 2305).

IFS A string treated as a list of characters that is used for field splitting and to split
lines into fields with the read command.

If IFS is not set, it shall behave as normal for an unset variable, except that
field splitting by the shell and line splitting by the read command shall be
performed as if the value of IFS is <space><tab><newline>; see Section 2.6.5
(on page 2311).

Implementations may ignore the value of IFS in the environment, or the
absence of IFS from the environment, at the time the shell is invoked, in which
case the shell shall set IFS to <space><tab><newline> when it is invoked.

LANG Provide a default value for the internationalization variables that are unset or
null. (See XBD Section 8.2 (on page 174) for the precedence of
internationalization variables used to determine the values of locale
categories.)

LC_ALL The value of this variable overrides the LC_* variables and LANG, as
described in XBD Chapter 8 (on page 173).

LC_COLLATE Determine the behavior of range expressions, equivalence classes, and multi-
character collating elements within pattern matching.

LC_CTYPE Determine the interpretation of sequences of bytes of text data as characters
(for example, single-byte as opposed to multi-byte characters), which
characters are defined as letters (character class alpha) and <blank> characters
(character class blank), and the behavior of character classes within pattern
matching. Changing the value of LC_CTYPE after the shell has started shall
not affect the lexical processing of shell commands in the current shell
execution environment or its subshells. Invoking a shell script or performing
exec sh subjects the new shell to the changes in LC_CTYPE.

LC_MESSAGES Determine the language in which messages should be written.

LINENO Set by the shell to a decimal number representing the current sequential line
number (numbered starting with 1) within a script or function before it
executes each command. If the user unsets or resets LINENO, the variable may
lose its special meaning for the life of the shell. If the shell is not currently
executing a script or function, the value of LINENO is unspecified. This
volume of POSIX.1-2008 specifies the effects of the variable only for systems
supporting the User Portability Utilities option.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2303

72549

72550

72551

72552

72553

72554

72555

72556

72557

72558

72559

72560

72561

72562

72563

72564

72565

72566

72567

72568

72569

72570

72571

72572

72573

72574

72575

72576

72577

72578

72579

72580

72581

72582

72583

72584

72585

72586

72587

72588

72589

72590

72591

72592

72593

72594

Parameters and Variables Shell Command Language

XSI NLSPATH Determine the location of message catalogs for the processing of
LC_MESSAGES.

PA TH A string formatted as described in XBD Chapter 8 (on page 173), used to effect
command interpretation; see Section 2.9.1.1 (on page 2317).

PPID Set by the shell to the decimal value of its parent process ID during
initialization of the shell. In a subshell (see Section 2.12, on page 2331), PPID
shall be set to the same value as that of the parent of the current shell. For
example, echo $PPID and (echo $PPID) would produce the same value. This
volume of POSIX.1-2008 specifies the effects of the variable only for systems
supporting the User Portability Utilities option.

PS1 Each time an interactive shell is ready to read a command, the value of this
variable shall be subjected to parameter expansion and written to standard
error. The default value shall be "$ ". For users who have specific additional
implementation-defined privileges, the default may be another,
implementation-defined value. The shell shall replace each instance of the
character ’!’ in PS1 with the history file number of the next command to be
typed. Escaping the ’!’ with another ’!’ (that is, "!!") shall place the literal
character ’!’ in the prompt. This volume of POSIX.1-2008 specifies the effects
of the variable only for systems supporting the User Portability Utilities
option.

PS2 Each time the user enters a <newline> prior to completing a command line in
an interactive shell, the value of this variable shall be subjected to parameter
expansion and written to standard error. The default value is "> ". This
volume of POSIX.1-2008 specifies the effects of the variable only for systems
supporting the User Portability Utilities option.

PS4 When an execution trace (set −x) is being performed in an interactive shell,
before each line in the execution trace, the value of this variable shall be
subjected to parameter expansion and written to standard error. The default
value is "+ ". This volume of POSIX.1-2008 specifies the effects of the
variable only for systems supporting the User Portability Utilities option.

PWD Set by the shell and by the cd utility. In the shell the value shall be initialized
from the environment as follows. If a value for PWD is passed to the shell in
the environment when it is executed, the value is an absolute pathname of the
current working directory that is no longer than {PATH_MAX} bytes including
the terminating null byte, and the value does not contain any components that
are dot or dot-dot, then the shell shall set PWD to the value from the
environment. Otherwise, if a value for PWD is passed to the shell in the
environment when it is executed, the value is an absolute pathname of the
current working directory, and the value does not contain any components
that are dot or dot-dot, then it is unspecified whether the shell sets PWD to the
value from the environment or sets PWD to the pathname that would be
output by pwd −P. Otherwise, the sh utility sets PWD to the pathname that
would be output by pwd −P. In cases where PWD is set to the value from the
environment, the value can contain components that refer to files of type
symbolic link. In cases where PWD is set to the pathname that would be
output by pwd −P, if there is insufficient permission on the current working
directory, or on any parent of that directory, to determine what that pathname
would be, the value of PWD is unspecified. Assignments to this variable may
be ignored. If an application sets or unsets the value of PWD, the behaviors of
the cd and pwd utilities are unspecified.

2304 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

72595

72596

72597

72598

72599

72600

72601

72602

72603

72604

72605

72606

72607

72608

72609

72610

72611

72612

72613

72614

72615

72616

72617

72618

72619

72620

72621

72622

72623

72624

72625

72626

72627

72628

72629

72630

72631

72632

72633

72634

72635

72636

72637

72638

72639

72640

72641

72642

72643

72644

Shell Command Language Parameters and Variables

2.6 Word Expansions

This section describes the various expansions that are performed on words. Not all expansions
are performed on every word, as explained in the following sections.

Tilde expansions, parameter expansions, command substitutions, arithmetic expansions, and
quote removals that occur within a single word expand to a single field. It is only field splitting
or pathname expansion that can create multiple fields from a single word. The single exception
to this rule is the expansion of the special parameter ’@’ within double-quotes, as described in
Section 2.5.2 (on page 2302).

The order of word expansion shall be as follows:

1. Tilde expansion (see Section 2.6.1), parameter expansion (see Section 2.6.2, on page 2306),
command substitution (see Section 2.6.3, on page 2309), and arithmetic expansion (see
Section 2.6.4, on page 2310) shall be performed, beginning to end. See item 5 in Section 2.3
(on page 2299).

2. Field splitting (see Section 2.6.5, on page 2311) shall be performed on the portions of the
fields generated by step 1, unless IFS is null.

3. Pathname expansion (see Section 2.6.6, on page 2311) shall be performed, unless set −f is
in effect.

4. Quote removal (see Section 2.6.7, on page 2311) shall always be performed last.

The expansions described in this section shall occur in the same shell environment as that in
which the command is executed.

If the complete expansion appropriate for a word results in an empty field, that empty field shall
be deleted from the list of fields that form the completely expanded command, unless the
original word contained single-quote or double-quote characters.

The ’$’ character is used to introduce parameter expansion, command substitution, or
arithmetic evaluation. If an unquoted ’$’ is followed by a character that is either not numeric,
the name of one of the special parameters (see Section 2.5.2, on page 2302), a valid first character
of a variable name, a <left-curly-bracket> (’{’) or a <left-parenthesis>, the result is unspecified.

2.6.1 Tilde Expansion

A ‘‘tilde-prefix’’ consists of an unquoted <tilde> character at the beginning of a word, followed
by all of the characters preceding the first unquoted <slash> in the word, or all the characters in
the word if there is no <slash>. In an assignment (see XBD Section 4.22, on page 118), multiple
tilde-prefixes can be used: at the beginning of the word (that is, following the <equals-sign> of
the assignment), following any unquoted <colon>, or both. A tilde-prefix in an assignment is
terminated by the first unquoted <colon> or <slash>. If none of the characters in the tilde-prefix
are quoted, the characters in the tilde-prefix following the <tilde> are treated as a possible login
name from the user database. A portable login name cannot contain characters outside the set
given in the description of the LOGNAME environment variable in XBD Section 8.3 (on page
177). If the login name is null (that is, the tilde-prefix contains only the tilde), the tilde-prefix is
replaced by the value of the variable HOME. If HOME is unset, the results are unspecified.
Otherwise, the tilde-prefix shall be replaced by a pathname of the initial working directory
associated with the login name obtained using the getpwnam() function as defined in the System
Interfaces volume of POSIX.1-2008. If the system does not recognize the login name, the results
are undefined.

The pathname resulting from tilde expansion shall be treated as if quoted to prevent it being

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2305

72645

72646

72647

72648

72649

72650

72651

72652

72653

72654

72655

72656

72657

72658

72659

72660

72661

72662

72663

72664

72665

72666

72667

72668

72669

72670

72671

72672

72673

72674

72675

72676

72677

72678

72679

72680

72681

72682

72683

72684

72685

72686

72687

72688

Word Expansions Shell Command Language

altered by field splitting and pathname expansion.

2.6.2 Parameter Expansion

The format for parameter expansion is as follows:

${expression}

where expression consists of all characters until the matching ’}’. Any ’}’ escaped by a
<backslash> or within a quoted string, and characters in embedded arithmetic expansions,
command substitutions, and variable expansions, shall not be examined in determining the
matching ’}’.

The simplest form for parameter expansion is:

${parameter}

The value, if any, of parameter shall be substituted.

The parameter name or symbol can be enclosed in braces, which are optional except for
positional parameters with more than one digit or when parameter is followed by a character that
could be interpreted as part of the name. The matching closing brace shall be determined by
counting brace levels, skipping over enclosed quoted strings, and command substitutions.

If the parameter name or symbol is not enclosed in braces, the expansion shall use the longest
valid name (see XBD Section 3.230, on page 70), whether or not the symbol represented by that
name exists.

If a parameter expansion occurs inside double-quotes:

• Pathname expansion shall not be performed on the results of the expansion.

• Field splitting shall not be performed on the results of the expansion, with the exception of
’@’; see Section 2.5.2 (on page 2302).

In addition, a parameter expansion can be modified by using one of the following formats. In
each case that a value of word is needed (based on the state of parameter, as described below),
word shall be subjected to tilde expansion, parameter expansion, command substitution, and
arithmetic expansion. If word is not needed, it shall not be expanded. The ’}’ character that
delimits the following parameter expansion modifications shall be determined as described
previously in this section and in Section 2.2.3 (on page 2298). (For example, ${foo-bar}xyz}
would result in the expansion of foo followed by the string xyz} if foo is set, else the string
"barxyz}").

${parameter :−word} Use Default Values. If parameter is unset or null, the expansion of word
shall be substituted; otherwise, the value of parameter shall be substituted.

${parameter :=word} Assign Default Values. If parameter is unset or null, the expansion of
word shall be assigned to parameter. In all cases, the final value of
parameter shall be substituted. Only variables, not positional parameters
or special parameters, can be assigned in this way.

${parameter :?[word]} Indicate Error if Null or Unset. If parameter is unset or null, the
expansion of word (or a message indicating it is unset if word is omitted)
shall be written to standard error and the shell exits with a non-zero exit
status. Otherwise, the value of parameter shall be substituted. An
interactive shell need not exit.

2306 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

72689

72690

72691

72692

72693

72694

72695

72696

72697

72698

72699

72700

72701

72702

72703

72704

72705

72706

72707

72708

72709

72710

72711

72712

72713

72714

72715

72716

72717

72718

72719

72720

72721

72722

72723

72724

72725

72726

72727

72728

72729

Shell Command Language Word Expansions

${parameter :+word} Use Alternative Value. If parameter is unset or null, null shall be
substituted; otherwise, the expansion of word shall be substituted.

In the parameter expansions shown previously, use of the <colon> in the format shall result in a
test for a parameter that is unset or null; omission of the <colon> shall result in a test for a
parameter that is only unset. The following table summarizes the effect of the <colon>:

parameter parameter parameter
Set and Not Null Set But Null Unset

${parameter:−word} substitute parameter substitute word substitute word
${parameter−word} substitute parameter substitute null substitute word
${parameter:=word} substitute parameter assign word assign word
${parameter=word} substitute parameter substitute null assign word
${parameter:?word} substitute parameter error, exit error, exit
${parameter?word} substitute parameter substitute null error, exit
${parameter:+word} substitute word substitute null substitute null
${parameter+word} substitute word substitute word substitute null

In all cases shown with ‘‘substitute’’, the expression is replaced with the value shown. In all
cases shown with ‘‘assign’’, parameter is assigned that value, which also replaces the expression.

${#parameter} String Length. The length in characters of the value of parameter shall be
substituted. If parameter is ’*’ or ’@’, the result of the expansion is
unspecified.

The following four varieties of parameter expansion provide for substring processing. In each
case, pattern matching notation (see Section 2.13, on page 2332), rather than regular expression
notation, shall be used to evaluate the patterns. If parameter is ’*’ or ’@’, the result of the
expansion is unspecified. Enclosing the full parameter expansion string in double-quotes shall
not cause the following four varieties of pattern characters to be quoted, whereas quoting
characters within the braces shall have this effect.

${parameter%word} Remove Smallest Suffix Pattern. The word shall be expanded to produce
a pattern. The parameter expansion shall then result in parameter, with the
smallest portion of the suffix matched by the pattern deleted.

${parameter%%word} Remove Largest Suffix Pattern. The word shall be expanded to produce a
pattern. The parameter expansion shall then result in parameter, with the
largest portion of the suffix matched by the pattern deleted.

${parameter#word} Remove Smallest Prefix Pattern. The word shall be expanded to produce
a pattern. The parameter expansion shall then result in parameter, with the
smallest portion of the prefix matched by the pattern deleted.

${parameter##word} Remove Largest Prefix Pattern. The word shall be expanded to produce a
pattern. The parameter expansion shall then result in parameter, with the
largest portion of the prefix matched by the pattern deleted.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2307

72730

72731

72732

72733

72734

72735

72736

72737

72738

72739

72740

72741

72742

72743

72744

72745

72746

72747

72748

72749

72750

72751

72752

72753

72754

72755

72756

72757

72758

72759

72760

72761

72762

72763

72764

72765

72766

72767

Word Expansions Shell Command Language

Examples

${parameter :−word}
In this example, ls is executed only if x is null or unset. (The $(ls) command substitution
notation is explained in Section 2.6.3 (on page 2309).)

${x:−$(ls)}

${parameter :=word}
unset X
echo ${X:=abc}
abc

${parameter :?word}
unset posix
echo ${posix:?}
sh: posix: parameter null or not set

${parameter :+word}
set a b c
echo ${3:+posix}
posix

${#parameter}
HOME=/usr/posix
echo ${#HOME}
10

${parameter%word}
x=file.c
echo ${x%.c}.o
file.o

${parameter%%word}
x=posix/src/std
echo ${x%%/*}
posix

${parameter#word}
x=$HOME/src/cmd
echo ${x#$HOME}
/src/cmd

${parameter##word}
x=/one/two/three
echo ${x##*/}
three

The double-quoting of patterns is different depending on where the double-quotes are placed:

"${x#*}" The <asterisk> is a pattern character.

${x#"*"} The literal <asterisk> is quoted and not special.

2308 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

72768

72769

72770

72771

72772

72773

72774

72775

72776

72777

72778

72779

72780

72781

72782

72783

72784

72785

72786

72787

72788

72789

72790

72791

72792

72793

72794

72795

72796

72797

72798

72799

72800

72801

72802

72803

72804

72805

72806

72807

Shell Command Language Word Expansions

2.6.3 Command Substitution

Command substitution allows the output of a command to be substituted in place of the
command name itself. Command substitution shall occur when the command is enclosed as
follows:

$(command)

or (backquoted version):

‘command‘

The shell shall expand the command substitution by executing command in a subshell
environment (see Section 2.12, on page 2331) and replacing the command substitution (the text
of command plus the enclosing "$()" or backquotes) with the standard output of the command,
removing sequences of one or more <newline> characters at the end of the substitution.
Embedded <newline> characters before the end of the output shall not be removed; however,
they may be treated as field delimiters and eliminated during field splitting, depending on the
value of IFS and quoting that is in effect. If the output contains any null bytes, the behavior is
unspecified.

Within the backquoted style of command substitution, <backslash> shall retain its literal
meaning, except when followed by: ’$’, ’‘’, or <backslash>. The search for the matching
backquote shall be satisfied by the first unquoted non-escaped backquote; during this search, if a
non-escaped backquote is encountered within a shell comment, a here-document, an embedded
command substitution of the $(command) form, or a quoted string, undefined results occur. A
single-quoted or double-quoted string that begins, but does not end, within the "‘...‘"
sequence produces undefined results.

With the $(command) form, all characters following the open parenthesis to the matching closing
parenthesis constitute the command. Any valid shell script can be used for command, except a
script consisting solely of redirections which produces unspecified results.

The results of command substitution shall not be processed for further tilde expansion,
parameter expansion, command substitution, or arithmetic expansion. If a command
substitution occurs inside double-quotes, field splitting and pathname expansion shall not be
performed on the results of the substitution.

Command substitution can be nested. To specify nesting within the backquoted version, the
application shall precede the inner backquotes with <backslash> characters; for example:

\‘command\‘

If the command substitution consists of a single subshell, such as:

$((command))

a conforming application shall separate the "$(" and ’(’ into two tokens (that is, separate
them with white space). This is required to avoid any ambiguities with arithmetic expansion.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2309

72808

72809

72810

72811

72812

72813

72814

72815

72816

72817

72818

72819

72820

72821

72822

72823

72824

72825

72826

72827

72828

72829

72830

72831

72832

72833

72834

72835

72836

72837

72838

72839

72840

72841

72842

72843

Word Expansions Shell Command Language

2.6.4 Arithmetic Expansion

Arithmetic expansion provides a mechanism for evaluating an arithmetic expression and
substituting its value. The format for arithmetic expansion shall be as follows:

$((expression))

The expression shall be treated as if it were in double-quotes, except that a double-quote inside
the expression is not treated specially. The shell shall expand all tokens in the expression for
parameter expansion, command substitution, and quote removal.

Next, the shell shall treat this as an arithmetic expression and substitute the value of the
expression. The arithmetic expression shall be processed according to the rules given in Section
1.1.2.1 (on page 2283), with the following exceptions:

• Only signed long integer arithmetic is required.

• Only the decimal-constant, octal-constant, and hexadecimal-constant constants specified in
the ISO C standard, Section 6.4.4.1 are required to be recognized as constants.

• The sizeof() operator and the prefix and postfix "++" and "− −" operators are not required.

• Selection, iteration, and jump statements are not supported.

All changes to variables in an arithmetic expression shall be in effect after the arithmetic
expansion, as in the parameter expansion "${x=value}".

If the shell variable x contains a value that forms a valid integer constant, then the arithmetic
expansions "$((x))" and "$(($x))" shall return the same value.

As an extension, the shell may recognize arithmetic expressions beyond those listed. The shell
may use a signed integer type with a rank larger than the rank of signed long. The shell may
use a real-floating type instead of signed long as long as it does not affect the results in cases
where there is no overflow. If the expression is invalid, the expansion fails and the shell shall
write a message to standard error indicating the failure.

Examples

A simple example using arithmetic expansion:

repeat a command 100 times
x=100
while [$x −gt 0]
do

command

x=$(($x−1))
done

2310 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

72844

72845

72846

72847

72848

72849

72850

72851

72852

72853

72854

72855

72856

72857

72858

72859

72860

72861

72862

72863

72864

72865

72866

72867

72868

72869

72870

72871

72872

72873

72874

72875

72876

Shell Command Language Word Expansions

2.6.5 Field Splitting

After parameter expansion (Section 2.6.2, on page 2306), command substitution (Section 2.6.3, on
page 2309), and arithmetic expansion (Section 2.6.4, on page 2310), the shell shall scan the results
of expansions and substitutions that did not occur in double-quotes for field splitting and
multiple fields can result.

The shell shall treat each character of the IFS as a delimiter and use the delimiters as field
terminators to split the results of parameter expansion and command substitution into fields.

1. If the value of IFS is a <space>, <tab>, and <newline>, or if it is unset, any sequence of
<space>, <tab>, or <newline> characters at the beginning or end of the input shall be
ignored and any sequence of those characters within the input shall delimit a field. For
example, the input:

<newline><space><tab>foo<tab><tab>bar<space>

yields two fields, foo and bar.

2. If the value of IFS is null, no field splitting shall be performed.

3. Otherwise, the following rules shall be applied in sequence. The term ‘‘IFS white space’’
is used to mean any sequence (zero or more instances) of white-space characters that are
in the IFS value (for example, if IFS contains <space>/<comma>/<tab>, any sequence of
<space> and <tab> characters is considered IFS white space).

a. IFS white space shall be ignored at the beginning and end of the input.

b. Each occurrence in the input of an IFS character that is not IFS white space, along
with any adjacent IFS white space, shall delimit a field, as described previously.

c. Non-zero-length IFS white space shall delimit a field.

2.6.6 Pathname Expansion

After field splitting, if set −f is not in effect, each field in the resulting command line shall be
expanded using the algorithm described in Section 2.13 (on page 2332), qualified by the rules in
Section 2.13.3 (on page 2333).

2.6.7 Quote Removal

The quote characters (<backslash>, single-quote, and double-quote) that were present in the
original word shall be removed unless they have themselves been quoted.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2311

72877

72878

72879

72880

72881

72882

72883

72884

72885

72886

72887

72888

72889

72890

72891

72892

72893

72894

72895

72896

72897

72898

72899

72900

72901

72902

72903

72904

72905

Redirection Shell Command Language

2.7 Redirection

Redirection is used to open and close files for the current shell execution environment (see
Section 2.12, on page 2331) or for any command. Redirection operators can be used with
numbers representing file descriptors (see XBD Section 3.166, on page 60) as described below.

The overall format used for redirection is:

[n]redir-op word

The number n is an optional decimal number designating the file descriptor number; the
application shall ensure it is delimited from any preceding text and immediately precede the
redirection operator redir-op. If n is quoted, the number shall not be recognized as part of the
redirection expression. For example:

echo \2>a

writes the character 2 into file a. If any part of redir-op is quoted, no redirection expression is
recognized. For example:

echo 2\>a

writes the characters 2>a to standard output. The optional number, redirection operator, and
word shall not appear in the arguments provided to the command to be executed (if any).

Open files are represented by decimal numbers starting with zero. The largest possible value is
implementation-defined; however, all implementations shall support at least 0 to 9, inclusive, for
use by the application. These numbers are called ‘‘file descriptors’’. The values 0, 1, and 2 have
special meaning and conventional uses and are implied by certain redirection operations; they
are referred to as standard input, standard output, and standard error, respectively. Programs
usually take their input from standard input, and write output on standard output. Error
messages are usually written on standard error. The redirection operators can be preceded by
one or more digits (with no intervening <blank> characters allowed) to designate the file
descriptor number.

If the redirection operator is "<<" or "<<−", the word that follows the redirection operator shall
be subjected to quote removal; it is unspecified whether any of the other expansions occur. For
the other redirection operators, the word that follows the redirection operator shall be subjected
to tilde expansion, parameter expansion, command substitution, arithmetic expansion, and
quote removal. Pathname expansion shall not be performed on the word by a non-interactive
shell; an interactive shell may perform it, but shall do so only when the expansion would result
in one word.

If more than one redirection operator is specified with a command, the order of evaluation is
from beginning to end.

A failure to open or create a file shall cause a redirection to fail.

2.7.1 Redirecting Input

Input redirection shall cause the file whose name results from the expansion of word to be
opened for reading on the designated file descriptor, or standard input if the file descriptor is
not specified.

The general format for redirecting input is:

[n]<word

where the optional n represents the file descriptor number. If the number is omitted, the

2312 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

72906

72907

72908

72909

72910

72911

72912

72913

72914

72915

72916

72917

72918

72919

72920

72921

72922

72923

72924

72925

72926

72927

72928

72929

72930

72931

72932

72933

72934

72935

72936

72937

72938

72939

72940

72941

72942

72943

72944

72945

72946

72947

Shell Command Language Redirection

redirection shall refer to standard input (file descriptor 0).

2.7.2 Redirecting Output

The two general formats for redirecting output are:

[n]>word
[n]>|word

where the optional n represents the file descriptor number. If the number is omitted, the
redirection shall refer to standard output (file descriptor 1).

Output redirection using the ’>’ format shall fail if the noclobber option is set (see the
description of set −C) and the file named by the expansion of word exists and is a regular file.
Otherwise, redirection using the ’>’ or ">|" formats shall cause the file whose name results
from the expansion of word to be created and opened for output on the designated file
descriptor, or standard output if none is specified. If the file does not exist, it shall be created;
otherwise, it shall be truncated to be an empty file after being opened.

2.7.3 Appending Redirected Output

Appended output redirection shall cause the file whose name results from the expansion of
word to be opened for output on the designated file descriptor. The file is opened as if the open()
function as defined in the System Interfaces volume of POSIX.1-2008 was called with the
O_APPEND flag. If the file does not exist, it shall be created.

The general format for appending redirected output is as follows:

[n]>>word

where the optional n represents the file descriptor number. If the number is omitted, the
redirection refers to standard output (file descriptor 1).

2.7.4 Here-Document

The redirection operators "<<" and "<<−" both allow redirection of lines contained in a shell
input file, known as a ‘‘here-document’’, to the input of a command.

The here-document shall be treated as a single word that begins after the next <newline> and
continues until there is a line containing only the delimiter and a <newline>, with no <blank>
characters in between. Then the next here-document starts, if there is one. The format is as
follows:

[n]<<word
here-document

delimiter

where the optional n represents the file descriptor number. If the number is omitted, the here-
document refers to standard input (file descriptor 0).

If any character in word is quoted, the delimiter shall be formed by performing quote removal on
word, and the here-document lines shall not be expanded. Otherwise, the delimiter shall be the
word itself.

If no characters in word are quoted, all lines of the here-document shall be expanded for
parameter expansion, command substitution, and arithmetic expansion. In this case, the

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2313

72948

72949

72950

72951

72952

72953

72954

72955

72956

72957

72958

72959

72960

72961

72962

72963

72964

72965

72966

72967

72968

72969

72970

72971

72972

72973

72974

72975

72976

72977

72978

72979

72980

72981

72982

72983

72984

72985

72986

Redirection Shell Command Language

<backslash> in the input behaves as the <backslash> inside double-quotes (see Section 2.2.3, on
page 2298). However, the double-quote character (’"’) shall not be treated specially within a
here-document, except when the double-quote appears within "$()", "‘‘", or "${}".

If the redirection symbol is "<<−", all leading <tab> characters shall be stripped from input lines
and the line containing the trailing delimiter. If more than one "<<" or "<<−" operator is
specified on a line, the here-document associated with the first operator shall be supplied first
by the application and shall be read first by the shell.

When a here-document is read from a terminal device and the shell is interactive, it shall write
the contents of the variable PS2, processed as described in Section 2.5.3 (on page 2302), to
standard error before reading each line of input until the delimiter has been recognized.

Examples

An example of a here-document follows:

cat <<eof1; cat <<eof2
Hi,
eof1
Helene.
eof2

2.7.5 Duplicating an Input File Descriptor

The redirection operator:

[n]<&word

shall duplicate one input file descriptor from another, or shall close one. If word evaluates to one
or more digits, the file descriptor denoted by n, or standard input if n is not specified, shall be
made to be a copy of the file descriptor denoted by word; if the digits in word do not represent a
file descriptor already open for input, a redirection error shall result; see Section 2.8.1 (on page
2315). If word evaluates to ’−’, file descriptor n, or standard input if n is not specified, shall be
closed. Attempts to close a file descriptor that is not open shall not constitute an error. If word
evaluates to something else, the behavior is unspecified.

2.7.6 Duplicating an Output File Descriptor

The redirection operator:

[n]>&word

shall duplicate one output file descriptor from another, or shall close one. If word evaluates to
one or more digits, the file descriptor denoted by n, or standard output if n is not specified, shall
be made to be a copy of the file descriptor denoted by word; if the digits in word do not represent
a file descriptor already open for output, a redirection error shall result; see Section 2.8.1 (on
page 2315). If word evaluates to ’−’, file descriptor n, or standard output if n is not specified, is
closed. Attempts to close a file descriptor that is not open shall not constitute an error. If word
evaluates to something else, the behavior is unspecified.

2314 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

72987

72988

72989

72990

72991

72992

72993

72994

72995

72996

72997

72998

72999

73000

73001

73002

73003

73004

73005

73006

73007

73008

73009

73010

73011

73012

73013

73014

73015

73016

73017

73018

73019

73020

73021

73022

73023

Shell Command Language Redirection

2.7.7 Open File Descriptors for Reading and Writing

The redirection operator:

[n]<>word

shall cause the file whose name is the expansion of word to be opened for both reading and
writing on the file descriptor denoted by n, or standard input if n is not specified. If the file does
not exist, it shall be created.

2.8 Exit Status and Errors

2.8.1 Consequences of Shell Errors

For a non-interactive shell, an error condition encountered by a special built-in (see Section 2.14,
on page 2334) or other type of utility shall cause the shell to write a diagnostic message to
standard error and exit as shown in the following table:

Error Special Built-In Other Utilities

Shell language syntax error Shall exit Shall exit
Utility syntax error (option or operand error) Shall exit Shall not exit
Redirection error Shall exit Shall not exit
Variable assignment error Shall exit Shall not exit
Expansion error Shall exit Shall exit
Command not found N/A May exit
Dot script not found Shall exit N/A

An expansion error is one that occurs when the shell expansions defined in Section 2.6 (on page
2305) are carried out (for example, "${x!y}", because ’!’ is not a valid operator); an
implementation may treat these as syntax errors if it is able to detect them during tokenization,
rather than during expansion.

If any of the errors shown as ‘‘shall exit’’ or ‘‘(may) exit’’ occur in a subshell, the subshell shall
(respectively may) exit with a non-zero status, but the script containing the subshell shall not
exit because of the error.

In all of the cases shown in the table, an interactive shell shall write a diagnostic message to
standard error without exiting.

2.8.2 Exit Status for Commands

Each command has an exit status that can influence the behavior of other shell commands. The
exit status of commands that are not utilities is documented in this section. The exit status of the
standard utilities is documented in their respective sections.

If a command is not found, the exit status shall be 127. If the command name is found, but it is
not an executable utility, the exit status shall be 126. Applications that invoke utilities without
using the shell should use these exit status values to report similar errors.

If a command fails during word expansion or redirection, its exit status shall be greater than
zero.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2315

73024

73025

73026

73027

73028

73029

73030

73031

73032

73033

73034

73035

73036

73037

73038

73039

73040

73041

73042

73043

73044

73045

73046

73047

73048

73049

73050

73051

73052

73053

73054

73055

73056

73057

73058

73059

73060

Exit Status and Errors Shell Command Language

Internally, for purposes of deciding whether a command exits with a non-zero exit status, the
shell shall recognize the entire status value retrieved for the command by the equivalent of the
wait() function WEXITSTATUS macro (as defined in the System Interfaces volume of
POSIX.1-2008). When reporting the exit status with the special parameter ’?’, the shell shall
report the full eight bits of exit status available. The exit status of a command that terminated
because it received a signal shall be reported as greater than 128.

2.9 Shell Commands

This section describes the basic structure of shell commands. The following command
descriptions each describe a format of the command that is only used to aid the reader in
recognizing the command type, and does not formally represent the syntax. Each description
discusses the semantics of the command; for a formal definition of the command language,
consult Section 2.10 (on page 2325).

A command is one of the following:

• Simple command (see Section 2.9.1)

• Pipeline (see Section 2.9.2, on page 2318)

• List compound-list (see Section 2.9.3, on page 2319)

• Compound command (see Section 2.9.4, on page 2321)

• Function definition (see Section 2.9.5, on page 2324)

Unless otherwise stated, the exit status of a command shall be that of the last simple command
executed by the command. There shall be no limit on the size of any shell command other than
that imposed by the underlying system (memory constraints, {ARG_MAX}, and so on).

2.9.1 Simple Commands

A ‘‘simple command’’ is a sequence of optional variable assignments and redirections, in any
sequence, optionally followed by words and redirections, terminated by a control operator.

When a given simple command is required to be executed (that is, when any conditional
construct such as an AND-OR list or a case statement has not bypassed the simple command),
the following expansions, assignments, and redirections shall all be performed from the
beginning of the command text to the end:

1. The words that are recognized as variable assignments or redirections according to
Section 2.10.2 (on page 2325) are saved for processing in steps 3 and 4.

2. The words that are not variable assignments or redirections shall be expanded. If any
fields remain following their expansion, the first field shall be considered the command
name and remaining fields are the arguments for the command.

3. Redirections shall be performed as described in Section 2.7 (on page 2312).

4. Each variable assignment shall be expanded for tilde expansion, parameter expansion,
command substitution, arithmetic expansion, and quote removal prior to assigning the
value.

In the preceding list, the order of steps 3 and 4 may be reversed if no command name results
from step 2 or if the command name matches the name of a special built-in utility; see Section
2.14 (on page 2334).

2316 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

73061

73062

73063

73064

73065

73066

73067

73068

73069

73070

73071

73072

73073

73074

73075

73076

73077

73078

73079

73080

73081

73082

73083

73084

73085

73086

73087

73088

73089

73090

73091

73092

73093

73094

73095

73096

73097

73098

73099

73100

Shell Command Language Shell Commands

If no command name results, variable assignments shall affect the current execution
environment. Otherwise, the variable assignments shall be exported for the execution
environment of the command and shall not affect the current execution environment (except for
special built-ins). If any of the variable assignments attempt to assign a value to a read-only
variable, a variable assignment error shall occur. See Section 2.8.1 (on page 2315) for the
consequences of these errors.

If there is no command name, any redirections shall be performed in a subshell environment; it
is unspecified whether this subshell environment is the same one as that used for a command
substitution within the command. (To affect the current execution environment, see the exec
special built-in.) If any of the redirections performed in the current shell execution environment
fail, the command shall immediately fail with an exit status greater than zero, and the shell shall
write an error message indicating the failure. See Section 2.8.1 (on page 2315) for the
consequences of these failures on interactive and non-interactive shells.

If there is a command name, execution shall continue as described in Section 2.9.1.1. If there is
no command name, but the command contained a command substitution, the command shall
complete with the exit status of the last command substitution performed. Otherwise, the
command shall complete with a zero exit status.

2.9.1.1 Command Search and Execution

If a simple command results in a command name and an optional list of arguments, the
following actions shall be performed:

1. If the command name does not contain any <slash> characters, the first successful step in
the following sequence shall occur:

a. If the command name matches the name of a special built-in utility, that special
built-in utility shall be invoked.

b. If the command name matches the name of a function known to this shell, the
function shall be invoked as described in Section 2.9.5 (on page 2324). If the
implementation has provided a standard utility in the form of a function, it shall
not be recognized at this point. It shall be invoked in conjunction with the path
search in step 1d.

c. If the command name matches the name of a utility listed in the following table,
that utility shall be invoked.

alias
bg
cd
command

false
fc
fg
getopts

jobs
kill
newgrp
pwd

read
true
umask
unalias

wait

d. Otherwise, the command shall be searched for using the PA TH environment
variable as described in XBD Chapter 8 (on page 173):

i. If the search is successful:

a. If the system has implemented the utility as a regular built-in or as a
shell function, it shall be invoked at this point in the path search.

b. Otherwise, the shell executes the utility in a separate utility
environment (see Section 2.12, on page 2331) with actions equivalent
to calling the execve() function as defined in the System Interfaces
volume of POSIX.1-2008 with the path argument set to the pathname
resulting from the search, arg0 set to the command name, and the

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2317

73101

73102

73103

73104

73105

73106

73107

73108

73109

73110

73111

73112

73113

73114

73115

73116

73117

73118

73119

73120

73121

73122

73123

73124

73125

73126

73127

73128

73129

73130

73131

73132

73133

73134

73135

73136

73137

73138

73139

73140

73141

73142

73143

73144

73145

Shell Commands Shell Command Language

remaining arguments set to the operands, if any.

If the execve() function fails due to an error equivalent to the
[ENOEXEC] error defined in the System Interfaces volume of
POSIX.1-2008, the shell shall execute a command equivalent to
having a shell invoked with the pathname resulting from the search
as its first operand, with any remaining arguments passed to the new
shell, except that the value of "$0" in the new shell may be set to the
command name. If the executable file is not a text file, the shell may
bypass this command execution. In this case, it shall write an error
message, and shall return an exit status of 126.

Once a utility has been searched for and found (either as a result of this
specific search or as part of an unspecified shell start-up activity), an
implementation may remember its location and need not search for the
utility again unless the PA TH variable has been the subject of an assignment.
If the remembered location fails for a subsequent invocation, the shell shall
repeat the search to find the new location for the utility, if any.

ii. If the search is unsuccessful, the command shall fail with an exit status of
127 and the shell shall write an error message.

2. If the command name contains at least one <slash>, the shell shall execute the utility in a
separate utility environment with actions equivalent to calling the execve() function
defined in the System Interfaces volume of POSIX.1-2008 with the path and arg0
arguments set to the command name, and the remaining arguments set to the operands, if
any.

If the execve() function fails due to an error equivalent to the [ENOEXEC] error, the shell
shall execute a command equivalent to having a shell invoked with the command name
as its first operand, with any remaining arguments passed to the new shell. If the
executable file is not a text file, the shell may bypass this command execution. In this case,
it shall write an error message and shall return an exit status of 126.

2.9.2 Pipelines

A pipeline is a sequence of one or more commands separated by the control operator ’|’. The
standard output of all but the last command shall be connected to the standard input of the next
command.

The format for a pipeline is:

[!] command1 [| command2 ...]

The standard output of command1 shall be connected to the standard input of command2. The
standard input, standard output, or both of a command shall be considered to be assigned by
the pipeline before any redirection specified by redirection operators that are part of the
command (see Section 2.7, on page 2312).

If the pipeline is not in the background (see Section 2.9.3.1, on page 2319), the shell shall wait for
the last command specified in the pipeline to complete, and may also wait for all commands to
complete.

2318 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

73146

73147

73148

73149

73150

73151

73152

73153

73154

73155

73156

73157

73158

73159

73160

73161

73162

73163

73164

73165

73166

73167

73168

73169

73170

73171

73172

73173

73174

73175

73176

73177

73178

73179

73180

73181

73182

73183

73184

73185

73186

Shell Command Language Shell Commands

Exit Status

If the reserved word ! does not precede the pipeline, the exit status shall be the exit status of the
last command specified in the pipeline. Otherwise, the exit status shall be the logical NOT of the
exit status of the last command. That is, if the last command returns zero, the exit status shall be
1; if the last command returns greater than zero, the exit status shall be zero.

2.9.3 Lists

An AND-OR list is a sequence of one or more pipelines separated by the operators "&&" and
"||".

A list is a sequence of one or more AND-OR lists separated by the operators ’;’ and ’&’ and
optionally terminated by ’;’, ’&’, or <newline>.

The operators "&&" and "||" shall have equal precedence and shall be evaluated with left
associativity. For example, both of the following commands write solely bar to standard output:

false && echo foo || echo bar
true || echo foo && echo bar

A ’;’ or <newline> terminator shall cause the preceding AND-OR list to be executed
sequentially; an ’&’ shall cause asynchronous execution of the preceding AND-OR list.

The term ‘‘compound-list’’ is derived from the grammar in Section 2.10 (on page 2325); it is
equivalent to a sequence of lists, separated by <newline> characters, that can be preceded or
followed by an arbitrary number of <newline> characters.

Examples

The following is an example that illustrates <newline> characters in compound-lists:

while
a couple of <newline>s

a list
date && who || ls; cat file
a couple of <newline>s

another list
wc file > output & true

do
2 lists
ls
cat file

done

2.9.3.1 Asynchronous Lists

If a command is terminated by the control operator <ampersand> (’&’), the shell shall execute
the command asynchronously in a subshell. This means that the shell shall not wait for the
command to finish before executing the next command.

The format for running a command in the background is:

command1 & [command2 & ...]

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2319

73187

73188

73189

73190

73191

73192

73193

73194

73195

73196

73197

73198

73199

73200

73201

73202

73203

73204

73205

73206

73207

73208

73209

73210

73211

73212

73213

73214

73215

73216

73217

73218

73219

73220

73221

73222

73223

73224

73225

Shell Commands Shell Command Language

The standard input for an asynchronous list, before any explicit redirections are performed, shall
be considered to be assigned to a file that has the same properties as /dev/null. If it is an
interactive shell, this need not happen. In all cases, explicit redirection of standard input shall
override this activity.

When an element of an asynchronous list (the portion of the list ended by an <ampersand>,
such as command1, above) is started by the shell, the process ID of the last command in the
asynchronous list element shall become known in the current shell execution environment; see
Section 2.12 (on page 2331). This process ID shall remain known until:

1. The command terminates and the application waits for the process ID.

2. Another asynchronous list is invoked before "$!" (corresponding to the previous
asynchronous list) is expanded in the current execution environment.

The implementation need not retain more than the {CHILD_MAX} most recent entries in its list
of known process IDs in the current shell execution environment.

Exit Status

The exit status of an asynchronous list shall be zero.

2.9.3.2 Sequential Lists

Commands that are separated by a <semicolon> (’;’) shall be executed sequentially.

The format for executing commands sequentially shall be:

command1 [; command2] ...

Each command shall be expanded and executed in the order specified.

Exit Status

The exit status of a sequential list shall be the exit status of the last command in the list.

2.9.3.3 AND Lists

The control operator "&&" denotes an AND list. The format shall be:

command1 [&& command2] ...

First command1 shall be executed. If its exit status is zero, command2 shall be executed, and so on,
until a command has a non-zero exit status or there are no more commands left to execute. The
commands are expanded only if they are executed.

Exit Status

The exit status of an AND list shall be the exit status of the last command that is executed in the
list.

2.9.3.4 OR Lists

The control operator "||" denotes an OR List. The format shall be:

command1 [|| command2] ...

First, command1 shall be executed. If its exit status is non-zero, command2 shall be executed, and
so on, until a command has a zero exit status or there are no more commands left to execute.

2320 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

73226

73227

73228

73229

73230

73231

73232

73233

73234

73235

73236

73237

73238

73239

73240

73241

73242

73243

73244

73245

73246

73247

73248

73249

73250

73251

73252

73253

73254

73255

73256

73257

73258

73259

73260

73261

Shell Command Language Shell Commands

Exit Status

The exit status of an OR list shall be the exit status of the last command that is executed in the
list.

2.9.4 Compound Commands

The shell has several programming constructs that are ‘‘compound commands’’, which provide
control flow for commands. Each of these compound commands has a reserved word or control
operator at the beginning, and a corresponding terminator reserved word or operator at the end.
In addition, each can be followed by redirections on the same line as the terminator. Each
redirection shall apply to all the commands within the compound command that do not
explicitly override that redirection.

2.9.4.1 Grouping Commands

The format for grouping commands is as follows:

(compound-list) Execute compound-list in a subshell environment; see Section 2.12 (on page
2331). Variable assignments and built-in commands that affect the
environment shall not remain in effect after the list finishes.

{ compound-list;} Execute compound-list in the current process environment. The semicolon
shown here is an example of a control operator delimiting the } reserved
word. Other delimiters are possible, as shown in Section 2.10 (on page
2325); a <newline> is frequently used.

Exit Status

The exit status of a grouping command shall be the exit status of compound-list.

2.9.4.2 The for Loop

The for loop shall execute a sequence of commands for each member in a list of items. The for
loop requires that the reserved words do and done be used to delimit the sequence of
commands.

The format for the for loop is as follows:

for name [in [word ...]]

do
compound-list

done

First, the list of words following in shall be expanded to generate a list of items. Then, the
variable name shall be set to each item, in turn, and the compound-list executed each time. If no
items result from the expansion, the compound-list shall not be executed. Omitting:

in word ...

shall be equivalent to:

in "$@"

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2321

73262

73263

73264

73265

73266

73267

73268

73269

73270

73271

73272

73273

73274

73275

73276

73277

73278

73279

73280

73281

73282

73283

73284

73285

73286

73287

73288

73289

73290

73291

73292

73293

73294

73295

73296

73297

Shell Commands Shell Command Language

Exit Status

The exit status of a for command shall be the exit status of the last command that executes. If
there are no items, the exit status shall be zero.

2.9.4.3 Case Conditional Construct

The conditional construct case shall execute the compound-list corresponding to the first one of
several patterns (see Section 2.13, on page 2332) that is matched by the string resulting from the
tilde expansion, parameter expansion, command substitution, arithmetic expansion, and quote
removal of the given word. The reserved word in shall denote the beginning of the patterns to
be matched. Multiple patterns with the same compound-list shall be delimited by the ’|’
symbol. The control operator ’)’ terminates a list of patterns corresponding to a given action.
The compound-list for each list of patterns, with the possible exception of the last, shall be
terminated with ";;". The case construct terminates with the reserved word esac (case
reversed).

The format for the case construct is as follows:

case word in
[(]pattern1) compound-list;;
[[(]pattern[| pattern] ...) compound-list;;] ...
[[(]pattern[| pattern] ...) compound-list]

esac

The ";;" is optional for the last compound-list.

In order from the beginning to the end of the case statement, each pattern that labels a compound-
list shall be subjected to tilde expansion, parameter expansion, command substitution, and
arithmetic expansion, and the result of these expansions shall be compared against the
expansion of word, according to the rules described in Section 2.13 (on page 2332) (which also
describes the effect of quoting parts of the pattern). After the first match, no more patterns shall
be expanded, and the compound-list shall be executed. The order of expansion and comparison of
multiple patterns that label a compound-list statement is unspecified.

Exit Status

The exit status of case shall be zero if no patterns are matched. Otherwise, the exit status shall be
the exit status of the last command executed in the compound-list.

2.9.4.4 The if Conditional Construct

The if command shall execute a compound-list and use its exit status to determine whether to
execute another compound-list.

The format for the if construct is as follows:

if compound-list

then
compound-list

[elif compound-list

then
compound-list] ...

[else
compound-list]

fi

2322 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

73298

73299

73300

73301

73302

73303

73304

73305

73306

73307

73308

73309

73310

73311

73312

73313

73314

73315

73316

73317

73318

73319

73320

73321

73322

73323

73324

73325

73326

73327

73328

73329

73330

73331

73332

73333

73334

73335

73336

73337

73338

73339

73340

Shell Command Language Shell Commands

The if compound-list shall be executed; if its exit status is zero, the then compound-list shall be
executed and the command shall complete. Otherwise, each elif compound-list shall be executed,
in turn, and if its exit status is zero, the then compound-list shall be executed and the command
shall complete. Otherwise, the else compound-list shall be executed.

Exit Status

The exit status of the if command shall be the exit status of the then or else compound-list that
was executed, or zero, if none was executed.

2.9.4.5 The while Loop

The while loop shall continuously execute one compound-list as long as another compound-list has
a zero exit status.

The format of the while loop is as follows:

while compound-list-1

do
compound-list-2

done

The compound-list-1 shall be executed, and if it has a non-zero exit status, the while command
shall complete. Otherwise, the compound-list-2 shall be executed, and the process shall repeat.

Exit Status

The exit status of the while loop shall be the exit status of the last compound-list-2 executed, or
zero if none was executed.

2.9.4.6 The until Loop

The until loop shall continuously execute one compound-list as long as another compound-list has
a non-zero exit status.

The format of the until loop is as follows:

until compound-list-1

do
compound-list-2

done

The compound-list-1 shall be executed, and if it has a zero exit status, the until command
completes. Otherwise, the compound-list-2 shall be executed, and the process repeats.

Exit Status

The exit status of the until loop shall be the exit status of the last compound-list-2 executed, or
zero if none was executed.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2323

73341

73342

73343

73344

73345

73346

73347

73348

73349

73350

73351

73352

73353

73354

73355

73356

73357

73358

73359

73360

73361

73362

73363

73364

73365

73366

73367

73368

73369

73370

73371

73372

73373

Shell Commands Shell Command Language

2.9.5 Function Definition Command

A function is a user-defined name that is used as a simple command to call a compound
command with new positional parameters. A function is defined with a ‘‘function definition
command’’.

The format of a function definition command is as follows:

fname() compound-command[io-redirect ...]

The function is named fname; the application shall ensure that it is a name (see XBD Section
3.230, on page 70). An implementation may allow other characters in a function name as an
extension. The implementation shall maintain separate name spaces for functions and variables.

The argument compound-command represents a compound command, as described in Section
2.9.4 (on page 2321).

When the function is declared, none of the expansions in Section 2.6 (on page 2305) shall be
performed on the text in compound-command or io-redirect; all expansions shall be performed as
normal each time the function is called. Similarly, the optional io-redirect redirections and any
variable assignments within compound-command shall be performed during the execution of the
function itself, not the function definition. See Section 2.8.1 (on page 2315) for the consequences
of failures of these operations on interactive and non-interactive shells.

When a function is executed, it shall have the syntax-error and variable-assignment properties
described for special built-in utilities in the enumerated list at the beginning of Section 2.14 (on
page 2334).

The compound-command shall be executed whenever the function name is specified as the name
of a simple command (see Section 2.9.1.1, on page 2317). The operands to the command
temporarily shall become the positional parameters during the execution of the compound-
command; the special parameter ’#’ also shall be changed to reflect the number of operands.
The special parameter 0 shall be unchanged. When the function completes, the values of the
positional parameters and the special parameter ’#’ shall be restored to the values they had
before the function was executed. If the special built-in return is executed in the compound-
command, the function completes and execution shall resume with the next command after the
function call.

Exit Status

The exit status of a function definition shall be zero if the function was declared successfully;
otherwise, it shall be greater than zero. The exit status of a function invocation shall be the exit
status of the last command executed by the function.

2324 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

73374

73375

73376

73377

73378

73379

73380

73381

73382

73383

73384

73385

73386

73387

73388

73389

73390

73391

73392

73393

73394

73395

73396

73397

73398

73399

73400

73401

73402

73403

73404

73405

73406

Shell Command Language Shell Grammar

2.10 Shell Grammar

The following grammar defines the Shell Command Language. This formal syntax shall take
precedence over the preceding text syntax description.

2.10.1 Shell Grammar Lexical Conventions

The input language to the shell must be first recognized at the character level. The resulting
tokens shall be classified by their immediate context according to the following rules (applied in
order). These rules shall be used to determine what a ‘‘token’’ is that is subject to parsing at the
token level. The rules for token recognition in Section 2.3 (on page 2299) shall apply.

1. A <newline> shall be returned as the token identifier NEWLINE.

2. If the token is an operator, the token identifier for that operator shall result.

3. If the string consists solely of digits and the delimiter character is one of ’<’ or ’>’, the
token identifier IO_NUMBER shall be returned.

4. Otherwise, the token identifier TOKEN results.

Further distinction on TOKEN is context-dependent. It may be that the same TOKEN yields
WORD, a NAME, an ASSIGNMENT, or one of the reserved words below, dependent upon the
context. Some of the productions in the grammar below are annotated with a rule number from
the following list. When a TOKEN is seen where one of those annotated productions could be
used to reduce the symbol, the applicable rule shall be applied to convert the token identifier
type of the TOKEN to a token identifier acceptable at that point in the grammar. The reduction
shall then proceed based upon the token identifier type yielded by the rule applied. When more
than one rule applies, the highest numbered rule shall apply (which in turn may refer to another
rule). (Note that except in rule 7, the presence of an ’=’ in the token has no effect.)

The WORD tokens shall have the word expansion rules applied to them immediately before the
associated command is executed, not at the time the command is parsed.

2.10.2 Shell Grammar Rules

1. [Command Name]

When the TOKEN is exactly a reserved word, the token identifier for that reserved word
shall result. Otherwise, the token WORD shall be returned. Also, if the parser is in any
state where only a reserved word could be the next correct token, proceed as above.

Note: Because at this point <quotation-mark> characters are retained in the token, quoted
strings cannot be recognized as reserved words. This rule also implies that reserved
words are not recognized except in certain positions in the input, such as after a
<newline> or <semicolon>; the grammar presumes that if the reserved word is
intended, it is properly delimited by the user, and does not attempt to reflect that
requirement directly. Also note that line joining is done before tokenization, as described
in Section 2.2.1 (on page 2298), so escaped <newline> characters are already removed at
this point.

Rule 1 is not directly referenced in the grammar, but is referred to by other rules, or
applies globally.

2. [Redirection to or from filename]

The expansions specified in Section 2.7 (on page 2312) shall occur. As specified there,
exactly one field can result (or the result is unspecified), and there are additional

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2325

73407

73408

73409

73410

73411

73412

73413

73414

73415

73416

73417

73418

73419

73420

73421

73422

73423

73424

73425

73426

73427

73428

73429

73430

73431

73432

73433

73434

73435

73436

73437

73438

73439

73440

73441

73442

73443

73444

73445

73446

73447

73448

Shell Grammar Shell Command Language

requirements on pathname expansion.

3. [Redirection from here-document]

Quote removal shall be applied to the word to determine the delimiter that is used to find
the end of the here-document that begins after the next <newline>.

4. [Case statement termination]

When the TOKEN is exactly the reserved word esac, the token identifier for esac shall
result. Otherwise, the token WORD shall be returned.

5. [NAME in for]

When the TOKEN meets the requirements for a name (see XBD Section 3.230, on page
70), the token identifier NAME shall result. Otherwise, the token WORD shall be
returned.

6. [Third word of for and case]

a. [case only]

When the TOKEN is exactly the reserved word in, the token identifier for in shall
result. Otherwise, the token WORD shall be returned.

b. [for only]

When the TOKEN is exactly the reserved word in or do, the token identifier for in
or do shall result, respectively. Otherwise, the token WORD shall be returned.

(For a. and b.: As indicated in the grammar, a linebreak precedes the tokens in and do. If
<newline> characters are present at the indicated location, it is the token after them that is
treated in this fashion.)

7. [Assignment preceding command name]

a. [When the first word]

If the TOKEN does not contain the character ’=’, rule 1 is applied. Otherwise, 7b
shall be applied.

b. [Not the first word]

If the TOKEN contains the <equals-sign> character:

— If it begins with ’=’, the token WORD shall be returned.

— If all the characters preceding ’=’ form a valid name (see XBD Section 3.230,
on page 70), the token ASSIGNMENT_WORD shall be returned. (Quoted
characters cannot participate in forming a valid name.)

— Otherwise, it is unspecified whether it is ASSIGNMENT_WORD or WORD
that is returned.

Assignment to the NAME shall occur as specified in Section 2.9.1 (on page 2316).

8. [NAME in function]

When the TOKEN is exactly a reserved word, the token identifier for that reserved word
shall result. Otherwise, when the TOKEN meets the requirements for a name, the token
identifier NAME shall result. Otherwise, rule 7 applies.

9. [Body of function]

Word expansion and assignment shall never occur, even when required by the rules

2326 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

73449

73450

73451

73452

73453

73454

73455

73456

73457

73458

73459

73460

73461

73462

73463

73464

73465

73466

73467

73468

73469

73470

73471

73472

73473

73474

73475

73476

73477

73478

73479

73480

73481

73482

73483

73484

73485

73486

73487

73488

Shell Command Language Shell Grammar

above, when this rule is being parsed. Each TOKEN that might either be expanded or
have assignment applied to it shall instead be returned as a single WORD consisting only
of characters that are exactly the token described in Section 2.3 (on page 2299).

/* ---
The grammar symbols
--- */

%token WORD
%token ASSIGNMENT_WORD
%token NAME
%token NEWLINE
%token IO_NUMBER

/* The following are the operators mentioned above. */

%token AND_IF OR_IF DSEMI
/* ’&&’ ’||’ ’;;’ */

%token DLESS DGREAT LESSAND GREATAND LESSGREAT DLESSDASH
/* ’<<’ ’>>’ ’<&’ ’>&’ ’<>’ ’<<−’ */

%token CLOBBER
/* ’>|’ */

/* The following are the reserved words. */

%token If Then Else Elif Fi Do Done
/* ’if’ ’then’ ’else’ ’elif’ ’fi’ ’do’ ’done’ */

%token Case Esac While Until For
/* ’case’ ’esac’ ’while’ ’until’ ’for’ */

/* These are reserved words, not operator tokens, and are
recognized when reserved words are recognized. */

%token Lbrace Rbrace Bang
/* ’{’ ’}’ ’!’ */

%token In
/* ’in’ */

/* ---
The Grammar
--- */

%start complete_command
%%
complete_command : list separator

| list
;

list : list separator_op and_or
| and_or
;

and_or : pipeline
| and_or AND_IF linebreak pipeline
| and_or OR_IF linebreak pipeline
;

pipeline : pipe_sequence
| Bang pipe_sequence
;

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2327

73489

73490

73491

73492

73493

73494

73495

73496

73497

73498

73499

73500

73501

73502

73503

73504

73505

73506

73507

73508

73509

73510

73511

73512

73513

73514

73515

73516

73517

73518

73519

73520

73521

73522

73523

73524

73525

73526

73527

73528

73529

73530

73531

73532

73533

73534

73535

Shell Grammar Shell Command Language

pipe_sequence : command
| pipe_sequence ’|’ linebreak command
;

command : simple_command
| compound_command
| compound_command redirect_list
| function_definition
;

compound_command : brace_group
| subshell
| for_clause
| case_clause
| if_clause
| while_clause
| until_clause
;

subshell : ’(’ compound_list ’)’
;

compound_list : term
| newline_list term
| term separator
| newline_list term separator
;

term : term separator and_or
| and_or
;

for_clause : For name linebreak do_group
| For name linebreak in sequential_sep do_group
| For name linebreak in wordlist sequential_sep do_group
;

name : NAME /* Apply rule 5 */
;

in : In /* Apply rule 6 */
;

wordlist : wordlist WORD
| WORD
;

case_clause : Case WORD linebreak in linebreak case_list Esac
| Case WORD linebreak in linebreak case_list_ns Esac
| Case WORD linebreak in linebreak Esac
;

case_list_ns : case_list case_item_ns
| case_item_ns
;

case_list : case_list case_item
| case_item
;

case_item_ns : pattern ’)’ linebreak
| pattern ’)’ compound_list linebreak
| ’(’ pattern ’)’ linebreak
| ’(’ pattern ’)’ compound_list linebreak
;

case_item : pattern ’)’ linebreak DSEMI linebreak

2328 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

73536

73537

73538

73539

73540

73541

73542

73543

73544

73545

73546

73547

73548

73549

73550

73551

73552

73553

73554

73555

73556

73557

73558

73559

73560

73561

73562

73563

73564

73565

73566

73567

73568

73569

73570

73571

73572

73573

73574

73575

73576

73577

73578

73579

73580

73581

73582

73583

73584

73585

73586

73587

73588

Shell Command Language Shell Grammar

| pattern ’)’ compound_list DSEMI linebreak
| ’(’ pattern ’)’ linebreak DSEMI linebreak
| ’(’ pattern ’)’ compound_list DSEMI linebreak
;

pattern : WORD /* Apply rule 4 */
| pattern ’|’ WORD /* Do not apply rule 4 */
;

if_clause : If compound_list Then compound_list else_part Fi
| If compound_list Then compound_list Fi
;

else_part : Elif compound_list Then else_part
| Else compound_list
;

while_clause : While compound_list do_group
;

until_clause : Until compound_list do_group
;

function_definition : fname ’(’ ’)’ linebreak function_body
;

function_body : compound_command /* Apply rule 9 */
| compound_command redirect_list /* Apply rule 9 */
;

fname : NAME /* Apply rule 8 */
;

brace_group : Lbrace compound_list Rbrace
;

do_group : Do compound_list Done /* Apply rule 6 */
;

simple_command : cmd_prefix cmd_word cmd_suffix
| cmd_prefix cmd_word
| cmd_prefix
| cmd_name cmd_suffix
| cmd_name
;

cmd_name : WORD /* Apply rule 7a */
;

cmd_word : WORD /* Apply rule 7b */
;

cmd_prefix : io_redirect
| cmd_prefix io_redirect
| ASSIGNMENT_WORD
| cmd_prefix ASSIGNMENT_WORD
;

cmd_suffix : io_redirect
| cmd_suffix io_redirect
| WORD
| cmd_suffix WORD
;

redirect_list : io_redirect
| redirect_list io_redirect
;

io_redirect : io_file
| IO_NUMBER io_file

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2329

73589

73590

73591

73592

73593

73594

73595

73596

73597

73598

73599

73600

73601

73602

73603

73604

73605

73606

73607

73608

73609

73610

73611

73612

73613

73614

73615

73616

73617

73618

73619

73620

73621

73622

73623

73624

73625

73626

73627

73628

73629

73630

73631

73632

73633

73634

73635

73636

73637

73638

73639

73640

73641

Shell Grammar Shell Command Language

| io_here
| IO_NUMBER io_here
;

io_file : ’<’ filename
| LESSAND filename
| ’>’ filename
| GREATAND filename
| DGREAT filename
| LESSGREAT filename
| CLOBBER filename
;

filename : WORD /* Apply rule 2 */
;

io_here : DLESS here_end
| DLESSDASH here_end
;

here_end : WORD /* Apply rule 3 */
;

newline_list : NEWLINE
| newline_list NEWLINE
;

linebreak : newline_list
| /* empty */
;

separator_op : ’&’
| ’;’
;

separator : separator_op linebreak
| newline_list
;

sequential_sep : ’;’ linebreak
| newline_list
;

2.11 Signals and Error Handling

When a command is in an asynchronous list, it shall inherit from the shell a signal action of
ignored (SIG_IGN) for the SIGQUIT and SIGINT signals, and may inherit a signal mask in
which SIGQUIT and SIGINT are blocked. Otherwise, the signal actions and signal mask
inherited by the command shall be the same as those inherited by the shell from its parent
unless a signal action is modified by the trap special built-in (see trap)

When a signal for which a trap has been set is received while the shell is waiting for the
completion of a utility executing a foreground command, the trap associated with that signal
shall not be executed until after the foreground command has completed. When the shell is
waiting, by means of the wait utility, for asynchronous commands to complete, the reception of a
signal for which a trap has been set shall cause the wait utility to return immediately with an exit
status >128, immediately after which the trap associated with that signal shall be taken.

If multiple signals are pending for the shell for which there are associated trap actions, the order
of execution of trap actions is unspecified.

2330 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

73642

73643

73644

73645

73646

73647

73648

73649

73650

73651

73652

73653

73654

73655

73656

73657

73658

73659

73660

73661

73662

73663

73664

73665

73666

73667

73668

73669

73670

73671

73672

73673

73674

73675

73676

73677

73678

73679

73680

73681

73682

73683

73684

73685

73686

73687

73688

Shell Command Language Shell Execution Environment

2.12 Shell Execution Environment

A shell execution environment consists of the following:

• Open files inherited upon invocation of the shell, plus open files controlled by exec

• Working directory as set by cd

• File creation mask set by umask

• Current traps set by trap

• Shell parameters that are set by variable assignment (see the set special built-in) or from
the System Interfaces volume of POSIX.1-2008 environment inherited by the shell when it
begins (see the export special built-in)

• Shell functions; see Section 2.9.5 (on page 2324)

• Options turned on at invocation or by set

• Process IDs of the last commands in asynchronous lists known to this shell environment;
see Section 2.9.3.1 (on page 2319)

• Shell aliases; see Section 2.3.1 (on page 2300)

Utilities other than the special built-ins (see Section 2.14, on page 2334) shall be invoked in a
separate environment that consists of the following. The initial value of these objects shall be the
same as that for the parent shell, except as noted below.

• Open files inherited on invocation of the shell, open files controlled by the exec special
built-in plus any modifications, and additions specified by any redirections to the utility

• Current working directory

• File creation mask

• If the utility is a shell script, traps caught by the shell shall be set to the default values and
traps ignored by the shell shall be set to be ignored by the utility; if the utility is not a shell
script, the trap actions (default or ignore) shall be mapped into the appropriate signal
handling actions for the utility

• Variables with the export attribute, along with those explicitly exported for the duration of
the command, shall be passed to the utility environment variables

The environment of the shell process shall not be changed by the utility unless explicitly
specified by the utility description (for example, cd and umask).

A subshell environment shall be created as a duplicate of the shell environment, except that
signal traps set by that shell environment shall be set to the default values. Changes made to the
subshell environment shall not affect the shell environment. Command substitution, commands
that are grouped with parentheses, and asynchronous lists shall be executed in a subshell
environment. Additionally, each command of a multi-command pipeline is in a subshell
environment; as an extension, however, any or all commands in a pipeline may be executed in
the current environment. All other commands shall be executed in the current shell
environment.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2331

73689

73690

73691

73692

73693

73694

73695

73696

73697

73698

73699

73700

73701

73702

73703

73704

73705

73706

73707

73708

73709

73710

73711

73712

73713

73714

73715

73716

73717

73718

73719

73720

73721

73722

73723

73724

73725

Pattern Matching Notation Shell Command Language

2.13 Pattern Matching Notation

The pattern matching notation described in this section is used to specify patterns for matching
strings in the shell. Historically, pattern matching notation is related to, but slightly different
from, the regular expression notation described in XBD Chapter 9 (on page 181). For this reason,
the description of the rules for this pattern matching notation are based on the description of
regular expression notation, modified to account for the differences.

2.13.1 Patterns Matching a Single Character

The following patterns matching a single character shall match a single character: ordinary
characters, special pattern characters, and pattern bracket expressions. The pattern bracket
expression also shall match a single collating element. A <backslash> character shall escape the
following character. The escaping <backslash> shall be discarded.

An ordinary character is a pattern that shall match itself. It can be any character in the supported
character set except for NUL, those special shell characters in Section 2.2 (on page 2298) that
require quoting, and the following three special pattern characters. Matching shall be based on
the bit pattern used for encoding the character, not on the graphic representation of the
character. If any character (ordinary, shell special, or pattern special) is quoted, that pattern shall
match the character itself. The shell special characters always require quoting.

When unquoted and outside a bracket expression, the following three characters shall have
special meaning in the specification of patterns:

? A <question-mark> is a pattern that shall match any character.

* An <asterisk> is a pattern that shall match multiple characters, as described in Section
2.13.2.

[If an open bracket introduces a bracket expression as in XBD Section 9.3.5 (on page 184),
except that the <exclamation-mark> character (’!’) shall replace the <circumflex>
character (’ˆ’) in its role in a non-matching list in the regular expression notation, it shall
introduce a pattern bracket expression. A bracket expression starting with an unquoted
<circumflex> character produces unspecified results. Otherwise, ’[’ shall match the
character itself.

When pattern matching is used where shell quote removal is not performed (such as in the
argument to the find −name primary when find is being called using one of the exec functions as
defined in the System Interfaces volume of POSIX.1-2008, or in the pattern argument to the
fnmatch() function), special characters can be escaped to remove their special meaning by
preceding them with a <backslash> character. This escaping <backslash> is discarded. The
sequence "\\" represents one literal <backslash>. All of the requirements and effects of quoting
on ordinary, shell special, and special pattern characters shall apply to escaping in this context.

2.13.2 Patterns Matching Multiple Characters

The following rules are used to construct patterns matching multiple characters from patterns
matching a single character:

1. The <asterisk> (’*’) is a pattern that shall match any string, including the null string.

2. The concatenation of patterns matching a single character is a valid pattern that shall
match the concatenation of the single characters or collating elements matched by each of
the concatenated patterns.

2332 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

73726

73727

73728

73729

73730

73731

73732

73733

73734

73735

73736

73737

73738

73739

73740

73741

73742

73743

73744

73745

73746

73747

73748

73749

73750

73751

73752

73753

73754

73755

73756

73757

73758

73759

73760

73761

73762

73763

73764

73765

73766

73767

Shell Command Language Pattern Matching Notation

3. The concatenation of one or more patterns matching a single character with one or more
<asterisk> characters is a valid pattern. In such patterns, each <asterisk> shall match a
string of zero or more characters, matching the greatest possible number of characters
that still allows the remainder of the pattern to match the string.

2.13.3 Patterns Used for Filename Expansion

The rules described so far in Section 2.13.1 (on page 2332) and Section 2.13.2 (on page 2332) are
qualified by the following rules that apply when pattern matching notation is used for filename
expansion:

1. The <slash> character in a pathname shall be explicitly matched by using one or more
<slash> characters in the pattern; it shall neither be matched by the <asterisk> or
<question-mark> special characters nor by a bracket expression. <slash> characters in the
pattern shall be identified before bracket expressions; thus, a <slash> cannot be included
in a pattern bracket expression used for filename expansion. If a <slash> character is
found following an unescaped <left-square-bracket> character before a corresponding
<right-square-bracket> is found, the open bracket shall be treated as an ordinary
character. For example, the pattern "a[b/c]d" does not match such pathnames as abd
or a/d. It only matches a pathname of literally a[b/c]d.

2. If a filename begins with a <period> (’.’), the <period> shall be explicitly matched by
using a <period> as the first character of the pattern or immediately following a <slash>
character. The leading <period> shall not be matched by:

• The <asterisk> or <question-mark> special characters

• A bracket expression containing a non-matching list, such as "[!a]", a range
expression, such as "[%−0]", or a character class expression, such as
"[[:punct:]]"

It is unspecified whether an explicit <period> in a bracket expression matching list, such
as "[.abc]", can match a leading <period> in a filename.

3. Specified patterns shall be matched against existing filenames and pathnames, as
appropriate. Each component that contains a pattern character shall require read
permission in the directory containing that component. Any component, except the last,
that does not contain a pattern character shall require search permission. For example,
given the pattern:

/foo/bar/x*/bam

search permission is needed for directories / and foo, search and read permissions are
needed for directory bar, and search permission is needed for each x* directory. If the
pattern matches any existing filenames or pathnames, the pattern shall be replaced with
those filenames and pathnames, sorted according to the collating sequence in effect in the
current locale.

If the pattern contains an open bracket (’[’) that does not introduce a bracket expression
as in XBD Section 9.3.5 (on page 184), it is unspecified whether other unquoted pattern
matching characters within the same slash-delimited component of the pattern retain
their special meanings or are treated as ordinary characters. For example, the pattern
"a*[/b*" may match all filenames beginning with ’b’ in the directory "a*[" or it may
match all filenames beginning with ’b’ in all directories with names beginning with ’a’
and ending with ’[’.

If the pattern does not match any existing filenames or pathnames, the pattern string shall

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2333

73768

73769

73770

73771

73772

73773

73774

73775

73776

73777

73778

73779

73780

73781

73782

73783

73784

73785

73786

73787

73788

73789

73790

73791

73792

73793

73794

73795

73796

73797

73798

73799

73800

73801

73802

73803

73804

73805

73806

73807

73808

73809

73810

73811

73812

Pattern Matching Notation Shell Command Language

be left unchanged.

2.14 Special Built-In Utilities

The following ‘‘special built-in’’ utilities shall be supported in the shell command language. The
output of each command, if any, shall be written to standard output, subject to the normal
redirection and piping possible with all commands.

The term ‘‘built-in’’ implies that the shell can execute the utility directly and does not need to
search for it. An implementation may choose to make any utility a built-in; however, the special
built-in utilities described here differ from regular built-in utilities in two respects:

1. A syntax error in a special built-in utility may cause a shell executing that utility to abort,
while a syntax error in a regular built-in utility shall not cause a shell executing that
utility to abort. (See Section 2.8.1 (on page 2315) for the consequences of errors on
interactive and non-interactive shells.) If a special built-in utility encountering a syntax
error does not abort the shell, its exit value shall be non-zero.

2. Variable assignments specified with special built-in utilities remain in effect after the
built-in completes; this shall not be the case with a regular built-in or other utility.

The special built-in utilities in this section need not be provided in a manner accessible via the
exec family of functions defined in the System Interfaces volume of POSIX.1-2008.

Some of the special built-ins are described as conforming to XBD Section 12.2 (on page 215). For
those that are not, the requirement in Section 1.4 (on page 2288) that "− −" be recognized as a
first argument to be discarded does not apply and a conforming application shall not use that
argument.

2334 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

73813

73814

73815

73816

73817

73818

73819

73820

73821

73822

73823

73824

73825

73826

73827

73828

73829

73830

73831

73832

73833

Shell Command Language break

NAME
break — exit from for, while, or until loop

SYNOPSIS
break [n]

DESCRIPTION
The break utility shall exit from the smallest enclosing for, while, or until loop, if any; or from
the nth enclosing loop if n is specified. The value of n is an unsigned decimal integer greater
than or equal to 1. The default shall be equivalent to n=1. If n is greater than the number of
enclosing loops, the outermost enclosing loop shall be exited. Execution shall continue with the
command immediately following the loop.

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS

0 Successful completion.

>0 The n value was not an unsigned decimal integer greater than or equal to 1.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2335

73834

73835

73836

73837

73838

73839

73840

73841

73842

73843

73844

73845

73846

73847

73848

73849

73850

73851

73852

73853

73854

73855

73856

73857

73858

73859

73860

73861

73862

73863

73864

73865

73866

73867

73868

break Shell Command Language

APPLICATION USAGE
None.

EXAMPLES
for i in *
do

if test −d "$i"
then break
fi

done

RATIONALE
In early proposals, consideration was given to expanding the syntax of break and continue to refer
to a label associated with the appropriate loop as a preferable alternative to the n method.
However, this volume of POSIX.1-2008 does reserve the name space of command names ending
with a <colon>. It is anticipated that a future implementation could take advantage of this and
provide something like:

outofloop: for i in a b c d e
do

for j in 0 1 2 3 4 5 6 7 8 9
do

if test −r "${i}${j}"
then break outofloop
fi

done
done

and that this might be standardized after implementation experience is achieved.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14 (on page 2334)

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

2336 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

73869

73870

73871

73872

73873

73874

73875

73876

73877

73878

73879

73880

73881

73882

73883

73884

73885

73886

73887

73888

73889

73890

73891

73892

73893

73894

73895

73896

73897

73898

73899

73900

73901

73902

Shell Command Language colon

NAME
colon — null utility

SYNOPSIS
: [argument...]

DESCRIPTION
This utility shall only expand command arguments. It is used when a command is needed, as in
the then condition of an if command, but nothing is to be done by the command.

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
Zero.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
: ${X=abc}
if false
then :
else echo $X
fi
abc

As with any of the special built-ins, the null utility can also have variable assignments and
redirections associated with it, such as:

x=y : > z

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2337

73903

73904

73905

73906

73907

73908

73909

73910

73911

73912

73913

73914

73915

73916

73917

73918

73919

73920

73921

73922

73923

73924

73925

73926

73927

73928

73929

73930

73931

73932

73933

73934

73935

73936

73937

73938

73939

73940

73941

73942

73943

73944

73945

colon Shell Command Language

which sets variable x to the value y (so that it persists after the null utility completes) and creates
or truncates file z.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14 (on page 2334)

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2338 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

73946

73947

73948

73949

73950

73951

73952

73953

73954

73955

73956

73957

73958

73959

73960

Shell Command Language continue

NAME
continue — continue for, while, or until loop

SYNOPSIS
continue [n]

DESCRIPTION
The continue utility shall return to the top of the smallest enclosing for, while, or until loop, or to
the top of the nth enclosing loop, if n is specified. This involves repeating the condition list of a
while or until loop or performing the next assignment of a for loop, and re-executing the loop if
appropriate.

The value of n is a decimal integer greater than or equal to 1. The default shall be equivalent to
n=1. If n is greater than the number of enclosing loops, the outermost enclosing loop shall be
used.

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS

0 Successful completion.

>0 The n value was not an unsigned decimal integer greater than or equal to 1.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2339

73961

73962

73963

73964

73965

73966

73967

73968

73969

73970

73971

73972

73973

73974

73975

73976

73977

73978

73979

73980

73981

73982

73983

73984

73985

73986

73987

73988

73989

73990

73991

73992

73993

73994

73995

73996

73997

continue Shell Command Language

APPLICATION USAGE
None.

EXAMPLES
for i in *
do

if test −d "$i"
then continue
fi
printf ’"%s" is not a directory.\n’ "$i"

done

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14 (on page 2334)

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
The example is changed to use the printf utility rather than echo.

2340 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

73998

73999

74000

74001

74002

74003

74004

74005

74006

74007

74008

74009

74010

74011

74012

74013

74014

74015

74016

74017

74018

74019

74020

Shell Command Language dot

NAME
dot — execute commands in the current environment

SYNOPSIS
. file

DESCRIPTION
The shell shall execute commands from the file in the current environment.

If file does not contain a <slash>, the shell shall use the search path specified by PA TH to find the
directory containing file. Unlike normal command search, however, the file searched for by the
dot utility need not be executable. If no readable file is found, a non-interactive shell shall abort;
an interactive shell shall write a diagnostic message to standard error, but this condition shall
not be considered a syntax error.

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
See the DESCRIPTION.

ENVIRONMENT VARIABLES
See the DESCRIPTION.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
Returns the value of the last command executed, or a zero exit status if no command is executed.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2341

74021

74022

74023

74024

74025

74026

74027

74028

74029

74030

74031

74032

74033

74034

74035

74036

74037

74038

74039

74040

74041

74042

74043

74044

74045

74046

74047

74048

74049

74050

74051

74052

74053

74054

74055

dot Shell Command Language

APPLICATION USAGE
None.

EXAMPLES
cat foobar
foo=hello bar=world

. ./foobar
echo $foo $bar
hello world

RATIONALE
Some older implementations searched the current directory for the file, even if the value of PA TH
disallowed it. This behavior was omitted from this volume of POSIX.1-2008 due to concerns
about introducing the susceptibility to trojan horses that the user might be trying to avoid by
leaving dot out of PA TH.

The KornShell version of dot takes optional arguments that are set to the positional parameters.
This is a valid extension that allows a dot script to behave identically to a function.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14 (on page 2334)

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
SD5-XCU-ERN-164 is applied.

2342 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

74056

74057

74058

74059

74060

74061

74062

74063

74064

74065

74066

74067

74068

74069

74070

74071

74072

74073

74074

74075

74076

74077

74078

74079

74080

74081

Shell Command Language ev al

NAME
eval — construct command by concatenating arguments

SYNOPSIS
eval [argument...]

DESCRIPTION
The eval utility shall construct a command by concatenating arguments together, separating each
with a <space> character. The constructed command shall be read and executed by the shell.

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If there are no arguments, or only null arguments, eval shall return a zero exit status; otherwise, it
shall return the exit status of the command defined by the string of concatenated arguments
separated by <space> characters.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
foo=10 x=foo
y=’$’$x
echo $y
$foo

eval y=’$’$x
echo $y
10

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2343

74082

74083

74084

74085

74086

74087

74088

74089

74090

74091

74092

74093

74094

74095

74096

74097

74098

74099

74100

74101

74102

74103

74104

74105

74106

74107

74108

74109

74110

74111

74112

74113

74114

74115

74116

74117

74118

74119

74120

74121

74122

74123

74124

ev al Shell Command Language

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14 (on page 2334)

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2344 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

74125

74126

74127

74128

74129

74130

74131

74132

74133

74134

74135

74136

74137

Shell Command Language exec

NAME
exec — execute commands and open, close, or copy file descriptors

SYNOPSIS
exec [command [argument...]]

DESCRIPTION
The exec utility shall open, close, and/or copy file descriptors as specified by any redirections as
part of the command.

If exec is specified without command or arguments, and any file descriptors with numbers greater
than 2 are opened with associated redirection statements, it is unspecified whether those file
descriptors remain open when the shell invokes another utility. Scripts concerned that child
shells could misuse open file descriptors can always close them explicitly, as shown in one of the
following examples.

If exec is specified with command, it shall replace the shell with command without creating a new
process. If arguments are specified, they shall be arguments to command. Redirection affects the
current shell execution environment.

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If command is specified, exec shall not return to the shell; rather, the exit status of the process shall
be the exit status of the program implementing command, which overlaid the shell. If command is
not found, the exit status shall be 127. If command is found, but it is not an executable utility, the
exit status shall be 126. If a redirection error occurs (see Section 2.8.1, on page 2315), the shell
shall exit with a value in the range 1−125. Otherwise, exec shall return a zero exit status.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2345

74138

74139

74140

74141

74142

74143

74144

74145

74146

74147

74148

74149

74150

74151

74152

74153

74154

74155

74156

74157

74158

74159

74160

74161

74162

74163

74164

74165

74166

74167

74168

74169

74170

74171

74172

74173

74174

74175

74176

74177

74178

exec Shell Command Language

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
Open readfile as file descriptor 3 for reading:

exec 3< readfile

Open writefile as file descriptor 4 for writing:

exec 4> writefile

Make file descriptor 5 a copy of file descriptor 0:

exec 5<&0

Close file descriptor 3:

exec 3<&−

Cat the file maggie by replacing the current shell with the cat utility:

exec cat maggie

RATIONALE
Most historical implementations were not conformant in that:

foo=bar exec cmd

did not pass foo to cmd.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14 (on page 2334)

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2346 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

74179

74180

74181

74182

74183

74184

74185

74186

74187

74188

74189

74190

74191

74192

74193

74194

74195

74196

74197

74198

74199

74200

74201

74202

74203

74204

74205

74206

74207

74208

Shell Command Language exit

NAME
exit — cause the shell to exit

SYNOPSIS
exit [n]

DESCRIPTION
The exit utility shall cause the shell to exit with the exit status specified by the unsigned decimal
integer n. If n is specified, but its value is not between 0 and 255 inclusively, the exit status is
undefined.

A trap on EXIT shall be executed before the shell terminates, except when the exit utility is
invoked in that trap itself, in which case the shell shall exit immediately.

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The exit status shall be n, if specified. Otherwise, the value shall be the exit value of the last
command executed, or zero if no command was executed. When exit is executed in a trap action,
the last command is considered to be the command that executed immediately preceding the
trap action.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2347

74209

74210

74211

74212

74213

74214

74215

74216

74217

74218

74219

74220

74221

74222

74223

74224

74225

74226

74227

74228

74229

74230

74231

74232

74233

74234

74235

74236

74237

74238

74239

74240

74241

74242

74243

74244

74245

exit Shell Command Language

APPLICATION USAGE
None.

EXAMPLES
Exit with a true value:

exit 0

Exit with a false value:

exit 1

RATIONALE
As explained in other sections, certain exit status values have been reserved for special uses and
should be used by applications only for those purposes:

126 A file to be executed was found, but it was not an executable utility.

127 A utility to be executed was not found.

>128 A command was interrupted by a signal.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14 (on page 2334)

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

2348 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

74246

74247

74248

74249

74250

74251

74252

74253

74254

74255

74256

74257

74258

74259

74260

74261

74262

74263

74264

74265

74266

74267

Shell Command Language export

NAME
export — set the export attribute for variables

SYNOPSIS
export name[=word]...

export −p

DESCRIPTION
The shell shall give the export attribute to the variables corresponding to the specified names,
which shall cause them to be in the environment of subsequently executed commands. If the
name of a variable is followed by =word, then the value of that variable shall be set to word.

The export special built-in shall support XBD Section 12.2 (on page 215).

When −p is specified, export shall write to the standard output the names and values of all
exported variables, in the following format:

"export %s=%s\n", <name>, <value>

if name is set, and:

"export %s\n", <name>

if name is unset.

The shell shall format the output, including the proper use of quoting, so that it is suitable for
reinput to the shell as commands that achieve the same exporting results, except:

1. Read-only variables with values cannot be reset.

2. Variables that were unset at the time they were output need not be reset to the unset state
if a value is assigned to the variable between the time the state was saved and the time at
which the saved output is reinput to the shell.

When no arguments are given, the results are unspecified.

OPTIONS
See the DESCRIPTION.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the DESCRIPTION.

STDERR
The standard error shall be used only for diagnostic messages.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2349

74268

74269

74270

74271

74272

74273

74274

74275

74276

74277

74278

74279

74280

74281

74282

74283

74284

74285

74286

74287

74288

74289

74290

74291

74292

74293

74294

74295

74296

74297

74298

74299

74300

74301

74302

74303

74304

74305

74306

export Shell Command Language

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
Zero.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
Export PWD and HOME variables:

export PWD HOME

Set and export the PA TH variable:

export PATH=/local/bin:$PATH

Save and restore all exported variables:

export −p > temp-file

unset a lot of variables

... processing

. temp-file

RATIONALE
Some historical shells use the no-argument case as the functional equivalent of what is required
here with −p. This feature was left unspecified because it is not historical practice in all shells,
and some scripts may rely on the now-unspecified results on their implementations. Attempts to
specify the −p output as the default case were unsuccessful in achieving consensus. The −p
option was added to allow portable access to the values that can be saved and then later restored
using; for example, a dot script.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14 (on page 2334)

XBD Section 12.2 (on page 215)

CHANGE HISTORY

Issue 6
IEEE PASC Interpretation 1003.2 #203 is applied, clarifying the format when a variable is unset.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/6 is applied, adding the following text to
the end of the first paragraph of the DESCRIPTION: ‘‘If the name of a variable is followed by
=word, then the value of that variable shall be set to word.’’. The reason for this change is that the
SYNOPSIS for export includes:

2350 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

74307

74308

74309

74310

74311

74312

74313

74314

74315

74316

74317

74318

74319

74320

74321

74322

74323

74324

74325

74326

74327

74328

74329

74330

74331

74332

74333

74334

74335

74336

74337

74338

74339

74340

74341

74342

74343

74344

74345

74346

74347

74348

Shell Command Language export

export name[=word]...

but the meaning of the optional ‘‘=word’’ is never explained in the text.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2351

74349

74350

readonly Shell Command Language

NAME
readonly — set the readonly attribute for variables

SYNOPSIS
readonly name[=word]...

readonly −p

DESCRIPTION
The variables whose names are specified shall be given the readonly attribute. The values of
variables with the readonly attribute cannot be changed by subsequent assignment, nor can those
variables be unset by the unset utility. If the name of a variable is followed by =word, then the
value of that variable shall be set to word.

The readonly special built-in shall support XBD Section 12.2 (on page 215).

When −p is specified, readonly writes to the standard output the names and values of all read-
only variables, in the following format:

"readonly %s=%s\n", <name>, <value>

if name is set, and

"readonly %s\n", <name>

if name is unset.

The shell shall format the output, including the proper use of quoting, so that it is suitable for
reinput to the shell as commands that achieve the same value and readonly attribute-setting
results in a shell execution environment in which:

1. Variables with values at the time they were output do not have the readonly attribute set.

2. Variables that were unset at the time they were output do not have a value at the time at
which the saved output is reinput to the shell.

When no arguments are given, the results are unspecified.

OPTIONS
See the DESCRIPTION.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the DESCRIPTION.

2352 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

74351

74352

74353

74354

74355

74356

74357

74358

74359

74360

74361

74362

74363

74364

74365

74366

74367

74368

74369

74370

74371

74372

74373

74374

74375

74376

74377

74378

74379

74380

74381

74382

74383

74384

74385

74386

74387

74388

Shell Command Language readonly

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
Zero.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
readonly HOME PWD

RATIONALE
Some historical shells preserve the readonly attribute across separate invocations. This volume of
POSIX.1-2008 allows this behavior, but does not require it.

The −p option allows portable access to the values that can be saved and then later restored
using, for example, a dot script. Also see the RATIONALE for export (on page 2349) for a
description of the no-argument and −p output cases and a related example.

Read-only functions were considered, but they were omitted as not being historical practice or
particularly useful. Furthermore, functions must not be read-only across invocations to preclude
‘‘spoofing’’ (spoofing is the term for the practice of creating a program that acts like a well-
known utility with the intent of subverting the real intent of the user) of administrative or
security-relevant (or security-conscious) shell scripts.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14 (on page 2334)

XBD Section 12.2 (on page 215)

CHANGE HISTORY

Issue 6
IEEE PASC Interpretation 1003.2 #203 is applied, clarifying the format when a variable is unset.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/7 is applied, adding the following text to
the end of the first paragraph of the DESCRIPTION: ‘‘If the name of a variable is followed by
=word, then the value of that variable shall be set to word.’’. The reason for this change is that the
SYNOPSIS for readonly includes:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2353

74389

74390

74391

74392

74393

74394

74395

74396

74397

74398

74399

74400

74401

74402

74403

74404

74405

74406

74407

74408

74409

74410

74411

74412

74413

74414

74415

74416

74417

74418

74419

74420

74421

74422

74423

74424

74425

74426

74427

74428

readonly Shell Command Language

readonly name[=word]...

but the meaning of the optional ‘‘=word’’ is never explained in the text.

2354 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

74429

74430

Shell Command Language return

NAME
return — return from a function

SYNOPSIS
return [n]

DESCRIPTION
The return utility shall cause the shell to stop executing the current function or dot script. If the
shell is not currently executing a function or dot script, the results are unspecified.

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The value of the special parameter ’?’ shall be set to n, an unsigned decimal integer, or to the
exit status of the last command executed if n is not specified. If the value of n is greater than 255,
the results are undefined. When return is executed in a trap action, the last command is
considered to be the command that executed immediately preceding the trap action.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The behavior of return when not in a function or dot script differs between the System V shell
and the KornShell. In the System V shell this is an error, whereas in the KornShell, the effect is
the same as exit.

The results of returning a number greater than 255 are undefined because of differing practices

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2355

74431

74432

74433

74434

74435

74436

74437

74438

74439

74440

74441

74442

74443

74444

74445

74446

74447

74448

74449

74450

74451

74452

74453

74454

74455

74456

74457

74458

74459

74460

74461

74462

74463

74464

74465

74466

74467

74468

74469

74470

74471

74472

74473

return Shell Command Language

in the various historical implementations. Some shells AND out all but the low-order 8 bits;
others allow larger values, but not of unlimited size.

See the discussion of appropriate exit status values under exit (on page 2347).

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14 (on page 2334)

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

2356 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

74474

74475

74476

74477

74478

74479

74480

74481

74482

74483

74484

74485

Shell Command Language set

NAME
set — set or unset options and positional parameters

SYNOPSIS
set [−abCefhmnuvx] [−o option] [argument...]

set [+abCefhmnuvx] [+o option] [argument...]

set − − [argument...]

set −o

set +o

DESCRIPTION
If no options or arguments are specified, set shall write the names and values of all shell variables
in the collation sequence of the current locale. Each name shall start on a separate line, using the
format:

"%s=%s\n", <name>, <value>

The value string shall be written with appropriate quoting; see the description of shell quoting in
Section 2.2 (on page 2298). The output shall be suitable for reinput to the shell, setting or
resetting, as far as possible, the variables that are currently set; read-only variables cannot be
reset.

When options are specified, they shall set or unset attributes of the shell, as described below.
When arguments are specified, they cause positional parameters to be set or unset, as described
below. Setting or unsetting attributes and positional parameters are not necessarily related
actions, but they can be combined in a single invocation of set.

The set special built-in shall support XBD Section 12.2 (on page 215) except that options can be
specified with either a leading <hyphen> (meaning enable the option) or <plus-sign> (meaning
disable it) unless otherwise specified.

Implementations shall support the options in the following list in both their <hyphen> and
<plus-sign> forms. These options can also be specified as options to sh.

−a When this option is on, the export attribute shall be set for each variable to which an
assignment is performed; see XBD Section 4.22 (on page 118). If the assignment precedes a
utility name in a command, the export attribute shall not persist in the current execution
environment after the utility completes, with the exception that preceding one of the special
built-in utilities causes the export attribute to persist after the built-in has completed. If the
assignment does not precede a utility name in the command, or if the assignment is a result
of the operation of the getopts or read utilities, the export attribute shall persist until the
variable is unset.

−b This option shall be supported if the implementation supports the User Portability Utilities
option. It shall cause the shell to notify the user asynchronously of background job
completions. The following message is written to standard error:

"[%d]%c %s%s\n", <job-number>, <current>, <status>, <job-name>

where the fields shall be as follows:

<current> The character ’+’ identifies the job that would be used as a default for
the fg or bg utilities; this job can also be specified using the job_id "%+" or
"%%". The character ’−’ identifies the job that would become the default
if the current default job were to exit; this job can also be specified using
the job_id "%−". For other jobs, this field is a <space>. At most one job

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2357

74486

74487

74488

74489

74490

74491

74492

74493

74494

74495

74496

74497

74498

74499

74500

74501

74502

74503

74504

74505

74506

74507

74508

74509

74510

74511

74512

74513

74514

74515

74516

74517

74518

74519

74520

74521

74522

74523

74524

74525

74526

74527

74528

74529

set Shell Command Language

can be identified with ’+’ and at most one job can be identified with ’−’.
If there is any suspended job, then the current job shall be a suspended
job. If there are at least two suspended jobs, then the previous job also
shall be a suspended job.

<job-number> A number that can be used to identify the process group to the wait, fg, bg,
and kill utilities. Using these utilities, the job can be identified by prefixing
the job number with ’%’.

<status> Unspecified.

<job-name> Unspecified.

When the shell notifies the user a job has been completed, it may remove the job’s process
ID from the list of those known in the current shell execution environment; see Section
2.9.3.1 (on page 2319). Asynchronous notification shall not be enabled by default.

−C (Uppercase C.) Prevent existing files from being overwritten by the shell’s ’>’ redirection
operator (see Section 2.7.2, on page 2313); the ">|" redirection operator shall override this
noclobber option for an individual file.

−e When this option is on, if a simple command fails for any of the reasons listed in Section
2.8.1 (on page 2315) or returns an exit status value >0, and is not part of the compound list
following a while, until, or if keyword, and is not a part of an AND or OR list, and is not a
pipeline preceded by the ! reserved word, then the shell shall immediately exit.

−f The shell shall disable pathname expansion.

−h Locate and remember utilities invoked by functions as those functions are defined (the
utilities are normally located when the function is executed).

−m This option shall be supported if the implementation supports the User Portability Utilities
option. All jobs shall be run in their own process groups. Immediately before the shell issues
a prompt after completion of the background job, a message reporting the exit status of the
background job shall be written to standard error. If a foreground job stops, the shell shall
write a message to standard error to that effect, formatted as described by the jobs utility. In
addition, if a job changes status other than exiting (for example, if it stops for input or
output or is stopped by a SIGSTOP signal), the shell shall write a similar message
immediately prior to writing the next prompt. This option is enabled by default for
interactive shells.

−n The shell shall read commands but does not execute them; this can be used to check for
shell script syntax errors. An interactive shell may ignore this option.

−o Write the current settings of the options to standard output in an unspecified format.

+o Write the current option settings to standard output in a format that is suitable for reinput
to the shell as commands that achieve the same options settings.

−o option
This option is supported if the system supports the User Portability Utilities option. It shall
set various options, many of which shall be equivalent to the single option letters. The
following values of option shall be supported:

allexport Equivalent to −a.

errexit Equivalent to −e.

2358 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

74530

74531

74532

74533

74534

74535

74536

74537

74538

74539

74540

74541

74542

74543

74544

74545

74546

74547

74548

74549

74550

74551

74552

74553

74554

74555

74556

74557

74558

74559

74560

74561

74562

74563

74564

74565

74566

74567

74568

74569

74570

74571

Shell Command Language set

ignoreeof Prevent an interactive shell from exiting on end-of-file. This setting prevents
accidental logouts when <control>-D is entered. A user shall explicitly exit to
leave the interactive shell.

monitor Equivalent to −m. This option is supported if the system supports the User
Portability Utilities option.

noclobber Equivalent to −C (uppercase C).

noglob Equivalent to −f.

noexec Equivalent to −n.

nolog Prevent the entry of function definitions into the command history; see
Command History List (on page 3167).

notify Equivalent to −b.

nounset Equivalent to −u.

verbose Equivalent to −v.

vi Allow shell command line editing using the built-in vi editor. Enabling vi
mode shall disable any other command line editing mode provided as an
implementation extension.

It need not be possible to set vi mode on for certain block-mode terminals.

xtrace Equivalent to −x.

−u The shell shall write a message to standard error when it tries to expand a variable that is
not set and immediately exit. An interactive shell shall not exit.

−v The shell shall write its input to standard error as it is read.

−x The shell shall write to standard error a trace for each command after it expands the
command and before it executes it. It is unspecified whether the command that turns
tracing off is traced.

The default for all these options shall be off (unset) unless stated otherwise in the description of
the option or unless the shell was invoked with them on; see sh.

The remaining arguments shall be assigned in order to the positional parameters. The special
parameter ’#’ shall be set to reflect the number of positional parameters. All positional
parameters shall be unset before any new values are assigned.

If the first argument is ’−’, the results are unspecified.

The special argument "− −" immediately following the set command name can be used to
delimit the arguments if the first argument begins with ’+’ or ’−’, or to prevent inadvertent
listing of all shell variables when there are no arguments. The command set − − without argument
shall unset all positional parameters and set the special parameter ’#’ to zero.

OPTIONS
See the DESCRIPTION.

OPERANDS
See the DESCRIPTION.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2359

74572

74573

74574

74575

74576

74577

74578

74579

74580

74581

74582

74583

74584

74585

74586

74587

74588

74589

74590

74591

74592

74593

74594

74595

74596

74597

74598

74599

74600

74601

74602

74603

74604

74605

74606

74607

74608

74609

set Shell Command Language

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the DESCRIPTION.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
Zero.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
Write out all variables and their values:

set

Set $1, $2, and $3 and set "$#" to 3:

set c a b

Turn on the −x and −v options:

set −xv

Unset all positional parameters:

set − −

Set $1 to the value of x, even if it begins with ’−’ or ’+’:

set − − "$x"

Set the positional parameters to the expansion of x, even if x expands with a leading ’−’ or ’+’:

set − − $x

RATIONALE
The set − − form is listed specifically in the SYNOPSIS even though this usage is implied by the
Utility Syntax Guidelines. The explanation of this feature removes any ambiguity about whether
the set − − form might be misinterpreted as being equivalent to set without any options or
arguments. The functionality of this form has been adopted from the KornShell. In System V, set

2360 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

74610

74611

74612

74613

74614

74615

74616

74617

74618

74619

74620

74621

74622

74623

74624

74625

74626

74627

74628

74629

74630

74631

74632

74633

74634

74635

74636

74637

74638

74639

74640

74641

74642

74643

74644

74645

74646

74647

74648

74649

Shell Command Language set

− − only unsets parameters if there is at least one argument; the only way to unset all parameters
is to use shift. Using the KornShell version should not affect System V scripts because there
should be no reason to issue it without arguments deliberately; if it were issued as, for example:

set − − "$@"

and there were in fact no arguments resulting from "$@", unsetting the parameters would have
no result.

The set + form in early proposals was omitted as being an unnecessary duplication of set alone
and not widespread historical practice.

The noclobber option was changed to allow set −C as well as the set −o noclobber option. The
single-letter version was added so that the historical "$−" paradigm would not be broken; see
Section 2.5.2 (on page 2302).

The −h flag is related to command name hashing. See hash (on page 2788).

The following set flags were omitted intentionally with the following rationale:

−k The −k flag was originally added by the author of the Bourne shell to make it easier for
users of pre-release versions of the shell. In early versions of the Bourne shell the construct
set name=value had to be used to assign values to shell variables. The problem with −k is
that the behavior affects parsing, virtually precluding writing any compilers. To explain the
behavior of −k, it is necessary to describe the parsing algorithm, which is implementation-
defined. For example:

set −k; echo name=value

and:

set −k
echo name=value

behave differently. The interaction with functions is even more complex. What is more, the
−k flag is never needed, since the command line could have been reordered.

−t The −t flag is hard to specify and almost never used. The only known use could be done
with here-documents. Moreover, the behavior with ksh and sh differs. The reference page
says that it exits after reading and executing one command. What is one command? If the
input is date;date, sh executes both date commands while ksh does only the first.

Consideration was given to rewriting set to simplify its confusing syntax. A specific suggestion
was that the unset utility should be used to unset options instead of using the non-getopt()-able
+option syntax. However, the conclusion was reached that the historical practice of using +option
was satisfactory and that there was no compelling reason to modify such widespread historical
practice.

The −o option was adopted from the KornShell to address user needs. In addition to its
generally friendly interface, −o is needed to provide the vi command line editing mode, for
which historical practice yields no single-letter option name. (Although it might have been
possible to invent such a letter, it was recognized that other editing modes would be developed
and −o provides ample name space for describing such extensions.)

Historical implementations are inconsistent in the format used for −o option status reporting.
The +o format without an option-argument was added to allow portable access to the options
that can be saved and then later restored using, for instance, a dot script.

Historically, sh did trace the command set +x, but ksh did not.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2361

74650

74651

74652

74653

74654

74655

74656

74657

74658

74659

74660

74661

74662

74663

74664

74665

74666

74667

74668

74669

74670

74671

74672

74673

74674

74675

74676

74677

74678

74679

74680

74681

74682

74683

74684

74685

74686

74687

74688

74689

74690

74691

74692

set Shell Command Language

The ignoreeof setting prevents accidental logouts when the end-of-file character (typically
<control>-D) is entered. A user shall explicitly exit to leave the interactive shell.

The set −m option was added to apply only to the UPE because it applies primarily to interactive
use, not shell script applications.

The ability to do asynchronous notification became available in the 1988 version of the
KornShell. To have it occur, the user had to issue the command:

trap "jobs −n" CLD

The C shell provides two different levels of an asynchronous notification capability. The
environment variable notify is analogous to what is done in set −b or set −o notify. When set, it
notifies the user immediately of background job completions. When unset, this capability is
turned off.

The other notification ability comes through the built-in utility notify. The syntax is:

notify [%job ...]

By issuing notify with no operands, it causes the C shell to notify the user asynchronously when
the state of the current job changes. If given operands, notify asynchronously informs the user of
changes in the states of the specified jobs.

To add asynchronous notification to the POSIX shell, neither the KornShell extensions to trap,
nor the C shell notify environment variable seemed appropriate (notify is not a proper POSIX
environment variable name).

The set −b option was selected as a compromise.

The notify built-in was considered to have more functionality than was required for simple
asynchronous notification.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14 (on page 2334), hash

XBD Section 4.22 (on page 118), Section 12.2 (on page 215)

CHANGE HISTORY

Issue 6
The obsolescent set command name followed by ’−’ has been removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The nolog option is added to set −o.

IEEE PASC Interpretation 1003.2 #167 is applied, clarifying that the options default also takes
into account the description of the option.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/8 is applied, changing the square
brackets in the example in RATIONALE to be in bold, which is the typeface used for optional
items.

2362 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

74693

74694

74695

74696

74697

74698

74699

74700

74701

74702

74703

74704

74705

74706

74707

74708

74709

74710

74711

74712

74713

74714

74715

74716

74717

74718

74719

74720

74721

74722

74723

74724

74725

74726

74727

74728

74729

74730

74731

74732

74733

Shell Command Language set

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if the first
argument is ’−’.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

XSI shading is removed from the −h functionality.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2363

74734

74735

74736

74737

74738

shift Shell Command Language

NAME
shift — shift positional parameters

SYNOPSIS
shift [n]

DESCRIPTION
The positional parameters shall be shifted. Positional parameter 1 shall be assigned the value of
parameter (1+n), parameter 2 shall be assigned the value of parameter (2+n), and so on. The
parameters represented by the numbers "$#" down to "$#−n+1" shall be unset, and the
parameter ’#’ is updated to reflect the new number of positional parameters.

The value n shall be an unsigned decimal integer less than or equal to the value of the special
parameter ’#’. If n is not given, it shall be assumed to be 1. If n is 0, the positional and special
parameters are not changed.

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The exit status is >0 if n>$#; otherwise, it is zero.

CONSEQUENCES OF ERRORS
Default.

2364 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

74739

74740

74741

74742

74743

74744

74745

74746

74747

74748

74749

74750

74751

74752

74753

74754

74755

74756

74757

74758

74759

74760

74761

74762

74763

74764

74765

74766

74767

74768

74769

74770

74771

74772

74773

74774

Shell Command Language shift

APPLICATION USAGE
None.

EXAMPLES
$ set a b c d e
$ shift 2
$ echo $*
c d e

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14 (on page 2334)

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2365

74775

74776

74777

74778

74779

74780

74781

74782

74783

74784

74785

74786

74787

74788

74789

74790

74791

74792

times Shell Command Language

NAME
times — write process times

SYNOPSIS
times

DESCRIPTION
The times utility shall write the accumulated user and system times for the shell and for all of its
child processes, in the following POSIX locale format:

"%dm%fs %dm%fs\n%dm%fs %dm%fs\n", <shell user minutes>,
<shell user seconds>, <shell system minutes>,
<shell system seconds>, <children user minutes>,
<children user seconds>, <children system minutes>,
<children system seconds>

The four pairs of times shall correspond to the members of the <sys/times.h> tms structure
(defined in XBD Chapter 13, on page 219) as returned by times(): tms_utime, tms_stime,
tms_cutime, and tms_cstime, respectively.

OPTIONS
None.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the DESCRIPTION.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
Zero.

CONSEQUENCES OF ERRORS
Default.

2366 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

74793

74794

74795

74796

74797

74798

74799

74800

74801

74802

74803

74804

74805

74806

74807

74808

74809

74810

74811

74812

74813

74814

74815

74816

74817

74818

74819

74820

74821

74822

74823

74824

74825

74826

74827

74828

74829

74830

74831

Shell Command Language times

APPLICATION USAGE
None.

EXAMPLES
$ times
0m0.43s 0m1.11s

8m44.18s 1m43.23s

RATIONALE
The times special built-in from the Single UNIX Specification is now required for all conforming
shells.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14 (on page 2334)

XBD <sys/times.h>

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/9 is applied, changing text in the
DESCRIPTION from: ‘‘Write the accumulated user and system times for the shell and for all of
its child processes ...’’ to: ‘‘The times utility shall write the accumulated user and system times for
the shell and for all of its child processes ...’’.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2367

74832

74833

74834

74835

74836

74837

74838

74839

74840

74841

74842

74843

74844

74845

74846

74847

74848

74849

74850

74851

trap Shell Command Language

NAME
trap — trap signals

SYNOPSIS
trap n [condition...]
trap [action condition...]

DESCRIPTION
If the first operand is an unsigned decimal integer, the shell shall treat all operands as
conditions, and shall reset each condition to the default value. Otherwise, if there are operands,
the first is treated as an action and the remaining as conditions.

If action is ’−’, the shell shall reset each condition to the default value. If action is null (""), the
shell shall ignore each specified condition if it arises. Otherwise, the argument action shall be read
and executed by the shell when one of the corresponding conditions arises. The action of trap
shall override a previous action (either default action or one explicitly set). The value of "$?"
after the trap action completes shall be the value it had before trap was invoked.

The condition can be EXIT, 0 (equivalent to EXIT), or a signal specified using a symbolic name,
without the SIG prefix, as listed in the tables of signal names in the <signal.h> header defined in
XBD Chapter 13 (on page 219); for example, HUP, INT, QUIT, TERM. Implementations may
permit names with the SIG prefix or ignore case in signal names as an extension. Setting a trap
for SIGKILL or SIGSTOP produces undefined results.

The environment in which the shell executes a trap on EXIT shall be identical to the environment
immediately after the last command executed before the trap on EXIT was taken.

Each time trap is invoked, the action argument shall be processed in a manner equivalent to:

eval action

Signals that were ignored on entry to a non-interactive shell cannot be trapped or reset, although
no error need be reported when attempting to do so. An interactive shell may reset or catch
signals ignored on entry. Traps shall remain in place for a given shell until explicitly changed
with another trap command.

When a subshell is entered, traps that are not being ignored are set to the default actions. This
does not imply that the trap command cannot be used within the subshell to set new traps.

The trap command with no arguments shall write to standard output a list of commands
associated with each condition. The format shall be:

"trap − − %s %s ...\n", <action>, <condition> ...

The shell shall format the output, including the proper use of quoting, so that it is suitable for
reinput to the shell as commands that achieve the same trapping results. For example:

save_traps=$(trap)
...
eval "$save_traps"

XSI XSI-conformant systems also allow numeric signal numbers for the conditions corresponding to
the following signal names:

1 SIGHUP

2 SIGINT

3 SIGQUIT

2368 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

74852

74853

74854

74855

74856

74857

74858

74859

74860

74861

74862

74863

74864

74865

74866

74867

74868

74869

74870

74871

74872

74873

74874

74875

74876

74877

74878

74879

74880

74881

74882

74883

74884

74885

74886

74887

74888

74889

74890

74891

74892

74893

Shell Command Language trap

6 SIGABRT

9 SIGKILL

14 SIGALRM

15 SIGTERM

The trap special built-in shall conform to XBD Section 12.2 (on page 215).

OPTIONS
None.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the DESCRIPTION.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
XSI If the trap name or number is invalid, a non-zero exit status shall be returned; otherwise, zero
XSI shall be returned. For both interactive and non-interactive shells, invalid signal names or

numbers shall not be considered a syntax error and do not cause the shell to abort.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
Write out a list of all traps and actions:

trap

Set a trap so the logout utility in the directory referred to by the HOME environment variable
executes when the shell terminates:

trap ’$HOME/logout’ EXIT

or:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2369

74894

74895

74896

74897

74898

74899

74900

74901

74902

74903

74904

74905

74906

74907

74908

74909

74910

74911

74912

74913

74914

74915

74916

74917

74918

74919

74920

74921

74922

74923

74924

74925

74926

74927

74928

74929

74930

74931

74932

74933

trap Shell Command Language

trap ’$HOME/logout’ 0

Unset traps on INT, QUIT, TERM, and EXIT:

trap − INT QUIT TERM EXIT

RATIONALE
Implementations may permit lowercase signal names as an extension. Implementations may
also accept the names with the SIG prefix; no known historical shell does so. The trap and kill
utilities in this volume of POSIX.1-2008 are now consistent in their omission of the SIG prefix for
signal names. Some kill implementations do not allow the prefix, and kill −l lists the signals
without prefixes.

Trapping SIGKILL or SIGSTOP is syntactically accepted by some historical implementations, but
it has no effect. Portable POSIX applications cannot attempt to trap these signals.

The output format is not historical practice. Since the output of historical trap commands is not
portable (because numeric signal values are not portable) and had to change to become so, an
opportunity was taken to format the output in a way that a shell script could use to save and
then later reuse a trap if it wanted.

The KornShell uses an ERR trap that is triggered whenever set −e would cause an exit. This is
allowable as an extension, but was not mandated, as other shells have not used it.

The text about the environment for the EXIT trap invalidates the behavior of some historical
versions of interactive shells which, for example, close the standard input before executing a
trap on 0. For example, in some historical interactive shell sessions the following trap on 0
would always print "− −":

trap ’read foo; echo "−$foo−"’ 0

The command:

trap ’$cmd’ 0

causes the contents of the shell variable cmd to be executed as a command when the shell exits.
Using double-quotes instead of single-quotes might have unexpected behavior, since in theory
the value of cmd might be a decimal integer which would be treated as a condition, not an
action; or cmd might begin with ’−’. Also, using double-quotes will cause the value of cmd to be
expanded twice, once when trap is executed, and once when the condition arises.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14 (on page 2334)

XBD Section 12.2 (on page 215), <signal.h>

CHANGE HISTORY

Issue 6
XSI-conforming implementations provide the mapping of signal names to numbers given above
(previously this had been marked obsolescent). Other implementations need not provide this
optional mapping.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

2370 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

74934

74935

74936

74937

74938

74939

74940

74941

74942

74943

74944

74945

74946

74947

74948

74949

74950

74951

74952

74953

74954

74955

74956

74957

74958

74959

74960

74961

74962

74963

74964

74965

74966

74967

74968

74969

74970

74971

74972

74973

74974

74975

Shell Command Language trap

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Austin Group Interpretation 1003.1-2001 #116 is applied.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2371

74976

74977

74978

unset Shell Command Language

NAME
unset — unset values and attributes of variables and functions

SYNOPSIS
unset [−fv] name...

DESCRIPTION
Each variable or function specified by name shall be unset.

If −v is specified, name refers to a variable name and the shell shall unset it and remove it from
the environment. Read-only variables cannot be unset.

If −f is specified, name refers to a function and the shell shall unset the function definition.

If neither −f nor −v is specified, name refers to a variable; if a variable by that name does not
exist, it is unspecified whether a function by that name, if any, shall be unset.

Unsetting a variable or function that was not previously set shall not be considered an error and
does not cause the shell to abort.

The unset special built-in shall support XBD Section 12.2 (on page 215).

Note that:

VARIABLE=

is not equivalent to an unset of VARIABLE; in the example, VARIABLE is set to "". Also, the
variables that can be unset should not be misinterpreted to include the special parameters (see
Section 2.5.2, on page 2302).

OPTIONS
See the DESCRIPTION.

OPERANDS
See the DESCRIPTION.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

2372 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

74979

74980

74981

74982

74983

74984

74985

74986

74987

74988

74989

74990

74991

74992

74993

74994

74995

74996

74997

74998

74999

75000

75001

75002

75003

75004

75005

75006

75007

75008

75009

75010

75011

75012

75013

75014

75015

75016

75017

Shell Command Language unset

EXIT STATUS

0 All name operands were successfully unset.

>0 At least one name could not be unset.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
Unset VISUAL variable:

unset −v VISUAL

Unset the functions foo and bar:

unset −f foo bar

RATIONALE
Consideration was given to omitting the −f option in favor of an unfunction utility, but the
standard developers decided to retain historical practice.

The −v option was introduced because System V historically used one name space for both
variables and functions. When unset is used without options, System V historically unset either a
function or a variable, and there was no confusion about which one was intended. A portable
POSIX application can use unset without an option to unset a variable, but not a function; the −f
option must be used.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14 (on page 2334)

XBD Section 12.2 (on page 215)

CHANGE HISTORY

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/5 is applied so that the reference page
sections use terms as described in the Utility Description Defaults (Section 1.4). No change in
behavior is intended.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2373

75018

75019

75020

75021

75022

75023

75024

75025

75026

75027

75028

75029

75030

75031

75032

75033

75034

75035

75036

75037

75038

75039

75040

75041

75042

75043

75044

75045

75046

75047

75048

75049

Shell Command Language

2374 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

Chapter 3

Batch Environment Services

OB BE This chapter describes the services and utilities that shall be implemented on all systems that
claim conformance to the Batch Environment Services and Utilities option. The functionality
described in this section shall be provided on implementations that support the Batch
Environment Services and Utilities option (and the rest of this section is not further shaded for
this option).

Note that the Batch Environment Services and Utilities option is marked obsolescent in Issue 7.

3.1 General Concepts

3.1.1 Batch Client-Server Interaction

Batch jobs are created and managed by batch servers. A batch client interacts with a batch server
to access batch services on behalf of the user. In order to use batch services, a user must have
access to a batch client.

A batch server is a computational entity, such as a daemon process, that provides batch services.
Batch servers route, queue, modify, and execute batch jobs on behalf of batch clients.

The batch utilities described in this volume of POSIX.1-2008 (and listed in Table 3-1) are clients
of batch services; they allow users to perform actions on the job such as creating, modifying, and
deleting batch jobs from a shell command line. Although these batch utilities may be said to
accomplish certain services, they actually obtain services on behalf of a user by means of
requests to batch servers.

Table 3-1 Batch Utilities

qalter
qdel
qhold

qmove
qmsg
qrerun

qrls
qselect
qsig

qstat
qsub

Client-server interaction takes place by means of the batch requests defined in this chapter.
Because direct access to batch jobs and queues is limited to batch servers, clients and servers of
different implementations can interoperate, since dependencies on private structures for batch
jobs and queues are limited to batch servers. Also, batch servers may be clients of other batch
servers.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2375

75050

75051

75052

75053

75054

75055

75056

75057

75058

75059

75060

75061

75062

75063

75064

75065

75066

75067

75068

75069

75070

75071

75072

75073

75074

75075

75076

75077

75078

General Concepts Batch Environment Services

3.1.2 Batch Queues

Two types of batch queue are described: routing queues and execution queues. When a batch job
is placed in a routing queue, it is a candidate for routing. A batch job is removed from routing
queues under the following conditions:

• The batch job has been routed to another queue.

• The batch job has been deleted from the batch queue.

• The batch job has been aborted.

When a batch job is placed in an execution queue, it is a candidate for execution.

A batch job is removed from an execution queue under the following conditions:

• The batch job has been executed and exited.

• The batch job has been aborted.

• The batch job has been deleted from the batch queue.

• The batch job has been moved to another queue.

Access to a batch queue is limited to the batch server that manages the batch queue. Clients
never access a batch queue or a batch job directly, either to read or write information; all client
access to batch queues or jobs takes place through batch servers.

3.1.3 Batch Job Creation

When a batch server creates a batch job on behalf of a client, it shall assign a batch job identifier
to the job. A batch job identifier consists of both a sequence number that is unique among the
sequence numbers issued by that server and the name of the server. Since the batch server name
is unique within a name space, the job identifier is likewise unique within the name space.

The batch server that creates a batch job shall return the batch server-assigned job identifier to
the client that requested the job creation. If the batch server routes or moves the job to another
server, it sends the job identifier with the job. Once assigned, the job identifier of a batch job
shall never change.

3.1.4 Batch Job Tracking

Since a batch job may be moved after creation, the batch server name component of the job
identifier need not indicate the location of the job. An implementation may provide a batch job
tracking mechanism, in which case the user generally does not need to know the location of the
job. However, an implementation need not provide a batch job tracking mechanism, in which
case the user must find routed jobs by probing the possible destinations.

2376 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

75079

75080

75081

75082

75083

75084

75085

75086

75087

75088

75089

75090

75091

75092

75093

75094

75095

75096

75097

75098

75099

75100

75101

75102

75103

75104

75105

75106

75107

75108

75109

Batch Environment Services General Concepts

3.1.5 Batch Job Routing

To route a batch job, a batch server either moves the job to some other queue that is managed by
the batch server, or requests that some other batch server accept the job.

Each routing queue has one or more queues to which it can route batch jobs. The batch server
administrator creates routing queues.

A batch server may route a batch job from a routing queue to another routing queue. Batch
servers shall prevent or otherwise handle cases of circular routing paths. As a deferred service, a
batch server routes jobs from the routing queues that it manages. The algorithm by which a
batch server selects a batch queue to which to route a batch job is implementation-defined.

A batch job need not be eligible for routing to all the batch queues fed by the routing queue from
which it is routed. A batch server that has been asked to accept the job may reject the request if
the job requires resources that are unavailable to that batch server, or if the client is not
authorized to access the batch server.

Batch servers may route high-priority jobs before low-priority jobs, but, on other than
overloaded systems, the effect may be imperceptible to the user. If all the batch servers fed by a
routing queue reject requests to accept the job for reasons that are permanent, the batch server
that manages the job shall abort the job. If all or some rejections are temporary, the batch server
should try to route the job again at some later point.

The reasons for rejecting a batch job are implementation-defined.

The reasons for which the routing should be retried later and the reasons for which the job
should be aborted are also implementation-defined.

3.1.6 Batch Job Execution

To execute a batch job is to create a session leader (a process) that runs the shell program
indicated by the Shell_Path attribute of the job. The script shall be passed to the program as its
standard input. An implementation may pass the script to the program by other
implementation-defined means. At the time a batch job begins execution, it is defined to enter
the RUNNING state. The primary program that is executed by a batch job is typically, though
not necessarily, a shell program.

A batch server shall execute eligible jobs as a deferred service—no client request is necessary
once the batch job is created and eligible. However, the attributes of a batch job, such as the job
hold type, may render the job ineligible. A batch server shall scan the execution queues that it
manages for jobs that are eligible for execution. The algorithm by which the batch server selects
eligible jobs for execution is implementation-defined.

As part of creating the process for the batch job, the batch server shall open the standard output
and standard error streams of the session.

The attributes of a batch job may indicate that the batch server executing the job shall send mail
to a list of users at the time it begins execution of the job.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2377

75110

75111

75112

75113

75114

75115

75116

75117

75118

75119

75120

75121

75122

75123

75124

75125

75126

75127

75128

75129

75130

75131

75132

75133

75134

75135

75136

75137

75138

75139

75140

75141

75142

75143

75144

75145

75146

General Concepts Batch Environment Services

3.1.7 Batch Job Exit

When the session leader of an executing job terminates, the job exits. As part of exiting a batch
job, the batch server that manages the job shall remove the job from the batch queue in which it
resides. The server shall transfer output files of the job to a location described by the attributes of
the job.

The attributes of a batch job may indicate that the batch server managing the job shall send mail
to a list of users at the time the job exits.

3.1.8 Batch Job Abort

A batch server shall abort jobs for which a required deferred service cannot be performed. The
attributes of a batch job may indicate that the batch server that aborts the job shall send mail to a
list of users at the time it aborts the job.

3.1.9 Batch Authorization

Clients, such as the batch environment utilities (marked BE), access batch services by means of
requests to one or more batch servers. To acquire the services of any given batch server, the user
identifier under which the client runs must be authorized to use that batch server.

The user with an associated user name that creates a batch job shall own the job and can perform
actions such as read, modify, delete, and move.

A user identifier of the same value at a different host need not be the same user. For example,
user name smith at host alpha may or may not represent the same person as user name smith at
host beta. Likewise, the same person may have access to different user names on different hosts.

An implementation may optionally provide an authorization mechanism that permits one user
name to access jobs under another user name.

A process on a client host may be authorized to run processes under multiple user names at a
batch server host. Where appropriate, the utilities defined in this volume of POSIX.1-2008
provide a means for a user to choose from among such user names when creating or modifying
a batch job.

3.1.10 Batch Administration

The processing of a batch job by a batch server is affected by the attributes of the job. The
processing of a batch job may also be affected by the attributes of the batch queue in which the
job resides and by the status of the batch server that manages the job. See also XBD Chapter 3
(on page 33) for batch definitions.

2378 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

75147

75148

75149

75150

75151

75152

75153

75154

75155

75156

75157

75158

75159

75160

75161

75162

75163

75164

75165

75166

75167

75168

75169

75170

75171

75172

75173

75174

75175

75176

75177

Batch Environment Services General Concepts

3.1.11 Batch Notification

Whereas batch servers are persistent entities, clients are often transient. For example, the qsub
utility creates a batch job and exits. For this reason, batch servers notify users of batch job events
by sending mail to the user that owns the job, or to other designated users.

3.2 Batch Services

The presence of Batch Environment Services and Utilities option services is indicated by the
configuration variable POSIX2_PBS. A conforming batch server provides services as defined in
this section.

A batch server shall provide batch services in two ways:

1. The batch server provides a service at the request of a client.

2. The batch server provides a deferred service as a result of a change in conditions
monitored by the batch server.

If a batch server cannot complete a request, it shall reject the request. If a batch server cannot
complete a deferred service for a batch job, the batch server shall abort the batch job. Table 3-2 is
a summary of environment variables that shall be supported by an implementation of the batch
server and utilities.

Table 3-2 Environment Variable Summary

Variable Description

PBS_DPREFIX Defines the directive prefix (see qsub)
PBS_ENVIRONMENT Batch Job is batch or interactive (see Section 3.2.2.1)
PBS_JOBID The job_identifier attribute of job (see Section 3.2.3.8)
PBS_JOBNAME The job_name attribute of job (see Section 3.2.3.8)
PBS_O_HOME Defines the HOME of the batch client (see qsub)
PBS_O_HOST Defines the host name of the batch client (see qsub)
PBS_O_LANG Defines the LANG of the batch client (see qsub)
PBS_O_LOGNAME Defines the LOGNAME of the batch client (see qsub)
PBS_O_MAIL Defines the MAIL of the batch client (see qsub)
PBS_O_PATH Defines the PA TH of the batch client (see qsub)
PBS_O_QUEUE Defines the submit queue of the batch client (see qsub)
PBS_O_SHELL Defines the SHELL of the batch client (see qsub)
PBS_O_TZ Defines the TZ of the batch client (see qsub)
PBS_O_WORKDIR Defines the working directory of the batch client (see qsub)
PBS_QUEUE Defines the initial execution queue (see Section 3.2.2.1)

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2379

75178

75179

75180

75181

75182

75183

75184

75185

75186

75187

75188

75189

75190

75191

75192

75193

75194

75195

75196

75197

75198

75199

75200

75201

75202

75203

75204

75205

75206

75207

75208

75209

75210

Batch Services Batch Environment Services

3.2.1 Batch Job States

A batch job shall always be in one of the following states: QUEUED, RUNNING, HELD,
WAITING, EXITING, or TRANSITING. The state of a batch job determines the types of requests
that the batch server that manages the batch job can accept for the batch job. A batch server shall
change the state of a batch job either in response to service requests from clients or as a result of
deferred services, such as job execution or job routing.

A batch job that is in the QUEUED state resides in a queue but is still pending either execution
or routing, depending on the queue type.

A batch server that queues a batch job in a routing queue shall put the batch job in the QUEUED
state. A batch server that puts a batch job in an execution queue, but has not yet executed the
batch job, shall put the batch job in the QUEUED state. A batch job that resides in an execution
queue and is executing is defined to be in the RUNNING state. While a batch job is in the
RUNNING state, a session leader is associated with the batch job.

A batch job that resides in an execution queue, but is ineligible to run because of a hold attribute,
is defined to be in the HELD state.

A batch job that is not held, but must wait until a future date and time before executing, is
defined to be in the WAITING state.

When the session leader associated with a running job exits, the batch job shall be placed in the
EXITING state.

A batch job for which the session leader has terminated is defined to be in the EXITING state,
and the batch server that manages such a batch job cannot accept job modification requests that
affect the batch job. While a batch job is in the EXITING state, the batch server that manages the
batch job is staging output files and notifying clients of job completion. Once a batch job has
exited, it no longer exists as an object managed by a batch server.

A batch job that is being moved from a routing queue to another queue is defined to be in the
TRANSITING state.

When a batch job in a routing queue has been selected to be moved to a new destination, then
the batch job shall be in either the QUEUED state or the TRANSITING state, depending on the
batch server implementation.

Batch jobs with either an Execution_Time attribute value set in the future or a Hold_Types attribute
of value not equal to NO_HOLD, or both, may be routed or held in the routing queue. The
treatment of jobs with the Execution_Time or Hold_Types attributes in a routing queue is
implementation-defined.

When a batch job in a routing queue has not been selected to be moved to a new destination and
the batch job has a Hold_Types attribute value of other than NO_HOLD, then the job should be in
the HELD state.

Note: The effect of a hold upon a batch job in a routing queue is implementation-defined. The
implementation should use the state that matches whether the batch job can route with a hold
or not.

When a batch job in a routing queue has not been selected to be moved to a new destination and
the batch job has:

• A Hold_Types attribute value of NO_HOLD

• An Execution_Time attribute in the past

then the batch job shall be in the QUEUED state.

2380 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

75211

75212

75213

75214

75215

75216

75217

75218

75219

75220

75221

75222

75223

75224

75225

75226

75227

75228

75229

75230

75231

75232

75233

75234

75235

75236

75237

75238

75239

75240

75241

75242

75243

75244

75245

75246

75247

75248

75249

75250

75251

75252

75253

75254

Batch Environment Services Batch Services

When a batch job in a routing queue has not been selected to be moved to a new destination and
the batch job has:

• A Hold_Types attribute value of NO_HOLD

• An Execution_Time attribute in the future

then the batch job may be in the WAITING state.

Note: The effect of a future execution time upon a batch job in a routing queue is implementation-
defined. The implementation should use the state that matches whether the batch job can route
with a hold or not.

Table 3-3 describes the next state of a batch job, given the current state of the batch job and the
type of request. Table 3-4 (on page 2383) describes the response of a batch server to a request,
given the current state of the batch job and the type of request.

3.2.2 Deferred Batch Services

This section describes the deferred services performed by batch servers: job execution, job
routing, job exit, job abort, and the rerunning of jobs after a restart.

3.2.2.1 Batch Job Execution

To execute a batch job is to create a session leader (a process) that runs the shell program
indicated by the Shell_Path_List attribute of the batch job. The script is passed to the program as
its standard input. An implementation may pass the script to the program by other
implementation-defined means. At the time a batch job begins execution, it is defined to enter
the RUNNING state.

Table 3-3 Next State Table

Current State

Request Type X Q R H W E T

Queue Batch Job Request Q e e e e e e
Modify Batch Job Request e Q R H W e T
Delete Batch Job Request e X E X X E X
Batch Job Message Request e Q R H W E T
Rerun Batch Job Request e e Q e e e e
Signal Batch Job Request e e R H W e e
Batch Job Status Request e Q R H W E T
Batch Queue Status Request X Q R H W E T
Server Status Request X Q R H W E T
Select Batch Jobs Request X Q R H W E T
Move Batch Job Request e Q R H W e T
Hold Batch Job Request e H R/H H H e T
Release Batch Job Request e Q R Q/W/H W e T
Server Shutdown Request X Q Q H W E T
Locate Batch Job Request e Q R H W E T

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2381

75255

75256

75257

75258

75259

75260

75261

75262

75263

75264

75265

75266

75267

75268

75269

75270

75271

75272

75273

75274

75275

75276

75277

75278

75279

75280

75281

75282

75283

75284

75285

75286

75287

75288

75289

75290

75291

75292

Batch Services Batch Environment Services

Legend

X Nonexistent

Q QUEUED

R RUNNING

H HELD

W WAITING

E EXITING

T TRANSITING

e Error

A batch server that has an execution queue containing jobs is said to own the queue and manage
the batch jobs in that queue. A batch server that has been started shall execute the batch jobs in
the execution queues owned by the batch server. The batch server shall schedule for execution
those jobs in the execution queues that are in the QUEUED state. The algorithm for scheduling
jobs is implementation-defined.

A batch server that executes a batch job shall create, in the environment of the session leader of
the batch job, an environment variable named PBS_ENVIRONMENT, the value of which is the
string PBS_BATCH encoded in the portable character set.

A batch server that executes a batch job shall create, in the environment of the session leader of
the batch job, an environment variable named PBS_QUEUE, the value of which is the name of
the execution queue of the batch job encoded in the portable character set.

To rerun a batch job is to requeue a batch job that is currently executing and then kill the session
leader of the executing job by sending a SIGKILL prior to completion; see Section 3.2.3.11 (on
page 2395). A batch server that reruns a batch job shall append the standard output and
standard error files of the batch job to the corresponding files of the previous execution, if they
exist, with appropriate annotation. If either file does not exist, that file shall be created as in
normal execution.

2382 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

75293

75294

75295

75296

75297

75298

75299

75300

75301

75302

75303

75304

75305

75306

75307

75308

75309

75310

75311

75312

75313

75314

75315

75316

75317

75318

Batch Environment Services Batch Services

Table 3-4 Results/Output Table

Current State

Request Type X Q R H W E T

Queue Batch Job Request O e e e e e e
Modify Batch Job Request e O e O O e e
Delete Batch Job Request e O O O O e O
Batch Job Message Request e e O e e e e
Rerun Batch Job Request e e O e e e e
Signal Batch Job Request e e O e e e e
Batch Job Status Request e O O O O O O
Batch Queue Status Request O O O O O O O
Server Status Request O O O O O O O
Select Batch Job Request e O O O O O O
Move Batch Job Request e O O O O e e
Hold Batch Job Request e O O O O e e
Release Batch Job Request e O e O O e e
Server Shutdown Request O O e O O e e
Locate Batch Job Request e O O O O O O

Legend

O OK

e Error message

The execution of a batch job by a batch server shall be controlled by job, queue, and server
attributes, as defined in this section.

Account_Name Attribute

Batch accounting is an optional feature of batch servers. If a batch server implements
accounting, the statements in this section apply and the configuration variable
POSIX2_PBS_ACCOUNTING shall be set to 1.

A batch server that executes a batch job shall charge the account named in the Account_Name
attribute of the batch job for resources consumed by the batch job.

If the Account_Name attribute of the batch job is absent from the batch job attribute list or is
altered while the batch job is in execution, the batch server action is implementation-defined.

Checkpoint Attribute

Batch checkpointing is an optional feature of batch servers. If a batch server implements
checkpointing, the statements in this section apply and the configuration variable
POSIX2_PBS_CHECKPOINT shall be set to 1.

There are two attributes associated with the checkpointing feature: Checkpoint and
Minimum_Cpu_Interval. Checkpoint is a batch job attribute, while Minimum_Cpu_Interval is a
queue attribute. An implementation that does not support checkpointing shall support the
Checkpoint job attribute to the extent that the batch server shall maintain and pass this attribute
to other servers.

The behavior of a batch server that executes a batch job for which the value of the Checkpoint
attribute is CHECKPOINT_UNSPECIFIED is implementation-defined. A batch server that
executes a batch job for which the value of the Checkpoint attribute is NO_CHECKPOINT shall

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2383

75319

75320

75321

75322

75323

75324

75325

75326

75327

75328

75329

75330

75331

75332

75333

75334

75335

75336

75337

75338

75339

75340

75341

75342

75343

75344

75345

75346

75347

75348

75349

75350

75351

75352

75353

75354

75355

75356

75357

75358

75359

75360

75361

Batch Services Batch Environment Services

not checkpoint the batch job.

A batch server that executes a batch job for which the value of the Checkpoint attribute is
CHECKPOINT_AT_SHUTDOWN shall checkpoint the batch job only when the batch server
accepts a request to shut down during the time when the batch job is in the RUNNING state.

A batch server that executes a batch job for which the value of the Checkpoint attribute is
CHECKPOINT_AT_MIN_CPU_INTERVAL shall checkpoint the batch job at the interval
specified by the Minimum_Cpu_Interval attribute of the queue for which the batch job has been
selected. The Minimum_Cpu_Interval attribute shall be specified in units of CPU minutes.

A batch server that executes a batch job for which the value of the Checkpoint attribute is an
unsigned integer shall checkpoint the batch job at an interval that is the value of either the
Checkpoint attribute, or the Minimum_Cpu_Interval attribute of the queue for which the batch job
has been selected, whichever is greater. Both intervals shall be in units of CPU minutes. When
the Minimum_Cpu_Interval attribute is greater than the Checkpoint attribute, the batch job shall
write a warning message to the standard error stream of the batch job.

Error_Path Attribute

The Error_Path attribute of a running job cannot be changed by a Modify Batch Job Request. When
the Join_Path attribute of the batch job is set to the value FALSE and the Keep_Files attribute of
the batch job does not contain the value KEEP_STD_ERROR, a batch server that executes a batch
job shall perform one of the following actions:

• Set the standard error stream of the session leader of the batch job to the path described by
the value of the Error_Path attribute of the batch job.

• Buffer the standard error of the session leader of the batch job until completion of the batch
job, and when the batch job exits return the contents to the destination described by the
value of the Error_Path attribute of the batch job.

Applications shall not rely on having access to the standard error of a batch job prior to the
completion of the batch job.

When the Error_Path attribute does not specify a host name, then the batch server shall retain the
standard error of the batch job on the host of execution.

When the Error_Path attribute does specify a host name and the Keep_Files attribute does not
contain the value KEEP_STD_ERROR, then the final destination of the standard error of the
batch job shall be on the host whose host name is specified.

If the path indicated by the value of the Error_Path attribute of the batch job is a relative path, the
batch server shall expand the path relative to the home directory of the user on the host to which
the file is being returned.

When the batch server buffers the standard error of the batch job and the file cannot be opened
for write upon completion of the batch job, then the server shall place the standard error in an
implementation-defined location and notify the user of the location via mail. It shall be possible
for the user to process this mail using the mailx utility.

If a batch server that does not buffer the standard error cannot open the standard error path of
the batch job for write access, then the batch server shall abort the batch job.

2384 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

75362

75363

75364

75365

75366

75367

75368

75369

75370

75371

75372

75373

75374

75375

75376

75377

75378

75379

75380

75381

75382

75383

75384

75385

75386

75387

75388

75389

75390

75391

75392

75393

75394

75395

75396

75397

75398

75399

75400

75401

Batch Environment Services Batch Services

Execution_Time Attribute

A batch server shall not execute a batch job before the time represented by the value of the
Execution_Time attribute of the batch job. The Execution_Time attribute is defined in seconds since
the Epoch.

Hold_Types Attribute

A batch server shall support the following hold types:

s Can be set or released by a user with at least a privilege level of batch administrator
(SYSTEM).

o Can be set or released by a user with at least a privilege level of batch operator
(OPERATOR).

u Can be set or released by the user with at least a privilege level of user, where the user is
defined in the Job_Owner attribute (USER).

n Indicates that none of the Hold_Types attributes are set (NO_HOLD).

An implementation may define other hold types. Any additional hold types, how they are
specified, their internal representation, their behavior, and how they affect the behavior of other
utilities are implementation-defined.

The value of the Hold_Types attribute shall be the union of the valid hold types (’s’, ’o’, ’u’,
and any implementation-defined hold types), or ’n’.

A batch server shall not execute a batch job if the Hold_Types attribute of the batch job has a
value other than NO_HOLD. If the Hold_Types attribute of the batch job has a value other than
NO_HOLD, the batch job shall be in the HELD state.

Job_Owner Attribute

The Job_Owner attribute consists of a pair of user name and host name values of the form:

username@hostname

A batch server that accepts a Queue Batch Job Request shall set the Job_Owner attribute to a string
that is the username@hostname of the user who submitted the job.

Join_Path Attribute

A batch server that executes a batch job for which the value of the Join_Path attribute is TRUE
shall ignore the value of the Error_Path attribute and merge the standard error of the batch job
with the standard output of the batch job.

Keep_Files Attribute

A batch server that executes a batch job for which the value of the Keep_Files attribute includes
the value KEEP_STD_OUTPUT shall retain the standard output of the batch job on the host
where execution occurs. The standard output shall be retained in the home directory of the user
under whose user ID the batch job is executed and the filename shall be the default filename for
the standard output as defined under the −o option of the qsub utility. The Output_Path attribute
is not modified.

A batch server that executes a batch job for which the value of the Keep_Files attribute includes
the value KEEP_STD_ERROR shall retain the standard error of the batch job on the host where
execution occurs. The standard error shall be retained in the home directory of the user under
whose user ID the batch job is executed and the filename shall be the default filename for

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2385

75402

75403

75404

75405

75406

75407

75408

75409

75410

75411

75412

75413

75414

75415

75416

75417

75418

75419

75420

75421

75422

75423

75424

75425

75426

75427

75428

75429

75430

75431

75432

75433

75434

75435

75436

75437

75438

75439

75440

75441

75442

Batch Services Batch Environment Services

standard error as defined under the −e option of the qsub utility. The Error_Path attribute is not
modified.

A batch server that executes a batch job for which the value of the Keep_Files attribute includes
values other than KEEP_STD_OUTPUT and KEEP_STD_ERROR shall retain these other files on
the host where execution occurs. These files (with implementation-defined names) shall be
retained in the home directory of the user under whose user identifier the batch job is executed.

Mail_Points and Mail_Users Attributes

A batch server that executes a batch job for which one of the values of the Mail_Points attribute is
the value MAIL_AT_BEGINNING shall send a mail message to each user account listed in the
Mail_Users attribute of the batch job.

The mail message shall contain at least the batch job identifier, queue, and server at which the
batch job currently resides, and the Job_Owner attribute.

Output_Path Attribute

The Output_Path attribute of a running job cannot be changed by a Modify Batch Job Request.
When the Keep_Files attribute of the batch job does not contain the value KEEP_STD_OUTPUT, a
batch server that executes a batch job shall either:

• Set the standard output stream of the session leader of the batch job to the destination
described by the value of the Output_Path attribute of the batch job.

or:

• Buffer the standard output of the session leader of the batch job until completion of the
batch job, and when the batch job exits return the contents to the destination described by
the value of the Output_Path attribute of the batch job.

When the Output_Path attribute does not specify a host name, then the batch server shall retain
the standard output of the batch job on the host of execution.

When the Keep_Files attribute does not contain the value KEEP_STD_OUTPUT and the
Output_Path attribute does specify a host name, then the final destination of the standard output
of the batch job shall be on the host specified.

If the path specified in the Output_Path attribute of the batch job is a relative path, the batch
server shall expand the path relative to the home directory of the user on the host to which the
file is being returned.

Whether or not the batch server buffers the standard output of the batch job until completion of
the batch job is implementation-defined. Applications shall not rely on having access to the
standard output of a batch job prior to the completion of the batch job.

When the batch server does buffer the standard output of the batch job and the file cannot be
opened for write upon completion of the batch job, then the batch server shall place the standard
output in an implementation-defined location and notify the user of the location via mail. It shall
be possible for the user to process this mail using the mailx utility.

If a batch server that does not buffer the standard output cannot open the standard output path
of the batch job for write access, then the batch server shall abort the batch job.

2386 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

75443

75444

75445

75446

75447

75448

75449

75450

75451

75452

75453

75454

75455

75456

75457

75458

75459

75460

75461

75462

75463

75464

75465

75466

75467

75468

75469

75470

75471

75472

75473

75474

75475

75476

75477

75478

75479

75480

75481

Batch Environment Services Batch Services

Priority Attribute

A batch server implementation may choose to preferentially execute a batch job based on the
Priority attribute. The interpretation of the batch job Priority attribute by a batch server is
implementation-defined. If an implementation uses the Priority attribute, it shall interpret larger
values of the Priority attribute to mean the batch job shall be preferentially selected for execution.

Rerunable Attribute

A batch job that began execution but did not complete, because the batch server either shut
down or terminated abnormally, shall be requeued if the Rerunable attribute of the batch job has
the value TRUE.

If a batch job, which was requeued after beginning execution but prior to completion, has a valid
checkpoint file and the batch server supports checkpointing, then the batch job shall be restarted
from the last valid checkpoint.

If the batch job cannot be restarted from a checkpoint, then when a batch job has a Rerunable
attribute value of TRUE and was requeued after beginning execution but prior to completion,
the batch server shall place the batch job into execution at the beginning of the job.

When a batch job has a Rerunable attribute value other than TRUE and was requeued after
beginning execution but prior to completion, and the batch job cannot be restarted from a
checkpoint, then the batch server shall abort the batch job.

Resource_List Attribute

A batch server that executes a batch job shall establish the resource limits of the session leader of
the batch job according to the values of the Resource_List attribute of the batch job. Resource
limits shall be enforced by an implementation-defined method.

Shell_Path_List Attribute

The Shell_Path_List job attribute consists of a list of pairs of pathname and host name values. The
host name component can be omitted, in which case the pathname serves as the default
pathname when a batch server cannot find the name of the host on which it is running in the list.

A batch server that executes a batch job shall select, from the value of the Shell_Path_List
attribute of the batch job, a pathname where the shell to execute the batch job shall be found.
The batch server shall select the pathname, in order of preference, according to the following
methods:

• Select the pathname that contains the name of the host on which the batch server is
running.

• Select the pathname for which the host name has been omitted.

• Select the pathname for the login shell of the user under which the batch job is to execute.

If the shell path value selected is an invalid pathname, the batch server shall abort the batch job.

If the value of the selected pathname from the Shell_Path_List attribute of the batch job
represents a partial path, the batch server shall expand the path relative to a path that is
implementation-defined.

The batch server that executes the batch job shall execute the program that was selected from the
Shell_Path_List attribute of the batch job. The batch server shall pass the path to the script of the
batch job as the first argument to the shell program.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2387

75482

75483

75484

75485

75486

75487

75488

75489

75490

75491

75492

75493

75494

75495

75496

75497

75498

75499

75500

75501

75502

75503

75504

75505

75506

75507

75508

75509

75510

75511

75512

75513

75514

75515

75516

75517

75518

75519

75520

75521

75522

Batch Services Batch Environment Services

User_List Attribute

The User_List job attribute consists of a list of pairs of user name and host name values. The host
name component can be omitted, in which case the user name serves as a default when a batch
server cannot find the name of the host on which it is running in the list.

A batch server that executes a batch job shall select, from the value of the User_List attribute of
the batch job, a user name under which to create the session leader. The server shall select the
user name, in order of preference, according to the following methods:

• Select the user name of a value that contains the name of the host on which the batch
server executes.

• Select the user name of a value for which the host name has been omitted.

• Select the user name from the Job_Owner attribute of the batch job.

Variable_List Attribute

A batch server that executes a batch job shall create, in the environment of the session leader of
the batch job, each environment variable listed in the Variable_List attribute of the batch job, and
set the value of each such environment variable to that of the corresponding variable in the
variable list.

3.2.2.2 Batch Job Routing

To route a batch job is to select a queue from a list and move the batch job to that queue.

A batch server that has routing queues, which have been started, shall route the jobs in the
routing queues owned by the batch server. A batch server may delay the routing of a batch job.
The algorithm for selecting a batch job and the queue to which it will be routed is
implementation-defined.

When a routing queue has multiple possible destinations specified, then the precedence of the
destinations is implementation-defined.

A batch server that routes a batch job to a queue at another server shall move the batch job into
the target queue with a Queue Batch Job Request.

If the target server rejects the Queue Batch Job Request, the routing server shall retry routing the
batch job or abort the batch job. A batch server that retries failed routings shall provide a means
for the batch administrator to specify the number of retries and the minimum period of time
between retries. The means by which an administrator specifies the number of retries and the
delay between retries is implementation-defined. When the number of retries specified by the
batch administrator has been exhausted, the batch server shall abort the batch job and perform
the functions of Batch Job Exit; see Section 3.2.2.3.

3.2.2.3 Batch Job Exit

For each job in the EXITING state, the batch server that exited the batch job shall perform the
following deferred services in the order specified:

1. If buffering standard error, move that file into the location specified by the Error_Path
attribute of the batch job.

2. If buffering standard output, move that file into the location specified by the Output_Path
attribute of the batch job.

2388 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

75523

75524

75525

75526

75527

75528

75529

75530

75531

75532

75533

75534

75535

75536

75537

75538

75539

75540

75541

75542

75543

75544

75545

75546

75547

75548

75549

75550

75551

75552

75553

75554

75555

75556

75557

75558

75559

75560

75561

75562

Batch Environment Services Batch Services

3. If the Mail_Points attribute of the batch job includes MAIL_AT_EXIT, send mail to the
users listed in the Mail_Users attribute of the batch job. The mail message shall contain at
least the batch job identifier, queue, and server at which the batch job currently resides,
and the Job_Owner attribute.

4. Remove the batch job from the queue.

If a batch server that buffers the standard error output cannot return the standard error file to
the standard error path at the time the batch job exits, the batch server shall do one of the
following:

• Mail the standard error file to the batch job owner.

• Save the standard error file and mail the location and name of the file where the standard
error is stored to the batch job owner.

• Save the standard error file and notify the user by other implementation-defined means.

If a batch server that buffers the standard output cannot return the standard output file to the
standard output path at the time the batch job exits, the batch server shall do one of the
following:

• Mail the standard output file to the batch job owner.

• Save the standard output file and mail the location and name of the file where the standard
output is stored to the batch job owner.

• Save the standard output file and notify the user by other implementation-defined means.

At the conclusion of job exit processing, the batch job is no longer managed by a batch server.

3.2.2.4 Batch Server Restart

A batch server that has been either shutdown or terminated abnormally, and has returned to
operation, is said to have ‘‘restarted’’.

Upon restarting, a batch server shall requeue those jobs managed by the batch server that were
in the RUNNING state at the time the batch server shut down and for which the Rerunable
attribute of the batch job has the value TRUE.

Queues are defined to be non-volatile. A batch server shall store the content of queues that it
controls in such a way that server and system shutdowns do not erase the content of the queues.

3.2.2.5 Batch Job Abort

A batch server that cannot perform a deferred service for a batch job shall abort the batch job.

A batch server that aborts a batch job shall perform the following services:

• Delete the batch job from the queue in which it resides.

• If the Mail_Points attribute of the batch job includes the value MAIL_AT_ABORT, send
mail to the users listed in the value of the Mail_Users attribute of the job. The mail message
shall contain at least the batch job identifier, queue, and server at which the batch job
currently resides, the Job_Owner attribute, and the reason for the abort.

• If the batch job was in the RUNNING state, terminate the session leader of the executing
job by sending the session leader a SIGKILL, place the batch job in the EXITING state, and
perform the actions of Batch Job Exit.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2389

75563

75564

75565

75566

75567

75568

75569

75570

75571

75572

75573

75574

75575

75576

75577

75578

75579

75580

75581

75582

75583

75584

75585

75586

75587

75588

75589

75590

75591

75592

75593

75594

75595

75596

75597

75598

75599

75600

75601

Batch Services Batch Environment Services

3.2.3 Requested Batch Services

This section describes the services provided by batch servers in response to requests from
clients. Table 3-5 summarizes the current set of batch service requests and for each gives its type
(deferred or not) and whether it is an optional function.

Table 3-5 Batch Services Summary

Batch Service Deferred Optional

Batch Job Execution Yes No
Batch Job Routing Yes No
Batch Job Exit Yes No
Batch Server Restart Yes No
Batch Job Abort Yes No
Delete Batch Job Request No No
Hold Batch Job Request No No
Batch Job Message Request No Yes
Batch Job Status Request No No
Locate Batch Job Request No Yes
Modify Batch Job Request No No
Move Batch Job Request No No
Queue Batch Job Request No No
Batch Queue Status Request No No
Release Batch Job Request No No
Rerun Batch Job Request No No
Select Batch Jobs Request No No
Server Shutdown Request No No
Server Status Request No No
Signal Batch Job Request No No
Track Batch Job Request No Yes

If a request is rejected because the batch client is not authorized to perform the action, the batch
server shall return the same status as when the batch job does not exist.

3.2.3.1 Delete Batch Job Request

A batch job is defined to have been deleted when it has been removed from the queue in which
it resides and not instantiated in another queue. A client requests that the server that manages a
batch job delete the batch job. Such a request is called a Delete Batch Job Request.

A batch server shall reject a Delete Batch Job Request if any of the following statements are true:

• The user of the batch client is not authorized to delete the designated job.

• The designated job is not managed by the batch server.

• The designated job is in a state inconsistent with the delete request.

A batch server may reject a Delete Batch Job Request for other implementation-defined reasons.
The method used to determine whether the user of a client is authorized to perform the
requested action is implementation-defined.

A batch server requested to delete a batch job shall delete the batch job if the batch job exists and
is not in the EXITING state.

A batch server that deletes a batch job in the RUNNING state shall send a SIGKILL signal to the

2390 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

75602

75603

75604

75605

75606

75607

75608

75609

75610

75611

75612

75613

75614

75615

75616

75617

75618

75619

75620

75621

75622

75623

75624

75625

75626

75627

75628

75629

75630

75631

75632

75633

75634

75635

75636

75637

75638

75639

75640

75641

75642

75643

75644

Batch Environment Services Batch Services

session leader of the batch job. It is implementation-defined whether additional signals are sent
to the session leader of the job prior to sending the SIGKILL signal.

A batch server that deletes a batch job in the RUNNING state shall place the batch job in the
EXITING state after it has killed the session leader of the batch job and shall perform the actions
of Batch Job Exit.

3.2.3.2 Hold Batch Job Request

A batch client can request that the batch server add one or more holds to a batch job. Such a
request is called a Hold Batch Job Request.

A batch server shall reject a Hold Batch Job Request if any of the following statements are true:

• The batch server does not support one or more of the requested holds to be added to the
batch job.

• The user of the batch client is not authorized to add one or more of the requested holds to
the batch job.

• The batch server does not manage the specified job.

• The designated job is in the EXITING state.

A batch server may reject a Hold Batch Job Request for other implementation-defined reasons. The
method used to determine whether the user of a client is authorized to perform the requested
action is implementation-defined.

A batch server that accepts a Hold Batch Job Request for a batch job in the RUNNING state shall
place a hold on the batch job. The effects, if any, the hold will have on a batch job in the
RUNNING state are implementation-defined.

A batch server that accepts a Hold Batch Job Request shall add each type of hold listed in the Hold
Batch Job Request, that is not already present, to the value of the Hold_Types attribute of the batch
job.

3.2.3.3 Batch Job Message Request

Batch Job Message Request is an optional feature of batch servers. If an implementation supports
Batch Job Message Request, the statements in this section apply and the configuration variable
POSIX2_PBS_MESSAGE shall be set to 1.

A batch client can request that a batch server write a message into certain output files of a batch
job. Such a request is called a Batch Job Message Request.

A batch server shall reject a Batch Job Message Request if any of the following statements are true:

• The batch server does not support sending messages to jobs.

• The user of the batch client is not authorized to post a message to the designated job.

• The designated job does not exist on the batch server.

• The designated job is not in the RUNNING state.

A batch server may reject a Batch Job Message Request for other implementation-defined reasons.
The method used to determine whether the user of a client is authorized to perform the
requested action is implementation-defined.

A batch server that accepts a Batch Job Message Request shall write the message sent by the batch
client into the files indicated by the batch client.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2391

75645

75646

75647

75648

75649

75650

75651

75652

75653

75654

75655

75656

75657

75658

75659

75660

75661

75662

75663

75664

75665

75666

75667

75668

75669

75670

75671

75672

75673

75674

75675

75676

75677

75678

75679

75680

75681

75682

75683

75684

Batch Services Batch Environment Services

3.2.3.4 Batch Job Status Request

A batch client can request that a batch server respond with the status and attributes of a batch
job. Such a request is called a Batch Job Status Request.

A batch server shall reject a Batch Job Status Request if any of the following statements are true:

• The user of the batch client is not authorized to query the status of the designated job.

• The designated job is not managed by the batch server.

A batch server may reject a Batch Job Status Request for other implementation-defined reasons.
The method used to determine whether the user of a client is authorized to perform the
requested action is implementation-defined.

A batch server that accepts a Batch Job Status Request shall return a Batch Job Status Message to the
batch client.

A batch server may return other information in response to a Batch Job Status Request.

3.2.3.5 Locate Batch Job Request

Locate Batch Job Request is an optional feature of batch servers. If an implementation supports
Locate Batch Job Request, the statements in this section apply and the configuration variable
POSIX2_PBS_LOCATE shall be set to 1.

A batch client can ask a batch server to respond with the location of a batch job that was created
by the batch server. Such a request is called a Locate Batch Job Request.

A batch server that accepts a Locate Batch Job Request shall return a Batch Job Location Message to
the batch client.

A batch server may reject a Locate Batch Job Request for a batch job that was not created by that
server.

A batch server may reject a Locate Batch Job Request for a batch job that is no longer managed by
that server; that is, for a batch job that is not in a queue owned by that server.

A batch server may reject a Locate Batch Job Request for other implementation-defined reasons.

3.2.3.6 Modify Batch Job Request

Batch clients modify (alter) the attributes of a batch job by making a request to the server that
manages the batch job. Such a request is called a Modify Batch Job Request.

A batch server shall reject a Modify Batch Job Request if any of the following statements are true:

• The user of the batch client is not authorized to make the requested modification to the
batch job.

• The designated job is not managed by the batch server.

• The requested modification is inconsistent with the state of the batch job.

• An unrecognized resource is requested for a batch job in an execution queue.

A batch server may reject a Modify Batch Job Request for other implementation-defined reasons.
The method used to determine whether the user of a client is authorized to perform the
requested action is implementation-defined.

A batch server that accepts a Modify Batch Job Request shall modify all the specified attributes of
the batch job. A batch server that rejects a Modify Batch Job Request shall modify none of the

2392 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

75685

75686

75687

75688

75689

75690

75691

75692

75693

75694

75695

75696

75697

75698

75699

75700

75701

75702

75703

75704

75705

75706

75707

75708

75709

75710

75711

75712

75713

75714

75715

75716

75717

75718

75719

75720

75721

75722

75723

Batch Environment Services Batch Services

attributes of the batch job.

If the servicing by a batch server of an otherwise valid request would result in no change, then
the batch server shall indicate successful completion of the request.

3.2.3.7 Move Batch Job Request

A batch client can request that a batch server move a batch job to another destination. Such a
request is called a Move Batch Job Request.

A batch server shall reject a Move Batch Job Request if any of the following statements are true:

• The user of the batch client is not authorized to remove the designated job from the queue
in which the batch job resides.

• The user of the batch client is not authorized to move the designated job to the destination.

• The designated job is not managed by the batch server.

• The designated job is in the EXITING state.

• The destination is inaccessible.

A batch server can reject a Move Batch Job Request for other implementation-defined reasons. The
method used to determine whether the user of a client is authorized to perform the requested
action is implementation-defined.

A batch server that accepts a Move Batch Job Request shall perform the following services:

• Queue the designated job at the destination.

• Remove the designated job from the queue in which the batch job resides.

If the destination resides on another batch server, the batch server shall queue the batch job at
the destination by sending a Queue Batch Job Request to the other server. If the Queue Batch Job
Request fails, the batch server shall reject the Move Batch Job Request. If the Queue Batch Job
Request succeeds, the batch server shall remove the batch job from its queue.

The batch server shall not modify any attributes of the batch job.

3.2.3.8 Queue Batch Job Request

A batch queue is controlled by one and only one batch server. A batch server is said to own the
queues that it controls. Batch clients make requests of batch servers to have jobs queued. Such a
request is called a Queue Batch Job Request.

A batch server requested to queue a batch job for which the queue is not specified shall select an
implementation-defined queue for the batch job. Such a queue is called the ‘‘default queue’’ of
the batch server. The implementation shall provide the means for a batch administrator to
specify the default queue. The queue, whether specified or defaulted, is called the ‘‘target
queue’’.

A batch server shall reject a Queue Batch Job Request if any of the following statements are true:

• The client is not authorized to create a batch job in the target queue.

• The request specifies a queue that does not exist on the batch server.

• The target queue is an execution queue and the batch server cannot satisfy a resource
requirement of the batch job.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2393

75724

75725

75726

75727

75728

75729

75730

75731

75732

75733

75734

75735

75736

75737

75738

75739

75740

75741

75742

75743

75744

75745

75746

75747

75748

75749

75750

75751

75752

75753

75754

75755

75756

75757

75758

75759

75760

75761

Batch Services Batch Environment Services

• The target queue is an execution queue and an unrecognized resource is requested.

• The target queue is an execution queue, the batch server does not support checkpointing,
and the value of the Checkpoint attribute of the batch job is not NO_CHECKPOINT.

• The job requires access to a user identifier that the batch client is not authorized to access.

A batch server may reject a Queue Batch Job Request for other implementation-defined reasons.

A batch server that accepts a Queue Batch Job Request for a batch job for which the
PBS_O_QUEUE value is missing from the value of the Variable_List attribute of the batch job
shall add that variable to the list and set the value to the name of the target queue. Once set, no
server shall change the value of PBS_O_QUEUE, even if the batch job is moved to another
queue.

A batch server that accepts a Queue Batch Job Request for a batch job for which the PBS_JOBID
value is missing from the value of the Variable_List attribute shall add that variable to the list and
set the value to the batch job identifier assigned by the server in the format:

sequence_number.server

A batch server that accepts a Queue Batch Job Request for a batch job for which the
PBS_JOBNAME value is missing from the value of the Variable_List attribute of the batch job
shall add that variable to the list and set the value to the Job_Name attribute of the batch job.

3.2.3.9 Batch Queue Status Request

A batch client can request that a batch server respond with the status and attributes of a queue.
Such a request is called a Batch Queue Status Request.

A batch server shall reject a Batch Queue Status Request if any of the following statements are
true:

• The user of the batch client is not authorized to query the status of the designated queue.

• The designated queue does not exist on the batch server.

A batch server may reject a Batch Queue Status Request for other implementation-defined reasons.
The method used to determine whether the user of a client is authorized to perform the
requested action is implementation-defined.

A batch server that accepts a Batch Queue Status Request shall return a Batch Queue Status Reply to
the batch client.

3.2.3.10 Release Batch Job Request

A batch client can request that the server remove one or more holds from a batch job. Such a
request is called a Release Batch Job Request.

A batch server shall reject a Release Batch Job Request if any of the following statements are true:

• The user of the batch client is not authorized to remove one or more of the requested holds
from the batch job.

• The batch server does not manage the specified job.

A batch server may reject a Release Batch Job Request for other implementation-defined reasons.
The method used to determine whether the user of a client is authorized to perform the
requested action is implementation-defined.

A batch server that accepts a Release Batch Job Request shall remove each type of hold listed in the

2394 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

75762

75763

75764

75765

75766

75767

75768

75769

75770

75771

75772

75773

75774

75775

75776

75777

75778

75779

75780

75781

75782

75783

75784

75785

75786

75787

75788

75789

75790

75791

75792

75793

75794

75795

75796

75797

75798

75799

75800

75801

Batch Environment Services Batch Services

Release Batch Job Request, that is present, from the value of the Hold_Types attribute of the batch
job.

3.2.3.11 Rerun Batch Job Request

To rerun a batch job is to kill the session leader of the batch job and leave the batch job eligible
for re-execution. A batch client can request that a batch server rerun a batch job. Such a request
is called Rerun Batch Job Request.

A batch server shall reject a Rerun Batch Job Request if any of the following statements are true:

• The user of the batch client is not authorized to rerun the designated job.

• The Rerunable attribute of the designated job has the value FALSE.

• The designated job is not in the RUNNING state.

• The batch server does not manage the designated job.

A batch server may reject a Rerun Batch Job Request for other implementation-defined reasons.
The method used to determine whether the user of a client is authorized to perform the
requested action is implementation-defined.

A batch server that rejects a Rerun Batch Job Request shall in no way modify the execution of the
batch job.

A batch server that accepts a request to rerun a batch job shall perform the following services:

• Requeue the batch job in the execution queue in which it was executing.

• Send a SIGKILL signal to the process group of the session leader of the batch job.

An implementation may indicate to the batch job owner that the batch job has been rerun.
Whether and how the batch job owner is notified that a batch job is rerun is implementation-
defined.

A batch server that reruns a batch job may send other implementation-defined signals to the
session leader of the batch job prior to sending the SIGKILL signal.

A batch server may preferentially select a rerun job for execution. Whether rerun jobs shall be
selected for execution before other jobs is implementation-defined.

3.2.3.12 Select Batch Jobs Request

A batch client can request from a batch server a list of jobs managed by that server that match a
list of selection criteria. Such a request is called a Select Batch Jobs Request. All the batch jobs
managed by the batch server that receives the request are candidates for selection.

A batch server that accepts a Select Batch Jobs Request shall return a list of zero or more job
identifiers that correspond to jobs that meet the selection criteria.

If the batch client is not authorized to query the status of a batch job, the batch server shall not
select the batch job.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2395

75802

75803

75804

75805

75806

75807

75808

75809

75810

75811

75812

75813

75814

75815

75816

75817

75818

75819

75820

75821

75822

75823

75824

75825

75826

75827

75828

75829

75830

75831

75832

75833

75834

75835

Batch Services Batch Environment Services

3.2.3.13 Server Shutdown Request

A batch server is defined to have shut down when it does not respond to requests from clients
and does not perform deferred services for jobs. A batch client can request that a batch server
shut down. Such a request is called a Server Shutdown Request.

A batch server shall reject a Server Shutdown Request from a client that is not authorized to shut
down the batch server. The method used to determine whether the user of a client is authorized
to perform the requested action is implementation-defined.

A batch server may reject a Server Shutdown Request for other implementation-defined reasons.
The reasons for which a Server Shutdown Request may be rejected are implementation-defined.

At server shutdown, a batch server shall do, in order of preference, one of the following:

• If checkpointing is implemented and the batch job is checkpointable, then checkpoint the
batch job and requeue it.

• If the batch job is rerunnable, then requeue the batch job to be rerun (restarted from the
beginning).

• Abort the batch job.

3.2.3.14 Server Status Request

A batch client can request that a batch server respond with the status and attributes of the batch
server. Such a request is called a Server Status Request.

A batch server shall reject a Server Status Request if the following statement is true:

• The user of the batch client is not authorized to query the status of the designated server.

A batch server may reject a Server Status Request for other implementation-defined reasons. The
method used to determine whether the user of a client is authorized to perform the requested
action is implementation-defined.

A batch server that accepts a Server Status Request shall return a Server Status Reply to the batch
client.

3.2.3.15 Signal Batch Job Request

A batch client can request that a batch server signal the session leader of a batch job. Such a
request is called a Signal Batch Job Request.

A batch server shall reject a Signal Batch Job Request if any of the following statements are true:

• The user of the batch client is not authorized to signal the batch job.

• The job is not in the RUNNING state.

• The batch server does not manage the designated job.

• The requested signal is not supported by the implementation.

A batch server may reject a Signal Batch Job Request for other implementation-defined reasons.
The method used to determine whether the user of a client is authorized to perform the
requested action is implementation-defined.

A batch server that accepts a request to signal a batch job shall send the signal requested by the
batch client to the process group of the session leader of the batch job.

2396 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

75836

75837

75838

75839

75840

75841

75842

75843

75844

75845

75846

75847

75848

75849

75850

75851

75852

75853

75854

75855

75856

75857

75858

75859

75860

75861

75862

75863

75864

75865

75866

75867

75868

75869

75870

75871

75872

75873

Batch Environment Services Batch Services

3.2.3.16 Track Batch Job Request

Track Batch Job Request is an optional feature of batch servers. If an implementation supports
Track Batch Job Request, the statements in this section apply and the configuration variable
POSIX2_PBS_TRACK shall be set to 1.

Track Batch Job Request provides a method for tracking the current location of a batch job. Clients
may use the tracking information to determine the batch server that should receive a batch
server request.

If Track Batch Job Request is supported by a batch server, then when the batch server queues a
batch job as a result of a Queue Batch Job Request, and the batch server is not the batch server that
created the batch job, the batch server shall send a Track Batch Job Request to the batch server that
created the job.

If Track Batch Job Request is supported by a batch server, then the Track Batch Job Request may also
be sent to other servers as a backup to the primary server. The method by which backup servers
are specified is implementation-defined.

If Track Batch Job Request is supported by a batch server that receives a Track Batch Job Request,
then the batch server shall record the current location of the batch job as contained in the
request.

3.3 Common Behavior for Batch Environment Utilities

3.3.1 Batch Job Identifier

A utility shall recognize job_identifiers of the format:

[sequence_number][.server_name][@server]

where:

sequence_number An integer that, when combined with server_name, provides a batch job
identifier that is unique within the batch system.

server_name The name of the batch server to which the batch job was originally submitted.

server The name of the batch server that is currently managing the batch job.

If the application omits the batch server_name portion of a batch job identifier, a utility shall use
the name of a default batch server.

If the application omits the batch server portion of a batch job identifier, a utility shall use:

• The batch server indicated by server_name, if present

• The name of the default batch server

• The name of the batch server that is currently managing the batch job

If only @server is specified, then the status of all jobs owned by the user on the requested server
is listed.

The means by which a utility determines the default batch server is implementation-defined.

If the application presents the batch server portion of a batch job identifier to a utility, the utility
shall send the request to the specified server.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2397

75874

75875

75876

75877

75878

75879

75880

75881

75882

75883

75884

75885

75886

75887

75888

75889

75890

75891

75892

75893

75894

75895

75896

75897

75898

75899

75900

75901

75902

75903

75904

75905

75906

75907

75908

75909

75910

Common Behavior for Batch Environment Utilities Batch Environment Services

A strictly conforming application shall use the syntax described for the job identifier. Whenever
a batch job identifier is specified whose syntax is not recognized by an implementation, then a
message for each error that occurs shall be written to standard error and the utility shall exit
with an exit status greater than zero.

When a batch job identifier is supplied as an argument to a batch utility and the server_name
portion of the batch job identifier is omitted, then the utility shall use the name of the default
batch server.

When a batch job identifier is supplied as an argument to a batch utility and the batch server
portion of the batch job identifier is omitted, then the utility shall use either:

• The name of the default batch server

or:

• The name of the batch server that is currently managing the batch job

When a batch job identifier is supplied as an argument to a batch utility and the batch server
portion of the batch job identifier is specified, then the utility shall send the required Batch Server
Request to the specified server.

3.3.2 Destination

The utility shall recognize a destination of the format:

[queue][@server]

where:

queue The name of a valid execution or routing queue at the batch server denoted by
@server, defined as a string of up to 15 alphanumeric characters in the portable
character set (see XBD Section 6.1, on page 125) where the first character is
alphabetic.

server The name of a batch server, defined as a string of alphanumeric characters in the
portable character set.

If the application omits the batch server portion of a destination, then the utility shall use either:

• The name of the default batch server

or:

• The name of the batch server that is currently managing the batch job

The means by which a utility determines the default batch server is implementation-defined.

If the application omits the queue portion of a destination, then the utility shall use the name of
the default queue at the batch server chosen. The means by which a batch server determines its
default queue is implementation-defined. If a destination is specified in the queue@server form,
then the utility shall use the specified queue at the specified server.

A strictly conforming application shall use the syntax described for a destination. Whenever a
destination is specified whose syntax is not recognized by an implementation, then a message
shall be written to standard error and the utility shall exit with an exit status greater than zero.

2398 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

75911

75912

75913

75914

75915

75916

75917

75918

75919

75920

75921

75922

75923

75924

75925

75926

75927

75928

75929

75930

75931

75932

75933

75934

75935

75936

75937

75938

75939

75940

75941

75942

75943

75944

75945

75946

75947

Batch Environment Services Common Behavior for Batch Environment Utilities

3.3.3 Multiple Keyword-Value Pairs

For each option that can have multiple keyword-value pair arguments, the following rules shall
apply. Examples of options that can have list-oriented option-arguments are −u value@keyword
and −l keyword=value.

1. If a batch utility is presented with a list-oriented option-argument for which a keyword
has a corresponding value that begins with a single or double-quote, then the utility shall
stop interpreting the input stream for delimiters until a second single or double-quote,
respectively, is encountered. This feature allows some flexibility for a <comma> (’,’) or
<equals-sign> (’=’) to be part of the value string for a particular keyword; for example:

keywd1=’val1,val2’,keywd2="val3,val4"

Note: This may require the user to escape the quotes as in the following command:

foo −xkeywd1=\’val1,val2\’,keywd2=\"val3,val4\"

2. If a batch server is presented with a list-oriented attribute that has a keyword that was
encountered earlier in the list, then the later entry for that keyword shall replace the
earlier entry.

3. If a batch server is presented with a list-oriented attribute that has a keyword without any
corresponding value of the form keyword= or @keyword and the same keyword was
encountered earlier in the list, then the prior entry for that keyword shall be ignored by
the batch server.

4. If a batch utility is expecting a list-oriented option-argument entry of the form
keyword=value, but is presented with an entry of the form keyword without any
corresponding value, then the entry shall be treated as though a default value of NULL
was assigned (that is, keyword=NULL) for entry parsing purposes. The utility shall
include only the keyword, not the NULL value, in the associated job attribute.

5. If a batch utility is expecting a list-oriented option-argument entry of the form
value@keyword, but is presented with an entry of the form value without any
corresponding keyword, then the entry shall be treated as though a keyword of NULL was
assigned (that is, value@NULL) for entry parsing purposes. The utility shall include only
the value, not the NULL keyword, in the associated job attribute.

6. A batch server shall accept a list-oriented attribute that has multiple occurrences of the
same keyword, interpreting the keywords, in order, with the last value encountered
taking precedence over prior instances of the same keyword. This rule allows, but does
not require, a batch utility to preprocess the attribute to remove duplicate keywords.

7. If a batch utility is presented with multiple list-oriented option-arguments on the
command line or in script directives, or both, for a single option, then the utility shall
concatenate, in order, any command line keyword and value pairs to the end of any
directive keyword and value pairs separated by a single <comma> to produce a single
string that is an equivalent, valid option-argument. The resulting string shall be assigned
to the associated attribute of the batch job (after optionally removing duplicate entries as
described in item 6).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2399

75948

75949

75950

75951

75952

75953

75954

75955

75956

75957

75958

75959

75960

75961

75962

75963

75964

75965

75966

75967

75968

75969

75970

75971

75972

75973

75974

75975

75976

75977

75978

75979

75980

75981

75982

75983

75984

75985

75986

75987

Batch Environment Services

2400 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

Chapter 4

Utilities

This chapter contains the definitions of the utilities, as follows:

• Mandatory utilities that are present on every conformant system

• Optional utilities that are present only on systems supporting the associated option; see
Section 1.7.1 (on page 7) for information on the options in this volume of POSIX.1-2008

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2401

75988

75989

75990

75991

75992

75993

admin Utilities

NAME
admin — create and administer SCCS files (DEVELOPMENT)

SYNOPSIS
XSI admin −i[name] [−n] [−a login] [−d flag] [−e login] [−f flag]

[−m mrlist] [−r rel] [−t[name] [−y[comment]] newfile

admin −n [−a login] [−d flag] [−e login] [−f flag] [−m mrlist]

[−t[name]] [−y[comment]] newfile...

admin [−a login] [−d flag] [−m mrlist] [−r rel] [−t[name]] file...

admin −h file...

admin −z file...

DESCRIPTION
The admin utility shall create new SCCS files or change parameters of existing ones. If a named
file does not exist, it shall be created, and its parameters shall be initialized according to the
specified options. Parameters not initialized by an option shall be assigned a default value. If a
named file does exist, parameters corresponding to specified options shall be changed, and other
parameters shall be left as is.

All SCCS filenames supplied by the application shall be of the form s.filename. New SCCS files
shall be given read-only permission mode. Write permission in the parent directory is required
to create a file. All writing done by admin shall be to a temporary x-file, named x.filename (see get)
created with read-only mode if admin is creating a new SCCS file, or created with the same mode
as that of the SCCS file if the file already exists. After successful execution of admin, the SCCS file
shall be removed (if it exists), and the x-file shall be renamed with the name of the SCCS file. This
ensures that changes are made to the SCCS file only if no errors occur.

The admin utility shall also use a transient lock file (named z.filename), which is used to prevent
simultaneous updates to the SCCS file; see get .

OPTIONS
The admin utility shall conform to XBD Section 12.2 (on page 215), except that the −i, −t, and −y
options have optional option-arguments. These optional option-arguments shall not be
presented as separate arguments. The following options are supported:

−n Create a new SCCS file. When −n is used without −i, the SCCS file shall be created
with control information but without any file data.

−i[name] Specify the name of a file from which the text for a new SCCS file shall be taken.
The text constitutes the first delta of the file (see the −r option for the delta
numbering scheme). If the −i option is used, but the name option-argument is
omitted, the text shall be obtained by reading the standard input. If this option is
omitted, the SCCS file shall be created with control information but without any
file data. The −i option implies the −n option.

−r SID Specify the SID of the initial delta to be inserted. This SID shall be a trunk SID; that
is, the branch and sequence numbers shall be zero or missing. The level number is
optional, and defaults to 1.

−t[name] Specify the name of a file from which descriptive text for the SCCS file shall be
taken. In the case of existing SCCS files (neither −i nor −n is specified):

2402 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

75994

75995

75996

75997

75998

75999

76000

76001

76002

76003

76004

76005

76006

76007

76008

76009

76010

76011

76012

76013

76014

76015

76016

76017

76018

76019

76020

76021

76022

76023

76024

76025

76026

76027

76028

76029

76030

76031

76032

76033

76034

76035

Utilities admin

• A −t option without a name option-argument shall cause the removal of
descriptive text (if any) currently in the SCCS file.

• A −t option with a name option-argument shall cause the text (if any) in the
named file to replace the descriptive text (if any) currently in the SCCS file.

−f flag Specify a flag, and, possibly, a value for the flag, to be placed in the SCCS file.
Several −f options may be supplied on a single admin command line.
Implementations shall recognize the following flags and associated values:

b Allow use of the −b option on a get command to create branch deltas.

cceil Specify the highest release (that is, ceiling), a number less than or equal to
9 999, which may be retrieved by a get command for editing. The default
value for an unspecified c flag shall be 9 999.

ffloor Specify the lowest release (that is, floor), a number greater than 0 but less
than 9 999, which may be retrieved by a get command for editing. The
default value for an unspecified f flag shall be 1.

dSID Specify the default delta number (SID) to be used by a get command.

istr Tr eat the ‘‘No ID keywords’’ message issued by get or delta as a fatal error.
In the absence of this flag, the message is only a warning. The message is
issued if no SCCS identification keywords (see get) are found in the text
retrieved or stored in the SCCS file. If a value is supplied, the application
shall ensure that the keywords exactly match the given string; however,
the string shall contain a keyword, and no embedded <newline>
characters.

j Allow concurrent get commands for editing on the same SID of an SCCS
file. This allows multiple concurrent updates to the same version of the
SCCS file.

llist Specify a list of releases to which deltas can no longer be made (that is, get
−e against one of these locked releases fails). Conforming applications
shall use the following syntax to specify a list. Implementations may
accept additional forms as an extension:

<list> ::= a | <range-list>
<range-list> ::= <range> | <range-list>, <range>
<range> ::= <SID>

The character a in the list shall be equivalent to specifying all releases for
the named SCCS file. The non-terminal <SID> in range shall be the delta
number of an existing delta associated with the SCCS file.

n Cause delta to create a null delta in each of those releases (if any) being
skipped when a delta is made in a new release (for example, in making
delta 5.1 after delta 2.7, releases 3 and 4 are skipped). These null deltas
shall serve as anchor points so that branch deltas may later be created
from them. The absence of this flag shall cause skipped releases to be
nonexistent in the SCCS file, preventing branch deltas from being created
from them in the future. During the initial creation of an SCCS file, the n
flag may be ignored; that is, if the −r option is used to set the release
number of the initial SID to a value greater than 1, null deltas need not be
created for the ‘‘skipped’’ releases.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2403

76036

76037

76038

76039

76040

76041

76042

76043

76044

76045

76046

76047

76048

76049

76050

76051

76052

76053

76054

76055

76056

76057

76058

76059

76060

76061

76062

76063

76064

76065

76066

76067

76068

76069

76070

76071

76072

76073

76074

76075

76076

76077

76078

76079

76080

admin Utilities

qtext Substitute user-definable text for all occurrences of the %Q% keyword in
the SCCS file text retrieved by get.

mmod Specify the module name of the SCCS file substituted for all occurrences
of the %M% keyword in the SCCS file text retrieved by get. If the m flag
is not specified, the value assigned shall be the name of the SCCS file with
the leading ’.’ removed.

ttype Specify the type of module in the SCCS file substituted for all occurrences
of the %Y% keyword in the SCCS file text retrieved by get.

vpgm Cause delta to prompt for modification request (MR) numbers as the
reason for creating a delta. The optional value specifies the name of an
MR number validation program. (If this flag is set when creating an SCCS
file, the application shall ensure that the m option is also used even if its
value is null.)

−d flag Remove (delete) the specified flag from an SCCS file. Several −d options may be
supplied on a single admin command. See the −f option for allowable flag names.
(The llist flag gives a list of releases to be unlocked. See the −f option for further
description of the l flag and the syntax of a list.)

−a login Specify a login name, or numerical group ID, to be added to the list of users who
may make deltas (changes) to the SCCS file. A group ID shall be equivalent to
specifying all login names common to that group ID. Several −a options may be
used on a single admin command line. As many logins, or numerical group IDs, as
desired may be on the list simultaneously. If the list of users is empty, then anyone
may add deltas. If login or group ID is preceded by a ’!’, the users so specified
shall be denied permission to make deltas.

−e login Specify a login name, or numerical group ID, to be erased from the list of users
allowed to make deltas (changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to that group ID. Several −e
options may be used on a single admin command line.

−y[comment] Insert the comment text into the SCCS file as a comment for the initial delta in a
manner identical to that of delta. In the POSIX locale, omission of the −y option
shall result in a default comment line being inserted in the form:

"date and time created %s %s by %s", <date>, <time>, <login>

where <date> is expressed in the format of the date utility’s %y/%m/%d conversion
specification, <time> in the format of the date utility’s %T conversion specification
format, and <login> is the login name of the user creating the file.

−m mrlist Insert the list of modification request (MR) numbers into the SCCS file as the
reason for creating the initial delta in a manner identical to delta. The application
shall ensure that the v flag is set and the MR numbers are validated if the v flag has
a value (the name of an MR number validation program). A diagnostic message
shall be written if the v flag is not set or MR validation fails.

−h Check the structure of the SCCS file and compare the newly computed checksum
with the checksum that is stored in the SCCS file. If the newly computed checksum
does not match the checksum in the SCCS file, a diagnostic message shall be
written.

2404 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

76081

76082

76083

76084

76085

76086

76087

76088

76089

76090

76091

76092

76093

76094

76095

76096

76097

76098

76099

76100

76101

76102

76103

76104

76105

76106

76107

76108

76109

76110

76111

76112

76113

76114

76115

76116

76117

76118

76119

76120

76121

76122

76123

76124

Utilities admin

−z Recompute the SCCS file checksum and store it in the first line of the SCCS file (see
the −h option above). Note that use of this option on a truly corrupted file may
prevent future detection of the corruption.

OPERANDS
The following operands shall be supported:

file A pathname of an existing SCCS file or a directory. If file is a directory, the admin
utility shall behave as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the pathname does not begin
with s.) and unreadable files shall be silently ignored.

newfile A pathname of an SCCS file to be created.

If exactly one file or newfile operand appears, and it is ’−’, the standard input shall be read; each
line of the standard input shall be taken to be the name of an SCCS file to be processed. Non-
SCCS files and unreadable files shall be silently ignored.

STDIN
The standard input shall be a text file used only if −i is specified without an option-argument or
if a file or newfile operand is specified as ’−’. If the first character of any standard input line is
<SOH> in the POSIX locale, the results are unspecified.

INPUT FILES
The existing SCCS files shall be text files of an unspecified format.

The application shall ensure that the file named by the −i option’s name option-argument shall
be a text file; if the first character of any line in this file is <SOH> in the POSIX locale, the results
are unspecified. If this file contains more than 99 999 lines, the number of lines recorded in the
header for this file shall be 99 999 for this delta.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of admin:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and the contents of the default −y
comment.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2405

76125

76126

76127

76128

76129

76130

76131

76132

76133

76134

76135

76136

76137

76138

76139

76140

76141

76142

76143

76144

76145

76146

76147

76148

76149

76150

76151

76152

76153

76154

76155

76156

76157

76158

76159

76160

76161

76162

76163

76164

76165

76166

admin Utilities

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
Any SCCS files created shall be text files of an unspecified format. During processing of a file, a
locking z-file, as described in get (on page 2764), may be created and deleted.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
It is recommended that directories containing SCCS files be writable by the owner only, and that
SCCS files themselves be read-only. The mode of the directories should allow only the owner to
modify SCCS files contained in the directories. The mode of the SCCS files prevents any
modification at all except by SCCS commands.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
delta , get , prs , what

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements,
and to emphasize the term ‘‘shall’’ for implementation requirements.

The grammar is updated.

The Open Group Base Resolution bwg2001-007 is applied, adding new text to the INPUT FILES
section warning that the maximum lines recorded in the file is 99 999.

The Open Group Base Resolution bwg2001-009 is applied, amending the description of the −h
option.

2406 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

76167

76168

76169

76170

76171

76172

76173

76174

76175

76176

76177

76178

76179

76180

76181

76182

76183

76184

76185

76186

76187

76188

76189

76190

76191

76192

76193

76194

76195

76196

76197

76198

76199

76200

76201

76202

76203

Utilities alias

NAME
alias — define or display aliases

SYNOPSIS
alias [alias-name[=string]...]

DESCRIPTION
The alias utility shall create or redefine alias definitions or write the values of existing alias
definitions to standard output. An alias definition provides a string value that shall replace a
command name when it is encountered; see Section 2.3.1 (on page 2300).

An alias definition shall affect the current shell execution environment and the execution
environments of the subshells of the current shell. When used as specified by this volume of
POSIX.1-2008, the alias definition shall not affect the parent process of the current shell nor any
utility environment invoked by the shell; see Section 2.12 (on page 2331).

OPTIONS
None.

OPERANDS
The following operands shall be supported:

alias-name Write the alias definition to standard output.

alias-name=string
Assign the value of string to the alias alias-name.

If no operands are given, all alias definitions shall be written to standard output.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of alias:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2407

76204

76205

76206

76207

76208

76209

76210

76211

76212

76213

76214

76215

76216

76217

76218

76219

76220

76221

76222

76223

76224

76225

76226

76227

76228

76229

76230

76231

76232

76233

76234

76235

76236

76237

76238

76239

76240

76241

76242

76243

alias Utilities

STDOUT
The format for displaying aliases (when no operands or only name operands are specified) shall
be:

"%s=%s\n", name, value

The value string shall be written with appropriate quoting so that it is suitable for reinput to the
shell. See the description of shell quoting in Section 2.2 (on page 2298).

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 One of the name operands specified did not have an alias definition, or an error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES

1. Create a short alias for a commonly used ls command:

alias lf="ls −CF"

2. Create a simple ‘‘redo’’ command to repeat previous entries in the command history file:

alias r=’fc −s’

3. Use 1K units for du:

alias du=du\ −k

4. Set up nohup so that it can deal with an argument that is itself an alias name:

alias nohup="nohup "

RATIONALE
The alias description is based on historical KornShell implementations. Known differences exist
between that and the C shell. The KornShell version was adopted to be consistent with all the
other KornShell features in this volume of POSIX.1-2008, such as command line editing.

Since alias affects the current shell execution environment, it is generally provided as a shell
regular built-in.

Historical versions of the KornShell have allowed aliases to be exported to scripts that are
invoked by the same shell. This is triggered by the alias −x flag; it is allowed by this volume of
POSIX.1-2008 only when an explicit extension such as −x is used. The standard developers
considered that aliases were of use primarily to interactive users and that they should normally
not affect shell scripts called by those users; functions are available to such scripts.

2408 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

76244

76245

76246

76247

76248

76249

76250

76251

76252

76253

76254

76255

76256

76257

76258

76259

76260

76261

76262

76263

76264

76265

76266

76267

76268

76269

76270

76271

76272

76273

76274

76275

76276

76277

76278

76279

76280

76281

76282

76283

Utilities alias

Historical versions of the KornShell had not written aliases in a quoted manner suitable for
reentry to the shell, but this volume of POSIX.1-2008 has made this a requirement for all similar
output. Therefore, consistency was chosen over this detail of historical practice.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.9.5 (on page 2324)

XBD Chapter 8 (on page 173)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The APPLICATION USAGE section is added.

Issue 7
The alias utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The first example is changed to remove the creation of an alias for a standard utility that alters
its behavior to be non-conforming.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2409

76284

76285

76286

76287

76288

76289

76290

76291

76292

76293

76294

76295

76296

76297

76298

76299

76300

76301

76302

ar Utilities

NAME
ar — create and maintain library archives

SYNOPSIS
SD ar −d [−v] archive file...

XSI ar −m [−v] archive file...
ar −m −a [−v] posname archive file...
ar −m −b [−v] posname archive file...
ar −m −i [−v] posname archive file...

XSI ar −p [−v] [−s] archive [file...]

XSI ar −q [−cv] archive file...

ar −r [−cuv] archive file...

XSI ar −r −a [−cuv] posname archive file...
ar −r −b [−cuv] posname archive file...
ar −r −i [−cuv] posname archive file...

XSI ar −t [−v] [−s] archive [file...]

XSI ar −x [−v] [−sCT] archive [file...]

DESCRIPTION

The ar utility is part of the Software Development Utilities option.

The ar utility can be used to create and maintain groups of files combined into an archive. Once
an archive has been created, new files can be added, and existing files in an archive can be
extracted, deleted, or replaced. When an archive consists entirely of valid object files, the
implementation shall format the archive so that it is usable as a library for link editing (see c99
and fort77). When some of the archived files are not valid object files, the suitability of the

XSI archive for library use is undefined. If an archive consists entirely of printable files, the entire
archive shall be printable.

When ar creates an archive, it creates administrative information indicating whether a symbol
table is present in the archive. When there is at least one object file that ar recognizes as such in
the archive, an archive symbol table shall be created in the archive and maintained by ar; it is
used by the link editor to search the archive. Whenever the ar utility is used to create or update
the contents of such an archive, the symbol table shall be rebuilt. The −s option shall force the
symbol table to be rebuilt.

All file operands can be pathnames. However, files within archives shall be named by a filename,
which is the last component of the pathname used when the file was entered into the archive.
The comparison of file operands to the names of files in archives shall be performed by
comparing the last component of the operand to the name of the file in the archive.

It is unspecified whether multiple files in the archive may be identically named. In the case of
XSI such files, however, each file and posname operand shall match only the first file in the archive

having a name that is the same as the last component of the operand.

2410 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

76303

76304

76305

76306

76307

76308

76309

76310

76311

76312

76313

76314

76315

76316

76317

76318

76319

76320

76321

76322

76323

76324

76325

76326

76327

76328

76329

76330

76331

76332

76333

76334

76335

76336

76337

76338

76339

76340

Utilities ar

OPTIONS
The ar utility shall conform to XBD Section 12.2 (on page 215), except for Guideline 9.

The following options shall be supported:

XSI −a Position new files in the archive after the file named by the posname operand.

XSI −b Position new files in the archive before the file named by the posname operand.

−c Suppress the diagnostic message that is written to standard error by default when
the archive archive is created.

XSI −C Prevent extracted files from replacing like-named files in the file system. This
option is useful when −T is also used, to prevent truncated filenames from
replacing files with the same prefix.

−d Delete one or more files from archive.

XSI −i Position new files in the archive before the file in the archive named by the posname
operand (equivalent to −b).

XSI −m Move the named files in the archive. The −a, −b, or −i options with the posname
operand indicate the position; otherwise, move the names files in the archive to the
end of the archive.

−p Write the contents of the files in the archive named by file operands from archive to
the standard output. If no file operands are specified, the contents of all files in the
archive shall be written in the order of the archive.

XSI −q Append the named files to the end of the archive. In this case ar does not check
whether the added files are already in the archive. This is useful to bypass the
searching otherwise done when creating a large archive piece by piece.

−r Replace or add files to archive. If the archive named by archive does not exist, a new
archive shall be created and a diagnostic message shall be written to standard error
(unless the −c option is specified). If no files are specified and the archive exists, the
results are undefined. Files that replace existing files in the archive shall not change
the order of the archive. Files that do not replace existing files in the archive shall

XSI be appended to the archive unless a −a, −b, or −i option specifies another position.

XSI −s Force the regeneration of the archive symbol table even if ar is not invoked with an
option that modifies the archive contents. This option is useful to restore the
archive symbol table after it has been stripped; see strip.

−t Write a table of contents of archive to the standard output. Only the files specified
by the file operands shall be included in the written list. If no file operands are
specified, all files in archive shall be included in the order of the archive.

XSI −T Allow filename truncation of extracted files whose archive names are longer than
the file system can support. By default, extracting a file with a name that is too
long shall be an error; a diagnostic message shall be written and the file shall not
be extracted.

−u Update older files in the archive. When used with the −r option, files in the archive
shall be replaced only if the corresponding file has a modification time that is at
least as new as the modification time of the file in the archive.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2411

76341

76342

76343

76344

76345

76346

76347

76348

76349

76350

76351

76352

76353

76354

76355

76356

76357

76358

76359

76360

76361

76362

76363

76364

76365

76366

76367

76368

76369

76370

76371

76372

76373

76374

76375

76376

76377

76378

76379

76380

76381

ar Utilities

−v Give verbose output. When used with the option characters −d, −r, or −x, write a
detailed file-by-file description of the archive creation and maintenance activity, as
described in the STDOUT section.

When used with −p, write the name of the file in the archive to the standard output
before writing the file in the archive itself to the standard output, as described in
the STDOUT section.

When used with −t, include a long listing of information about the files in the
archive, as described in the STDOUT section.

−x Extract the files in the archive named by the file operands from archive. The
contents of the archive shall not be changed. If no file operands are given, all files
in the archive shall be extracted. The modification time of each file extracted shall
be set to the time the file is extracted from the archive.

OPERANDS
The following operands shall be supported:

archive A pathname of the archive.

file A pathname. Only the last component shall be used when comparing against the
names of files in the archive. If two or more file operands have the same last
pathname component (basename), the results are unspecified. The
implementation’s archive format shall not truncate valid filenames of files added
to or replaced in the archive.

XSI posname The name of a file in the archive, used for relative positioning; see options −m and
−r.

STDIN
Not used.

INPUT FILES
The archive named by archive shall be a file in the format created by ar −r.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ar:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_TIME Determine the format and content for date and time strings written by ar −tv.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

2412 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

76382

76383

76384

76385

76386

76387

76388

76389

76390

76391

76392

76393

76394

76395

76396

76397

76398

76399

76400

76401

76402

76403

76404

76405

76406

76407

76408

76409

76410

76411

76412

76413

76414

76415

76416

76417

76418

76419

76420

76421

76422

Utilities ar

TMPDIR Determine the pathname that overrides the default directory for temporary files, if
any.

TZ Determine the timezone used to calculate date and time strings written by ar −tv.
If TZ is unset or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If the −d option is used with the −v option, the standard output format shall be:

"d − %s\n", <file>

where file is the operand specified on the command line.

If the −p option is used with the −v option, ar shall precede the contents of each file with:

"\n<%s>\n\n", <file>

where file is the operand specified on the command line, if file operands were specified, and the
name of the file in the archive if they were not.

If the −r option is used with the −v option:

• If file is already in the archive, the standard output format shall be:

"r − %s\n", <file>

where <file> is the operand specified on the command line.

• If file is not already in the archive, the standard output format shall be:

"a − %s\n", <file>

where <file> is the operand specified on the command line.

If the −t option is used, ar shall write the names of the files in the archive to the standard output
in the format:

"%s\n", <file>

where file is the operand specified on the command line, if file operands were specified, or the
name of the file in the archive if they were not.

If the −t option is used with the −v option, the standard output format shall be:

"%s %u/%u %u %s %d %d:%d %d %s\n", <member mode>, <user ID>,
<group ID>, <number of bytes in member>,
<abbreviated month>, <day-of-month>, <hour>,
<minute>, <year>, <file>

where:

<file> Shall be the operand specified on the command line, if file operands were specified,
or the name of the file in the archive if they were not.

<member mode>
Shall be formatted the same as the <file mode> string defined in the STDOUT
section of ls, except that the first character, the <entry type>, is not used; the string
represents the file mode of the file in the archive at the time it was added to or
replaced in the archive.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2413

76423

76424

76425

76426

76427

76428

76429

76430

76431

76432

76433

76434

76435

76436

76437

76438

76439

76440

76441

76442

76443

76444

76445

76446

76447

76448

76449

76450

76451

76452

76453

76454

76455

76456

76457

76458

76459

76460

76461

ar Utilities

The following represent the last-modification time of a file when it was most recently added to
or replaced in the archive:

<abbreviated month>
Equivalent to the format of the %b conversion specification format in date.

<day-of-month>
Equivalent to the format of the %e conversion specification format in date.

<hour> Equivalent to the format of the %H conversion specification format in date.

<minute> Equivalent to the format of the %M conversion specification format in date.

<year> Equivalent to the format of the %Y conversion specification format in date.

When LC_TIME does not specify the POSIX locale, a different format and order of presentation
of these fields relative to each other may be used in a format appropriate in the specified locale.

If the −x option is used with the −v option, the standard output format shall be:

"x − %s\n", <file>

where file is the operand specified on the command line, if file operands were specified, or the
name of the file in the archive if they were not.

STDERR
The standard error shall be used only for diagnostic messages. The diagnostic message about
creating a new archive when −c is not specified shall not modify the exit status.

OUTPUT FILES
Archives are files with unspecified formats.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The archive format is not described. It is recognized that there are several known ar formats,
which are not compatible. The ar utility is included, however, to allow creation of archives that
are intended for use only on one machine. The archive is specified as a file, and it can be moved
as a file. This does allow an archive to be moved from one machine to another machine that uses
the same implementation of ar.

Utilities such as pax (and its forebears tar and cpio) also provide portable ‘‘archives’’. This is a not
a duplication; the ar utility is included to provide an interface primarily for make and the
compilers, based on a historical model.

2414 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

76462

76463

76464

76465

76466

76467

76468

76469

76470

76471

76472

76473

76474

76475

76476

76477

76478

76479

76480

76481

76482

76483

76484

76485

76486

76487

76488

76489

76490

76491

76492

76493

76494

76495

76496

76497

76498

76499

76500

76501

76502

Utilities ar

In historical implementations, the −q option (available on XSI-conforming systems) is known to
execute quickly because ar does not check on whether the added members are already in the
archive. This is useful to bypass the searching otherwise done when creating a large archive
piece-by-piece. These remarks may but need not remain true for a brand new implementation of
this utility; hence, these remarks have been moved into the RATIONALE.

BSD implementations historically required applications to provide the −s option whenever the
archive was supposed to contain a symbol table. As in this volume of POSIX.1-2008, System V
historically creates or updates an archive symbol table whenever an object file is removed from,
added to, or updated in the archive.

The OPERANDS section requires what might seem to be true without specifying it: the archive
cannot truncate the filenames below {NAME_MAX}. Some historical implementations do so,
however, causing unexpected results for the application. Therefore, this volume of POSIX.1-2008
makes the requirement explicit to avoid misunderstandings.

According to the System V documentation, the options −dmpqrtx are not required to begin with
a <hyphen> (’−’). This volume of POSIX.1-2008 requires that a conforming application use the
leading <hyphen>.

The archive format used by the 4.4 BSD implementation is documented in this RATIONALE as
an example:

A file created by ar begins with the ‘‘magic’’ string "!<arch>\n". The rest of the archive
is made up of objects, each of which is composed of a header for a file, a possible filename,
and the file contents. The header is portable between machine architectures, and, if the file
contents are printable, the archive is itself printable.

The header is made up of six ASCII fields, followed by a two-character trailer. The fields
are the object name (16 characters), the file last modification time (12 characters), the user
and group IDs (each 6 characters), the file mode (8 characters), and the file size (10
characters). All numeric fields are in decimal, except for the file mode, which is in octal.

The modification time is the file st_mtime field. The user and group IDs are the file st_uid
and st_gid fields. The file mode is the file st_mode field. The file size is the file st_size field.
The two-byte trailer is the string "‘<newline>".

Only the name field has any provision for overflow. If any filename is more than 16
characters in length or contains an embedded space, the string "#1/" followed by the
ASCII length of the name is written in the name field. The file size (stored in the archive
header) is incremented by the length of the name. The name is then written immediately
following the archive header.

Any unused characters in any of these fields are written as <space> characters. If any fields
are their particular maximum number of characters in length, there is no separation
between the fields.

Objects in the archive are always an even number of bytes long; files that are an odd
number of bytes long are padded with a <newline>, although the size in the header does
not reflect this.

The ar utility description requires that (when all its members are valid object files) ar produce an
object code library, which the linkage editor can use to extract object modules. If the linkage
editor needs a symbol table to permit random access to the archive, ar must provide it; however,
ar does not require a symbol table.

The BSD −o option was omitted. It is a rare conforming application that uses ar to extract object

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2415

76503

76504

76505

76506

76507

76508

76509

76510

76511

76512

76513

76514

76515

76516

76517

76518

76519

76520

76521

76522

76523

76524

76525

76526

76527

76528

76529

76530

76531

76532

76533

76534

76535

76536

76537

76538

76539

76540

76541

76542

76543

76544

76545

76546

76547

ar Utilities

code from a library with concern for its modification time, since this can only be of importance
to make. Hence, since this functionality is not deemed important for applications portability, the
modification time of the extracted files is set to the current time.

There is at least one known implementation (for a small computer) that can accommodate only
object files for that system, disallowing mixed object and other files. The ability to handle any
type of file is not only historical practice for most implementations, but is also a reasonable
expectation.

Consideration was given to changing the output format of ar −tv to the same format as the
output of ls −l. This would have made parsing the output of ar the same as that of ls. This was
rejected in part because the current ar format is commonly used and changes would break
historical usage. Second, ar gives the user ID and group ID in numeric format separated by a
<slash>. Changing this to be the user name and group name would not be correct if the archive
were moved to a machine that contained a different user database. Since ar cannot know
whether the archive was generated on the same machine, it cannot tell what to report.

The text on the −ur option combination is historical practice—since one filename can easily
represent two different files (for example, /a/foo and /b/foo), it is reasonable to replace the file in
the archive even when the modification time in the archive is identical to that in the file system.

FUTURE DIRECTIONS
None.

SEE ALSO
c99 , date , fort77 , pax , strip

XBD Chapter 8 (on page 173), Section 12.2 (on page 215), <unistd.h>, description of
{POSIX_NO_TRUNC}

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the Software Development Utilities option.

The STDOUT description is changed for the −v option to align with the IEEE P1003.2b draft
standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

The TZ entry is added to the ENVIRONMENT VARIABLES section.

IEEE PASC Interpretation 1003.2 #198 is applied, changing the description to consistently use
‘‘file’’ to refer to a file in the file system hierarchy, ‘‘archive’’ to refer to the archive being
operated upon by the ar utility, and ‘‘file in the archive’’ to refer to a copy of a file that is
contained in the archive.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/10 is applied, making corrections to the
SYNOPSIS. The change was needed since the −a, −b, and −i options are mutually-exclusive, and
posname is required if any of these options is specified.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/11 is applied, correcting the description
of the two-byte trailer in RATIONALE which had missed out a backquote. The correct trailer is a
backquote followed by a <newline>.

2416 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

76548

76549

76550

76551

76552

76553

76554

76555

76556

76557

76558

76559

76560

76561

76562

76563

76564

76565

76566

76567

76568

76569

76570

76571

76572

76573

76574

76575

76576

76577

76578

76579

76580

76581

76582

76583

76584

76585

76586

76587

76588

76589

76590

Utilities ar

Issue 7
SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax Guidelines does not
apply.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The description of the −t option is changed to say ‘‘Only the files specified ...’’.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2417

76591

76592

76593

76594

76595

asa Utilities

NAME
asa — interpret carriage-control characters

SYNOPSIS
FR asa [file...]

DESCRIPTION
The asa utility shall write its input files to standard output, mapping carriage-control characters
from the text files to line-printer control sequences in an implementation-defined manner.

The first character of every line shall be removed from the input, and the following actions are
performed.

If the character removed is:

<space> The rest of the line is output without change.

0 A <newline> is output, then the rest of the input line.

1 One or more implementation-defined characters that causes an advance to the next
page shall be output, followed by the rest of the input line.

+ The <newline> of the previous line shall be replaced with one or more
implementation-defined characters that causes printing to return to column
position 1, followed by the rest of the input line. If the ’+’ is the first character in
the input, it shall be equivalent to <space>.

The action of the asa utility is unspecified upon encountering any character other than those
listed above as the first character in a line.

OPTIONS
None.

OPERANDS

file A pathname of a text file used for input. If no file operands are specified, the
standard input shall be used.

STDIN
The standard input shall be used if no file operands are specified, and shall be used if a file
operand is ’−’ and the implementation treats the ’−’ as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of asa:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

2418 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

76596

76597

76598

76599

76600

76601

76602

76603

76604

76605

76606

76607

76608

76609

76610

76611

76612

76613

76614

76615

76616

76617

76618

76619

76620

76621

76622

76623

76624

76625

76626

76627

76628

76629

76630

76631

76632

76633

76634

76635

76636

Utilities asa

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be the text from the input file modified as described in the
DESCRIPTION section.

STDERR
None.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All input files were output successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES

1. The following command:

asa file

permits the viewing of file (created by a program using FORTRAN-style carriage-control
characters) on a terminal.

2. The following command:

a.out | asa | lp

formats the FORTRAN output of a.out and directs it to the printer.

RATIONALE
The asa utility is needed to map ‘‘standard’’ FORTRAN 77 output into a form acceptable to
contemporary printers. Usually, asa is used to pipe data to the lp utility; see lp.

This utility is generally used only by FORTRAN programs. The standard developers decided to
retain asa to avoid breaking the historical large base of FORTRAN applications that put carriage-
control characters in their output files. There is no requirement that a system have a FORTRAN
compiler in order to run applications that need asa.

Historical implementations have used an ASCII <form-feed> in response to a 1 and an ASCII
<carriage-return> in response to a ’+’. It is suggested that implementations treat characters
other than 0, 1, and ’+’ as <space> in the absence of any compelling reason to do otherwise.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2419

76637

76638

76639

76640

76641

76642

76643

76644

76645

76646

76647

76648

76649

76650

76651

76652

76653

76654

76655

76656

76657

76658

76659

76660

76661

76662

76663

76664

76665

76666

76667

76668

76669

76670

76671

76672

76673

76674

76675

76676

76677

asa Utilities

However, the action is listed here as ‘‘unspecified’’, permitting an implementation to provide
extensions to access fast multiple-line slewing and channel seeking in a non-portable manner.

FUTURE DIRECTIONS
None.

SEE ALSO
fort77 , lp

XBD Chapter 8 (on page 173)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the FORTRAN Runtime Utilities option.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2420 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

76678

76679

76680

76681

76682

76683

76684

76685

76686

76687

76688

76689

76690

76691

76692

Utilities at

NAME
at — execute commands at a later time

SYNOPSIS
at [−m] [−f file] [−q queuename] −t time_arg

at [−m] [−f file] [−q queuename] timespec...

at −r at_job_id...

at −l −q queuename

at −l [at_job_id...]

DESCRIPTION
The at utility shall read commands from standard input and group them together as an at-job, to
be executed at a later time.

The at-job shall be executed in a separate invocation of the shell, running in a separate process
group with no controlling terminal, except that the environment variables, current working
directory, file creation mask, and other implementation-defined execution-time attributes in
effect when the at utility is executed shall be retained and used when the at-job is executed.

When the at-job is submitted, the at_job_id and scheduled time shall be written to standard error.
The at_job_id is an identifier that shall be a string consisting solely of alphanumeric characters
and the <period> character. The at_job_id shall be assigned by the system when the job is
scheduled such that it uniquely identifies a particular job.

User notification and the processing of the job’s standard output and standard error are
described under the −m option.

XSI Users shall be permitted to use at if their name appears in the file at.allow which is located in an
implementation-defined directory. If that file does not exist, the file at.deny, which is located in
an implementation-defined directory, shall be checked to determine whether the user shall be
denied access to at. If neither file exists, only a process with appropriate privileges shall be
allowed to submit a job. If only at.deny exists and is empty, global usage shall be permitted. The
at.allow and at.deny files shall consist of one user name per line.

OPTIONS
The at utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−f file Specify the pathname of a file to be used as the source of the at-job, instead of
standard input.

−l (The letter ell.) Report all jobs scheduled for the invoking user if no at_job_id
operands are specified. If at_job_ids are specified, report only information for these
jobs. The output shall be written to standard output.

−m Send mail to the invoking user after the at-job has run, announcing its completion.
Standard output and standard error produced by the at-job shall be mailed to the
user as well, unless redirected elsewhere. Mail shall be sent even if the job
produces no output.

If −m is not used, the job’s standard output and standard error shall be provided to
the user by means of mail, unless they are redirected elsewhere; if there is no such
output to provide, the implementation need not notify the user of the job’s
completion.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2421

76693

76694

76695

76696

76697

76698

76699

76700

76701

76702

76703

76704

76705

76706

76707

76708

76709

76710

76711

76712

76713

76714

76715

76716

76717

76718

76719

76720

76721

76722

76723

76724

76725

76726

76727

76728

76729

76730

76731

76732

76733

76734

76735

at Utilities

−q queuename
Specify in which queue to schedule a job for submission. When used with the −l
option, limit the search to that particular queue. By default, at-jobs shall be
scheduled in queue a. In contrast, queue b shall be reserved for batch jobs; see
batch. The meanings of all other queuenames are implementation-defined. If −q is
specified along with either of the −t time_arg or timespec arguments, the results are
unspecified.

−r Remove the jobs with the specified at_job_id operands that were previously
scheduled by the at utility.

−t time_arg Submit the job to be run at the time specified by the time option-argument, which
the application shall ensure has the format as specified by the touch −t time utility.

OPERANDS
The following operands shall be supported:

at_job_id The name reported by a previous invocation of the at utility at the time the job was
scheduled.

timespec Submit the job to be run at the date and time specified. All of the timespec operands
are interpreted as if they were separated by <space> characters and concatenated,
and shall be parsed as described in the grammar at the end of this section. The date
and time shall be interpreted as being in the timezone of the user (as determined
by the TZ variable), unless a timezone name appears as part of time, below.

In the POSIX locale, the following describes the three parts of the time specification
string. All of the values from the LC_TIME categories in the POSIX locale shall be
recognized in a case-insensitive manner.

time The time can be specified as one, two, or four digits. One-digit and
two-digit numbers shall be taken to be hours; four-digit numbers to
be hours and minutes. The time can alternatively be specified as two
numbers separated by a <colon>, meaning hour:minute. An AM/PM
indication (one of the values from the am_pm keywords in the
LC_TIME locale category) can follow the time; otherwise, a 24-hour
clock time shall be understood. A timezone name can also follow to
further qualify the time. The acceptable timezone names are
implementation-defined, except that they shall be case-insensitive
and the string utc is supported to indicate the time is in Coordinated
Universal Time. In the POSIX locale, the time field can also be one of
the following tokens:

midnight Indicates the time 12:00 am (00:00).

noon Indicates the time 12:00 pm.

now Indicates the current day and time. Invoking at <now>
shall submit an at-job for potentially immediate
execution (that is, subject only to unspecified
scheduling delays).

date An optional date can be specified as either a month name (one of the
values from the mon or abmon keywords in the LC_TIME locale
category) followed by a day number (and possibly year number
preceded by a comma), or a day of the week (one of the values from
the day or abday keywords in the LC_TIME locale category). In the

2422 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

76736

76737

76738

76739

76740

76741

76742

76743

76744

76745

76746

76747

76748

76749

76750

76751

76752

76753

76754

76755

76756

76757

76758

76759

76760

76761

76762

76763

76764

76765

76766

76767

76768

76769

76770

76771

76772

76773

76774

76775

76776

76777

76778

76779

76780

76781

Utilities at

POSIX locale, two special days shall be recognized:

today Indicates the current day.

tomorrow Indicates the day following the current day.

If no date is given, today shall be assumed if the given time is greater
than the current time, and tomorrow shall be assumed if it is less. If
the given month is less than the current month (and no year is given),
next year shall be assumed.

increment The optional increment shall be a number preceded by a <plus-sign>
(’+’) and suffixed by one of the following: minutes, hours, days,
weeks, months, or years. (The singular forms shall also be accepted.)
The keyword next shall be equivalent to an increment number of +1.
For example, the following are equivalent commands:

at 2pm + 1 week
at 2pm next week

The following grammar describes the precise format of timespec in the POSIX locale. The general
conventions for this style of grammar are described in Section 1.3 (on page 2287). This formal
syntax shall take precedence over the preceding text syntax description. The longest possible
token or delimiter shall be recognized at a given point. When used in a timespec, white space
shall also delimit tokens.

%token hr24clock_hr_min
%token hr24clock_hour
/*
An hr24clock_hr_min is a one, two, or four-digit number. A one-digit
or two-digit number constitutes an hr24clock_hour. An hr24clock_hour
may be any of the single digits [0,9], or may be double digits, ranging
from [00,23]. If an hr24clock_hr_min is a four-digit number, the
first two digits shall be a valid hr24clock_hour, while the last two
represent the number of minutes, from [00,59].

*/

%token wallclock_hr_min
%token wallclock_hour
/*
A wallclock_hr_min is a one, two-digit, or four-digit number.
A one-digit or two-digit number constitutes a wallclock_hour.
A wallclock_hour may be any of the single digits [1,9], or may
be double digits, ranging from [01,12]. If a wallclock_hr_min
is a four-digit number, the first two digits shall be a valid
wallclock_hour, while the last two represent the number of
minutes, from [00,59].

*/

%token minute
/*
A minute is a one or two-digit number whose value can be [0,9]
or [00,59].

*/

%token day_number
/*

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2423

76782

76783

76784

76785

76786

76787

76788

76789

76790

76791

76792

76793

76794

76795

76796

76797

76798

76799

76800

76801

76802

76803

76804

76805

76806

76807

76808

76809

76810

76811

76812

76813

76814

76815

76816

76817

76818

76819

76820

76821

76822

76823

76824

76825

76826

76827

76828

at Utilities

A day_number is a number in the range appropriate for the particular
month and year specified by month_name and year_number, respectively.
If no year_number is given, the current year is assumed if the given
date and time are later this year. If no year_number is given and
the date and time have already occurred this year and the month is
not the current month, next year is the assumed year.

*/

%token year_number
/*
A year_number is a four-digit number representing the year A.D., in
which the at_job is to be run.

*/

%token inc_number
/*
The inc_number is the number of times the succeeding increment
period is to be added to the specified date and time.

*/

%token timezone_name
/*
The name of an optional timezone suffix to the time field, in an
implementation-defined format.

*/

%token month_name
/*
One of the values from the mon or abmon keywords in the LC_TIME
locale category.

*/

%token day_of_week
/*
One of the values from the day or abday keywords in the LC_TIME
locale category.

*/

%token am_pm
/*
One of the values from the am_pm keyword in the LC_TIME locale
category.

*/

%start timespec
%%
timespec : time

| time date
| time increment
| time date increment
| nowspec
;

nowspec : "now"
| "now" increment
;

2424 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

76829

76830

76831

76832

76833

76834

76835

76836

76837

76838

76839

76840

76841

76842

76843

76844

76845

76846

76847

76848

76849

76850

76851

76852

76853

76854

76855

76856

76857

76858

76859

76860

76861

76862

76863

76864

76865

76866

76867

76868

76869

76870

76871

76872

76873

76874

76875

76876

Utilities at

time : hr24clock_hr_min
| hr24clock_hr_min timezone_name
| hr24clock_hour ":" minute
| hr24clock_hour ":" minute timezone_name
| wallclock_hr_min am_pm
| wallclock_hr_min am_pm timezone_name
| wallclock_hour ":" minute am_pm
| wallclock_hour ":" minute am_pm timezone_name
| "noon"
| "midnight"
;

date : month_name day_number
| month_name day_number "," year_number
| day_of_week
| "today"
| "tomorrow"
;

increment : "+" inc_number inc_period
| "next" inc_period
;

inc_period : "minute" | "minutes"
| "hour" | "hours"
| "day" | "days"
| "week" | "weeks"
| "month" | "months"
| "year" | "years"
;

STDIN
The standard input shall be a text file consisting of commands acceptable to the shell command
language described in Chapter 2 (on page 2297). The standard input shall only be used if no −f
file option is specified.

INPUT FILES
See the STDIN section.

XSI The text files at.allow and at.deny, which are located in an implementation-defined directory,
shall contain zero or more user names, one per line, of users who are, respectively, authorized or
denied access to the at and batch utilities.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of at:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2425

76877

76878

76879

76880

76881

76882

76883

76884

76885

76886

76887

76888

76889

76890

76891

76892

76893

76894

76895

76896

76897

76898

76899

76900

76901

76902

76903

76904

76905

76906

76907

76908

76909

76910

76911

76912

76913

76914

76915

76916

76917

76918

76919

76920

76921

76922

at Utilities

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

LC_TIME Determine the format and contents for date and time strings written and accepted
by at.

SHELL Determine a name of a command interpreter to be used to invoke the at-job. If the
variable is unset or null, sh shall be used. If it is set to a value other than a name for
sh, the implementation shall do one of the following: use that shell; use sh; use the
login shell from the user database; or any of the preceding accompanied by a
warning diagnostic about which was chosen.

TZ Determine the timezone. The job shall be submitted for execution at the time
specified by timespec or −t time relative to the timezone specified by the TZ
variable. If timespec specifies a timezone, it shall override TZ. If timespec does not
specify a timezone and TZ is unset or null, an unspecified default timezone shall
be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When standard input is a terminal, prompts of unspecified format for each line of the user input
described in the STDIN section may be written to standard output.

In the POSIX locale, the following shall be written to the standard output for each job when jobs
are listed in response to the −l option:

"%s\t%s\n", at_job_id, <date>

where date shall be equivalent in format to the output of:

date +"%a %b %e %T %Y"

The date and time written shall be adjusted so that they appear in the timezone of the user (as
determined by the TZ variable).

STDERR
In the POSIX locale, the following shall be written to standard error when a job has been
successfully submitted:

"job %s at %s\n", at_job_id, <date>

where date has the same format as that described in the STDOUT section. Neither this, nor
warning messages concerning the selection of the command interpreter, shall be considered a
diagnostic that changes the exit status.

Diagnostic messages, if any, shall be written to standard error.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

2426 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

76923

76924

76925

76926

76927

76928

76929

76930

76931

76932

76933

76934

76935

76936

76937

76938

76939

76940

76941

76942

76943

76944

76945

76946

76947

76948

76949

76950

76951

76952

76953

76954

76955

76956

76957

76958

76959

76960

76961

76962

76963

Utilities at

EXIT STATUS
The following exit values shall be returned:

0 The at utility successfully submitted, removed, or listed a job or jobs.

>0 An error occurred.

CONSEQUENCES OF ERRORS
The job shall not be scheduled, removed, or listed.

APPLICATION USAGE
The format of the at command line shown here is guaranteed only for the POSIX locale. Other
cultures may be supported with substantially different interfaces, although implementations are
encouraged to provide comparable levels of functionality.

Since the commands run in a separate shell invocation, running in a separate process group with
no controlling terminal, open file descriptors, traps, and priority inherited from the invoking
environment are lost.

Some implementations do not allow substitution of different shells using SHELL. System V
systems, for example, have used the login shell value for the user in /etc/passwd. To select
reliably another command interpreter, the user must include it as part of the script, such as:

$ at 1800
myshell myscript
EOT
job ... at ...

$

EXAMPLES

1. This sequence can be used at a terminal:

at −m 0730 tomorrow
sort < file >outfile
EOT

2. This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
command procedure (the sequence of output redirection specifications is significant):

at now + 1 hour <<!
diff file1 file2 2>&1 >outfile | mailx mygroup
!

3. To have a job reschedule itself, at can be invoked from within the at-job. For example, this
daily processing script named my.daily runs every day (although crontab is a more
appropriate vehicle for such work):

my.daily runs every day
daily processing

at now tomorrow < my.daily

4. The spacing of the three portions of the POSIX locale timespec is quite flexible as long as
there are no ambiguities. Examples of various times and operand presentation include:

at 0815am Jan 24
at 8 :15amjan24
at now "+ 1day"
at 5 pm FRIday
at ’17

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2427

76964

76965

76966

76967

76968

76969

76970

76971

76972

76973

76974

76975

76976

76977

76978

76979

76980

76981

76982

76983

76984

76985

76986

76987

76988

76989

76990

76991

76992

76993

76994

76995

76996

76997

76998

76999

77000

77001

77002

77003

77004

77005

77006

77007

at Utilities

utc+
30minutes’

RATIONALE
The at utility reads from standard input the commands to be executed at a later time. It may be
useful to redirect standard output and standard error within the specified commands.

The −t time option was added as a new capability to support an internationalized way of
specifying a time for execution of the submitted job.

Early proposals added a ‘‘jobname’’ concept as a way of giving submitted jobs names that are
meaningful to the user submitting them. The historical, system-specified at_job_id gives no
indication of what the job is. Upon further reflection, it was decided that the benefit of this was
not worth the change in historical interface. The at functionality is useful in simple
environments, but in large or complex situations, the functionality provided by the Batch
Services option is more suitable.

The −q option historically has been an undocumented option, used mainly by the batch utility.

The System V −m option was added to provide a method for informing users that an at-job had
completed. Otherwise, users are only informed when output to standard error or standard
output are not redirected.

The behavior of at <now> was changed in an early proposal from being unspecified to
submitting a job for potentially immediate execution. Historical BSD at implementations support
this. Historical System V implementations give an error in that case, but a change to the System
V versions should have no backwards-compatibility ramifications.

On BSD-based systems, a −u user option has allowed those with appropriate privileges to access
the work of other users. Since this is primarily a system administration feature and is not
universally implemented, it has been omitted. Similarly, a specification for the output format for
a user with appropriate privileges viewing the queues of other users has been omitted.

The −f file option from System V is used instead of the BSD method of using the last operand as
the pathname. The BSD method is ambiguous—does:

at 1200 friday

mean the same thing if there is a file named friday in the current directory?

The at_job_id is composed of a limited character set in historical practice, and it is mandated here
to invalidate systems that might try using characters that require shell quoting or that could not
be easily parsed by shell scripts.

The at utility varies between System V and BSD systems in the way timezones are used. On
System V systems, the TZ variable affects the at-job submission times and the times displayed
for the user. On BSD systems, TZ is not taken into account. The BSD behavior is easily achieved
with the current specification. If the user wishes to have the timezone default to that of the
system, they merely need to issue the at command immediately following an unsetting or null
assignment to TZ. For example:

TZ= at noon ...

gives the desired BSD result.

While the yacc-like grammar specified in the OPERANDS section is lexically unambiguous with
respect to the digit strings, a lexical analyzer would probably be written to look for and return
digit strings in those cases. The parser could then check whether the digit string returned is a
valid day_number, year_number, and so on, based on the context.

2428 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

77008

77009

77010

77011

77012

77013

77014

77015

77016

77017

77018

77019

77020

77021

77022

77023

77024

77025

77026

77027

77028

77029

77030

77031

77032

77033

77034

77035

77036

77037

77038

77039

77040

77041

77042

77043

77044

77045

77046

77047

77048

77049

77050

77051

Utilities at

FUTURE DIRECTIONS
None.

SEE ALSO
batch , crontab

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• If −m is not used, the job’s standard output and standard error are provided to the user by
mail.

The effects of using the −q and −t options as defined in the IEEE P1003.2b draft standard are
specified.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The at utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-95 is applied, removing the references to fixed locations for the files referenced
by the at utility.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2429

77052

77053

77054

77055

77056

77057

77058

77059

77060

77061

77062

77063

77064

77065

77066

77067

77068

77069

77070

77071

77072

77073

awk Utilities

NAME
awk — pattern scanning and processing language

SYNOPSIS
awk [−F ERE] [−v assignment]... program [argument...]

awk [−F ERE] −f progfile [−f progfile]... [−v assignment]...
[argument...]

DESCRIPTION
The awk utility shall execute programs written in the awk programming language, which is
specialized for textual data manipulation. An awk program is a sequence of patterns and
corresponding actions. When input is read that matches a pattern, the action associated with that
pattern is carried out.

Input shall be interpreted as a sequence of records. By default, a record is a line, less its
terminating <newline>, but this can be changed by using the RS built-in variable. Each record of
input shall be matched in turn against each pattern in the program. For each pattern matched,
the associated action shall be executed.

The awk utility shall interpret each input record as a sequence of fields where, by default, a field
is a string of non-<blank> characters. This default white-space field delimiter can be changed by
using the FS built-in variable or −F ERE. The awk utility shall denote the first field in a record $1,
the second $2, and so on. The symbol $0 shall refer to the entire record; setting any other field
causes the re-evaluation of $0. Assigning to $0 shall reset the values of all other fields and the NF
built-in variable.

OPTIONS
The awk utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−F ERE Define the input field separator to be the extended regular expression ERE, before
any input is read; see Regular Expressions (on page 2439).

−f progfile Specify the pathname of the file progfile containing an awk program. If multiple
instances of this option are specified, the concatenation of the files specified as
progfile in the order specified shall be the awk program. The awk program can
alternatively be specified in the command line as a single argument.

−v assignment
The application shall ensure that the assignment argument is in the same form as an
assignment operand. The specified variable assignment shall occur prior to
executing the awk program, including the actions associated with BEGIN patterns
(if any). Multiple occurrences of this option can be specified.

OPERANDS
The following operands shall be supported:

program If no −f option is specified, the first operand to awk shall be the text of the awk
program. The application shall supply the program operand as a single argument to
awk. If the text does not end in a <newline>, awk shall interpret the text as if it did.

argument Either of the following two types of argument can be intermixed:

file A pathname of a file that contains the input to be read, which is
matched against the set of patterns in the program. If no file operands
are specified, or if a file operand is ’−’, the standard input shall be
used.

2430 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

77074

77075

77076

77077

77078

77079

77080

77081

77082

77083

77084

77085

77086

77087

77088

77089

77090

77091

77092

77093

77094

77095

77096

77097

77098

77099

77100

77101

77102

77103

77104

77105

77106

77107

77108

77109

77110

77111

77112

77113

77114

77115

77116

77117

77118

Utilities awk

assignment An operand that begins with an <underscore> or alphabetic
character from the portable character set (see the table in XBD Section
6.1, on page 125), followed by a sequence of underscores, digits, and
alphabetics from the portable character set, followed by the ’=’
character, shall specify a variable assignment rather than a pathname.
The characters before the ’=’ represent the name of an awk variable;
if that name is an awk reserved word (see Grammar, on page 2447)
the behavior is undefined. The characters following the <equals-
sign> shall be interpreted as if they appeared in the awk program
preceded and followed by a double-quote (’"’) character, as a
STRING token (see Grammar, on page 2447), except that if the last
character is an unescaped <backslash>, it shall be interpreted as a
literal <backslash> rather than as the first character of the sequence
"\"". The variable shall be assigned the value of that STRING
token and, if appropriate, shall be considered a numeric string (see
Expressions in awk, on page 2433), the variable shall also be assigned
its numeric value. Each such variable assignment shall occur just
prior to the processing of the following file, if any. Thus, an
assignment before the first file argument shall be executed after the
BEGIN actions (if any), while an assignment after the last file
argument shall occur before the END actions (if any). If there are no
file arguments, assignments shall be executed before processing the
standard input.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is ’−’;
see the INPUT FILES section. If the awk program contains no actions and no patterns, but is
otherwise a valid awk program, standard input and any file operands shall not be read and awk
shall exit with a return status of zero.

INPUT FILES
Input files to the awk program from any of the following sources shall be text files:

• Any file operands or their equivalents, achieved by modifying the awk variables ARGV
and ARGC

• Standard input in the absence of any file operands

• Arguments to the getline function

Whether the variable RS is set to a value other than a <newline> or not, for these files,
implementations shall support records terminated with the specified separator up to
{LINE_MAX} bytes and may support longer records.

If −f progfile is specified, the application shall ensure that the files named by each of the progfile
option-arguments are text files and their concatenation, in the same order as they appear in the
arguments, is an awk program.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of awk:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2431

77119

77120

77121

77122

77123

77124

77125

77126

77127

77128

77129

77130

77131

77132

77133

77134

77135

77136

77137

77138

77139

77140

77141

77142

77143

77144

77145

77146

77147

77148

77149

77150

77151

77152

77153

77154

77155

77156

77157

77158

77159

77160

77161

77162

77163

awk Utilities

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions and in comparisons of
string values.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), the behavior of character classes within regular
expressions, the identification of characters as letters, and the mapping of
uppercase and lowercase characters for the toupper and tolower functions.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_NUMERIC
Determine the radix character used when interpreting numeric input, performing
conversions between numeric and string values, and formatting numeric output.
Regardless of locale, the <period> character (the decimal-point character of the
POSIX locale) is the decimal-point character recognized in processing awk
programs (including assignments in command line arguments).

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PA TH Determine the search path when looking for commands executed by system(expr),
or input and output pipes; see XBD Chapter 8 (on page 173).

In addition, all environment variables shall be visible via the awk variable ENVIRON.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The nature of the output files depends on the awk program.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The nature of the output files depends on the awk program.

EXTENDED DESCRIPTION

Overall Program Structure

An awk program is composed of pairs of the form:

pattern { action }

Either the pattern or the action (including the enclosing brace characters) can be omitted.

A missing pattern shall match any record of input, and a missing action shall be equivalent to:

{ print }

Execution of the awk program shall start by first executing the actions associated with all BEGIN
patterns in the order they occur in the program. Then each file operand (or standard input if no
files were specified) shall be processed in turn by reading data from the file until a record

2432 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

77164

77165

77166

77167

77168

77169

77170

77171

77172

77173

77174

77175

77176

77177

77178

77179

77180

77181

77182

77183

77184

77185

77186

77187

77188

77189

77190

77191

77192

77193

77194

77195

77196

77197

77198

77199

77200

77201

77202

77203

77204

77205

Utilities awk

separator is seen (<newline> by default). Before the first reference to a field in the record is
evaluated, the record shall be split into fields, according to the rules in Regular Expressions (on
page 2439), using the value of FS that was current at the time the record was read. Each pattern
in the program then shall be evaluated in the order of occurrence, and the action associated with
each pattern that matches the current record executed. The action for a matching pattern shall be
executed before evaluating subsequent patterns. Finally, the actions associated with all END
patterns shall be executed in the order they occur in the program.

Expressions in awk

Expressions describe computations used in patterns and actions. In the following table, valid
expression operations are given in groups from highest precedence first to lowest precedence
last, with equal-precedence operators grouped between horizontal lines. In expression
evaluation, where the grammar is formally ambiguous, higher precedence operators shall be
evaluated before lower precedence operators. In this table expr, expr1, expr2, and expr3 represent
any expression, while lvalue represents any entity that can be assigned to (that is, on the left side
of an assignment operator). The precise syntax of expressions is given in Grammar (on page
2447).

Table 4-1 Expressions in Decreasing Precedence in awk

Syntax Name Type of Result Associativity

(expr) Grouping Type of expr N/A

$expr Field reference String N/A

lvalue ++ Post-increment Numeric N/A
lvalue − − Post-decrement Numeric N/A

++ lvalue Pre-increment Numeric N/A
− − lvalue Pre-decrement Numeric N/A

expr ˆ expr Exponentiation Numeric Right

! expr Logical not Numeric N/A
+ expr Unary plus Numeric N/A
− expr Unary minus Numeric N/A

expr * expr Multiplication Numeric Left
expr / expr Division Numeric Left
expr % expr Modulus Numeric Left

expr + expr Addition Numeric Left
expr − expr Subtraction Numeric Left

expr expr String concatenation String Left

expr < expr Less than Numeric None
expr <= expr Less than or equal to Numeric None
expr != expr Not equal to Numeric None
expr == expr Equal to Numeric None
expr > expr Greater than Numeric None
expr >= expr Greater than or equal to Numeric None

expr ˜ expr ERE match Numeric None
expr !˜ expr ERE non-match Numeric None

expr in array Array membership Numeric Left
(index) in array Multi-dimension array Numeric Left

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2433

77206

77207

77208

77209

77210

77211

77212

77213

77214

77215

77216

77217

77218

77219

77220

77221

77222

77223

77224

77225

77226

77227

77228

77229

77230

77231

77232

77233

77234

77235

77236

77237

77238

77239

77240

77241

77242

77243

77244

77245

77246

77247

77248

77249

awk Utilities

Syntax Name Type of Result Associativity

membership

expr && expr Logical AND Numeric Left

expr || expr Logical OR Numeric Left

expr1 ? expr2 : expr3 Conditional expression Type of selected Right
expr2 or expr3

lvalue ˆ= expr Exponentiation assignment Numeric Right
lvalue %= expr Modulus assignment Numeric Right
lvalue *= expr Multiplication assignment Numeric Right
lvalue /= expr Division assignment Numeric Right
lvalue += expr Addition assignment Numeric Right
lvalue −= expr Subtraction assignment Numeric Right
lvalue = expr Assignment Type of expr Right

Each expression shall have either a string value, a numeric value, or both. Except as stated for
specific contexts, the value of an expression shall be implicitly converted to the type needed for
the context in which it is used. A string value shall be converted to a numeric value either by the
equivalent of the following calls to functions defined by the ISO C standard:

setlocale(LC_NUMERIC, "");
numeric_value = atof(string_value);

or by converting the initial portion of the string to type double representation as follows:

The input string is decomposed into two parts: an initial, possibly empty, sequence of
white-space characters (as specified by isspace()) and a subject sequence interpreted as a
floating-point constant.

The expected form of the subject sequence is an optional ’+’ or ’−’ sign, then a non-
empty sequence of digits optionally containing a <period>, then an optional exponent
part. An exponent part consists of ’e’ or ’E’, followed by an optional sign, followed by
one or more decimal digits.

The sequence starting with the first digit or the <period> (whichever occurs first) is
interpreted as a floating constant of the C language, and if neither an exponent part nor a
<period> appears, a <period> is assumed to follow the last digit in the string. If the subject
sequence begins with a minus-sign, the value resulting from the conversion is negated.

A numeric value that is exactly equal to the value of an integer (see Section 1.1.2, on page 2283)
shall be converted to a string by the equivalent of a call to the sprintf function (see String
Functions, on page 2444) with the string "%d" as the fmt argument and the numeric value being
converted as the first and only expr argument. Any other numeric value shall be converted to a
string by the equivalent of a call to the sprintf function with the value of the variable
CONVFMT as the fmt argument and the numeric value being converted as the first and only
expr argument. The result of the conversion is unspecified if the value of CONVFMT is not a
floating-point format specification. This volume of POSIX.1-2008 specifies no explicit
conversions between numbers and strings. An application can force an expression to be treated
as a number by adding zero to it, or can force it to be treated as a string by concatenating the null
string ("") to it.

A string value shall be considered a numeric string if it comes from one of the following:

1. Field variables

2434 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

77250

77251

77252

77253

77254

77255

77256

77257

77258

77259

77260

77261

77262

77263

77264

77265

77266

77267

77268

77269

77270

77271

77272

77273

77274

77275

77276

77277

77278

77279

77280

77281

77282

77283

77284

77285

77286

77287

77288

77289

77290

77291

77292

77293

Utilities awk

2. Input from the getline() function

3. FILENAME

4. ARGV array elements

5. ENVIRON array elements

6. Array elements created by the split() function

7. A command line variable assignment

8. Variable assignment from another numeric string variable

and an implementation-dependent condition corresponding to either case (a) or (b) below is
met.

a. After the equivalent of the following calls to functions defined by the ISO C standard,
string_value_end would differ from string_value, and any characters before the terminating
null character in string_value_end would be <blank> characters:

char *string_value_end;
setlocale(LC_NUMERIC, "");
numeric_value = strtod (string_value, &string_value_end);

b. After all the following conversions have been applied, the resulting string would lexically
be recognized as a NUMBER token as described by the lexical conventions in Grammar
(on page 2447):

— All leading and trailing <blank> characters are discarded.

— If the first non-<blank> is ’+’ or ’−’, it is discarded.

— Each occurrence of the decimal point character from the current locale is changed to
a <period>.

In case (a) the numeric value of the numeric string shall be the value that would be returned by
the strtod() call. In case (b) if the first non-<blank> is ’−’, the numeric value of the numeric string
shall be the negation of the numeric value of the recognized NUMBER token; otherwise, the
numeric value of the numeric string shall be the numeric value of the recognized NUMBER
token. Whether or not a string is a numeric string shall be relevant only in contexts where that
term is used in this section.

When an expression is used in a Boolean context, if it has a numeric value, a value of zero shall
be treated as false and any other value shall be treated as true. Otherwise, a string value of the
null string shall be treated as false and any other value shall be treated as true. A Boolean
context shall be one of the following:

• The first subexpression of a conditional expression

• An expression operated on by logical NOT, logical AND, or logical OR

• The second expression of a for statement

• The expression of an if statement

• The expression of the while clause in either a while or do. . .while statement

• An expression used as a pattern (as in Overall Program Structure)

All arithmetic shall follow the semantics of floating-point arithmetic as specified by the ISO C
standard (see Section 1.1.2, on page 2283).

The value of the expression:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2435

77294

77295

77296

77297

77298

77299

77300

77301

77302

77303

77304

77305

77306

77307

77308

77309

77310

77311

77312

77313

77314

77315

77316

77317

77318

77319

77320

77321

77322

77323

77324

77325

77326

77327

77328

77329

77330

77331

77332

77333

77334

awk Utilities

expr1 ˆ expr2

shall be equivalent to the value returned by the ISO C standard function call:

pow(expr1, expr2)

The expression:

lvalue ˆ= expr

shall be equivalent to the ISO C standard expression:

lvalue = pow(lvalue, expr)

except that lvalue shall be evaluated only once. The value of the expression:

expr1 % expr2

shall be equivalent to the value returned by the ISO C standard function call:

fmod(expr1, expr2)

The expression:

lvalue %= expr

shall be equivalent to the ISO C standard expression:

lvalue = fmod(lvalue, expr)

except that lvalue shall be evaluated only once.

Variables and fields shall be set by the assignment statement:

lvalue = expression

and the type of expression shall determine the resulting variable type. The assignment includes
the arithmetic assignments ("+=", "−=", "*=", "/=", "%=", "ˆ=", "++", "− −") all of which
shall produce a numeric result. The left-hand side of an assignment and the target of increment
and decrement operators can be one of a variable, an array with index, or a field selector.

The awk language supplies arrays that are used for storing numbers or strings. Arrays need not
be declared. They shall initially be empty, and their sizes shall change dynamically. The
subscripts, or element identifiers, are strings, providing a type of associative array capability. An
array name followed by a subscript within square brackets can be used as an lvalue and thus as
an expression, as described in the grammar; see Grammar (on page 2447). Unsubscripted array
names can be used in only the following contexts:

• A parameter in a function definition or function call

• The NAME token following any use of the keyword in as specified in the grammar (see
Grammar, on page 2447); if the name used in this context is not an array name, the
behavior is undefined

A valid array index shall consist of one or more <comma>-separated expressions, similar to the
way in which multi-dimensional arrays are indexed in some programming languages. Because
awk arrays are really one-dimensional, such a <comma>-separated list shall be converted to a
single string by concatenating the string values of the separate expressions, each separated from
the other by the value of the SUBSEP variable. Thus, the following two index operations shall be
equivalent:

var[expr1, expr2, ... exprn]

var[expr1 SUBSEP expr2 SUBSEP ... SUBSEP exprn]

2436 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

77335

77336

77337

77338

77339

77340

77341

77342

77343

77344

77345

77346

77347

77348

77349

77350

77351

77352

77353

77354

77355

77356

77357

77358

77359

77360

77361

77362

77363

77364

77365

77366

77367

77368

77369

77370

77371

77372

77373

77374

Utilities awk

The application shall ensure that a multi-dimensioned index used with the in operator is
parenthesized. The in operator, which tests for the existence of a particular array element, shall
not cause that element to exist. Any other reference to a nonexistent array element shall
automatically create it.

Comparisons (with the ’<’, "<=", "!=", "==", ’>’, and ">=" operators) shall be made
numerically if both operands are numeric, if one is numeric and the other has a string value that
is a numeric string, or if one is numeric and the other has the uninitialized value. Otherwise,
operands shall be converted to strings as required and a string comparison shall be made using
the locale-specific collation sequence. The value of the comparison expression shall be 1 if the
relation is true, or 0 if the relation is false.

Variables and Special Variables

Variables can be used in an awk program by referencing them. With the exception of function
parameters (see User-Defined Functions, on page 2446), they are not explicitly declared.
Function parameter names shall be local to the function; all other variable names shall be global.
The same name shall not be used as both a function parameter name and as the name of a
function or a special awk variable. The same name shall not be used both as a variable name with
global scope and as the name of a function. The same name shall not be used within the same
scope both as a scalar variable and as an array. Uninitialized variables, including scalar
variables, array elements, and field variables, shall have an uninitialized value. An uninitialized
value shall have both a numeric value of zero and a string value of the empty string. Evaluation
of variables with an uninitialized value, to either string or numeric, shall be determined by the
context in which they are used.

Field variables shall be designated by a ’$’ followed by a number or numerical expression. The
effect of the field number expression evaluating to anything other than a non-negative integer is
unspecified; uninitialized variables or string values need not be converted to numeric values in
this context. New field variables can be created by assigning a value to them. References to
nonexistent fields (that is, fields after $NF), shall evaluate to the uninitialized value. Such
references shall not create new fields. However, assigning to a nonexistent field (for example,
$(NF+2)=5) shall increase the value of NF; create any intervening fields with the uninitialized
value; and cause the value of $0 to be recomputed, with the fields being separated by the value
of OFS. Each field variable shall have a string value or an uninitialized value when created.
Field variables shall have the uninitialized value when created from $0 using FS and the variable
does not contain any characters. If appropriate, the field variable shall be considered a numeric
string (see Expressions in awk, on page 2433).

Implementations shall support the following other special variables that are set by awk:

ARGC The number of elements in the ARGV array.

ARGV An array of command line arguments, excluding options and the program
argument, numbered from zero to ARGC−1.

The arguments in ARGV can be modified or added to; ARGC can be altered. As
each input file ends, awk shall treat the next non-null element of ARGV, up to the
current value of ARGC−1, inclusive, as the name of the next input file. Thus,
setting an element of ARGV to null means that it shall not be treated as an input
file. The name ’−’ indicates the standard input. If an argument matches the format
of an assignment operand, this argument shall be treated as an assignment rather
than a file argument.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2437

77375

77376

77377

77378

77379

77380

77381

77382

77383

77384

77385

77386

77387

77388

77389

77390

77391

77392

77393

77394

77395

77396

77397

77398

77399

77400

77401

77402

77403

77404

77405

77406

77407

77408

77409

77410

77411

77412

77413

77414

77415

77416

77417

77418

77419

awk Utilities

CONVFMT The printf format for converting numbers to strings (except for output statements,
where OFMT is used); "%.6g" by default.

ENVIRON An array representing the value of the environment, as described in the exec
functions defined in the System Interfaces volume of POSIX.1-2008. The indices of
the array shall be strings consisting of the names of the environment variables, and
the value of each array element shall be a string consisting of the value of that
variable. If appropriate, the environment variable shall be considered a numeric
string (see Expressions in awk, on page 2433); the array element shall also have its
numeric value.

In all cases where the behavior of awk is affected by environment variables
(including the environment of any commands that awk executes via the system
function or via pipeline redirections with the print statement, the printf statement,
or the getline function), the environment used shall be the environment at the time
awk began executing; it is implementation-defined whether any modification of
ENVIRON affects this environment.

FILENAME A pathname of the current input file. Inside a BEGIN action the value is
undefined. Inside an END action the value shall be the name of the last input file
processed.

FNR The ordinal number of the current record in the current file. Inside a BEGIN action
the value shall be zero. Inside an END action the value shall be the number of the
last record processed in the last file processed.

FS Input field separator regular expression; a <space> by default.

NF The number of fields in the current record. Inside a BEGIN action, the use of NF is
undefined unless a getline function without a var argument is executed previously.
Inside an END action, NF shall retain the value it had for the last record read,
unless a subsequent, redirected, getline function without a var argument is
performed prior to entering the END action.

NR The ordinal number of the current record from the start of input. Inside a BEGIN
action the value shall be zero. Inside an END action the value shall be the number
of the last record processed.

OFMT The printf format for converting numbers to strings in output statements (see
Output Statements, on page 2442); "%.6g" by default. The result of the conversion
is unspecified if the value of OFMT is not a floating-point format specification.

OFS The print statement output field separator; <space> by default.

ORS The print statement output record separator; a <newline> by default.

RLENGTH The length of the string matched by the match function.

RS The first character of the string value of RS shall be the input record separator; a
<newline> by default. If RS contains more than one character, the results are
unspecified. If RS is null, then records are separated by sequences consisting of a
<newline> plus one or more blank lines, leading or trailing blank lines shall not
result in empty records at the beginning or end of the input, and a <newline> shall
always be a field separator, no matter what the value of FS is.

RSTART The starting position of the string matched by the match function, numbering from
1. This shall always be equivalent to the return value of the match function.

2438 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

77420

77421

77422

77423

77424

77425

77426

77427

77428

77429

77430

77431

77432

77433

77434

77435

77436

77437

77438

77439

77440

77441

77442

77443

77444

77445

77446

77447

77448

77449

77450

77451

77452

77453

77454

77455

77456

77457

77458

77459

77460

77461

77462

77463

Utilities awk

SUBSEP The subscript separator string for multi-dimensional arrays; the default value is
implementation-defined.

Regular Expressions

The awk utility shall make use of the extended regular expression notation (see XBD Section 9.4,
on page 188) except that it shall allow the use of C-language conventions for escaping special
characters within the EREs, as specified in the table in XBD Chapter 5 (on page 121) (’\\’,
’\a’, ’\b’, ’\f’, ’\n’, ’\r’, ’\t’, ’\v’) and the following table; these escape sequences
shall be recognized both inside and outside bracket expressions. Note that records need not be
separated by <newline> characters and string constants can contain <newline> characters, so
even the "\n" sequence is valid in awk EREs. Using a <slash> character within an ERE requires
the escaping shown in the following table.

Table 4-2 Escape Sequences in awk

Escape
Sequence Description Meaning

\" <backslash> <quotation-mark> <quotation-mark> character

\/ <backslash> <slash> <slash> character

\ddd A <backslash> character followed by
the longest sequence of one, two, or
three octal-digit characters (01234567).
If all of the digits are 0 (that is,
representation of the NUL character),
the behavior is undefined.

The character whose encoding is
represented by the one, two, or three-
digit octal integer. Multi-byte
characters require multiple,
concatenated escape sequences of this
type, including the leading
<backslash> for each byte.

\c UndefinedA <backslash> character followed by
any character not described in this
table or in the table in XBD Chapter 5
(on page 121) (’\\’, ’\a’, ’\b’,
’\f’, ’\n’, ’\r’, ’\t’, ’\v’).

A regular expression can be matched against a specific field or string by using one of the two
regular expression matching operators, ’˜’ and "!˜". These operators shall interpret their
right-hand operand as a regular expression and their left-hand operand as a string. If the regular
expression matches the string, the ’˜’ expression shall evaluate to a value of 1, and the "!˜"
expression shall evaluate to a value of 0. (The regular expression matching operation is as
defined by the term matched in XBD Section 9.1 (on page 181), where a match occurs on any part
of the string unless the regular expression is limited with the <circumflex> or <dollar-sign>
special characters.) If the regular expression does not match the string, the ’˜’ expression shall
evaluate to a value of 0, and the "!˜" expression shall evaluate to a value of 1. If the right-hand
operand is any expression other than the lexical token ERE, the string value of the expression
shall be interpreted as an extended regular expression, including the escape conventions
described above. Note that these same escape conventions shall also be applied in determining
the value of a string literal (the lexical token STRING), and thus shall be applied a second time
when a string literal is used in this context.

When an ERE token appears as an expression in any context other than as the right-hand of the
’˜’ or "!˜" operator or as one of the built-in function arguments described below, the value of
the resulting expression shall be the equivalent of:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2439

77464

77465

77466

77467

77468

77469

77470

77471

77472

77473

77474

77475

77476

77477

77478

77479

77480

77481

77482

77483

77484

77485

77486

77487

77488

77489

77490

77491

77492

77493

77494

77495

77496

77497

77498

77499

77500

77501

77502

77503

77504

77505

77506

77507

77508

awk Utilities

$0 ˜ /ere/

The ere argument to the gsub, match, sub functions, and the fs argument to the split function
(see String Functions, on page 2444) shall be interpreted as extended regular expressions. These
can be either ERE tokens or arbitrary expressions, and shall be interpreted in the same manner
as the right-hand side of the ’˜’ or "!˜" operator.

An extended regular expression can be used to separate fields by using the −F ERE option or by
assigning a string containing the expression to the built-in variable FS. The default value of the
FS variable shall be a single <space>. The following describes FS behavior:

1. If FS is a null string, the behavior is unspecified.

2. If FS is a single character:

a. If FS is <space>, skip leading and trailing <blank> characters; fields shall be
delimited by sets of one or more <blank> characters.

b. Otherwise, if FS is any other character c, fields shall be delimited by each single
occurrence of c.

3. Otherwise, the string value of FS shall be considered to be an extended regular
expression. Each occurrence of a sequence matching the extended regular expression shall
delimit fields.

Except for the ’˜’ and "!˜" operators, and in the gsub, match, split, and sub built-in functions,
ERE matching shall be based on input records; that is, record separator characters (the first
character of the value of the variable RS, <newline> by default) cannot be embedded in the
expression, and no expression shall match the record separator character. If the record separator
is not <newline>, <newline> characters embedded in the expression can be matched. For the
’˜’ and "!˜" operators, and in those four built-in functions, ERE matching shall be based on
text strings; that is, any character (including <newline> and the record separator) can be
embedded in the pattern, and an appropriate pattern shall match any character. However, in all
awk ERE matching, the use of one or more NUL characters in the pattern, input record, or text
string produces undefined results.

Patterns

A pattern is any valid expression, a range specified by two expressions separated by a comma, or
one of the two special patterns BEGIN or END.

Special Patterns

The awk utility shall recognize two special patterns, BEGIN and END. Each BEGIN pattern
shall be matched once and its associated action executed before the first record of input is read—
except possibly by use of the getline function (see Input/Output and General Functions, on
page 2445) in a prior BEGIN action—and before command line assignment is done. Each END
pattern shall be matched once and its associated action executed after the last record of input has
been read. These two patterns shall have associated actions.

BEGIN and END shall not combine with other patterns. Multiple BEGIN and END patterns
shall be allowed. The actions associated with the BEGIN patterns shall be executed in the order
specified in the program, as are the END actions. An END pattern can precede a BEGIN pattern
in a program.

If an awk program consists of only actions with the pattern BEGIN, and the BEGIN action
contains no getline function, awk shall exit without reading its input when the last statement in
the last BEGIN action is executed. If an awk program consists of only actions with the pattern

2440 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

77509

77510

77511

77512

77513

77514

77515

77516

77517

77518

77519

77520

77521

77522

77523

77524

77525

77526

77527

77528

77529

77530

77531

77532

77533

77534

77535

77536

77537

77538

77539

77540

77541

77542

77543

77544

77545

77546

77547

77548

77549

77550

77551

77552

Utilities awk

END or only actions with the patterns BEGIN and END, the input shall be read before the
statements in the END actions are executed.

Expression Patterns

An expression pattern shall be evaluated as if it were an expression in a Boolean context. If the
result is true, the pattern shall be considered to match, and the associated action (if any) shall be
executed. If the result is false, the action shall not be executed.

Pattern Ranges

A pattern range consists of two expressions separated by a comma; in this case, the action shall
be performed for all records between a match of the first expression and the following match of
the second expression, inclusive. At this point, the pattern range can be repeated starting at
input records subsequent to the end of the matched range.

Actions

An action is a sequence of statements as shown in the grammar in Grammar (on page 2447).
Any single statement can be replaced by a statement list enclosed in curly braces. The
application shall ensure that statements in a statement list are separated by <newline> or
<semicolon> characters. Statements in a statement list shall be executed sequentially in the order
that they appear.

The expression acting as the conditional in an if statement shall be evaluated and if it is non-zero
or non-null, the following statement shall be executed; otherwise, if else is present, the statement
following the else shall be executed.

The if, while, do. . .while, for, break, and continue statements are based on the ISO C standard
(see Section 1.1.2, on page 2283), except that the Boolean expressions shall be treated as
described in Expressions in awk (on page 2433), and except in the case of:

for (variable in array)

which shall iterate, assigning each index of array to variable in an unspecified order. The results of
adding new elements to array within such a for loop are undefined. If a break or continue
statement occurs outside of a loop, the behavior is undefined.

The delete statement shall remove an individual array element. Thus, the following code deletes
an entire array:

for (index in array)
delete array[index]

The next statement shall cause all further processing of the current input record to be
abandoned. The behavior is undefined if a next statement appears or is invoked in a BEGIN or
END action.

The exit statement shall invoke all END actions in the order in which they occur in the program
source and then terminate the program without reading further input. An exit statement inside
an END action shall terminate the program without further execution of END actions. If an
expression is specified in an exit statement, its numeric value shall be the exit status of awk,
unless subsequent errors are encountered or a subsequent exit statement with an expression is
executed.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2441

77553

77554

77555

77556

77557

77558

77559

77560

77561

77562

77563

77564

77565

77566

77567

77568

77569

77570

77571

77572

77573

77574

77575

77576

77577

77578

77579

77580

77581

77582

77583

77584

77585

77586

77587

77588

77589

77590

77591

77592

awk Utilities

Output Statements

Both print and printf statements shall write to standard output by default. The output shall be
written to the location specified by output_redirection if one is supplied, as follows:

> expression

>> expression

| expression

In all cases, the expression shall be evaluated to produce a string that is used as a pathname into
which to write (for ’>’ or ">>") or as a command to be executed (for ’|’). Using the first two
forms, if the file of that name is not currently open, it shall be opened, creating it if necessary
and using the first form, truncating the file. The output then shall be appended to the file. As
long as the file remains open, subsequent calls in which expression evaluates to the same string
value shall simply append output to the file. The file remains open until the close function (see
Input/Output and General Functions, on page 2445) is called with an expression that evaluates
to the same string value.

The third form shall write output onto a stream piped to the input of a command. The stream
shall be created if no stream is currently open with the value of expression as its command name.
The stream created shall be equivalent to one created by a call to the popen() function defined in
the System Interfaces volume of POSIX.1-2008 with the value of expression as the command
argument and a value of w as the mode argument. As long as the stream remains open,
subsequent calls in which expression evaluates to the same string value shall write output to the
existing stream. The stream shall remain open until the close function (see Input/Output and
General Functions, on page 2445) is called with an expression that evaluates to the same string
value. At that time, the stream shall be closed as if by a call to the pclose() function defined in
the System Interfaces volume of POSIX.1-2008.

As described in detail by the grammar in Grammar (on page 2447), these output statements shall
take a <comma>-separated list of expressions referred to in the grammar by the non-terminal
symbols expr_list, print_expr_list, or print_expr_list_opt. This list is referred to here as the
expression list, and each member is referred to as an expression argument.

The print statement shall write the value of each expression argument onto the indicated output
stream separated by the current output field separator (see variable OFS above), and terminated
by the output record separator (see variable ORS above). All expression arguments shall be
taken as strings, being converted if necessary; this conversion shall be as described in
Expressions in awk (on page 2433), with the exception that the printf format in OFMT shall be
used instead of the value in CONVFMT. An empty expression list shall stand for the whole
input record ($0).

The printf statement shall produce output based on a notation similar to the File Format
Notation used to describe file formats in this volume of POSIX.1-2008 (see XBD Chapter 5, on
page 121). Output shall be produced as specified with the first expression argument as the string
format and subsequent expression arguments as the strings arg1 to argn, inclusive, with the
following exceptions:

1. The format shall be an actual character string rather than a graphical representation.
Therefore, it cannot contain empty character positions. The <space> in the format string,
in any context other than a flag of a conversion specification, shall be treated as an
ordinary character that is copied to the output.

2. If the character set contains a ’∆’ character and that character appears in the format
string, it shall be treated as an ordinary character that is copied to the output.

2442 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

77593

77594

77595

77596

77597

77598

77599

77600

77601

77602

77603

77604

77605

77606

77607

77608

77609

77610

77611

77612

77613

77614

77615

77616

77617

77618

77619

77620

77621

77622

77623

77624

77625

77626

77627

77628

77629

77630

77631

77632

77633

77634

77635

77636

77637

77638

Utilities awk

3. The escape sequences beginning with a <backslash> character shall be treated as sequences
of ordinary characters that are copied to the output. Note that these same sequences shall
be interpreted lexically by awk when they appear in literal strings, but they shall not be
treated specially by the printf statement.

4. A field width or precision can be specified as the ’*’ character instead of a digit string. In
this case the next argument from the expression list shall be fetched and its numeric value
taken as the field width or precision.

5. The implementation shall not precede or follow output from the d or u conversion
specifier characters with <blank> characters not specified by the format string.

6. The implementation shall not precede output from the o conversion specifier character
with leading zeros not specified by the format string.

7. For the c conversion specifier character: if the argument has a numeric value, the
character whose encoding is that value shall be output. If the value is zero or is not the
encoding of any character in the character set, the behavior is undefined. If the argument
does not have a numeric value, the first character of the string value shall be output; if the
string does not contain any characters, the behavior is undefined.

8. For each conversion specification that consumes an argument, the next expression
argument shall be evaluated. With the exception of the c conversion specifier character,
the value shall be converted (according to the rules specified in Expressions in awk, on
page 2433) to the appropriate type for the conversion specification.

9. If there are insufficient expression arguments to satisfy all the conversion specifications in
the format string, the behavior is undefined.

10. If any character sequence in the format string begins with a ’%’ character, but does not
form a valid conversion specification, the behavior is unspecified.

Both print and printf can output at least {LINE_MAX} bytes.

Functions

The awk language has a variety of built-in functions: arithmetic, string, input/output, and
general.

Arithmetic Functions

The arithmetic functions, except for int, shall be based on the ISO C standard (see Section 1.1.2,
on page 2283). The behavior is undefined in cases where the ISO C standard specifies that an
error be returned or that the behavior is undefined. Although the grammar (see Grammar, on
page 2447) permits built-in functions to appear with no arguments or parentheses, unless the
argument or parentheses are indicated as optional in the following list (by displaying them
within the "[]" brackets), such use is undefined.

atan2(y,x) Return arctangent of y/x in radians in the range [−π,π].

cos(x) Return cosine of x, where x is in radians.

sin(x) Return sine of x, where x is in radians.

exp(x) Return the exponential function of x.

log(x) Return the natural logarithm of x.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2443

77639

77640

77641

77642

77643

77644

77645

77646

77647

77648

77649

77650

77651

77652

77653

77654

77655

77656

77657

77658

77659

77660

77661

77662

77663

77664

77665

77666

77667

77668

77669

77670

77671

77672

77673

77674

77675

77676

77677

77678

awk Utilities

sqrt(x) Return the square root of x.

int(x) Return the argument truncated to an integer. Truncation shall be toward 0 when
x>0.

rand() Return a random number n, such that 0≤n<1.

srand([expr]) Set the seed value for rand to expr or use the time of day if expr is omitted. The
previous seed value shall be returned.

String Functions

The string functions in the following list shall be supported. Although the grammar (see
Grammar, on page 2447) permits built-in functions to appear with no arguments or parentheses,
unless the argument or parentheses are indicated as optional in the following list (by displaying
them within the "[]" brackets), such use is undefined.

gsub(ere, repl[, in])
Behave like sub (see below), except that it shall replace all occurrences of the
regular expression (like the ed utility global substitute) in $0 or in the in argument,
when specified.

index(s, t) Return the position, in characters, numbering from 1, in string s where string t first
occurs, or zero if it does not occur at all.

length[([s])] Return the length, in characters, of its argument taken as a string, or of the whole
record, $0, if there is no argument.

match(s, ere) Return the position, in characters, numbering from 1, in string s where the
extended regular expression ere occurs, or zero if it does not occur at all. RSTART
shall be set to the starting position (which is the same as the returned value), zero
if no match is found; RLENGTH shall be set to the length of the matched string, −1
if no match is found.

split(s, a[, fs])
Split the string s into array elements a[1], a[2], . . ., a[n], and return n. All elements
of the array shall be deleted before the split is performed. The separation shall be
done with the ERE fs or with the field separator FS if fs is not given. Each array
element shall have a string value when created and, if appropriate, the array
element shall be considered a numeric string (see Expressions in awk, on page
2433). The effect of a null string as the value of fs is unspecified.

sprintf(fmt, expr, expr, . . .)
Format the expressions according to the printf format given by fmt and return the
resulting string.

sub(ere, repl[, in])
Substitute the string repl in place of the first instance of the extended regular
expression ERE in string in and return the number of substitutions. An
<ampersand> (’&’) appearing in the string repl shall be replaced by the string
from in that matches the ERE. An <ampersand> preceded with a <backslash> shall
be interpreted as the literal <ampersand> character. An occurrence of two
consecutive <backslash> characters shall be interpreted as just a single literal
<backslash> character. Any other occurrence of a <backslash> (for example,
preceding any other character) shall be treated as a literal <backslash> character.
Note that if repl is a string literal (the lexical token STRING; see Grammar, on page
2447), the handling of the <ampersand> character occurs after any lexical

2444 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

77679

77680

77681

77682

77683

77684

77685

77686

77687

77688

77689

77690

77691

77692

77693

77694

77695

77696

77697

77698

77699

77700

77701

77702

77703

77704

77705

77706

77707

77708

77709

77710

77711

77712

77713

77714

77715

77716

77717

77718

77719

77720

77721

77722

77723

Utilities awk

processing, including any lexical <backslash>-escape sequence processing. If in is
specified and it is not an lvalue (see Expressions in awk, on page 2433), the
behavior is undefined. If in is omitted, awk shall use the current record ($0) in its
place.

substr(s, m[, n])
Return the at most n-character substring of s that begins at position m, numbering
from 1. If n is omitted, or if n specifies more characters than are left in the string,
the length of the substring shall be limited by the length of the string s.

tolower(s) Return a string based on the string s. Each character in s that is an uppercase letter
specified to have a tolower mapping by the LC_CTYPE category of the current
locale shall be replaced in the returned string by the lowercase letter specified by
the mapping. Other characters in s shall be unchanged in the returned string.

toupper(s) Return a string based on the string s. Each character in s that is a lowercase letter
specified to have a toupper mapping by the LC_CTYPE category of the current
locale is replaced in the returned string by the uppercase letter specified by the
mapping. Other characters in s are unchanged in the returned string.

All of the preceding functions that take ERE as a parameter expect a pattern or a string valued
expression that is a regular expression as defined in Regular Expressions (on page 2439).

Input/Output and General Functions

The input/output and general functions are:

close(expression)
Close the file or pipe opened by a print or printf statement or a call to getline with
the same string-valued expression. The limit on the number of open expression
arguments is implementation-defined. If the close was successful, the function
shall return zero; otherwise, it shall return non-zero.

expression | getline [var]
Read a record of input from a stream piped from the output of a command. The
stream shall be created if no stream is currently open with the value of expression as
its command name. The stream created shall be equivalent to one created by a call
to the popen() function with the value of expression as the command argument and a
value of r as the mode argument. As long as the stream remains open, subsequent
calls in which expression evaluates to the same string value shall read subsequent
records from the stream. The stream shall remain open until the close function is
called with an expression that evaluates to the same string value. At that time, the
stream shall be closed as if by a call to the pclose() function. If var is omitted, $0 and
NF shall be set; otherwise, var shall be set and, if appropriate, it shall be considered
a numeric string (see Expressions in awk, on page 2433).

The getline operator can form ambiguous constructs when there are
unparenthesized operators (including concatenate) to the left of the ’|’ (to the
beginning of the expression containing getline). In the context of the ’$’ operator,
’|’ shall behave as if it had a lower precedence than ’$’. The result of evaluating
other operators is unspecified, and conforming applications shall parenthesize
properly all such usages.

getline Set $0 to the next input record from the current input file. This form of getline shall
set the NF, NR, and FNR variables.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2445

77724

77725

77726

77727

77728

77729

77730

77731

77732

77733

77734

77735

77736

77737

77738

77739

77740

77741

77742

77743

77744

77745

77746

77747

77748

77749

77750

77751

77752

77753

77754

77755

77756

77757

77758

77759

77760

77761

77762

77763

77764

77765

77766

77767

77768

awk Utilities

getline var Set variable var to the next input record from the current input file and, if
appropriate, var shall be considered a numeric string (see Expressions in awk, on
page 2433). This form of getline shall set the FNR and NR variables.

getline [var] < expression
Read the next record of input from a named file. The expression shall be evaluated
to produce a string that is used as a pathname. If the file of that name is not
currently open, it shall be opened. As long as the stream remains open, subsequent
calls in which expression evaluates to the same string value shall read subsequent
records from the file. The file shall remain open until the close function is called
with an expression that evaluates to the same string value. If var is omitted, $0 and
NF shall be set; otherwise, var shall be set and, if appropriate, it shall be considered
a numeric string (see Expressions in awk, on page 2433).

The getline operator can form ambiguous constructs when there are
unparenthesized binary operators (including concatenate) to the right of the ’<’
(up to the end of the expression containing the getline). The result of evaluating
such a construct is unspecified, and conforming applications shall parenthesize
properly all such usages.

system(expression)
Execute the command given by expression in a manner equivalent to the system()
function defined in the System Interfaces volume of POSIX.1-2008 and return the
exit status of the command.

All forms of getline shall return 1 for successful input, zero for end-of-file, and −1 for an error.

Where strings are used as the name of a file or pipeline, the application shall ensure that the
strings are textually identical. The terminology ‘‘same string value’’ implies that ‘‘equivalent
strings’’, even those that differ only by <space> characters, represent different files.

User-Defined Functions

The awk language also provides user-defined functions. Such functions can be defined as:

function name([parameter, ...]) { statements }

A function can be referred to anywhere in an awk program; in particular, its use can precede its
definition. The scope of a function is global.

Function parameters, if present, can be either scalars or arrays; the behavior is undefined if an
array name is passed as a parameter that the function uses as a scalar, or if a scalar expression is
passed as a parameter that the function uses as an array. Function parameters shall be passed by
value if scalar and by reference if array name.

The number of parameters in the function definition need not match the number of parameters
in the function call. Excess formal parameters can be used as local variables. If fewer arguments
are supplied in a function call than are in the function definition, the extra parameters that are
used in the function body as scalars shall evaluate to the uninitialized value until they are
otherwise initialized, and the extra parameters that are used in the function body as arrays shall
be treated as uninitialized arrays where each element evaluates to the uninitialized value until
otherwise initialized.

When invoking a function, no white space can be placed between the function name and the
opening parenthesis. Function calls can be nested and recursive calls can be made upon
functions. Upon return from any nested or recursive function call, the values of all of the calling
function’s parameters shall be unchanged, except for array parameters passed by reference. The

2446 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

77769

77770

77771

77772

77773

77774

77775

77776

77777

77778

77779

77780

77781

77782

77783

77784

77785

77786

77787

77788

77789

77790

77791

77792

77793

77794

77795

77796

77797

77798

77799

77800

77801

77802

77803

77804

77805

77806

77807

77808

77809

77810

77811

77812

77813

Utilities awk

return statement can be used to return a value. If a return statement appears outside of a
function definition, the behavior is undefined.

In the function definition, <newline> characters shall be optional before the opening brace and
after the closing brace. Function definitions can appear anywhere in the program where a
pattern-action pair is allowed.

Grammar

The grammar in this section and the lexical conventions in the following section shall together
describe the syntax for awk programs. The general conventions for this style of grammar are
described in Section 1.3 (on page 2287). A valid program can be represented as the non-terminal
symbol program in the grammar. This formal syntax shall take precedence over the preceding
text syntax description.

%token NAME NUMBER STRING ERE
%token FUNC_NAME /* Name followed by ’(’ without white space. */

/* Keywords */
%token Begin End
/* ’BEGIN’ ’END’ */

%token Break Continue Delete Do Else
/* ’break’ ’continue’ ’delete’ ’do’ ’else’ */

%token Exit For Function If In
/* ’exit’ ’for’ ’function’ ’if’ ’in’ */

%token Next Print Printf Return While
/* ’next’ ’print’ ’printf’ ’return’ ’while’ */

/* Reserved function names */
%token BUILTIN_FUNC_NAME

/* One token for the following:
* atan2 cos sin exp log sqrt int rand srand
* gsub index length match split sprintf sub
* substr tolower toupper close system
*/

%token GETLINE
/* Syntactically different from other built-ins. */

/* Two-character tokens. */
%token ADD_ASSIGN SUB_ASSIGN MUL_ASSIGN DIV_ASSIGN MOD_ASSIGN POW_ASSIGN
/* ’+=’ ’−=’ ’*=’ ’/=’ ’%=’ ’ˆ=’ */

%token OR AND NO_MATCH EQ LE GE NE INCR DECR APPEND
/* ’||’ ’&&’ ’!˜’ ’==’ ’<=’ ’>=’ ’!=’ ’++’ ’− −’ ’>>’ */

/* One-character tokens. */
%token ’{’ ’}’ ’(’ ’)’ ’[’ ’]’ ’,’ ’;’ NEWLINE
%token ’+’ ’−’ ’*’ ’%’ ’ˆ’ ’!’ ’>’ ’<’ ’|’ ’?’ ’:’ ’˜’ ’$’ ’=’

%start program
%%

program : item_list
| actionless_item_list
;

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2447

77814

77815

77816

77817

77818

77819

77820

77821

77822

77823

77824

77825

77826

77827

77828

77829

77830

77831

77832

77833

77834

77835

77836

77837

77838

77839

77840

77841

77842

77843

77844

77845

77846

77847

77848

77849

77850

77851

77852

77853

77854

77855

77856

77857

awk Utilities

item_list : newline_opt
| actionless_item_list item terminator
| item_list item terminator
| item_list action terminator
;

actionless_item_list : item_list pattern terminator
| actionless_item_list pattern terminator
;

item : pattern action
| Function NAME ’(’ param_list_opt ’)’

newline_opt action
| Function FUNC_NAME ’(’ param_list_opt ’)’

newline_opt action
;

param_list_opt : /* empty */
| param_list
;

param_list : NAME
| param_list ’,’ NAME
;

pattern : Begin
| End
| expr
| expr ’,’ newline_opt expr
;

action : ’{’ newline_opt ’}’
| ’{’ newline_opt terminated_statement_list ’}’
| ’{’ newline_opt unterminated_statement_list ’}’
;

terminator : terminator ’;’
| terminator NEWLINE
| ’;’
| NEWLINE
;

terminated_statement_list : terminated_statement
| terminated_statement_list terminated_statement
;

unterminated_statement_list : unterminated_statement
| terminated_statement_list unterminated_statement
;

terminated_statement : action newline_opt
| If ’(’ expr ’)’ newline_opt terminated_statement
| If ’(’ expr ’)’ newline_opt terminated_statement

Else newline_opt terminated_statement
| While ’(’ expr ’)’ newline_opt terminated_statement
| For ’(’ simple_statement_opt ’;’

expr_opt ’;’ simple_statement_opt ’)’ newline_opt

2448 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

77858

77859

77860

77861

77862

77863

77864

77865

77866

77867

77868

77869

77870

77871

77872

77873

77874

77875

77876

77877

77878

77879

77880

77881

77882

77883

77884

77885

77886

77887

77888

77889

77890

77891

77892

77893

77894

77895

77896

77897

77898

77899

77900

77901

77902

77903

77904

Utilities awk

terminated_statement
| For ’(’ NAME In NAME ’)’ newline_opt

terminated_statement
| ’;’ newline_opt
| terminatable_statement NEWLINE newline_opt
| terminatable_statement ’;’ newline_opt
;

unterminated_statement : terminatable_statement
| If ’(’ expr ’)’ newline_opt unterminated_statement
| If ’(’ expr ’)’ newline_opt terminated_statement

Else newline_opt unterminated_statement
| While ’(’ expr ’)’ newline_opt unterminated_statement
| For ’(’ simple_statement_opt ’;’
expr_opt ’;’ simple_statement_opt ’)’ newline_opt

unterminated_statement
| For ’(’ NAME In NAME ’)’ newline_opt

unterminated_statement
;

terminatable_statement : simple_statement
| Break
| Continue
| Next
| Exit expr_opt
| Return expr_opt
| Do newline_opt terminated_statement While ’(’ expr ’)’
;

simple_statement_opt : /* empty */
| simple_statement
;

simple_statement : Delete NAME ’[’ expr_list ’]’
| expr
| print_statement
;

print_statement : simple_print_statement
| simple_print_statement output_redirection
;

simple_print_statement : Print print_expr_list_opt
| Print ’(’ multiple_expr_list ’)’
| Printf print_expr_list
| Printf ’(’ multiple_expr_list ’)’
;

output_redirection : ’>’ expr
| APPEND expr
| ’|’ expr
;

expr_list_opt : /* empty */
| expr_list
;

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2449

77905

77906

77907

77908

77909

77910

77911

77912

77913

77914

77915

77916

77917

77918

77919

77920

77921

77922

77923

77924

77925

77926

77927

77928

77929

77930

77931

77932

77933

77934

77935

77936

77937

77938

77939

77940

77941

77942

77943

77944

77945

77946

77947

77948

77949

77950

77951

77952

awk Utilities

expr_list : expr
| multiple_expr_list
;

multiple_expr_list : expr ’,’ newline_opt expr
| multiple_expr_list ’,’ newline_opt expr
;

expr_opt : /* empty */
| expr
;

expr : unary_expr
| non_unary_expr
;

unary_expr : ’+’ expr
| ’−’ expr
| unary_expr ’ˆ’ expr
| unary_expr ’*’ expr
| unary_expr ’/’ expr
| unary_expr ’%’ expr
| unary_expr ’+’ expr
| unary_expr ’−’ expr
| unary_expr non_unary_expr
| unary_expr ’<’ expr
| unary_expr LE expr
| unary_expr NE expr
| unary_expr EQ expr
| unary_expr ’>’ expr
| unary_expr GE expr
| unary_expr ’˜’ expr
| unary_expr NO_MATCH expr
| unary_expr In NAME
| unary_expr AND newline_opt expr
| unary_expr OR newline_opt expr
| unary_expr ’?’ expr ’:’ expr
| unary_input_function
;

non_unary_expr : ’(’ expr ’)’
| ’!’ expr
| non_unary_expr ’ˆ’ expr
| non_unary_expr ’*’ expr
| non_unary_expr ’/’ expr
| non_unary_expr ’%’ expr
| non_unary_expr ’+’ expr
| non_unary_expr ’−’ expr
| non_unary_expr non_unary_expr
| non_unary_expr ’<’ expr
| non_unary_expr LE expr
| non_unary_expr NE expr
| non_unary_expr EQ expr
| non_unary_expr ’>’ expr

2450 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

77953

77954

77955

77956

77957

77958

77959

77960

77961

77962

77963

77964

77965

77966

77967

77968

77969

77970

77971

77972

77973

77974

77975

77976

77977

77978

77979

77980

77981

77982

77983

77984

77985

77986

77987

77988

77989

77990

77991

77992

77993

77994

77995

77996

77997

77998

77999

78000

78001

Utilities awk

| non_unary_expr GE expr
| non_unary_expr ’˜’ expr
| non_unary_expr NO_MATCH expr
| non_unary_expr In NAME
| ’(’ multiple_expr_list ’)’ In NAME
| non_unary_expr AND newline_opt expr
| non_unary_expr OR newline_opt expr
| non_unary_expr ’?’ expr ’:’ expr
| NUMBER
| STRING
| lvalue
| ERE
| lvalue INCR
| lvalue DECR
| INCR lvalue
| DECR lvalue
| lvalue POW_ASSIGN expr
| lvalue MOD_ASSIGN expr
| lvalue MUL_ASSIGN expr
| lvalue DIV_ASSIGN expr
| lvalue ADD_ASSIGN expr
| lvalue SUB_ASSIGN expr
| lvalue ’=’ expr
| FUNC_NAME ’(’ expr_list_opt ’)’

/* no white space allowed before ’(’ */
| BUILTIN_FUNC_NAME ’(’ expr_list_opt ’)’
| BUILTIN_FUNC_NAME
| non_unary_input_function
;

print_expr_list_opt : /* empty */
| print_expr_list
;

print_expr_list : print_expr
| print_expr_list ’,’ newline_opt print_expr
;

print_expr : unary_print_expr
| non_unary_print_expr
;

unary_print_expr : ’+’ print_expr
| ’−’ print_expr
| unary_print_expr ’ˆ’ print_expr
| unary_print_expr ’*’ print_expr
| unary_print_expr ’/’ print_expr
| unary_print_expr ’%’ print_expr
| unary_print_expr ’+’ print_expr
| unary_print_expr ’−’ print_expr
| unary_print_expr non_unary_print_expr
| unary_print_expr ’˜’ print_expr
| unary_print_expr NO_MATCH print_expr
| unary_print_expr In NAME

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2451

78002

78003

78004

78005

78006

78007

78008

78009

78010

78011

78012

78013

78014

78015

78016

78017

78018

78019

78020

78021

78022

78023

78024

78025

78026

78027

78028

78029

78030

78031

78032

78033

78034

78035

78036

78037

78038

78039

78040

78041

78042

78043

78044

78045

78046

78047

78048

78049

78050

78051

awk Utilities

| unary_print_expr AND newline_opt print_expr
| unary_print_expr OR newline_opt print_expr
| unary_print_expr ’?’ print_expr ’:’ print_expr
;

non_unary_print_expr : ’(’ expr ’)’
| ’!’ print_expr
| non_unary_print_expr ’ˆ’ print_expr
| non_unary_print_expr ’*’ print_expr
| non_unary_print_expr ’/’ print_expr
| non_unary_print_expr ’%’ print_expr
| non_unary_print_expr ’+’ print_expr
| non_unary_print_expr ’−’ print_expr
| non_unary_print_expr non_unary_print_expr
| non_unary_print_expr ’˜’ print_expr
| non_unary_print_expr NO_MATCH print_expr
| non_unary_print_expr In NAME
| ’(’ multiple_expr_list ’)’ In NAME
| non_unary_print_expr AND newline_opt print_expr
| non_unary_print_expr OR newline_opt print_expr
| non_unary_print_expr ’?’ print_expr ’:’ print_expr
| NUMBER
| STRING
| lvalue
| ERE
| lvalue INCR
| lvalue DECR
| INCR lvalue
| DECR lvalue
| lvalue POW_ASSIGN print_expr
| lvalue MOD_ASSIGN print_expr
| lvalue MUL_ASSIGN print_expr
| lvalue DIV_ASSIGN print_expr
| lvalue ADD_ASSIGN print_expr
| lvalue SUB_ASSIGN print_expr
| lvalue ’=’ print_expr
| FUNC_NAME ’(’ expr_list_opt ’)’

/* no white space allowed before ’(’ */
| BUILTIN_FUNC_NAME ’(’ expr_list_opt ’)’
| BUILTIN_FUNC_NAME
;

lvalue : NAME
| NAME ’[’ expr_list ’]’
| ’$’ expr
;

non_unary_input_function : simple_get
| simple_get ’<’ expr
| non_unary_expr ’|’ simple_get
;

unary_input_function : unary_expr ’|’ simple_get
;

2452 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

78052

78053

78054

78055

78056

78057

78058

78059

78060

78061

78062

78063

78064

78065

78066

78067

78068

78069

78070

78071

78072

78073

78074

78075

78076

78077

78078

78079

78080

78081

78082

78083

78084

78085

78086

78087

78088

78089

78090

78091

78092

78093

78094

78095

78096

78097

78098

78099

78100

78101

Utilities awk

simple_get : GETLINE
| GETLINE lvalue
;

newline_opt : /* empty */
| newline_opt NEWLINE
;

This grammar has several ambiguities that shall be resolved as follows:

• Operator precedence and associativity shall be as described in Table 4-1 (on page 2433).

• In case of ambiguity, an else shall be associated with the most immediately preceding if
that would satisfy the grammar.

• In some contexts, a <slash> (’/’) that is used to surround an ERE could also be the
division operator. This shall be resolved in such a way that wherever the division operator
could appear, a <slash> is assumed to be the division operator. (There is no unary division
operator.)

Each expression in an awk program shall conform to the precedence and associativity rules, even
when this is not needed to resolve an ambiguity. For example, because ’$’ has higher
precedence than ’++’, the string "$x++− −" is not a valid awk expression, even though it is
unambiguously parsed by the grammar as "$(x++)− −".

One convention that might not be obvious from the formal grammar is where <newline>
characters are acceptable. There are several obvious placements such as terminating a statement,
and a <backslash> can be used to escape <newline> characters between any lexical tokens. In
addition, <newline> characters without <backslash> characters can follow a comma, an open
brace, logical AND operator ("&&"), logical OR operator ("||"), the do keyword, the else
keyword, and the closing parenthesis of an if, for, or while statement. For example:

{ print $1,
$2 }

Lexical Conventions

The lexical conventions for awk programs, with respect to the preceding grammar, shall be as
follows:

1. Except as noted, awk shall recognize the longest possible token or delimiter beginning at a
given point.

2. A comment shall consist of any characters beginning with the <number-sign> character
and terminated by, but excluding the next occurrence of, a <newline>. Comments shall
have no effect, except to delimit lexical tokens.

3. The <newline> shall be recognized as the token NEWLINE.

4. A <backslash> character immediately followed by a <newline> shall have no effect.

5. The token STRING shall represent a string constant. A string constant shall begin with
the character ’"’. Within a string constant, a <backslash> character shall be considered
to begin an escape sequence as specified in the table in XBD Chapter 5 (on page 121)
(’\\’, ’\a’, ’\b’, ’\f’, ’\n’, ’\r’, ’\t’, ’\v’). In addition, the escape sequences
in Table 4-2 (on page 2439) shall be recognized. A <newline> shall not occur within a
string constant. A string constant shall be terminated by the first unescaped occurrence of
the character ’"’ after the one that begins the string constant. The value of the string

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2453

78102

78103

78104

78105

78106

78107

78108

78109

78110

78111

78112

78113

78114

78115

78116

78117

78118

78119

78120

78121

78122

78123

78124

78125

78126

78127

78128

78129

78130

78131

78132

78133

78134

78135

78136

78137

78138

78139

78140

78141

78142

78143

78144

awk Utilities

shall be the sequence of all unescaped characters and values of escape sequences
between, but not including, the two delimiting ’"’ characters.

6. The token ERE represents an extended regular expression constant. An ERE constant
shall begin with the <slash> character. Within an ERE constant, a <backslash> character
shall be considered to begin an escape sequence as specified in the table in XBD Chapter 5
(on page 121). In addition, the escape sequences in Table 4-2 (on page 2439) shall be
recognized. The application shall ensure that a <newline> does not occur within an ERE
constant. An ERE constant shall be terminated by the first unescaped occurrence of the
<slash> character after the one that begins the ERE constant. The extended regular
expression represented by the ERE constant shall be the sequence of all unescaped
characters and values of escape sequences between, but not including, the two delimiting
<slash> characters.

7. A <blank> shall have no effect, except to delimit lexical tokens or within STRING or ERE
tokens.

8. The token NUMBER shall represent a numeric constant. Its form and numeric value shall
either be equivalent to the decimal-floating-constant token as specified by the ISO C
standard, or it shall be a sequence of decimal digits and shall be evaluated as an integer
constant in decimal. In addition, implementations may accept numeric constants with the
form and numeric value equivalent to the hexadecimal-constant and hexadecimal-
floating-constant tokens as specified by the ISO C standard.

If the value is too large or too small to be representable (see Section 1.1.2, on page 2283),
the behavior is undefined.

9. A sequence of underscores, digits, and alphabetics from the portable character set (see
XBD Section 6.1, on page 125), beginning with an <underscore> or alphabetic character,
shall be considered a word.

10. The following words are keywords that shall be recognized as individual tokens; the
name of the token is the same as the keyword:

BEGIN
break
continue

delete
do
else

END
exit
for

function
getline
if

in
next
print

printf
return
while

11. The following words are names of built-in functions and shall be recognized as the token
BUILTIN_FUNC_NAME:

atan2
close
cos
exp

gsub
index
int
length

log
match
rand
sin

split
sprintf
sqrt
srand

sub
substr
system
tolower

toupper

The above-listed keywords and names of built-in functions are considered reserved
words.

12. The token NAME shall consist of a word that is not a keyword or a name of a built-in
function and is not followed immediately (without any delimiters) by the ’(’ character.

13. The token FUNC_NAME shall consist of a word that is not a keyword or a name of a
built-in function, followed immediately (without any delimiters) by the ’(’ character.
The ’(’ character shall not be included as part of the token.

2454 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

78145

78146

78147

78148

78149

78150

78151

78152

78153

78154

78155

78156

78157

78158

78159

78160

78161

78162

78163

78164

78165

78166

78167

78168

78169

78170

78171

78172

78173

78174

78175

78176

78177

78178

78179

78180

78181

78182

78183

78184

78185

78186

78187

Utilities awk

14. The following two-character sequences shall be recognized as the named tokens:

Token Name Sequence Token Name Sequence

ADD_ASSIGN += NO_MATCH !˜
SUB_ASSIGN −= EQ ==
MUL_ASSIGN *= LE <=
DIV_ASSIGN /= GE >=
MOD_ASSIGN %= NE !=
POW_ASSIGN ˆ= INCR ++
OR || DECR − −
AND && APPEND >>

15. The following single characters shall be recognized as tokens whose names are the
character:

<newline> { } () [] , ; + − * % ˆ ! > < | ? : ˜ $ =

There is a lexical ambiguity between the token ERE and the tokens ’/’ and DIV_ASSIGN.
When an input sequence begins with a <slash> character in any syntactic context where the
token ’/’ or DIV_ASSIGN could appear as the next token in a valid program, the longer of
those two tokens that can be recognized shall be recognized. In any other syntactic context
where the token ERE could appear as the next token in a valid program, the token ERE shall be
recognized.

EXIT STATUS
The following exit values shall be returned:

0 All input files were processed successfully.

>0 An error occurred.

The exit status can be altered within the program by using an exit expression.

CONSEQUENCES OF ERRORS
If any file operand is specified and the named file cannot be accessed, awk shall write a
diagnostic message to standard error and terminate without any further action.

If the program specified by either the program operand or a progfile operand is not a valid awk
program (as specified in the EXTENDED DESCRIPTION section), the behavior is undefined.

APPLICATION USAGE
The index, length, match, and substr functions should not be confused with similar functions in
the ISO C standard; the awk versions deal with characters, while the ISO C standard deals with
bytes.

Because the concatenation operation is represented by adjacent expressions rather than an
explicit operator, it is often necessary to use parentheses to enforce the proper evaluation
precedence.

EXAMPLES
The awk program specified in the command line is most easily specified within single-quotes (for
example, ’program’) for applications using sh, because awk programs commonly contain
characters that are special to the shell, including double-quotes. In the cases where an awk
program contains single-quote characters, it is usually easiest to specify most of the program as
strings within single-quotes concatenated by the shell with quoted single-quote characters. For
example:

awk ’/’\’’/ { print "quote:", $0 }’

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2455

78188

78189

78190

78191

78192

78193

78194

78195

78196

78197

78198

78199

78200

78201

78202

78203

78204

78205

78206

78207

78208

78209

78210

78211

78212

78213

78214

78215

78216

78217

78218

78219

78220

78221

78222

78223

78224

78225

78226

78227

78228

78229

78230

78231

awk Utilities

prints all lines from the standard input containing a single-quote character, prefixed with quote:.

The following are examples of simple awk programs:

1. Write to the standard output all input lines for which field 3 is greater than 5:

$3 > 5

2. Write every tenth line:

(NR % 10) == 0

3. Write any line with a substring matching the regular expression:

/(G|D)(2[0−9][[:alpha:]]*)/

4. Print any line with a substring containing a ’G’ or ’D’, followed by a sequence of digits
and characters. This example uses character classes digit and alpha to match language-
independent digit and alphabetic characters respectively:

/(G|D)([[:digit:][:alpha:]]*)/

5. Write any line in which the second field matches the regular expression and the fourth
field does not:

$2 ˜ /xyz/ && $4 !˜ /xyz/

6. Write any line in which the second field contains a <backslash>:

$2 ˜ /\\/

7. Write any line in which the second field contains a <backslash>. Note that
<backslash>-escapes are interpreted twice; once in lexical processing of the string and
once in processing the regular expression:

$2 ˜ "\\\\"

8. Write the second to the last and the last field in each line. Separate the fields by a <colon>:

{OFS=":";print $(NF−1), $NF}

9. Write the line number and number of fields in each line. The three strings representing
the line number, the <colon>, and the number of fields are concatenated and that string is
written to standard output:

{print NR ":" NF}

10. Write lines longer than 72 characters:

length($0) > 72

11. Write the first two fields in opposite order separated by OFS:

{ print $2, $1 }

12. Same, with input fields separated by a <comma> or <space> and <tab> characters, or
both:

BEGIN { FS = ",[\t]*|[\t]+" }
{ print $2, $1 }

13. Add up the first column, print sum, and average:

{s += $1 }
END {print "sum is ", s, " average is", s/NR}

2456 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

78232

78233

78234

78235

78236

78237

78238

78239

78240

78241

78242

78243

78244

78245

78246

78247

78248

78249

78250

78251

78252

78253

78254

78255

78256

78257

78258

78259

78260

78261

78262

78263

78264

78265

78266

78267

78268

78269

Utilities awk

14. Write fields in reverse order, one per line (many lines out for each line in):

{ for (i = NF; i > 0; − −i) print $i }

15. Write all lines between occurrences of the strings start and stop:

/start/, /stop/

16. Write all lines whose first field is different from the previous one:

$1 != prev { print; prev = $1 }

17. Simulate echo:

BEGIN {
for (i = 1; i < ARGC; ++i)
printf("%s%s", ARGV[i], i==ARGC−1?"\n":" ")

}

18. Write the path prefixes contained in the PA TH environment variable, one per line:

BEGIN {
n = split (ENVIRON["PATH"], path, ":")
for (i = 1; i <= n; ++i)
print path[i]

}

19. If there is a file named input containing page headers of the form:

Page #

and a file named program that contains:

/Page/ { $2 = n++; }
{ print }

then the command line:

awk −f program n=5 input

prints the file input, filling in page numbers starting at 5.

RATIONALE
This description is based on the new awk, ‘‘nawk’’, (see the referenced The AWK Programming
Language), which introduced a number of new features to the historical awk:

1. New keywords: delete, do, function, return

2. New built-in functions: atan2, close, cos, gsub, match, rand, sin, srand, sub, system

3. New predefined variables: FNR, ARGC, ARGV, RSTART, RLENGTH, SUBSEP

4. New expression operators: ?, :, ,, ˆ

5. The FS variable and the third argument to split, now treated as extended regular
expressions.

6. The operator precedence, changed to more closely match the C language. Two examples
of code that operate differently are:

while (n /= 10 > 1) ...
if (!"wk" ˜ /bwk/) ...

Several features have been added based on newer implementations of awk:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2457

78270

78271

78272

78273

78274

78275

78276

78277

78278

78279

78280

78281

78282

78283

78284

78285

78286

78287

78288

78289

78290

78291

78292

78293

78294

78295

78296

78297

78298

78299

78300

78301

78302

78303

78304

78305

78306

78307

78308

awk Utilities

• Multiple instances of −f progfile are permitted.

• The new option −v assignment.

• The new predefined variable ENVIRON.

• New built-in functions toupper and tolower.

• More formatting capabilities are added to printf to match the ISO C standard.

The overall awk syntax has always been based on the C language, with a few features from the
shell command language and other sources. Because of this, it is not completely compatible with
any other language, which has caused confusion for some users. It is not the intent of the
standard developers to address such issues. A few relatively minor changes toward making the
language more compatible with the ISO C standard were made; most of these changes are based
on similar changes in recent implementations, as described above. There remain several C-
language conventions that are not in awk. One of the notable ones is the <comma> operator,
which is commonly used to specify multiple expressions in the C language for statement. Also,
there are various places where awk is more restrictive than the C language regarding the type of
expression that can be used in a given context. These limitations are due to the different features
that the awk language does provide.

Regular expressions in awk have been extended somewhat from historical implementations to
make them a pure superset of extended regular expressions, as defined by POSIX.1-2008 (see
XBD Section 9.4, on page 188). The main extensions are internationalization features and
interval expressions. Historical implementations of awk have long supported
<backslash>-escape sequences as an extension to extended regular expressions, and this
extension has been retained despite inconsistency with other utilities. The number of escape
sequences recognized in both extended regular expressions and strings has varied (generally
increasing with time) among implementations. The set specified by POSIX.1-2008 includes most
sequences known to be supported by popular implementations and by the ISO C standard. One
sequence that is not supported is hexadecimal value escapes beginning with ’\x’. This would
allow values expressed in more than 9 bits to be used within awk as in the ISO C standard.
However, because this syntax has a non-deterministic length, it does not permit the subsequent
character to be a hexadecimal digit. This limitation can be dealt with in the C language by the
use of lexical string concatenation. In the awk language, concatenation could also be a solution
for strings, but not for extended regular expressions (either lexical ERE tokens or strings used
dynamically as regular expressions). Because of this limitation, the feature has not been added to
POSIX.1-2008.

When a string variable is used in a context where an extended regular expression normally
appears (where the lexical token ERE is used in the grammar) the string does not contain the
literal <slash> characters.

Some versions of awk allow the form:

func name(args, ...) { statements }

This has been deprecated by the authors of the language, who asked that it not be specified.

Historical implementations of awk produce an error if a next statement is executed in a BEGIN
action, and cause awk to terminate if a next statement is executed in an END action. This
behavior has not been documented, and it was not believed that it was necessary to standardize
it.

The specification of conversions between string and numeric values is much more detailed than
in the documentation of historical implementations or in the referenced The AWK Programming
Language. Although most of the behavior is designed to be intuitive, the details are necessary to

2458 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

78309

78310

78311

78312

78313

78314

78315

78316

78317

78318

78319

78320

78321

78322

78323

78324

78325

78326

78327

78328

78329

78330

78331

78332

78333

78334

78335

78336

78337

78338

78339

78340

78341

78342

78343

78344

78345

78346

78347

78348

78349

78350

78351

78352

78353

78354

Utilities awk

ensure compatible behavior from different implementations. This is especially important in
relational expressions since the types of the operands determine whether a string or numeric
comparison is performed. From the perspective of an application developer, it is usually
sufficient to expect intuitive behavior and to force conversions (by adding zero or concatenating
a null string) when the type of an expression does not obviously match what is needed. The
intent has been to specify historical practice in almost all cases. The one exception is that, in
historical implementations, variables and constants maintain both string and numeric values
after their original value is converted by any use. This means that referencing a variable or
constant can have unexpected side-effects. For example, with historical implementations the
following program:

{
a = "+2"
b = 2
if (NR % 2)

c = a + b
if (a == b)

print "numeric comparison"
else

print "string comparison"
}

would perform a numeric comparison (and output numeric comparison) for each odd-
numbered line, but perform a string comparison (and output string comparison) for each even-
numbered line. POSIX.1-2008 ensures that comparisons will be numeric if necessary. With
historical implementations, the following program:

BEGIN {
OFMT = "%e"
print 3.14
OFMT = "%f"
print 3.14

}

would output "3.140000e+00" twice, because in the second print statement the constant
"3.14" would have a string value from the previous conversion. POSIX.1-2008 requires that the
output of the second print statement be "3.140000". The behavior of historical
implementations was seen as too unintuitive and unpredictable.

It was pointed out that with the rules contained in early drafts, the following script would print
nothing:

BEGIN {
y[1.5] = 1
OFMT = "%e"
print y[1.5]

}

Therefore, a new variable, CONVFMT, was introduced. The OFMT variable is now restricted to
affecting output conversions of numbers to strings and CONVFMT is used for internal
conversions, such as comparisons or array indexing. The default value is the same as that for
OFMT, so unless a program changes CONVFMT (which no historical program would do), it
will receive the historical behavior associated with internal string conversions.

The POSIX awk lexical and syntactic conventions are specified more formally than in other
sources. Again the intent has been to specify historical practice. One convention that may not be

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2459

78355

78356

78357

78358

78359

78360

78361

78362

78363

78364

78365

78366

78367

78368

78369

78370

78371

78372

78373

78374

78375

78376

78377

78378

78379

78380

78381

78382

78383

78384

78385

78386

78387

78388

78389

78390

78391

78392

78393

78394

78395

78396

78397

78398

78399

78400

78401

78402

awk Utilities

obvious from the formal grammar as in other verbal descriptions is where <newline> characters
are acceptable. There are several obvious placements such as terminating a statement, and a
<backslash> can be used to escape <newline> characters between any lexical tokens. In addition,
<newline> characters without <backslash> characters can follow a comma, an open brace, a
logical AND operator ("&&"), a logical OR operator ("||"), the do keyword, the else keyword,
and the closing parenthesis of an if, for, or while statement. For example:

{ print $1,
$2 }

The requirement that awk add a trailing <newline> to the program argument text is to simplify
the grammar, making it match a text file in form. There is no way for an application or test suite
to determine whether a literal <newline> is added or whether awk simply acts as if it did.

POSIX.1-2008 requires several changes from historical implementations in order to support
internationalization. Probably the most subtle of these is the use of the decimal-point character,
defined by the LC_NUMERIC category of the locale, in representations of floating-point
numbers. This locale-specific character is used in recognizing numeric input, in converting
between strings and numeric values, and in formatting output. However, regardless of locale,
the <period> character (the decimal-point character of the POSIX locale) is the decimal-point
character recognized in processing awk programs (including assignments in command line
arguments). This is essentially the same convention as the one used in the ISO C standard. The
difference is that the C language includes the setlocale() function, which permits an application
to modify its locale. Because of this capability, a C application begins executing with its locale set
to the C locale, and only executes in the environment-specified locale after an explicit call to
setlocale(). However, adding such an elaborate new feature to the awk language was seen as
inappropriate for POSIX.1-2008. It is possible to execute an awk program explicitly in any desired
locale by setting the environment in the shell.

The undefined behavior resulting from NULs in extended regular expressions allows future
extensions for the GNU gawk program to process binary data.

The behavior in the case of invalid awk programs (including lexical, syntactic, and semantic
errors) is undefined because it was considered overly limiting on implementations to specify. In
most cases such errors can be expected to produce a diagnostic and a non-zero exit status.
However, some implementations may choose to extend the language in ways that make use of
certain invalid constructs. Other invalid constructs might be deemed worthy of a warning, but
otherwise cause some reasonable behavior. Still other constructs may be very difficult to detect
in some implementations. Also, different implementations might detect a given error during an
initial parsing of the program (before reading any input files) while others might detect it when
executing the program after reading some input. Implementors should be aware that diagnosing
errors as early as possible and producing useful diagnostics can ease debugging of applications,
and thus make an implementation more usable.

The unspecified behavior from using multi-character RS values is to allow possible future
extensions based on extended regular expressions used for record separators. Historical
implementations take the first character of the string and ignore the others.

Unspecified behavior when split(string,array,<null>) is used is to allow a proposed future
extension that would split up a string into an array of individual characters.

In the context of the getline function, equally good arguments for different precedences of the |
and < operators can be made. Historical practice has been that:

getline < "a" "b"

is parsed as:

2460 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

78403

78404

78405

78406

78407

78408

78409

78410

78411

78412

78413

78414

78415

78416

78417

78418

78419

78420

78421

78422

78423

78424

78425

78426

78427

78428

78429

78430

78431

78432

78433

78434

78435

78436

78437

78438

78439

78440

78441

78442

78443

78444

78445

78446

78447

78448

78449

Utilities awk

(getline < "a") "b"

although many would argue that the intent was that the file ab should be read. However:

getline < "x" + 1

parses as:

getline < ("x" + 1)

Similar problems occur with the | version of getline, particularly in combination with $. For
example:

$"echo hi" | getline

(This situation is particularly problematic when used in a print statement, where the |getline
part might be a redirection of the print.)

Since in most cases such constructs are not (or at least should not) be used (because they have a
natural ambiguity for which there is no conventional parsing), the meaning of these constructs
has been made explicitly unspecified. (The effect is that a conforming application that runs into
the problem must parenthesize to resolve the ambiguity.) There appeared to be few if any actual
uses of such constructs.

Grammars can be written that would cause an error under these circumstances. Where
backwards-compatibility is not a large consideration, implementors may wish to use such
grammars.

Some historical implementations have allowed some built-in functions to be called without an
argument list, the result being a default argument list chosen in some ‘‘reasonable’’ way. Use of
length as a synonym for length($0) is the only one of these forms that is thought to be widely
known or widely used; this particular form is documented in various places (for example, most
historical awk reference pages, although not in the referenced The AWK Programming Language) as
legitimate practice. With this exception, default argument lists have always been undocumented
and vaguely defined, and it is not at all clear how (or if) they should be generalized to user-
defined functions. They add no useful functionality and preclude possible future extensions that
might need to name functions without calling them. Not standardizing them seems the simplest
course. The standard developers considered that length merited special treatment, however,
since it has been documented in the past and sees possibly substantial use in historical
programs. Accordingly, this usage has been made legitimate, but Issue 5 removed the
obsolescent marking for XSI-conforming implementations and many otherwise conforming
applications depend on this feature.

In sub and gsub, if repl is a string literal (the lexical token STRING), then two consecutive
<backslash> characters should be used in the string to ensure a single <backslash> will precede
the <ampersand> when the resultant string is passed to the function. (For example, to specify
one literal <ampersand> in the replacement string, use gsub(ERE, "\\&").)

Historically, the only special character in the repl argument of sub and gsub string functions was
the <ampersand> (’&’) character and preceding it with the <backslash> character was used to
turn off its special meaning.

The description in the ISO POSIX-2: 1993 standard introduced behavior such that the
<backslash> character was another special character and it was unspecified whether there were
any other special characters. This description introduced several portability problems, some of
which are described below, and so it has been replaced with the more historical description.
Some of the problems include:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2461

78450

78451

78452

78453

78454

78455

78456

78457

78458

78459

78460

78461

78462

78463

78464

78465

78466

78467

78468

78469

78470

78471

78472

78473

78474

78475

78476

78477

78478

78479

78480

78481

78482

78483

78484

78485

78486

78487

78488

78489

78490

78491

78492

78493

awk Utilities

• Historically, to create the replacement string, a script could use gsub(ERE, "\\&"), but
with the ISO POSIX-2: 1993 standard wording, it was necessary to use gsub(ERE,
"\\\\&"). The <backslash> characters are doubled here because all string literals are
subject to lexical analysis, which would reduce each pair of <backslash> characters to a
single <backslash> before being passed to gsub.

• Since it was unspecified what the special characters were, for portable scripts to guarantee
that characters are printed literally, each character had to be preceded with a <backslash>.
(For example, a portable script had to use gsub(ERE, "\\h\\i") to produce a replacement
string of "hi".)

The description for comparisons in the ISO POSIX-2: 1993 standard did not properly describe
historical practice because of the way numeric strings are compared as numbers. The current
rules cause the following code:

if (0 == "000")
print "strange, but true"

else
print "not true"

to do a numeric comparison, causing the if to succeed. It should be intuitively obvious that this
is incorrect behavior, and indeed, no historical implementation of awk actually behaves this way.

To fix this problem, the definition of numeric string was enhanced to include only those values
obtained from specific circumstances (mostly external sources) where it is not possible to
determine unambiguously whether the value is intended to be a string or a numeric.

Variables that are assigned to a numeric string shall also be treated as a numeric string. (For
example, the notion of a numeric string can be propagated across assignments.) In comparisons,
all variables having the uninitialized value are to be treated as a numeric operand evaluating to
the numeric value zero.

Uninitialized variables include all types of variables including scalars, array elements, and
fields. The definition of an uninitialized value in Variables and Special Variables (on page 2437)
is necessary to describe the value placed on uninitialized variables and on fields that are valid
(for example, < $NF) but have no characters in them and to describe how these variables are to
be used in comparisons. A valid field, such as $1, that has no characters in it can be obtained
from an input line of "\t\t" when FS=’\t’. Historically, the comparison ($1<10) was done
numerically after evaluating $1 to the value zero.

The phrase ‘‘. . . also shall have the numeric value of the numeric string’’ was removed from
several sections of the ISO POSIX-2: 1993 standard because is specifies an unnecessary
implementation detail. It is not necessary for POSIX.1-2008 to specify that these objects be
assigned two different values. It is only necessary to specify that these objects may evaluate to
two different values depending on context.

Historical implementations of awk did not parse hexadecimal integer or floating constants like
"0xa" and "0xap0". Due to an oversight, the 2001 through 2004 editions of this standard
required support for hexadecimal floating constants. This was due to the reference to atof().
This version of the standard allows but does not require implementations to use atof() and
includes a description of how floating-point numbers are recognized as an alternative to match
historic behavior. The intent of this change is to allow implementations to recognize floating-
point constants according to either the ISO/IEC 9899: 1990 standard or ISO/IEC 9899: 1999
standard, and to allow (but not require) implementations to recognize hexadecimal integer
constants.

Historical implementations of awk did not support floating-point infinities and NaNs in numeric

2462 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

78494

78495

78496

78497

78498

78499

78500

78501

78502

78503

78504

78505

78506

78507

78508

78509

78510

78511

78512

78513

78514

78515

78516

78517

78518

78519

78520

78521

78522

78523

78524

78525

78526

78527

78528

78529

78530

78531

78532

78533

78534

78535

78536

78537

78538

78539

78540

Utilities awk

strings; e.g., "−INF" and "NaN". However, implementations that use the atof() or strtod()
functions to do the conversion picked up support for these values if they used a
ISO/IEC 9899: 1999 standard version of the function instead of a ISO/IEC 9899: 1990 standard
version. Due to an oversight, the 2001 through 2004 editions of this standard did not allow
support for infinities and NaNs, but in this revision support is allowed (but not required). This is
a silent change to the behavior of awk programs; for example, in the POSIX locale the expression:

("-INF" + 0 < 0)

formerly had the value 0 because "−INF" converted to 0, but now it may have the value 0 or 1.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 1.3 (on page 2287), grep , lex , sed

XBD Chapter 5 (on page 121), Section 6.1 (on page 125), Chapter 8 (on page 173), Chapter 9 (on
page 181), Section 12.2 (on page 215)

XSH atof(), exec , isspace(), popen(), setlocale(), strtod()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
The awk utility is aligned with the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

IEEE PASC Interpretation 1003.2 #211 is applied, adding the sentence ‘‘An occurrence of two
consecutive <backslash> characters shall be interpreted as just a single literal <backslash>
character.’’ into the description of the sub string function.

Issue 7
PASC Interpretation 1003.2-1992 #107 (SD5-XCU-ERN-73) is applied, updating the description of
the OFS variable.

Austin Group Interpretation 1003.1-2001 #189 is applied.

Austin Group Interpretation 1003.1-2001 #201 is applied, permitting implementations to support
infinities and NaNs.

SD5-XCU-ERN-79 is applied, restoring the horizontal lines to Table 4-1 (on page 2433), and
SD5-XCU-ERN-80 is applied, changing the order of some table entries.

SD5-XCU-ERN-87 is applied, updating the descriptive text of the Grammar.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The EXTENDED DESCRIPTION is changed to make the support of hexadecimal integer and
floating constants optional.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2463

78541

78542

78543

78544

78545

78546

78547

78548

78549

78550

78551

78552

78553

78554

78555

78556

78557

78558

78559

78560

78561

78562

78563

78564

78565

78566

78567

78568

78569

78570

78571

78572

78573

78574

78575

78576

78577

basename Utilities

NAME
basename — return non-directory portion of a pathname

SYNOPSIS
basename string [suffix]

DESCRIPTION
The string operand shall be treated as a pathname, as defined in XBD Section 3.266 (on page 75).
The string string shall be converted to the filename corresponding to the last pathname
component in string and then the suffix string suffix, if present, shall be removed. This shall be
done by performing actions equivalent to the following steps in order:

1. If string is a null string, it is unspecified whether the resulting string is ’.’ or a null
string. In either case, skip steps 2 through 6.

2. If string is "//", it is implementation-defined whether steps 3 to 6 are skipped or
processed.

3. If string consists entirely of <slash> characters, string shall be set to a single <slash>
character. In this case, skip steps 4 to 6.

4. If there are any trailing <slash> characters in string, they shall be removed.

5. If there are any <slash> characters remaining in string, the prefix of string up to and
including the last <slash> character in string shall be removed.

6. If the suffix operand is present, is not identical to the characters remaining in string, and is
identical to a suffix of the characters remaining in string, the suffix suffix shall be removed
from string. Otherwise, string is not modified by this step. It shall not be considered an
error if suffix is not found in string.

The resulting string shall be written to standard output.

OPTIONS
None.

OPERANDS
The following operands shall be supported:

string A string.

suffix A string.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of basename:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

2464 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

78578

78579

78580

78581

78582

78583

78584

78585

78586

78587

78588

78589

78590

78591

78592

78593

78594

78595

78596

78597

78598

78599

78600

78601

78602

78603

78604

78605

78606

78607

78608

78609

78610

78611

78612

78613

78614

78615

78616

78617

78618

78619

78620

Utilities basename

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The basename utility shall write a line to the standard output in the following format:

"%s\n", <resulting string>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The definition of pathname specifies implementation-defined behavior for pathnames starting
with two <slash> characters. Therefore, applications shall not arbitrarily add <slash> characters
to the beginning of a pathname unless they can ensure that there are more or less than two or are
prepared to deal with the implementation-defined consequences.

EXAMPLES
If the string string is a valid pathname:

$(basename "string")

produces a filename that could be used to open the file named by string in the directory returned
by:

$(dirname "string")

If the string string is not a valid pathname, the same algorithm is used, but the result need not be
a valid filename. The basename utility is not expected to make any judgements about the validity
of string as a pathname; it just follows the specified algorithm to produce a result string.

The following shell script compiles /usr/src/cmd/cat.c and moves the output to a file named cat
in the current directory when invoked with the argument /usr/src/cmd/cat or with the argument
/usr/src/cmd/cat.c:

c99 $(dirname "$1")/$(basename "$1" .c).c
mv a.out $(basename "$1" .c)

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2465

78621

78622

78623

78624

78625

78626

78627

78628

78629

78630

78631

78632

78633

78634

78635

78636

78637

78638

78639

78640

78641

78642

78643

78644

78645

78646

78647

78648

78649

78650

78651

78652

78653

78654

78655

78656

78657

78658

78659

78660

basename Utilities

RATIONALE
The behaviors of basename and dirname have been coordinated so that when string is a valid
pathname:

$(basename "string")

would be a valid filename for the file in the directory:

$(dirname "string")

This would not work for the early proposal versions of these utilities due to the way it specified
handling of trailing <slash> characters.

Since the definition of pathname specifies implementation-defined behavior for pathnames
starting with two <slash> characters, this volume of POSIX.1-2008 specifies similar
implementation-defined behavior for the basename and dirname utilities.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 2301), dirname

XBD Section 3.266 (on page 75), Chapter 8 (on page 173)

CHANGE HISTORY
First released in Issue 2.

Issue 6
IEEE PASC Interpretation 1003.2 #164 is applied.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2466 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

78661

78662

78663

78664

78665

78666

78667

78668

78669

78670

78671

78672

78673

78674

78675

78676

78677

78678

78679

78680

78681

Utilities batch

NAME
batch — schedule commands to be executed in a batch queue

SYNOPSIS
batch

DESCRIPTION
The batch utility shall read commands from standard input and schedule them for execution in a
batch queue. It shall be the equivalent of the command:

at −q b −m now

where queue b is a special at queue, specifically for batch jobs. Batch jobs shall be submitted to
the batch queue with no time constraints and shall be run by the system using algorithms, based
on unspecified factors, that may vary with each invocation of batch.

XSI Users shall be permitted to use batch if their name appears in the file at.allow which is located in
an implementation-defined directory. If that file does not exist, the file at.deny, which is located
in an implementation-defined directory, shall be checked to determine whether the user shall be
denied access to batch. If neither file exists, only a process with appropriate privileges shall be
allowed to submit a job. If only at.deny exists and is empty, global usage shall be permitted. The
at.allow and at.deny files shall consist of one user name per line.

OPTIONS
None.

OPERANDS
None.

STDIN
The standard input shall be a text file consisting of commands acceptable to the shell command
language described in Chapter 2 (on page 2297).

INPUT FILES
XSI The text files at.allow and at.deny, which are located in an implementation-defined directory,

shall contain zero or more user names, one per line, of users who are, respectively, authorized or
denied access to the at and batch utilities.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of batch:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

LC_TIME Determine the format and contents for date and time strings written by batch.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2467

78682

78683

78684

78685

78686

78687

78688

78689

78690

78691

78692

78693

78694

78695

78696

78697

78698

78699

78700

78701

78702

78703

78704

78705

78706

78707

78708

78709

78710

78711

78712

78713

78714

78715

78716

78717

78718

78719

78720

78721

78722

78723

78724

batch Utilities

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

SHELL Determine the name of a command interpreter to be used to invoke the at-job. If
the variable is unset or null, sh shall be used. If it is set to a value other than a name
for sh, the implementation shall do one of the following: use that shell; use sh; use
the login shell from the user database; any of the preceding accompanied by a
warning diagnostic about which was chosen.

TZ Determine the timezone. The job shall be submitted for execution at the time
specified by timespec or −t time relative to the timezone specified by the TZ
variable. If timespec specifies a timezone, it overrides TZ. If timespec does not
specify a timezone and TZ is unset or null, an unspecified default timezone shall
be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When standard input is a terminal, prompts of unspecified format for each line of the user input
described in the STDIN section may be written to standard output.

STDERR
The following shall be written to standard error when a job has been successfully submitted:

"job %s at %s\n", at_job_id, <date>

where date shall be equivalent in format to the output of:

date +"%a %b %e %T %Y"

The date and time written shall be adjusted so that they appear in the timezone of the user (as
determined by the TZ variable).

Neither this, nor warning messages concerning the selection of the command interpreter, are
considered a diagnostic that changes the exit status.

Diagnostic messages, if any, shall be written to standard error.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
The job shall not be scheduled.

2468 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

78725

78726

78727

78728

78729

78730

78731

78732

78733

78734

78735

78736

78737

78738

78739

78740

78741

78742

78743

78744

78745

78746

78747

78748

78749

78750

78751

78752

78753

78754

78755

78756

78757

78758

78759

78760

Utilities batch

APPLICATION USAGE
It may be useful to redirect standard output within the specified commands.

EXAMPLES

1. This sequence can be used at a terminal:

batch
sort < file >outfile
EOT

2. This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
command procedure (the sequence of output redirection specifications is significant):

batch <<!
diff file1 file2 2>&1 >outfile | mailx mygroup
!

RATIONALE
Early proposals described batch in a manner totally separated from at, even though the historical
model treated it almost as a synonym for at −qb. A number of features were added to list and
control batch work separately from those in at. Upon further reflection, it was decided that the
benefit of this did not merit the change to the historical interface.

The −m option was included on the equivalent at command because it is historical practice to
mail results to the submitter, even if all job-produced output is redirected. As explained in the
RATIONALE for at, the now keyword submits the job for immediate execution (after scheduling
delays), despite some historical systems where at now would have been considered an error.

FUTURE DIRECTIONS
None.

SEE ALSO
at

XBD Chapter 8 (on page 173)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The NAME is changed to align with the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The batch utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-95 is applied, removing the references to fixed locations for the files referenced
by the batch utility.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2469

78761

78762

78763

78764

78765

78766

78767

78768

78769

78770

78771

78772

78773

78774

78775

78776

78777

78778

78779

78780

78781

78782

78783

78784

78785

78786

78787

78788

78789

78790

78791

78792

78793

78794

78795

78796

78797

bc Utilities

NAME
bc — arbitrary-precision arithmetic language

SYNOPSIS
bc [−l] [file...]

DESCRIPTION
The bc utility shall implement an arbitrary precision calculator. It shall take input from any files
given, then read from the standard input. If the standard input and standard output to bc are
attached to a terminal, the invocation of bc shall be considered to be interactive, causing
behavioral constraints described in the following sections.

OPTIONS
The bc utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−l (The letter ell.) Define the math functions and initialize scale to 20, instead of the
default zero; see the EXTENDED DESCRIPTION section.

OPERANDS
The following operand shall be supported:

file A pathname of a text file containing bc program statements. After all files have
been read, bc shall read the standard input.

STDIN
See the INPUT FILES section.

INPUT FILES
Input files shall be text files containing a sequence of comments, statements, and function
definitions that shall be executed as they are read.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of bc:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The output of the bc utility shall be controlled by the program read, and consist of zero or more
lines containing the value of all executed expressions without assignments. The radix and
precision of the output shall be controlled by the values of the obase and scale variables; see the
EXTENDED DESCRIPTION section.

2470 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

78798

78799

78800

78801

78802

78803

78804

78805

78806

78807

78808

78809

78810

78811

78812

78813

78814

78815

78816

78817

78818

78819

78820

78821

78822

78823

78824

78825

78826

78827

78828

78829

78830

78831

78832

78833

78834

78835

78836

78837

78838

78839

78840

78841

Utilities bc

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION

Grammar

The grammar in this section and the lexical conventions in the following section shall together
describe the syntax for bc programs. The general conventions for this style of grammar are
described in Section 1.3 (on page 2287). A valid program can be represented as the non-terminal
symbol program in the grammar. This formal syntax shall take precedence over the text syntax
description.

%token EOF NEWLINE STRING LETTER NUMBER

%token MUL_OP
/* ’*’, ’/’, ’%’ */

%token ASSIGN_OP
/* ’=’, ’+=’, ’−=’, ’*=’, ’/=’, ’%=’, ’ˆ=’ */

%token REL_OP
/* ’==’, ’<=’, ’>=’, ’!=’, ’<’, ’>’ */

%token INCR_DECR
/* ’++’, ’− −’ */

%token Define Break Quit Length
/* ’define’, ’break’, ’quit’, ’length’ */

%token Return For If While Sqrt
/* ’return’, ’for’, ’if’, ’while’, ’sqrt’ */

%token Scale Ibase Obase Auto
/* ’scale’, ’ibase’, ’obase’, ’auto’ */

%start program

%%

program : EOF
| input_item program
;

input_item : semicolon_list NEWLINE
| function
;

semicolon_list : /* empty */
| statement
| semicolon_list ’;’ statement
| semicolon_list ’;’
;

statement_list : /* empty */
| statement
| statement_list NEWLINE

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2471

78842

78843

78844

78845

78846

78847

78848

78849

78850

78851

78852

78853

78854

78855

78856

78857

78858

78859

78860

78861

78862

78863

78864

78865

78866

78867

78868

78869

78870

78871

78872

78873

78874

78875

78876

78877

78878

78879

78880

78881

78882

78883

bc Utilities

| statement_list NEWLINE statement
| statement_list ’;’
| statement_list ’;’ statement
;

statement : expression
| STRING
| Break
| Quit
| Return
| Return ’(’ return_expression ’)’
| For ’(’ expression ’;’

relational_expression ’;’
expression ’)’ statement

| If ’(’ relational_expression ’)’ statement
| While ’(’ relational_expression ’)’ statement
| ’{’ statement_list ’}’
;

function : Define LETTER ’(’ opt_parameter_list ’)’
’{’ NEWLINE opt_auto_define_list
statement_list ’}’

;

opt_parameter_list : /* empty */
| parameter_list
;

parameter_list : LETTER
| define_list ’,’ LETTER
;

opt_auto_define_list : /* empty */
| Auto define_list NEWLINE
| Auto define_list ’;’
;

define_list : LETTER
| LETTER ’[’ ’]’
| define_list ’,’ LETTER
| define_list ’,’ LETTER ’[’ ’]’
;

opt_argument_list : /* empty */
| argument_list
;

argument_list : expression
| LETTER ’[’ ’]’ ’,’ argument_list
;

relational_expression : expression
| expression REL_OP expression
;

return_expression : /* empty */
| expression

2472 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

78884

78885

78886

78887

78888

78889

78890

78891

78892

78893

78894

78895

78896

78897

78898

78899

78900

78901

78902

78903

78904

78905

78906

78907

78908

78909

78910

78911

78912

78913

78914

78915

78916

78917

78918

78919

78920

78921

78922

78923

78924

78925

78926

78927

78928

78929

78930

Utilities bc

;

expression : named_expression
| NUMBER
| ’(’ expression ’)’
| LETTER ’(’ opt_argument_list ’)’
| ’−’ expression
| expression ’+’ expression
| expression ’−’ expression
| expression MUL_OP expression
| expression ’ˆ’ expression
| INCR_DECR named_expression
| named_expression INCR_DECR
| named_expression ASSIGN_OP expression
| Length ’(’ expression ’)’
| Sqrt ’(’ expression ’)’
| Scale ’(’ expression ’)’
;

named_expression : LETTER
| LETTER ’[’ expression ’]’
| Scale
| Ibase
| Obase
;

Lexical Conventions in bc

The lexical conventions for bc programs, with respect to the preceding grammar, shall be as
follows:

1. Except as noted, bc shall recognize the longest possible token or delimiter beginning at a
given point.

2. A comment shall consist of any characters beginning with the two adjacent characters
"/*" and terminated by the next occurrence of the two adjacent characters "*/".
Comments shall have no effect except to delimit lexical tokens.

3. The <newline> shall be recognized as the token NEWLINE.

4. The token STRING shall represent a string constant; it shall consist of any characters
beginning with the double-quote character (’"’) and terminated by another occurrence
of the double-quote character. The value of the string is the sequence of all characters
between, but not including, the two double-quote characters. All characters shall be taken
literally from the input, and there is no way to specify a string containing a double-quote
character. The length of the value of each string shall be limited to {BC_STRING_MAX}
bytes.

5. A <blank> shall have no effect except as an ordinary character if it appears within a
STRING token, or to delimit a lexical token other than STRING.

6. The combination of a <backslash> character immediately followed by a <newline> shall
have no effect other than to delimit lexical tokens with the following exceptions:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2473

78931

78932

78933

78934

78935

78936

78937

78938

78939

78940

78941

78942

78943

78944

78945

78946

78947

78948

78949

78950

78951

78952

78953

78954

78955

78956

78957

78958

78959

78960

78961

78962

78963

78964

78965

78966

78967

78968

78969

78970

78971

78972

78973

bc Utilities

• It shall be interpreted as the character sequence "\<newline>" in STRING tokens.

• It shall be ignored as part of a multi-line NUMBER token.

7. The token NUMBER shall represent a numeric constant. It shall be recognized by the
following grammar:

NUMBER : integer
| ’.’ integer
| integer ’.’
| integer ’.’ integer
;

integer : digit
| integer digit
;

digit : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
| 8 | 9 | A | B | C | D | E | F
;

8. The value of a NUMBER token shall be interpreted as a numeral in the base specified by
the value of the internal register ibase (described below). Each of the digit characters
shall have the value from 0 to 15 in the order listed here, and the <period> character shall
represent the radix point. The behavior is undefined if digits greater than or equal to the
value of ibase appear in the token. However, note the exception for single-digit values
being assigned to ibase and obase themselves, in Operations in bc (on page 2475).

9. The following keywords shall be recognized as tokens:

auto
break
define

ibase
if
for

length
obase
quit

return
scale
sqrt

while

10. Any of the following characters occurring anywhere except within a keyword shall be
recognized as the token LETTER:

a b c d e f g h i j k l m n o p q r s t u v w x y z

11. The following single-character and two-character sequences shall be recognized as the
token ASSIGN_OP:

= += −= *= /= %= ˆ=

12. If an ’=’ character, as the beginning of a token, is followed by a ’−’ character with no
intervening delimiter, the behavior is undefined.

13. The following single-characters shall be recognized as the token MUL_OP:

* / %

14. The following single-character and two-character sequences shall be recognized as the
token REL_OP:

== <= >= != < >

15. The following two-character sequences shall be recognized as the token INCR_DECR:

++ − −

2474 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

78974

78975

78976

78977

78978

78979

78980

78981

78982

78983

78984

78985

78986

78987

78988

78989

78990

78991

78992

78993

78994

78995

78996

78997

78998

78999

79000

79001

79002

79003

79004

79005

79006

79007

79008

79009

79010

79011

79012

79013

Utilities bc

16. The following single characters shall be recognized as tokens whose names are the
character:

<newline> () , + − ; [] ˆ { }

17. The token EOF is returned when the end of input is reached.

Operations in bc

There are three kinds of identifiers: ordinary identifiers, array identifiers, and function
identifiers. All three types consist of single lowercase letters. Array identifiers shall be followed
by square brackets ("[]"). An array subscript is required except in an argument or auto list.
Arrays are singly dimensioned and can contain up to {BC_DIM_MAX} elements. Indexing shall
begin at zero so an array is indexed from 0 to {BC_DIM_MAX}−1. Subscripts shall be truncated
to integers. The application shall ensure that function identifiers are followed by parentheses,
possibly enclosing arguments. The three types of identifiers do not conflict.

The following table summarizes the rules for precedence and associativity of all operators.
Operators on the same line shall have the same precedence; rows are in order of decreasing
precedence.

Table 4-3 Operators in bc

Operator Associativity

++, − − N/A
unary − N/A
ˆ Right to left
*, /, % Left to right
+, binary − Left to right
=, +=, −=, *=, /=, %=, ˆ= Right to left
==, <=, >=, !=, <, > None

Each expression or named expression has a scale, which is the number of decimal digits that
shall be maintained as the fractional portion of the expression.

Named expressions are places where values are stored. Named expressions shall be valid on the
left side of an assignment. The value of a named expression shall be the value stored in the place
named. Simple identifiers and array elements are named expressions; they have an initial value
of zero and an initial scale of zero.

The internal registers scale, ibase, and obase are all named expressions. The scale of an
expression consisting of the name of one of these registers shall be zero; values assigned to any
of these registers are truncated to integers. The scale register shall contain a global value used in
computing the scale of expressions (as described below). The value of the register scale is
limited to 0 ≤ scale ≤ {BC_SCALE_MAX} and shall have a default value of zero. The ibase and
obase registers are the input and output number radix, respectively. The value of ibase shall be
limited to:

2 ≤ ibase ≤ 16

The value of obase shall be limited to:

2 ≤ obase ≤ {BC_BASE_MAX}

When either ibase or obase is assigned a single digit value from the list in Lexical Conventions
in bc (on page 2473), the value shall be assumed in hexadecimal. (For example, ibase=A sets to
base ten, regardless of the current ibase value.) Otherwise, the behavior is undefined when

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2475

79014

79015

79016

79017

79018

79019

79020

79021

79022

79023

79024

79025

79026

79027

79028

79029

79030

79031

79032

79033

79034

79035

79036

79037

79038

79039

79040

79041

79042

79043

79044

79045

79046

79047

79048

79049

79050

79051

79052

79053

79054

79055

79056

bc Utilities

digits greater than or equal to the value of ibase appear in the input. Both ibase and obase shall
have initial values of 10.

Internal computations shall be conducted as if in decimal, regardless of the input and output
bases, to the specified number of decimal digits. When an exact result is not achieved (for
example, scale=0; 3.2/1), the result shall be truncated.

For all values of obase specified by this volume of POSIX.1-2008, bc shall output numeric values
by performing each of the following steps in order:

1. If the value is less than zero, a <hyphen> (’−’) character shall be output.

2. One of the following is output, depending on the numerical value:

• If the absolute value of the numerical value is greater than or equal to one, the
integer portion of the value shall be output as a series of digits appropriate to obase
(as described below), most significant digit first. The most significant non-zero digit
shall be output next, followed by each successively less significant digit.

• If the absolute value of the numerical value is less than one but greater than zero
and the scale of the numerical value is greater than zero, it is unspecified whether
the character 0 is output.

• If the numerical value is zero, the character 0 shall be output.

3. If the scale of the value is greater than zero and the numeric value is not zero, a <period>
character shall be output, followed by a series of digits appropriate to obase (as described
below) representing the most significant portion of the fractional part of the value. If s
represents the scale of the value being output, the number of digits output shall be s if
obase is 10, less than or equal to s if obase is greater than 10, or greater than or equal to s
if obase is less than 10. For obase values other than 10, this should be the number of
digits needed to represent a precision of 10s.

For obase values from 2 to 16, valid digits are the first obase of the single characters:

0 1 2 3 4 5 6 7 8 9 A B C D E F

which represent the values zero to 15, inclusive, respectively.

For bases greater than 16, each digit shall be written as a separate multi-digit decimal number.
Each digit except the most significant fractional digit shall be preceded by a single <space>. For
bases from 17 to 100, bc shall write two-digit decimal numbers; for bases from 101 to 1 000, three-
digit decimal strings, and so on. For example, the decimal number 1 024 in base 25 would be
written as:

∆01∆15∆24

and in base 125, as:

∆008∆024

Very large numbers shall be split across lines with 70 characters per line in the POSIX locale;
other locales may split at different character boundaries. Lines that are continued shall end with
a <backslash>.

A function call shall consist of a function name followed by parentheses containing a
<comma>-separated list of expressions, which are the function arguments. A whole array
passed as an argument shall be specified by the array name followed by empty square brackets.
All function arguments shall be passed by value. As a result, changes made to the formal
parameters shall have no effect on the actual arguments. If the function terminates by executing

2476 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

79057

79058

79059

79060

79061

79062

79063

79064

79065

79066

79067

79068

79069

79070

79071

79072

79073

79074

79075

79076

79077

79078

79079

79080

79081

79082

79083

79084

79085

79086

79087

79088

79089

79090

79091

79092

79093

79094

79095

79096

79097

79098

79099

Utilities bc

a return statement, the value of the function shall be the value of the expression in the
parentheses of the return statement or shall be zero if no expression is provided or if there is no
return statement.

The result of sqrt(expression) shall be the square root of the expression. The result shall be
truncated in the least significant decimal place. The scale of the result shall be the scale of the
expression or the value of scale, whichever is larger.

The result of length(expression) shall be the total number of significant decimal digits in the
expression. The scale of the result shall be zero.

The result of scale(expression) shall be the scale of the expression. The scale of the result shall be
zero.

A numeric constant shall be an expression. The scale shall be the number of digits that follow the
radix point in the input representing the constant, or zero if no radix point appears.

The sequence (expression) shall be an expression with the same value and scale as expression.
The parentheses can be used to alter the normal precedence.

The semantics of the unary and binary operators are as follows:

−expression
The result shall be the negative of the expression. The scale of the result shall be the scale of
expression.

The unary increment and decrement operators shall not modify the scale of the named
expression upon which they operate. The scale of the result shall be the scale of that named
expression.

++named-expression
The named expression shall be incremented by one. The result shall be the value of the
named expression after incrementing.

− −named-expression
The named expression shall be decremented by one. The result shall be the value of the
named expression after decrementing.

named-expression++
The named expression shall be incremented by one. The result shall be the value of the
named expression before incrementing.

named-expression− −
The named expression shall be decremented by one. The result shall be the value of the
named expression before decrementing.

The exponentiation operator, <circumflex> (’ˆ’), shall bind right to left.

expressionˆexpression
The result shall be the first expression raised to the power of the second expression. If the
second expression is not an integer, the behavior is undefined. If a is the scale of the left
expression and b is the absolute value of the right expression, the scale of the result shall be:

if b >= 0 min(a * b, max(scale, a)) if b < 0 scale

The multiplicative operators (’*’, ’/’, ’%’) shall bind left to right.

expression*expression
The result shall be the product of the two expressions. If a and b are the scales of the two
expressions, then the scale of the result shall be:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2477

79100

79101

79102

79103

79104

79105

79106

79107

79108

79109

79110

79111

79112

79113

79114

79115

79116

79117

79118

79119

79120

79121

79122

79123

79124

79125

79126

79127

79128

79129

79130

79131

79132

79133

79134

79135

79136

79137

79138

79139

79140

79141

79142

bc Utilities

min(a+b,max(scale,a,b))

expression/expression
The result shall be the quotient of the two expressions. The scale of the result shall be the
value of scale.

expression%expression
For expressions a and b, a%b shall be evaluated equivalent to the steps:

1. Compute a/b to current scale.

2. Use the result to compute:

a − (a / b) * b

to scale:

max(scale + scale(b), scale(a))

The scale of the result shall be:

max(scale + scale(b), scale(a))

When scale is zero, the ’%’ operator is the mathematical remainder operator.

The additive operators (’+’, ’−’) shall bind left to right.

expression+expression
The result shall be the sum of the two expressions. The scale of the result shall be the
maximum of the scales of the expressions.

expression−expression
The result shall be the difference of the two expressions. The scale of the result shall be the
maximum of the scales of the expressions.

The assignment operators (’=’, "+=", "−=", "*=", "/=", "%=", "ˆ=") shall bind right to left.

named-expression=expression
This expression shall result in assigning the value of the expression on the right to the
named expression on the left. The scale of both the named expression and the result shall be
the scale of expression.

The compound assignment forms:

named-expression <operator>= expression

shall be equivalent to:

named-expression=named-expression <operator> expression

except that the named-expression shall be evaluated only once.

Unlike all other operators, the relational operators (’<’, ’>’, "<=", ">=", "==", "!=") shall be
only valid as the object of an if, while, or inside a for statement.

expression1<expression2
The relation shall be true if the value of expression1 is strictly less than the value of
expression2.

expression1>expression2
The relation shall be true if the value of expression1 is strictly greater than the value of
expression2.

2478 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

79143

79144

79145

79146

79147

79148

79149

79150

79151

79152

79153

79154

79155

79156

79157

79158

79159

79160

79161

79162

79163

79164

79165

79166

79167

79168

79169

79170

79171

79172

79173

79174

79175

79176

79177

79178

79179

79180

79181

Utilities bc

expression1<=expression2
The relation shall be true if the value of expression1 is less than or equal to the value of
expression2.

expression1>=expression2
The relation shall be true if the value of expression1 is greater than or equal to the value of
expression2.

expression1= =expression2
The relation shall be true if the values of expression1 and expression2 are equal.

expression1!=expression2
The relation shall be true if the values of expression1 and expression2 are unequal.

There are only two storage classes in bc: global and automatic (local). Only identifiers that are
local to a function need be declared with the auto command. The arguments to a function shall
be local to the function. All other identifiers are assumed to be global and available to all
functions. All identifiers, global and local, have initial values of zero. Identifiers declared as auto
shall be allocated on entry to the function and released on returning from the function. They
therefore do not retain values between function calls. Auto arrays shall be specified by the array
name followed by empty square brackets. On entry to a function, the old values of the names
that appear as parameters and as automatic variables shall be pushed onto a stack. Until the
function returns, reference to these names shall refer only to the new values.

References to any of these names from other functions that are called from this function also
refer to the new value until one of those functions uses the same name for a local variable.

When a statement is an expression, unless the main operator is an assignment, execution of the
statement shall write the value of the expression followed by a <newline>.

When a statement is a string, execution of the statement shall write the value of the string.

Statements separated by <semicolon> or <newline> characters shall be executed sequentially. In
an interactive invocation of bc, each time a <newline> is read that satisfies the grammatical
production:

input_item : semicolon_list NEWLINE

the sequential list of statements making up the semicolon_list shall be executed immediately
and any output produced by that execution shall be written without any delay due to buffering.

In an if statement (if(relation) statement), the statement shall be executed if the relation is true.

The while statement (while(relation) statement) implements a loop in which the relation is tested;
each time the relation is true, the statement shall be executed and the relation retested. When the
relation is false, execution shall resume after statement.

A for statement(for(expression; relation; expression) statement) shall be the same as:

first-expression

while (relation) {
statement

last-expression

}

The application shall ensure that all three expressions are present.

The break statement shall cause termination of a for or while statement.

The auto statement (auto identifier [,identifier] . . .) shall cause the values of the identifiers to be

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2479

79182

79183

79184

79185

79186

79187

79188

79189

79190

79191

79192

79193

79194

79195

79196

79197

79198

79199

79200

79201

79202

79203

79204

79205

79206

79207

79208

79209

79210

79211

79212

79213

79214

79215

79216

79217

79218

79219

79220

79221

79222

79223

79224

bc Utilities

pushed down. The identifiers can be ordinary identifiers or array identifiers. Array identifiers
shall be specified by following the array name by empty square brackets. The application shall
ensure that the auto statement is the first statement in a function definition.

A define statement:

define LETTER (opt_parameter_list) {
opt_auto_define_list

statement_list

}

defines a function named LETTER. If a function named LETTER was previously defined, the
define statement shall replace the previous definition. The expression:

LETTER (opt_argument_list)

shall invoke the function named LETTER. The behavior is undefined if the number of
arguments in the invocation does not match the number of parameters in the definition.
Functions shall be defined before they are invoked. A function shall be considered to be defined
within its own body, so recursive calls are valid. The values of numeric constants within a
function shall be interpreted in the base specified by the value of the ibase register when the
function is invoked.

The return statements (return and return(expression)) shall cause termination of a function,
popping of its auto variables, and specification of the result of the function. The first form shall
be equivalent to return(0). The value and scale of the result returned by the function shall be the
value and scale of the expression returned.

The quit statement (quit) shall stop execution of a bc program at the point where the statement
occurs in the input, even if it occurs in a function definition, or in an if, for, or while statement.

The following functions shall be defined when the −l option is specified:

s(expression)
Sine of argument in radians.

c(expression)
Cosine of argument in radians.

a(expression)
Arctangent of argument.

l(expression)
Natural logarithm of argument.

e(expression)
Exponential function of argument.

j(expression, expression)
Bessel function of integer order.

The scale of the result returned by these functions shall be the value of the scale register at the
time the function is invoked. The value of the scale register after these functions have completed
their execution shall be the same value it had upon invocation. The behavior is undefined if any
of these functions is invoked with an argument outside the domain of the mathematical
function.

2480 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

79225

79226

79227

79228

79229

79230

79231

79232

79233

79234

79235

79236

79237

79238

79239

79240

79241

79242

79243

79244

79245

79246

79247

79248

79249

79250

79251

79252

79253

79254

79255

79256

79257

79258

79259

79260

79261

79262

79263

79264

79265

Utilities bc

EXIT STATUS
The following exit values shall be returned:

0 All input files were processed successfully.

unspecified An error occurred.

CONSEQUENCES OF ERRORS
If any file operand is specified and the named file cannot be accessed, bc shall write a diagnostic
message to standard error and terminate without any further action.

In an interactive invocation of bc, the utility should print an error message and recover following
any error in the input. In a non-interactive invocation of bc, invalid input causes undefined
behavior.

APPLICATION USAGE
Automatic variables in bc do not work in exactly the same way as in either C or PL/1.

For historical reasons, the exit status from bc cannot be relied upon to indicate that an error has
occurred. Returning zero after an error is possible. Therefore, bc should be used primarily by
interactive users (who can react to error messages) or by application programs that can
somehow validate the answers returned as not including error messages.

The bc utility always uses the <period> (’.’) character to represent a radix point, regardless of
any decimal-point character specified as part of the current locale. In languages like C or awk,
the <period> character is used in program source, so it can be portable and unambiguous, while
the locale-specific character is used in input and output. Because there is no distinction between
source and input in bc, this arrangement would not be possible. Using the locale-specific
character in bc’s input would introduce ambiguities into the language; consider the following
example in a locale with a <comma> as the decimal-point character:

define f(a,b) {
...

}
...

f(1,2,3)

Because of such ambiguities, the <period> character is used in input. Having input follow
different conventions from output would be confusing in either pipeline usage or interactive
usage, so the <period> is also used in output.

EXAMPLES
In the shell, the following assigns an approximation of the first ten digits of ’π’ to the variable x:

x=$(printf "%s\n" ’scale = 10; 104348/33215’ | bc)

The following bc program prints the same approximation of ’π’, with a label, to standard
output:

scale = 10
"pi equals "
104348 / 33215

The following defines a function to compute an approximate value of the exponential function
(note that such a function is predefined if the −l option is specified):

scale = 20
define e(x){

auto a, b, c, i, s

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2481

79266

79267

79268

79269

79270

79271

79272

79273

79274

79275

79276

79277

79278

79279

79280

79281

79282

79283

79284

79285

79286

79287

79288

79289

79290

79291

79292

79293

79294

79295

79296

79297

79298

79299

79300

79301

79302

79303

79304

79305

79306

79307

79308

79309

bc Utilities

a = 1
b = 1
s = 1
for (i = 1; 1 == 1; i++){

a = a*x
b = b*i
c = a/b
if (c == 0) {

return(s)
}
s = s+c

}
}

The following prints approximate values of the exponential function of the first ten integers:

for (i = 1; i <= 10; ++i) {
e(i)

}

RATIONALE
The bc utility is implemented historically as a front-end processor for dc; dc was not selected to
be part of this volume of POSIX.1-2008 because bc was thought to have a more intuitive
programmatic interface. Current implementations that implement bc using dc are expected to be
compliant.

The exit status for error conditions has been left unspecified for several reasons:

• The bc utility is used in both interactive and non-interactive situations. Different exit codes
may be appropriate for the two uses.

• It is unclear when a non-zero exit should be given; divide-by-zero, undefined functions,
and syntax errors are all possibilities.

• It is not clear what utility the exit status has.

• In the 4.3 BSD, System V, and Ninth Edition implementations, bc works in conjunction with
dc. The dc utility is the parent, bc is the child. This was done to cleanly terminate bc if dc
aborted.

The decision to have bc exit upon encountering an inaccessible input file is based on the belief
that bc file1 file2 is used most often when at least file1 contains data/function
declarations/initializations. Having bc continue with prerequisite files missing is probably not
useful. There is no implication in the CONSEQUENCES OF ERRORS section that bc must check
all its files for accessibility before opening any of them.

There was considerable debate on the appropriateness of the language accepted by bc. Several
reviewers preferred to see either a pure subset of the C language or some changes to make the
language more compatible with C. While the bc language has some obvious similarities to C, it
has never claimed to be compatible with any version of C. An interpreter for a subset of C might
be a very worthwhile utility, and it could potentially make bc obsolete. However, no such utility
is known in historical practice, and it was not within the scope of this volume of POSIX.1-2008 to
define such a language and utility. If and when they are defined, it may be appropriate to
include them in a future version of this standard. This left the following alternatives:

2482 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

79310

79311

79312

79313

79314

79315

79316

79317

79318

79319

79320

79321

79322

79323

79324

79325

79326

79327

79328

79329

79330

79331

79332

79333

79334

79335

79336

79337

79338

79339

79340

79341

79342

79343

79344

79345

79346

79347

79348

79349

79350

79351

79352

79353

Utilities bc

1. Exclude any calculator language from this volume of POSIX.1-2008.

The consensus of the standard developers was that a simple programmatic calculator
language is very useful for both applications and interactive users. The only arguments
for excluding any calculator were that it would become obsolete if and when a C-
compatible one emerged, or that the absence would encourage the development of such a
C-compatible one. These arguments did not sufficiently address the needs of current
application developers.

2. Standardize the historical dc, possibly with minor modifications.

The consensus of the standard developers was that dc is a fundamentally less usable
language and that that would be far too severe a penalty for avoiding the issue of being
similar to but incompatible with C.

3. Standardize the historical bc, possibly with minor modifications.

This was the approach taken. Most of the proponents of changing the language would not
have been satisfied until most or all of the incompatibilities with C were resolved. Since
most of the changes considered most desirable would break historical applications and
require significant modification to historical implementations, almost no modifications
were made. The one significant modification that was made was the replacement of the
historical bc assignment operators "=+", and so on, with the more modern "+=", and so
on. The older versions are considered to be fundamentally flawed because of the lexical
ambiguity in uses like a=−1.

In order to permit implementations to deal with backwards-compatibility as they see fit,
the behavior of this one ambiguous construct was made undefined. (At least three
implementations have been known to support this change already, so the degree of
change involved should not be great.)

The ’%’ operator is the mathematical remainder operator when scale is zero. The behavior of
this operator for other values of scale is from historical implementations of bc, and has been
maintained for the sake of historical applications despite its non-intuitive nature.

Historical implementations permit setting ibase and obase to a broader range of values. This
includes values less than 2, which were not seen as sufficiently useful to standardize. These
implementations do not interpret input properly for values of ibase that are greater than 16. This
is because numeric constants are recognized syntactically, rather than lexically, as described in
this volume of POSIX.1-2008. They are built from lexical tokens of single hexadecimal digits and
<period> characters. Since <blank> characters between tokens are not visible at the syntactic
level, it is not possible to recognize the multi-digit ‘‘digits’’ used in the higher bases properly.
The ability to recognize input in these bases was not considered useful enough to require
modifying these implementations. Note that the recognition of numeric constants at the
syntactic level is not a problem with conformance to this volume of POSIX.1-2008, as it does not
impact the behavior of conforming applications (and correct bc programs). Historical
implementations also accept input with all of the digits ’0’−’9’ and ’A’−’F’ regardless of the
value of ibase; since digits with value greater than or equal to ibase are not really appropriate,
the behavior when they appear is undefined, except for the common case of:

ibase=8;
/* Process in octal base. */

...
ibase=A

/* Restore decimal base. */

In some historical implementations, if the expression to be written is an uninitialized array

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2483

79354

79355

79356

79357

79358

79359

79360

79361

79362

79363

79364

79365

79366

79367

79368

79369

79370

79371

79372

79373

79374

79375

79376

79377

79378

79379

79380

79381

79382

79383

79384

79385

79386

79387

79388

79389

79390

79391

79392

79393

79394

79395

79396

79397

79398

79399

79400

bc Utilities

element, a leading <space> and/or up to four leading 0 characters may be output before the
character zero. This behavior is considered a bug; it is unlikely that any currently conforming
application relies on:

echo ’b[3]’ | bc

returning 00000 rather than 0.

Exact calculation of the number of fractional digits to output for a given value in a base other
than 10 can be computationally expensive. Historical implementations use a faster
approximation, and this is permitted. Note that the requirements apply only to values of obase
that this volume of POSIX.1-2008 requires implementations to support (in particular, not to 1, 0,
or negative bases, if an implementation supports them as an extension).

Historical implementations of bc did not allow array parameters to be passed as the last
parameter to a function. New implementations are encouraged to remove this restriction even
though it is not required by the grammar.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 1.3 (on page 2287), awk

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
Updated to align with the IEEE P1003.2b draft standard, which included resolution of several
interpretations of the ISO POSIX-2: 1993 standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2484 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

79401

79402

79403

79404

79405

79406

79407

79408

79409

79410

79411

79412

79413

79414

79415

79416

79417

79418

79419

79420

79421

79422

79423

79424

79425

79426

79427

79428

Utilities bg

NAME
bg — run jobs in the background

SYNOPSIS
UP bg [job_id...]

DESCRIPTION
If job control is enabled (see the description of set −m), the bg utility shall resume suspended jobs
from the current environment (see Section 2.12, on page 2331) by running them as background
jobs. If the job specified by job_id is already a running background job, the bg utility shall have
no effect and shall exit successfully.

Using bg to place a job into the background shall cause its process ID to become ‘‘known in the
current shell execution environment’’, as if it had been started as an asynchronous list; see
Section 2.9.3.1 (on page 2319).

OPTIONS
None.

OPERANDS
The following operand shall be supported:

job_id Specify the job to be resumed as a background job. If no job_id operand is given,
the most recently suspended job shall be used. The format of job_id is described in
XBD Section 3.203 (on page 65).

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of bg:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The output of bg shall consist of a line in the format:

"[%d] %s\n", <job-number>, <command>

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2485

79429

79430

79431

79432

79433

79434

79435

79436

79437

79438

79439

79440

79441

79442

79443

79444

79445

79446

79447

79448

79449

79450

79451

79452

79453

79454

79455

79456

79457

79458

79459

79460

79461

79462

79463

79464

79465

79466

79467

79468

79469

79470

bg Utilities

where the fields are as follows:

<job-number> A number that can be used to identify the job to the wait, fg, and kill utilities. Using
these utilities, the job can be identified by prefixing the job number with ’%’.

<command> The associated command that was given to the shell.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If job control is disabled, the bg utility shall exit with an error and no job shall be placed in the
background.

APPLICATION USAGE
A job is generally suspended by typing the SUSP character (<control>-Z on most systems); see
XBD Chapter 11 (on page 199). At that point, bg can put the job into the background. This is
most effective when the job is expecting no terminal input and its output has been redirected to
non-terminal files. A background job can be forced to stop when it has terminal output by
issuing the command:

stty tostop

A background job can be stopped with the command:

kill −s stop job ID

The bg utility does not work as expected when it is operating in its own utility execution
environment because that environment has no suspended jobs. In the following examples:

... | xargs bg
(bg)

each bg operates in a different environment and does not share its parent shell’s understanding
of jobs. For this reason, bg is generally implemented as a shell regular built-in.

EXAMPLES
None.

RATIONALE
The extensions to the shell specified in this volume of POSIX.1-2008 have mostly been based on
features provided by the KornShell. The job control features provided by bg, fg, and jobs are also
based on the KornShell. The standard developers examined the characteristics of the C shell
versions of these utilities and found that differences exist. Despite widespread use of the C shell,
the KornShell versions were selected for this volume of POSIX.1-2008 to maintain a degree of
uniformity with the rest of the KornShell features selected (such as the very popular command
line editing features).

2486 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

79471

79472

79473

79474

79475

79476

79477

79478

79479

79480

79481

79482

79483

79484

79485

79486

79487

79488

79489

79490

79491

79492

79493

79494

79495

79496

79497

79498

79499

79500

79501

79502

79503

79504

79505

79506

79507

79508

79509

79510

79511

79512

Utilities bg

The bg utility is expected to wrap its output if the output exceeds the number of display
columns.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.9.3.1 (on page 2319), fg , kill , jobs , wait

XBD Section 3.203 (on page 65), Chapter 8 (on page 173), Chapter 11 (on page 199)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The JC margin marker on the SYNOPSIS is removed since support for Job Control is mandatory
in this version. This is a FIPS requirement.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2487

79513

79514

79515

79516

79517

79518

79519

79520

79521

79522

79523

79524

79525

79526

79527

c99 Utilities

NAME
c99 — compile standard C programs

SYNOPSIS
CD c99 [options...] pathname [[pathname] [−I directory]

[−L directory] [−l library]]...

DESCRIPTION
The c99 utility is an interface to the standard C compilation system; it shall accept source code
conforming to the ISO C standard. The system conceptually consists of a compiler and link
editor. The input files referenced by pathname operands and −l option-arguments shall be
compiled and linked to produce an executable file. (It is unspecified whether the linking occurs
entirely within the operation of c99; some implementations may produce objects that are not
fully resolved until the file is executed.)

If the −c option is specified, for all pathname operands of the form file.c, the files:

$(basename pathname .c).o

shall be created as the result of successful compilation. If the −c option is not specified, it is
unspecified whether such .o files are created or deleted for the file.c operands.

If there are no options that prevent link editing (such as −c or −E), and all input files compile and
link without error, the resulting executable file shall be written according to the −o outfile option
(if present) or to the file a.out.

The executable file shall be created as specified in Section 1.1.1.4 (on page 2280), except that the
file permission bits shall be set to:

S_IRWXO | S_IRWXG | S_IRWXU

and the bits specified by the umask of the process shall be cleared.

OPTIONS
The c99 utility shall conform to XBD Section 12.2 (on page 215), except that:

• Options can be interspersed with operands.

• The order of specifying the −I, −L, and −l options, and the order of specifying −l options
with respect to pathname operands is significant.

• Conforming applications shall specify each option separately; that is, grouping option
letters (for example, −cO) need not be recognized by all implementations.

The following options shall be supported:

−c Suppress the link-edit phase of the compilation, and do not remove any object files
that are produced.

−D name[=value]
Define name as if by a C-language #define directive. If no =value is given, a value of
1 shall be used. The −D option has lower precedence than the −U option. That is, if
name is used in both a −U and a −D option, name shall be undefined regardless of
the order of the options. Additional implementation-defined names may be
provided by the compiler. Implementations shall support at least 2 048 bytes of −D
definitions and 256 names.

2488 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

79528

79529

79530

79531

79532

79533

79534

79535

79536

79537

79538

79539

79540

79541

79542

79543

79544

79545

79546

79547

79548

79549

79550

79551

79552

79553

79554

79555

79556

79557

79558

79559

79560

79561

79562

79563

79564

79565

79566

79567

Utilities c99

−E Copy C-language source files to standard output, expanding all preprocessor
directives; no compilation shall be performed. If any operand is not a text file, the
effects are unspecified.

−g Produce symbolic information in the object or executable files; the nature of this
information is unspecified, and may be modified by implementation-defined
interactions with other options.

−I directory Change the algorithm for searching for headers whose names are not absolute
pathnames to look in the directory named by the directory pathname before looking
in the usual places. Thus, headers whose names are enclosed in double-quotes ("")
shall be searched for first in the directory of the file with the #include line, then in
directories named in −I options, and last in the usual places. For headers whose
names are enclosed in angle brackets ("< >"), the header shall be searched for only
in directories named in −I options and then in the usual places. Directories named
in −I options shall be searched in the order specified. Implementations shall
support at least ten instances of this option in a single c99 command invocation.

−L directory Change the algorithm of searching for the libraries named in the −l objects to look
in the directory named by the directory pathname before looking in the usual
places. Directories named in −L options shall be searched in the order specified.
Implementations shall support at least ten instances of this option in a single c99
command invocation. If a directory specified by a −L option contains files with
names starting with any of the strings "libc.", "libl.", "libpthread.",
"libm.", "librt.", "libtrace.", "libxnet.", or "liby.", the results are
unspecified.

−l library Search the library named liblibrary.a. A library shall be searched when its name is
encountered, so the placement of a −l option is significant. Several standard
libraries can be specified in this manner, as described in the EXTENDED
DESCRIPTION section. Implementations may recognize implementation-defined
suffixes other than .a as denoting libraries.

−O optlevel Specify the level of code optimization. If the optlevel option-argument is the digit
’0’, all special code optimizations shall be disabled. If it is the digit ’1’, the
nature of the optimization is unspecified. If the −O option is omitted, the nature of
the system’s default optimization is unspecified. It is unspecified whether code
generated in the presence of the −O 0 option is the same as that generated when
−O is omitted. Other optlevel values may be supported.

−o outfile Use the pathname outfile, instead of the default a.out, for the executable file
produced. If the −o option is present with −c or −E, the result is unspecified.

−s Produce object or executable files, or both, from which symbolic and other
information not required for proper execution using the exec family defined in the
System Interfaces volume of POSIX.1-2008 has been removed (stripped). If both −g
and −s options are present, the action taken is unspecified.

−U name Remove any initial definition of name.

Multiple instances of the −D, −I, −L, −l, and −U options can be specified.

OPERANDS
The application shall ensure that at least one pathname operand is specified. The following forms
for pathname operands shall be supported:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2489

79568

79569

79570

79571

79572

79573

79574

79575

79576

79577

79578

79579

79580

79581

79582

79583

79584

79585

79586

79587

79588

79589

79590

79591

79592

79593

79594

79595

79596

79597

79598

79599

79600

79601

79602

79603

79604

79605

79606

79607

79608

79609

79610

79611

79612

c99 Utilities

file.c A C-language source file to be compiled and optionally linked. The application
shall ensure that the operand is of this form if the −c option is used.

file.a A library of object files typically produced by the ar utility, and passed directly to
the link editor. Implementations may recognize implementation-defined suffixes
other than .a as denoting object file libraries.

file.o An object file produced by c99 −c and passed directly to the link editor.
Implementations may recognize implementation-defined suffixes other than .o as
denoting object files.

The processing of other files is implementation-defined.

STDIN
Not used.

INPUT FILES
The input file shall be one of the following: a text file containing a C-language source program,
an object file in the format produced by c99 −c, or a library of object files, in the format produced
by archiving zero or more object files, using ar. Implementations may supply additional utilities
that produce files in these formats. Additional input file formats are implementation-defined.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of c99:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TMPDIR Provide a pathname that should override the default directory for temporary files,
XSI if any. On XSI-conforming systems, provide a pathname that shall override the

default directory for temporary files, if any.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If more than one pathname operand ending in .c (or possibly other unspecified suffixes) is given,
for each such file:

"%s:\n", <pathname>

may be written. These messages, if written, shall precede the processing of each input file; they
shall not be written to the standard output if they are written to the standard error, as described
in the STDERR section.

If the −E option is specified, the standard output shall be a text file that represents the results of

2490 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

79613

79614

79615

79616

79617

79618

79619

79620

79621

79622

79623

79624

79625

79626

79627

79628

79629

79630

79631

79632

79633

79634

79635

79636

79637

79638

79639

79640

79641

79642

79643

79644

79645

79646

79647

79648

79649

79650

79651

79652

79653

79654

79655

Utilities c99

the preprocessing stage of the language; it may contain extra information appropriate for
subsequent compilation passes.

STDERR
The standard error shall be used only for diagnostic messages. If more than one pathname
operand ending in .c (or possibly other unspecified suffixes) is given, for each such file:

"%s:\n", <pathname>

may be written to allow identification of the diagnostic and warning messages with the
appropriate input file. These messages, if written, shall precede the processing of each input file;
they shall not be written to the standard error if they are written to the standard output, as
described in the STDOUT section.

This utility may produce warning messages about certain conditions that do not warrant
returning an error (non-zero) exit value.

OUTPUT FILES
Object files or executable files or both are produced in unspecified formats. If the pathname of
an object file or executable file to be created by c99 resolves to an existing directory entry for a
file that is not a regular file, it is unspecified whether c99 shall attempt to create the file or shall
issue a diagnostic and exit with a non-zero exit status.

EXTENDED DESCRIPTION

Standard Libraries

The c99 utility shall recognize the following −l options for standard libraries:

−l c This option shall make available all interfaces referenced in the System Interfaces
volume of POSIX.1-2008, with the possible exception of those interfaces listed as
residing in <aio.h>, <arpa/inet.h>, <complex.h>, <fenv.h>, <math.h>,
<mqueue.h>, <netdb.h>, <net/if.h>, <netinet/in.h>, <pthread.h>, <sched.h>,
<semaphore.h>, <spawn.h>, <sys/socket.h>, pthread_kill(), and pthread_sigmask()
in <signal.h>, <trace.h>, interfaces marked as optional in <sys/mman.h>,
interfaces marked as ADV (Advisory Information) in <fcntl.h>, and interfaces
beginning with the prefix clock_ or time_ in <time.h>. This option shall not be
required to be present to cause a search of this library.

−l l This option shall make available all interfaces required by the C-language output
of lex that are not made available through the −l c option.

−l pthread This option shall make available all interfaces referenced in <pthread.h> and
pthread_kill() and pthread_sigmask() referenced in <signal.h>. An implementation
may search this library in the absence of this option.

−l m This option shall make available all interfaces referenced in <math.h>,
<complex.h>, and <fenv.h>. An implementation may search this library in the
absence of this option.

−l rt This option shall make available all interfaces referenced in <aio.h>, <mqueue.h>,
<sched.h>, <semaphore.h>, and <spawn.h>, interfaces marked as optional in
<sys/mman.h>, interfaces marked as ADV (Advisory Information) in <fcntl.h>,
and interfaces beginning with the prefix clock_ and time_ in <time.h>. An
implementation may search this library in the absence of this option.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2491

79656

79657

79658

79659

79660

79661

79662

79663

79664

79665

79666

79667

79668

79669

79670

79671

79672

79673

79674

79675

79676

79677

79678

79679

79680

79681

79682

79683

79684

79685

79686

79687

79688

79689

79690

79691

79692

79693

79694

79695

79696

79697

c99 Utilities

OB −l trace This option shall make available all interfaces referenced in <trace.h>. An
implementation may search this library in the absence of this option.

−l xnet This option shall make available all interfaces referenced in <arpa/inet.h>,
<netdb.h>, <net/if.h>, <netinet/in.h>, and <sys/socket.h>. An implementation
may search this library in the absence of this option.

−l y This option shall make available all interfaces required by the C-language output
of yacc that are not made available through the −l c option.

In the absence of options that inhibit invocation of the link editor, such as −c or −E, the c99 utility
shall cause the equivalent of a −l c option to be passed to the link editor after the last pathname
operand or −l option, causing it to be searched after all other object files and libraries are loaded.

OB It is unspecified whether the libraries libc.a, libl.a, libm.a, libpthread.a, librt.a, libtrace.a,
libxnet.a, or liby.a exist as regular files. The implementation may accept as −l option-arguments
names of objects that do not exist as regular files.

External Symbols

The C compiler and link editor shall support the significance of external symbols up to a length
of at least 31 bytes; the action taken upon encountering symbols exceeding the implementation-
defined maximum symbol length is unspecified.

The compiler and link editor shall support a minimum of 511 external symbols per source or
object file, and a minimum of 4 095 external symbols in total. A diagnostic message shall be
written to the standard output if the implementation-defined limit is exceeded; other actions are
unspecified.

Programming Environments

All implementations shall support one of the following programming environments as a default.
Implementations may support more than one of the following programming environments.
Applications can use sysconf() or getconf to determine which programming environments are
supported.

Table 4-4 Programming Environments: Type Sizes

Programming Environment Bits in Bits in Bits in Bits in
getconf Name int long pointer off_t

_POSIX_V7_ILP32_OFF32 32 32 32 32
_POSIX_V7_ILP32_OFFBIG 32 32 32 ≥64
_POSIX_V7_LP64_OFF64 32 64 64 64
_POSIX_V7_LPBIG_OFFBIG ≥32 ≥64 ≥64 ≥64

All implementations shall support one or more environments where the widths of the following
types are no greater than the width of type long:

blksize_t
cc_t
mode_t
nfds_t
pid_t

ptrdiff_t
size_t
speed_t
ssize_t
suseconds_t

tcflag_t
wchar_t
wint_t

The executable files created when these environments are selected shall be in a proper format for

2492 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

79698

79699

79700

79701

79702

79703

79704

79705

79706

79707

79708

79709

79710

79711

79712

79713

79714

79715

79716

79717

79718

79719

79720

79721

79722

79723

79724

79725

79726

79727

79728

79729

79730

79731

79732

79733

79734

79735

79736

79737

79738

Utilities c99

execution by the exec family of functions. Each environment may be one of the ones in Table 4-4
(on page 2492), or it may be another environment. The names for the environments that meet
this requirement shall be output by a getconf command using the
POSIX_V7_WIDTH_RESTRICTED_ENVS argument, as a <newline>-separated list of names
suitable for use with the getconf −v option. If more than one environment meets the requirement,
the names of all such environments shall be output on separate lines. Any of these names can
then be used in a subsequent getconf command to obtain the flags specific to that environment
with the following suffixes added as appropriate:

_CFLAGS To get the C compiler flags.

_LDFLAGS To get the linker/loader flags.

_LIBS To get the libraries.

This requirement may be removed in a future version.

When this utility processes a file containing a function called main(), it shall be defined with a
return type equivalent to int. Using return from the initial call to main() shall be equivalent
(other than with respect to language scope issues) to calling exit() with the returned value.
Reaching the end of the initial call to main() shall be equivalent to calling exit(0). The
implementation shall not declare a prototype for this function.

Implementations provide configuration strings for C compiler flags, linker/loader flags, and
libraries for each supported environment. When an application needs to use a specific
programming environment rather than the implementation default programming environment
while compiling, the application shall first verify that the implementation supports the desired
environment. If the desired programming environment is supported, the application shall then
invoke c99 with the appropriate C compiler flags as the first options for the compile, the
appropriate linker/loader flags after any other options except −l but before any operands or −l
options, and the appropriate libraries at the end of the operands and −l options.

Conforming applications shall not attempt to link together object files compiled for different
programming models. Applications shall also be aware that binary data placed in shared
memory or in files might not be recognized by applications built for other programming models.

Table 4-5 Programming Environments: c99 Arguments

Programming Environment c99 Arguments
getconf Name Use getconf Name

_POSIX_V7_ILP32_OFF32 C Compiler Flags POSIX_V7_ILP32_OFF32_CFLAGS
Linker/Loader Flags POSIX_V7_ILP32_OFF32_LDFLAGS
Libraries POSIX_V7_ILP32_OFF32_LIBS

_POSIX_V7_ILP32_OFFBIG C Compiler Flags POSIX_V7_ILP32_OFFBIG_CFLAGS
Linker/Loader Flags POSIX_V7_ILP32_OFFBIG_LDFLAGS
Libraries POSIX_V7_ILP32_OFFBIG_LIBS

_POSIX_V7_LP64_OFF64 C Compiler Flags POSIX_V7_LP64_OFF64_CFLAGS
Linker/Loader Flags POSIX_V7_LP64_OFF64_LDFLAGS
Libraries POSIX_V7_LP64_OFF64_LIBS

_POSIX_V7_LPBIG_OFFBIG C Compiler Flags POSIX_V7_LPBIG_OFFBIG_CFLAGS
Linker/Loader Flags POSIX_V7_LPBIG_OFFBIG_LDFLAGS
Libraries POSIX_V7_LPBIG_OFFBIG_LIBS

In addition to the type size programming environments above, all implementations also support

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2493

79739

79740

79741

79742

79743

79744

79745

79746

79747

79748

79749

79750

79751

79752

79753

79754

79755

79756

79757

79758

79759

79760

79761

79762

79763

79764

79765

79766

79767

79768

79769

79770

79771

79772

79773

79774

79775

79776

79777

79778

79779

79780

79781

79782

c99 Utilities

a multi-threaded programming environment that is orthogonal to all of the programming
environments listed above. The getconf utility can be used to get flags for the threaded
programming environment, as indicated in Table 4-6.

Table 4-6 Threaded Programming Environment: c99 Arguments

Programming Environment c99 Arguments
getconf Name Use getconf Name

_POSIX_THREADS C Compiler Flags POSIX_V7_THREADS_CFLAGS
Linker/Loader Flags POSIX_V7_THREADS_LDFLAGS

These programming environment flags may be used in conjunction with any of the type size
programming environments supported by the implementation.

EXIT STATUS
The following exit values shall be returned:

0 Successful compilation or link edit.

>0 An error occurred.

CONSEQUENCES OF ERRORS
When c99 encounters a compilation error that causes an object file not to be created, it shall write
a diagnostic to standard error and continue to compile other source code operands, but it shall
not perform the link phase and return a non-zero exit status. If the link edit is unsuccessful, a
diagnostic message shall be written to standard error and c99 exits with a non-zero status. A
conforming application shall rely on the exit status of c99, rather than on the existence or mode
of the executable file.

APPLICATION USAGE
Since the c99 utility usually creates files in the current directory during the compilation process,
it is typically necessary to run the c99 utility in a directory in which a file can be created.

On systems providing POSIX Conformance (see XBD Chapter 2, on page 15), c99 is required
only with the C-Language Development option; XSI-conformant systems always provide c99.

Some historical implementations have created .o files when −c is not specified and more than
one source file is given. Since this area is left unspecified, the application cannot rely on .o files
being created, but it also must be prepared for any related .o files that already exist being deleted
at the completion of the link edit.

There is the possible implication that if a user supplies versions of the standard functions (before
they would be encountered by an implicit −l c or explicit −l m), that those versions would be
used in place of the standard versions. There are various reasons this might not be true
(functions defined as macros, manipulations for clean name space, and so on), so the existence of
files named in the same manner as the standard libraries within the −L directories is explicitly
stated to produce unspecified behavior.

All of the functions specified in the System Interfaces volume of POSIX.1-2008 may be made
visible by implementations when the Standard C Library is searched. Conforming applications
must explicitly request searching the other standard libraries when functions made visible by
those libraries are used.

In the ISO C standard the mapping from physical source characters to the C source character set
is implementation-defined. Implementations may strip white-space characters before the
terminating <newline> of a (physical) line as part of this mapping and, as a consequence of this,

2494 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

79783

79784

79785

79786

79787

79788

79789

79790

79791

79792

79793

79794

79795

79796

79797

79798

79799

79800

79801

79802

79803

79804

79805

79806

79807

79808

79809

79810

79811

79812

79813

79814

79815

79816

79817

79818

79819

79820

79821

79822

79823

79824

79825

Utilities c99

one or more white-space characters (and no other characters) between a <backslash> character
and the <newline> character that terminates the line produces implementation-defined results.
Portable applications should not use such constructs.

Some c99 compilers not conforming to POSIX.1-2008 do not support trigraphs by default.

EXAMPLES

1. The following usage example compiles foo.c and creates the executable file foo:

c99 −o foo foo.c

The following usage example compiles foo.c and creates the object file foo.o:

c99 −c foo.c

The following usage example compiles foo.c and creates the executable file a.out:

c99 foo.c

The following usage example compiles foo.c, links it with bar.o, and creates the
executable file a.out. It may also create and leave foo.o:

c99 foo.c bar.o

2. The following example shows how an application using threads interfaces can test for
support of and use a programming environment supporting 32-bit int, long, and pointer
types and an off_t type using at least 64 bits:

offbig_env=$(getconf _POSIX_V7_ILP32_OFFBIG)
if [$offbig_env != "-1"] && [$offbig_env != "undefined"]
then

c99 $(getconf POSIX_V7_ILP32_OFFBIG_CFLAGS) \
$(getconf POSIX_V7_THREADS_CFLAGS) -D_XOPEN_SOURCE=700 \
$(getconf POSIX_V7_ILP32_OFFBIG_LDFLAGS) \
$(getconf POSIX_V7_THREADS_LDFLAGS) foo.c -o foo \
$(getconf POSIX_V7_ILP32_OFFBIG_LIBS) \
-l pthread

else
echo ILP32_OFFBIG programming environment not supported
exit 1

fi

3. The following examples clarify the use and interactions of −L and −l options.

Consider the case in which module a.c calls function f() in library libQ.a, and module b.c
calls function g() in library libp.a. Assume that both libraries reside in /a/b/c. The
command line to compile and link in the desired way is:

c99 −L /a/b/c main.o a.c −l Q b.c −l p

In this case the −L option need only precede the first −l option, since both libQ.a and
libp.a reside in the same directory.

Multiple −L options can be used when library name collisions occur. Building on the
previous example, suppose that the user wants to use a new libp.a, in /a/a/a, but still
wants f() from /a/b/c/libQ.a:

c99 −L /a/a/a −L /a/b/c main.o a.c −l Q b.c −l p

In this example, the linker searches the −L options in the order specified, and finds

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2495

79826

79827

79828

79829

79830

79831

79832

79833

79834

79835

79836

79837

79838

79839

79840

79841

79842

79843

79844

79845

79846

79847

79848

79849

79850

79851

79852

79853

79854

79855

79856

79857

79858

79859

79860

79861

79862

79863

79864

79865

79866

79867

c99 Utilities

/a/a/a/libp.a before /a/b/c/libp.a when resolving references for b.c. The order of the −l
options is still important, however.

4. The following example shows how an application can use a programming environment
where the widths of the following types:

blksize_t, cc_t, mode_t, nfds_t, pid_t, ptrdiff_t, size_t, speed_t, ssize_t, suseconds_t,
tcflag_t, wchar_t, wint_t

are no greater than the width of type long:

First choose one of the listed environments ...

... if there are no additional constraints, the first one will do:
CENV=$(getconf POSIX_V7_WIDTH_RESTRICTED_ENVS | head -n l)

... or, if an environment that supports large files is preferred,
look for names that contain "OFF64" or "OFFBIG". (This chooses
the last one in the list if none match.)
for CENV in $(getconf POSIX_V7_WIDTH_RESTRICTED_ENVS)
do

case $CENV in
OFF64|*OFFBIG*) break ;;
esac

done

The chosen environment name can now be used like this:

c99 $(getconf ${CENV}_CFLAGS) -D _POSIX_C_SOURCE=200809L \
$(getconf ${CENV}_LDFLAGS) foo.c -o foo \
$(getconf ${CENV}_LIBS)

RATIONALE
The c99 utility is based on the c89 utility originally introduced in the ISO POSIX-2: 1993
standard.

Some of the changes from c89 include the ability to intersperse options and operands (which
many c89 implementations allowed despite it not being specified), the description of −l as an
option instead of an operand, and the modification to the contents of the Standard Libraries
section to account for new headers and options; for example, <spawn.h> added to the
description of −l rt, and −l trace added for the Tracing option.

POSIX.1-2008 specifies that the c99 utility must be able to use regular files for *.o files and for
a.out files. Implementations are free to overwrite existing files of other types when attempting to
create object files and executable files, but are not required to do so. If something other than a
regular file is specified and using it fails for any reason, c99 is required to issue a diagnostic
message and exit with a non-zero exit status. But for some file types, the problem may not be
noticed for a long time. For example, if a FIFO named a.out exists in the current directory, c99
may attempt to open a.out and will hang in the open() call until another process opens the FIFO
for reading. Then c99 may write most of the a.out to the FIFO and fail when it tries to seek back
close to the start of the file to insert a timestamp (FIFOs are not seekable files). The c99 utility is
also allowed to issue a diagnostic immediately if it encounters an a.out or *.o file that is not a
regular file. For portable use, applications should ensure that any a.out, −o option-argument, or
*.o files corresponding to any *.c files do not conflict with names already in use that are not
regular files or symbolic links that point to regular files.

On many systems, multi-threaded applications run in a programming environment that is

2496 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

79868

79869

79870

79871

79872

79873

79874

79875

79876

79877

79878

79879

79880

79881

79882

79883

79884

79885

79886

79887

79888

79889

79890

79891

79892

79893

79894

79895

79896

79897

79898

79899

79900

79901

79902

79903

79904

79905

79906

79907

79908

79909

79910

79911

79912

Utilities c99

distinct from that used by single-threaded applications. This multi-threaded programming
environment (in addition to needing to specify −l pthread at link time) may require additional
flags to be set when headers are processed at compile time (−D_REENTRANT being common).
This programming environment is orthogonal to the type size programming environments
discussed above and listed in Table 4-4 (on page 2492). This version of the standard adds getconf
utility calls to provide the C compiler flags and linker/loader flags needed to support multi-
threaded applications. Note that on a system where single-threaded applications are a special
case of a multi-threaded application, both of these getconf calls may return NULL strings; on
other implementations both of these strings may be non-NULL strings.

The C standardization committee invented trigraphs (e.g., "??!" to represent ’˜’) to address
character portability problems in development environments based on national variants of the
7-bit ISO/IEC 646: 1991 standard character set. However, these environments were already
obsolete by the time the first ISO C standard was published, and in practice trigraphs have not
been used for their intended purpose, and usually are intended to have their original meaning in
K&R C. For example, in practice a C-language source string like "What??!" is usually intended
to end in two <question-mark> characters and an <exclamation-mark>, not in ’˜’.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 1.1.1.4 (on page 2280), ar , getconf , make , nm , strip , umask

XBD Chapter 8 (on page 173), Section 12.2 (on page 215), Chapter 13 (on page 219)

XSH exec , sysconf()

CHANGE HISTORY
First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/12 is applied, correcting the EXTENDED
DESCRIPTION of −l c and −l m. Previously, the text did not take into account the presence of
the c99 math headers.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/13 is applied, changing the reference to
the libxnet library to libxnet.a.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/5 is applied, updating the OPTIONS
section, so that the names of files contained in the directory specified by the −L option are not
assumed to end in the .a suffix. The set of library prefixes is also updated.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/6 is applied, removing the lead
underscore from the POSIX_V6_WIDTH_RESTRICTED_ENVS variable in the EXTENDED
DESCRIPTION and the EXAMPLES sections.

Issue 7
Austin Group Interpretation 1003.1-2001 #020 (SD5-XCU-ERN-10) is applied, adding to the
OUTPUT FILES section and also adding associated RATIONALE.

Austin Group Interpretation 1003.1-2001 #095 is applied, clarifying the −l library operand.

Austin Group Interpretation 1003.1-2001 #166 is applied.

Austin Group Interpretation 1003.1-2001 #190 is applied, clarifying the handling of trailing
white-space characters.

Austin Group Interpretation 1003.1-2001 #191 is applied, adding APPLICATION USAGE and
RATIONALE regarding C-language trigraphs.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2497

79913

79914

79915

79916

79917

79918

79919

79920

79921

79922

79923

79924

79925

79926

79927

79928

79929

79930

79931

79932

79933

79934

79935

79936

79937

79938

79939

79940

79941

79942

79943

79944

79945

79946

79947

79948

79949

79950

79951

79952

79953

79954

79955

79956

c99 Utilities

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax Guidelines does not
apply (options can be interspersed with operands).

SD5-XCU-ERN-11 is applied, adding the <net/if.h> header to the descriptions of −l c and
−l xnet.

SD5-XCU-ERN-65 is applied, updating the EXAMPLES section.

SD5-XCU-ERN-67 and SD5-XCU-ERN-97 are applied, updating the SYNOPSIS.

SD5-XCU-ERN-133 is applied, updating the EXTENDED DESCRIPTION.

The getconf variables for the supported programming environments are updated to be V7.

The −l trace operand is marked obsolescent.

The c99 reference page is rewritten to describe −l as an option rather than an operand.

2498 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

79957

79958

79959

79960

79961

79962

79963

79964

79965

79966

Utilities cal

NAME
cal — print a calendar

SYNOPSIS
XSI cal [[month] year]

DESCRIPTION
The cal utility shall write a calendar to standard output using the Julian calendar for dates from
January 1, 1 through September 2, 1752 and the Gregorian calendar for dates from September 14,
1752 through December 31, 9999 as though the Gregorian calendar had been adopted on
September 14, 1752.

OPTIONS
None.

OPERANDS
The following operands shall be supported:

month Specify the month to be displayed, represented as a decimal integer from 1
(January) to 12 (December). The default shall be the current month.

year Specify the year for which the calendar is displayed, represented as a decimal
integer from 1 to 9999. The default shall be the current year.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cal:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error, and informative messages written
to standard output.

LC_TIME Determine the format and contents of the calendar.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TZ Determine the timezone used to calculate the value of the current month.

ASYNCHRONOUS EVENTS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2499

79967

79968

79969

79970

79971

79972

79973

79974

79975

79976

79977

79978

79979

79980

79981

79982

79983

79984

79985

79986

79987

79988

79989

79990

79991

79992

79993

79994

79995

79996

79997

79998

79999

80000

80001

80002

80003

80004

80005

80006

cal Utilities

STDOUT
The standard output shall be used to display the calendar, in an unspecified format.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Note that:

cal 83

refers to A.D. 83, not 1983.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
A future version of this standard may support locale-specific recognition of the date of adoption
of the Gregorian calendar.

SEE ALSO
XBD Chapter 8 (on page 173)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The DESCRIPTION is updated to allow for traditional behavior for years before the adoption of
the Gregorian calendar.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2500 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

80007

80008

80009

80010

80011

80012

80013

80014

80015

80016

80017

80018

80019

80020

80021

80022

80023

80024

80025

80026

80027

80028

80029

80030

80031

80032

80033

80034

80035

80036

80037

80038

80039

80040

Utilities cat

NAME
cat — concatenate and print files

SYNOPSIS
cat [−u] [file...]

DESCRIPTION
The cat utility shall read files in sequence and shall write their contents to the standard output in
the same sequence.

OPTIONS
The cat utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−u Write bytes from the input file to the standard output without delay as each is
read.

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If no file operands are specified, the standard input
shall be used. If a file is ’−’, the cat utility shall read from the standard input at
that point in the sequence. The cat utility shall not close and reopen standard input
when it is referenced in this way, but shall accept multiple occurrences of ’−’ as a
file operand.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is ’−’.
See the INPUT FILES section.

INPUT FILES
The input files can be any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cat:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2501

80041

80042

80043

80044

80045

80046

80047

80048

80049

80050

80051

80052

80053

80054

80055

80056

80057

80058

80059

80060

80061

80062

80063

80064

80065

80066

80067

80068

80069

80070

80071

80072

80073

80074

80075

80076

80077

80078

80079

80080

cat Utilities

STDOUT
The standard output shall contain the sequence of bytes read from the input files. Nothing else
shall be written to the standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All input files were output successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The −u option has value in prototyping non-blocking reads from FIFOs. The intent is to support
the following sequence:

mkfifo foo
cat −u foo > /dev/tty13 &
cat −u > foo

It is unspecified whether standard output is or is not buffered in the default case. This is
sometimes of interest when standard output is associated with a terminal, since buffering may
delay the output. The presence of the −u option guarantees that unbuffered I/O is available. It is
implementation-defined whether the cat utility buffers output if the −u option is not specified.
Traditionally, the −u option is implemented using the equivalent of the setvbuf() function
defined in the System Interfaces volume of POSIX.1-2008.

EXAMPLES
The following command:

cat myfile

writes the contents of the file myfile to standard output.

The following command:

cat doc1 doc2 > doc.all

concatenates the files doc1 and doc2 and writes the result to doc.all.

Because of the shell language mechanism used to perform output redirection, a command such
as this:

cat doc doc.end > doc

causes the original data in doc to be lost.

The command:

cat start − middle − end > file

when standard input is a terminal, gets two arbitrary pieces of input from the terminal with a

2502 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

80081

80082

80083

80084

80085

80086

80087

80088

80089

80090

80091

80092

80093

80094

80095

80096

80097

80098

80099

80100

80101

80102

80103

80104

80105

80106

80107

80108

80109

80110

80111

80112

80113

80114

80115

80116

80117

80118

80119

80120

80121

Utilities cat

single invocation of cat. Note, however, that if standard input is a regular file, this would be
equivalent to the command:

cat start − middle /dev/null end > file

because the entire contents of the file would be consumed by cat the first time ’−’ was used as a
file operand and an end-of-file condition would be detected immediately when ’−’ was
referenced the second time.

RATIONALE
Historical versions of the cat utility include the −e, −t, and −v, options which permit the ends of
lines, <tab> characters, and invisible characters, respectively, to be rendered visible in the
output. The standard developers omitted these options because they provide too fine a degree of
control over what is made visible, and similar output can be obtained using a command such as:

sed −n l pathname

The latter also has the advantage that its output is unambiguous, whereas the output of
historical cat −etv is not.

The −s option was omitted because it corresponds to different functions in BSD and System
V-based systems. The BSD −s option to squeeze blank lines can be accomplished by the shell
script shown in the following example:

sed −n ’
Write non-empty lines.
/./ {

p
d
}

Write a single empty line, then look for more empty lines.
/ˆ$/ p
Get next line, discard the held <newline> (empty line),
and look for more empty lines.
:Empty
/ˆ$/ {

N
s/.//
b Empty
}

Write the non-empty line before going back to search
for the first in a set of empty lines.

p
’

The System V −s option to silence error messages can be accomplished by redirecting the
standard error. Note that the BSD documentation for cat uses the term ‘‘blank line’’ to mean the
same as the POSIX ‘‘empty line’’: a line consisting only of a <newline>.

The BSD −n option was omitted because similar functionality can be obtained from the −n
option of the pr utility.

FUTURE DIRECTIONS
None.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2503

80122

80123

80124

80125

80126

80127

80128

80129

80130

80131

80132

80133

80134

80135

80136

80137

80138

80139

80140

80141

80142

80143

80144

80145

80146

80147

80148

80149

80150

80151

80152

80153

80154

80155

80156

80157

80158

80159

80160

80161

80162

80163

80164

80165

cat Utilities

SEE ALSO
more

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH setvbuf()

CHANGE HISTORY
First released in Issue 2.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-174 is applied, changing the RATIONALE.

2504 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

80166

80167

80168

80169

80170

80171

80172

80173

80174

Utilities cd

NAME
cd — change the working directory

SYNOPSIS
cd [−L|−P] [directory]

cd −

DESCRIPTION
The cd utility shall change the working directory of the current shell execution environment (see
Section 2.12, on page 2331) by executing the following steps in sequence. (In the following steps,
the symbol curpath represents an intermediate value used to simplify the description of the
algorithm used by cd. There is no requirement that curpath be made visible to the application.)

1. If no directory operand is given and the HOME environment variable is empty or
undefined, the default behavior is implementation-defined and no further steps shall be
taken.

2. If no directory operand is given and the HOME environment variable is set to a non-empty
value, the cd utility shall behave as if the directory named in the HOME environment
variable was specified as the directory operand.

3. If the directory operand begins with a <slash> character, set curpath to the operand and
proceed to step 7.

4. If the first component of the directory operand is dot or dot-dot, proceed to step 6.

5. Starting with the first pathname in the <colon>-separated pathnames of CDPATH (see the
ENVIRONMENT VARIABLES section) if the pathname is non-null, test if the
concatenation of that pathname, a <slash> character if that pathname did not end with a
<slash> character, and the directory operand names a directory. If the pathname is null,
test if the concatenation of dot, a <slash> character, and the operand names a directory. In
either case, if the resulting string names an existing directory, set curpath to that string
and proceed to step 7. Otherwise, repeat this step with the next pathname in CDPATH
until all pathnames have been tested.

6. If the −P option is in effect, set curpath to the directory operand. Otherwise, set curpath to
the string formed by the concatenation of the value of PWD, a <slash> character if the
value of PWD did not end with a <slash> character, and the operand.

7. If the −P option is in effect, proceed to step 10. If curpath does not begin with a <slash>
character, set curpath to the string formed by the concatenation of the value of PWD, a
<slash> character if the value of PWD did not end with a <slash> character, and curpath.

8. The curpath value shall then be converted to canonical form as follows, considering each
component from beginning to end, in sequence:

a. Dot components and any <slash> characters that separate them from the next
component shall be deleted.

b. For each dot-dot component, if there is a preceding component and it is neither
root nor dot-dot, then:

i. If the preceding component does not refer (in the context of pathname
resolution with symbolic links followed) to a directory, then the cd utility
shall display an appropriate error message and no further steps shall be
taken.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2505

80175

80176

80177

80178

80179

80180

80181

80182

80183

80184

80185

80186

80187

80188

80189

80190

80191

80192

80193

80194

80195

80196

80197

80198

80199

80200

80201

80202

80203

80204

80205

80206

80207

80208

80209

80210

80211

80212

80213

80214

80215

80216

80217

cd Utilities

ii. The preceding component, all <slash> characters separating the preceding
component from dot-dot, dot-dot, and all <slash> characters separating dot-
dot from the following component (if any) shall be deleted.

c. An implementation may further simplify curpath by removing any trailing
<slash> characters that are not also leading <slash> characters, replacing multiple
non-leading consecutive <slash> characters with a single <slash>, and replacing
three or more leading <slash> characters with a single <slash>. If, as a result of
this canonicalization, the curpath variable is null, no further steps shall be taken.

9. If curpath is longer than {PATH_MAX} bytes (including the terminating null) and the
directory operand was not longer than {PATH_MAX} bytes (including the terminating
null), then curpath shall be converted from an absolute pathname to an equivalent
relative pathname if possible. This conversion shall always be considered possible if the
value of PWD, with a trailing <slash> added if it does not already have one, is an initial
substring of curpath. Whether or not it is considered possible under other circumstances
is unspecified. Implementations may also apply this conversion if curpath is not longer
than {PATH_MAX} bytes or the directory operand was longer than {PATH_MAX} bytes.

10. The cd utility shall then perform actions equivalent to the chdir() function called with
curpath as the path argument. If these actions fail for any reason, the cd utility shall
display an appropriate error message and the remainder of this step shall not be
executed. If the −P option is not in effect, the PWD environment variable shall be set to
the value that curpath had on entry to step 9 (i.e., before conversion to a relative
pathname). If the −P option is in effect, the PWD environment variable shall be set to the
string that would be output by pwd −P. If there is insufficient permission on the new
directory, or on any parent of that directory, to determine the current working directory,
the value of the PWD environment variable is unspecified.

If, during the execution of the above steps, the PWD environment variable is changed, the
OLDPWD environment variable shall also be changed to the value of the old working directory
(that is the current working directory immediately prior to the call to cd).

OPTIONS
The cd utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported by the implementation:

−L Handle the operand dot-dot logically; symbolic link components shall not be
resolved before dot-dot components are processed (see steps 8. and 9. in the
DESCRIPTION).

−P Handle the operand dot-dot physically; symbolic link components shall be
resolved before dot-dot components are processed (see step 7. in the
DESCRIPTION).

If both −L and −P options are specified, the last of these options shall be used and all others
ignored. If neither −L nor −P is specified, the operand shall be handled dot-dot logically; see the
DESCRIPTION.

OPERANDS
The following operands shall be supported:

directory An absolute or relative pathname of the directory that shall become the new
working directory. The interpretation of a relative pathname by cd depends on the
−L option and the CDPATH and PWD environment variables. If directory is an
empty string, the results are unspecified.

2506 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

80218

80219

80220

80221

80222

80223

80224

80225

80226

80227

80228

80229

80230

80231

80232

80233

80234

80235

80236

80237

80238

80239

80240

80241

80242

80243

80244

80245

80246

80247

80248

80249

80250

80251

80252

80253

80254

80255

80256

80257

80258

80259

80260

80261

80262

80263

Utilities cd

− When a <hyphen> is used as the operand, this shall be equivalent to the command:

cd "$OLDPWD" && pwd

which changes to the previous working directory and then writes its name.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cd:

CDPATH A <colon>-separated list of pathnames that refer to directories. The cd utility shall
use this list in its attempt to change the directory, as described in the
DESCRIPTION. An empty string in place of a directory pathname represents the
current directory. If CDPATH is not set, it shall be treated as if it were an empty
string.

HOME The name of the directory, used when no directory operand is specified.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

OLDPWD A pathname of the previous working directory, used by cd −.

PWD This variable shall be set as specified in the DESCRIPTION. If an application sets
or unsets the value of PWD, the behavior of cd is unspecified.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If a non-empty directory name from CDPATH is used, or if cd − is used, an absolute pathname of
the new working directory shall be written to the standard output as follows:

"%s\n", <new directory>

Otherwise, there shall be no output.

STDERR
The standard error shall be used only for diagnostic messages.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2507

80264

80265

80266

80267

80268

80269

80270

80271

80272

80273

80274

80275

80276

80277

80278

80279

80280

80281

80282

80283

80284

80285

80286

80287

80288

80289

80290

80291

80292

80293

80294

80295

80296

80297

80298

80299

80300

80301

80302

cd Utilities

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The directory was successfully changed.

>0 An error occurred.

CONSEQUENCES OF ERRORS
The working directory shall remain unchanged.

APPLICATION USAGE
Since cd affects the current shell execution environment, it is always provided as a shell regular
built-in. If it is called in a subshell or separate utility execution environment, such as one of the
following:

(cd /tmp)
nohup cd
find . −exec cd {} \;

it does not affect the working directory of the caller’s environment.

The user must have execute (search) permission in directory in order to change to it.

EXAMPLES
None.

RATIONALE
The use of the CDPATH was introduced in the System V shell. Its use is analogous to the use of
the PA TH variable in the shell. The BSD C shell used a shell parameter cdpath for this purpose.

A common extension when HOME is undefined is to get the login directory from the user
database for the invoking user. This does not occur on System V implementations.

Some historical shells, such as the KornShell, took special actions when the directory name
contained a dot-dot component, selecting the logical parent of the directory, rather than the
actual parent directory; that is, it moved up one level toward the ’/’ in the pathname,
remembering what the user typed, rather than performing the equivalent of:

chdir("..");

In such a shell, the following commands would not necessarily produce equivalent output for all
directories:

cd .. && ls ls ..

This behavior is now the default. It is not consistent with the definition of dot-dot in most
historical practice; that is, while this behavior has been optionally available in the KornShell,
other shells have historically not supported this functionality. The logical pathname is stored in
the PWD environment variable when the cd utility completes and this value is used to construct
the next directory name if cd is invoked with the −L option.

2508 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

80303

80304

80305

80306

80307

80308

80309

80310

80311

80312

80313

80314

80315

80316

80317

80318

80319

80320

80321

80322

80323

80324

80325

80326

80327

80328

80329

80330

80331

80332

80333

80334

80335

80336

80337

80338

80339

80340

80341

Utilities cd

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.12 (on page 2331), pwd

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH chdir()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The cd − operand, PWD, and OLDPWD are added.

The −L and −P options are added to align with the IEEE P1003.2b draft standard. This also
includes the introduction of a new description to include the effect of these options.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/14 is applied, changing the SYNOPSIS to
make it clear that the −L and −P options are mutually-exclusive.

Issue 7
Austin Group Interpretation 1003.1-2001 #037 is applied.

Austin Group Interpretation 1003.1-2001 #199 is applied, clarifying how the od utility handles
concatenation of two pathnames when the first pathname ends in a <slash> character.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Step 7 of the processing performed by cd is revised to refer to curpath instead of ‘‘the operand’’.

Changes to the pwd utility and PWD environment variable have been made to match the
changes to the getcwd() function made for Austin Group Interpretation 1003.1-2001 #140.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2509

80342

80343

80344

80345

80346

80347

80348

80349

80350

80351

80352

80353

80354

80355

80356

80357

80358

80359

80360

80361

80362

80363

80364

80365

cflow Utilities

NAME
cflow — generate a C-language flowgraph (DEVELOPMENT)

SYNOPSIS
XSI cflow [−r] [−d num] [−D name[=def]]... [−i incl] [−I dir]...

[−U dir]... file...

DESCRIPTION
The cflow utility shall analyze a collection of object files or assembler, C-language, lex, or yacc
source files, and attempt to build a graph, written to standard output, charting the external
references.

OPTIONS
The cflow utility shall conform to XBD Section 12.2 (on page 215), except that the order of the −D,
−I, and −U options (which are identical to their interpretation by c99) is significant.

The following options shall be supported:

−d num Indicate the depth at which the flowgraph is cut off. The application shall ensure
that the argument num is a decimal integer. By default this is a very large number
(typically greater than 32 000). Attempts to set the cut-off depth to a non-positive
integer shall be ignored.

−i incl Increase the number of included symbols. The incl option-argument is one of the
following characters:

x Include external and static data symbols. The default shall be to include only
functions in the flowgraph.

_ (Underscore) Include names that begin with an <underscore>. The default
shall be to exclude these functions (and data if −i x is used).

−r Reverse the caller:callee relationship, producing an inverted listing showing the
callers of each function. The listing shall also be sorted in lexicographical order by
callee.

OPERANDS
The following operand is supported:

file The pathname of a file for which a graph is to be generated. Filenames suffixed by
.l shall shall be taken to be lex input, .y as yacc input, .c as c99 input, and .i as the
output of c99 −E. Such files shall be processed as appropriate, determined by their
suffix.

Files suffixed by .s (conventionally assembler source) may have more limited
information extracted from them.

STDIN
Not used.

INPUT FILES
The input files shall be object files or assembler, C-language, lex, or yacc source files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cflow:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

2510 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

80366

80367

80368

80369

80370

80371

80372

80373

80374

80375

80376

80377

80378

80379

80380

80381

80382

80383

80384

80385

80386

80387

80388

80389

80390

80391

80392

80393

80394

80395

80396

80397

80398

80399

80400

80401

80402

80403

80404

80405

80406

80407

80408

Utilities cflow

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the ordering of the output when the −r option is used.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The flowgraph written to standard output shall be formatted as follows:

"%d %s:%s\n", <reference number>, <global>, <definition>

Each line of output begins with a reference (that is, line) number, followed by indentation of at
least one column position per level. This is followed by the name of the global, a <colon>, and
its definition. Normally globals are only functions not defined as an external or beginning with
an <underscore>; see the OPTIONS section for the −i inclusion option. For information extracted
from C-language source, the definition consists of an abstract type declaration (for example, char
*) and, delimited by angle brackets, the name of the source file and the line number where the
definition was found. Definitions extracted from object files indicate the filename and location
counter under which the symbol appeared (for example, text).

Once a definition of a name has been written, subsequent references to that name contain only
the reference number of the line where the definition can be found. For undefined references,
only "< >" shall be written.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2511

80409

80410

80411

80412

80413

80414

80415

80416

80417

80418

80419

80420

80421

80422

80423

80424

80425

80426

80427

80428

80429

80430

80431

80432

80433

80434

80435

80436

80437

80438

80439

80440

80441

80442

80443

80444

80445

80446

80447

cflow Utilities

APPLICATION USAGE
Files produced by lex and yacc cause the reordering of line number declarations, and this can
confuse cflow. To obtain proper results, the input of yacc or lex must be directed to cflow.

EXAMPLES
Given the following in file.c:

int i;
int f();
int g();
int h();
int
main()
{

f();
g();
f();

}
int
f()
{

i = h();
}

The command:

cflow −i x file.c

produces the output:

1 main: int(), <file.c 6>
2 f: int(), <file.c 13>
3 h: <>
4 i: int, <file.c 1>
5 g: <>

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
c99 , lex , yacc

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2512 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

80448

80449

80450

80451

80452

80453

80454

80455

80456

80457

80458

80459

80460

80461

80462

80463

80464

80465

80466

80467

80468

80469

80470

80471

80472

80473

80474

80475

80476

80477

80478

80479

80480

80481

80482

80483

80484

80485

80486

80487

80488

80489

Utilities chgrp

NAME
chgrp — change the file group ownership

SYNOPSIS
chgrp [−h] group file...

chgrp −R [−H|−L|−P] group file...

DESCRIPTION
The chgrp utility shall set the group ID of the file named by each file operand to the group ID
specified by the group operand.

For each file operand, or, if the −R option is used, each file encountered while walking the
directory trees specified by the file operands, the chgrp utility shall perform actions equivalent to
the chown() function defined in the System Interfaces volume of POSIX.1-2008, called with the
following arguments:

• The file operand shall be used as the path argument.

• The user ID of the file shall be used as the owner argument.

• The specified group ID shall be used as the group argument.

Unless chgrp is invoked by a process with appropriate privileges, the set-user-ID and set-group-
ID bits of a regular file shall be cleared upon successful completion; the set-user-ID and set-
group-ID bits of other file types may be cleared.

OPTIONS
The chgrp utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported by the implementation:

−h If the system supports group IDs for symbolic links, for each file operand that
names a file of type symbolic link, chgrp shall attempt to set the group ID of the
symbolic link instead of the file referenced by the symbolic link. If the system does
not support group IDs for symbolic links, for each file operand that names a file of
type symbolic link, chgrp shall do nothing more with the current file and shall go
on to any remaining files.

−H If the −R option is specified and a symbolic link referencing a file of type directory
is specified on the command line, chgrp shall change the group of the directory
referenced by the symbolic link and all files in the file hierarchy below it.

−L If the −R option is specified and a symbolic link referencing a file of type directory
is specified on the command line or encountered during the traversal of a file
hierarchy, chgrp shall change the group of the directory referenced by the symbolic
link and all files in the file hierarchy below it.

−P If the −R option is specified and a symbolic link is specified on the command line
or encountered during the traversal of a file hierarchy, chgrp shall change the group
ID of the symbolic link if the system supports this operation. The chgrp utility shall
not follow the symbolic link to any other part of the file hierarchy.

−R Recursively change file group IDs. For each file operand that names a directory,
chgrp shall change the group of the directory and all files in the file hierarchy
below it. Unless a −H, −L, or −P option is specified, it is unspecified which of these
options will be used as the default.

Specifying more than one of the mutually-exclusive options −H, −L, and −P shall not be
considered an error. The last option specified shall determine the behavior of the utility.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2513

80490

80491

80492

80493

80494

80495

80496

80497

80498

80499

80500

80501

80502

80503

80504

80505

80506

80507

80508

80509

80510

80511

80512

80513

80514

80515

80516

80517

80518

80519

80520

80521

80522

80523

80524

80525

80526

80527

80528

80529

80530

80531

80532

80533

chgrp Utilities

OPERANDS
The following operands shall be supported:

group A group name from the group database or a numeric group ID. Either specifies a
group ID to be given to each file named by one of the file operands. If a numeric
group operand exists in the group database as a group name, the group ID number
associated with that group name is used as the group ID.

file A pathname of a file whose group ID is to be modified.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of chgrp:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The utility executed successfully and all requested changes were made.

>0 An error occurred.

2514 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

80534

80535

80536

80537

80538

80539

80540

80541

80542

80543

80544

80545

80546

80547

80548

80549

80550

80551

80552

80553

80554

80555

80556

80557

80558

80559

80560

80561

80562

80563

80564

80565

80566

80567

80568

80569

80570

80571

80572

Utilities chgrp

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Only the owner of a file or the user with appropriate privileges may change the owner or group
of a file.

Some implementations restrict the use of chgrp to a user with appropriate privileges when the
group specified is not the effective group ID or one of the supplementary group IDs of the calling
process.

EXAMPLES
None.

RATIONALE
The System V and BSD versions use different exit status codes. Some implementations used the
exit status as a count of the number of errors that occurred; this practice is unworkable since it
can overflow the range of valid exit status values. The standard developers chose to mask these
by specifying only 0 and >0 as exit values.

The functionality of chgrp is described substantially through references to chown(). In this way,
there is no duplication of effort required for describing the interactions of permissions, multiple
groups, and so on.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod , chown

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH chown()

CHANGE HISTORY
First released in Issue 2.

Issue 6
New options −H, −L, and −P are added to align with the IEEE P1003.2b draft standard. These
options affect the processing of symbolic links.

IEEE PASC Interpretation 1003.2 #172 is applied, changing the CONSEQUENCES OF ERRORS
section to ‘‘Default.’’.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/15 is applied, changing the SYNOPSIS to
make it clear that −h and −R are optional.

Issue 7
SD5-XCU-ERN-8 is applied, removing the −R from the first line of the SYNOPSIS.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2515

80573

80574

80575

80576

80577

80578

80579

80580

80581

80582

80583

80584

80585

80586

80587

80588

80589

80590

80591

80592

80593

80594

80595

80596

80597

80598

80599

80600

80601

80602

80603

80604

80605

80606

80607

80608

chmod Utilities

NAME
chmod — change the file modes

SYNOPSIS
chmod [−R] mode file...

DESCRIPTION
The chmod utility shall change any or all of the file mode bits of the file named by each file
operand in the way specified by the mode operand.

It is implementation-defined whether and how the chmod utility affects any alternate or
additional file access control mechanism (see XBD Section 4.4, on page 108) being used for the
specified file.

Only a process whose effective user ID matches the user ID of the file, or a process with
appropriate privileges, shall be permitted to change the file mode bits of a file.

Upon successfully changing the file mode bits of a file, the chmod utility shall mark for update
the last file status change timestamp of the file.

OPTIONS
The chmod utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−R Recursively change file mode bits. For each file operand that names a directory,
chmod shall change the file mode bits of the directory and all files in the file
hierarchy below it.

OPERANDS
The following operands shall be supported:

mode Represents the change to be made to the file mode bits of each file named by one of
the file operands; see the EXTENDED DESCRIPTION section.

file A pathname of a file whose file mode bits shall be modified.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of chmod:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

2516 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

80609

80610

80611

80612

80613

80614

80615

80616

80617

80618

80619

80620

80621

80622

80623

80624

80625

80626

80627

80628

80629

80630

80631

80632

80633

80634

80635

80636

80637

80638

80639

80640

80641

80642

80643

80644

80645

80646

80647

80648

80649

80650

Utilities chmod

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The mode operand shall be either a symbolic_mode expression or a non-negative octal integer. The
symbolic_mode form is described by the grammar later in this section.

Each clause shall specify an operation to be performed on the current file mode bits of each file.
The operations shall be performed on each file in the order in which the clauses are specified.

The who symbols u, g, and o shall specify the user, group, and other parts of the file mode bits,
respectively. A who consisting of the symbol a shall be equivalent to ugo.

The perm symbols r, w, and x represent the read, write, and execute/search portions of file mode
bits, respectively. The perm symbol s shall represent the set-user-ID-on-execution (when who
contains or implies u) and set-group-ID-on-execution (when who contains or implies g) bits.

The perm symbol X shall represent the execute/search portion of the file mode bits if the file is a
directory or if the current (unmodified) file mode bits have at least one of the execute bits
(S_IXUSR, S_IXGRP, or S_IXOTH) set. It shall be ignored if the file is not a directory and none of
the execute bits are set in the current file mode bits.

The permcopy symbols u, g, and o shall represent the current permissions associated with the
user, group, and other parts of the file mode bits, respectively. For the remainder of this section,
perm refers to the non-terminals perm and permcopy in the grammar.

If multiple actionlists are grouped with a single wholist in the grammar, each actionlist shall be
applied in the order specified with that wholist. The op symbols shall represent the operation
performed, as follows:

+ If perm is not specified, the ’+’ operation shall not change the file mode bits.

If who is not specified, the file mode bits represented by perm for the owner, group, and
other permissions, except for those with corresponding bits in the file mode creation mask
of the invoking process, shall be set.

Otherwise, the file mode bits represented by the specified who and perm values shall be set.

− If perm is not specified, the ’−’ operation shall not change the file mode bits.

If who is not specified, the file mode bits represented by perm for the owner, group, and
other permissions, except for those with corresponding bits in the file mode creation mask
of the invoking process, shall be cleared.

Otherwise, the file mode bits represented by the specified who and perm values shall be
cleared.

= Clear the file mode bits specified by the who value, or, if no who value is specified, all of the
file mode bits specified in this volume of POSIX.1-2008.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2517

80651

80652

80653

80654

80655

80656

80657

80658

80659

80660

80661

80662

80663

80664

80665

80666

80667

80668

80669

80670

80671

80672

80673

80674

80675

80676

80677

80678

80679

80680

80681

80682

80683

80684

80685

80686

80687

80688

80689

80690

80691

80692

chmod Utilities

If perm is not specified, the ’=’ operation shall make no further modifications to the file
mode bits.

If who is not specified, the file mode bits represented by perm for the owner, group, and
other permissions, except for those with corresponding bits in the file mode creation mask
of the invoking process, shall be set.

Otherwise, the file mode bits represented by the specified who and perm values shall be set.

When using the symbolic mode form on a regular file, it is implementation-defined whether or
not:

• Requests to set the set-user-ID-on-execution or set-group-ID-on-execution bit when all
execute bits are currently clear and none are being set are ignored.

• Requests to clear all execute bits also clear the set-user-ID-on-execution and set-group-ID-
on-execution bits.

• Requests to clear the set-user-ID-on-execution or set-group-ID-on-execution bits when all
execute bits are currently clear are ignored. However, if the command ls −l file writes an s
in the position indicating that the set-user-ID-on-execution or set-group-ID-on-execution is
set, the commands chmod u−s file or chmod g−s file, respectively, shall not be ignored.

When using the symbolic mode form on other file types, it is implementation-defined whether
or not requests to set or clear the set-user-ID-on-execution or set-group-ID-on-execution bits are
honored.

If the who symbol o is used in conjunction with the perm symbol s with no other who symbols
being specified, the set-user-ID-on-execution and set-group-ID-on-execution bits shall not be
modified. It shall not be an error to specify the who symbol o in conjunction with the perm
symbol s.

XSI The perm symbol t shall specify the S_ISVTX bit. When used with a file of type directory, it can
be used with the who symbol a, or with no who symbol. It shall not be an error to specify a who
symbol of u, g, or o in conjunction with the perm symbol t, but the meaning of these
combinations is unspecified. The effect when using the perm symbol t with any file type other
than directory is unspecified.

For an octal integer mode operand, the file mode bits shall be set absolutely.

For each bit set in the octal number, the corresponding file permission bit shown in the following
table shall be set; all other file permission bits shall be cleared. For regular files, for each bit set in
the octal number corresponding to the set-user-ID-on-execution or the set-group-ID-on-
execution, bits shown in the following table shall be set; if these bits are not set in the octal
number, they are cleared. For other file types, it is implementation-defined whether or not
requests to set or clear the set-user-ID-on-execution or set-group-ID-on-execution bits are
honored.

Octal Mode Bit Octal Mode Bit Octal Mode Bit Octal Mode Bit

4000 S_ISUID 0400 S_IRUSR 0040 S_IRGRP 0004 S_IROTH

2000 S_ISGID 0200 S_IWUSR 0020 S_IWGRP 0002 S_IWOTH

XSI 1000 S_ISVTX 0100 S_IXUSR 0010 S_IXGRP 0001 S_IXOTH

When bits are set in the octal number other than those listed in the table above, the behavior is
unspecified.

2518 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

80693

80694

80695

80696

80697

80698

80699

80700

80701

80702

80703

80704

80705

80706

80707

80708

80709

80710

80711

80712

80713

80714

80715

80716

80717

80718

80719

80720

80721

80722

80723

80724

80725

80726

80727

80728

80729

80730

80731

80732

80733

80734

Utilities chmod

Grammar for chmod

The grammar and lexical conventions in this section describe the syntax for the symbolic_mode
operand. The general conventions for this style of grammar are described in Section 1.3 (on page
2287). A valid symbolic_mode can be represented as the non-terminal symbol symbolic_mode in
the grammar. This formal syntax shall take precedence over the preceding text syntax
description.

The lexical processing is based entirely on single characters. Implementations need not allow
<blank> characters within the single argument being processed.

%start symbolic_mode
%%

symbolic_mode : clause
| symbolic_mode ’,’ clause
;

clause : actionlist
| wholist actionlist
;

wholist : who
| wholist who
;

who : ’u’ | ’g’ | ’o’ | ’a’
;

actionlist : action
| actionlist action
;

action : op
| op permlist
| op permcopy
;

permcopy : ’u’ | ’g’ | ’o’
;

op : ’+’ | ’−’ | ’=’
;

permlist : perm
| perm permlist
;

XSI perm : ’r’ | ’w’ | ’x’ | ’X’ | ’s’ | ’t’
;

EXIT STATUS
The following exit values shall be returned:

0 The utility executed successfully and all requested changes were made.

>0 An error occurred.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2519

80735

80736

80737

80738

80739

80740

80741

80742

80743

80744

80745

80746

80747

80748

80749

80750

80751

80752

80753

80754

80755

80756

80757

80758

80759

80760

80761

80762

80763

80764

80765

80766

80767

80768

80769

80770

80771

80772

80773

80774

80775

chmod Utilities

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Some implementations of the chmod utility change the mode of a directory before the files in the
directory when performing a recursive (−R option) change; others change the directory mode
after the files in the directory. If an application tries to remove read or search permission for a
file hierarchy, the removal attempt fails if the directory is changed first; on the other hand, trying
to re-enable permissions to a restricted hierarchy fails if directories are changed last. Users
should not try to make a hierarchy inaccessible to themselves.

Some implementations of chmod never used the umask of the process when changing modes;
systems conformant with this volume of POSIX.1-2008 do so when who is not specified. Note
the difference between:

chmod a−w file

which removes all write permissions, and:

chmod − − −w file

which removes write permissions that would be allowed if file was created with the same
umask.

Conforming applications should never assume that they know how the set-user-ID and set-
group-ID bits on directories are interpreted.

EXAMPLES

Mode Results

a+= Equivalent to a+,a=; clears all file mode bits.
go+−w Equivalent to go+,go−w; clears group and other

write bits.
g=o−w Equivalent to g=o,g−w; sets group bit to match

other bits and then clears group write bit.
g−r+w Equivalent to g−r,g+w; clears group read bit and

sets group write bit.
uo=g Sets owner bits to match group bits and sets

other bits to match group bits.

RATIONALE
The functionality of chmod is described substantially through references to concepts defined in
the System Interfaces volume of POSIX.1-2008. In this way, there is less duplication of effort
required for describing the interactions of permissions. However, the behavior of this utility is
not described in terms of the chmod() function from the System Interfaces volume of
POSIX.1-2008 because that specification requires certain side-effects upon alternate file access
control mechanisms that might not be appropriate, depending on the implementation.

Implementations that support mandatory file and record locking as specified by the 1984
/usr/group standard historically used the combination of set-group-ID bit set and group
execute bit clear to indicate mandatory locking. This condition is usually set or cleared with the
symbolic mode perm symbol l instead of the perm symbols s and x so that the mandatory
locking mode is not changed without explicit indication that that was what the user intended.
Therefore, the details on how the implementation treats these conditions must be defined in the
documentation. This volume of POSIX.1-2008 does not require mandatory locking (nor does the
System Interfaces volume of POSIX.1-2008), but does allow it as an extension. However, this
volume of POSIX.1-2008 does require that the ls and chmod utilities work consistently in this

2520 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

80776

80777

80778

80779

80780

80781

80782

80783

80784

80785

80786

80787

80788

80789

80790

80791

80792

80793

80794

80795

80796

80797

80798

80799

80800

80801

80802

80803

80804

80805

80806

80807

80808

80809

80810

80811

80812

80813

80814

80815

80816

80817

80818

80819

80820

80821

Utilities chmod

area. If ls −l file indicates that the set-group-ID bit is set, chmod g−s file must clear it (assuming
appropriate privileges exist to change modes).

The System V and BSD versions use different exit status codes. Some implementations used the
exit status as a count of the number of errors that occurred; this practice is unworkable since it
can overflow the range of valid exit status values. This problem is avoided here by specifying
only 0 and >0 as exit values.

The System Interfaces volume of POSIX.1-2008 indicates that implementation-defined
restrictions may cause the S_ISUID and S_ISGID bits to be ignored. This volume of POSIX.1-2008
allows the chmod utility to choose to modify these bits before calling chmod() (or some function
providing equivalent capabilities) for non-regular files. Among other things, this allows
implementations that use the set-user-ID and set-group-ID bits on directories to enable extended
features to handle these extensions in an intelligent manner.

The X perm symbol was adopted from BSD-based systems because it provides commonly
desired functionality when doing recursive (−R option) modifications. Similar functionality is
not provided by the find utility. Historical BSD versions of chmod, however, only supported X
with op+; it has been extended in this volume of POSIX.1-2008 because it is also useful with op=.
(It has also been added for op− even though it duplicates x, in this case, because it is intuitive
and easier to explain.)

The grammar was extended with the permcopy non-terminal to allow historical-practice forms of
symbolic modes like o=u −g (that is, set the ‘‘other ’’ permissions to the permissions of ‘‘owner ’’
minus the permissions of ‘‘group’’).

FUTURE DIRECTIONS
None.

SEE ALSO
ls , umask

XBD Section 4.4 (on page 108), Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH chmod()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• Octal modes have been kept and made mandatory despite being marked obsolescent in the
ISO POSIX-2: 1993 standard.

IEEE PASC Interpretation 1003.2 #172 is applied, changing the CONSEQUENCES OF ERRORS
section to ‘‘Default.’’.

The Open Group Base Resolution bwg2001-010 is applied, adding the description of the
S_ISVTX bit and the t perm symbol as part of the XSI option.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/16 is applied, changing the XSI shaded
text in the EXTENDED DESCRIPTION from:

‘‘The perm symbol t shall specify the S_ISVTX bit and shall apply to directories only. The
effect when using it with any other file type is unspecified. It can be used with the who
symbols o, a, or with no who symbol. It shall not be an error to specify a who symbol of u
or g in conjunction with the perm symbol t; it shall be ignored for u and g.’’

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2521

80822

80823

80824

80825

80826

80827

80828

80829

80830

80831

80832

80833

80834

80835

80836

80837

80838

80839

80840

80841

80842

80843

80844

80845

80846

80847

80848

80849

80850

80851

80852

80853

80854

80855

80856

80857

80858

80859

80860

80861

80862

80863

80864

80865

chmod Utilities

to:

‘‘The perm symbol t shall specify the S_ISVTX bit. When used with a file of type directory,
it can be used with the who symbol a, or with no who symbol. It shall not be an error to
specify a who symbol of u, g, or o in conjunction with the perm symbol t, but the meaning
of these combinations is unspecified. The effect when using the perm symbol t with any
file type other than directory is unspecified.’’

This change is to permit historical behavior.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Austin Group Interpretation 1003.1-2001 #130 is applied, adding text to the DESCRIPTION
about about marking for update the last file status change timestamp of the file.

2522 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

80866

80867

80868

80869

80870

80871

80872

80873

80874

80875

80876

Utilities chown

NAME
chown — change the file ownership

SYNOPSIS
chown [−h] owner[:group] file...

chown −R [−H|−L|−P] owner[:group] file...

DESCRIPTION
The chown utility shall set the user ID of the file named by each file operand to the user ID
specified by the owner operand.

For each file operand, or, if the −R option is used, each file encountered while walking the
directory trees specified by the file operands, the chown utility shall perform actions equivalent to
the chown() function defined in the System Interfaces volume of POSIX.1-2008, called with the
following arguments:

1. The file operand shall be used as the path argument.

2. The user ID indicated by the owner portion of the first operand shall be used as the owner
argument.

3. If the group portion of the first operand is given, the group ID indicated by it shall be used
as the group argument; otherwise, the group ownership shall not be changed.

Unless chown is invoked by a process with appropriate privileges, the set-user-ID and set-group-
ID bits of a regular file shall be cleared upon successful completion; the set-user-ID and set-
group-ID bits of other file types may be cleared.

OPTIONS
The chown utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported by the implementation:

−h For each file operand that names a file of type symbolic link, chown shall attempt to
set the user ID of the symbolic link. If a group ID was specified, for each file
operand that names a file of type symbolic link, chown shall attempt to set the
group ID of the symbolic link.

−H If the −R option is specified and a symbolic link referencing a file of type directory
is specified on the command line, chown shall change the user ID (and group ID, if
specified) of the directory referenced by the symbolic link and all files in the file
hierarchy below it.

−L If the −R option is specified and a symbolic link referencing a file of type directory
is specified on the command line or encountered during the traversal of a file
hierarchy, chown shall change the user ID (and group ID, if specified) of the
directory referenced by the symbolic link and all files in the file hierarchy below it.

−P If the −R option is specified and a symbolic link is specified on the command line
or encountered during the traversal of a file hierarchy, chown shall change the
owner ID (and group ID, if specified) of the symbolic link. The chown utility shall
not follow the symbolic link to any other part of the file hierarchy.

−R Recursively change file user and group IDs. For each file operand that names a
directory, chown shall change the user ID (and group ID, if specified) of the
directory and all files in the file hierarchy below it. Unless a −H, −L, or −P option is
specified, it is unspecified which of these options will be used as the default.

Specifying more than one of the mutually-exclusive options −H, −L, and −P shall not be

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2523

80877

80878

80879

80880

80881

80882

80883

80884

80885

80886

80887

80888

80889

80890

80891

80892

80893

80894

80895

80896

80897

80898

80899

80900

80901

80902

80903

80904

80905

80906

80907

80908

80909

80910

80911

80912

80913

80914

80915

80916

80917

80918

80919

80920

chown Utilities

considered an error. The last option specified shall determine the behavior of the utility.

OPERANDS
The following operands shall be supported:

owner[:group] A user ID and optional group ID to be assigned to file. The owner portion of this
operand shall be a user name from the user database or a numeric user ID. Either
specifies a user ID which shall be given to each file named by one of the file
operands. If a numeric owner operand exists in the user database as a user name,
the user ID number associated with that user name shall be used as the user ID.
Similarly, if the group portion of this operand is present, it shall be a group name
from the group database or a numeric group ID. Either specifies a group ID which
shall be given to each file. If a numeric group operand exists in the group database
as a group name, the group ID number associated with that group name shall be
used as the group ID.

file A pathname of a file whose user ID is to be modified.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of chown:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

2524 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

80921

80922

80923

80924

80925

80926

80927

80928

80929

80930

80931

80932

80933

80934

80935

80936

80937

80938

80939

80940

80941

80942

80943

80944

80945

80946

80947

80948

80949

80950

80951

80952

80953

80954

80955

80956

80957

80958

80959

80960

Utilities chown

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The utility executed successfully and all requested changes were made.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Only the owner of a file or the user with appropriate privileges may change the owner or group
of a file.

Some implementations restrict the use of chown to a user with appropriate privileges.

EXAMPLES
None.

RATIONALE
The System V and BSD versions use different exit status codes. Some implementations used the
exit status as a count of the number of errors that occurred; this practice is unworkable since it
can overflow the range of valid exit status values. These are masked by specifying only 0 and >0
as exit values.

The functionality of chown is described substantially through references to functions in the
System Interfaces volume of POSIX.1-2008. In this way, there is no duplication of effort required
for describing the interactions of permissions, multiple groups, and so on.

The 4.3 BSD method of specifying both owner and group was included in this volume of
POSIX.1-2008 because:

• There are cases where the desired end condition could not be achieved using the chgrp and
chown (that only changed the user ID) utilities. (If the current owner is not a member of the
desired group and the desired owner is not a member of the current group, the chown()
function could fail unless both owner and group are changed at the same time.)

• Even if they could be changed independently, in cases where both are being changed, there
is a 100% performance penalty caused by being forced to invoke both utilities.

The BSD syntax user[.group] was changed to user[:group] in this volume of POSIX.1-2008 because
the <period> is a valid character in login names (as specified by the Base Definitions volume of
POSIX.1-2008, login names consist of characters in the portable filename character set). The
<colon> character was chosen as the replacement for the <period> character because it would
never be allowed as a character in a user name or group name on historical implementations.

The −R option is considered by some observers as an undesirable departure from the historical
UNIX system tools approach; since a tool, find, already exists to recurse over directories, there
seemed to be no good reason to require other tools to have to duplicate that functionality.
However, the −R option was deemed an important user convenience, is far more efficient than
forking a separate process for each element of the directory hierarchy, and is in widespread
historical use.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2525

80961

80962

80963

80964

80965

80966

80967

80968

80969

80970

80971

80972

80973

80974

80975

80976

80977

80978

80979

80980

80981

80982

80983

80984

80985

80986

80987

80988

80989

80990

80991

80992

80993

80994

80995

80996

80997

80998

80999

81000

81001

chown Utilities

FUTURE DIRECTIONS
None.

SEE ALSO
chgrp , chmod

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH chown()

CHANGE HISTORY
First released in Issue 2.

Issue 6
New options −h, −H, −L, and −P are added to align with the IEEE P1003.2b draft standard. These
options affect the processing of symbolic links.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

IEEE PASC Interpretation 1003.2 #172 is applied, changing the CONSEQUENCES OF ERRORS
section to ‘‘Default.’’.

The ‘‘otherwise, . . .’’ text in item 3. of the DESCRIPTION is changed to ‘‘otherwise, the group
ownership shall not be changed’’.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/17 is applied, changing the SYNOPSIS to
make it clear that −h and −R are optional.

Issue 7
SD5-XCU-ERN-9 is applied, removing the −R from the first line of the SYNOPSIS.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The description of the −h and −P options is revised.

2526 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

81002

81003

81004

81005

81006

81007

81008

81009

81010

81011

81012

81013

81014

81015

81016

81017

81018

81019

81020

81021

81022

81023

Utilities cksum

NAME
cksum — write file checksums and sizes

SYNOPSIS
cksum [file...]

DESCRIPTION
The cksum utility shall calculate and write to standard output a cyclic redundancy check (CRC)
for each input file, and also write to standard output the number of octets in each file. The CRC
used is based on the polynomial used for CRC error checking in the ISO/IEC 8802-3: 1996
standard (Ethernet).

The encoding for the CRC checksum is defined by the generating polynomial:

G(x)=x
32
+x

26
+x

23
+x

22
+x

16
+x

12
+x

11
+x

10
+x

8
+x

7
+x

5
+x

4
+x

2
+x+1

Mathematically, the CRC value corresponding to a given file shall be defined by the following
procedure:

1. The n bits to be evaluated are considered to be the coefficients of a mod 2 polynomial
M(x) of degree n−1. These n bits are the bits from the file, with the most significant bit
being the most significant bit of the first octet of the file and the last bit being the least
significant bit of the last octet, padded with zero bits (if necessary) to achieve an integral
number of octets, followed by one or more octets representing the length of the file as a
binary value, least significant octet first. The smallest number of octets capable of
representing this integer shall be used.

2. M(x) is multiplied by x32 (that is, shifted left 32 bits) and divided by G(x) using mod 2
division, producing a remainder R(x) of degree ≤ 31.

3. The coefficients of R(x) are considered to be a 32-bit sequence.

4. The bit sequence is complemented and the result is the CRC.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

file A pathname of a file to be checked. If no file operands are specified, the standard
input shall be used.

STDIN
The standard input shall be used if no file operands are specified, and shall be used if a file
operand is ’−’ and the implementation treats the ’−’ as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
The input files can be any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cksum:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2527

81024

81025

81026

81027

81028

81029

81030

81031

81032

81033

81034

81035

81036

81037

81038

81039

81040

81041

81042

81043

81044

81045

81046

81047

81048

81049

81050

81051

81052

81053

81054

81055

81056

81057

81058

81059

81060

81061

81062

81063

81064

81065

81066

cksum Utilities

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
For each file processed successfully, the cksum utility shall write in the following format:

"%u %d %s\n", <checksum>, <# of octets>, <pathname>

If no file operand was specified, the pathname and its leading <space> shall be omitted.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All files were processed successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The cksum utility is typically used to quickly compare a suspect file against a trusted version of
the same, such as to ensure that files transmitted over noisy media arrive intact. However, this
comparison cannot be considered cryptographically secure. The chances of a damaged file
producing the same CRC as the original are small; deliberate deception is difficult, but probably
not impossible.

Although input files to cksum can be any type, the results need not be what would be expected
on character special device files or on file types not described by the System Interfaces volume of
POSIX.1-2008. Since this volume of POSIX.1-2008 does not specify the block size used when
doing input, checksums of character special files need not process all of the data in those files.

The algorithm is expressed in terms of a bitstream divided into octets. If a file is transmitted
between two systems and undergoes any data transformation (such as changing little-endian
byte ordering to big-endian), identical CRC values cannot be expected. Implementations
performing such transformations may extend cksum to handle such situations.

EXAMPLES
None.

2528 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

81067

81068

81069

81070

81071

81072

81073

81074

81075

81076

81077

81078

81079

81080

81081

81082

81083

81084

81085

81086

81087

81088

81089

81090

81091

81092

81093

81094

81095

81096

81097

81098

81099

81100

81101

81102

81103

81104

81105

81106

81107

Utilities cksum

RATIONALE
The following C-language program can be used as a model to describe the algorithm. It assumes
that a char is one octet. It also assumes that the entire file is available for one pass through the
function. This was done for simplicity in demonstrating the algorithm, rather than as an
implementation model.

static unsigned long crctab[] = {
0x00000000,
0x04c11db7, 0x09823b6e, 0x0d4326d9, 0x130476dc, 0x17c56b6b,
0x1a864db2, 0x1e475005, 0x2608edb8, 0x22c9f00f, 0x2f8ad6d6,
0x2b4bcb61, 0x350c9b64, 0x31cd86d3, 0x3c8ea00a, 0x384fbdbd,
0x4c11db70, 0x48d0c6c7, 0x4593e01e, 0x4152fda9, 0x5f15adac,
0x5bd4b01b, 0x569796c2, 0x52568b75, 0x6a1936c8, 0x6ed82b7f,
0x639b0da6, 0x675a1011, 0x791d4014, 0x7ddc5da3, 0x709f7b7a,
0x745e66cd, 0x9823b6e0, 0x9ce2ab57, 0x91a18d8e, 0x95609039,
0x8b27c03c, 0x8fe6dd8b, 0x82a5fb52, 0x8664e6e5, 0xbe2b5b58,
0xbaea46ef, 0xb7a96036, 0xb3687d81, 0xad2f2d84, 0xa9ee3033,
0xa4ad16ea, 0xa06c0b5d, 0xd4326d90, 0xd0f37027, 0xddb056fe,
0xd9714b49, 0xc7361b4c, 0xc3f706fb, 0xceb42022, 0xca753d95,
0xf23a8028, 0xf6fb9d9f, 0xfbb8bb46, 0xff79a6f1, 0xe13ef6f4,
0xe5ffeb43, 0xe8bccd9a, 0xec7dd02d, 0x34867077, 0x30476dc0,
0x3d044b19, 0x39c556ae, 0x278206ab, 0x23431b1c, 0x2e003dc5,
0x2ac12072, 0x128e9dcf, 0x164f8078, 0x1b0ca6a1, 0x1fcdbb16,
0x018aeb13, 0x054bf6a4, 0x0808d07d, 0x0cc9cdca, 0x7897ab07,
0x7c56b6b0, 0x71159069, 0x75d48dde, 0x6b93dddb, 0x6f52c06c,
0x6211e6b5, 0x66d0fb02, 0x5e9f46bf, 0x5a5e5b08, 0x571d7dd1,
0x53dc6066, 0x4d9b3063, 0x495a2dd4, 0x44190b0d, 0x40d816ba,
0xaca5c697, 0xa864db20, 0xa527fdf9, 0xa1e6e04e, 0xbfa1b04b,
0xbb60adfc, 0xb6238b25, 0xb2e29692, 0x8aad2b2f, 0x8e6c3698,
0x832f1041, 0x87ee0df6, 0x99a95df3, 0x9d684044, 0x902b669d,
0x94ea7b2a, 0xe0b41de7, 0xe4750050, 0xe9362689, 0xedf73b3e,
0xf3b06b3b, 0xf771768c, 0xfa325055, 0xfef34de2, 0xc6bcf05f,
0xc27dede8, 0xcf3ecb31, 0xcbffd686, 0xd5b88683, 0xd1799b34,
0xdc3abded, 0xd8fba05a, 0x690ce0ee, 0x6dcdfd59, 0x608edb80,
0x644fc637, 0x7a089632, 0x7ec98b85, 0x738aad5c, 0x774bb0eb,
0x4f040d56, 0x4bc510e1, 0x46863638, 0x42472b8f, 0x5c007b8a,
0x58c1663d, 0x558240e4, 0x51435d53, 0x251d3b9e, 0x21dc2629,
0x2c9f00f0, 0x285e1d47, 0x36194d42, 0x32d850f5, 0x3f9b762c,
0x3b5a6b9b, 0x0315d626, 0x07d4cb91, 0x0a97ed48, 0x0e56f0ff,
0x1011a0fa, 0x14d0bd4d, 0x19939b94, 0x1d528623, 0xf12f560e,
0xf5ee4bb9, 0xf8ad6d60, 0xfc6c70d7, 0xe22b20d2, 0xe6ea3d65,
0xeba91bbc, 0xef68060b, 0xd727bbb6, 0xd3e6a601, 0xdea580d8,
0xda649d6f, 0xc423cd6a, 0xc0e2d0dd, 0xcda1f604, 0xc960ebb3,
0xbd3e8d7e, 0xb9ff90c9, 0xb4bcb610, 0xb07daba7, 0xae3afba2,
0xaafbe615, 0xa7b8c0cc, 0xa379dd7b, 0x9b3660c6, 0x9ff77d71,
0x92b45ba8, 0x9675461f, 0x8832161a, 0x8cf30bad, 0x81b02d74,
0x857130c3, 0x5d8a9099, 0x594b8d2e, 0x5408abf7, 0x50c9b640,
0x4e8ee645, 0x4a4ffbf2, 0x470cdd2b, 0x43cdc09c, 0x7b827d21,
0x7f436096, 0x7200464f, 0x76c15bf8, 0x68860bfd, 0x6c47164a,
0x61043093, 0x65c52d24, 0x119b4be9, 0x155a565e, 0x18197087,
0x1cd86d30, 0x029f3d35, 0x065e2082, 0x0b1d065b, 0x0fdc1bec,
0x3793a651, 0x3352bbe6, 0x3e119d3f, 0x3ad08088, 0x2497d08d,

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2529

81108

81109

81110

81111

81112

81113

81114

81115

81116

81117

81118

81119

81120

81121

81122

81123

81124

81125

81126

81127

81128

81129

81130

81131

81132

81133

81134

81135

81136

81137

81138

81139

81140

81141

81142

81143

81144

81145

81146

81147

81148

81149

81150

81151

81152

81153

81154

81155

81156

81157

81158

cksum Utilities

0x2056cd3a, 0x2d15ebe3, 0x29d4f654, 0xc5a92679, 0xc1683bce,
0xcc2b1d17, 0xc8ea00a0, 0xd6ad50a5, 0xd26c4d12, 0xdf2f6bcb,
0xdbee767c, 0xe3a1cbc1, 0xe760d676, 0xea23f0af, 0xeee2ed18,
0xf0a5bd1d, 0xf464a0aa, 0xf9278673, 0xfde69bc4, 0x89b8fd09,
0x8d79e0be, 0x803ac667, 0x84fbdbd0, 0x9abc8bd5, 0x9e7d9662,
0x933eb0bb, 0x97ffad0c, 0xafb010b1, 0xab710d06, 0xa6322bdf,
0xa2f33668, 0xbcb4666d, 0xb8757bda, 0xb5365d03, 0xb1f740b4
};

unsigned long memcrc(const unsigned char *b, size_t n)
{
/* Input arguments:
* const char* b == byte sequence to checksum
* size_t n == length of sequence
*/

register unsigned i, c, s = 0;

for (i = n; i > 0; − −i) {
c = (unsigned)(*b++);
s = (s << 8) ˆ crctab[(s >> 24) ˆ c];

}

/* Extend with the length of the string. */
while (n != 0) {

c = n & 0377;
n >>= 8;
s = (s << 8) ˆ crctab[(s >> 24) ˆ c];

}

return ˜s;
}

The historical practice of writing the number of ‘‘blocks’’ has been changed to writing the
number of octets, since the latter is not only more useful, but also since historical
implementations have not been consistent in defining what a ‘‘block’’ meant.

The algorithm used was selected to increase the operational robustness of cksum. Neither the
System V nor BSD sum algorithm was selected. Since each of these was different and each was
the default behavior on those systems, no realistic compromise was available if either were
selected—some set of historical applications would break. Therefore, the name was changed to
cksum. Although the historical sum commands will probably continue to be provided for many
years, programs designed for portability across systems should use the new name.

The algorithm selected is based on that used by the ISO/IEC 8802-3: 1996 standard (Ethernet) for
the frame check sequence field. The algorithm used does not match the technical definition of a
checksum; the term is used for historical reasons. The length of the file is included in the CRC
calculation because this parallels inclusion of a length field by Ethernet in its CRC, but also
because it guards against inadvertent collisions between files that begin with different series of
zero octets. The chance that two different files produce identical CRCs is much greater when
their lengths are not considered. Keeping the length and the checksum of the file itself separate
would yield a slightly more robust algorithm, but historical usage has always been that a single
number (the checksum as printed) represents the signature of the file. It was decided that
historical usage was the more important consideration.

Early proposals contained modifications to the Ethernet algorithm that involved extracting table

2530 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

81159

81160

81161

81162

81163

81164

81165

81166

81167

81168

81169

81170

81171

81172

81173

81174

81175

81176

81177

81178

81179

81180

81181

81182

81183

81184

81185

81186

81187

81188

81189

81190

81191

81192

81193

81194

81195

81196

81197

81198

81199

81200

81201

81202

81203

81204

81205

Utilities cksum

values whenever an intermediate result became zero. This was demonstrated to be less robust
than the current method and mathematically difficult to describe or justify.

The calculation used is identical to that given in pseudo-code in the referenced Sarwate article.
The pseudo-code rendition is:

X <− 0; Y <− 0;
for i <− m −1 step −1 until 0 do

begin
T <− X(1) ˆ A[i];
X(1) <− X(0); X(0) <− Y(1); Y(1) <− Y(0); Y(0) <− 0;
comment: f[T] and f’[T] denote the T-th words in the

table f and f’ ;
X <− X ˆ f[T]; Y <− Y ˆ f’[T];
end

The pseudo-code is reproduced exactly as given; however, note that in the case of cksum, A[i]
represents a byte of the file, the words X and Y are treated as a single 32-bit value, and the tables
f and f’ are a single table containing 32-bit values.

The referenced Sarwate article also discusses generating the table.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Chapter 8 (on page 173)

CHANGE HISTORY
First released in Issue 4.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2531

81206

81207

81208

81209

81210

81211

81212

81213

81214

81215

81216

81217

81218

81219

81220

81221

81222

81223

81224

81225

81226

81227

81228

81229

81230

81231

cmp Utilities

NAME
cmp — compare two files

SYNOPSIS
cmp [−l|−s] file1 file2

DESCRIPTION
The cmp utility shall compare two files. The cmp utility shall write no output if the files are the
same. Under default options, if they differ, it shall write to standard output the byte and line
number at which the first difference occurred. Bytes and lines shall be numbered beginning with
1.

OPTIONS
The cmp utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−l (Lowercase ell.) Write the byte number (decimal) and the differing bytes (octal) for
each difference.

−s Write nothing for differing files; return exit status only.

OPERANDS
The following operands shall be supported:

file1 A pathname of the first file to be compared. If file1 is ’−’, the standard input shall
be used.

file2 A pathname of the second file to be compared. If file2 is ’−’, the standard input
shall be used.

If both file1 and file2 refer to standard input or refer to the same FIFO special, block special, or
character special file, the results are undefined.

STDIN
The standard input shall be used only if the file1 or file2 operand refers to standard input. See the
INPUT FILES section.

INPUT FILES
The input files can be any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cmp:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

2532 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

81232

81233

81234

81235

81236

81237

81238

81239

81240

81241

81242

81243

81244

81245

81246

81247

81248

81249

81250

81251

81252

81253

81254

81255

81256

81257

81258

81259

81260

81261

81262

81263

81264

81265

81266

81267

81268

81269

81270

81271

81272

81273

Utilities cmp

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
In the POSIX locale, results of the comparison shall be written to standard output. When no
options are used, the format shall be:

"%s %s differ: char %d, line %d\n", file1, file2,
<byte number>, <line number>

When the −l option is used, the format shall be:

"%d %o %o\n", <byte number>, <differing byte>,
<differing byte>

for each byte that differs. The first <differing byte> number is from file1 while the second is from
file2. In both cases, <byte number> shall be relative to the beginning of the file, beginning with 1.

No output shall be written to standard output when the −s option is used.

STDERR
The standard error shall be used only for diagnostic messages. If the −l option is used and file1
and file2 differ in length, or if the −s option is not used and file1 and file2 are identical for the
entire length of the shorter file, in the POSIX locale the following diagnostic message shall be
written:

"cmp: EOF on %s%s\n", <name of shorter file>, <additional info>

The <additional info> field shall either be null or a string that starts with a <blank> and contains
no <newline> characters. Some implementations report on the number of lines in this case.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The files are identical.

1 The files are different; this includes the case where one file is identical to the first part of the
other.

>1 An error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2533

81274

81275

81276

81277

81278

81279

81280

81281

81282

81283

81284

81285

81286

81287

81288

81289

81290

81291

81292

81293

81294

81295

81296

81297

81298

81299

81300

81301

81302

81303

81304

81305

81306

81307

cmp Utilities

APPLICATION USAGE
Although input files to cmp can be any type, the results might not be what would be expected on
character special device files or on file types not described by the System Interfaces volume of
POSIX.1-2008. Since this volume of POSIX.1-2008 does not specify the block size used when
doing input, comparisons of character special files need not compare all of the data in those files.

For files which are not text files, line numbers simply reflect the presence of a <newline>,
without any implication that the file is organized into lines.

EXAMPLES
None.

RATIONALE
The global language in Section 1.4 (on page 2288) indicates that using two mutually-exclusive
options together produces unspecified results. Some System V implementations consider the
option usage:

cmp −l −s ...

to be an error. They also treat:

cmp −s −l ...

as if no options were specified. Both of these behaviors are considered bugs, but are allowed.

The word char in the standard output format comes from historical usage, even though it is
actually a byte number. When cmp is supported in other locales, implementations are
encouraged to use the word byte or its equivalent in another language. Users should not
interpret this difference to indicate that the functionality of the utility changed between locales.

Some implementations report on the number of lines in the identical-but-shorter file case. This is
allowed by the inclusion of the <additional info> fields in the output format. The restriction on
having a leading <blank> and no <newline> characters is to make parsing for the filename
easier. It is recognized that some filenames containing white-space characters make parsing
difficult anyway, but the restriction does aid programs used on systems where the names are
predominantly well behaved.

FUTURE DIRECTIONS
None.

SEE ALSO
comm , diff

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 7
SD5-XCU-ERN-96 is applied, updating the STDERR section.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2534 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

81308

81309

81310

81311

81312

81313

81314

81315

81316

81317

81318

81319

81320

81321

81322

81323

81324

81325

81326

81327

81328

81329

81330

81331

81332

81333

81334

81335

81336

81337

81338

81339

81340

81341

81342

81343

81344

Utilities comm

NAME
comm — select or reject lines common to two files

SYNOPSIS
comm [−123] file1 file2

DESCRIPTION
The comm utility shall read file1 and file2, which should be ordered in the current collating
sequence, and produce three text columns as output: lines only in file1, lines only in file2, and
lines in both files.

If the lines in both files are not ordered according to the collating sequence of the current locale,
the results are unspecified.

OPTIONS
The comm utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−1 Suppress the output column of lines unique to file1.

−2 Suppress the output column of lines unique to file2.

−3 Suppress the output column of lines duplicated in file1 and file2.

OPERANDS
The following operands shall be supported:

file1 A pathname of the first file to be compared. If file1 is ’−’, the standard input shall
be used.

file2 A pathname of the second file to be compared. If file2 is ’−’, the standard input
shall be used.

If both file1 and file2 refer to standard input or to the same FIFO special, block special, or
character special file, the results are undefined.

STDIN
The standard input shall be used only if one of the file1 or file2 operands refers to standard input.
See the INPUT FILES section.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of comm:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the collating sequence comm expects to have been used
when the input files were sorted.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2535

81345

81346

81347

81348

81349

81350

81351

81352

81353

81354

81355

81356

81357

81358

81359

81360

81361

81362

81363

81364

81365

81366

81367

81368

81369

81370

81371

81372

81373

81374

81375

81376

81377

81378

81379

81380

81381

81382

81383

81384

81385

81386

comm Utilities

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The comm utility shall produce output depending on the options selected. If the −1, −2, and −3
options are all selected, comm shall write nothing to standard output.

If the −1 option is not selected, lines contained only in file1 shall be written using the format:

"%s\n", <line in file1>

If the −2 option is not selected, lines contained only in file2 are written using the format:

"%s%s\n", <lead>, <line in file2>

where the string <lead> is as follows:

<tab> The −1 option is not selected.

null string The −1 option is selected.

If the −3 option is not selected, lines contained in both files shall be written using the format:

"%s%s\n", <lead>, <line in both>

where the string <lead> is as follows:

<tab><tab> Neither the −1 nor the −2 option is selected.

<tab> Exactly one of the −1 and −2 options is selected.

null string Both the −1 and −2 options are selected.

If the input files were ordered according to the collating sequence of the current locale, the lines
written shall be in the collating sequence of the original lines.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All input files were successfully output as specified.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

2536 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

81387

81388

81389

81390

81391

81392

81393

81394

81395

81396

81397

81398

81399

81400

81401

81402

81403

81404

81405

81406

81407

81408

81409

81410

81411

81412

81413

81414

81415

81416

81417

81418

81419

81420

81421

81422

Utilities comm

APPLICATION USAGE
If the input files are not properly presorted, the output of comm might not be useful.

EXAMPLES
If a file named xcu contains a sorted list of the utilities in this volume of POSIX.1-2008, a file
named xpg3 contains a sorted list of the utilities specified in the X/Open Portability Guide, Issue
3, and a file named svid89 contains a sorted list of the utilities in the System V Interface
Definition Third Edition:

comm −23 xcu xpg3 | comm −23 − svid89

would print a list of utilities in this volume of POSIX.1-2008 not specified by either of the other
documents:

comm −12 xcu xpg3 | comm −12 − svid89

would print a list of utilities specified by all three documents, and:

comm −12 xpg3 svid89 | comm −23 − xcu

would print a list of utilities specified by both XPG3 and the SVID, but not specified in this
volume of POSIX.1-2008.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cmp , diff , sort , uniq

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2537

81423

81424

81425

81426

81427

81428

81429

81430

81431

81432

81433

81434

81435

81436

81437

81438

81439

81440

81441

81442

81443

81444

81445

81446

81447

81448

command Utilities

NAME
command — execute a simple command

SYNOPSIS
command [−p] command_name [argument...]

command [−p][−v|−V] command_name

DESCRIPTION
The command utility shall cause the shell to treat the arguments as a simple command,
suppressing the shell function lookup that is described in Section 2.9.1.1 (on page 2317), item 1b.

If the command_name is the same as the name of one of the special built-in utilities, the special
properties in the enumerated list at the beginning of Section 2.14 (on page 2334) shall not occur.
In every other respect, if command_name is not the name of a function, the effect of command
(with no options) shall be the same as omitting command.

When the −v or −V option is used, the command utility shall provide information concerning
how a command name is interpreted by the shell.

OPTIONS
The command utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−p Perform the command search using a default value for PA TH that is guaranteed to
find all of the standard utilities.

−v Write a string to standard output that indicates the pathname or command that
will be used by the shell, in the current shell execution environment (see Section
2.12, on page 2331), to invoke command_name, but do not invoke command_name.

• Utilities, regular built-in utilities, command_names including a <slash>
character, and any implementation-defined functions that are found using
the PA TH variable (as described in Section 2.9.1.1, on page 2317), shall be
written as absolute pathnames.

• Shell functions, special built-in utilities, regular built-in utilities not
associated with a PA TH search, and shell reserved words shall be written as
just their names.

• An alias shall be written as a command line that represents its alias
definition.

• Otherwise, no output shall be written and the exit status shall reflect that the
name was not found.

−V Write a string to standard output that indicates how the name given in the
command_name operand will be interpreted by the shell, in the current shell
execution environment (see Section 2.12, on page 2331), but do not invoke
command_name. Although the format of this string is unspecified, it shall indicate
in which of the following categories command_name falls and shall include the
information stated:

• Utilities, regular built-in utilities, and any implementation-defined functions
that are found using the PA TH variable (as described in Section 2.9.1.1, on
page 2317), shall be identified as such and include the absolute pathname in
the string.

2538 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

81449

81450

81451

81452

81453

81454

81455

81456

81457

81458

81459

81460

81461

81462

81463

81464

81465

81466

81467

81468

81469

81470

81471

81472

81473

81474

81475

81476

81477

81478

81479

81480

81481

81482

81483

81484

81485

81486

81487

81488

81489

81490

81491

Utilities command

• Other shell functions shall be identified as functions.

• Aliases shall be identified as aliases and their definitions included in the
string.

• Special built-in utilities shall be identified as special built-in utilities.

• Regular built-in utilities not associated with a PA TH search shall be identified
as regular built-in utilities. (The term ‘‘regular ’’ need not be used.)

• Shell reserved words shall be identified as reserved words.

OPERANDS
The following operands shall be supported:

argument One of the strings treated as an argument to command_name.

command_name
The name of a utility or a special built-in utility.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of command:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PA TH Determine the search path used during the command search described in Section
2.9.1.1 (on page 2317), except as described under the −p option.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When the −v option is specified, standard output shall be formatted as:

"%s\n", <pathname or command>

When the −V option is specified, standard output shall be formatted as:

"%s\n", <unspecified>

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2539

81492

81493

81494

81495

81496

81497

81498

81499

81500

81501

81502

81503

81504

81505

81506

81507

81508

81509

81510

81511

81512

81513

81514

81515

81516

81517

81518

81519

81520

81521

81522

81523

81524

81525

81526

81527

81528

81529

81530

81531

command Utilities

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
When the −v or −V options are specified, the following exit values shall be returned:

0 Successful completion.

>0 The command_name could not be found or an error occurred.

Otherwise, the following exit values shall be returned:

126 The utility specified by command_name was found but could not be invoked.

127 An error occurred in the command utility or the utility specified by command_name could not
be found.

Otherwise, the exit status of command shall be that of the simple command specified by the
arguments to command.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The order for command search allows functions to override regular built-ins and path searches.
This utility is necessary to allow functions that have the same name as a utility to call the utility
(instead of a recursive call to the function).

The system default path is available using getconf; however, since getconf may need to have the
PA TH set up before it can be called itself, the following can be used:

command −p getconf PATH

There are some advantages to suppressing the special characteristics of special built-ins on
occasion. For example:

command exec > unwritable-file

does not cause a non-interactive script to abort, so that the output status can be checked by the
script.

The command, env, nohup, time, and xargs utilities have been specified to use exit code 127 if an
error occurs so that applications can distinguish ‘‘failure to find a utility’’ from ‘‘invoked utility
exited with an error indication’’. The value 127 was chosen because it is not commonly used for
other meanings; most utilities use small values for ‘‘normal error conditions’’ and the values
above 128 can be confused with termination due to receipt of a signal. The value 126 was chosen
in a similar manner to indicate that the utility could be found, but not invoked. Some scripts
produce meaningful error messages differentiating the 126 and 127 cases. The distinction
between exit codes 126 and 127 is based on KornShell practice that uses 127 when all attempts to
exec the utility fail with [ENOENT], and uses 126 when any attempt to exec the utility fails for
any other reason.

Since the −v and −V options of command produce output in relation to the current shell execution
environment, command is generally provided as a shell regular built-in. If it is called in a subshell
or separate utility execution environment, such as one of the following:

2540 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

81532

81533

81534

81535

81536

81537

81538

81539

81540

81541

81542

81543

81544

81545

81546

81547

81548

81549

81550

81551

81552

81553

81554

81555

81556

81557

81558

81559

81560

81561

81562

81563

81564

81565

81566

81567

81568

81569

81570

81571

81572

81573

81574

Utilities command

(PATH=foo command −v)
nohup command −v

it does not necessarily produce correct results. For example, when called with nohup or an exec
function, in a separate utility execution environment, most implementations are not able to
identify aliases, functions, or special built-ins.

Two types of regular built-ins could be encountered on a system and these are described
separately by command. The description of command search in Section 2.9.1.1 (on page 2317)
allows for a standard utility to be implemented as a regular built-in as long as it is found in the
appropriate place in a PA TH search. So, for example, command −v true might yield /bin/true or
some similar pathname. Other implementation-defined utilities that are not defined by this
volume of POSIX.1-2008 might exist only as built-ins and have no pathname associated with
them. These produce output identified as (regular) built-ins. Applications encountering these are
not able to count on execing them, using them with nohup, overriding them with a different
PA TH, and so on.

EXAMPLES

1. Make a version of cd that always prints out the new working directory exactly once:

cd() {
command cd "$@" >/dev/null
pwd

}

2. Start off a ‘‘secure shell script’’ in which the script avoids being spoofed by its parent:

IFS=’
’
The preceding value should be <space><tab><newline>.
Set IFS to its default value.

\unalias −a
Unset all possible aliases.
Note that unalias is escaped to prevent an alias
being used for unalias.

unset −f command
Ensure command is not a user function.

PATH="$(command −p getconf PATH):$PATH"
Put on a reliable PATH prefix.

...

At this point, given correct permissions on the directories called by PA TH, the script has
the ability to ensure that any utility it calls is the intended one. It is being very cautious
because it assumes that implementation extensions may be present that would allow user
functions to exist when it is invoked; this capability is not specified by this volume of
POSIX.1-2008, but it is not prohibited as an extension. For example, the ENV variable
precedes the invocation of the script with a user start-up script. Such a script could define
functions to spoof the application.

RATIONALE
Since command is a regular built-in utility it is always found prior to the PA TH search.

There is nothing in the description of command that implies the command line is parsed any
differently from that of any other simple command. For example:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2541

81575

81576

81577

81578

81579

81580

81581

81582

81583

81584

81585

81586

81587

81588

81589

81590

81591

81592

81593

81594

81595

81596

81597

81598

81599

81600

81601

81602

81603

81604

81605

81606

81607

81608

81609

81610

81611

81612

81613

81614

81615

81616

81617

81618

81619

command Utilities

command a | b ; c

is not parsed in any special way that causes ’|’ or ’;’ to be treated other than a pipe operator
or <semicolon> or that prevents function lookup on b or c.

The command utility is somewhat similar to the Eighth Edition shell builtin command, but since
command also goes to the file system to search for utilities, the name builtin would not be
intuitive.

The command utility is most likely to be provided as a regular built-in. It is not listed as a special
built-in for the following reasons:

• The removal of exportable functions made the special precedence of a special built-in
unnecessary.

• A special built-in has special properties (see Section 2.14, on page 2334) that were
inappropriate for invoking other utilities. For example, two commands such as:

date > unwritable-file

command date > unwritable-file

would have entirely different results; in a non-interactive script, the former would
continue to execute the next command, the latter would abort. Introducing this semantic
difference along with suppressing functions was seen to be non-intuitive.

The −p option is present because it is useful to be able to ensure a safe path search that finds all
the standard utilities. This search might not be identical to the one that occurs through one of the
exec functions (as defined in the System Interfaces volume of POSIX.1-2008) when PA TH is unset.
At the very least, this feature is required to allow the script to access the correct version of getconf
so that the value of the default path can be accurately retrieved.

The command −v and −V options were added to satisfy requirements from users that are
currently accomplished by three different historical utilities: type in the System V shell, whence in
the KornShell, and which in the C shell. Since there is no historical agreement on how and what
to accomplish here, the POSIX command utility was enhanced and the historical utilities were left
unmodified. The C shell which merely conducts a path search. The KornShell whence is more
elaborate—in addition to the categories required by POSIX, it also reports on tracked aliases,
exported aliases, and undefined functions.

The output format of −V was left mostly unspecified because human users are its only audience.
Applications should not be written to care about this information; they can use the output of −v
to differentiate between various types of commands, but the additional information that may be
emitted by the more verbose −V is not needed and should not be arbitrarily constrained in its
verbosity or localization for application parsing reasons.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.9.1.1 (on page 2317), Section 2.12 (on page 2331), Section 2.14 (on page 2334), sh , type

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH exec

2542 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

81620

81621

81622

81623

81624

81625

81626

81627

81628

81629

81630

81631

81632

81633

81634

81635

81636

81637

81638

81639

81640

81641

81642

81643

81644

81645

81646

81647

81648

81649

81650

81651

81652

81653

81654

81655

81656

81657

81658

81659

Utilities command

CHANGE HISTORY
First released in Issue 4.

Issue 7
Austin Group Interpretation 1003.1-2001 #196 is applied, changing the SYNOPSIS to allow −p to
be used with −v (or −V).

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The command utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

The APPLICATION USAGE and EXAMPLES are revised to replace the non-standard
getconf_CS_PATH with getconf PATH.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2543

81660

81661

81662

81663

81664

81665

81666

81667

81668

81669

compress Utilities

NAME
compress — compress data

SYNOPSIS
XSI compress [−fv] [−b bits] [file...]

compress [−cfv] [−b bits] [file]

DESCRIPTION
The compress utility shall attempt to reduce the size of the named files by using adaptive Lempel-
Ziv coding algorithm.

Note: Lempel-Ziv is US Patent 4464650, issued to William Eastman, Abraham Lempel, Jacob Ziv,
Martin Cohn on August 7th, 1984, and assigned to Sperry Corporation.

Lempel-Ziv-Welch compression is covered by US Patent 4558302, issued to Terry A. Welch on
December 10th, 1985, and assigned to Sperry Corporation.

On systems not supporting adaptive Lempel-Ziv coding algorithm, the input files shall not be
changed and an error value greater than two shall be returned. Except when the output is to the
standard output, each file shall be replaced by one with the extension .Z. If the invoking process
has appropriate privileges, the ownership, modes, access time, and modification time of the
original file are preserved. If appending the .Z to the filename would make the name exceed
{NAME_MAX} bytes, the command shall fail. If no files are specified, the standard input shall be
compressed to the standard output.

OPTIONS
The compress utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−b bits Specify the maximum number of bits to use in a code. For a conforming
application, the bits argument shall be:

9 <= bits <= 14

The implementation may allow bits values of greater than 14. The default is 14, 15,
or 16.

−c Cause compress to write to the standard output; the input file is not changed, and
no .Z files are created.

−f Force compression of file, even if it does not actually reduce the size of the file, or if
the corresponding file.Z file already exists. If the −f option is not given, and the
process is not running in the background, the user is prompted as to whether an
existing file.Z file should be overwritten. If the response is affirmative, the existing
file will be overwritten.

−v Write the percentage reduction of each file to standard error.

OPERANDS
The following operand shall be supported:

file A pathname of a file to be compressed.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is ’−’.

2544 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

81670

81671

81672

81673

81674

81675

81676

81677

81678

81679

81680

81681

81682

81683

81684

81685

81686

81687

81688

81689

81690

81691

81692

81693

81694

81695

81696

81697

81698

81699

81700

81701

81702

81703

81704

81705

81706

81707

81708

81709

Utilities compress

INPUT FILES
If file operands are specified, the input files contain the data to be compressed.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of compress:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the extended regular expression defined for
the yesexpr locale keyword in the LC_MESSAGES category.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments), the behavior of character classes used in the extended regular
expression defined for the yesexpr locale keyword in the LC_MESSAGES category.

LC_MESSAGES
Determine the locale used to process affirmative responses, and the locale used to
affect the format and contents of diagnostic messages, prompts, and the output
from the −v option written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If no file operands are specified, or if a file operand is ’−’, or if the −c option is specified, the
standard output contains the compressed output.

STDERR
The standard error shall be used only for diagnostic and prompt messages and the output from
−v.

OUTPUT FILES
The output files shall contain the compressed output. The format of compressed files is
unspecified and interchange of such files between implementations (including access via
unspecified file sharing mechanisms) is not required by POSIX.1-2008.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

1 An error occurred.

2 One or more files were not compressed because they would have increased in size (and the
−f option was not specified).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2545

81710

81711

81712

81713

81714

81715

81716

81717

81718

81719

81720

81721

81722

81723

81724

81725

81726

81727

81728

81729

81730

81731

81732

81733

81734

81735

81736

81737

81738

81739

81740

81741

81742

81743

81744

81745

81746

81747

81748

81749

81750

81751

compress Utilities

>2 An error occurred.

CONSEQUENCES OF ERRORS
The input file shall remain unmodified.

APPLICATION USAGE
The amount of compression obtained depends on the size of the input, the number of bits per
code, and the distribution of common substrings. Typically, text such as source code or English is
reduced by 50-60%. Compression is generally much better than that achieved by Huffman
coding or adaptive Huffman coding (compact), and takes less time to compute.

Although compress strictly follows the default actions upon receipt of a signal or when an error
occurs, some unexpected results may occur. In some implementations it is likely that a partially
compressed file is left in place, alongside its uncompressed input file. Since the general
operation of compress is to delete the uncompressed file only after the .Z file has been
successfully filled, an application should always carefully check the exit status of compress before
arbitrarily deleting files that have like-named neighbors with .Z suffixes.

The limit of 14 on the bits option-argument is to achieve portability to all systems (within the
restrictions imposed by the lack of an explicit published file format). Some implementations
based on 16-bit architectures cannot support 15 or 16-bit uncompression.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
uncompress , zcat

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

An error case is added for systems not supporting adaptive Lempel-Ziv coding.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Austin Group Interpretation 1003.1-2001 #125 is applied, revising the ENVIRONMENT
VARIABLES section.

2546 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

81752

81753

81754

81755

81756

81757

81758

81759

81760

81761

81762

81763

81764

81765

81766

81767

81768

81769

81770

81771

81772

81773

81774

81775

81776

81777

81778

81779

81780

81781

81782

81783

81784

81785

81786

Utilities cp

NAME
cp — copy files

SYNOPSIS
cp [−Pfip] source_file target_file

cp [−Pfip] source_file... target

cp −R [−H|−L|−P] [−fip] source_file... target

DESCRIPTION
The first synopsis form is denoted by two operands, neither of which are existing files of type
directory. The cp utility shall copy the contents of source_file (or, if source_file is a file of type
symbolic link, the contents of the file referenced by source_file) to the destination path named by
target_file.

The second synopsis form is denoted by two or more operands where the −R option is not
specified and the first synopsis form is not applicable. It shall be an error if any source_file is a file
of type directory, if target does not exist, or if target does not name a directory. The cp utility shall
copy the contents of each source_file (or, if source_file is a file of type symbolic link, the contents of
the file referenced by source_file) to the destination path named by the concatenation of target, a
single <slash> character if target did not end in a <slash>, and the last component of source_file.

The third synopsis form is denoted by two or more operands where the −R option is specified.
The cp utility shall copy each file in the file hierarchy rooted in each source_file to a destination
path named as follows:

• If target exists and names an existing directory, the name of the corresponding destination
path for each file in the file hierarchy shall be the concatenation of target, a single <slash>
character if target did not end in a <slash>, and the pathname of the file relative to the
directory containing source_file.

• If target does not exist and two operands are specified, the name of the corresponding
destination path for source_file shall be target; the name of the corresponding destination
path for all other files in the file hierarchy shall be the concatenation of target, a <slash>
character, and the pathname of the file relative to source_file.

It shall be an error if target does not exist and more than two operands are specified, or if target
exists and does not name a directory.

In the following description, the term dest_file refers to the file named by the destination path.
The term source_file refers to the file that is being copied, whether specified as an operand or a
file in a file hierarchy rooted in a source_file operand. If source_file is a file of type symbolic link:

• If the −R option was not specified, cp shall take actions based on the type and contents of
the file referenced by the symbolic link, and not by the symbolic link itself, unless the −P
option was specified.

• If the −R option was specified:

— If none of the options −H, −L, nor −P were specified, it is unspecified which of −H,
−L, or −P will be used as a default.

— If the −H option was specified, cp shall take actions based on the type and contents of
the file referenced by any symbolic link specified as a source_file operand.

— If the −L option was specified, cp shall take actions based on the type and contents of
the file referenced by any symbolic link specified as a source_file operand or any
symbolic links encountered during traversal of a file hierarchy.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2547

81787

81788

81789

81790

81791

81792

81793

81794

81795

81796

81797

81798

81799

81800

81801

81802

81803

81804

81805

81806

81807

81808

81809

81810

81811

81812

81813

81814

81815

81816

81817

81818

81819

81820

81821

81822

81823

81824

81825

81826

81827

81828

81829

81830

cp Utilities

— If the −P option was specified, cp shall copy any symbolic link specified as a
source_file operand and any symbolic links encountered during traversal of a file
hierarchy, and shall not follow any symbolic links.

For each source_file, the following steps shall be taken:

1. If source_file references the same file as dest_file, cp may write a diagnostic message to
standard error; it shall do nothing more with source_file and shall go on to any remaining
files.

2. If source_file is of type directory, the following steps shall be taken:

a. If the −R option was not specified, cp shall write a diagnostic message to standard
error, do nothing more with source_file, and go on to any remaining files.

b. If source_file was not specified as an operand and source_file is dot or dot-dot, cp
shall do nothing more with source_file and go on to any remaining files.

c. If dest_file exists and it is a file type not specified by the System Interfaces volume
of POSIX.1-2008, the behavior is implementation-defined.

d. If dest_file exists and it is not of type directory, cp shall write a diagnostic message
to standard error, do nothing more with source_file or any files below source_file in
the file hierarchy, and go on to any remaining files.

e. If the directory dest_file does not exist, it shall be created with file permission bits
set to the same value as those of source_file, modified by the file creation mask of
the user if the −p option was not specified, and then bitwise-inclusively OR’ed
with S_IRWXU. If dest_file cannot be created, cp shall write a diagnostic message to
standard error, do nothing more with source_file, and go on to any remaining files.
It is unspecified if cp attempts to copy files in the file hierarchy rooted in source_file.

f. The files in the directory source_file shall be copied to the directory dest_file, taking
the four steps (1 to 4) listed here with the files as source_files.

g. If dest_file was created, its file permission bits shall be changed (if necessary) to be
the same as those of source_file, modified by the file creation mask of the user if the
−p option was not specified.

h. The cp utility shall do nothing more with source_file and go on to any remaining
files.

3. If source_file is of type regular file, the following steps shall be taken:

a. The behavior is unspecified if dest_file exists and was written by a previous step.
Otherwise, if dest_file exists, the following steps shall be taken:

i. If the −i option is in effect, the cp utility shall write a prompt to the standard
error and read a line from the standard input. If the response is not
affirmative, cp shall do nothing more with source_file and go on to any
remaining files.

ii. A file descriptor for dest_file shall be obtained by performing actions
equivalent to the open() function defined in the System Interfaces volume of
POSIX.1-2008 called using dest_file as the path argument, and the bitwise-
inclusive OR of O_WRONLY and O_TRUNC as the oflag argument.

iii. If the attempt to obtain a file descriptor fails and the −f option is in effect, cp
shall attempt to remove the file by performing actions equivalent to the
unlink() function defined in the System Interfaces volume of POSIX.1-2008

2548 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

81831

81832

81833

81834

81835

81836

81837

81838

81839

81840

81841

81842

81843

81844

81845

81846

81847

81848

81849

81850

81851

81852

81853

81854

81855

81856

81857

81858

81859

81860

81861

81862

81863

81864

81865

81866

81867

81868

81869

81870

81871

81872

81873

81874

Utilities cp

called using dest_file as the path argument. If this attempt succeeds, cp shall
continue with step 3b.

b. If dest_file does not exist, a file descriptor shall be obtained by performing actions
equivalent to the open() function defined in the System Interfaces volume of
POSIX.1-2008 called using dest_file as the path argument, and the bitwise-inclusive
OR of O_WRONLY and O_CREAT as the oflag argument. The file permission bits
of source_file shall be the mode argument.

c. If the attempt to obtain a file descriptor fails, cp shall write a diagnostic message to
standard error, do nothing more with source_file, and go on to any remaining files.

d. The contents of source_file shall be written to the file descriptor. Any write errors
shall cause cp to write a diagnostic message to standard error and continue to step
3e.

e. The file descriptor shall be closed.

f. The cp utility shall do nothing more with source_file. If a write error occurred in
step 3d, it is unspecified if cp continues with any remaining files. If no write error
occurred in step 3d, cp shall go on to any remaining files.

4. Otherwise, the −R option was specified, and the following steps shall be taken:

a. The dest_file shall be created with the same file type as source_file.

b. If source_file is a file of type FIFO, the file permission bits shall be the same as those
of source_file, modified by the file creation mask of the user if the −p option was not
specified. Otherwise, the permissions, owner ID, and group ID of dest_file are
implementation-defined.

If this creation fails for any reason, cp shall write a diagnostic message to standard
error, do nothing more with source_file, and go on to any remaining files.

c. If source_file is a file of type symbolic link, and the options require the symbolic link
itself to be acted upon, the pathname contained in dest_file shall be the same as the
pathname contained in source_file.

If this fails for any reason, cp shall write a diagnostic message to standard error, do
nothing more with source_file, and go on to any remaining files.

If the implementation provides additional or alternate access control mechanisms (see XBD
Section 4.4, on page 108), their effect on copies of files is implementation-defined.

OPTIONS
The cp utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−f If a file descriptor for a destination file cannot be obtained, as described in step
3.a.ii., attempt to unlink the destination file and proceed.

−H Take actions based on the type and contents of the file referenced by any symbolic
link specified as a source_file operand.

−i Write a prompt to standard error before copying to any existing non-directory
destination file. If the response from the standard input is affirmative, the copy
shall be attempted; otherwise, it shall not.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2549

81875

81876

81877

81878

81879

81880

81881

81882

81883

81884

81885

81886

81887

81888

81889

81890

81891

81892

81893

81894

81895

81896

81897

81898

81899

81900

81901

81902

81903

81904

81905

81906

81907

81908

81909

81910

81911

81912

81913

81914

81915

cp Utilities

−L Take actions based on the type and contents of the file referenced by any symbolic
link specified as a source_file operand or any symbolic links encountered during
traversal of a file hierarchy.

−P Take actions on any symbolic link specified as a source_file operand or any
symbolic link encountered during traversal of a file hierarchy.

−p Duplicate the following characteristics of each source file in the corresponding
destination file:

1. The time of last data modification and time of last access. If this duplication
fails for any reason, cp shall write a diagnostic message to standard error.

2. The user ID and group ID. If this duplication fails for any reason, it is
unspecified whether cp writes a diagnostic message to standard error.

3. The file permission bits and the S_ISUID and S_ISGID bits. Other,
implementation-defined, bits may be duplicated as well. If this duplication
fails for any reason, cp shall write a diagnostic message to standard error.

If the user ID or the group ID cannot be duplicated, the file permission bits
S_ISUID and S_ISGID shall be cleared. If these bits are present in the source file but
are not duplicated in the destination file, it is unspecified whether cp writes a
diagnostic message to standard error.

The order in which the preceding characteristics are duplicated is unspecified. The
dest_file shall not be deleted if these characteristics cannot be preserved.

−R Copy file hierarchies.

Specifying more than one of the mutually-exclusive options −H, −L, and −P shall not be
considered an error. The last option specified shall determine the behavior of the utility.

OPERANDS
The following operands shall be supported:

source_file A pathname of a file to be copied. If a source_file operand is ’−’, it shall refer to a
file named −; implementations shall not treat it as meaning standard input.

target_file A pathname of an existing or nonexistent file, used for the output when a single
file is copied. If a target_file operand is ’−’, it shall refer to a file named −;
implementations shall not treat it as meaning standard output.

target A pathname of a directory to contain the copied files.

STDIN
The standard input shall be used to read an input line in response to each prompt specified in
the STDERR section. Otherwise, the standard input shall not be used.

INPUT FILES
The input files specified as operands may be of any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cp:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

2550 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

81916

81917

81918

81919

81920

81921

81922

81923

81924

81925

81926

81927

81928

81929

81930

81931

81932

81933

81934

81935

81936

81937

81938

81939

81940

81941

81942

81943

81944

81945

81946

81947

81948

81949

81950

81951

81952

81953

81954

81955

81956

Utilities cp

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the extended regular expression defined for
the yesexpr locale keyword in the LC_MESSAGES category.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the behavior of character classes used in the
extended regular expression defined for the yesexpr locale keyword in the
LC_MESSAGES category.

LC_MESSAGES
Determine the locale used to process affirmative responses, and the locale used to
affect the format and contents of diagnostic messages and prompts written to
standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
A prompt shall be written to standard error under the conditions specified in the DESCRIPTION
section. The prompt shall contain the destination pathname, but its format is otherwise
unspecified. Otherwise, the standard error shall be used only for diagnostic messages.

OUTPUT FILES
The output files may be of any type.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All files were copied successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If cp is prematurely terminated by a signal or error, files or file hierarchies may be only partially
copied and files and directories may have incorrect permissions or access and modification
times.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2551

81957

81958

81959

81960

81961

81962

81963

81964

81965

81966

81967

81968

81969

81970

81971

81972

81973

81974

81975

81976

81977

81978

81979

81980

81981

81982

81983

81984

81985

81986

81987

81988

81989

81990

81991

81992

cp Utilities

APPLICATION USAGE
The set-user-ID and set-group-ID bits are explicitly cleared when files are created. This is to
prevent users from creating programs that are set-user-ID or set-group-ID to them when copying
files or to make set-user-ID or set-group-ID files accessible to new groups of users. For example,
if a file is set-user-ID and the copy has a different group ID than the source, a new group of users
has execute permission to a set-user-ID program than did previously. In particular, this is a
problem for superusers copying users’ trees.

EXAMPLES
None.

RATIONALE
The −i option exists on BSD systems, giving applications and users a way to avoid accidentally
removing files when copying. Although the 4.3 BSD version does not prompt if the standard
input is not a terminal, the standard developers decided that use of −i is a request for
interaction, so when the destination path exists, the utility takes instructions from whatever
responds on standard input.

The exact format of the interactive prompts is unspecified. Only the general nature of the
contents of prompts are specified because implementations may desire more descriptive
prompts than those used on historical implementations. Therefore, an application using the −i
option relies on the system to provide the most suitable dialog directly with the user, based on
the behavior specified.

The −p option is historical practice on BSD systems, duplicating the time of last data
modification and time of last access. This volume of POSIX.1-2008 extends it to preserve the user
and group IDs, as well as the file permissions. This requirement has obvious problems in that
the directories are almost certainly modified after being copied. This volume of POSIX.1-2008
requires that the modification times be preserved. The statement that the order in which the
characteristics are duplicated is unspecified is to permit implementations to provide the
maximum amount of security for the user. Implementations should take into account the
obvious security issues involved in setting the owner, group, and mode in the wrong order or
creating files with an owner, group, or mode different from the final value.

It is unspecified whether cp writes diagnostic messages when the user and group IDs cannot be
set due to the widespread practice of users using −p to duplicate some portion of the file
characteristics, indifferent to the duplication of others. Historic implementations only write
diagnostic messages on errors other than [EPERM].

Earlier versions of this standard included support for the −r option to copy file hierarchies. The
−r option is historical practice on BSD and BSD-derived systems. This option is no longer
specified by POSIX.1-2008 but may be present in some implementations. The −R option was
added as a close synonym to the −r option, selected for consistency with all other options in this
volume of POSIX.1-2008 that do recursive directory descent.

The difference between −R and the removed −r option is in the treatment by cp of file types other
than regular and directory. It was implementation-defined how the − option treated special files
to allow both historical implementations and those that chose to support −r with the same
abilities as −R defined by this volume of POSIX.1-2008. The original −r flag, for historic reasons,
did not handle special files any differently from regular files, but always read the file and copied
its contents. This had obvious problems in the presence of special file types; for example,
character devices, FIFOs, and sockets.

When a failure occurs during the copying of a file hierarchy, cp is required to attempt to copy
files that are on the same level in the hierarchy or above the file where the failure occurred. It is
unspecified if cp shall attempt to copy files below the file where the failure occurred (which

2552 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

81993

81994

81995

81996

81997

81998

81999

82000

82001

82002

82003

82004

82005

82006

82007

82008

82009

82010

82011

82012

82013

82014

82015

82016

82017

82018

82019

82020

82021

82022

82023

82024

82025

82026

82027

82028

82029

82030

82031

82032

82033

82034

82035

82036

82037

82038

82039

82040

Utilities cp

cannot succeed in any case).

Permissions, owners, and groups of created special file types have been deliberately left as
implementation-defined. This is to allow systems to satisfy special requirements (for example,
allowing users to create character special devices, but requiring them to be owned by a certain
group). In general, it is strongly suggested that the permissions, owner, and group be the same
as if the user had run the historical mknod, ln, or other utility to create the file. It is also probable
that additional privileges are required to create block, character, or other implementation-
defined special file types.

Additionally, the −p option explicitly requires that all set-user-ID and set-group-ID permissions
be discarded if any of the owner or group IDs cannot be set. This is to keep users from
unintentionally giving away special privilege when copying programs.

When creating regular files, historical versions of cp use the mode of the source file as modified
by the file mode creation mask. Other choices would have been to use the mode of the source file
unmodified by the creation mask or to use the same mode as would be given to a new file
created by the user (plus the execution bits of the source file) and then modify it by the file mode
creation mask. In the absence of any strong reason to change historic practice, it was in large part
retained.

When creating directories, historical versions of cp use the mode of the source directory, plus
read, write, and search bits for the owner, as modified by the file mode creation mask. This is
done so that cp can copy trees where the user has read permission, but the owner does not. A
side-effect is that if the file creation mask denies the owner permissions, cp fails. Also, once the
copy is done, historical versions of cp set the permissions on the created directory to be the same
as the source directory, unmodified by the file creation mask.

This behavior has been modified so that cp is always able to create the contents of the directory,
regardless of the file creation mask. After the copy is done, the permissions are set to be the same
as the source directory, as modified by the file creation mask. This latter change from historical
behavior is to prevent users from accidentally creating directories with permissions beyond
those they would normally set and for consistency with the behavior of cp in creating files.

It is not a requirement that cp detect attempts to copy a file to itself; however, implementations
are strongly encouraged to do so. Historical implementations have detected the attempt in most
cases.

There are two methods of copying subtrees in this volume of POSIX.1-2008. The other method is
described as part of the pax utility (see pax). Both methods are historical practice. The cp utility
provides a simpler, more intuitive interface, while pax offers a finer granularity of control. Each
provides additional functionality to the other; in particular, pax maintains the hard-link structure
of the hierarchy, while cp does not. It is the intention of the standard developers that the results
be similar (using appropriate option combinations in both utilities). The results are not required
to be identical; there seemed insufficient gain to applications to balance the difficulty of
implementations having to guarantee that the results would be exactly identical.

The wording allowing cp to copy a directory to implementation-defined file types not specified
by the System Interfaces volume of POSIX.1-2008 is provided so that implementations
supporting symbolic links are not required to prohibit copying directories to symbolic links.
Other extensions to the System Interfaces volume of POSIX.1-2008 file types may need to use
this loophole as well.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2553

82041

82042

82043

82044

82045

82046

82047

82048

82049

82050

82051

82052

82053

82054

82055

82056

82057

82058

82059

82060

82061

82062

82063

82064

82065

82066

82067

82068

82069

82070

82071

82072

82073

82074

82075

82076

82077

82078

82079

82080

82081

82082

82083

82084

cp Utilities

FUTURE DIRECTIONS
None.

SEE ALSO
mv , find , ln , pax

XBD Section 4.4 (on page 108), Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH open(), unlink()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The −r option is marked obsolescent.

The new options −H, −L, and −P are added to align with the IEEE P1003.2b draft standard. These
options affect the processing of symbolic links.

IEEE PASC Interpretation 1003.2 #194 is applied, adding a description of the −P option.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/18 is applied, correcting an error in the
SEE ALSO section.

Issue 7
Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description of the
LC_MESSAGES environment variable.

Austin Group Interpretations 1003.1-2001 #092, #164, #165, and #168 are applied.

SD5-XCU-ERN-31 and SD5-XCU-ERN-42 are applied, updating the DESCRIPTION.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-102 is applied, clarifying the −i option within the OPTIONS section.

The obsolescent −r option is removed.

The −P option is added to the SYNOPSIS and to the DESCRIPTION with respect to the −R
option.

2554 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

82085

82086

82087

82088

82089

82090

82091

82092

82093

82094

82095

82096

82097

82098

82099

82100

82101

82102

82103

82104

82105

82106

82107

82108

82109

Utilities crontab

NAME
crontab — schedule periodic background work

SYNOPSIS
crontab [file]

UP crontab [−e|−l|−r]

DESCRIPTION
UP The crontab utility shall create, replace, or edit a user’s crontab entry; a crontab entry is a list of

commands and the times at which they shall be executed. The new crontab entry can be input by
UP specifying file or input from standard input if no file operand is specified, or by using an editor,

if −e is specified.

Upon execution of a command from a crontab entry, the implementation shall supply a default
environment, defining at least the following environment variables:

HOME A pathname of the user’s home directory.

LOGNAME The user’s login name.

PA TH A string representing a search path guaranteed to find all of the standard utilities.

SHELL A pathname of the command interpreter. When crontab is invoked as specified by
this volume of POSIX.1-2008, the value shall be a pathname for sh.

The values of these variables when crontab is invoked as specified by this volume of
POSIX.1-2008 shall not affect the default values provided when the scheduled command is run.

If standard output and standard error are not redirected by commands executed from the
crontab entry, any generated output or errors shall be mailed, via an implementation-defined
method, to the user.

XSI Users shall be permitted to use crontab if their names appear in the file cron.allow which is
located in an implementation-defined directory. If that file does not exist, the file cron.deny,
which is located in an implementation-defined directory, shall be checked to determine whether
the user shall be denied access to crontab. If neither file exists, only a process with appropriate
privileges shall be allowed to submit a job. If only cron.deny exists and is empty, global usage
shall be permitted. The cron.allow and cron.deny files shall consist of one user name per line.

OPTIONS
The crontab utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

UP −e Edit a copy of the invoking user’s crontab entry, or create an empty entry to edit if
the crontab entry does not exist. When editing is complete, the entry shall be
installed as the user’s crontab entry.

−l (The letter ell.) List the invoking user’s crontab entry.

−r Remove the invoking user’s crontab entry.

OPERANDS
The following operand shall be supported:

file The pathname of a file that contains specifications, in the format defined in the
INPUT FILES section, for crontab entries.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2555

82110

82111

82112

82113

82114

82115

82116

82117

82118

82119

82120

82121

82122

82123

82124

82125

82126

82127

82128

82129

82130

82131

82132

82133

82134

82135

82136

82137

82138

82139

82140

82141

82142

82143

82144

82145

82146

82147

82148

82149

crontab Utilities

STDIN
See the INPUT FILES section.

INPUT FILES
In the POSIX locale, the user or application shall ensure that a crontab entry is a text file
consisting of lines of six fields each. The fields shall be separated by <blank> characters. The
first five fields shall be integer patterns that specify the following:

1. Minute [0,59]

2. Hour [0,23]

3. Day of the month [1,31]

4. Month of the year [1,12]

5. Day of the week ([0,6] with 0=Sunday)

Each of these patterns can be either an <asterisk> (meaning all valid values), an element, or a list
of elements separated by <comma> characters. An element shall be either a number or two
numbers separated by a <hyphen> (meaning an inclusive range). The specification of days can
be made by two fields (day of the month and day of the week). If month, day of month, and day
of week are all <asterisk> characters, every day shall be matched. If either the month or day of
month is specified as an element or list, but the day of week is an <asterisk>, the month and day
of month fields shall specify the days that match. If both month and day of month are specified
as an <asterisk>, but day of week is an element or list, then only the specified days of the week
match. Finally, if either the month or day of month is specified as an element or list, and the day
of week is also specified as an element or list, then any day matching either the month and day
of month, or the day of week, shall be matched.

The sixth field of a line in a crontab entry is a string that shall be executed by sh at the specified
times. A <percent-sign> character in this field shall be translated to a <newline>. Any character
preceded by a <backslash> (including the ’%’) shall cause that character to be treated literally.
Only the first line (up to a ’%’ or end-of-line) of the command field shall be executed by the
command interpreter. The other lines shall be made available to the command as standard input.

Blank lines and those whose first non-<blank> is ’#’ shall be ignored.

XSI The text files cron.allow and cron.deny, which are located in an implementation-defined
directory, shall contain zero or more user names, one per line, of users who are, respectively,
authorized or denied access to the service underlying the crontab utility.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of crontab:

EDITOR Determine the editor to be invoked when the −e option is specified. The default
editor shall be vi.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

2556 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

82150

82151

82152

82153

82154

82155

82156

82157

82158

82159

82160

82161

82162

82163

82164

82165

82166

82167

82168

82169

82170

82171

82172

82173

82174

82175

82176

82177

82178

82179

82180

82181

82182

82183

82184

82185

82186

82187

82188

82189

82190

82191

82192

Utilities crontab

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If the −l option is specified, the crontab entry shall be written to the standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
UP The user’s crontab entry is not submitted, removed, edited, or listed.

APPLICATION USAGE
The format of the crontab entry shown here is guaranteed only for the POSIX locale. Other
cultures may be supported with substantially different interfaces, although implementations are
encouraged to provide comparable levels of functionality.

The default settings of the HOME, LOGNAME, PA TH, and SHELL variables that are given to the
scheduled job are not affected by the settings of those variables when crontab is run; as stated,
they are defaults. The text about ‘‘invoked as specified by this volume of POSIX.1-2008’’ means
that the implementation may provide extensions that allow these variables to be affected at
runtime, but that the user has to take explicit action in order to access the extension, such as give
a new option flag or modify the format of the crontab entry.

A typical user error is to type only crontab; this causes the system to wait for the new crontab
entry on standard input. If end-of-file is typed (generally <control>-D), the crontab entry is
replaced by an empty file. In this case, the user should type the interrupt character, which
prevents the crontab entry from being replaced.

EXAMPLES

1. Clean up core files every weekday morning at 3:15 am:

15 3 * * 1-5 find "$HOME" −name core −exec rm −f {} + 2>/dev/null

2. Mail a birthday greeting:

0 12 14 2 * mailx john%Happy Birthday!%Time for lunch.

3. As an example of specifying the two types of days:

0 0 1,15 * 1

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2557

82193

82194

82195

82196

82197

82198

82199

82200

82201

82202

82203

82204

82205

82206

82207

82208

82209

82210

82211

82212

82213

82214

82215

82216

82217

82218

82219

82220

82221

82222

82223

82224

82225

82226

82227

82228

82229

82230

82231

82232

82233

crontab Utilities

would run a command on the first and fifteenth of each month, as well as on every
Monday. To specify days by only one field, the other field should be set to ’*’; for
example:

0 0 * * 1

would run a command only on Mondays.

RATIONALE
All references to a cron daemon and to cron files have been omitted. Although historical
implementations have used this arrangement, there is no reason to limit future implementations.

This description of crontab is designed to support only users with normal privileges. The format
of the input is based on the System V crontab; however, there is no requirement here that the
actual system database used by the cron daemon (or a similar mechanism) use this format
internally. For example, systems derived from BSD are likely to have an additional field
appended that indicates the user identity to be used when the job is submitted.

The −e option was adopted from the SVID as a user convenience, although it does not exist in all
historical implementations.

FUTURE DIRECTIONS
None.

SEE ALSO
at

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The crontab utility (except for the −e option) is moved from the User Portability Utilities option
to the Base. User Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-95 is applied, removing the references to fixed locations for the files referenced
by the crontab utility.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The first example is changed to remove the unreliable use of find | xargs.

2558 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

82234

82235

82236

82237

82238

82239

82240

82241

82242

82243

82244

82245

82246

82247

82248

82249

82250

82251

82252

82253

82254

82255

82256

82257

82258

82259

82260

82261

82262

82263

82264

82265

Utilities csplit

NAME
csplit — split files based on context

SYNOPSIS
csplit [−ks] [−f prefix] [−n number] file arg...

DESCRIPTION
The csplit utility shall read the file named by the file operand, write all or part of that file into
other files as directed by the arg operands, and write the sizes of the files.

OPTIONS
The csplit utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−f prefix Name the created files prefix00, prefix01, . . ., prefixn. The default is xx00 . . . xxn. If
the prefix argument would create a filename exceeding {NAME_MAX} bytes, an
error shall result, csplit shall exit with a diagnostic message, and no files shall be
created.

−k Leave previously created files intact. By default, csplit shall remove created files if
an error occurs.

−n number Use number decimal digits to form filenames for the file pieces. The default shall be
2.

−s Suppress the output of file size messages.

OPERANDS
The following operands shall be supported:

file The pathname of a text file to be split. If file is ’−’, the standard input shall be
used.

Each arg operand can be one of the following:

/rexp/[offset]
A file shall be created using the content of the lines from the current line up to, but
not including, the line that results from the evaluation of the regular expression
with offset, if any, applied. The regular expression rexp shall follow the rules for
basic regular expressions described in XBD Section 9.3 (on page 183). The
application shall use the sequence "\/" to specify a <slash> character within the
rexp. The optional offset shall be a positive or negative integer value representing a
number of lines. A positive integer value can be preceded by ’+’. If the selection
of lines from an offset expression of this type would create a file with zero lines, or
one with greater than the number of lines left in the input file, the results are
unspecified. After the section is created, the current line shall be set to the line that
results from the evaluation of the regular expression with any offset applied. If the
current line is the first line in the file and a regular expression operation has not yet
been performed, the pattern match of rexp shall be applied from the current line to
the end of the file. Otherwise, the pattern match of rexp shall be applied from the
line following the current line to the end of the file.

%rexp%[offset]
Equivalent to /rexp/[offset], except that no file shall be created for the selected
section of the input file. The application shall use the sequence "\%" to specify a
<percent-sign> character within the rexp.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2559

82266

82267

82268

82269

82270

82271

82272

82273

82274

82275

82276

82277

82278

82279

82280

82281

82282

82283

82284

82285

82286

82287

82288

82289

82290

82291

82292

82293

82294

82295

82296

82297

82298

82299

82300

82301

82302

82303

82304

82305

82306

82307

82308

82309

csplit Utilities

line_no Create a file from the current line up to (but not including) the line number line_no.
Lines in the file shall be numbered starting at one. The current line becomes
line_no.

{num} Repeat operand. This operand can follow any of the operands described
previously. If it follows a rexp type operand, that operand shall be applied num
more times. If it follows a line_no operand, the file shall be split every line_no lines,
num times, from that point.

An error shall be reported if an operand does not reference a line between the current position
and the end of the file.

STDIN
See the INPUT FILES section.

INPUT FILES
The input file shall be a text file.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of csplit:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the behavior of character classes within regular
expressions.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
If the −k option is specified, created files shall be retained. Otherwise, the default action occurs.

STDOUT
Unless the −s option is used, the standard output shall consist of one line per file created, with a
format as follows:

"%d\n", <file size in bytes>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The output files shall contain portions of the original input file; otherwise, unchanged.

2560 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

82310

82311

82312

82313

82314

82315

82316

82317

82318

82319

82320

82321

82322

82323

82324

82325

82326

82327

82328

82329

82330

82331

82332

82333

82334

82335

82336

82337

82338

82339

82340

82341

82342

82343

82344

82345

82346

82347

82348

82349

82350

Utilities csplit

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
By default, created files shall be removed if an error occurs. When the −k option is specified,
created files shall not be removed if an error occurs.

APPLICATION USAGE
None.

EXAMPLES

1. This example creates four files, cobol00 . . . cobol03:

csplit −f cobol file ’/procedure division/’ /par5./ /par16./

After editing the split files, they can be recombined as follows:

cat cobol0[0−3] > file

Note that this example overwrites the original file.

2. This example would split the file after the first 99 lines, and every 100 lines thereafter, up
to 9 999 lines; this is because lines in the file are numbered from 1 rather than zero, for
historical reasons:

csplit −k file 100 {99}

3. Assuming that prog.c follows the C-language coding convention of ending routines with
a ’}’ at the beginning of the line, this example creates a file containing each separate C
routine (up to 21) in prog.c:

csplit −k prog.c ’%main(%’ ’/ˆ}/+1’ {20}

RATIONALE
The −n option was added to extend the range of filenames that could be handled.

Consideration was given to adding a −a flag to use the alphabetic filename generation used by
the historical split utility, but the functionality added by the −n option was deemed to make
alphabetic naming unnecessary.

FUTURE DIRECTIONS
None.

SEE ALSO
sed , split

XBD Chapter 8 (on page 173), Section 9.3 (on page 183), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2561

82351

82352

82353

82354

82355

82356

82357

82358

82359

82360

82361

82362

82363

82364

82365

82366

82367

82368

82369

82370

82371

82372

82373

82374

82375

82376

82377

82378

82379

82380

82381

82382

82383

82384

82385

82386

82387

csplit Utilities

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The APPLICATION USAGE section is added.

The description of regular expression operands is changed to align with the IEEE P1003.2b draft
standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The csplit utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The SYNOPSIS and OPERANDS sections are revised to use a single arg to split a file into two
pieces.

2562 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

82388

82389

82390

82391

82392

82393

82394

82395

82396

82397

82398

82399

82400

82401

Utilities ctags

NAME
ctags — create a tags file (DEVELOPMENT, FORTRAN)

SYNOPSIS
SD ctags [−a] [−f tagsfile] pathname...

ctags −x pathname...

DESCRIPTION
The ctags utility shall be provided on systems that support the the Software Development
Utilities option, and either or both of the C-Language Development Utilities option and
FORTRAN Development Utilities option. On other systems, it is optional.

The ctags utility shall write a tagsfile or an index of objects from C-language or FORTRAN source
files specified by the pathname operands. The tagsfile shall list the locators of language-specific
objects within the source files. A locator consists of a name, pathname, and either a search
pattern or a line number that can be used in searching for the object definition. The objects that
shall be recognized are specified in the EXTENDED DESCRIPTION section.

OPTIONS
The ctags utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a Append to tagsfile.

−f tagsfile Write the object locator lists into tagsfile instead of the default file named tags in the
current directory.

−x Produce a list of object names, the line number, and filename in which each is
defined, as well as the text of that line, and write this to the standard output. A
tagsfile shall not be created when −x is specified.

OPERANDS
The following pathname operands are supported:

file.c Files with basenames ending with the .c suffix shall be treated as C-language
source code. Such files that are not valid input to c99 produce unspecified results.

file.h Files with basenames ending with the .h suffix shall be treated as C-language
source code. Such files that are not valid input to c99 produce unspecified results.

file.f Files with basenames ending with the .f suffix shall be treated as FORTRAN-
language source code. Such files that are not valid input to fort77 produce
unspecified results.

The handling of other files is implementation-defined.

STDIN
See the INPUT FILES section.

INPUT FILES
The input files shall be text files containing source code in the language indicated by the
operand filename suffixes.

ENVIRONMENT VARIABLES

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2563

82402

82403

82404

82405

82406

82407

82408

82409

82410

82411

82412

82413

82414

82415

82416

82417

82418

82419

82420

82421

82422

82423

82424

82425

82426

82427

82428

82429

82430

82431

82432

82433

82434

82435

82436

82437

82438

82439

82440

ctags Utilities

The following environment variables shall affect the execution of ctags:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the order in which output is sorted for the −x option. The POSIX locale
determines the order in which the tagsfile is written.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files). When processing C-language source code, if the locale
is not compatible with the C locale described by the ISO C standard, the results are
unspecified.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The list of object name information produced by the −x option shall be written to standard
output in the following format:

"%s %d %s %s", <object-name>, <line-number>, <filename>, <text>

where <text> is the text of line <line-number> of file <filename>.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
When the −x option is not specified, the format of the output file shall be:

"%s\t%s\t/%s/\n", <identifier>, <filename>, <pattern>

where <pattern> is a search pattern that could be used by an editor to find the defining instance
of <identifier> in <filename> (where defining instance is indicated by the declarations listed in the
EXTENDED DESCRIPTION).

An optional <circumflex> (’ˆ’) can be added as a prefix to <pattern>, and an optional <dollar-
sign> can be appended to <pattern> to indicate that the pattern is anchored to the beginning
(end) of a line of text. Any <slash> or <backslash> characters in <pattern> shall be preceded by a
<backslash> character. The anchoring <circumflex>, <dollar-sign>, and escaping <backslash>
characters shall not be considered part of the search pattern. All other characters in the search
pattern shall be considered literal characters.

2564 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

82441

82442

82443

82444

82445

82446

82447

82448

82449

82450

82451

82452

82453

82454

82455

82456

82457

82458

82459

82460

82461

82462

82463

82464

82465

82466

82467

82468

82469

82470

82471

82472

82473

82474

82475

82476

82477

82478

82479

Utilities ctags

An alternative format is:

"%s\t%s\t?%s?\n", <identifier>, <filename>, <pattern>

which is identical to the first format except that <slash> characters in <pattern> shall not be
preceded by escaping <backslash> characters, and <question-mark> characters in <pattern>
shall be preceded by <backslash> characters.

A second alternative format is:

"%s\t%s\t%d\n", <identifier>, <filename>, <lineno>

where <lineno> is a decimal line number that could be used by an editor to find <identifier> in
<filename>.

Neither alternative format shall be produced by ctags when it is used as described by
POSIX.1-2008, but the standard utilities that process tags files shall be able to process those
formats as well as the first format.

In any of these formats, the file shall be sorted by identifier, based on the collation sequence in
the POSIX locale.

EXTENDED DESCRIPTION
If the operand identifies C-language source, the ctags utility shall attempt to produce an output
line for each of the following objects:

• Function definitions

• Type definitions

• Macros with arguments

It may also produce output for any of the following objects:

• Function prototypes

• Structures

• Unions

• Global variable definitions

• Enumeration types

• Macros without arguments

• #define statements

• #line statements

Any #if and #ifdef statements shall produce no output. The tag main is treated specially in C
programs. The tag formed shall be created by prefixing M to the name of the file, with the
trailing .c, and leading pathname components (if any) removed.

On systems that do not support the C-Language Development Utilities option, ctags produces
unspecified results for C-language source code files. It should write to standard error a message
identifying this condition and cause a non-zero exit status to be produced.

If the operand identifies FORTRAN source, the ctags utility shall produce an output line for each
function definition. It may also produce output for any of the following objects:

• Subroutine definitions

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2565

82480

82481

82482

82483

82484

82485

82486

82487

82488

82489

82490

82491

82492

82493

82494

82495

82496

82497

82498

82499

82500

82501

82502

82503

82504

82505

82506

82507

82508

82509

82510

82511

82512

82513

82514

82515

82516

82517

ctags Utilities

• COMMON statements

• PARAMETER statements

• DATA and BLOCK DATA statements

• Statement numbers

On systems that do not support the FORTRAN Development Utilities option, ctags produces
unspecified results for FORTRAN source code files. It should write to standard error a message
identifying this condition and cause a non-zero exit status to be produced.

It is implementation-defined what other objects (including duplicate identifiers) produce output.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The output with −x is meant to be a simple index that can be written out as an off-line readable
function index. If the input files to ctags (such as .c files) were not created using the same locale
as that in effect when ctags −x is run, results might not be as expected.

The description of C-language processing says ‘‘attempts to’’ because the C language can be
greatly confused, especially through the use of #defines, and this utility would be of no use if
the real C preprocessor were run to identify them. The output from ctags may be fooled and
incorrect for various constructs.

EXAMPLES
None.

RATIONALE
The option list was significantly reduced from that provided by historical implementations. The
−F option was omitted as redundant, since it is the default. The −B option was omitted as being
of very limited usefulness. The −t option was omitted since the recognition of typedefs is now
required for C source files. The −u option was omitted because the update function was judged
to be not only inefficient, but also rarely needed.

An early proposal included a −w option to suppress warning diagnostics. Since the types of such
diagnostics could not be described, the option was omitted as being not useful.

The text for LC_CTYPE about compatibility with the C locale acknowledges that the ISO C
standard imposes requirements on the locale used to process C source. This could easily be a
superset of that known as ‘‘the C locale’’ by way of implementation extensions, or one of a few
alternative locales for systems supporting different codesets. No statement is made for
FORTRAN because the ANSI X3.9-1978 standard (FORTRAN 77) does not (yet) define a similar
locale concept. However, a general rule in this volume of POSIX.1-2008 is that any time that
locales do not match (preparing a file for one locale and processing it in another), the results are
suspect.

The collation sequence of the tags file is not affected by LC_COLLATE because it is typically not
used by human readers, but only by programs such as vi to locate the tag within the source files.
Using the POSIX locale eliminates some of the problems of coordinating locales between the
ctags file creator and the vi file reader.

2566 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

82518

82519

82520

82521

82522

82523

82524

82525

82526

82527

82528

82529

82530

82531

82532

82533

82534

82535

82536

82537

82538

82539

82540

82541

82542

82543

82544

82545

82546

82547

82548

82549

82550

82551

82552

82553

82554

82555

82556

82557

82558

82559

82560

82561

Utilities ctags

Historically, the tags file has been used only by ex and vi. However, the format of the tags file
has been published to encourage other programs to use the tags in new ways. The format allows
either patterns or line numbers to find the identifiers because the historical vi recognizes either.
The ctags utility does not produce the format using line numbers because it is not useful
following any source file changes that add or delete lines. The documented search patterns
match historical practice. It should be noted that literal leading <circumflex> or trailing <dollar-
sign> characters in the search pattern will only behave correctly if anchored to the beginning of
the line or end of the line by an additional <circumflex> or <dollar-sign> character.

Historical implementations also understand the objects used by the languages Pascal and
sometimes LISP, and they understand the C source output by lex and yacc. The ctags utility is not
required to accommodate these languages, although implementors are encouraged to do so.

The following historical option was not specified, as vgrind is not included in this volume of
POSIX.1-2008:

−v If the −v flag is given, an index of the form expected by vgrind is produced on the
standard output. This listing contains the function name, filename, and page
number (assuming 64-line pages). Since the output is sorted into lexicographic
order, it may be desired to run the output through sort −f. Sample use:

ctags −v files | sort −f > index vgrind −x index

The special treatment of the tag main makes the use of ctags practical in directories with more
than one program.

FUTURE DIRECTIONS
None.

SEE ALSO
c99 , fort77 , vi

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The OUTPUT FILES section is changed to align with the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

IEEE PASC Interpretation 1003.2 #168 is applied, changing ‘‘create’’ to ‘‘write’’ in the
DESCRIPTION.

Issue 7
The ctags utility is no longer dependent on support for the User Portability Utilities option.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2567

82562

82563

82564

82565

82566

82567

82568

82569

82570

82571

82572

82573

82574

82575

82576

82577

82578

82579

82580

82581

82582

82583

82584

82585

82586

82587

82588

82589

82590

82591

82592

82593

82594

82595

82596

82597

82598

82599

cut Utilities

NAME
cut — cut out selected fields of each line of a file

SYNOPSIS
cut −b list [−n] [file...]

cut −c list [file...]

cut −f list [−d delim] [−s] [file...]

DESCRIPTION
The cut utility shall cut out bytes (−b option), characters (−c option), or character-delimited fields
(−f option) from each line in one or more files, concatenate them, and write them to standard
output.

OPTIONS
The cut utility shall conform to XBD Section 12.2 (on page 215).

The application shall ensure that the option-argument list (see options −b, −c, and −f below) is a
<comma>-separated list or <blank>-separated list of positive numbers and ranges. Ranges can
be in three forms. The first is two positive numbers separated by a <hyphen> (low−high), which
represents all fields from the first number to the second number. The second is a positive
number preceded by a <hyphen> (−high), which represents all fields from field number 1 to that
number. The third is a positive number followed by a <hyphen> (low−), which represents that
number to the last field, inclusive. The elements in list can be repeated, can overlap, and can be
specified in any order, but the bytes, characters, or fields selected shall be written in the order of
the input data. If an element appears in the selection list more than once, it shall be written
exactly once.

The following options shall be supported:

−b list Cut based on a list of bytes. Each selected byte shall be output unless the −n option
is also specified. It shall not be an error to select bytes not present in the input line.

−c list Cut based on a list of characters. Each selected character shall be output. It shall
not be an error to select characters not present in the input line.

−d delim Set the field delimiter to the character delim. The default is the <tab>.

−f list Cut based on a list of fields, assumed to be separated in the file by a delimiter
character (see −d). Each selected field shall be output. Output fields shall be
separated by a single occurrence of the field delimiter character. Lines with no field
delimiters shall be passed through intact, unless −s is specified. It shall not be an
error to select fields not present in the input line.

−n Do not split characters. When specified with the −b option, each element in list of
the form low−high (<hyphen>-separated numbers) shall be modified as follows:

• If the byte selected by low is not the first byte of a character, low shall be
decremented to select the first byte of the character originally selected by low.
If the byte selected by high is not the last byte of a character, high shall be
decremented to select the last byte of the character prior to the character
originally selected by high, or zero if there is no prior character. If the
resulting range element has high equal to zero or low greater than high, the list
element shall be dropped from list for that input line without causing an
error.

Each element in list of the form low− shall be treated as above with high set to the
number of bytes in the current line, not including the terminating <newline>. Each

2568 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

82600

82601

82602

82603

82604

82605

82606

82607

82608

82609

82610

82611

82612

82613

82614

82615

82616

82617

82618

82619

82620

82621

82622

82623

82624

82625

82626

82627

82628

82629

82630

82631

82632

82633

82634

82635

82636

82637

82638

82639

82640

82641

82642

82643

82644

Utilities cut

element in list of the form −high shall be treated as above with low set to 1. Each
element in list of the form num (a single number) shall be treated as above with low
set to num and high set to num.

−s Suppress lines with no delimiter characters, when used with the −f option. Unless
specified, lines with no delimiters shall be passed through untouched.

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If no file operands are specified, or if a file operand is
’−’, the standard input shall be used.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is ’−’.
See the INPUT FILES section.

INPUT FILES
The input files shall be text files, except that line lengths shall be unlimited.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cut:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The cut utility output shall be a concatenation of the selected bytes, characters, or fields (one of
the following):

"%s\n", <concatenation of bytes>

"%s\n", <concatenation of characters>

"%s\n", <concatenation of fields and field delimiters>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2569

82645

82646

82647

82648

82649

82650

82651

82652

82653

82654

82655

82656

82657

82658

82659

82660

82661

82662

82663

82664

82665

82666

82667

82668

82669

82670

82671

82672

82673

82674

82675

82676

82677

82678

82679

82680

82681

82682

82683

82684

cut Utilities

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All input files were output successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The cut and fold utilities can be used to create text files out of files with arbitrary line lengths.
The cut utility should be used when the number of lines (or records) needs to remain constant.
The fold utility should be used when the contents of long lines need to be kept contiguous.

Earlier versions of the cut utility worked in an environment where bytes and characters were
considered equivalent (modulo <backspace> and <tab> processing in some implementations). In
the extended world of multi-byte characters, the new −b option has been added. The −n option
(used with −b) allows it to be used to act on bytes rounded to character boundaries. The
algorithm specified for −n guarantees that:

cut −b 1−500 −n file > file1
cut −b 501− −n file > file2

ends up with all the characters in file appearing exactly once in file1 or file2. (There is,
however, a <newline> in both file1 and file2 for each <newline> in file.)

EXAMPLES
Examples of the option qualifier list:

1,4,7 Select the first, fourth, and seventh bytes, characters, or fields and field delimiters.

1−3,8 Equivalent to 1,2,3,8.

−5,10 Equivalent to 1,2,3,4,5,10.

3− Equivalent to third to last, inclusive.

The low−high forms are not always equivalent when used with −b and −n and multi-byte
characters; see the description of −n.

The following command:

cut −d : −f 1,6 /etc/passwd

reads the System V password file (user database) and produces lines of the form:

<user ID>:<home directory>

Most utilities in this volume of POSIX.1-2008 work on text files. The cut utility can be used to
turn files with arbitrary line lengths into a set of text files containing the same data. The paste
utility can be used to create (or recreate) files with arbitrary line lengths. For example, if file
contains long lines:

cut −b 1−500 −n file > file1
cut −b 501− −n file > file2

creates file1 (a text file) with lines no longer than 500 bytes (plus the <newline>) and file2 that
contains the remainder of the data from file. (Note that file2 is not a text file if there are lines in

2570 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

82685

82686

82687

82688

82689

82690

82691

82692

82693

82694

82695

82696

82697

82698

82699

82700

82701

82702

82703

82704

82705

82706

82707

82708

82709

82710

82711

82712

82713

82714

82715

82716

82717

82718

82719

82720

82721

82722

82723

82724

82725

Utilities cut

file that are longer than 500 + {LINE_MAX} bytes.) The original file can be recreated from file1
and file2 using the command:

paste −d "\0" file1 file2 > file

RATIONALE
Some historical implementations do not count <backspace> characters in determining character
counts with the −c option. This may be useful for using cut for processing nroff output. It was
deliberately decided not to have the −c option treat either <backspace> or <tab> characters in
any special fashion. The fold utility does treat these characters specially.

Unlike other utilities, some historical implementations of cut exit after not finding an input file,
rather than continuing to process the remaining file operands. This behavior is prohibited by this
volume of POSIX.1-2008, where only the exit status is affected by this problem.

The behavior of cut when provided with either mutually-exclusive options or options that do
not work logically together has been deliberately left unspecified in favor of global wording in
Section 1.4 (on page 2288).

The OPTIONS section was changed in response to IEEE PASC Interpretation 1003.2 #149. The
change represents historical practice on all known systems. The original standard was
ambiguous on the nature of the output.

The list option-arguments are historically used to select the portions of the line to be written, but
do not affect the order of the data. For example:

echo abcdefghi | cut −c6,2,4−7,1

yields "abdefg".

A proposal to enhance cut with the following option:

−o Preserve the selected field order. When this option is specified, each byte, character, or field
(or ranges of such) shall be written in the order specified by the list option-argument, even if
this requires multiple outputs of the same bytes, characters, or fields.

was rejected because this type of enhancement is outside the scope of the IEEE P1003.2b draft
standard.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 2301), fold , grep , paste

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The OPTIONS section is changed to align with the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-171 is applied, adding APPLICATION USAGE.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2571

82726

82727

82728

82729

82730

82731

82732

82733

82734

82735

82736

82737

82738

82739

82740

82741

82742

82743

82744

82745

82746

82747

82748

82749

82750

82751

82752

82753

82754

82755

82756

82757

82758

82759

82760

82761

82762

82763

82764

82765

cxref Utilities

NAME
cxref — generate a C-language program cross-reference table (DEVELOPMENT)

SYNOPSIS
XSI cxref [−cs] [−o file] [−w num] [−D name[=def]]... [−I dir]...

[−U name]... file...

DESCRIPTION
The cxref utility shall analyze a collection of C-language files and attempt to build a cross-
reference table. Information from #define lines shall be included in the symbol table. A sorted
listing shall be written to standard output of all symbols (auto, static, and global) in each file
separately, or with the −c option, in combination. Each symbol shall contain an <asterisk> before
the declaring reference.

OPTIONS
The cxref utility shall conform to XBD Section 12.2 (on page 215), except that the order of the −D,
−I, and −U options (which are identical to their interpretation by c99) is significant. The
following options shall be supported:

−c Write a combined cross-reference of all input files.

−s Operate silently; do not print input filenames.

−o file Direct output to named file.

−w num Format output no wider than num (decimal) columns. This option defaults to 80 if
num is not specified or is less than 51.

−D Equivalent to c99.

−I Equivalent to c99.

−U Equivalent to c99.

OPERANDS
The following operand shall be supported:

file A pathname of a C-language source file.

STDIN
Not used.

INPUT FILES
The input files are C-language source files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of cxref:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the ordering of the output.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

2572 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

82766

82767

82768

82769

82770

82771

82772

82773

82774

82775

82776

82777

82778

82779

82780

82781

82782

82783

82784

82785

82786

82787

82788

82789

82790

82791

82792

82793

82794

82795

82796

82797

82798

82799

82800

82801

82802

82803

82804

82805

82806

82807

Utilities cxref

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be used for the cross-reference listing, unless the −o option is used to
select a different output file.

The format of standard output is unspecified, except that the following information shall be
included:

• If the −c option is not specified, each portion of the listing shall start with the name of the
input file on a separate line.

• The name line shall be followed by a sorted list of symbols, each with its associated
location pathname, the name of the function in which it appears (if it is not a function
name itself), and line number references.

• Each line number may be preceded by an <asterisk> (’*’) flag, meaning that this is the
declaring reference. Other single-character flags, with implementation-defined meanings,
may be included.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The output file named by the −o option shall be used instead of standard output.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2573

82808

82809

82810

82811

82812

82813

82814

82815

82816

82817

82818

82819

82820

82821

82822

82823

82824

82825

82826

82827

82828

82829

82830

82831

82832

82833

82834

82835

82836

82837

82838

82839

82840

82841

82842

82843

82844

82845

82846

cxref Utilities

SEE ALSO
c99

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
In the SYNOPSIS, [−U dir] is changed to [−U name].

Issue 6
The APPLICATION USAGE section is added.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2574 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

82847

82848

82849

82850

82851

82852

82853

82854

82855

82856

82857

Utilities date

NAME
date — write the date and time

SYNOPSIS
date [−u] [+format]

XSI date [−u] mmddhhmm[[cc]yy]

DESCRIPTION
XSI The date utility shall write the date and time to standard output or attempt to set the system

date and time. By default, the current date and time shall be written. If an operand beginning
with ’+’ is specified, the output format of date shall be controlled by the conversion
specifications and other text in the operand.

OPTIONS
The date utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−u Perform operations as if the TZ environment variable was set to the string "UTC0",
or its equivalent historical value of "GMT0". Otherwise, date shall use the timezone
indicated by the TZ environment variable or the system default if that variable is
unset or null.

OPERANDS
The following operands shall be supported:

+format When the format is specified, each conversion specifier shall be replaced in the
standard output by its corresponding value. All other characters shall be copied to
the output without change. The output shall always be terminated with a
<newline>.

Conversion Specifications

%a Locale’s abbreviated weekday name.

%A Locale’s full weekday name.

%b Locale’s abbreviated month name.

%B Locale’s full month name.

%c Locale’s appropriate date and time representation.

%C Century (a year divided by 100 and truncated to an integer) as a decimal
number [00,99].

%d Day of the month as a decimal number [01,31].

%D Date in the format mm/dd/yy.

%e Day of the month as a decimal number [1,31] in a two-digit field with
leading <space> character fill.

%h A synonym for %b.

%H Hour (24-hour clock) as a decimal number [00,23].

%I Hour (12-hour clock) as a decimal number [01,12].

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2575

82858

82859

82860

82861

82862

82863

82864

82865

82866

82867

82868

82869

82870

82871

82872

82873

82874

82875

82876

82877

82878

82879

82880

82881

82882

82883

82884

82885

82886

82887

82888

82889

82890

82891

82892

82893

82894

82895

date Utilities

%j Day of the year as a decimal number [001,366].

%m Month as a decimal number [01,12].

%M Minute as a decimal number [00,59].

%n A <newline>.

%p Locale’s equivalent of either AM or PM.

%r 12-hour clock time [01,12] using the AM/PM notation; in the POSIX
locale, this shall be equivalent to %I:%M:%S %p.

%S Seconds as a decimal number [00,60].

%t A <tab>.

%T 24-hour clock time [00,23] in the format HH:MM:SS.

%u Weekday as a decimal number [1,7] (1=Monday).

%U Week of the year (Sunday as the first day of the week) as a decimal
number [00,53]. All days in a new year preceding the first Sunday shall be
considered to be in week 0.

%V Week of the year (Monday as the first day of the week) as a decimal
number [01,53]. If the week containing January 1 has four or more days in
the new year, then it shall be considered week 1; otherwise, it shall be the
last week of the previous year, and the next week shall be week 1.

%w Weekday as a decimal number [0,6] (0=Sunday).

%W Week of the year (Monday as the first day of the week) as a decimal
number [00,53]. All days in a new year preceding the first Monday shall
be considered to be in week 0.

%x Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year within century [00,99].

%Y Year with century as a decimal number.

%Z Timezone name, or no characters if no timezone is determinable.

%% A <percent-sign> character.

See XBD Section 7.3.5 (on page 158) for the conversion specifier values in the
POSIX locale.

Modified Conversion Specifications

Some conversion specifiers can be modified by the E and O modifier characters to
indicate a different format or specification as specified in the LC_TIME locale
description (see XBD Section 7.3.5, on page 158). If the corresponding keyword
(see era, era_year, era_d_fmt, and alt_digits in XBD Section 7.3.5, on page 158) is
not specified or not supported for the current locale, the unmodified conversion
specifier value shall be used.

%Ec Locale’s alternative appropriate date and time representation.

2576 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

82896

82897

82898

82899

82900

82901

82902

82903

82904

82905

82906

82907

82908

82909

82910

82911

82912

82913

82914

82915

82916

82917

82918

82919

82920

82921

82922

82923

82924

82925

82926

82927

82928

82929

82930

82931

82932

82933

Utilities date

%EC The name of the base year (period) in the locale’s alternative
representation.

%Ex Locale’s alternative date representation.

%EX Locale’s alternative time representation.

%Ey Offset from %EC (year only) in the locale’s alternative representation.

%EY Full alternative year representation.

%Od Day of month using the locale’s alternative numeric symbols.

%Oe Day of month using the locale’s alternative numeric symbols.

%OH Hour (24-hour clock) using the locale’s alternative numeric symbols.

%OI Hour (12-hour clock) using the locale’s alternative numeric symbols.

%Om Month using the locale’s alternative numeric symbols.

%OM Minutes using the locale’s alternative numeric symbols.

%OS Seconds using the locale’s alternative numeric symbols.

%Ou Weekday as a number in the locale’s alternative representation (Monday
= 1).

%OU Week number of the year (Sunday as the first day of the week) using the
locale’s alternative numeric symbols.

%OV Week number of the year (Monday as the first day of the week, rules
corresponding to %V), using the locale’s alternative numeric symbols.

%Ow Weekday as a number in the locale’s alternative representation (Sunday =
0).

%OW Week number of the year (Monday as the first day of the week) using the
locale’s alternative numeric symbols.

%Oy Year (offset from %C) in alternative representation.

XSI mmddhhmm[[cc]yy]
Attempt to set the system date and time from the value given in the operand. This
is only possible if the user has appropriate privileges and the system permits the
setting of the system date and time. The first mm is the month (number); dd is the
day (number); hh is the hour (number, 24-hour system); the second mm is the
minute (number); cc is the century and is the first two digits of the year (this is
optional); yy is the last two digits of the year and is optional. If century is not
specified, then values in the range [69,99] shall refer to years 1969 to 1999 inclusive,
and values in the range [00,68] shall refer to years 2000 to 2068 inclusive. The
current year is the default if yy is omitted.

Note: It is expected that in a future version of this standard the default century inferred
from a 2-digit year will change. (This would apply to all commands accepting a
2-digit year as input.)

STDIN
Not used.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2577

82934

82935

82936

82937

82938

82939

82940

82941

82942

82943

82944

82945

82946

82947

82948

82949

82950

82951

82952

82953

82954

82955

82956

82957

82958

82959

82960

82961

82962

82963

82964

82965

82966

82967

82968

82969

82970

82971

82972

date Utilities

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of date:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_TIME Determine the format and contents of date and time strings written by date.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TZ Determine the timezone in which the time and date are written, unless the −u
option is specified. If the TZ variable is unset or null and −u is not specified, an
unspecified system default timezone is used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When no formatting operand is specified, the output in the POSIX locale shall be equivalent to
specifying:

date "+%a %b %e %H:%M:%S %Z %Y"

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The date was written successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

2578 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

82973

82974

82975

82976

82977

82978

82979

82980

82981

82982

82983

82984

82985

82986

82987

82988

82989

82990

82991

82992

82993

82994

82995

82996

82997

82998

82999

83000

83001

83002

83003

83004

83005

83006

83007

83008

83009

83010

Utilities date

APPLICATION USAGE
Conversion specifiers are of unspecified format when not in the POSIX locale. Some of them can
contain <newline> characters in some locales, so it may be difficult to use the format shown in
standard output for parsing the output of date in those locales.

The range of values for %S extends from 0 to 60 seconds to accommodate the occasional leap
second.

Although certain of the conversion specifiers in the POSIX locale (such as the name of the
month) are shown with initial capital letters, this need not be the case in other locales. Programs
using these fields may need to adjust the capitalization if the output is going to be used at the
beginning of a sentence.

The date string formatting capabilities are intended for use in Gregorian-style calendars,
possibly with a different starting year (or years). The %x and %c conversion specifications,
however, are intended for local representation; these may be based on a different, non-Gregorian
calendar.

The %C conversion specification was introduced to allow a fallback for the %EC (alternative year
format base year); it can be viewed as the base of the current subdivision in the Gregorian
calendar. The century number is calculated as the year divided by 100 and truncated to an
integer; it should not be confused with the use of ordinal numbers for centuries (for example,
‘‘twenty-first century’’.) Both the %Ey and %y can then be viewed as the offset from %EC and %C,
respectively.

The E and O modifiers modify the traditional conversion specifiers, so that they can always be
used, even if the implementation (or the current locale) does not support the modifier.

The E modifier supports alternative date formats, such as the Japanese Emperor ’s Era, as long as
these are based on the Gregorian calendar system. Extending the E modifiers to other date
elements may provide an implementation-defined extension capable of supporting other
calendar systems, especially in combination with the O modifier.

The O modifier supports time and date formats using the locale’s alternative numerical symbols,
such as Kanji or Hindi digits or ordinal number representation.

Non-European locales, whether they use Latin digits in computational items or not, often have
local forms of the digits for use in date formats. This is not totally unknown even in Europe; a
variant of dates uses Roman numerals for the months: the third day of September 1991 would be
written as 3.IX.1991. In Japan, Kanji digits are regularly used for dates; in Arabic-speaking
countries, Hindi digits are used. The %d, %e, %H, %I, %m, %S, %U, %w, %W, and %y conversion
specifications always return the date and time field in Latin digits (that is, 0 to 9). The %O
modifier was introduced to support the use for display purposes of non-Latin digits. In the
LC_TIME category in localedef, the optional alt_digits keyword is intended for this purpose. As
an example, assume the following (partial) localedef source:

alt_digits "";"I";"II";"III";"IV";"V";"VI";"VII";"VIII" \
"IX";"X";"XI";"XII"

d_fmt "%e.%Om.%Y"

With the above date, the command:

date "+%x"

would yield 3.IX.1991. With the same d_fmt, but without the alt_digits, the command would
yield 3.9.1991.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2579

83011

83012

83013

83014

83015

83016

83017

83018

83019

83020

83021

83022

83023

83024

83025

83026

83027

83028

83029

83030

83031

83032

83033

83034

83035

83036

83037

83038

83039

83040

83041

83042

83043

83044

83045

83046

83047

83048

83049

83050

83051

83052

83053

83054

date Utilities

EXAMPLES

1. The following are input/output examples of date used at arbitrary times in the POSIX
locale:

$ date
Tue Jun 26 09:58:10 PDT 1990

$ date "+DATE: %m/%d/%y%nTIME: %H:%M:%S"
DATE: 11/02/91

TIME: 13:36:16

$ date "+TIME: %r"
TIME: 01:36:32 PM

2. Examples for Denmark, where the default date and time format is %a %d %b %Y %T %Z:

$ LANG=da_DK.iso_8859−1 date
ons 02 okt 1991 15:03:32 CET

$ LANG=da_DK.iso_8859−1 \
date "+DATO: %A den %e. %B %Y%nKLOKKEN: %H:%M:%S"

DATO: onsdag den 2. oktober 1991

KLOKKEN: 15:03:56

3. Examples for Germany, where the default date and time format is %a %d.%h.%Y, %T %Z:

$ LANG=De_DE.88591 date
Mi 02.Okt.1991, 15:01:21 MEZ

$ LANG=De_DE.88591 date "+DATUM: %A, %d. %B %Y%nZEIT: %H:%M:%S"
DATUM: Mittwoch, 02. Oktober 1991

ZEIT: 15:02:02

4. Examples for France, where the default date and time format is %a %d %h %Y %Z %T:

$ LANG=Fr_FR.88591 date
Mer 02 oct 1991 MET 15:03:32

$ LANG=Fr_FR.88591 date "+JOUR: %A %d %B %Y%nHEURE: %H:%M:%S"
JOUR: Mercredi 02 octobre 1991

HEURE: 15:03:56

RATIONALE
Some of the new options for formatting are from the ISO C standard. The −u option was
introduced to allow portable access to Coordinated Universal Time (UTC). The string "GMT0" is
allowed as an equivalent TZ value to be compatible with all of the systems using the BSD
implementation, where this option originated.

The %e format conversion specification (adopted from System V) was added because the ISO C
standard conversion specifications did not provide any way to produce the historical default
date output during the first nine days of any month.

There are two varieties of day and week numbering supported (in addition to any others created
with the locale-dependent %E and %O modifier characters):

• The historical variety in which Sunday is the first day of the week and the weekdays
preceding the first Sunday of the year are considered week 0. These are represented by %w
and %U. A variant of this is %W, using Monday as the first day of the week, but still
referring to week 0. This view of the calendar was retained because so many historical

2580 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

83055

83056

83057

83058

83059

83060

83061

83062

83063

83064

83065

83066

83067

83068

83069

83070

83071

83072

83073

83074

83075

83076

83077

83078

83079

83080

83081

83082

83083

83084

83085

83086

83087

83088

83089

83090

83091

83092

83093

83094

83095

83096

83097

Utilities date

applications depend on it and the ISO C standard strftime() function, on which many date
implementations are based, was defined in this way.

• The international standard, based on the ISO 8601: 2004 standard where Monday is the first
weekday and the algorithm for the first week number is more complex: If the week
(Monday to Sunday) containing January 1 has four or more days in the new year, then it is
week 1; otherwise, it is week 53 of the previous year, and the next week is week 1. These
are represented by the new conversion specifications %u and %V, added as a result of
international comments.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 7.3.5 (on page 158), Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH fprintf(), strftime()

CHANGE HISTORY
First released in Issue 2.

Issue 5
Changes are made for Year 2000 alignment.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The %EX modified conversion specification is added.

The Open Group Corrigendum U048/2 is applied, correcting the examples.

The DESCRIPTION is updated to refer to conversion specifications, instead of field descriptors
for consistency with the LC_TIME category.

A clarification is made such that the current year is the default if the yy argument is omitted
when setting the system date and time.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/19 is applied, correcting the CHANGE
HISTORY section.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2581

83098

83099

83100

83101

83102

83103

83104

83105

83106

83107

83108

83109

83110

83111

83112

83113

83114

83115

83116

83117

83118

83119

83120

83121

83122

83123

83124

83125

dd Utilities

NAME
dd — convert and copy a file

SYNOPSIS
dd [operand...]

DESCRIPTION
The dd utility shall copy the specified input file to the specified output file with possible
conversions using specific input and output block sizes. It shall read the input one block at a
time, using the specified input block size; it shall then process the block of data actually
returned, which could be smaller than the requested block size. It shall apply any conversions
that have been specified and write the resulting data to the output in blocks of the specified
output block size. If the bs=expr operand is specified and no conversions other than sync,
noerror, or notrunc are requested, the data returned from each input block shall be written as a
separate output block; if the read returns less than a full block and the sync conversion is not
specified, the resulting output block shall be the same size as the input block. If the bs=expr
operand is not specified, or a conversion other than sync, noerror, or notrunc is requested, the
input shall be processed and collected into full-sized output blocks until the end of the input is
reached.

The processing order shall be as follows:

1. An input block is read.

2. If the input block is shorter than the specified input block size and the sync conversion is
specified, null bytes shall be appended to the input data up to the specified size. (If either
block or unblock is also specified, <space> characters shall be appended instead of null
bytes.) The remaining conversions and output shall include the pad characters as if they
had been read from the input.

3. If the bs=expr operand is specified and no conversion other than sync or noerror is
requested, the resulting data shall be written to the output as a single block, and the
remaining steps are omitted.

4. If the swab conversion is specified, each pair of input data bytes shall be swapped. If
there is an odd number of bytes in the input block, the last byte in the input record shall
not be swapped.

5. Any remaining conversions (block, unblock, lcase, and ucase) shall be performed. These
conversions shall operate on the input data independently of the input blocking; an input
or output fixed-length record may span block boundaries.

6. The data resulting from input or conversion or both shall be aggregated into output
blocks of the specified size. After the end of input is reached, any remaining output shall
be written as a block without padding if conv=sync is not specified; thus, the final output
block may be shorter than the output block size.

OPTIONS
None.

OPERANDS
All of the operands shall be processed before any input is read. The following operands shall be
supported:

if=file Specify the input pathname; the default is standard input.

of=file Specify the output pathname; the default is standard output. If the seek=expr
conversion is not also specified, the output file shall be truncated before the copy
begins if an explicit of=file operand is specified, unless conv=notrunc is specified.

2582 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

83126

83127

83128

83129

83130

83131

83132

83133

83134

83135

83136

83137

83138

83139

83140

83141

83142

83143

83144

83145

83146

83147

83148

83149

83150

83151

83152

83153

83154

83155

83156

83157

83158

83159

83160

83161

83162

83163

83164

83165

83166

83167

83168

83169

83170

83171

Utilities dd

If seek=expr is specified, but conv=notrunc is not, the effect of the copy shall be to
preserve the blocks in the output file over which dd seeks, but no other portion of
the output file shall be preserved. (If the size of the seek plus the size of the input
file is less than the previous size of the output file, the output file shall be
shortened by the copy. If the input file is empty and either the size of the seek is
greater than the previous size of the output file or the output file did not
previously exist, the size of the output file shall be set to the file offset after the
seek.)

ibs=expr Specify the input block size, in bytes, by expr (default is 512).

obs=expr Specify the output block size, in bytes, by expr (default is 512).

bs=expr Set both input and output block sizes to expr bytes, superseding ibs= and obs=. If
no conversion other than sync, noerror, and notrunc is specified, each input block
shall be copied to the output as a single block without aggregating short blocks.

cbs=expr Specify the conversion block size for block and unblock in bytes by expr (default is
zero). If cbs= is omitted or given a value of zero, using block or unblock produces
unspecified results.

XSI The application shall ensure that this operand is also specified if the conv=
operand is specified with a value of ascii, ebcdic, or ibm. For a conv= operand
with an ascii value, the input is handled as described for the unblock value, except
that characters are converted to ASCII before any trailing <space> characters are
deleted. For conv= operands with ebcdic or ibm values, the input is handled as
described for the block value except that the characters are converted to EBCDIC
or IBM EBCDIC, respectively, after any trailing <space> characters are added.

skip=n Skip n input blocks (using the specified input block size) before starting to copy.
On seekable files, the implementation shall read the blocks or seek past them; on
non-seekable files, the blocks shall be read and the data shall be discarded.

seek=n Skip n blocks (using the specified output block size) from the beginning of the
output file before copying. On non-seekable files, existing blocks shall be read and
space from the current end-of-file to the specified offset, if any, filled with null
bytes; on seekable files, the implementation shall seek to the specified offset or
read the blocks as described for non-seekable files.

count=n Copy only n input blocks.

conv=value[,value . . .]
Where values are <comma>-separated symbols from the following list:

XSI ascii Convert EBCDIC to ASCII; see Table 4-7 (on page 2585).

XSI ebcdic Convert ASCII to EBCDIC; see Table 4-7 (on page 2585).

XSI ibm Convert ASCII to a different EBCDIC set; see Table 4-8 (on page
2586).

XSI The ascii, ebcdic, and ibm values are mutually-exclusive.

block Tr eat the input as a sequence of <newline>-terminated or end-of-file-
terminated variable-length records independent of the input block
boundaries. Each record shall be converted to a record with a fixed
length specified by the conversion block size. Any <newline> shall be
removed from the input line; <space> characters shall be appended to
lines that are shorter than their conversion block size to fill the block.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2583

83172

83173

83174

83175

83176

83177

83178

83179

83180

83181

83182

83183

83184

83185

83186

83187

83188

83189

83190

83191

83192

83193

83194

83195

83196

83197

83198

83199

83200

83201

83202

83203

83204

83205

83206

83207

83208

83209

83210

83211

83212

83213

83214

83215

83216

dd Utilities

Lines that are longer than the conversion block size shall be truncated
to the largest number of characters that fit into that size; the number of
truncated lines shall be reported (see the STDERR section).

The block and unblock values are mutually-exclusive.

unblock Convert fixed-length records to variable length. Read a number of bytes
equal to the conversion block size (or the number of bytes remaining in
the input, if less than the conversion block size), delete all trailing
<space> characters, and append a <newline>.

lcase Map uppercase characters specified by the LC_CTYPE keyword
tolower to the corresponding lowercase character. Characters for which
no mapping is specified shall not be modified by this conversion.

The lcase and ucase symbols are mutually-exclusive.

ucase Map lowercase characters specified by the LC_CTYPE keyword
toupper to the corresponding uppercase character. Characters for
which no mapping is specified shall not be modified by this conversion.

swab Swap every pair of input bytes.

noerror Do not stop processing on an input error. When an input error occurs, a
diagnostic message shall be written on standard error, followed by the
current input and output block counts in the same format as used at
completion (see the STDERR section). If the sync conversion is
specified, the missing input shall be replaced with null bytes and
processed normally; otherwise, the input block shall be omitted from
the output.

notrunc Do not truncate the output file. Preserve blocks in the output file not
explicitly written by this invocation of the dd utility. (See also the
preceding of=file operand.)

sync Pad every input block to the size of the ibs= buffer, appending null
bytes. (If either block or unblock is also specified, append <space>
characters, rather than null bytes.)

The behavior is unspecified if operands other than conv= are specified more than once.

For the bs=, cbs=, ibs=, and obs= operands, the application shall supply an expression
specifying a size in bytes. The expression, expr, can be:

1. A positive decimal number

2. A positive decimal number followed by k, specifying multiplication by 1 024

3. A positive decimal number followed by b, specifying multiplication by 512

4. Two or more positive decimal numbers (with or without k or b) separated by x, specifying
the product of the indicated values

All of the operands are processed before any input is read.

XSI The following two tables display the octal number character values used for the ascii and ebcdic
conversions (first table) and for the ibm conversion (second table). In both tables, the ASCII
values are the row and column headers and the EBCDIC values are found at their intersections.
For example, ASCII 0012 (LF) is the second row, third column, yielding 0045 in EBCDIC. The
inverted tables (for EBCDIC to ASCII conversion) are not shown, but are in one-to-one

2584 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

83217

83218

83219

83220

83221

83222

83223

83224

83225

83226

83227

83228

83229

83230

83231

83232

83233

83234

83235

83236

83237

83238

83239

83240

83241

83242

83243

83244

83245

83246

83247

83248

83249

83250

83251

83252

83253

83254

83255

83256

83257

83258

83259

U
tilities

d
d

co
rresp

o
n

d
en

ce w
ith

 th
ese tab

les. T
h

e d
ifferen

ces b
etw

een
 th

e tw
o

 tab
les are

h
ig

h
lig

h
ted

 b
y

sm
all b

o
x

es d
raw

n
 aro

u
n

d
 fiv

e en
tries.

T
a
b

le
 4

-7
A

S
C

II to
 E

B
C

D
IC

 C
o

n
v

ersio
n

0000 NUL

0026 BS

0020 DLE

0030 CAN

0100 Sp

0115 (

0360 0

0370 8

0174 @

0310 H

0327 P

0347 X

0171 `

0210 h

0227 p

0247 x

0040 DS

0050 SA

0060

0070 SBS

0101

0111

0130

0150

0166

0216

0237

0260

0270

0312

0334

0356

0001 SOH

0005 HT

0021 DC1

0031 EM

0132 !

0135)

0361 1

0371 9

0301 A

0311 I

0330 Q

0350 Y

0201 a

0211 i

0230 q

0250 y

0041 SOS

0051 SFE

0061

0071 IT

0102

0121

0131

0151

0167

0217

0240

0261

0271

0313

0335

0357

0002 STX

0045 LF

0022 DC2

0077 SUB

0177 "

0134 *

0362 2

0172 :

0302 B

0321 J

0331 R

0351 Z

0202 b

0221 j

0231 r

0251 z

0042 FS

0052 SM

0032 UBS

0072 RFF

0103

0122

0142

0160

0170

0220

0252

0262

0272

0314

0336

0372

0003 ETX

0013 VT

0023 DC3

0047 ESC

0173 #

0116 +

0363 3

0136 ;

0303 C

0322 K

0342 S

0255 [

0203 c

0222 k

0242 s

0300 {

0043 WUS

0053 CSP

0063 IR

0073 CU3

0104

0123

0143

0161

0200

0152

0253

0263

0273

0315

0337

0373

0067 EOT

0014 FF

0074 DC4

0034 IFS

0133 $

0153 ,

0364 4

0114 <

0304 D

0323 L

0343 T

0340 \

0204 d

0223]

0243 t

0117 |

0044 BYP

0054 MFA

0064 PP

0004 SEL

0105

0124

0144

0162

0212

0233

0254

0264

0274

0316

0352

0374

0055 ENQ

0015 CR

0075 NAK

0035 IGS

0154 %

0140 -

0365 5

0176 =

0305 E

0324 M

0344 U

0275]

0205 e

0224 m

0244 u

0320 }

0025 NL

0011 SPS

0065 TRN

0024 RES

0106

0125

0145

0163

0213

0234

0112 ¢

0265

0241

0317

0353

0375

0056 ACK

0016 SO

0062 SYN

0036 IRS

0120 &

0113 .

0366 6

0156 >

0306 F

0325 N

0345 V

0232

0206 f

0225 n

0245 v

0137 ¬

0006 RNL

0012 RPT

0066 NBS

0076

0107

0126

0146

0164

0214

0235

0256

0266

0276

0332

0354

0376

0057 BEL

0017 SI

0046 ETB

0037 ITB

0175 '

0141 /

0367 7

0157 ?

0307 G

0326 O

0346 W

0155 _

0207 g

0226 o

0246 w

0007 DEL

0027 POC

0033 CU1

0010 GE

0341

0110

0127

0147

0165

0215

0236

0257

0267

0277

0333

0355

0377 EO

0000

0010

0020

0030

0040

0050

0060

0070

0100

0110

0120

0130

0140

0150

0160

0170

0200

0210

0220

0230

0240

0250

0260

0270

0300

0310

0320

0330

0340

0350

0360

0370

0 1 2 3 4 5 6 7

V
o
l. 3

: S
h
ell an

d
 U

tilities, Issu
e 7

C
o
p
y
rig

h
t ©

 2
0
0
1
-2

0
0
8
, IE

E
E

 an
d
 T

h
e O

p
en

 G
ro

u
p
. A

ll rig
h
ts reserv

ed
.

2
5
8
5

83260

83261

83262

d
d

U
tilities

T
a
b

le
 4

-8
A

S
C

II to
 IB

M
 E

B
C

D
IC

 C
o

n
v

ersio
n

0000 NUL

0026 BS

0020 DLE

0030 CAN

0100 Sp

0115 (

0360 0

0370 8

0174 @

0310 H

0327 P

0347 X

0171 `

0210 h

0227 p

0247 x

0040 DS

0050 SA

0060

0070 SBS

0101

0111

0130

0150

0166

0216

0237

0260

0270

0312

0334

0356

0001 SOH

0005 HT

0021 DC1

0031 EM

0132 !

0135)

0361 1

0371 9

0301 A

0311 I

0330 Q

0350 Y

0201 a

0211 i

0230 q

0250 y

0041 SOS

0051 SFE

0061

0071 IT

0102

0121

0131

0151

0167

0217

0240

0261

0271

0313

0335

0357

0002 STX

0045 LF

0022 DC2

0077 SUB

0177 "

0134 *

0362 2

0172 :

0302 B

0321 J

0331 R

0351 Z

0202 b

0221 j

0231 r

0251 z

0042 FS

0052 SM

0032 UBS

0072 RFF

0103

0122

0142

0160

0170

0220

0252

0262

0272

0314

0336

0372

0003 ETX

0013 VT

0023 DC3

0047 ESC

0173 #

0116 +

0363 3

0136 ;

0303 C

0322 K

0342 S

0255 [

0203 c

0222 k

0242 s

0300 {

0043 WUS

0053 CSP

0063 IR

0073 CU3

0104

0123

0143

0161

0200

0232

0253

0263

0273

0315

0337

0373

0067 EOT

0014 FF

0074 DC4

0034 IFS

0133 $

0153 ,

0364 4

0114 <

0304 D

0323 L

0343 T

0340 \

0204 d

0223]

0243 t

0117 |

0044 BYP

0054 MFA

0064 PP

0004 SEL

0105

0124

0144

0162

0212

0233

0254

0264

0274

0316

0352

0374

0055 ENQ

0015 CR

0075 NAK

0035 IGS

0154 %

0140 -

0365 5

0176 =

0305 E

0324 M

0344 U

0275]

0205 e

0224 m

0244 u

0320 }

0025 NL

0011 SPS

0065 TRN

0024 RES

0106

0125

0145

0163

0213

0234

0255 [

0265

0275]

0317

0353

0375

0056 ACK

0016 SO

0062 SYN

0036 IRS

0120 &

0113 .

0366 6

0156 >

0306 F

0325 N

0345 V

0137 ¬

0206 f

0225 n

0245 v

0241

0006 RNL

0012 RPT

0066 NBS

0076

0107

0126

0146

0164

0214

0235

0256

0266

0276

0332

0354

0376

0057 BEL

0017 SI

0046 ETB

0037 ITB

0175 '

0141 /

0367 7

0157 ?

0307 G

0326 O

0346 W

0155 _

0207 g

0226 o

0246 w

0007 DEL

0027 POC

0033 CU1

0010 GE

0341

0110

0127

0147

0165

0215

0236

0257

0267

0277

0333

0355

0377 EO

0000

0010

0020

0030

0040

0050

0060

0070

0100

0110

0120

0130

0140

0150

0160

0170

0200

0210

0220

0230

0240

0250

0260

0270

0300

0310

0320

0330

0340

0350

0360

0370

0 1 2 3 4 5 6 7

2
5
8
6

C
o
p
y
rig

h
t ©

 2
0
0
1
-2

0
0
8
, IE

E
E

 an
d
 T

h
e O

p
en

 G
ro

u
p
. A

ll rig
h
ts reserv

ed
.

V
o
l. 3

: S
h
ell an

d
 U

tilities, Issu
e 7

83263

Utilities dd

STDIN
If no if= operand is specified, the standard input shall be used. See the INPUT FILES section.

INPUT FILES
The input file can be any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of dd:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), the classification of characters as uppercase or
lowercase, and the mapping of characters from one case to the other.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
For SIGINT, the dd utility shall interrupt its current processing, write status information to
standard error, and exit as though terminated by SIGINT. It shall take the standard action for all
other signals; see the ASYNCHRONOUS EVENTS section in Section 1.4 (on page 2288).

STDOUT
If no of= operand is specified, the standard output shall be used. The nature of the output
depends on the operands selected.

STDERR
On completion, dd shall write the number of input and output blocks to standard error. In the
POSIX locale the following formats shall be used:

"%u+%u records in\n", <number of whole input blocks>,
<number of partial input blocks>

"%u+%u records out\n", <number of whole output blocks>,
<number of partial output blocks>

A partial input block is one for which read() returned less than the input block size. A partial
output block is one that was written with fewer bytes than specified by the output block size.

In addition, when there is at least one truncated block, the number of truncated blocks shall be
written to standard error. In the POSIX locale, the format shall be:

"%u truncated %s\n", <number of truncated blocks>, "record" (if
<number of truncated blocks> is one) "records" (otherwise)

Diagnostic messages may also be written to standard error.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2587

83264

83265

83266

83267

83268

83269

83270

83271

83272

83273

83274

83275

83276

83277

83278

83279

83280

83281

83282

83283

83284

83285

83286

83287

83288

83289

83290

83291

83292

83293

83294

83295

83296

83297

83298

83299

83300

83301

83302

83303

83304

dd Utilities

OUTPUT FILES
If the of= operand is used, the output shall be the same as described in the STDOUT section.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The input file was copied successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If an input error is detected and the noerror conversion has not been specified, any partial
output block shall be written to the output file, a diagnostic message shall be written, and the
copy operation shall be discontinued. If some other error is detected, a diagnostic message shall
be written and the copy operation shall be discontinued.

APPLICATION USAGE
The input and output block size can be specified to take advantage of raw physical I/O.

There are many different versions of the EBCDIC codesets. The ASCII and EBCDIC conversions
specified for the dd utility perform conversions for the version specified by the tables.

EXAMPLES
The following command:

dd if=/dev/rmt0h of=/dev/rmt1h

copies from tape drive 0 to tape drive 1, using a common historical device naming convention.

The following command:

dd ibs=10 skip=1

strips the first 10 bytes from standard input.

This example reads an EBCDIC tape blocked ten 80-byte EBCDIC card images per block into the
ASCII file x:

dd if=/dev/tape of=x ibs=800 cbs=80 conv=ascii,lcase

RATIONALE
The OPTIONS section is listed as ‘‘None’’ because there are no options recognized by historical
dd utilities. Certainly, many of the operands could have been designed to use the Utility Syntax
Guidelines, which would have resulted in the classic hyphenated option letters. In this version
of this volume of POSIX.1-2008, dd retains its curious JCL-like syntax due to the large number of
applications that depend on the historical implementation.

A suggested implementation technique for conv=noerror,sync is to zero (or <space>-fill, if
blocking or unblocking) the input buffer before each read and to write the contents of the input
buffer to the output even after an error. In this manner, any data transferred to the input buffer
before the error was detected is preserved. Another point is that a failed read on a regular file or
a disk generally does not increment the file offset, and dd must then seek past the block on which
the error occurred; otherwise, the input error occurs repetitively. When the input is a magnetic
tape, however, the tape normally has passed the block containing the error when the error is
reported, and thus no seek is necessary.

The default ibs= and obs= sizes are specified as 512 bytes because there are historical (largely
portable) scripts that assume these values. If they were left unspecified, unusual results could

2588 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

83305

83306

83307

83308

83309

83310

83311

83312

83313

83314

83315

83316

83317

83318

83319

83320

83321

83322

83323

83324

83325

83326

83327

83328

83329

83330

83331

83332

83333

83334

83335

83336

83337

83338

83339

83340

83341

83342

83343

83344

83345

83346

83347

Utilities dd

occur if an implementation chose an odd block size.

Historical implementations of dd used creat() when processing of=file. This makes the seek=
operand unusable except on special files. The conv=notrunc feature was added because more
recent BSD-based implementations use open() (without O_TRUNC) instead of creat(), but they
fail to delete output file contents after the data copied.

The w multiplier (historically meaning word), is used in System V to mean 2 and in 4.2 BSD to
mean 4. Since word is inherently non-portable, its use is not supported by this volume of
POSIX.1-2008.

Standard EBCDIC does not have the characters ’[’ and ’]’. The values used in the table are
taken from a common print train that does contain them. Other than those characters, the print
train values are not filled in, but appear to provide some of the motivation for the historical
choice of translations reflected here.

The Standard EBCDIC table provides a 1:1 translation for all 256 bytes.

The IBM EBCDIC table does not provide such a translation. The marked cells in the tables differ
in such a way that:

1. EBCDIC 0112 (’¢’) and 0152 (broken pipe) do not appear in the table.

2. EBCDIC 0137 (’¬’) translates to/from ASCII 0236 (’ˆ’). In the standard table, EBCDIC
0232 (no graphic) is used.

3. EBCDIC 0241 (’˜’) translates to/from ASCII 0176 (’˜’). In the standard table, EBCDIC
0137 (’¬’) is used.

4. 0255 (’[’) and 0275 (’]’) appear twice, once in the same place as for the standard table
and once in place of 0112 (’¢’) and 0241 (’˜’).

In net result:

EBCDIC 0275 (’]’) displaced EBCDIC 0241 (’˜’) in cell 0345.

That displaced EBCDIC 0137 (’¬’) in cell 0176.

That displaced EBCDIC 0232 (no graphic) in cell 0136.

That replaced EBCDIC 0152 (broken pipe) in cell 0313.

EBCDIC 0255 (’[’) replaced EBCDIC 0112 (’¢’).

This translation, however, reflects historical practice that (ASCII) ’˜’ and ’¬’ were often
mapped to each other, as were ’[’ and ’¢’; and ’]’ and (EBCDIC) ’˜’.

The cbs operand is required if any of the ascii, ebcdic, or ibm operands are specified. For the
ascii operand, the input is handled as described for the unblock operand except that characters
are converted to ASCII before the trailing <space> characters are deleted. For the ebcdic and
ibm operands, the input is handled as described for the block operand except that the characters
are converted to EBCDIC or IBM EBCDIC after the trailing <space> characters are added.

The block and unblock keywords are from historical BSD practice.

The consistent use of the word record in standard error messages matches most historical
practice. An earlier version of System V used block, but this has been updated in more recent
releases.

Early proposals only allowed two numbers separated by x to be used in a product when
specifying bs=, cbs=, ibs=, and obs= sizes. This was changed to reflect the historical practice of

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2589

83348

83349

83350

83351

83352

83353

83354

83355

83356

83357

83358

83359

83360

83361

83362

83363

83364

83365

83366

83367

83368

83369

83370

83371

83372

83373

83374

83375

83376

83377

83378

83379

83380

83381

83382

83383

83384

83385

83386

83387

83388

dd Utilities

allowing multiple numbers in the product as provided by Version 7 and all releases of System V
and BSD.

A change to the swab conversion is required to match historical practice and is the result of IEEE
PASC Interpretations 1003.2 #03 and #04, submitted for the ISO POSIX-2: 1993 standard.

A change to the handling of SIGINT is required to match historical practice and is the result of
IEEE PASC Interpretation 1003.2 #06 submitted for the ISO POSIX-2: 1993 standard.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 1.4 (on page 2288), sed , tr

XBD Chapter 8 (on page 173)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The second paragraph of the cbs= description is reworded and marked EX.

The FUTURE DIRECTIONS section is added.

Issue 6
Changes are made to swab conversion and SIGINT handling to align with the IEEE P1003.2b
draft standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

IEEE PASC Interpretation 1003.2 #209 is applied, clarifying the interaction between dd of=file and
conv=notrunc.

Issue 7
Austin Group Interpretation 1003.1-2001 #102 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2590 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

83389

83390

83391

83392

83393

83394

83395

83396

83397

83398

83399

83400

83401

83402

83403

83404

83405

83406

83407

83408

83409

83410

83411

83412

83413

Utilities delta

NAME
delta — make a delta (change) to an SCCS file (DEVELOPMENT)

SYNOPSIS
XSI delta [−nps] [−g list] [−m mrlist] [−r SID] [−y[comment]] file...

DESCRIPTION
The delta utility shall be used to permanently introduce into the named SCCS files changes that
were made to the files retrieved by get (called the g-files, or generated files).

OPTIONS
The delta utility shall conform to XBD Section 12.2 (on page 215), except that the −y option has an
optional option-argument. This optional option-argument shall not be presented as a separate
argument.

The following options shall be supported:

−r SID Uniquely identify which delta is to be made to the SCCS file. The use of this option
shall be necessary only if two or more outstanding get commands for editing (get
−e) on the same SCCS file were done by the same person (login name). The SID
value specified with the −r option can be either the SID specified on the get
command line or the SID to be made as reported by the get utility; see get (on page
2764).

−s Suppress the report to standard output of the activity associated with each file. See
the STDOUT section.

−n Specify retention of the edited g-file (normally removed at completion of delta
processing).

−g list Specify a list (see get for the definition of list) of deltas that shall be ignored when
the file is accessed at the change level (SID) created by this delta.

−m mrlist Specify a modification request (MR) number that the application shall supply as
the reason for creating the new delta. This shall be used if the SCCS file has the v
flag set; see admin .

If −m is not used and ’−’ is not specified as a file argument, and the standard
input is a terminal, the prompt described in the STDOUT section shall be written
to standard output before the standard input is read; if the standard input is not a
terminal, no prompt shall be issued.

MRs in a list shall be separated by <blank> characters or escaped <newline>
characters. An unescaped <newline> shall terminate the MR list. The escape
character is <backslash>.

If the v flag has a value, it shall be taken to be the name of a program which
validates the correctness of the MR numbers. If a non-zero exit status is returned
from the MR number validation program, the delta utility shall terminate. (It is
assumed that the MR numbers were not all valid.)

−y[comment] Describe the reason for making the delta. The comment shall be an arbitrary group
of lines that would meet the definition of a text file. Implementations shall support
comments from zero to 512 bytes and may support longer values. A null string
(specified as either −y, −y"", or in response to a prompt for a comment) shall be
considered a valid comment.

If −y is not specified and ’−’ is not specified as a file argument, and the standard

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2591

83414

83415

83416

83417

83418

83419

83420

83421

83422

83423

83424

83425

83426

83427

83428

83429

83430

83431

83432

83433

83434

83435

83436

83437

83438

83439

83440

83441

83442

83443

83444

83445

83446

83447

83448

83449

83450

83451

83452

83453

83454

83455

83456

83457

delta Utilities

input is a terminal, the prompt described in the STDOUT section shall be written
to standard output before the standard input is read; if the standard input is not a
terminal, no prompt shall be issued. An unescaped <newline> shall terminate the
comment text. The escape character is <backslash>.

The −y option shall be required if the file operand is specified as ’−’.

−p Write (to standard output) the SCCS file differences before and after the delta is
applied in diff format; see diff .

OPERANDS
The following operand shall be supported:

file A pathname of an existing SCCS file or a directory. If file is a directory, the delta
utility shall behave as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the pathname does not begin
with s.) and unreadable files shall be silently ignored.

If exactly one file operand appears, and it is ’−’, the standard input shall be read;
each line of the standard input shall be taken to be the name of an SCCS file to be
processed. Non-SCCS files and unreadable files shall be silently ignored.

STDIN
The standard input shall be a text file used only in the following cases:

• To read an mrlist or a comment (see the −m and −y options).

• A file operand shall be specified as ’−’. In this case, the −y option must be used to specify
the comment, and if the SCCS file has the v flag set, the −m option must also be used to
specify the MR list.

INPUT FILES
Input files shall be text files whose data is to be included in the SCCS files. If the first character of
any line of an input file is <SOH> in the POSIX locale, the results are unspecified. If this file
contains more than 99 999 lines, the number of lines recorded in the header for this file shall be
99 999 for this delta.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of delta:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error, and informative messages written
to standard output.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

2592 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

83458

83459

83460

83461

83462

83463

83464

83465

83466

83467

83468

83469

83470

83471

83472

83473

83474

83475

83476

83477

83478

83479

83480

83481

83482

83483

83484

83485

83486

83487

83488

83489

83490

83491

83492

83493

83494

83495

83496

83497

83498

83499

Utilities delta

TZ Determine the timezone in which the time and date are written in the SCCS file. If
the TZ variable is unset or NULL, an unspecified system default timezone is used.

ASYNCHRONOUS EVENTS
If SIGINT is caught, temporary files shall be cleaned up and delta shall exit with a non-zero exit
code. The standard action shall be taken for all other signals; see Section 1.4 (on page 2288).

STDOUT
The standard output shall be used only for the following messages in the POSIX locale:

• Prompts (see the −m and −y options) in the following formats:

"MRs? "

"comments? "

The MR prompt, if written, shall always precede the comments prompt.

• A report of each file’s activities (unless the −s option is specified) in the following format:

"%s\n%d inserted\n%d deleted\n%d unchanged\n", <New SID>,
<number of lines inserted>, <number of lines deleted>,
<number of lines unchanged>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
Any SCCS files updated shall be files of an unspecified format.

EXTENDED DESCRIPTION

System Date and Time

When a delta is added to an SCCS file, the system date and time shall be recorded for the new
delta. If a get is performed using an SCCS file with a date recorded apparently in the future, the
behavior is unspecified.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Problems can arise if the system date and time have been modified (for example, put forward
and then back again, or unsynchronized clocks across a network) and can also arise when
different values of the TZ environment variable are used.

Problems of a similar nature can also arise for the operation of the get utility, which records the
date and time in the file body.

EXAMPLES
None.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2593

83500

83501

83502

83503

83504

83505

83506

83507

83508

83509

83510

83511

83512

83513

83514

83515

83516

83517

83518

83519

83520

83521

83522

83523

83524

83525

83526

83527

83528

83529

83530

83531

83532

83533

83534

83535

83536

83537

delta Utilities

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 1.4 (on page 2288), admin , diff , get , prs , rmdel

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The output format description in the STDOUT section is corrected.

Issue 6
The APPLICATION USAGE section is added.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

The Open Group Base Resolution bwg2001-007 is applied as follows:

• The use of ’−’ as a file argument is clarified.

• The use of STDIN is added.

• The ASYNCHRONOUS EVENTS section is updated to remove the implicit requirement
that implementations re-signal themselves when catching a normally fatal signal.

• New text is added to the INPUT FILES section warning that the maximum lines recorded
in the file is 99 999.

New text is added to the EXTENDED DESCRIPTION and APPLICATION USAGE sections
regarding how the system date and time may be taken into account, and the TZ environment
variable is added to the ENVIRONMENT VARIABLES section as per The Open Group Base
Resolution bwg2001-007.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2594 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

83538

83539

83540

83541

83542

83543

83544

83545

83546

83547

83548

83549

83550

83551

83552

83553

83554

83555

83556

83557

83558

83559

83560

83561

83562

83563

83564

Utilities df

NAME
df — report free disk space

SYNOPSIS
XSI df [−k] [−P|−t] [file...]

DESCRIPTION
XSI The df utility shall write the amount of available space and file slots for file systems on which

the invoking user has appropriate read access. File systems shall be specified by the file
operands; when none are specified, information shall be written for all file systems. The format
of the default output from df is unspecified, but all space figures are reported in 512-byte units,
unless the −k option is specified. This output shall contain at least the file system names, amount

XSI of available space on each of these file systems, and the number of free file slots, or inodes,
available; when −t is specified, the output shall contain the total allocated space as well.

OPTIONS
The df utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−k Use 1 024-byte units, instead of the default 512-byte units, when writing space
figures.

−P Produce output in the format described in the STDOUT section.

XSI −t Include total allocated-space figures in the output.

OPERANDS
The following operand shall be supported:

file A pathname of a file within the hierarchy of the desired file system. If a file other
XSI than a FIFO, a regular file, a directory, or a special file representing the device

containing the file system (for example, /dev/dsk/0s1) is specified, the results are
unspecified. If the file operand names a file other than a special file containing a file
system, df shall write the amount of free space in the file system containing the

XSI specified file operand. Otherwise, df shall write the amount of free space in that
file system.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of df:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2595

83565

83566

83567

83568

83569

83570

83571

83572

83573

83574

83575

83576

83577

83578

83579

83580

83581

83582

83583

83584

83585

83586

83587

83588

83589

83590

83591

83592

83593

83594

83595

83596

83597

83598

83599

83600

83601

83602

83603

83604

83605

83606

df Utilities

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When both the −k and −P options are specified, the following header line shall be written (in the
POSIX locale):

"Filesystem 1024-blocks Used Available Capacity Mounted on\n"

When the −P option is specified without the −k option, the following header line shall be written
(in the POSIX locale):

"Filesystem 512-blocks Used Available Capacity Mounted on\n"

The implementation may adjust the spacing of the header line and the individual data lines so
that the information is presented in orderly columns.

The remaining output with −P shall consist of one line of information for each specified file
system. These lines shall be formatted as follows:

"%s %d %d %d %d%% %s\n", <file system name>, <total space>,
<space used>, <space free>, <percentage used>,
<file system root>

In the following list, all quantities expressed in 512-byte units (1 024-byte when −k is specified)
shall be rounded up to the next higher unit. The fields are:

<file system name>
The name of the file system, in an implementation-defined format.

<total space> The total size of the file system in 512-byte units. The exact meaning of this figure
is implementation-defined, but should include <space used>, <space free>, plus any
space reserved by the system not normally available to a user.

<space used> The total amount of space allocated to existing files in the file system, in 512-byte
units.

<space free> The total amount of space available within the file system for the creation of new
files by unprivileged users, in 512-byte units. When this figure is less than or equal
to zero, it shall not be possible to create any new files on the file system without
first deleting others, unless the process has appropriate privileges. The figure
written may be less than zero.

<percentage used>
The percentage of the normally available space that is currently allocated to all files
on the file system. This shall be calculated using the fraction:

<space used>/(<space used>+ <space free>)

expressed as a percentage. This percentage may be greater than 100 if <space free>
is less than zero. The percentage value shall be expressed as a positive integer, with
any fractional result causing it to be rounded to the next highest integer.

2596 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

83607

83608

83609

83610

83611

83612

83613

83614

83615

83616

83617

83618

83619

83620

83621

83622

83623

83624

83625

83626

83627

83628

83629

83630

83631

83632

83633

83634

83635

83636

83637

83638

83639

83640

83641

83642

83643

83644

83645

83646

83647

83648

Utilities df

<file system root>
The directory below which the file system hierarchy appears.

XSI The output format is unspecified when −t is used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
On most systems, the ‘‘name of the file system, in an implementation-defined format’’ is the
special file on which the file system is mounted.

On large file systems, the calculation specified for percentage used can create huge rounding
errors.

EXAMPLES

1. The following example writes portable information about the /usr file system:

df −P /usr

2. Assuming that /usr/src is part of the /usr file system, the following produces the same
output as the previous example:

df −P /usr/src

RATIONALE
The behavior of df with the −P option is the default action of the 4.2 BSD df utility. The uppercase
−P was selected to avoid collision with a known industry extension using −p.

Historical df implementations vary considerably in their default output. It was therefore
necessary to describe the default output in a loose manner to accommodate all known historical
implementations and to add a portable option (−P) to provide information in a portable format.

The use of 512-byte units is historical practice and maintains compatibility with ls and other
utilities in this volume of POSIX.1-2008. This does not mandate that the file system itself be
based on 512-byte blocks. The −k option was added as a compromise measure. It was agreed by
the standard developers that 512 bytes was the best default unit because of its complete
historical consistency on System V (versus the mixed 512/1 024-byte usage on BSD systems), and
that a −k option to switch to 1 024-byte units was a good compromise. Users who prefer the
more logical 1 024-byte quantity can easily alias df to df −k without breaking many historical
scripts relying on the 512-byte units.

It was suggested that df and the various related utilities be modified to access a BLOCKSIZE
environment variable to achieve consistency and user acceptance. Since this is not historical

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2597

83649

83650

83651

83652

83653

83654

83655

83656

83657

83658

83659

83660

83661

83662

83663

83664

83665

83666

83667

83668

83669

83670

83671

83672

83673

83674

83675

83676

83677

83678

83679

83680

83681

83682

83683

83684

83685

83686

83687

83688

83689

83690

df Utilities

practice on any system, it is left as a possible area for system extensions and will be re-evaluated
in a future version if it is widely implemented.

FUTURE DIRECTIONS
None.

SEE ALSO
find

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

Issue 7
Austin Group Interpretation 1003.1-2001 #099 is applied.

The df utility is removed from the User Portability Utilities option. User Portability Utilities is
now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2598 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

83691

83692

83693

83694

83695

83696

83697

83698

83699

83700

83701

83702

83703

83704

83705

83706

Utilities diff

NAME
diff — compare two files

SYNOPSIS
diff [−c|−e|−f|−u|−C n|−U n] [−br] file1 file2

DESCRIPTION
The diff utility shall compare the contents of file1 and file2 and write to standard output a list of
changes necessary to convert file1 into file2. This list should be minimal. No output shall be
produced if the files are identical.

OPTIONS
The diff utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−b Cause any amount of white space at the end of a line to be treated as a single
<newline> (that is, the white-space characters preceding the <newline> are
ignored) and other strings of white-space characters, not including <newline>
characters, to compare equal.

−c Produce output in a form that provides three lines of copied context.

−C n Produce output in a form that provides n lines of copied context (where n shall be
interpreted as a positive decimal integer).

−e Produce output in a form suitable as input for the ed utility, which can then be used
to convert file1 into file2.

−f Produce output in an alternative form, similar in format to −e, but not intended to
be suitable as input for the ed utility, and in the opposite order.

−r Apply diff recursively to files and directories of the same name when file1 and file2
are both directories.

The diff utility shall detect infinite loops; that is, entering a previously visited
directory that is an ancestor of the last file encountered. When it detects an infinite
loop, diff shall write a diagnostic message to standard error and shall either recover
its position in the hierarchy or terminate.

−u Produce output in a form that provides three lines of unified context.

−U n Produce output in a form that provides n lines of unified context (where n shall be
interpreted as a non-negative decimal integer).

OPERANDS
The following operands shall be supported:

file1, file2 A pathname of a file to be compared. If either the file1 or file2 operand is ’−’, the
standard input shall be used in its place.

If both file1 and file2 are directories, diff shall not compare block special files, character special
files, or FIFO special files to any files and shall not compare regular files to directories. Further
details are as specified in Diff Directory Comparison Format (on page 2600). The behavior of diff
on other file types is implementation-defined when found in directories.

If only one of file1 and file2 is a directory, diff shall be applied to the non-directory file and the file
contained in the directory file with a filename that is the same as the last component of the non-
directory file.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2599

83707

83708

83709

83710

83711

83712

83713

83714

83715

83716

83717

83718

83719

83720

83721

83722

83723

83724

83725

83726

83727

83728

83729

83730

83731

83732

83733

83734

83735

83736

83737

83738

83739

83740

83741

83742

83743

83744

83745

83746

83747

83748

diff Utilities

STDIN
The standard input shall be used only if one of the file1 or file2 operands references standard
input. See the INPUT FILES section.

INPUT FILES
The input files may be of any type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of diff:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

LC_TIME Determine the locale for affecting the format of file timestamps written with the −C
and −c options.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TZ Determine the timezone used for calculating file timestamps written with a context
format. If TZ is unset or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT

Diff Directory Comparison Format

If both file1 and file2 are directories, the following output formats shall be used.

In the POSIX locale, each file that is present in only one directory shall be reported using the
following format:

"Only in %s: %s\n", <directory pathname>, <filename>

In the POSIX locale, subdirectories that are common to the two directories may be reported with
the following format:

"Common subdirectories: %s and %s\n", <directory1 pathname>,
<directory2 pathname>

For each file common to the two directories, if the two files are not to be compared: if the two
files have the same device ID and file serial number, or are both block special files that refer to
the same device, or are both character special files that refer to the same device, in the POSIX
locale the output format is unspecified. Otherwise, in the POSIX locale an unspecified format
shall be used that contains the pathnames of the two files.

For each file common to the two directories, if the files are compared and are identical, no

2600 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

83749

83750

83751

83752

83753

83754

83755

83756

83757

83758

83759

83760

83761

83762

83763

83764

83765

83766

83767

83768

83769

83770

83771

83772

83773

83774

83775

83776

83777

83778

83779

83780

83781

83782

83783

83784

83785

83786

83787

83788

83789

83790

Utilities diff

output shall be written. If the two files differ, the following format is written:

"diff %s %s %s\n", <diff_options>, <filename1>, <filename2>

where <diff_options> are the options as specified on the command line.

All directory pathnames listed in this section shall be relative to the original command line
arguments. All other names of files listed in this section shall be filenames (pathname
components).

Diff Binary Output Format

In the POSIX locale, if one or both of the files being compared are not text files, it is
implementation-defined whether diff uses the binary file output format or the other formats as
specified below. The binary file output format shall contain the pathnames of two files being
compared and the string "differ".

If both files being compared are text files, depending on the options specified, one of the
following formats shall be used to write the differences.

Diff Default Output Format

The default (without −e, −f, −c, −C, −u, or −U options) diff utility output shall contain lines of
these forms:

"%da%d\n", <num1>, <num2>

"%da%d,%d\n", <num1>, <num2>, <num3>

"%dd%d\n", <num1>, <num2>

"%d,%dd%d\n", <num1>, <num2>, <num3>

"%dc%d\n", <num1>, <num2>

"%d,%dc%d\n", <num1>, <num2>, <num3>

"%dc%d,%d\n", <num1>, <num2>, <num3>

"%d,%dc%d,%d\n", <num1>, <num2>, <num3>, <num4>

These lines resemble ed subcommands to convert file1 into file2. The line numbers before the
action letters shall pertain to file1; those after shall pertain to file2. Thus, by exchanging a for d
and reading the line in reverse order, one can also determine how to convert file2 into file1. As in
ed, identical pairs (where num1= num2) are abbreviated as a single number.

Following each of these lines, diff shall write to standard output all lines affected in the first file
using the format:

"<∆%s", <line>

and all lines affected in the second file using the format:

">∆%s", <line>

If there are lines affected in both file1 and file2 (as with the c subcommand), the changes are
separated with a line consisting of three <hyphen> characters:

"− − −\n"

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2601

83791

83792

83793

83794

83795

83796

83797

83798

83799

83800

83801

83802

83803

83804

83805

83806

83807

83808

83809

83810

83811

83812

83813

83814

83815

83816

83817

83818

83819

83820

83821

83822

83823

83824

83825

83826

diff Utilities

Diff −e Output Format

With the −e option, a script shall be produced that shall, when provided as input to ed, along
with an appended w (write) command, convert file1 into file2. Only the a (append), c (change), d
(delete), i (insert), and s (substitute) commands of ed shall be used in this script. Text lines,
except those consisting of the single character <period> (’.’), shall be output as they appear in
the file.

Diff −f Output Format

With the −f option, an alternative format of script shall be produced. It is similar to that
produced by −e, with the following differences:

1. It is expressed in reverse sequence; the output of −e orders changes from the end of the
file to the beginning; the −f from beginning to end.

2. The command form <lines> <command-letter> used by −e is reversed. For example,
10c with −e would be c10 with −f.

3. The form used for ranges of line numbers is <space>-separated, rather than
<comma>-separated.

Diff −c or −C Output Format

With the −c or −C option, the output format shall consist of affected lines along with
surrounding lines of context. The affected lines shall show which ones need to be deleted or
changed in file1, and those added from file2. With the −c option, three lines of context, if
available, shall be written before and after the affected lines. With the −C option, the user can
specify how many lines of context are written. The exact format follows.

The name and last modification time of each file shall be output in the following format:

"*** %s %s\n", file1, <file1 timestamp>
"− − − %s %s\n", file2, <file2 timestamp>

Each <file> field shall be the pathname of the corresponding file being compared. The pathname
written for standard input is unspecified.

In the POSIX locale, each <timestamp> field shall be equivalent to the output from the following
command:

date "+%a %b %e %T %Y"

without the trailing <newline>, executed at the time of last modification of the corresponding
file (or the current time, if the file is standard input).

Then, the following output formats shall be applied for every set of changes.

First, a line shall be written in the following format:

"***************\n"

Next, the range of lines in file1 shall be written in the following format if the range contains two
or more lines:

"*** %d,%d ****\n", <beginning line number>, <ending line number>

and the following format otherwise:

"*** %d ****\n", <ending line number>

The ending line number of an empty range shall be the number of the preceding line, or 0 if the

2602 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

83827

83828

83829

83830

83831

83832

83833

83834

83835

83836

83837

83838

83839

83840

83841

83842

83843

83844

83845

83846

83847

83848

83849

83850

83851

83852

83853

83854

83855

83856

83857

83858

83859

83860

83861

83862

83863

83864

83865

83866

Utilities diff

range is at the start of the file.

Next, the affected lines along with lines of context (unaffected lines) shall be written. Unaffected
lines shall be written in the following format:

"∆∆%s", <unaffected_line>

Deleted lines shall be written as:

"−∆%s", <deleted_line>

Changed lines shall be written as:

"!∆%s", <changed_line>

Next, the range of lines in file2 shall be written in the following format if the range contains two
or more lines:

"− − − %d,%d − − − −\n", <beginning line number>, <ending line number>

and the following format otherwise:

"− − − %d − − − −\n", <ending line number>

Then, lines of context and changed lines shall be written as described in the previous formats.
Lines added from file2 shall be written in the following format:

"+∆%s", <added_line>

Diff −u or −U Output Format

The −u or −U options behave like the −c or −C options, except that the context lines are not
repeated; instead, the context, deleted, and added lines are shown together, interleaved. The
exact format follows.

The name and last modification time of each file shall be output in the following format:

"---∆%s%s%s∆%s0, file1, <file1 timestamp>, <file1 frac>, <file1 zone>
"+++∆%s%s%s∆%s0, file2, <file2 timestamp>, <file2 frac>, <file2 zone>

Each <file> field shall be the pathname of the corresponding file being compared, or the single
character ’−’ if standard input is being compared. However, if the pathname contains a <tab>
or a <newline>, or if it does not consist entirely of characters taken from the portable character
set, the behavior is implementation-defined.

Each <timestamp> field shall be equivalent to the output from the following command:

date ’+%Y-%m-%d∆%H:%M:%S’

without the trailing <newline>, executed at the time of last modification of the corresponding
file (or the current time, if the file is standard input).

Each <frac> field shall be either empty, or a decimal point followed by at least one decimal digit,
indicating the fractional-seconds part (if any) of the file timestamp. The number of fractional
digits shall be at least the number needed to represent the file’s timestamp without loss of
information.

Each <zone> field shall be of the form "shhmm", where "shh" is a signed two-digit decimal
number in the range −24 through +25, and "mm" is an unsigned two-digit decimal number in the
range 00 through 59. It represents the timezone of the timestamp as the number of hours (hh)
and minutes (mm) east (+) or west (−) of UTC for the timestamp. If the hours and minutes are
both zero, the sign shall be ’+’. However, if the timezone is not an integral number of minutes

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2603

83867

83868

83869

83870

83871

83872

83873

83874

83875

83876

83877

83878

83879

83880

83881

83882

83883

83884

83885

83886

83887

83888

83889

83890

83891

83892

83893

83894

83895

83896

83897

83898

83899

83900

83901

83902

83903

83904

83905

83906

diff Utilities

away from UTC, the <zone> field is implementation-defined.

Then, the following output formats shall be applied for every set of changes.

First, the range of lines in each file shall be written in the following format:

"@@∆-%s∆+%s∆@@", <file1 range>, <file2 range>

Each <range> field shall be of the form:

"%1d", <beginning line number>

if the range contains exactly one line, and:

"%1d,%1d", <beginning line number>, <number of lines>

otherwise. If a range is empty, its beginning line number shall be the number of the line just
before the range, or 0 if the empty range starts the file.

Next, the affected lines along with lines of context shall be written. Each non-empty unaffected
line shall be written in the following format:

"∆%s", <unaffected_line>

where the contents of the unaffected line shall be taken from file1. It is implementation-defined
whether an empty unaffected line is written as an empty line or a line containing a single
<space> character. This line also represents the same line of file2, even though file2’s line may
contain different contents due to the −b. Deleted lines shall be written as:

"-%s", <deleted_line>

Added lines shall be written as:

"+%s", <added_line>

The order of lines written shall be the same as that of the corresponding file. A deleted line shall
never be written immediately after an added line.

If −U n is specified, the output shall contain no more than n consecutive unaffected lines; and if
the output contains an affected line and this line is adjacent to up to n consecutive unaffected
lines in the corresponding file, the output shall contain these unaffected lines. −u shall act like
−U3.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 No differences were found.

1 Differences were found.

>1 An error occurred.

2604 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

83907

83908

83909

83910

83911

83912

83913

83914

83915

83916

83917

83918

83919

83920

83921

83922

83923

83924

83925

83926

83927

83928

83929

83930

83931

83932

83933

83934

83935

83936

83937

83938

83939

83940

83941

83942

83943

Utilities diff

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
If lines at the end of a file are changed and other lines are added, diff output may show this as a
delete and add, as a change, or as a change and add; diff is not expected to know which
happened and users should not care about the difference in output as long as it clearly shows
the differences between the files.

EXAMPLES
If dir1 is a directory containing a directory named x, dir2 is a directory containing a directory
named x, dir1/x and dir2/x both contain files named date.out, and dir2/x contains a file named y,
the command:

diff −r dir1 dir2

could produce output similar to:

Common subdirectories: dir1/x and dir2/x
Only in dir2/x: y
diff −r dir1/x/date.out dir2/x/date.out
1c1
< Mon Jul 2 13:12:16 PDT 1990
− − −
> Tue Jun 19 21:41:39 PDT 1990

RATIONALE
The −h option was omitted because it was insufficiently specified and does not add to
applications portability.

Historical implementations employ algorithms that do not always produce a minimum list of
differences; the current language about making every effort is the best this volume of
POSIX.1-2008 can do, as there is no metric that could be employed to judge the quality of
implementations against any and all file contents. The statement ‘‘This list should be minimal’’
clearly implies that implementations are not expected to provide the following output when
comparing two 100-line files that differ in only one character on a single line:

1,100c1,100
all 100 lines from file1 preceded with "< "
− − −
all 100 lines from file2 preceded with "> "

The ‘‘Only in’’ messages required when the −r option is specified are not used by most historical
implementations if the −e option is also specified. It is required here because it provides useful
information that must be provided to update a target directory hierarchy to match a source
hierarchy. The ‘‘Common subdirectories’’ messages are written by System V and 4.3 BSD when
the −r option is specified. They are allowed here but are not required because they are reporting
on something that is the same, not reporting a difference, and are not needed to update a target
hierarchy.

The −c option, which writes output in a format using lines of context, has been included. The
format is useful for a variety of reasons, among them being much improved readability and the
ability to understand difference changes when the target file has line numbers that differ from
another similar, but slightly different, copy. The patch utility is most valuable when working
with difference listings using a context format. The BSD version of −c takes an optional
argument specifying the amount of context. Rather than overloading −c and breaking the Utility
Syntax Guidelines for diff, the standard developers decided to add a separate option for

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2605

83944

83945

83946

83947

83948

83949

83950

83951

83952

83953

83954

83955

83956

83957

83958

83959

83960

83961

83962

83963

83964

83965

83966

83967

83968

83969

83970

83971

83972

83973

83974

83975

83976

83977

83978

83979

83980

83981

83982

83983

83984

83985

83986

83987

83988

83989

83990

diff Utilities

specifying a context diff with a specified amount of context (−C). Also, the format for context
diffs was extended slightly in 4.3 BSD to allow multiple changes that are within context lines
from each other to be merged together. The output format contains an additional four <asterisk>
characters after the range of affected lines in the first filename. This was to provide a flag for old
programs (like old versions of patch) that only understand the old context format. The version of
context described here does not require that multiple changes within context lines be merged,
but it does not prohibit it either. The extension is upwards-compatible, so any vendors that wish
to retain the old version of diff can do so by adding the extra four <asterisk> characters (that is,
utilities that currently use diff and understand the new merged format will also understand the
old unmerged format, but not vice versa).

The −u and −U options of GNU diff have been included. Their output format, designed by
Wayne Davison, takes up less space than −c and −C format, and in many cases is easier to read.
The format’s timestamps do not vary by locale, so LC_TIME does not affect it. The format’s line
numbers are rendered with the %1d format, not %d, because the file format notation rules would
allow extra <blank> characters to appear around the numbers.

The substitute command was added as an additional format for the −e option. This was added
to provide implementations with a way to fix the classic ‘‘dot alone on a line’’ bug present in
many versions of diff. Since many implementations have fixed this bug, the standard developers
decided not to standardize broken behavior, but rather to provide the necessary tool for fixing
the bug. One way to fix this bug is to output two periods whenever a lone period is needed, then
terminate the append command with a period, and then use the substitute command to convert
the two periods into one period.

The BSD-derived −r option was added to provide a mechanism for using diff to compare two file
system trees. This behavior is useful, is standard practice on all BSD-derived systems, and is not
easily reproducible with the find utility.

The requirement that diff not compare files in some circumstances, even though they have the
same name, is based on the actual output of historical implementations. The specified behavior
precludes the problems arising from running into FIFOs and other files that would cause diff to
hang waiting for input with no indication to the user that diff was hung. An earlier version of
this standard specified the output format more precisely, but in practice this requirement was
widely ignored and the benefit of standardization seemed small, so it is now unspecified. In
most common usage, diff −r should indicate differences in the file hierarchies, not the difference
of contents of devices pointed to by the hierarchies.

Many early implementations of diff require seekable files. Since the System Interfaces volume of
POSIX.1-2008 supports named pipes, the standard developers decided that such a restriction
was unreasonable. Note also that the allowed filename − almost always refers to a pipe.

No directory search order is specified for diff. The historical ordering is, in fact, not optimal, in
that it prints out all of the differences at the current level, including the statements about all
common subdirectories before recursing into those subdirectories.

The message:

"diff %s %s %s\n", <diff_options>, <filename1>, <filename2>

does not vary by locale because it is the representation of a command, not an English sentence.

FUTURE DIRECTIONS
None.

2606 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

83991

83992

83993

83994

83995

83996

83997

83998

83999

84000

84001

84002

84003

84004

84005

84006

84007

84008

84009

84010

84011

84012

84013

84014

84015

84016

84017

84018

84019

84020

84021

84022

84023

84024

84025

84026

84027

84028

84029

84030

84031

84032

84033

84034

Utilities diff

SEE ALSO
cmp , comm , ed , find

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The −f option is added.

The output format for −c or −C format is changed to align with changes to the IEEE P1003.2b
draft standard resulting from IEEE PASC Interpretation 1003.2 #71.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/20 is applied, changing the STDOUT
section. This changes the specification of diff −c so that it agrees with existing practice when
contexts contain zero lines or one line.

Issue 7
Austin Group Interpretations 1003.1-2001 #115 and #114 are applied.

Austin Group Interpretation 1003.1-2001 #192 is applied, clarifying the behavior if both files are
non-text files.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-103 and SD5-XCU-ERN-120 are applied, adding the −u option.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2607

84035

84036

84037

84038

84039

84040

84041

84042

84043

84044

84045

84046

84047

84048

84049

84050

84051

84052

84053

84054

84055

84056

84057

dirname Utilities

NAME
dirname — return the directory portion of a pathname

SYNOPSIS
dirname string

DESCRIPTION
The string operand shall be treated as a pathname, as defined in XBD Section 3.266 (on page 75).
The string string shall be converted to the name of the directory containing the filename
corresponding to the last pathname component in string, performing actions equivalent to the
following steps in order:

1. If string is //, skip steps 2 to 5.

2. If string consists entirely of <slash> characters, string shall be set to a single <slash>
character. In this case, skip steps 3 to 8.

3. If there are any trailing <slash> characters in string, they shall be removed.

4. If there are no <slash> characters remaining in string, string shall be set to a single
<period> character. In this case, skip steps 5 to 8.

5. If there are any trailing non-<slash> characters in string, they shall be removed.

6. If the remaining string is //, it is implementation-defined whether steps 7 and 8 are
skipped or processed.

7. If there are any trailing <slash> characters in string, they shall be removed.

8. If the remaining string is empty, string shall be set to a single <slash> character.

The resulting string shall be written to standard output.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

string A string.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of dirname:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

2608 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

84058

84059

84060

84061

84062

84063

84064

84065

84066

84067

84068

84069

84070

84071

84072

84073

84074

84075

84076

84077

84078

84079

84080

84081

84082

84083

84084

84085

84086

84087

84088

84089

84090

84091

84092

84093

84094

84095

84096

84097

Utilities dirname

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The dirname utility shall write a line to the standard output in the following format:

"%s\n", <resulting string>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The definition of pathname specifies implementation-defined behavior for pathnames starting
with two <slash> characters. Therefore, applications shall not arbitrarily add <slash> characters
to the beginning of a pathname unless they can ensure that there are more or less than two or are
prepared to deal with the implementation-defined consequences.

EXAMPLES

Command Results

dirname / /
dirname // / or //
dirname /a/b/ /a
dirname //a//b// //a
dirname Unspecified
dirname a . ($? = 0)
dirname "" . ($? = 0)
dirname /a /
dirname /a/b /a
dirname a/b a

RATIONALE
The dirname utility originated in System III. It has evolved through the System V releases to a
version that matches the requirements specified in this description in System V Release 3. 4.3
BSD and earlier versions did not include dirname.

The behaviors of basename and dirname in this volume of POSIX.1-2008 have been coordinated so

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2609

84098

84099

84100

84101

84102

84103

84104

84105

84106

84107

84108

84109

84110

84111

84112

84113

84114

84115

84116

84117

84118

84119

84120

84121

84122

84123

84124

84125

84126

84127

84128

84129

84130

84131

84132

84133

84134

84135

84136

84137

84138

84139

84140

dirname Utilities

that when string is a valid pathname:

$(basename "string")

would be a valid filename for the file in the directory:

$(dirname "string")

This would not work for the versions of these utilities in early proposals due to the way
processing of trailing <slash> characters was specified. Consideration was given to leaving
processing unspecified if there were trailing <slash> characters, but this cannot be done; XBD
Section 3.266 (on page 75) allows trailing <slash> characters. The basename and dirname utilities
have to specify consistent handling for all valid pathnames.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 2301), basename

XBD Section 3.266 (on page 75), Chapter 8 (on page 173)

CHANGE HISTORY
First released in Issue 2.

2610 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

84141

84142

84143

84144

84145

84146

84147

84148

84149

84150

84151

84152

84153

84154

84155

84156

Utilities du

NAME
du — estimate file space usage

SYNOPSIS
du [−a|−s] [−kx] [−H|−L] [file...]

DESCRIPTION
By default, the du utility shall write to standard output the size of the file space allocated to, and
the size of the file space allocated to each subdirectory of, the file hierarchy rooted in each of the
specified files. By default, when a symbolic link is encountered on the command line or in the
file hierarchy, du shall count the size of the symbolic link (rather than the file referenced by the
link), and shall not follow the link to another portion of the file hierarchy. The size of the file
space allocated to a file of type directory shall be defined as the sum total of space allocated to
all files in the file hierarchy rooted in the directory plus the space allocated to the directory itself.

When du cannot stat() files or stat() or read directories, it shall report an error condition and the
final exit status is affected. Files with multiple links shall be counted and written for only one
entry. The directory entry that is selected in the report is unspecified. By default, file sizes shall
be written in 512-byte units, rounded up to the next 512-byte unit.

OPTIONS
The du utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a In addition to the default output, report the size of each file not of type directory in
the file hierarchy rooted in the specified file. Regardless of the presence of the −a
option, non-directories given as file operands shall always be listed.

−H If a symbolic link is specified on the command line, du shall count the size of the
file or file hierarchy referenced by the link.

−k Write the files sizes in units of 1 024 bytes, rather than the default 512-byte units.

−L If a symbolic link is specified on the command line or encountered during the
traversal of a file hierarchy, du shall count the size of the file or file hierarchy
referenced by the link.

−s Instead of the default output, report only the total sum for each of the specified
files.

−x When evaluating file sizes, evaluate only those files that have the same device as
the file specified by the file operand.

Specifying more than one of the mutually-exclusive options −H and −L shall not be considered
an error. The last option specified shall determine the behavior of the utility.

OPERANDS
The following operand shall be supported:

file The pathname of a file whose size is to be written. If no file is specified, the current
directory shall be used.

STDIN
Not used.

INPUT FILES
None.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2611

84157

84158

84159

84160

84161

84162

84163

84164

84165

84166

84167

84168

84169

84170

84171

84172

84173

84174

84175

84176

84177

84178

84179

84180

84181

84182

84183

84184

84185

84186

84187

84188

84189

84190

84191

84192

84193

84194

84195

84196

84197

84198

du Utilities

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of du:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The output from du shall consist of the amount of space allocated to a file and the name of the
file, in the following format:

"%d %s\n", <size>, <pathname>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The use of 512-byte units is historical practice and maintains compatibility with ls and other
utilities in this volume of POSIX.1-2008. This does not mandate that the file system itself be
based on 512-byte blocks. The −k option was added as a compromise measure. It was agreed by
the standard developers that 512 bytes was the best default unit because of its complete
historical consistency on System V (versus the mixed 512/1 024-byte usage on BSD systems), and
that a −k option to switch to 1 024-byte units was a good compromise. Users who prefer the

2612 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

84199

84200

84201

84202

84203

84204

84205

84206

84207

84208

84209

84210

84211

84212

84213

84214

84215

84216

84217

84218

84219

84220

84221

84222

84223

84224

84225

84226

84227

84228

84229

84230

84231

84232

84233

84234

84235

84236

84237

84238

84239

84240

84241

Utilities du

1 024-byte quantity can easily alias du to du −k without breaking the many historical scripts
relying on the 512-byte units.

The −b option was added to an early proposal to provide a resolution to the situation where
System V and BSD systems give figures for file sizes in blocks, which is an implementation-
defined concept. (In common usage, the block size is 512 bytes for System V and 1 024 bytes for
BSD systems.) However, −b was later deleted, since the default was eventually decided as
512-byte units.

Historical file systems provided no way to obtain exact figures for the space allocation given to
files. There are two known areas of inaccuracies in historical file systems: cases of indirect blocks
being used by the file system or sparse files yielding incorrectly high values. An indirect block is
space used by the file system in the storage of the file, but that need not be counted in the space
allocated to the file. A sparse file is one in which an lseek() call has been made to a position
beyond the end of the file and data has subsequently been written at that point. A file system
need not allocate all the intervening zero-filled blocks to such a file. It is up to the
implementation to define exactly how accurate its methods are.

The −a and −s options were mutually-exclusive in the original version of du. The POSIX Shell
and Utilities description is implied by the language in the SVID where −s is described as causing
‘‘only the grand total’’ to be reported. Some systems may produce output for −sa, but a Strictly
Conforming POSIX Shell and Utilities Application cannot use that combination.

The −a and −s options were adopted from the SVID except that the System V behavior of not
listing non-directories explicitly given as operands, unless the −a option is specified, was
considered a bug; the BSD-based behavior (report for all operands) is mandated. The default
behavior of du in the SVID with regard to reporting the failure to read files (it produces no
messages) was considered counter-intuitive, and thus it was specified that the POSIX Shell and
Utilities default behavior shall be to produce such messages. These messages can be turned off
with shell redirection to achieve the System V behavior.

The −x option is historical practice on recent BSD systems. It has been adopted by this volume of
POSIX.1-2008 because there was no other historical method of limiting the du search to a single
file hierarchy. This limitation of the search is necessary to make it possible to obtain file space
usage information about a file system on which other file systems are mounted, without having
to resort to a lengthy find and awk script.

FUTURE DIRECTIONS
None.

SEE ALSO
ls

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH fstatat()

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The APPLICATION USAGE section is added.

The obsolescent −r option is removed.

The Open Group Corrigendum U025/3 is applied. The du utility is reinstated, as it had
incorrectly been marked LEGACY in Issue 5.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2613

84242

84243

84244

84245

84246

84247

84248

84249

84250

84251

84252

84253

84254

84255

84256

84257

84258

84259

84260

84261

84262

84263

84264

84265

84266

84267

84268

84269

84270

84271

84272

84273

84274

84275

84276

84277

84278

84279

84280

84281

84282

84283

84284

84285

84286

du Utilities

The −H and −L options for symbolic links are added as described in the IEEE P1003.2b draft
standard.

Issue 7
The du utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2614 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

84287

84288

84289

84290

84291

84292

Utilities echo

NAME
echo — write arguments to standard output

SYNOPSIS
echo [string...]

DESCRIPTION
The echo utility writes its arguments to standard output, followed by a <newline>. If there are
no arguments, only the <newline> is written.

OPTIONS
The echo utility shall not recognize the "− −" argument in the manner specified by Guideline 10
of XBD Section 12.2 (on page 215); "− −" shall be recognized as a string operand.

Implementations shall not support any options.

OPERANDS
The following operands shall be supported:

string A string to be written to standard output. If the first operand is −n, or if any of the
operands contain a <backslash> character, the results are implementation-defined.

XSI On XSI-conformant systems, if the first operand is −n, it shall be treated as a string,
not an option. The following character sequences shall be recognized on XSI-
conformant systems within any of the arguments:

\a Write an <alert>.

\b Write a <backspace>.

\c Suppress the <newline> that otherwise follows the final argument in the
output. All characters following the ’\c’ in the arguments shall be
ignored.

\f Write a <form-feed>.

\n Write a <newline>.

\r Write a <carriage-return>.

\t Write a <tab>.

\v Write a <vertical-tab>.

\\ Write a <backslash> character.

\0num Write an 8-bit value that is the zero, one, two, or three-digit octal number
num.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of echo:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2615

84293

84294

84295

84296

84297

84298

84299

84300

84301

84302

84303

84304

84305

84306

84307

84308

84309

84310

84311

84312

84313

84314

84315

84316

84317

84318

84319

84320

84321

84322

84323

84324

84325

84326

84327

84328

84329

84330

84331

84332

echo Utilities

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

XSI LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The echo utility arguments shall be separated by single <space> characters and a <newline>

XSI character shall follow the last argument. Output transformations shall occur based on the
escape sequences in the input. See the OPERANDS section.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
It is not possible to use echo portably across all POSIX systems unless both −n (as the first
argument) and escape sequences are omitted.

The printf utility can be used portably to emulate any of the traditional behaviors of the echo
utility as follows (assuming that IFS has its standard value or is unset):

• The historic System V echo and the requirements on XSI implementations in this volume of
POSIX.1-2008 are equivalent to:

printf "%b\n" "$*"

• The BSD echo is equivalent to:

if ["X$1" = "X−n"]
then

shift
printf "%s" "$*"

else
printf "%s\n" "$*"

fi

2616 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

84333

84334

84335

84336

84337

84338

84339

84340

84341

84342

84343

84344

84345

84346

84347

84348

84349

84350

84351

84352

84353

84354

84355

84356

84357

84358

84359

84360

84361

84362

84363

84364

84365

84366

84367

84368

84369

84370

84371

84372

84373

84374

84375

Utilities echo

New applications are encouraged to use printf instead of echo.

EXAMPLES
None.

RATIONALE
The echo utility has not been made obsolescent because of its extremely widespread use in
historical applications. Conforming applications that wish to do prompting without <newline>
characters or that could possibly be expecting to echo a −n, should use the printf utility derived
from the Ninth Edition system.

As specified, echo writes its arguments in the simplest of ways. The two different historical
versions of echo vary in fatally incompatible ways.

The BSD echo checks the first argument for the string −n which causes it to suppress the
<newline> that would otherwise follow the final argument in the output.

The System V echo does not support any options, but allows escape sequences within its
operands, as described for XSI implementations in the OPERANDS section.

The echo utility does not support Utility Syntax Guideline 10 because historical applications
depend on echo to echo all of its arguments, except for the −n option in the BSD version.

FUTURE DIRECTIONS
None.

SEE ALSO
printf

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
In the OPTIONS section, the last sentence is changed to indicate that implementations ‘‘do not’’
support any options; in the previous issue this said ‘‘need not’’.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• A set of character sequences is defined as string operands.

• LC_CTYPE is added to the list of environment variables affecting echo.

• In the OPTIONS section, implementations shall not support any options.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/21 is applied, so that the echo utility can
accommodate historical BSD behavior.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2617

84376

84377

84378

84379

84380

84381

84382

84383

84384

84385

84386

84387

84388

84389

84390

84391

84392

84393

84394

84395

84396

84397

84398

84399

84400

84401

84402

84403

84404

84405

84406

84407

84408

84409

84410

84411

ed Utilities

NAME
ed — edit text

SYNOPSIS
ed [−p string] [−s] [file]

DESCRIPTION
The ed utility is a line-oriented text editor that uses two modes: command mode and input mode. In
command mode the input characters shall be interpreted as commands, and in input mode they
shall be interpreted as text. See the EXTENDED DESCRIPTION section.

If an operand is ’−’, the results are unspecified.

OPTIONS
The ed utility shall conform to XBD Section 12.2 (on page 215), except for the unspecified usage
of ’−’.

The following options shall be supported:

−p string Use string as the prompt string when in command mode. By default, there shall be
no prompt string.

−s Suppress the writing of byte counts by e, E, r, and w commands and of the ’!’
prompt after a !command.

OPERANDS
The following operand shall be supported:

file If the file argument is given, ed shall simulate an e command on the file named by
the pathname, file, before accepting commands from the standard input.

STDIN
The standard input shall be a text file consisting of commands, as described in the EXTENDED
DESCRIPTION section.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ed:

HOME Determine the pathname of the user’s home directory.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the behavior of character classes within regular
expressions.

2618 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

84412

84413

84414

84415

84416

84417

84418

84419

84420

84421

84422

84423

84424

84425

84426

84427

84428

84429

84430

84431

84432

84433

84434

84435

84436

84437

84438

84439

84440

84441

84442

84443

84444

84445

84446

84447

84448

84449

84450

84451

84452

Utilities ed

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
The ed utility shall take the standard action for all signals (see the ASYNCHRONOUS EVENTS
section in Section 1.4, on page 2288) with the following exceptions:

SIGINT The ed utility shall interrupt its current activity, write the string "?\n" to standard
output, and return to command mode (see the EXTENDED DESCRIPTION
section).

SIGHUP If the buffer is not empty and has changed since the last write, the ed utility shall
attempt to write a copy of the buffer in a file. First, the file named ed.hup in the
current directory shall be used; if that fails, the file named ed.hup in the directory
named by the HOME environment variable shall be used. In any case, the ed utility
shall exit without writing the file to the currently remembered pathname and
without returning to command mode.

SIGQUIT The ed utility shall ignore this event.

STDOUT
Various editing commands and the prompting feature (see −p) write to standard output, as
described in the EXTENDED DESCRIPTION section.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The output files shall be text files whose formats are dependent on the editing commands given.

EXTENDED DESCRIPTION
The ed utility shall operate on a copy of the file it is editing; changes made to the copy shall have
no effect on the file until a w (write) command is given. The copy of the text is called the buffer.

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a
single-character command, possibly followed by parameters to that command. These addresses
specify one or more lines in the buffer. Every command that requires addresses has default
addresses, so that the addresses very often can be omitted. If the −p option is specified, the
prompt string shall be written to standard output before each command is read.

In general, only one command can appear on a line. Certain commands allow text to be input.
This text is placed in the appropriate place in the buffer. While ed is accepting text, it is said to be
in input mode. In this mode, no commands shall be recognized; all input is merely collected.
Input mode is terminated by entering a line consisting of two characters: a <period> (’.’)
followed by a <newline>. This line is not considered part of the input text.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2619

84453

84454

84455

84456

84457

84458

84459

84460

84461

84462

84463

84464

84465

84466

84467

84468

84469

84470

84471

84472

84473

84474

84475

84476

84477

84478

84479

84480

84481

84482

84483

84484

84485

84486

84487

84488

84489

84490

ed Utilities

Regular Expressions in ed

The ed utility shall support basic regular expressions, as described in XBD Section 9.3 (on page
183). Since regular expressions in ed are always matched against single lines (excluding the
terminating <newline> characters), never against any larger section of text, there is no way for a
regular expression to match a <newline>.

A null RE shall be equivalent to the last RE encountered.

Regular expressions are used in addresses to specify lines, and in some commands (for example,
the s substitute command) to specify portions of a line to be substituted.

Addresses in ed

Addressing in ed relates to the current line. Generally, the current line is the last line affected by a
command. The current line number is the address of the current line. If the edit buffer is not
empty, the initial value for the current line shall be the last line in the edit buffer; otherwise, zero.

Addresses shall be constructed as follows:

1. The <period> character (’.’) shall address the current line.

2. The <dollar-sign> character (’$’) shall address the last line of the edit buffer.

3. The positive decimal number n shall address the nth line of the edit buffer.

4. The <apostrophe>-x character pair ("’x") shall address the line marked with the mark
name character x, which shall be a lowercase letter from the portable character set. It shall
be an error if the character has not been set to mark a line or if the line that was marked is
not currently present in the edit buffer.

5. A BRE enclosed by <slash> characters (’/’) shall address the first line found by
searching forwards from the line following the current line toward the end of the edit
buffer and stopping at the first line for which the line excluding the terminating
<newline> matches the BRE. The BRE consisting of a null BRE delimited by a pair of
<slash> characters shall address the next line for which the line excluding the terminating
<newline> matches the last BRE encountered. In addition, the second <slash> can be
omitted at the end of a command line. Within the BRE, a <backslash>-<slash> pair ("\/")
shall represent a literal <slash> instead of the BRE delimiter. If necessary, the search shall
wrap around to the beginning of the buffer and continue up to and including the current
line, so that the entire buffer is searched.

6. A BRE enclosed by <question-mark> characters (’?’) shall address the first line found by
searching backwards from the line preceding the current line toward the beginning of the
edit buffer and stopping at the first line for which the line excluding the terminating
<newline> matches the BRE. The BRE consisting of a null BRE delimited by a pair of
<question-mark> characters ("??") shall address the previous line for which the line
excluding the terminating <newline> matches the last BRE encountered. In addition, the
second <question-mark> can be omitted at the end of a command line. Within the BRE, a
<backslash>-<question-mark> pair ("\?") shall represent a literal <question-mark>
instead of the BRE delimiter. If necessary, the search shall wrap around to the end of the
buffer and continue up to and including the current line, so that the entire buffer is
searched.

7. A <plus-sign> (’+’) or <hyphen> character (’−’) followed by a decimal number shall
address the current line plus or minus the number. A <plus-sign> or <hyphen> character
not followed by a decimal number shall address the current line plus or minus 1.

2620 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

84491

84492

84493

84494

84495

84496

84497

84498

84499

84500

84501

84502

84503

84504

84505

84506

84507

84508

84509

84510

84511

84512

84513

84514

84515

84516

84517

84518

84519

84520

84521

84522

84523

84524

84525

84526

84527

84528

84529

84530

84531

84532

84533

84534

Utilities ed

Addresses can be followed by zero or more address offsets, optionally <blank>-separated.
Address offsets are constructed as follows:

• A <plus-sign> or <hyphen> character followed by a decimal number shall add or subtract,
respectively, the indicated number of lines to or from the address. A <plus-sign> or
<hyphen> character not followed by a decimal number shall add or subtract 1 to or from
the address.

• A decimal number shall add the indicated number of lines to the address.

It shall not be an error for an intermediate address value to be less than zero or greater than the
last line in the edit buffer. It shall be an error for the final address value to be less than zero or
greater than the last line in the edit buffer. It shall be an error if a search for a BRE fails to find a
matching line.

Commands accept zero, one, or two addresses. If more than the required number of addresses
are provided to a command that requires zero addresses, it shall be an error. Otherwise, if more
than the required number of addresses are provided to a command, the addresses specified first
shall be evaluated and then discarded until the maximum number of valid addresses remain, for
the specified command.

Addresses shall be separated from each other by a <comma> (’,’) or <semicolon> character
(’;’). In the case of a <semicolon> separator, the current line (’.’) shall be set to the first
address, and only then will the second address be calculated. This feature can be used to
determine the starting line for forwards and backwards searches; see rules 5. and 6.

Addresses can be omitted on either side of the <comma> or <semicolon> separator, in which
case the resulting address pairs shall be as follows:

Specified Resulting

, 1 , $
, addr 1 , addr
addr , addr , addr
; . ; $
; addr . ; addr
addr ; addr ; addr

Any <blank> characters included between addresses, address separators, or address offsets shall
be ignored.

Commands in ed

In the following list of ed commands, the default addresses are shown in parentheses. The
number of addresses shown in the default shall be the number expected by the command. The
parentheses are not part of the address; they show that the given addresses are the default.

It is generally invalid for more than one command to appear on a line. However, any command
(except e, E, f, q, Q, r, w, and !) can be suffixed by the letter l, n, or p; in which case, except for
the l, n, and p commands, the command shall be executed and then the new current line shall be
written as described below under the l, n, and p commands. When an l, n, or p suffix is used
with an l, n, or p command, the command shall write to standard output as described below, but
it is unspecified whether the suffix writes the current line again in the requested format or
whether the suffix has no effect. For example, the pl command (base p command with an l
suffix) shall either write just the current line or write it twice—once as specified for p and once
as specified for l. Also, the g, G, v, and V commands shall take a command as a parameter.

Each address component can be preceded by zero or more <blank> characters. The command

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2621

84535

84536

84537

84538

84539

84540

84541

84542

84543

84544

84545

84546

84547

84548

84549

84550

84551

84552

84553

84554

84555

84556

84557

84558

84559

84560

84561

84562

84563

84564

84565

84566

84567

84568

84569

84570

84571

84572

84573

84574

84575

84576

84577

84578

84579

ed Utilities

letter can be preceded by zero or more <blank> characters. If a suffix letter (l, n, or p) is given,
the application shall ensure that it immediately follows the command.

The e, E, f, r, and w commands shall take an optional file parameter, separated from the
command letter by one or more <blank> characters.

If changes have been made in the buffer since the last w command that wrote the entire buffer, ed
shall warn the user if an attempt is made to destroy the editor buffer via the e or q commands.
The ed utility shall write the string:

"?\n"

(followed by an explanatory message if help mode has been enabled via the H command) to
standard output and shall continue in command mode with the current line number unchanged.
If the e or q command is repeated with no intervening command, it shall take effect.

If a terminal disconnect (see XBD Chapter 11 (on page 199), Modem Disconnect and Closing a
Device Terminal), is detected:

• If accompanied by a SIGHUP signal, the ed utility shall operate as described in the
ASYNCHRONOUS EVENTS section for a SIGHUP signal.

• If not accompanied by a SIGHUP signal, the ed utility shall act as if an end-of-file had been
detected on standard input.

If an end-of-file is detected on standard input:

• If the ed utility is in input mode, ed shall terminate input mode and return to command
mode. It is unspecified if any partially entered lines (that is, input text without a
terminating <newline>) are discarded from the input text.

• If the ed utility is in command mode, it shall act as if a q command had been entered.

If the closing delimiter of an RE or of a replacement string (for example, ’/’) in a g, G, s, v, or V
command would be the last character before a <newline>, that delimiter can be omitted, in
which case the addressed line shall be written. For example, the following pairs of commands
are equivalent:

s/s1/s2 s/s1/s2/p
g/s1 g/s1/p
?s1 ?s1?

If an invalid command is entered, ed shall write the string:

"?\n"

(followed by an explanatory message if help mode has been enabled via the H command) to
standard output and shall continue in command mode with the current line number unchanged.

Append Command

Synopsis: (.)a
<text>
.

The a command shall read the given text and append it after the addressed line; the current line
number shall become the address of the last inserted line or, if there were none, the addressed
line. Address 0 shall be valid for this command; it shall cause the appended text to be placed at
the beginning of the buffer.

2622 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

84580

84581

84582

84583

84584

84585

84586

84587

84588

84589

84590

84591

84592

84593

84594

84595

84596

84597

84598

84599

84600

84601

84602

84603

84604

84605

84606

84607

84608

84609

84610

84611

84612

84613

84614

84615

84616

84617

84618

84619

84620

Utilities ed

Change Command

Synopsis: (.,.)c
<text>
.

The c command shall delete the addressed lines, then accept input text that replaces these lines;
the current line shall be set to the address of the last line input; or, if there were none, at the line
after the last line deleted; if the lines deleted were originally at the end of the buffer, the current
line number shall be set to the address of the new last line; if no lines remain in the buffer, the
current line number shall be set to zero. Address 0 shall be valid for this command; it shall be
interpreted as if address 1 were specified.

Delete Command

Synopsis: (.,.)d

The d command shall delete the addressed lines from the buffer. The address of the line after the
last line deleted shall become the current line number; if the lines deleted were originally at the
end of the buffer, the current line number shall be set to the address of the new last line; if no
lines remain in the buffer, the current line number shall be set to zero.

Edit Command

Synopsis: e [file]

The e command shall delete the entire contents of the buffer and then read in the file named by
the pathname file. The current line number shall be set to the address of the last line of the
buffer. If no pathname is given, the currently remembered pathname, if any, shall be used (see
the f command). The number of bytes read shall be written to standard output, unless the −s
option was specified, in the following format:

"%d\n", <number of bytes read>

The name file shall be remembered for possible use as a default pathname in subsequent e, E, r,
and w commands. If file is replaced by ’!’, the rest of the line shall be taken to be a shell
command line whose output is to be read. Such a shell command line shall not be remembered
as the current file. All marks shall be discarded upon the completion of a successful e command.
If the buffer has changed since the last time the entire buffer was written, the user shall be
warned, as described previously.

Edit Without Checking Command

Synopsis: E [file]

The E command shall possess all properties and restrictions of the e command except that the
editor shall not check to see whether any changes have been made to the buffer since the last w
command.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2623

84621

84622

84623

84624

84625

84626

84627

84628

84629

84630

84631

84632

84633

84634

84635

84636

84637

84638

84639

84640

84641

84642

84643

84644

84645

84646

84647

84648

84649

84650

84651

84652

84653

84654

84655

ed Utilities

Filename Command

Synopsis: f [file]

If file is given, the f command shall change the currently remembered pathname to file; whether
the name is changed or not, it shall then write the (possibly new) currently remembered
pathname to the standard output in the following format:

"%s\n", <pathname>

The current line number shall be unchanged.

Global Command

Synopsis: (1,$)g/RE/command list

In the g command, the first step shall be to mark every line for which the line excluding the
terminating <newline> matches the given RE. Then, going sequentially from the beginning of
the file to the end of the file, the given command list shall be executed for each marked line, with
the current line number set to the address of that line. Any line modified by the command list
shall be unmarked. When the g command completes, the current line number shall have the
value assigned by the last command in the command list. If there were no matching lines, the
current line number shall not be changed. A single command or the first of a list of commands
shall appear on the same line as the global command. All lines of a multi-line list except the last
line shall be ended with a <backslash> preceding the terminating <newline>; the a, i, and c
commands and associated input are permitted. The ’.’ terminating input mode can be omitted
if it would be the last line of the command list. An empty command list shall be equivalent to the p
command. The use of the g, G, v, V, and ! commands in the command list produces undefined
results. Any character other than <space> or <newline> can be used instead of a <slash> to
delimit the RE. Within the RE, the RE delimiter itself can be used as a literal character if it is
preceded by a <backslash>.

Interactive Global Command

Synopsis: (1,$)G/RE/

In the G command, the first step shall be to mark every line for which the line excluding the
terminating <newline> matches the given RE. Then, for every such line, that line shall be
written, the current line number shall be set to the address of that line, and any one command
(other than one of the a, c, i, g, G, v, and V commands) shall be read and executed. A <newline>
shall act as a null command (causing no action to be taken on the current line); an ’&’ shall
cause the re-execution of the most recent non-null command executed within the current
invocation of G. Note that the commands input as part of the execution of the G command can
address and affect any lines in the buffer. Any line modified by the command shall be
unmarked. The final value of the current line number shall be the value set by the last command
successfully executed. (Note that the last command successfully executed shall be the G
command itself if a command fails or the null command is specified.) If there were no matching
lines, the current line number shall not be changed. The G command can be terminated by a
SIGINT signal. Any character other than <space> or <newline> can be used instead of a <slash>
to delimit the RE and the replacement. Within the RE, the RE delimiter itself can be used as a
literal character if it is preceded by a <backslash>.

2624 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

84656

84657

84658

84659

84660

84661

84662

84663

84664

84665

84666

84667

84668

84669

84670

84671

84672

84673

84674

84675

84676

84677

84678

84679

84680

84681

84682

84683

84684

84685

84686

84687

84688

84689

84690

84691

84692

84693

84694

84695

84696

Utilities ed

Help Command

Synopsis: h

The h command shall write a short message to standard output that explains the reason for the
most recent ’?’ notification. The current line number shall be unchanged.

Help-Mode Command

Synopsis: H

The H command shall cause ed to enter a mode in which help messages (see the h command)
shall be written to standard output for all subsequent ’?’ notifications. The H command
alternately shall turn this mode on and off; it is initially off. If the help-mode is being turned on,
the H command also explains the previous ’?’ notification, if there was one. The current line
number shall be unchanged.

Insert Command

Synopsis: (.)i
<text>
.

The i command shall insert the given text before the addressed line; the current line is set to the
last inserted line or, if there was none, to the addressed line. This command differs from the a
command only in the placement of the input text. Address 0 shall be valid for this command; it
shall be interpreted as if address 1 were specified.

Join Command

Synopsis: (.,.+1)j

The j command shall join contiguous lines by removing the appropriate <newline> characters. If
exactly one address is given, this command shall do nothing. If lines are joined, the current line
number shall be set to the address of the joined line; otherwise, the current line number shall be
unchanged.

Mark Command

Synopsis: (.)kx

The k command shall mark the addressed line with name x, which the application shall ensure
is a lowercase letter from the portable character set. The address "’x" shall then refer to this
line; the current line number shall be unchanged.

List Command

Synopsis: (.,.)l

The l command shall write to standard output the addressed lines in a visually unambiguous
form. The characters listed in XBD Table 5-1 (on page 121) (’\\’, ’\a’, ’\b’, ’\f’, ’\r’,
’\t’, ’\v’) shall be written as the corresponding escape sequence; the ’\n’ in that table is not
applicable. Non-printable characters not in the table shall be written as one three-digit octal
number (with a preceding <backslash> character) for each byte in the character (most significant
byte first).

Long lines shall be folded, with the point of folding indicated by <newline> preceded by a
<backslash>; the length at which folding occurs is unspecified, but should be appropriate for the

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2625

84697

84698

84699

84700

84701

84702

84703

84704

84705

84706

84707

84708

84709

84710

84711

84712

84713

84714

84715

84716

84717

84718

84719

84720

84721

84722

84723

84724

84725

84726

84727

84728

84729

84730

84731

84732

84733

84734

84735

84736

ed Utilities

output device. The end of each line shall be marked with a ’$’, and ’$’ characters within the
text shall be written with a preceding <backslash>. An l command can be appended to any
other command other than e, E, f, q, Q, r, w, or !. The current line number shall be set to the
address of the last line written.

Move Command

Synopsis: (.,.)maddress

The m command shall reposition the addressed lines after the line addressed by address.
Address 0 shall be valid for address and cause the addressed lines to be moved to the beginning
of the buffer. It shall be an error if address address falls within the range of moved lines. The
current line number shall be set to the address of the last line moved.

Number Command

Synopsis: (.,.)n

The n command shall write to standard output the addressed lines, preceding each line by its
line number and a <tab>; the current line number shall be set to the address of the last line
written. The n command can be appended to any command other than e, E, f, q, Q, r, w, or !.

Print Command

Synopsis: (.,.)p

The p command shall write to standard output the addressed lines; the current line number shall
be set to the address of the last line written. The p command can be appended to any command
other than e, E, f, q, Q, r, w, or !.

Prompt Command

Synopsis: P

The P command shall cause ed to prompt with an <asterisk> (’*’) (or string, if −p is specified)
for all subsequent commands. The P command alternatively shall turn this mode on and off; it
shall be initially on if the −p option is specified; otherwise, off. The current line number shall be
unchanged.

Quit Command

Synopsis: q

The q command shall cause ed to exit. If the buffer has changed since the last time the entire
buffer was written, the user shall be warned, as described previously.

Quit Without Checking Command

Synopsis: Q

The Q command shall cause ed to exit without checking whether changes have been made in the
buffer since the last w command.

2626 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

84737

84738

84739

84740

84741

84742

84743

84744

84745

84746

84747

84748

84749

84750

84751

84752

84753

84754

84755

84756

84757

84758

84759

84760

84761

84762

84763

84764

84765

84766

84767

84768

84769

84770

Utilities ed

Read Command

Synopsis: ($)r [file]

The r command shall read in the file named by the pathname file and append it after the
addressed line. If no file argument is given, the currently remembered pathname, if any, shall be
used (see the e and f commands). The currently remembered pathname shall not be changed
unless there is no remembered pathname. Address 0 shall be valid for r and shall cause the file
to be read at the beginning of the buffer. If the read is successful, and −s was not specified, the
number of bytes read shall be written to standard output in the following format:

"%d\n", <number of bytes read>

The current line number shall be set to the address of the last line read in. If file is replaced by
’!’, the rest of the line shall be taken to be a shell command line whose output is to be read.
Such a shell command line shall not be remembered as the current pathname.

Substitute Command

Synopsis: (.,.)s/RE/replacement/flags

The s command shall search each addressed line for an occurrence of the specified RE and
replace either the first or all (non-overlapped) matched strings with the replacement; see the
following description of the g suffix. It is an error if the substitution fails on every addressed
line. Any character other than <space> or <newline> can be used instead of a <slash> to delimit
the RE and the replacement. Within the RE, the RE delimiter itself can be used as a literal
character if it is preceded by a <backslash>. The current line shall be set to the address of the
last line on which a substitution occurred.

An <ampersand> (’&’) appearing in the replacement shall be replaced by the string matching the
RE on the current line. The special meaning of ’&’ in this context can be suppressed by
preceding it by <backslash>. As a more general feature, the characters ’\n’, where n is a digit,
shall be replaced by the text matched by the corresponding back-reference expression. If the
corresponding back-reference expression does not match, then the characters ’\n’ shall be
replaced by the empty string. When the character ’%’ is the only character in the replacement, the
replacement used in the most recent substitute command shall be used as the replacement in the
current substitute command; if there was no previous substitute command, the use of ’%’ in this
manner shall be an error. The ’%’ shall lose its special meaning when it is in a replacement
string of more than one character or is preceded by a <backslash>. For each <backslash>
encountered in scanning replacement from beginning to end, the following character shall lose its
special meaning (if any). It is unspecified what special meaning is given to any character other
than <backslash>, ’&’, ’%’, or digits.

A line can be split by substituting a <newline> into it. The application shall ensure it escapes the
<newline> in the replacement by preceding it by <backslash>. Such substitution cannot be done
as part of a g or v command list. The current line number shall be set to the address of the last
line on which a substitution is performed. If no substitution is performed, the current line
number shall be unchanged. If a line is split, a substitution shall be considered to have been
performed on each of the new lines for the purpose of determining the new current line number.
A substitution shall be considered to have been performed even if the replacement string is
identical to the string that it replaces.

The application shall ensure that the value of flags is zero or more of:

count Substitute for the countth occurrence only of the RE found on each addressed line.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2627

84771

84772

84773

84774

84775

84776

84777

84778

84779

84780

84781

84782

84783

84784

84785

84786

84787

84788

84789

84790

84791

84792

84793

84794

84795

84796

84797

84798

84799

84800

84801

84802

84803

84804

84805

84806

84807

84808

84809

84810

84811

84812

84813

84814

ed Utilities

g Globally substitute for all non-overlapping instances of the RE rather than just the first
one. If both g and count are specified, the results are unspecified.

l Write to standard output the final line in which a substitution was made. The line shall
be written in the format specified for the l command.

n Write to standard output the final line in which a substitution was made. The line shall
be written in the format specified for the n command.

p Write to standard output the final line in which a substitution was made. The line shall
be written in the format specified for the p command.

Copy Command

Synopsis: (.,.)taddress

The t command shall be equivalent to the m command, except that a copy of the addressed lines
shall be placed after address address (which can be 0); the current line number shall be set to the
address of the last line added.

Undo Command

Synopsis: u

The u command shall nullify the effect of the most recent command that modified anything in
the buffer, namely the most recent a, c, d, g, i, j, m, r, s, t, u, v, G, or V command. All changes
made to the buffer by a g, G, v, or V global command shall be undone as a single change; if no
changes were made by the global command (such as with g/RE/p), the u command shall have
no effect. The current line number shall be set to the value it had immediately before the
command being undone started.

Global Non-Matched Command

Synopsis: (1,$)v/RE/command list

This command shall be equivalent to the global command g except that the lines that are marked
during the first step shall be those for which the line excluding the terminating <newline> does
not match the RE.

Interactive Global Not-Matched Command

Synopsis: (1,$)V/RE/

This command shall be equivalent to the interactive global command G except that the lines that
are marked during the first step shall be those for which the line excluding the terminating
<newline> does not match the RE.

Write Command

Synopsis: (1,$)w [file]

The w command shall write the addressed lines into the file named by the pathname file. The
command shall create the file, if it does not exist, or shall replace the contents of the existing file.
The currently remembered pathname shall not be changed unless there is no remembered
pathname. If no pathname is given, the currently remembered pathname, if any, shall be used
(see the e and f commands); the current line number shall be unchanged. If the command is
successful, the number of bytes written shall be written to standard output, unless the −s option
was specified, in the following format:

2628 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

84815

84816

84817

84818

84819

84820

84821

84822

84823

84824

84825

84826

84827

84828

84829

84830

84831

84832

84833

84834

84835

84836

84837

84838

84839

84840

84841

84842

84843

84844

84845

84846

84847

84848

84849

84850

84851

84852

84853

84854

Utilities ed

"%d\n", <number of bytes written>

If file begins with ’!’, the rest of the line shall be taken to be a shell command line whose
standard input shall be the addressed lines. Such a shell command line shall not be remembered
as the current pathname. This usage of the write command with ’!’ shall not be considered as a
‘‘last w command that wrote the entire buffer ’’, as described previously; thus, this alone shall
not prevent the warning to the user if an attempt is made to destroy the editor buffer via the e or
q commands.

Line Number Command

Synopsis: ($)=

The line number of the addressed line shall be written to standard output in the following
format:

"%d\n", <line number>

The current line number shall be unchanged by this command.

Shell Escape Command

Synopsis: !command

The remainder of the line after the ’!’ shall be sent to the command interpreter to be
interpreted as a shell command line. Within the text of that shell command line, the unescaped
character ’%’ shall be replaced with the remembered pathname; if a ’!’ appears as the first
character of the command, it shall be replaced with the text of the previous shell command
executed via ’!’. Thus, "!!" shall repeat the previous !command. If any replacements of ’%’ or
’!’ are performed, the modified line shall be written to the standard output before command is
executed. The ! command shall write:

"!\n"

to standard output upon completion, unless the −s option is specified. The current line number
shall be unchanged.

Null Command

Synopsis: (.+1)

An address alone on a line shall cause the addressed line to be written. A <newline> alone shall
be equivalent to "+1p". The current line number shall be set to the address of the written line.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion without any file or command errors.

>0 An error occurred.

CONSEQUENCES OF ERRORS
When an error in the input script is encountered, or when an error is detected that is a
consequence of the data (not) present in the file or due to an external condition such as a read or
write error:

• If the standard input is a terminal device file, all input shall be flushed, and a new
command read.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2629

84855

84856

84857

84858

84859

84860

84861

84862

84863

84864

84865

84866

84867

84868

84869

84870

84871

84872

84873

84874

84875

84876

84877

84878

84879

84880

84881

84882

84883

84884

84885

84886

84887

84888

84889

84890

84891

84892

84893

ed Utilities

• If the standard input is a regular file, ed shall terminate with a non-zero exit status.

APPLICATION USAGE
Because of the extremely terse nature of the default error messages, the prudent script writer
begins the ed input commands with an H command, so that if any errors do occur at least some
clue as to the cause is made available.

In earlier versions of this standard, an obsolescent − option was described. This is no longer
specified. Applications should use the −s option. Using − as a file operand now produces
unspecified results. This allows implementations to continue to support the former required
behavior.

EXAMPLES
None.

RATIONALE
The initial description of this utility was adapted from the SVID. It contains some features not
found in Version 7 or BSD-derived systems. Some of the differences between the POSIX and
BSD ed utilities include, but need not be limited to:

• The BSD − option does not suppress the ’!’ prompt after a ! command.

• BSD does not support the special meanings of the ’%’ and ’!’ characters within a !
command.

• BSD does not support the addresses ’;’ and ’,’.

• BSD allows the command/suffix pairs pp, ll, and so on, which are unspecified in this
volume of POSIX.1-2008.

• BSD does not support the ’!’ character part of the e, r, or w commands.

• A failed g command in BSD sets the line number to the last line searched if there are no
matches.

• BSD does not default the command list to the p command.

• BSD does not support the G, h, H, n, or V commands.

• On BSD, if there is no inserted text, the insert command changes the current line to the
referenced line −1; that is, the line before the specified line.

• On BSD, the join command with only a single address changes the current line to that
address.

• BSD does not support the P command; moreover, in BSD it is synonymous with the p
command.

• BSD does not support the undo of the commands j, m, r, s, or t.

• The Version 7 ed command W, and the BSD ed commands W, wq, and z are not present in
this volume of POSIX.1-2008.

The −s option was added to allow the functionality of the removed − option in a manner
compatible with the Utility Syntax Guidelines.

In early proposals there was a limit, {ED_FILE_MAX}, that described the historical limitations of
some ed utilities in their handling of large files; some of these have had problems with files
larger than 100 000 bytes. It was this limitation that prompted much of the desire to include a
split command in this volume of POSIX.1-2008. Since this limit was removed, this volume of
POSIX.1-2008 requires that implementations document the file size limits imposed by ed in the

2630 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

84894

84895

84896

84897

84898

84899

84900

84901

84902

84903

84904

84905

84906

84907

84908

84909

84910

84911

84912

84913

84914

84915

84916

84917

84918

84919

84920

84921

84922

84923

84924

84925

84926

84927

84928

84929

84930

84931

84932

84933

84934

84935

Utilities ed

conformance document. The limit {ED_LINE_MAX} was also removed; therefore, the global
limit {LINE_MAX} is used for input and output lines.

The manner in which the l command writes non-printable characters was changed to avoid the
historical backspace-overstrike method. On video display terminals, the overstrike is ambiguous
because most terminals simply replace overstruck characters, making the l format not useful for
its intended purpose of unambiguously understanding the content of the line. The historical
<backslash>-escapes were also ambiguous. (The string "a\0011" could represent a line
containing those six characters or a line containing the three characters ’a’, a byte with a binary
value of 1, and a 1.) In the format required here, a <backslash> appearing in the line is written as
"\\" so that the output is truly unambiguous. The method of marking the ends of lines was
adopted from the ex editor and is required for any line ending in <space> characters; the ’$’ is
placed on all lines so that a real ’$’ at the end of a line cannot be misinterpreted.

Earlier versions of this standard allowed for implementations with bytes other than eight bits,
but this has been modified in this version.

The description of how a NUL is written was removed. The NUL character cannot be in text
files, and this volume of POSIX.1-2008 should not dictate behavior in the case of undefined,
erroneous input.

Unlike some of the other editing utilities, the filenames accepted by the E, e, R, and r commands
are not patterns.

Early proposals stated that the −p option worked only when standard input was associated with
a terminal device. This has been changed to conform to historical implementations, thereby
allowing applications to interpose themselves between a user and the ed utility.

The form of the substitute command that uses the n suffix was limited in some historical
documentation (where this was described incorrectly as ‘‘backreferencing’’). This limit has been
omitted because there is no reason why an editor processing lines of {LINE_MAX} length should
have this restriction. The command s/x/X/2047 should be able to substitute the 2 047th occurrence
of ’x’ on a line.

The use of printing commands with printing suffixes (such as pn, lp, and so on) was made
unspecified because BSD-based systems allow this, whereas System V does not.

Some BSD-based systems exit immediately upon receipt of end-of-file if all of the lines in the file
have been deleted. Since this volume of POSIX.1-2008 refers to the q command in this instance,
such behavior is not allowed.

Some historical implementations returned exit status zero even if command errors had occurred;
this is not allowed by this volume of POSIX.1-2008.

Some historical implementations contained a bug that allowed a single <period> to be entered in
input mode as <backslash> <period> <newline>. This is not allowed by ed because there is no
description of escaping any of the characters in input mode; <backslash> characters are entered
into the buffer exactly as typed. The typical method of entering a single <period> has been to
precede it with another character and then use the substitute command to delete that character.

It is difficult under some modes of some versions of historical operating system terminal drivers
to distinguish between an end-of-file condition and terminal disconnect. POSIX.1-2008 does not
require implementations to distinguish between the two situations, which permits historical
implementations of the ed utility on historical platforms to conform. Implementations are
encouraged to distinguish between the two, if possible, and take appropriate action on terminal
disconnect.

Historically, ed accepted a zero address for the a and r commands in order to insert text at the

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2631

84936

84937

84938

84939

84940

84941

84942

84943

84944

84945

84946

84947

84948

84949

84950

84951

84952

84953

84954

84955

84956

84957

84958

84959

84960

84961

84962

84963

84964

84965

84966

84967

84968

84969

84970

84971

84972

84973

84974

84975

84976

84977

84978

84979

84980

84981

ed Utilities

start of the edit buffer. When the buffer was empty the command .= returned zero. POSIX.1-2008
requires conformance to historical practice.

For consistency with the a and r commands and better user functionality, the i and c commands
must also accept an address of 0, in which case 0i is treated as 1i and likewise for the c
command.

All of the following are valid addresses:

+++ Three lines after the current line.

/pattern/− One line before the next occurrence of pattern.

−2 Two lines before the current line.

3 − − − − 2 Line one (note the intermediate negative address).

1 2 3 Line six.

Any number of addresses can be provided to commands taking addresses; for example,
"1,2,3,4,5p" prints lines 4 and 5, because two is the greatest valid number of addresses
accepted by the print command. This, in combination with the <semicolon> delimiter, permits
users to create commands based on ordered patterns in the file. For example, the command
"3;/foo/;+2p" will display the first line after line 3 that contains the pattern foo, plus the next
two lines. Note that the address "3;" must still be evaluated before being discarded, because
the search origin for the "/foo/" command depends on this.

Historically, ed disallowed address chains, as discussed above, consisting solely of <comma> or
<semicolon> separators; for example, ",,," or ";;;" were considered an error. For
consistency of address specification, this restriction is removed. The following table lists some of
the address forms now possible:

Address Addr1 Addr2 Status Comment

7, 7 7 Historical
7,5, 5 5 Historical
7,5,9 5 9 Historical
7,9 7 9 Historical
7,+ 7 8 Historical
, 1 $ Historical
,7 1 7 Extension
,, $ $ Extension
,; $ $ Extension
7; 7 7 Historical
7;5; 5 5 Historical
7;5;9 5 9 Historical
7;5,9 5 9 Historical
7;$;4 $ 4 Historical Valid, but erroneous.
7;9 7 9 Historical
7;+ 7 8 Historical
; . $ Historical
;7 . 7 Extension
;; $ $ Extension
;, $ $ Extension

Historically, ed accepted the ’ˆ’ character as an address, in which case it was identical to the
<hyphen> character. POSIX.1-2008 does not require or prohibit this behavior.

2632 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

84982

84983

84984

84985

84986

84987

84988

84989

84990

84991

84992

84993

84994

84995

84996

84997

84998

84999

85000

85001

85002

85003

85004

85005

85006

85007

85008

85009

85010

85011

85012

85013

85014

85015

85016

85017

85018

85019

85020

85021

85022

85023

85024

85025

85026

Utilities ed

FUTURE DIRECTIONS
None.

SEE ALSO
Section 1.4 (on page 2288), ex , sed , sh , vi

XBD Table 5-1 (on page 121), Chapter 8 (on page 173), Section 9.3 (on page 183), Chapter 11 (on
page 199), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
In the OPTIONS section, the meaning of −s and − is clarified.

A second FUTURE DIRECTION is added.

Issue 6
The obsolescent single-minus form is removed.

A second APPLICATION USAGE note is added.

The Open Group Corrigendum U025/2 is applied, correcting the description of the Edit section.

The ed utility is updated to align with the IEEE P1003.2b draft standard. This includes addition
of the treatment of the SIGQUIT signal, changes to ed addressing, and changes to processing
when end-of-file is detected and when terminal disconnect is detected.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/22 is applied, adding the text: ‘‘Any line
modified by the command list shall be unmarked.’’ to the G command. This change corresponds
to a similar change made to the g command in the first version of this standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/7 is applied, removing text describing
behavior on systems with bytes consisting of more than eight bits.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if an operand is
’−’.

Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior for BREs.

SD5-XCU-ERN-94 is applied, updating text in the EXTENDED DESCRIPTION where a terminal
disconnect is detected (in Commands in ed).

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-135 is applied, removing some RATIONALE text that is no longer applicable.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2633

85027

85028

85029

85030

85031

85032

85033

85034

85035

85036

85037

85038

85039

85040

85041

85042

85043

85044

85045

85046

85047

85048

85049

85050

85051

85052

85053

85054

85055

85056

85057

85058

env Utilities

NAME
env — set the environment for command invocation

SYNOPSIS
env [−i] [name=value]... [utility [argument...]]

DESCRIPTION
The env utility shall obtain the current environment, modify it according to its arguments, then
invoke the utility named by the utility operand with the modified environment.

Optional arguments shall be passed to utility.

If no utility operand is specified, the resulting environment shall be written to the standard
output, with one name=value pair per line.

If the first argument is ’−’, the results are unspecified.

OPTIONS
The env utility shall conform to XBD Section 12.2 (on page 215), except for the unspecified usage
of ’−’.

The following options shall be supported:

−i Invoke utility with exactly the environment specified by the arguments; the
inherited environment shall be ignored completely.

OPERANDS
The following operands shall be supported:

name=value Arguments of the form name=value shall modify the execution environment, and
shall be placed into the inherited environment before the utility is invoked.

utility The name of the utility to be invoked. If the utility operand names any of the
special built-in utilities in Section 2.14 (on page 2334), the results are undefined.

argument A string to pass as an argument for the invoked utility.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of env:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

2634 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

85059

85060

85061

85062

85063

85064

85065

85066

85067

85068

85069

85070

85071

85072

85073

85074

85075

85076

85077

85078

85079

85080

85081

85082

85083

85084

85085

85086

85087

85088

85089

85090

85091

85092

85093

85094

85095

85096

85097

85098

85099

Utilities env

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PA TH Determine the location of the utility, as described in XBD Chapter 8 (on page 173).
If PA TH is specified as a name=value operand to env, the value given shall be used in
the search for utility.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If no utility operand is specified, each name=value pair in the resulting environment shall be
written in the form:

"%s=%s\n", <name>, <value>

If the utility operand is specified, the env utility shall not write to standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If utility is invoked, the exit status of env shall be the exit status of utility; otherwise, the env
utility shall exit with one of the following values:

0 The env utility completed successfully.

1−125 An error occurred in the env utility.

126 The utility specified by utility was found but could not be invoked.

127 The utility specified by utility could not be found.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The command, env, nice, nohup, time, and xargs utilities have been specified to use exit code 127 if
an error occurs so that applications can distinguish ‘‘failure to find a utility’’ from ‘‘invoked
utility exited with an error indication’’. The value 127 was chosen because it is not commonly
used for other meanings; most utilities use small values for ‘‘normal error conditions’’ and the
values above 128 can be confused with termination due to receipt of a signal. The value 126 was
chosen in a similar manner to indicate that the utility could be found, but not invoked. Some
scripts produce meaningful error messages differentiating the 126 and 127 cases. The distinction
between exit codes 126 and 127 is based on KornShell practice that uses 127 when all attempts to
exec the utility fail with [ENOENT], and uses 126 when any attempt to exec the utility fails for
any other reason.

Historical implementations of the env utility use the execvp() or execlp() functions defined in the
System Interfaces volume of POSIX.1-2008 to invoke the specified utility; this provides better
performance and keeps users from having to escape characters with special meaning to the shell.
Therefore, shell functions, special built-ins, and built-ins that are only provided by the shell are
not found.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2635

85100

85101

85102

85103

85104

85105

85106

85107

85108

85109

85110

85111

85112

85113

85114

85115

85116

85117

85118

85119

85120

85121

85122

85123

85124

85125

85126

85127

85128

85129

85130

85131

85132

85133

85134

85135

85136

85137

85138

85139

85140

85141

env Utilities

EXAMPLES
The following command:

env −i PATH=/mybin:"$PATH" $(getconf V7_ENV) mygrep xyz myfile

invokes the command mygrep with a new PA TH value as the only entry in its environment other
than any variables required by the implementation for conformance. In this case, PA TH is used
to locate mygrep, which is expected to reside in /mybin.

RATIONALE
As with all other utilities that invoke other utilities, this volume of POSIX.1-2008 only specifies
what env does with standard input, standard output, standard error, input files, and output files.
If a utility is executed, it is not constrained by the specification of input and output by env.

The −i option was added to allow the functionality of the removed − option in a manner
compatible with the Utility Syntax Guidelines. It is possible to create a non-conforming
environment using the −i option, as it may remove environment variables required by the
implementation for conformance. The following will preserve these environment variables as
well as preserve the PA TH for conforming utilities:

IFS=’
’
The preceding value should be <space><tab><newline>.
Set IFS to its default value.

set −f
disable pathname expansion

\unalias −a
Unset all possible aliases.
Note that unalias is escaped to prevent an alias
being used for unalias.
This step is not strictly necessary, since aliases are not inherited,
and the ENV environment variable is only used by interactive shells,
the only way any aliases can exist in a script is if it defines them
itself.

unset −f env getconf
Ensure env and getconf are not user functions.

env −i $(getconf V7_ENV) PATH="$(getconf PATH)" command

Some have suggested that env is redundant since the same effect is achieved by:

name=value ... utility [argument ...]

The example is equivalent to env when an environment variable is being added to the
environment of the command, but not when the environment is being set to the given value.
The env utility also writes out the current environment if invoked without arguments. There is
sufficient functionality beyond what the example provides to justify inclusion of env.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14 (on page 2334), Section 2.5 (on page 2301)

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

2636 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

85142

85143

85144

85145

85146

85147

85148

85149

85150

85151

85152

85153

85154

85155

85156

85157

85158

85159

85160

85161

85162

85163

85164

85165

85166

85167

85168

85169

85170

85171

85172

85173

85174

85175

85176

85177

85178

85179

85180

85181

85182

85183

85184

Utilities env

CHANGE HISTORY
First released in Issue 2.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if the first
argument is ’−’.

Austin Group Interpretation 1003.1-2001 #047 is applied, providing RATIONALE on how to use
the env utility to preserve a conforming environment.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The EXAMPLES section is revised to change the use of env −i.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2637

85185

85186

85187

85188

85189

85190

85191

85192

85193

ex Utilities

NAME
ex — text editor

SYNOPSIS
UP ex [−rR] [−s|−v] [−c command] [−t tagstring] [−w size] [file...]

DESCRIPTION
The ex utility is a line-oriented text editor. There are two other modes of the editor—open and
visual—in which screen-oriented editing is available. This is described more fully by the ex open
and visual commands and in vi .

If an operand is ’−’, the results are unspecified.

This section uses the term edit buffer to describe the current working text. No specific
implementation is implied by this term. All editing changes are performed on the edit buffer,
and no changes to it shall affect any file until an editor command writes the file.

Certain terminals do not have all the capabilities necessary to support the complete ex definition,
such as the full-screen editing commands (visual mode or open mode). When these commands
cannot be supported on such terminals, this condition shall not produce an error message such
as ‘‘not an editor command’’ or report a syntax error. The implementation may either accept the
commands and produce results on the screen that are the result of an unsuccessful attempt to
meet the requirements of this volume of POSIX.1-2008 or report an error describing the terminal-
related deficiency.

OPTIONS
The ex utility shall conform to XBD Section 12.2 (on page 215), except for the unspecified usage
of ’−’, and that ’+’ may be recognized as an option delimiter as well as ’−’.

The following options shall be supported:

−c command Specify an initial command to be executed in the first edit buffer loaded from an
existing file (see the EXTENDED DESCRIPTION section). Implementations may
support more than a single −c option. In such implementations, the specified
commands shall be executed in the order specified on the command line.

−r Recover the named files (see the EXTENDED DESCRIPTION section). Recovery
information for a file shall be saved during an editor or system crash (for example,
when the editor is terminated by a signal which the editor can catch), or after the
use of an ex preserve command.

A crash in this context is an unexpected failure of the system or utility that requires
restarting the failed system or utility. A system crash implies that any utilities
running at the time also crash. In the case of an editor or system crash, the number
of changes to the edit buffer (since the most recent preserve command) that will be
recovered is unspecified.

If no file operands are given and the −t option is not specified, all other options, the
EXINIT variable, and any .exrc files shall be ignored; a list of all recoverable files
available to the invoking user shall be written, and the editor shall exit normally
without further action.

−R Set readonly edit option.

−s Prepare ex for batch use by taking the following actions:

2638 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

85194

85195

85196

85197

85198

85199

85200

85201

85202

85203

85204

85205

85206

85207

85208

85209

85210

85211

85212

85213

85214

85215

85216

85217

85218

85219

85220

85221

85222

85223

85224

85225

85226

85227

85228

85229

85230

85231

85232

85233

85234

85235

Utilities ex

• Suppress writing prompts and informational (but not diagnostic) messages.

• Ignore the value of TERM and any implementation default terminal type and
assume the terminal is a type incapable of supporting open or visual modes;
see the visual command and the description of vi .

• Suppress the use of the EXINIT environment variable and the reading of any
.exrc file; see the EXTENDED DESCRIPTION section.

• Suppress autoindentation, ignoring the value of the autoindent edit option.

−t tagstring Edit the file containing the specified tagstring; see ctags . The tags feature
represented by −t tagstring and the tag command is optional. It shall be provided
on any system that also provides a conforming implementation of ctags; otherwise,
the use of −t produces undefined results. On any system, it shall be an error to
specify more than a single −t option.

−v Begin in visual mode (see vi).

−w size Set the value of the window editor option to size.

OPERANDS
The following operand shall be supported:

file A pathname of a file to be edited.

STDIN
The standard input consists of a series of commands and input text, as described in the
EXTENDED DESCRIPTION section. The implementation may limit each line of standard input
to a length of {LINE_MAX}.

If the standard input is not a terminal device, it shall be as if the −s option had been specified.

If a read from the standard input returns an error, or if the editor detects an end-of-file condition
from the standard input, it shall be equivalent to a SIGHUP asynchronous event.

INPUT FILES
Input files shall be text files or files that would be text files except for an incomplete last line that
is not longer than {LINE_MAX}−1 bytes in length and contains no NUL characters. By default,
any incomplete last line shall be treated as if it had a trailing <newline>. The editing of other
forms of files may optionally be allowed by ex implementations.

The .exrc files and source files shall be text files consisting of ex commands; see the EXTENDED
DESCRIPTION section.

By default, the editor shall read lines from the files to be edited without interpreting any of those
lines as any form of editor command.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ex:

COLUMNS Override the system-selected horizontal screen size. See XBD Chapter 8 (on page
173) for valid values and results when it is unset or null.

EXINIT Determine a list of ex commands that are executed on editor start-up. See the
EXTENDED DESCRIPTION section for more details of the initialization phase.

HOME Determine a pathname of a directory that shall be searched for an editor start-up
file named .exrc; see the EXTENDED DESCRIPTION section.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2639

85236

85237

85238

85239

85240

85241

85242

85243

85244

85245

85246

85247

85248

85249

85250

85251

85252

85253

85254

85255

85256

85257

85258

85259

85260

85261

85262

85263

85264

85265

85266

85267

85268

85269

85270

85271

85272

85273

85274

85275

85276

ex Utilities

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), the behavior of character classes within regular
expressions, the classification of characters as uppercase or lowercase letters, the
case conversion of letters, and the detection of word boundaries.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LINES Override the system-selected vertical screen size, used as the number of lines in a
screenful and the vertical screen size in visual mode. See XBD Chapter 8 (on page
173) for valid values and results when it is unset or null.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PA TH Determine the search path for the shell command specified in the ex editor
commands !, shell, read, and write, and the open and visual mode command !; see
the description of command search and execution in Section 2.9.1.1 (on page 2317).

SHELL Determine the preferred command line interpreter for use as the default value of
the shell edit option.

TERM Determine the name of the terminal type. If this variable is unset or null, an
unspecified default terminal type shall be used.

ASYNCHRONOUS EVENTS
The following term is used in this and following sections to specify command and asynchronous
event actions:

complete write
A complete write is a write of the entire contents of the edit buffer to a file of a type
other than a terminal device, or the saving of the edit buffer caused by the user
executing the ex preserve command. Writing the contents of the edit buffer to a
temporary file that will be removed when the editor exits shall not be considered a
complete write.

The following actions shall be taken upon receipt of signals:

SIGINT If the standard input is not a terminal device, ex shall not write the file or return to
command or text input mode, and shall exit with a non-zero exit status.

Otherwise, if executing an open or visual text input mode command, ex in receipt
of SIGINT shall behave identically to its receipt of the <ESC> character.

Otherwise:

2640 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

85277

85278

85279

85280

85281

85282

85283

85284

85285

85286

85287

85288

85289

85290

85291

85292

85293

85294

85295

85296

85297

85298

85299

85300

85301

85302

85303

85304

85305

85306

85307

85308

85309

85310

85311

85312

85313

85314

85315

85316

85317

85318

Utilities ex

1. If executing an ex text input mode command, all input lines that have been
completely entered shall be resolved into the edit buffer, and any partially
entered line shall be discarded.

2. If there is a currently executing command, it shall be aborted and a message
displayed. Unless otherwise specified by the ex or vi command descriptions,
it is unspecified whether any lines modified by the executing command
appear modified, or as they were before being modified by the executing
command, in the buffer.

If the currently executing command was a motion command, its associated
command shall be discarded.

3. If in open or visual command mode, the terminal shall be alerted.

4. The editor shall then return to command mode.

SIGCONT The screen shall be refreshed if in open or visual mode.

SIGHUP If the edit buffer has been modified since the last complete write, ex shall attempt
to save the edit buffer so that it can be recovered later using the −r option or the ex
recover command. The editor shall not write the file or return to command or text
input mode, and shall terminate with a non-zero exit status.

SIGTERM Refer to SIGHUP.

The action taken for all other signals is unspecified.

STDOUT
The standard output shall be used only for writing prompts to the user, for informational
messages, and for writing lines from the file.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The output from ex shall be text files.

EXTENDED DESCRIPTION
Only the ex mode of the editor is described in this section. See vi for additional editing
capabilities available in ex.

When an error occurs, ex shall write a message. If the terminal supports a standout mode (such
as inverse video), the message shall be written in standout mode. If the terminal does not
support a standout mode, and the edit option errorbells is set, an alert action shall precede the
error message.

By default, ex shall start in command mode, which shall be indicated by a : prompt; see the
prompt command. Text input mode can be entered by the append, insert, or change commands;
it can be exited (and command mode re-entered) by typing a <period> (’.’) alone at the
beginning of a line.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2641

85319

85320

85321

85322

85323

85324

85325

85326

85327

85328

85329

85330

85331

85332

85333

85334

85335

85336

85337

85338

85339

85340

85341

85342

85343

85344

85345

85346

85347

85348

85349

85350

85351

85352

85353

85354

85355

ex Utilities

Initialization in ex and vi

The following symbols are used in this and following sections to specify locations in the edit
buffer:

alternate and current pathnames
Two pathnames, named current and alternate, are maintained by the editor. Any ex
commands that take filenames as arguments shall set them as follows:

1. If a file argument is specified to the ex edit, ex, or recover commands, or if an ex tag
command replaces the contents of the edit buffer.

a. If the command replaces the contents of the edit buffer, the current pathname
shall be set to the file argument or the file indicated by the tag, and the
alternate pathname shall be set to the previous value of the current pathname.

b. Otherwise, the alternate pathname shall be set to the file argument.

2. If a file argument is specified to the ex next command:

a. If the command replaces the contents of the edit buffer, the current pathname
shall be set to the first file argument, and the alternate pathname shall be set to
the previous value of the current pathname.

3. If a file argument is specified to the ex file command, the current pathname shall be
set to the file argument, and the alternate pathname shall be set to the previous value
of the current pathname.

4. If a file argument is specified to the ex read and write commands (that is, when
reading or writing a file, and not to the program named by the shell edit option), or a
file argument is specified to the ex xit command:

a. If the current pathname has no value, the current pathname shall be set to the
file argument.

b. Otherwise, the alternate pathname shall be set to the file argument.

If the alternate pathname is set to the previous value of the current pathname when the
current pathname had no previous value, then the alternate pathname shall have no value
as a result.

current line
The line of the edit buffer referenced by the cursor. Each command description specifies the
current line after the command has been executed, as the current line value. When the edit
buffer contains no lines, the current line shall be zero; see Addressing in ex (on page 2644).

current column
The current display line column occupied by the cursor. (The columns shall be numbered
beginning at 1.) Each command description specifies the current column after the command
has been executed, as the current column value. This column is an ideal column that is
remembered over the lifetime of the editor. The actual display line column upon which the
cursor rests may be different from the current column; see the cursor positioning discussion
in Command Descriptions in vi (on page 3310).

set to non-<blank>
A description for a current column value, meaning that the current column shall be set to
the last display line column on which is displayed any part of the first non-<blank> of the
line. If the line has no non-<blank> non-<newline> characters, the current column shall be
set to the last display line column on which is displayed any part of the last non-<newline>

2642 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

85356

85357

85358

85359

85360

85361

85362

85363

85364

85365

85366

85367

85368

85369

85370

85371

85372

85373

85374

85375

85376

85377

85378

85379

85380

85381

85382

85383

85384

85385

85386

85387

85388

85389

85390

85391

85392

85393

85394

85395

85396

85397

85398

85399

Utilities ex

character in the line. If the line is empty, the current column shall be set to column position
1.

The length of lines in the edit buffer may be limited to {LINE_MAX} bytes. In open and visual
mode, the length of lines in the edit buffer may be limited to the number of characters that will
fit in the display. If either limit is exceeded during editing, an error message shall be written. If
either limit is exceeded by a line read in from a file, an error message shall be written and the
edit session may be terminated.

If the editor stops running due to any reason other than a user command, and the edit buffer has
been modified since the last complete write, it shall be equivalent to a SIGHUP asynchronous
event. If the system crashes, it shall be equivalent to a SIGHUP asynchronous event.

During initialization (before the first file is copied into the edit buffer or any user commands
from the terminal are processed) the following shall occur:

1. If the environment variable EXINIT is set, the editor shall execute the ex commands
contained in that variable.

2. If the EXINIT variable is not set, and all of the following are true:

a. The HOME environment variable is not null and not empty.

b. The file .exrc in the directory referred to by the HOME environment variable:

i. Exists

ii. Is owned by the same user ID as the real user ID of the process or the
process has appropriate privileges

iii. Is not writable by anyone other than the owner

the editor shall execute the ex commands contained in that file.

3. If and only if all of the following are true:

a. The current directory is not referred to by the HOME environment variable.

b. A command in the EXINIT environment variable or a command in the .exrc file in
the directory referred to by the HOME environment variable sets the editor option
exrc.

c. The .exrc file in the current directory:

i. Exists

ii. Is owned by the same user ID as the real user ID of the process, or by one of
a set of implementation-defined user IDs

iii. Is not writable by anyone other than the owner

the editor shall attempt to execute the ex commands contained in that file.

Lines in any .exrc file that are blank lines shall be ignored. If any .exrc file exists, but is not read
for ownership or permission reasons, it shall be an error.

After the EXINIT variable and any .exrc files are processed, the first file specified by the user
shall be edited, as follows:

1. If the user specified the −t option, the effect shall be as if the ex tag command was entered
with the specified argument, with the exception that if tag processing does not result in a
file to edit, the effect shall be as described in step 3. below.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2643

85400

85401

85402

85403

85404

85405

85406

85407

85408

85409

85410

85411

85412

85413

85414

85415

85416

85417

85418

85419

85420

85421

85422

85423

85424

85425

85426

85427

85428

85429

85430

85431

85432

85433

85434

85435

85436

85437

85438

85439

ex Utilities

2. Otherwise, if the user specified any command line file arguments, the effect shall be as if
the ex edit command was entered with the first of those arguments as its file argument.

3. Otherwise, the effect shall be as if the ex edit command was entered with a nonexistent
filename as its file argument. It is unspecified whether this action shall set the current
pathname. In an implementation where this action does not set the current pathname, any
editor command using the current pathname shall fail until an editor command sets the
current pathname.

If the −r option was specified, the first time a file in the initial argument list or a file specified by
the −t option is edited, if recovery information has previously been saved about it, that
information shall be recovered and the editor shall behave as if the contents of the edit buffer
have already been modified. If there are multiple instances of the file to be recovered, the one
most recently saved shall be recovered, and an informational message that there are previous
versions of the file that can be recovered shall be written. If no recovery information about a file
is available, an informational message to this effect shall be written, and the edit shall proceed as
usual.

If the −c option was specified, the first time a file that already exists (including a file that might
not exist but for which recovery information is available, when the −r option is specified)
replaces or initializes the contents of the edit buffer, the current line shall be set to the last line of
the edit buffer, the current column shall be set to non-<blank>, and the ex commands specified
with the −c option shall be executed. In this case, the current line and current column shall not
be set as described for the command associated with the replacement or initialization of the edit
buffer contents. However, if the −t option or a tag command is associated with this action, the −c
option commands shall be executed and then the movement to the tag shall be performed.

The current argument list shall initially be set to the filenames specified by the user on the
command line. If no filenames are specified by the user, the current argument list shall be empty.
If the −t option was specified, it is unspecified whether any filename resulting from tag
processing shall be prepended to the current argument list. In the case where the filename is
added as a prefix to the current argument list, the current argument list reference shall be set to
that filename. In the case where the filename is not added as a prefix to the current argument
list, the current argument list reference shall logically be located before the first of the filenames
specified on the command line (for example, a subsequent ex next command shall edit the first
filename from the command line). If the −t option was not specified, the current argument list
reference shall be to the first of the filenames on the command line.

Addressing in ex

Addressing in ex relates to the current line and the current column; the address of a line is its
1-based line number, the address of a column is its 1-based count from the beginning of the line.
Generally, the current line is the last line affected by a command. The current line number is the
address of the current line. In each command description, the effect of the command on the
current line number and the current column is described.

Addresses are constructed as follows:

1. The character ’.’ (period) shall address the current line.

2. The character ’$’ shall address the last line of the edit buffer.

3. The positive decimal number n shall address the nth line of the edit buffer.

4. The address "’x" refers to the line marked with the mark name character ’x’, which
shall be a lowercase letter from the portable character set, the backquote character, or the
single-quote character. It shall be an error if the line that was marked is not currently

2644 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

85440

85441

85442

85443

85444

85445

85446

85447

85448

85449

85450

85451

85452

85453

85454

85455

85456

85457

85458

85459

85460

85461

85462

85463

85464

85465

85466

85467

85468

85469

85470

85471

85472

85473

85474

85475

85476

85477

85478

85479

85480

85481

85482

85483

85484

85485

Utilities ex

present in the edit buffer or the mark has not been set. Lines can be marked with the ex
mark or k commands, or the vi m command.

5. A regular expression enclosed by <slash> characters (’/’) shall address the first line
found by searching forwards from the line following the current line toward the end of
the edit buffer and stopping at the first line for which the line excluding the terminating
<newline> matches the regular expression. As stated in Regular Expressions in ex (on
page 2675), an address consisting of a null regular expression delimited by <slash>
characters ("//") shall address the next line for which the line excluding the terminating
<newline> matches the last regular expression encountered. In addition, the second
<slash> can be omitted at the end of a command line. If the wrapscan edit option is set,
the search shall wrap around to the beginning of the edit buffer and continue up to and
including the current line, so that the entire edit buffer is searched. Within the regular
expression, the sequence "\/" shall represent a literal <slash> instead of the regular
expression delimiter.

6. A regular expression enclosed in <question-mark> characters (’?’) shall address the first
line found by searching backwards from the line preceding the current line toward the
beginning of the edit buffer and stopping at the first line for which the line excluding the
terminating <newline> matches the regular expression. An address consisting of a null
regular expression delimited by <question-mark> characters ("??") shall address the
previous line for which the line excluding the terminating <newline> matches the last
regular expression encountered. In addition, the second <question-mark> can be omitted
at the end of a command line. If the wrapscan edit option is set, the search shall wrap
around from the beginning of the edit buffer to the end of the edit buffer and continue up
to and including the current line, so that the entire edit buffer is searched. Within the
regular expression, the sequence "\?" shall represent a literal <question-mark> instead
of the RE delimiter.

7. A <plus-sign> (’+’) or a minus-sign (’−’) followed by a decimal number shall address
the current line plus or minus the number. A ’+’ or ’−’ not followed by a decimal
number shall address the current line plus or minus 1.

Addresses can be followed by zero or more address offsets, optionally <blank>-separated.
Address offsets are constructed as follows:

1. A ’+’ or ’−’ immediately followed by a decimal number shall add (subtract) the
indicated number of lines to (from) the address. A ’+’ or ’−’ not followed by a decimal
number shall add (subtract) 1 to (from) the address.

2. A decimal number shall add the indicated number of lines to the address.

It shall not be an error for an intermediate address value to be less than zero or greater than the
last line in the edit buffer. It shall be an error for the final address value to be less than zero or
greater than the last line in the edit buffer.

Commands take zero, one, or two addresses; see the descriptions of 1addr and 2addr in
Command Descriptions in ex (on page 2651). If more than the required number of addresses are
provided to a command that requires zero addresses, it shall be an error. Otherwise, if more than
the required number of addresses are provided to a command, the addresses specified first shall
be evaluated and then discarded until the maximum number of valid addresses remain.

Addresses shall be separated from each other by a <comma> (’,’) or a <semicolon> (’;’). If
no address is specified before or after a <comma> or <semicolon> separator, it shall be as if the
address of the current line was specified before or after the separator. In the case of a
<semicolon> separator, the current line (’.’) shall be set to the first address, and only then will

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2645

85486

85487

85488

85489

85490

85491

85492

85493

85494

85495

85496

85497

85498

85499

85500

85501

85502

85503

85504

85505

85506

85507

85508

85509

85510

85511

85512

85513

85514

85515

85516

85517

85518

85519

85520

85521

85522

85523

85524

85525

85526

85527

85528

85529

85530

85531

85532

ex Utilities

the next address be calculated. This feature can be used to determine the starting line for
forwards and backwards searches (see rules 5. and 6.).

A <percent-sign> (’%’) shall be equivalent to entering the two addresses "1,$".

Any delimiting <blank> characters between addresses, address separators, or address offsets
shall be discarded.

Command Line Parsing in ex

The following symbol is used in this and following sections to describe parsing behavior:

escape If a character is referred to as ‘‘<backslash>-escaped’’ or ‘‘<control>-V-escaped’’, it
shall mean that the character acquired or lost a special meaning by virtue of being
preceded, respectively, by a <backslash> or <control>-V character. Unless
otherwise specified, the escaping character shall be discarded at that time and shall
not be further considered for any purpose.

Command-line parsing shall be done in the following steps. For each step, characters already
evaluated shall be ignored; that is, the phrase ‘‘leading character’’ refers to the next character
that has not yet been evaluated.

1. Leading <colon> characters shall be skipped.

2. Leading <blank> characters shall be skipped.

3. If the leading character is a double-quote character, the characters up to and including the
next non-<backslash>-escaped <newline> shall be discarded, and any subsequent
characters shall be parsed as a separate command.

4. Leading characters that can be interpreted as addresses shall be evaluated; see
Addressing in ex (on page 2644).

5. Leading <blank> characters shall be skipped.

6. If the next character is a <vertical-line> character or a <newline>:

a. If the next character is a <newline>:

i. If ex is in open or visual mode, the current line shall be set to the last
address specified, if any.

ii. Otherwise, if the last command was terminated by a <vertical-line>
character, no action shall be taken; for example, the command
"||<newline>" shall execute two implied commands, not three.

iii. Otherwise, step 6.b. shall apply.

b. Otherwise, the implied command shall be the print command. The last #, p, and l
flags specified to any ex command shall be remembered and shall apply to this
implied command. Executing the ex number, print, or list command shall set the
remembered flags to #, nothing, and l, respectively, plus any other flags specified
for that execution of the number, print, or list command.

If ex is not currently performing a global or v command, and no address or count
is specified, the current line shall be incremented by 1 before the command is
executed. If incrementing the current line would result in an address past the last
line in the edit buffer, the command shall fail, and the increment shall not happen.

2646 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

85533

85534

85535

85536

85537

85538

85539

85540

85541

85542

85543

85544

85545

85546

85547

85548

85549

85550

85551

85552

85553

85554

85555

85556

85557

85558

85559

85560

85561

85562

85563

85564

85565

85566

85567

85568

85569

85570

85571

85572

Utilities ex

c. The <newline> or <vertical-line> character shall be discarded and any subsequent
characters shall be parsed as a separate command.

7. The command name shall be comprised of the next character (if the character is not
alphabetic), or the next character and any subsequent alphabetic characters (if the
character is alphabetic), with the following exceptions:

a. Commands that consist of any prefix of the characters in the command name
delete, followed immediately by any of the characters ’l’, ’p’, ’+’, ’−’, or ’#’
shall be interpreted as a delete command, followed by a <blank>, followed by the
characters that were not part of the prefix of the delete command. The maximum
number of characters shall be matched to the command name delete; for example,
"del" shall not be treated as "de" followed by the flag l.

b. Commands that consist of the character ’k’, followed by a character that can be
used as the name of a mark, shall be equivalent to the mark command followed by
a <blank>, followed by the character that followed the ’k’.

c. Commands that consist of the character ’s’, followed by characters that could be
interpreted as valid options to the s command, shall be the equivalent of the s
command, without any pattern or replacement values, followed by a <blank>,
followed by the characters after the ’s’.

8. The command name shall be matched against the possible command names, and a
command name that contains a prefix matching the characters specified by the user shall
be the executed command. In the case of commands where the characters specified by the
user could be ambiguous, the executed command shall be as follows:

a append n next t t
c change p print u undo
ch change pr print un undo
e edit r read v v
m move re read w write
ma mark s s

Implementation extensions with names causing similar ambiguities shall not be checked
for a match until all possible matches for commands specified by POSIX.1-2008 have been
checked.

9. If the command is a ! command, or if the command is a read command followed by zero
or more <blank> characters and a !, or if the command is a write command followed by
one or more <blank> characters and a !, the rest of the command shall include all
characters up to a non-<backslash>-escaped <newline>. The <newline> shall be
discarded and any subsequent characters shall be parsed as a separate ex command.

10. Otherwise, if the command is an edit, ex, or next command, or a visual command while
in open or visual mode, the next part of the command shall be parsed as follows:

a. Any ’!’ character immediately following the command shall be skipped and be
part of the command.

b. Any leading <blank> characters shall be skipped and be part of the command.

c. If the next character is a ’+’, characters up to the first non-<backslash>-escaped
<newline> or non-<backslash>-escaped <blank> shall be skipped and be part of
the command.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2647

85573

85574

85575

85576

85577

85578

85579

85580

85581

85582

85583

85584

85585

85586

85587

85588

85589

85590

85591

85592

85593

85594

85595

85596

85597

85598

85599

85600

85601

85602

85603

85604

85605

85606

85607

85608

85609

85610

85611

85612

85613

85614

85615

85616

ex Utilities

d. The rest of the command shall be determined by the steps specified in paragraph
12.

11. Otherwise, if the command is a global, open, s, or v command, the next part of the
command shall be parsed as follows:

a. Any leading <blank> characters shall be skipped and be part of the command.

b. If the next character is not an alphanumeric, double-quote, <newline>,
<backslash>, or <vertical-line> character:

i. The next character shall be used as a command delimiter.

ii. If the command is a global, open, or v command, characters up to the first
non-<backslash>-escaped <newline>, or first non-<backslash>-escaped
delimiter character, shall be skipped and be part of the command.

iii. If the command is an s command, characters up to the first
non-<backslash>-escaped <newline>, or second non-<backslash>-escaped
delimiter character, shall be skipped and be part of the command.

c. If the command is a global or v command, characters up to the first
non-<backslash>-escaped <newline> shall be skipped and be part of the
command.

d. Otherwise, the rest of the command shall be determined by the steps specified in
paragraph 12.

12. Otherwise:

a. If the command was a map, unmap, abbreviate, or unabbreviate command,
characters up to the first non-<control>-V-escaped <newline>, <vertical-line>, or
double-quote character shall be skipped and be part of the command.

b. Otherwise, characters up to the first non-<backslash>-escaped <newline>,
<vertical-line>, or double-quote character shall be skipped and be part of the
command.

c. If the command was an append, change, or insert command, and the step 12.b.
ended at a <vertical-line> character, any subsequent characters, up to the next
non-<backslash>-escaped <newline> shall be used as input text to the command.

d. If the command was ended by a double-quote character, all subsequent characters,
up to the next non-<backslash>-escaped <newline>, shall be discarded.

e. The terminating <newline> or <vertical-line> character shall be discarded and any
subsequent characters shall be parsed as a separate ex command.

Command arguments shall be parsed as described by the Synopsis and Description of each
individual ex command. This parsing shall not be <blank>-sensitive, except for the ! argument,
which must follow the command name without intervening <blank> characters, and where it
would otherwise be ambiguous. For example, count and flag arguments need not be
<blank>-separated because "d22p" is not ambiguous, but file arguments to the ex next
command must be separated by one or more <blank> characters. Any <blank> in command
arguments for the abbreviate, unabbreviate, map, and unmap commands can be
<control>-V-escaped, in which case the <blank> shall not be used as an argument delimiter. Any
<blank> in the command argument for any other command can be <backslash>-escaped, in
which case that <blank> shall not be used as an argument delimiter.

Within command arguments for the abbreviate, unabbreviate, map, and unmap commands,

2648 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

85617

85618

85619

85620

85621

85622

85623

85624

85625

85626

85627

85628

85629

85630

85631

85632

85633

85634

85635

85636

85637

85638

85639

85640

85641

85642

85643

85644

85645

85646

85647

85648

85649

85650

85651

85652

85653

85654

85655

85656

85657

85658

85659

85660

Utilities ex

any character can be <control>-V-escaped. All such escaped characters shall be treated literally
and shall have no special meaning. Within command arguments for all other ex commands that
are not regular expressions or replacement strings, any character that would otherwise have a
special meaning can be <backslash>-escaped. Escaped characters shall be treated literally,
without special meaning as shell expansion characters or ’!’, ’%’, and ’#’ expansion
characters. See Regular Expressions in ex (on page 2675) and Replacement Strings in ex (on page
2676) for descriptions of command arguments that are regular expressions or replacement
strings.

Non-<backslash>-escaped ’%’ characters appearing in file arguments to any ex command shall
be replaced by the current pathname; unescaped ’#’ characters shall be replaced by the
alternate pathname. It shall be an error if ’%’ or ’#’ characters appear unescaped in an
argument and their corresponding values are not set.

Non-<backslash>-escaped ’!’ characters in the arguments to either the ex ! command or the
open and visual mode ! command, or in the arguments to the ex read command, where the first
non-<blank> after the command name is a ’!’ character, or in the arguments to the ex write
command where the command name is followed by one or more <blank> characters and the
first non-<blank> after the command name is a ’!’ character, shall be replaced with the
arguments to the last of those three commands as they appeared after all unescaped ’%’, ’#’,
and ’!’ characters were replaced. It shall be an error if ’!’ characters appear unescaped in one
of these commands and there has been no previous execution of one of these commands.

If an error occurs during the parsing or execution of an ex command:

• An informational message to this effect shall be written. Execution of the ex command shall
stop, and the cursor (for example, the current line and column) shall not be further
modified.

• If the ex command resulted from a map expansion, all characters from that map expansion
shall be discarded, except as otherwise specified by the map command.

• Otherwise, if the ex command resulted from the processing of an EXINIT environment
variable, a .exrc file, a :source command, a −c option, or a +command specified to an ex edit,
ex, next, or visual command, no further commands from the source of the commands shall
be executed.

• Otherwise, if the ex command resulted from the execution of a buffer or a global or v
command, no further commands caused by the execution of the buffer or the global or v
command shall be executed.

• Otherwise, if the ex command was not terminated by a <newline>, all characters up to and
including the next non-<backslash>-escaped <newline> shall be discarded.

Input Editing in ex

The following symbol is used in this and the following sections to specify command actions:

word In the POSIX locale, a word consists of a maximal sequence of letters, digits, and
underscores, delimited at both ends by characters other than letters, digits, or
underscores, or by the beginning or end of a line or the edit buffer.

When accepting input characters from the user, in either ex command mode or ex text input
mode, ex shall enable canonical mode input processing, as defined in the System Interfaces
volume of POSIX.1-2008.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2649

85661

85662

85663

85664

85665

85666

85667

85668

85669

85670

85671

85672

85673

85674

85675

85676

85677

85678

85679

85680

85681

85682

85683

85684

85685

85686

85687

85688

85689

85690

85691

85692

85693

85694

85695

85696

85697

85698

85699

85700

85701

85702

85703

ex Utilities

If in ex text input mode:

1. If the number edit option is set, ex shall prompt for input using the line number that
would be assigned to the line if it is entered, in the format specified for the ex number
command.

2. If the autoindent edit option is set, ex shall prompt for input using autoindent characters,
as described by the autoindent edit option. autoindent characters shall follow the line
number, if any.

If in ex command mode:

1. If the prompt edit option is set, input shall be prompted for using a single ’:’ character;
otherwise, there shall be no prompt.

The input characters in the following sections shall have the following effects on the input line.

Scroll

Synopsis: eof

See the description of the stty eof character in stty .

If in ex command mode:

If the eof character is the first character entered on the line, the line shall be evaluated as if
it contained two characters: a <control>-D and a <newline>.

Otherwise, the eof character shall have no special meaning.

If in ex text input mode:

If the cursor follows an autoindent character, the autoindent characters in the line shall be
modified so that a part of the next text input character will be displayed on the first
column in the line after the previous shiftwidth edit option column boundary, and the
user shall be prompted again for input for the same line.

Otherwise, if the cursor follows a ’0’, which follows an autoindent character, and the ’0’
was the previous text input character, the ’0’ and all autoindent characters in the line
shall be discarded, and the user shall be prompted again for input for the same line.

Otherwise, if the cursor follows a ’ˆ’, which follows an autoindent character, and the ’ˆ’
was the previous text input character, the ’ˆ’ and all autoindent characters in the line
shall be discarded, and the user shall be prompted again for input for the same line. In
addition, the autoindent level for the next input line shall be derived from the same line
from which the autoindent level for the current input line was derived.

Otherwise, if there are no autoindent or text input characters in the line, the eof character
shall be discarded.

Otherwise, the eof character shall have no special meaning.

2650 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

85704

85705

85706

85707

85708

85709

85710

85711

85712

85713

85714

85715

85716

85717

85718

85719

85720

85721

85722

85723

85724

85725

85726

85727

85728

85729

85730

85731

85732

85733

85734

85735

85736

85737

Utilities ex

<newline>

Synopsis: <newline>
<control>-J

If in ex command mode:

Cause the command line to be parsed; <control>-J shall be mapped to the <newline> for
this purpose.

If in ex text input mode:

Terminate the current line. If there are no characters other than autoindent characters on
the line, all characters on the line shall be discarded.

Prompt for text input on a new line after the current line. If the autoindent edit option is
set, an appropriate number of autoindent characters shall be added as a prefix to the line
as described by the ex autoindent edit option.

<backslash>

Synopsis: <backslash>

Allow the entry of a subsequent <newline> or <control>-J as a literal character, removing any
special meaning that it may have to the editor during text input mode. The <backslash>
character shall be retained and evaluated when the command line is parsed, or retained and
included when the input text becomes part of the edit buffer.

<control>-V

Synopsis: <control>-V

Allow the entry of any subsequent character as a literal character, removing any special meaning
that it may have to the editor during text input mode. The <control>-V character shall be
discarded before the command line is parsed or the input text becomes part of the edit buffer.

If the ‘‘literal next’’ functionality is performed by the underlying system, it is implementation-
defined whether a character other than <control>-V performs this function.

<control>-W

Synopsis: <control>-W

Discard the <control>-W, and the word previous to it in the input line, including any <blank>
characters following the word and preceding the <control>-W. If the ‘‘word erase’’ functionality
is performed by the underlying system, it is implementation-defined whether a character other
than <control>-W performs this function.

Command Descriptions in ex

The following symbols are used in this section to represent command modifiers. Some of these
modifiers can be omitted, in which case the specified defaults shall be used.

1addr A single line address, given in any of the forms described in Addressing in ex (on
page 2644); the default shall be the current line (’.’), unless otherwise specified.

If the line address is zero, it shall be an error, unless otherwise specified in the
following command descriptions.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2651

85738

85739

85740

85741

85742

85743

85744

85745

85746

85747

85748

85749

85750

85751

85752

85753

85754

85755

85756

85757

85758

85759

85760

85761

85762

85763

85764

85765

85766

85767

85768

85769

85770

85771

85772

85773

85774

85775

ex Utilities

If the edit buffer is empty, and the address is specified with a command other than
=, append, insert, open, put, read, or visual, or the address is not zero, it shall be
an error.

2addr Two addresses specifying an inclusive range of lines. If no addresses are specified,
the default for 2addr shall be the current line only (".,."), unless otherwise
specified in the following command descriptions. If one address is specified, 2addr
shall specify that line only, unless otherwise specified in the following command
descriptions.

It shall be an error if the first address is greater than the second address.

If the edit buffer is empty, and the two addresses are specified with a command
other than the !, write, wq, or xit commands, or either address is not zero, it shall
be an error.

count A positive decimal number. If count is specified, it shall be equivalent to specifying
an additional address to the command, unless otherwise specified by the following
command descriptions. The additional address shall be equal to the last address
specified to the command (either explicitly or by default) plus count−1.

If this would result in an address greater than the last line of the edit buffer, it shall
be corrected to equal the last line of the edit buffer.

flags One or more of the characters ’+’, ’−’, ’#’, ’p’, or ’l’ (ell). The flag characters
can be <blank>-separated, and in any order or combination. The characters ’#’,
’p’, and ’l’ shall cause lines to be written in the format specified by the print
command with the specified flags.

The lines to be written are as follows:

1. All edit buffer lines written during the execution of the ex &, ˜, list, number,
open, print, s, visual, and z commands shall be written as specified by flags.

2. After the completion of an ex command with a flag as an argument, the
current line shall be written as specified by flags, unless the current line was
the last line written by the command.

The characters ’+’ and ’−’ cause the value of the current line after the execution
of the ex command to be adjusted by the offset address as described in Addressing
in ex (on page 2644). This adjustment shall occur before the current line is written
as described in 2. above.

The default for flags shall be none.

buffer One of a number of named areas for holding text. The named buffers are specified
by the alphanumeric characters of the POSIX locale. There shall also be one
‘‘unnamed’’ buffer. When no buffer is specified for editor commands that use a
buffer, the unnamed buffer shall be used. Commands that store text into buffers
shall store the text as it was before the command took effect, and shall store text
occurring earlier in the file before text occurring later in the file, regardless of how
the text region was specified. Commands that store text into buffers shall store the
text into the unnamed buffer as well as any specified buffer.

In ex commands, buffer names are specified as the name by itself. In open or visual
mode commands the name is preceded by a double-quote (’"’) character.

If the specified buffer name is an uppercase character, and the buffer contents are
to be modified, the buffer shall be appended to rather than being overwritten. If

2652 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

85776

85777

85778

85779

85780

85781

85782

85783

85784

85785

85786

85787

85788

85789

85790

85791

85792

85793

85794

85795

85796

85797

85798

85799

85800

85801

85802

85803

85804

85805

85806

85807

85808

85809

85810

85811

85812

85813

85814

85815

85816

85817

85818

85819

85820

Utilities ex

the buffer is not being modified, specifying the buffer name in lowercase and
uppercase shall have identical results.

There shall also be buffers named by the numbers 1 through 9. In open and visual
mode, if a region of text including characters from more than a single line is being
modified by the vi c or d commands, the motion character associated with the c or
d commands specifies that the buffer text shall be in line mode, or the commands
%, ‘, /, ?, (,), N, n, {, or } are used to define a region of text for the c or d commands,
the contents of buffers 1 through 8 shall be moved into the buffer named by the
next numerically greater value, the contents of buffer 9 shall be discarded, and the
region of text shall be copied into buffer 1. This shall be in addition to copying the
text into a user-specified buffer or unnamed buffer, or both. Numeric buffers can
be specified as a source buffer for open and visual mode commands; however,
specifying a numeric buffer as the write target of an open or visual mode
command shall have unspecified results.

The text of each buffer shall have the characteristic of being in either line or
character mode. Appending text to a non-empty buffer shall set the mode to match
the characteristic of the text being appended. Appending text to a buffer shall
cause the creation of at least one additional line in the buffer. All text stored into
buffers by ex commands shall be in line mode. The ex commands that use buffers
as the source of text specify individually how buffers of different modes are
handled. Each open or visual mode command that uses buffers for any purpose
specifies individually the mode of the text stored into the buffer and how buffers
of different modes are handled.

file Command text used to derive a pathname. The default shall be the current
pathname, as defined previously, in which case, if no current pathname has yet
been established it shall be an error, except where specifically noted in the
individual command descriptions that follow. If the command text contains any of
the characters ’˜’, ’{’, ’[’, ’*’, ’?’, ’$’, ’"’, backquote, single-quote, and
<backslash>, it shall be subjected to the process of ‘‘shell expansions’’, as described
below; if more than a single pathname results and the command expects only one,
it shall be an error.

The process of shell expansions in the editor shall be done as follows. The ex utility
shall pass two arguments to the program named by the shell edit option; the first
shall be −c, and the second shall be the string "echo" and the command text as a
single argument. The standard output and standard error of that command shall
replace the command text.

! A character that can be appended to the command name to modify its operation,
as detailed in the individual command descriptions. With the exception of the ex
read, write, and ! commands, the ’!’ character shall only act as a modifier if there
are no <blank> characters between it and the command name.

remembered search direction
The vi commands N and n begin searching in a forwards or backwards direction in
the edit buffer based on a remembered search direction, which is initially unset,
and is set by the ex global, v, s, and tag commands, and the vi / and ? commands.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2653

85821

85822

85823

85824

85825

85826

85827

85828

85829

85830

85831

85832

85833

85834

85835

85836

85837

85838

85839

85840

85841

85842

85843

85844

85845

85846

85847

85848

85849

85850

85851

85852

85853

85854

85855

85856

85857

85858

85859

85860

85861

85862

85863

85864

ex Utilities

Abbreviate

Synopsis: ab[breviate][lhs rhs]

If lhs and rhs are not specified, write the current list of abbreviations and do nothing more.

Implementations may restrict the set of characters accepted in lhs or rhs, except that printable
characters and <blank> characters shall not be restricted. Additional restrictions shall be
implementation-defined.

In both lhs and rhs, any character may be escaped with a <control>-V, in which case the character
shall not be used to delimit lhs from rhs, and the escaping <control>-V shall be discarded.

In open and visual text input mode, if a non-word or <ESC> character that is not escaped by a
<control>-V character is entered after a word character, a check shall be made for a set of
characters matching lhs, in the text input entered during this command. If it is found, the effect
shall be as if rhs was entered instead of lhs.

The set of characters that are checked is defined as follows:

1. If there are no characters inserted before the word and non-word or <ESC> characters
that triggered the check, the set of characters shall consist of the word character.

2. If the character inserted before the word and non-word or <ESC> characters that
triggered the check is a word character, the set of characters shall consist of the characters
inserted immediately before the triggering characters that are word characters, plus the
triggering word character.

3. If the character inserted before the word and non-word or <ESC> characters that
triggered the check is not a word character, the set of characters shall consist of the
characters that were inserted before the triggering characters that are neither <blank>
characters nor word characters, plus the triggering word character.

It is unspecified whether the lhs argument entered for the ex abbreviate and unabbreviate
commands is replaced in this fashion. Regardless of whether or not the replacement occurs, the
effect of the command shall be as if the replacement had not occurred.

Current line: Unchanged.

Current column: Unchanged.

Append

Synopsis: [1addr] a[ppend][!]

Enter ex text input mode; the input text shall be placed after the specified line. If line zero is
specified, the text shall be placed at the beginning of the edit buffer.

This command shall be affected by the number and autoindent edit options; following the
command name with ’!’ shall cause the autoindent edit option setting to be toggled for the
duration of this command only.

Current line: Set to the last input line; if no lines were input, set to the specified line, or to the first
line of the edit buffer if a line of zero was specified, or zero if the edit buffer is empty.

Current column: Set to non-<blank>.

2654 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

85865

85866

85867

85868

85869

85870

85871

85872

85873

85874

85875

85876

85877

85878

85879

85880

85881

85882

85883

85884

85885

85886

85887

85888

85889

85890

85891

85892

85893

85894

85895

85896

85897

85898

85899

85900

85901

85902

Utilities ex

Arguments

Synopsis: ar[gs]

Write the current argument list, with the current argument-list entry, if any, between ’[’ and
’]’ characters.

Current line: Unchanged.

Current column: Unchanged.

Change

Synopsis: [2addr] c[hange][!][count]

Enter ex text input mode; the input text shall replace the specified lines. The specified lines shall
be copied into the unnamed buffer, which shall become a line mode buffer.

This command shall be affected by the number and autoindent edit options; following the
command name with ’!’ shall cause the autoindent edit option setting to be toggled for the
duration of this command only.

Current line: Set to the last input line; if no lines were input, set to the line before the first
address, or to the first line of the edit buffer if there are no lines preceding the first address, or to
zero if the edit buffer is empty.

Current column: Set to non-<blank>.

Change Directory

Synopsis: chd[ir][!][directory]
cd[!][directory]

Change the current working directory to directory.

If no directory argument is specified, and the HOME environment variable is set to a non-null
and non-empty value, directory shall default to the value named in the HOME environment
variable. If the HOME environment variable is empty or is undefined, the default value of
directory is implementation-defined.

If no ’!’ is appended to the command name, and the edit buffer has been modified since the
last complete write, and the current pathname does not begin with a ’/’, it shall be an error.

Current line: Unchanged.

Current column: Unchanged.

Copy

Synopsis: [2addr] co[py] 1addr [flags]

[2addr] t 1addr [flags]

Copy the specified lines after the specified destination line; line zero specifies that the lines shall
be placed at the beginning of the edit buffer.

Current line: Set to the last line copied.

Current column: Set to non-<blank>.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2655

85903

85904

85905

85906

85907

85908

85909

85910

85911

85912

85913

85914

85915

85916

85917

85918

85919

85920

85921

85922

85923

85924

85925

85926

85927

85928

85929

85930

85931

85932

85933

85934

85935

85936

85937

85938

ex Utilities

Delete

Synopsis: [2addr] d[elete][buffer][count][flags]

Delete the specified lines into a buffer (defaulting to the unnamed buffer), which shall become a
line-mode buffer.

Flags can immediately follow the command name; see Command Line Parsing in ex (on page
2646).

Current line: Set to the line following the deleted lines, or to the last line in the edit buffer if that
line is past the end of the edit buffer, or to zero if the edit buffer is empty.

Current column: Set to non-<blank>.

Edit

Synopsis: e[dit][!][+command][file]
ex[!][+command][file]

If no ’!’ is appended to the command name, and the edit buffer has been modified since the
last complete write, it shall be an error.

If file is specified, replace the current contents of the edit buffer with the current contents of file,
and set the current pathname to file. If file is not specified, replace the current contents of the
edit buffer with the current contents of the file named by the current pathname. If for any reason
the current contents of the file cannot be accessed, the edit buffer shall be empty.

The +command option shall be <blank>-delimited; <blank> characters within the +command can
be escaped by preceding them with a <backslash> character. The +command shall be interpreted
as an ex command immediately after the contents of the edit buffer have been replaced and the
current line and column have been set.

If the edit buffer is empty:

Current line: Set to 0.

Current column: Set to 1.

Otherwise, if executed while in ex command mode or if the +command argument is specified:

Current line: Set to the last line of the edit buffer.

Current column: Set to non-<blank>.

Otherwise, if file is omitted or results in the current pathname:

Current line: Set to the first line of the edit buffer.

Current column: Set to non-<blank>.

Otherwise, if file is the same as the last file edited, the line and column shall be set as follows; if
the file was previously edited, the line and column may be set as follows:

Current line: Set to the last value held when that file was last edited. If this value is not a valid
line in the new edit buffer, set to the first line of the edit buffer.

Current column: If the current line was set to the last value held when the file was last edited, set
to the last value held when the file was last edited. Otherwise, or if the last value is not a valid
column in the new edit buffer, set to non-<blank>.

2656 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

85939

85940

85941

85942

85943

85944

85945

85946

85947

85948

85949

85950

85951

85952

85953

85954

85955

85956

85957

85958

85959

85960

85961

85962

85963

85964

85965

85966

85967

85968

85969

85970

85971

85972

85973

85974

85975

85976

Utilities ex

Otherwise:

Current line: Set to the first line of the edit buffer.

Current column: Set to non-<blank>.

File

Synopsis: f[ile][file]

If a file argument is specified, the alternate pathname shall be set to the current pathname, and
the current pathname shall be set to file.

Write an informational message. If the file has a current pathname, it shall be included in this
message; otherwise, the message shall indicate that there is no current pathname. If the edit
buffer contains lines, the current line number and the number of lines in the edit buffer shall be
included in this message; otherwise, the message shall indicate that the edit buffer is empty. If
the edit buffer has been modified since the last complete write, this fact shall be included in this
message. If the readonly edit option is set, this fact shall be included in this message. The
message may contain other unspecified information.

Current line: Unchanged.

Current column: Unchanged.

Global

Synopsis: [2addr] g[lobal] /pattern/ [commands]

[2addr] v /pattern/ [commands]

The optional ’!’ character after the global command shall be the same as executing the v
command.

If pattern is empty (for example, "//") or not specified, the last regular expression used in the
editor command shall be used as the pattern. The pattern can be delimited by <slash> characters
(shown in the Synopsis), as well as any non-alphanumeric or non-<blank> other than
<backslash>, <vertical-line>, <newline>, or double-quote.

If no lines are specified, the lines shall default to the entire file.

The global and v commands are logically two-pass operations. First, mark the lines within the
specified lines for which the line excluding the terminating <newline> matches (global) or does
not match (v or global!) the specified pattern. Second, execute the ex commands given by
commands, with the current line (’.’) set to each marked line. If an error occurs during this
process, or the contents of the edit buffer are replaced (for example, by the ex :edit command) an
error message shall be written and no more commands resulting from the execution of this
command shall be processed.

Multiple ex commands can be specified by entering multiple commands on a single line using a
<vertical-line> to delimit them, or one per line, by escaping each <newline> with a <backslash>.

If no commands are specified:

1. If in ex command mode, it shall be as if the print command were specified.

2. Otherwise, no command shall be executed.

For the append, change, and insert commands, the input text shall be included as part of the
command, and the terminating <period> can be omitted if the command ends the list of
commands. The open and visual commands can be specified as one of the commands, in which

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2657

85977

85978

85979

85980

85981

85982

85983

85984

85985

85986

85987

85988

85989

85990

85991

85992

85993

85994

85995

85996

85997

85998

85999

86000

86001

86002

86003

86004

86005

86006

86007

86008

86009

86010

86011

86012

86013

86014

86015

86016

86017

ex Utilities

case each marked line shall cause the editor to enter open or visual mode. If open or visual mode
is exited using the vi Q command, the current line shall be set to the next marked line, and open
or visual mode reentered, until the list of marked lines is exhausted.

The global, v, and undo commands cannot be used in commands. Marked lines may be deleted
by commands executed for lines occurring earlier in the file than the marked lines. In this case,
no commands shall be executed for the deleted lines.

If the remembered search direction is not set, the global and v commands shall set it to forward.

The autoprint and autoindent edit options shall be inhibited for the duration of the g or v
command.

Current line: If no commands executed, set to the last marked line. Otherwise, as specified for the
executed ex commands.

Current column: If no commands are executed, set to non-<blank>; otherwise, as specified for the
individual ex commands.

Insert

Synopsis: [1addr] i[nsert][!]

Enter ex text input mode; the input text shall be placed before the specified line. If the line is zero
or 1, the text shall be placed at the beginning of the edit buffer.

This command shall be affected by the number and autoindent edit options; following the
command name with ’!’ shall cause the autoindent edit option setting to be toggled for the
duration of this command only.

Current line: Set to the last input line; if no lines were input, set to the line before the specified
line, or to the first line of the edit buffer if there are no lines preceding the specified line, or zero
if the edit buffer is empty.

Current column: Set to non-<blank>.

Join

Synopsis: [2addr] j[oin][!][count][flags]

If count is specified:

If no address was specified, the join command shall behave as if 2addr were the current
line and the current line plus count (. , . + count).

If one address was specified, the join command shall behave as if 2addr were the specified
address and the specified address plus count (addr,addr + count).

If two addresses were specified, the join command shall behave as if an additional
address, equal to the last address plus count −1 (addr1,addr2,addr2 + count −1), was
specified.

If this would result in a second address greater than the last line of the edit buffer, it shall
be corrected to be equal to the last line of the edit buffer.

If no count is specified:

2658 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

86018

86019

86020

86021

86022

86023

86024

86025

86026

86027

86028

86029

86030

86031

86032

86033

86034

86035

86036

86037

86038

86039

86040

86041

86042

86043

86044

86045

86046

86047

86048

86049

86050

86051

86052

86053

86054

Utilities ex

If no address was specified, the join command shall behave as if 2addr were the current
line and the next line (. , . +1).

If one address was specified, the join command shall behave as if 2addr were the specified
address and the next line (addr,addr +1).

Join the text from the specified lines together into a single line, which shall replace the specified
lines.

If a ’!’ character is appended to the command name, the join shall be without modification of
any line, independent of the current locale.

Otherwise, in the POSIX locale, set the current line to the first of the specified lines, and then, for
each subsequent line, proceed as follows:

1. Discard leading <space> characters from the line to be joined.

2. If the line to be joined is now empty, delete it, and skip steps 3 through 5.

3. If the current line ends in a <blank>, or the first character of the line to be joined is a ’)’
character, join the lines without further modification.

4. If the last character of the current line is a ’.’, join the lines with two <space> characters
between them.

5. Otherwise, join the lines with a single <space> between them.

Current line: Set to the first line specified.

Current column: Set to non-<blank>.

List

Synopsis: [2addr] l[ist][count][flags]

This command shall be equivalent to the ex command:

[2addr] p[rint][count] l[flags]

See Print (on page 2663).

Map

Synopsis: map[!][lhs rhs]

If lhs and rhs are not specified:

1. If ’!’ is specified, write the current list of text input mode maps.

2. Otherwise, write the current list of command mode maps.

3. Do nothing more.

Implementations may restrict the set of characters accepted in lhs or rhs, except that printable
characters and <blank> characters shall not be restricted. Additional restrictions shall be
implementation-defined. In both lhs and rhs, any character can be escaped with a <control>-V, in
which case the character shall not be used to delimit lhs from rhs, and the escaping <control>-V
shall be discarded.

If the character ’!’ is appended to the map command name, the mapping shall be effective
during open or visual text input mode rather than open or visual command mode. This allows
lhs to have two different map definitions at the same time: one for command mode and one for

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2659

86055

86056

86057

86058

86059

86060

86061

86062

86063

86064

86065

86066

86067

86068

86069

86070

86071

86072

86073

86074

86075

86076

86077

86078

86079

86080

86081

86082

86083

86084

86085

86086

86087

86088

86089

86090

86091

86092

ex Utilities

text input mode.

For command mode mappings:

When the lhs is entered as any part of a vi command in open or visual mode (but not as
part of the arguments to the command), the action shall be as if the corresponding rhs had
been entered.

If any character in the command, other than the first, is escaped using a <control>-V
character, that character shall not be part of a match to an lhs.

It is unspecified whether implementations shall support map commands where the lhs is
more than a single character in length, where the first character of the lhs is printable.

If lhs contains more than one character and the first character is ’#’, followed by a
sequence of digits corresponding to a numbered function key, then when this function key
is typed it shall be mapped to rhs. Characters other than digits following a ’#’ character
also represent the function key named by the characters in the lhs following the ’#’ and
may be mapped to rhs. It is unspecified how function keys are named or what function
keys are supported.

For text input mode mappings:

When the lhs is entered as any part of text entered in open or visual text input modes, the
action shall be as if the corresponding rhs had been entered.

If any character in the input text is escaped using a <control>-V character, that character
shall not be part of a match to an lhs.

It is unspecified whether the lhs text entered for subsequent map or unmap commands is
replaced with the rhs text for the purposes of the screen display; regardless of whether or
not the display appears as if the corresponding rhs text was entered, the effect of the
command shall be as if the lhs text was entered.

If only part of the lhs is entered, it is unspecified how long the editor will wait for additional,
possibly matching characters before treating the already entered characters as not matching the
lhs.

The rhs characters shall themselves be subject to remapping, unless otherwise specified by the
remap edit option, except that if the characters in lhs occur as prefix characters in rhs, those
characters shall not be remapped.

On block-mode terminals, the mapping need not occur immediately (for example, it may occur
after the terminal transmits a group of characters to the system), but it shall achieve the same
results as if it occurred immediately.

Current line: Unchanged.

Current column: Unchanged.

2660 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

86093

86094

86095

86096

86097

86098

86099

86100

86101

86102

86103

86104

86105

86106

86107

86108

86109

86110

86111

86112

86113

86114

86115

86116

86117

86118

86119

86120

86121

86122

86123

86124

86125

86126

86127

Utilities ex

Mark

Synopsis: [1addr] ma[rk] character

[1addr] k character

Implementations shall support character values of a single lowercase letter of the POSIX locale
and the backquote and single-quote characters; support of other characters is implementation-
defined.

If executing the vi m command, set the specified mark to the current line and 1-based numbered
character referenced by the current column, if any; otherwise, column position 1.

Otherwise, set the specified mark to the specified line and 1-based numbered first non-<blank>
non-<newline> in the line, if any; otherwise, the last non-<newline> in the line, if any;
otherwise, column position 1.

The mark shall remain associated with the line until the mark is reset or the line is deleted. If a
deleted line is restored by a subsequent undo command, any marks previously associated with
the line, which have not been reset, shall be restored as well. Any use of a mark not associated
with a current line in the edit buffer shall be an error.

The marks ‘ and ’ shall be set as described previously, immediately before the following events
occur in the editor:

1. The use of ’$’ as an ex address

2. The use of a positive decimal number as an ex address

3. The use of a search command as an ex address

4. The use of a mark reference as an ex address

5. The use of the following open and visual mode commands: <control>-], %, (,), [,], {, }

6. The use of the following open and visual mode commands: ’, G, H, L, M, z if the current
line will change as a result of the command

7. The use of the open and visual mode commands: /, ?, N, ‘, n if the current line or column
will change as a result of the command

8. The use of the ex mode commands: z, undo, global, v

For rules 1., 2., 3., and 4., the ‘ and ’ marks shall not be set if the ex command is parsed as
specified by rule 6.a. in Command Line Parsing in ex (on page 2646).

For rules 5., 6., and 7., the ‘ and ’ marks shall not be set if the commands are used as motion
commands in open and visual mode.

For rules 1., 2., 3., 4., 5., 6., 7., and 8., the ‘ and ’ marks shall not be set if the command fails.

The ‘ and ’ marks shall be set as described previously, each time the contents of the edit buffer
are replaced (including the editing of the initial buffer), if in open or visual mode, or if in ex
mode and the edit buffer is not empty, before any commands or movements (including
commands or movements specified by the −c or −t options or the +command argument) are
executed on the edit buffer. If in open or visual mode, the marks shall be set as if executing the vi
m command; otherwise, as if executing the ex mark command.

When changing from ex mode to open or visual mode, if the ‘ and ’ marks are not already set,
the ‘ and ’ marks shall be set as described previously.

Current line: Unchanged.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2661

86128

86129

86130

86131

86132

86133

86134

86135

86136

86137

86138

86139

86140

86141

86142

86143

86144

86145

86146

86147

86148

86149

86150

86151

86152

86153

86154

86155

86156

86157

86158

86159

86160

86161

86162

86163

86164

86165

86166

86167

86168

ex Utilities

Current column: Unchanged.

Move

Synopsis: [2addr] m[ove] 1addr [flags]

Move the specified lines after the specified destination line. A destination of line zero specifies
that the lines shall be placed at the beginning of the edit buffer. It shall be an error if the
destination line is within the range of lines to be moved.

Current line: Set to the last of the moved lines.

Current column: Set to non-<blank>.

Next

Synopsis: n[ext][!][+command][file ...]

If no ’!’ is appended to the command name, and the edit buffer has been modified since the
last complete write, it shall be an error, unless the file is successfully written as specified by the
autowrite option.

If one or more files is specified:

1. Set the argument list to the specified filenames.

2. Set the current argument list reference to be the first entry in the argument list.

3. Set the current pathname to the first filename specified.

Otherwise:

1. It shall be an error if there are no more filenames in the argument list after the filename
currently referenced.

2. Set the current pathname and the current argument list reference to the filename after the
filename currently referenced in the argument list.

Replace the contents of the edit buffer with the contents of the file named by the current
pathname. If for any reason the contents of the file cannot be accessed, the edit buffer shall be
empty.

This command shall be affected by the autowrite and writeany edit options.

The +command option shall be <blank>-delimited; <blank> characters can be escaped by
preceding them with a <backslash> character. The +command shall be interpreted as an ex
command immediately after the contents of the edit buffer have been replaced and the current
line and column have been set.

Current line: Set as described for the edit command.

Current column: Set as described for the edit command.

2662 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

86169

86170

86171

86172

86173

86174

86175

86176

86177

86178

86179

86180

86181

86182

86183

86184

86185

86186

86187

86188

86189

86190

86191

86192

86193

86194

86195

86196

86197

86198

86199

86200

Utilities ex

Number

Synopsis: [2addr] nu[mber][count][flags]
[2addr] #[count][flags]

These commands shall be equivalent to the ex command:

[2addr] p[rint][count] #[flags]

See Print.

Open

Synopsis: [1addr] o[pen] /pattern/ [flags]

This command need not be supported on block-mode terminals or terminals with insufficient
capabilities. If standard input, standard output, or standard error are not terminal devices, the
results are unspecified.

Enter open mode.

The trailing delimiter can be omitted from pattern at the end of the command line. If pattern is
empty (for example, "//") or not specified, the last regular expression used in the editor shall
be used as the pattern. The pattern can be delimited by <slash> characters (shown in the
Synopsis), as well as any alphanumeric, or non-<blank> other than <backslash>, <vertical-line>,
<newline>, or double-quote.

Current line: Set to the specified line.

Current column: Set to non-<blank>.

Preserve

Synopsis: pre[serve]

Save the edit buffer in a form that can later be recovered by using the −r option or by using the
ex recover command. After the file has been preserved, a mail message shall be sent to the user.
This message shall be readable by invoking the mailx utility. The message shall contain the name
of the file, the time of preservation, and an ex command that could be used to recover the file.
Additional information may be included in the mail message.

Current line: Unchanged.

Current column: Unchanged.

Print

Synopsis: [2addr] p[rint][count][flags]

Write the addressed lines. The behavior is unspecified if the number of columns on the display is
less than the number of columns required to write any single character in the lines being written.

Non-printable characters, except for the <tab>, shall be written as implementation-defined
multi-character sequences.

If the # flag is specified or the number edit option is set, each line shall be preceded by its line
number in the following format:

"%6d∆∆", <line number>

If the l flag is specified or the list edit option is set:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2663

86201

86202

86203

86204

86205

86206

86207

86208

86209

86210

86211

86212

86213

86214

86215

86216

86217

86218

86219

86220

86221

86222

86223

86224

86225

86226

86227

86228

86229

86230

86231

86232

86233

86234

86235

86236

86237

86238

ex Utilities

1. The characters listed in XBD Table 5-1 (on page 121) shall be written as the corresponding
escape sequence.

2. Non-printable characters not in XBD Table 5-1 (on page 121) shall be written as one three-
digit octal number (with a preceding <backslash>) for each byte in the character (most
significant byte first).

3. The end of each line shall be marked with a ’$’, and literal ’$’ characters within the line
shall be written with a preceding <backslash>.

Long lines shall be folded; the length at which folding occurs is unspecified, but should be
appropriate for the output terminal, considering the number of columns of the terminal.

If a line is folded, and the l flag is not specified and the list edit option is not set, it is unspecified
whether a multi-column character at the folding position is separated; it shall not be discarded.

Current line: Set to the last written line.

Current column: Unchanged if the current line is unchanged; otherwise, set to non-<blank>.

Put

Synopsis: [1addr] pu[t][buffer]

Append text from the specified buffer (by default, the unnamed buffer) to the specified line; line
zero specifies that the text shall be placed at the beginning of the edit buffer. Each portion of a
line in the buffer shall become a new line in the edit buffer, regardless of the mode of the buffer.

Current line: Set to the last line entered into the edit buffer.

Current column: Set to non-<blank>.

Quit

Synopsis: q[uit][!]

If no ’!’ is appended to the command name:

1. If the edit buffer has been modified since the last complete write, it shall be an error.

2. If there are filenames in the argument list after the filename currently referenced, and the
last command was not a quit, wq, xit, or ZZ (see Exit, on page 3344) command, it shall be
an error.

Otherwise, terminate the editing session.

Read

Synopsis: [1addr] r[ead][!][file]

If ’!’ is not the first non-<blank> to follow the command name, a copy of the specified file shall
be appended into the edit buffer after the specified line; line zero specifies that the copy shall be
placed at the beginning of the edit buffer. The number of lines and bytes read shall be written. If
no file is named, the current pathname shall be the default. If there is no current pathname, then
file shall become the current pathname. If there is no current pathname or file operand, it shall be
an error. Specifying a file that is not of type regular shall have unspecified results.

Otherwise, if file is preceded by ’!’, the rest of the line after the ’!’ shall have ’%’, ’#’, and
’!’ characters expanded as described in Command Line Parsing in ex (on page 2646).

The ex utility shall then pass two arguments to the program named by the shell edit option; the

2664 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

86239

86240

86241

86242

86243

86244

86245

86246

86247

86248

86249

86250

86251

86252

86253

86254

86255

86256

86257

86258

86259

86260

86261

86262

86263

86264

86265

86266

86267

86268

86269

86270

86271

86272

86273

86274

86275

86276

86277

Utilities ex

first shall be −c and the second shall be the expanded arguments to the read command as a
single argument. The standard input of the program shall be set to the standard input of the ex
program when it was invoked. The standard error and standard output of the program shall be
appended into the edit buffer after the specified line.

Each line in the copied file or program output (as delimited by <newline> characters or the end
of the file or output if it is not immediately preceded by a <newline>), shall be a separate line in
the edit buffer. Any occurrences of <carriage-return> and <newline> pairs in the output shall be
treated as single <newline> characters.

The special meaning of the ’!’ following the read command can be overridden by escaping it
with a <backslash> character.

Current line: If no lines are added to the edit buffer, unchanged. Otherwise, if in open or visual
mode, set to the first line entered into the edit buffer. Otherwise, set to the last line entered into
the edit buffer.

Current column: Set to non-<blank>.

Recover

Synopsis: rec[over][!] file

If no ’!’ is appended to the command name, and the edit buffer has been modified since the
last complete write, it shall be an error.

If no file operand is specified, then the current pathname shall be used. If there is no current
pathname or file operand, it shall be an error.

If no recovery information has previously been saved about file, the recover command shall
behave identically to the edit command, and an informational message to this effect shall be
written.

Otherwise, set the current pathname to file, and replace the current contents of the edit buffer
with the recovered contents of file. If there are multiple instances of the file to be recovered, the
one most recently saved shall be recovered, and an informational message that there are
previous versions of the file that can be recovered shall be written. The editor shall behave as if
the contents of the edit buffer have already been modified.

Current file: Set as described for the edit command.

Current column: Set as described for the edit command.

Rewind

Synopsis: rew[ind][!]

If no ’!’ is appended to the command name, and the edit buffer has been modified since the
last complete write, it shall be an error, unless the file is successfully written as specified by the
autowrite option.

If the argument list is empty, it shall be an error.

The current argument list reference and the current pathname shall be set to the first filename in
the argument list.

Replace the contents of the edit buffer with the contents of the file named by the current
pathname. If for any reason the contents of the file cannot be accessed, the edit buffer shall be
empty.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2665

86278

86279

86280

86281

86282

86283

86284

86285

86286

86287

86288

86289

86290

86291

86292

86293

86294

86295

86296

86297

86298

86299

86300

86301

86302

86303

86304

86305

86306

86307

86308

86309

86310

86311

86312

86313

86314

86315

86316

86317

86318

ex Utilities

This command shall be affected by the autowrite and writeany edit options.

Current line: Set as described for the edit command.

Current column: Set as described for the edit command.

Set

Synopsis: se[t][option[=[value]] ...][nooption ...][option? ...][all]

When no arguments are specified, write the value of the term edit option and those options
whose values have been changed from the default settings; when the argument all is specified,
write all of the option values.

Giving an option name followed by the character ’?’ shall cause the current value of that
option to be written. The ’?’ can be separated from the option name by zero or more <blank>
characters. The ’?’ shall be necessary only for Boolean valued options. Boolean options can be
given values by the form set option to turn them on or set nooption to turn them off; string and
numeric options can be assigned by the form set option=value. Any <blank> characters in strings
can be included as is by preceding each <blank> with an escaping <backslash>. More than one
option can be set or listed by a single set command by specifying multiple arguments, each
separated from the next by one or more <blank> characters.

See Edit Options in ex (on page 2676) for details about specific options.

Current line: Unchanged.

Current column: Unchanged.

Shell

Synopsis: sh[ell]

Invoke the program named in the shell edit option with the single argument −i (interactive
mode). Editing shall be resumed when the program exits.

Current line: Unchanged.

Current column: Unchanged.

Source

Synopsis: so[urce] file

Read and execute ex commands from file. Lines in the file that are blank lines shall be ignored.

Current line: As specified for the individual ex commands.

Current column: As specified for the individual ex commands.

Substitute

Synopsis: [2addr] s[ubstitute][/pattern/repl/[options][count][flags]]
[2addr] &[options][count][flags]]
[2addr] ˜[options][count][flags]]

Replace the first instance of the pattern pattern by the string repl on each specified line. (See
Regular Expressions in ex (on page 2675) and Replacement Strings in ex (on page 2676).) Any
non-alphabetic, non-<blank> delimiter other than <backslash>, ’|’, <newline>, or double-
quote can be used instead of ’/’. <backslash> characters can be used to escape delimiters,
<backslash> characters, and other special characters.

2666 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

86319

86320

86321

86322

86323

86324

86325

86326

86327

86328

86329

86330

86331

86332

86333

86334

86335

86336

86337

86338

86339

86340

86341

86342

86343

86344

86345

86346

86347

86348

86349

86350

86351

86352

86353

86354

86355

86356

86357

Utilities ex

The trailing delimiter can be omitted from pattern or from repl at the end of the command line. If
both pattern and repl are not specified or are empty (for example, "//"), the last s command
shall be repeated. If only pattern is not specified or is empty, the last regular expression used in
the editor shall be used as the pattern. If only repl is not specified or is empty, the pattern shall be
replaced by nothing. If the entire replacement pattern is ’%’, the last replacement pattern to an
s command shall be used.

Entering a <carriage-return> in repl (which requires an escaping <backslash> in ex mode and an
escaping <control>-V in open or vi mode) shall split the line at that point, creating a new line in
the edit buffer. The <carriage-return> shall be discarded.

If options includes the letter ’g’ (global), all non-overlapping instances of the pattern in the line
shall be replaced.

If options includes the letter ’c’ (confirm), then before each substitution the line shall be written;
the written line shall reflect all previous substitutions. On the following line, <space> characters
shall be written beneath the characters from the line that are before the pattern to be replaced,
and ’ˆ’ characters written beneath the characters included in the pattern to be replaced. The ex
utility shall then wait for a response from the user. An affirmative response shall cause the
substitution to be done, while any other input shall not make the substitution. An affirmative
response shall consist of a line with the affirmative response (as defined by the current locale) at
the beginning of the line. This line shall be subject to editing in the same way as the ex command
line.

If interrupted (see the ASYNCHRONOUS EVENTS section), any modifications confirmed by the
user shall be preserved in the edit buffer after the interrupt.

If the remembered search direction is not set, the s command shall set it to forward.

In the second Synopsis, the & command shall repeat the previous substitution, as if the &
command were replaced by:

s/pattern/repl/

where pattern and repl are as specified in the previous s, &, or ˜ command.

In the third Synopsis, the ˜ command shall repeat the previous substitution, as if the ’˜’ were
replaced by:

s/pattern/repl/

where pattern shall be the last regular expression specified to the editor, and repl shall be from
the previous substitution (including & and ˜) command.

These commands shall be affected by the LC_MESSAGES environment variable.

Current line: Set to the last line in which a substitution occurred, or, unchanged if no substitution
occurred.

Current column: Set to non-<blank>.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2667

86358

86359

86360

86361

86362

86363

86364

86365

86366

86367

86368

86369

86370

86371

86372

86373

86374

86375

86376

86377

86378

86379

86380

86381

86382

86383

86384

86385

86386

86387

86388

86389

86390

86391

86392

86393

ex Utilities

Suspend

Synopsis: su[spend][!]
st[op][!]

Allow control to return to the invoking process; ex shall suspend itself as if it had received the
SIGTSTP signal. The suspension shall occur only if job control is enabled in the invoking shell
(see the description of set −m).

These commands shall be affected by the autowrite and writeany edit options.

The current susp character (see stty) shall be equivalent to the suspend command.

Tag

Synopsis: ta[g][!] tagstring

The results are unspecified if the format of a tags file is not as specified by the ctags utility (see
ctags) description.

The tag command shall search for tagstring in the tag files referred to by the tag edit option, in
the order they are specified, until a reference to tagstring is found. Files shall be searched from
beginning to end. If no reference is found, it shall be an error and an error message to this effect
shall be written. If the reference is not found, or if an error occurs while processing a file referred
to in the tag edit option, it shall be an error, and an error message shall be written at the first
occurrence of such an error.

Otherwise, if the tags file contained a pattern, the pattern shall be treated as a regular expression
used in the editor; for example, for the purposes of the s command.

If the tagstring is in a file with a different name than the current pathname, set the current
pathname to the name of that file, and replace the contents of the edit buffer with the contents of
that file. In this case, if no ’!’ is appended to the command name, and the edit buffer has been
modified since the last complete write, it shall be an error, unless the file is successfully written
as specified by the autowrite option.

This command shall be affected by the autowrite, tag, taglength, and writeany edit options.

Current line: If the tags file contained a line number, set to that line number. If the line number is
larger than the last line in the edit buffer, an error message shall be written and the current line
shall be set as specified for the edit command.

If the tags file contained a pattern, set to the first occurrence of the pattern in the file. If no
matching pattern is found, an error message shall be written and the current line shall be set as
specified for the edit command.

Current column: If the tags file contained a line-number reference and that line-number was not
larger than the last line in the edit buffer, or if the tags file contained a pattern and that pattern
was found, set to non-<blank>. Otherwise, set as specified for the edit command.

2668 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

86394

86395

86396

86397

86398

86399

86400

86401

86402

86403

86404

86405

86406

86407

86408

86409

86410

86411

86412

86413

86414

86415

86416

86417

86418

86419

86420

86421

86422

86423

86424

86425

86426

86427

86428

Utilities ex

Unabbreviate

Synopsis: una[bbrev] lhs

If lhs is not an entry in the current list of abbreviations (see Abbreviate, on page 2654), it shall be
an error. Otherwise, delete lhs from the list of abbreviations.

Current line: Unchanged.

Current column: Unchanged.

Undo

Synopsis: u[ndo]

Reverse the changes made by the last command that modified the contents of the edit buffer,
including undo. For this purpose, the global, v, open, and visual commands, and commands
resulting from buffer executions and mapped character expansions, are considered single
commands.

If no action that can be undone preceded the undo command, it shall be an error.

If the undo command restores lines that were marked, the mark shall also be restored unless it
was reset subsequent to the deletion of the lines.

Current line:

1. If lines are added or changed in the file, set to the first line added or changed.

2. Set to the line before the first line deleted, if it exists.

3. Set to 1 if the edit buffer is not empty.

4. Set to zero.

Current column: Set to non-<blank>.

Unmap

Synopsis: unm[ap][!] lhs

If ’!’ is appended to the command name, and if lhs is not an entry in the list of text input mode
map definitions, it shall be an error. Otherwise, delete lhs from the list of text input mode map
definitions.

If no ’!’ is appended to the command name, and if lhs is not an entry in the list of command
mode map definitions, it shall be an error. Otherwise, delete lhs from the list of command mode
map definitions.

Current line: Unchanged.

Current column: Unchanged.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2669

86429

86430

86431

86432

86433

86434

86435

86436

86437

86438

86439

86440

86441

86442

86443

86444

86445

86446

86447

86448

86449

86450

86451

86452

86453

86454

86455

86456

86457

86458

86459

ex Utilities

Version

Synopsis: ve[rsion]

Write a message containing version information for the editor. The format of the message is
unspecified.

Current line: Unchanged.

Current column: Unchanged.

Visual

Synopsis: [1addr] vi[sual][type][count][flags]

If ex is currently in open or visual mode, the Synopsis and behavior of the visual command shall
be the same as the edit command, as specified by Edit (on page 2656).

Otherwise, this command need not be supported on block-mode terminals or terminals with
insufficient capabilities. If standard input, standard output, or standard error are not terminal
devices, the results are unspecified.

If count is specified, the value of the window edit option shall be set to count (as described in
window, on page 2683). If the ’ˆ’ type character was also specified, the window edit option
shall be set before being used by the type character.

Enter visual mode. If type is not specified, it shall be as if a type of ’+’ was specified. The type
shall cause the following effects:

+ Place the beginning of the specified line at the top of the display.

- Place the end of the specified line at the bottom of the display.

. Place the beginning of the specified line in the middle of the display.

ˆ If the specified line is less than or equal to the value of the window edit option, set the line
to 1; otherwise, decrement the line by the value of the window edit option minus 1. Place
the beginning of this line as close to the bottom of the displayed lines as possible, while still
displaying the value of the window edit option number of lines.

Current line: Set to the specified line.

Current column: Set to non-<blank>.

Write

Synopsis: [2addr] w[rite][!][>>][file]
[2addr] w[rite][!][file]
[2addr] wq[!][>>][file]

If no lines are specified, the lines shall default to the entire file.

The command wq shall be equivalent to a write command followed by a quit command; wq!
shall be equivalent to write! followed by quit. In both cases, if the write command fails, the
quit shall not be attempted.

If the command name is not followed by one or more <blank> characters, or file is not preceded
by a ’!’ character, the write shall be to a file.

1. If the >> argument is specified, and the file already exists, the lines shall be appended to
the file instead of replacing its contents. If the >> argument is specified, and the file does
not already exist, it is unspecified whether the write shall proceed as if the >> argument

2670 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

86460

86461

86462

86463

86464

86465

86466

86467

86468

86469

86470

86471

86472

86473

86474

86475

86476

86477

86478

86479

86480

86481

86482

86483

86484

86485

86486

86487

86488

86489

86490

86491

86492

86493

86494

86495

86496

86497

86498

86499

Utilities ex

had not been specified or if the write shall fail.

2. If the readonly edit option is set (see readonly, on page 2680), the write shall fail.

3. If file is specified, and is not the current pathname, and the file exists, the write shall fail.

4. If file is not specified, the current pathname shall be used. If there is no current pathname,
the write command shall fail.

5. If the current pathname is used, and the current pathname has been changed by the file
or read commands, and the file exists, the write shall fail. If the write is successful,
subsequent writes shall not fail for this reason (unless the current pathname is changed
again).

6. If the whole edit buffer is not being written, and the file to be written exists, the write
shall fail.

For rules 1., 2., 3., and 5., the write can be forced by appending the character ’!’ to the
command name.

For rules 2., 3., and 5., the write can be forced by setting the writeany edit option.

Additional, implementation-defined tests may cause the write to fail.

If the edit buffer is empty, a file without any contents shall be written.

An informational message shall be written noting the number of lines and bytes written.

Otherwise, if the command is followed by one or more <blank> characters, and the file is
preceded by ’!’, the rest of the line after the ’!’ shall have ’%’, ’#’, and ’!’ characters
expanded as described in Command Line Parsing in ex (on page 2646).

The ex utility shall then pass two arguments to the program named by the shell edit option; the
first shall be −c and the second shall be the expanded arguments to the write command as a
single argument. The specified lines shall be written to the standard input of the command. The
standard error and standard output of the program, if any, shall be written as described for the
print command. If the last character in that output is not a <newline>, a <newline> shall be
written at the end of the output.

The special meaning of the ’!’ following the write command can be overridden by escaping it
with a <backslash> character.

Current line: Unchanged.

Current column: Unchanged.

Write and Exit

Synopsis: [2addr] x[it][!][file]

If the edit buffer has not been modified since the last complete write, xit shall be equivalent to
the quit command, or if a ’!’ is appended to the command name, to quit!.

Otherwise, xit shall be equivalent to the wq command, or if a ’!’ is appended to the command
name, to wq!.

Current line: Unchanged.

Current column: Unchanged.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2671

86500

86501

86502

86503

86504

86505

86506

86507

86508

86509

86510

86511

86512

86513

86514

86515

86516

86517

86518

86519

86520

86521

86522

86523

86524

86525

86526

86527

86528

86529

86530

86531

86532

86533

86534

86535

86536

86537

ex Utilities

Yank

Synopsis: [2addr] ya[nk][buffer][count]

Copy the specified lines to the specified buffer (by default, the unnamed buffer), which shall
become a line-mode buffer.

Current line: Unchanged.

Current column: Unchanged.

Adjust Window

Synopsis: [1addr] z[!][type ...][count][flags]

If no line is specified, the current line shall be the default; if type is omitted as well, the current
line value shall first be incremented by 1. If incrementing the current line would cause it to be
greater than the last line in the edit buffer, it shall be an error.

If there are <blank> characters between the type argument and the preceding z command name
or optional ’!’ character, it shall be an error.

If count is specified, the value of the window edit option shall be set to count (as described in
window, on page 2683). If count is omitted, it shall default to 2 times the value of the scroll edit
option, or if ! was specified, the number of lines in the display minus 1.

If type is omitted, then count lines starting with the specified line shall be written. Otherwise,
count lines starting with the line specified by the type argument shall be written.

The type argument shall change the lines to be written. The possible values of type are as follows:

− The specified line shall be decremented by the following value:

(((number of ‘‘−’’ characters) x count) −1)

If the calculation would result in a number less than 1, it shall be an error. Write lines from
the edit buffer, starting at the new value of line, until count lines or the last line in the edit
buffer has been written.

+ The specified line shall be incremented by the following value:

(((number of ‘‘+’’ characters) −1) x count) +1

If the calculation would result in a number greater than the last line in the edit buffer, it
shall be an error. Write lines from the edit buffer, starting at the new value of line, until count
lines or the last line in the edit buffer has been written.

=,. If more than a single ’.’ or ’=’ is specified, it shall be an error. The following steps shall
be taken:

1. If count is zero, nothing shall be written.

2. Write as many of the N lines before the current line in the edit buffer as exist. If count
or ’!’ was specified, N shall be:

(count −1) /2

Otherwise, N shall be:

(count −3) /2

If N is a number less than 3, no lines shall be written.

2672 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

86538

86539

86540

86541

86542

86543

86544

86545

86546

86547

86548

86549

86550

86551

86552

86553

86554

86555

86556

86557

86558

86559

86560

86561

86562

86563

86564

86565

86566

86567

86568

86569

86570

86571

86572

86573

86574

86575

Utilities ex

3. If ’=’ was specified as the type character, write a line consisting of the smaller of the
number of columns in the display divided by two, or 40 ’−’ characters.

4. Write the current line.

5. Repeat step 3.

6. Write as many of the N lines after the current line in the edit buffer as exist. N shall
be defined as in step 2. If N is a number less than 3, no lines shall be written. If count
is less than 3, no lines shall be written.

ˆ The specified line shall be decremented by the following value:

(((number of ‘‘ˆ’’ characters) +1) x count) −1

If the calculation would result in a number less than 1, it shall be an error. Write lines from
the edit buffer, starting at the new value of line, until count lines or the last line in the edit
buffer has been written.

Current line: Set to the last line written, unless the type is =, in which case, set to the specified
line.

Current column: Set to non-<blank>.

Escape

Synopsis: ! command

[addr]! command

The contents of the line after the ’!’ shall have ’%’, ’#’, and ’!’ characters expanded as
described in Command Line Parsing in ex (on page 2646). If the expansion causes the text of the
line to change, it shall be redisplayed, preceded by a single ’!’ character.

The ex utility shall execute the program named by the shell edit option. It shall pass two
arguments to the program; the first shall be −c, and the second shall be the expanded arguments
to the ! command as a single argument.

If no lines are specified, the standard input, standard output, and standard error of the program
shall be set to the standard input, standard output, and standard error of the ex program when it
was invoked. In addition, a warning message shall be written if the edit buffer has been
modified since the last complete write, and the warn edit option is set.

If lines are specified, they shall be passed to the program as standard input, and the standard
output and standard error of the program shall replace those lines in the edit buffer. Each line in
the program output (as delimited by <newline> characters or the end of the output if it is not
immediately preceded by a <newline>), shall be a separate line in the edit buffer. Any
occurrences of <carriage-return> and <newline> pairs in the output shall be treated as single
<newline> characters. The specified lines shall be copied into the unnamed buffer before they
are replaced, and the unnamed buffer shall become a line-mode buffer.

If in ex mode, a single ’!’ character shall be written when the program completes.

This command shall be affected by the shell and warn edit options. If no lines are specified, this
command shall be affected by the autowrite and writeany edit options. If lines are specified, this
command shall be affected by the autoprint edit option.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2673

86576

86577

86578

86579

86580

86581

86582

86583

86584

86585

86586

86587

86588

86589

86590

86591

86592

86593

86594

86595

86596

86597

86598

86599

86600

86601

86602

86603

86604

86605

86606

86607

86608

86609

86610

86611

86612

86613

86614

ex Utilities

Current line:

1. If no lines are specified, unchanged.

2. Otherwise, set to the last line read in, if any lines are read in.

3. Otherwise, set to the line before the first line of the lines specified, if that line exists.

4. Otherwise, set to the first line of the edit buffer if the edit buffer is not empty.

5. Otherwise, set to zero.

Current column: If no lines are specified, unchanged. Otherwise, set to non-<blank>.

Shift Left

Synopsis: [2addr] <[< ...][count][flags]

Shift the specified lines to the start of the line; the number of column positions to be shifted shall
be the number of command characters times the value of the shiftwidth edit option. Only
leading <blank> characters shall be deleted or changed into other <blank> characters in shifting;
other characters shall not be affected.

Lines to be shifted shall be copied into the unnamed buffer, which shall become a line-mode
buffer.

This command shall be affected by the autoprint edit option.

Current line: Set to the last line in the lines specified.

Current column: Set to non-<blank>.

Shift Right

Synopsis: [2addr] >[> ...][count][flags]

Shift the specified lines away from the start of the line; the number of column positions to be
shifted shall be the number of command characters times the value of the shiftwidth edit
option. The shift shall be accomplished by adding <blank> characters as a prefix to the line or
changing leading <blank> characters into other <blank> characters. Empty lines shall not be
changed.

Lines to be shifted shall be copied into the unnamed buffer, which shall become a line-mode
buffer.

This command shall be affected by the autoprint edit option.

Current line: Set to the last line in the lines specified.

Current column: Set to non-<blank>.

<control>-D

Synopsis: <control>-D

Write the next n lines, where n is the minimum of the values of the scroll edit option and the
number of lines after the current line in the edit buffer. If the current line is the last line of the
edit buffer it shall be an error.

Current line: Set to the last line written.

Current column: Set to non-<blank>.

2674 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

86615

86616

86617

86618

86619

86620

86621

86622

86623

86624

86625

86626

86627

86628

86629

86630

86631

86632

86633

86634

86635

86636

86637

86638

86639

86640

86641

86642

86643

86644

86645

86646

86647

86648

86649

86650

86651

Utilities ex

Write Line Number

Synopsis: [1addr] = [flags]

If line is not specified, it shall default to the last line in the edit buffer. Write the line number of
the specified line.

Current line: Unchanged.

Current column: Unchanged.

Execute

Synopsis: [2addr] @ buffer

[2addr] * buffer

If no buffer is specified or is specified as ’@’ or ’*’, the last buffer executed shall be used. If no
previous buffer has been executed, it shall be an error.

For each line specified by the addresses, set the current line (’.’) to the specified line, and
execute the contents of the named buffer (as they were at the time the @ command was executed)
as ex commands. For each line of a line-mode buffer, and all but the last line of a character-mode
buffer, the ex command parser shall behave as if the line was terminated by a <newline>.

If an error occurs during this process, or a line specified by the addresses does not exist when
the current line would be set to it, or more than a single line was specified by the addresses, and
the contents of the edit buffer are replaced (for example, by the ex :edit command) an error
message shall be written, and no more commands resulting from the execution of this command
shall be processed.

Current line: As specified for the individual ex commands.

Current column: As specified for the individual ex commands.

Regular Expressions in ex

The ex utility shall support regular expressions that are a superset of the basic regular
expressions described in XBD Section 9.3 (on page 183). A null regular expression ("//") shall
be equivalent to the last regular expression encountered.

Regular expressions can be used in addresses to specify lines and, in some commands (for
example, the substitute command), to specify portions of a line to be substituted.

The following constructs can be used to enhance the basic regular expressions:

\< Match the beginning of a word. (See the definition of word at the beginning of Command
Descriptions in ex (on page 2651).)

\> Match the end of a word.

˜ Match the replacement part of the last substitute command. The <tilde> (’˜’) character can
be escaped in a regular expression to become a normal character with no special meaning.
The <backslash> shall be discarded.

When the editor option magic is not set, the only characters with special meanings shall be ’ˆ’
at the beginning of a pattern, ’$’ at the end of a pattern, and <backslash>. The characters ’.’,
’*’, ’[’, and ’˜’ shall be treated as ordinary characters unless preceded by a <backslash>;
when preceded by a <backslash> they shall regain their special meaning, or in the case of
<backslash>, be handled as a single <backslash>. <backslash> characters used to escape other
characters shall be discarded.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2675

86652

86653

86654

86655

86656

86657

86658

86659

86660

86661

86662

86663

86664

86665

86666

86667

86668

86669

86670

86671

86672

86673

86674

86675

86676

86677

86678

86679

86680

86681

86682

86683

86684

86685

86686

86687

86688

86689

86690

86691

86692

ex Utilities

Replacement Strings in ex

The character ’&’ (’\&’ if the editor option magic is not set) in the replacement string shall
stand for the text matched by the pattern to be replaced. The character ’˜’ (’\˜’ if magic is not
set) shall be replaced by the replacement part of the previous substitute command. The
sequence ’\n’, where n is an integer, shall be replaced by the text matched by the
corresponding back-reference expression. If the corresponding back-reference expression does
not match, then the characters ’\n’ shall be replaced by the empty string.

The strings ’\l’, ’\u’, ’\L’, and ’\U’ can be used to modify the case of elements in the
replacement string (using the ’\&’ or "\"digit) notation. The string ’\l’ (’\u’) shall cause
the character that follows to be converted to lowercase (uppercase). The string ’\L’ (’\U’) shall
cause all characters subsequent to it to be converted to lowercase (uppercase) as they are
inserted by the substitution until the string ’\e’ or ’\E’, or the end of the replacement string,
is encountered.

Otherwise, any character following a <backslash> shall be treated as that literal character, and
the escaping <backslash> shall be discarded.

An example of case conversion with the s command is as follows:

:p
The cat sat on the mat.

:s/\<.at\>/\u&/gp
The Cat Sat on the Mat.

:s/S\(.*\)M/S\U\1\eM/p
The Cat SAT ON THE Mat.

Edit Options in ex

The ex utility has a number of options that modify its behavior. These options have default
settings, which can be changed using the set command.

Options are Boolean unless otherwise specified.

autoindent, ai

[Default unset]

If autoindent is set, each line in input mode shall be indented (using first as many <tab>
characters as possible, as determined by the editor option tabstop, and then using <space>
characters) to align with another line, as follows:

1. If in open or visual mode and the text input is part of a line-oriented command (see the
EXTENDED DESCRIPTION in vi), align to the first column.

2. Otherwise, if in open or visual mode, indentation for each line shall be set as follows:

a. If a line was previously inserted as part of this command, it shall be set to the
indentation of the last inserted line by default, or as otherwise specified for the
<control>-D character in Input Mode Commands in vi (on page 3344).

b. Otherwise, it shall be set to the indentation of the previous current line, if any;
otherwise, to the first column.

3. For the ex a, i, and c commands, indentation for each line shall be set as follows:

2676 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

86693

86694

86695

86696

86697

86698

86699

86700

86701

86702

86703

86704

86705

86706

86707

86708

86709

86710

86711

86712

86713

86714

86715

86716

86717

86718

86719

86720

86721

86722

86723

86724

86725

86726

86727

86728

86729

86730

86731

86732

Utilities ex

a. If a line was previously inserted as part of this command, it shall be set to the
indentation of the last inserted line by default, or as otherwise specified for the eof
character in Scroll (on page 2650).

b. Otherwise, if the command is the ex a command, it shall be set to the line
appended after, if any; otherwise to the first column.

c. Otherwise, if the command is the ex i command, it shall be set to the line inserted
before, if any; otherwise to the first column.

d. Otherwise, if the command is the ex c command, it shall be set to the indentation of
the line replaced.

autoprint, ap

[Default set]

If autoprint is set, the current line shall be written after each ex command that modifies the
contents of the current edit buffer, and after each tag command for which the tag search pattern
was found or tag line number was valid, unless:

1. The command was executed while in open or visual mode.

2. The command was executed as part of a global or v command or @ buffer execution.

3. The command was the form of the read command that reads a file into the edit buffer.

4. The command was the append, change, or insert command.

5. The command was not terminated by a <newline>.

6. The current line shall be written by a flag specified to the command; for example, delete #
shall write the current line as specified for the flag modifier to the delete command, and
not as specified by the autoprint edit option.

autowrite, aw

[Default unset]

If autowrite is set, and the edit buffer has been modified since it was last completely written to
any file, the contents of the edit buffer shall be written as if the ex write command had been
specified without arguments, before each command affected by the autowrite edit option is
executed. Appending the character ’!’ to the command name of any of the ex commands
except ’!’ shall prevent the write. If the write fails, it shall be an error and the command shall
not be executed.

beautify, bf

XSI [Default unset]

If beautify is set, all non-printable characters, other than <tab>, <newline>, and <form-feed>
characters, shall be discarded from text read in from files.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2677

86733

86734

86735

86736

86737

86738

86739

86740

86741

86742

86743

86744

86745

86746

86747

86748

86749

86750

86751

86752

86753

86754

86755

86756

86757

86758

86759

86760

86761

86762

86763

86764

86765

86766

ex Utilities

directory, dir

[Default implementation-defined]

The value of this option specifies the directory in which the editor buffer is to be placed. If this
directory is not writable by the user, the editor shall quit.

edcompatible, ed

[Default unset]

Causes the presence of g and c suffixes on substitute commands to be remembered, and toggled
by repeating the suffixes.

errorbells, eb

[Default unset]

If the editor is in ex mode, and the terminal does not support a standout mode (such as inverse
video), and errorbells is set, error messages shall be preceded by alerting the terminal.

exrc

[Default unset]

If exrc is set, ex shall access any .exrc file in the current directory, as described in Initialization in
ex and vi (on page 2642). If exrc is not set, ex shall ignore any .exrc file in the current directory
during initialization, unless the current directory is that named by the HOME environment
variable.

ignorecase, ic

[Default unset]

If ignorecase is set, characters that have uppercase and lowercase representations shall have
those representations considered as equivalent for purposes of regular expression comparison.

The ignorecase edit option shall affect all remembered regular expressions; for example,
unsetting the ignorecase edit option shall cause a subsequent vi n command to search for the
last basic regular expression in a case-sensitive fashion.

list

[Default unset]

If list is set, edit buffer lines written while in ex command mode shall be written as specified for
the print command with the l flag specified. In open or visual mode, each edit buffer line shall
be displayed as specified for the ex print command with the l flag specified. In open or visual
text input mode, when the cursor does not rest on any character in the line, it shall rest on the
’$’ marking the end of the line.

2678 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

86767

86768

86769

86770

86771

86772

86773

86774

86775

86776

86777

86778

86779

86780

86781

86782

86783

86784

86785

86786

86787

86788

86789

86790

86791

86792

86793

86794

86795

86796

86797

86798

Utilities ex

magic

[Default set]

If magic is set, modify the interpretation of characters in regular expressions and substitution
replacement strings (see Regular Expressions in ex (on page 2675) and Replacement Strings in
ex, on page 2676).

mesg

[Default set]

If mesg is set, the permission for others to use the write or talk commands to write to the
terminal shall be turned on while in open or visual mode. The shell-level command mesg n shall
take precedence over any setting of the ex mesg option; that is, if mesg y was issued before the
editor started (or in a shell escape), such as:

:!mesg y

the mesg option in ex shall suppress incoming messages, but the mesg option shall not enable
incoming messages if mesg n was issued.

number, nu

[Default unset]

If number is set, edit buffer lines written while in ex command mode shall be written with line
numbers, in the format specified by the print command with the # flag specified. In ex text input
mode, each line shall be preceded by the line number it will have in the file.

In open or visual mode, each edit buffer line shall be displayed with a preceding line number, in
the format specified by the ex print command with the # flag specified. This line number shall
not be considered part of the line for the purposes of evaluating the current column; that is,
column position 1 shall be the first column position after the format specified by the print
command.

paragraphs, para

[Default in the POSIX locale IPLPPPQPP LIpplpipbp]

The paragraphs edit option shall define additional paragraph boundaries for the open and
visual mode commands. The paragraphs edit option can be set to a character string consisting of
zero or more character pairs. It shall be an error to set it to an odd number of characters.

prompt

[Default set]

If prompt is set, ex command mode input shall be prompted for with a <colon> (’:’); when
unset, no prompt shall be written.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2679

86799

86800

86801

86802

86803

86804

86805

86806

86807

86808

86809

86810

86811

86812

86813

86814

86815

86816

86817

86818

86819

86820

86821

86822

86823

86824

86825

86826

86827

86828

86829

86830

86831

ex Utilities

readonly

[Default see text]

If the readonly edit option is set, read-only mode shall be enabled (see Write, on page 2670). The
readonly edit option shall be initialized to set if either of the following conditions are true:

• The command-line option −R was specified.

• Performing actions equivalent to the access() function called with the following arguments
indicates that the file lacks write permission:

1. The current pathname is used as the path argument.

2. The constant W_OK is used as the amode argument.

The readonly edit option may be initialized to set for other, implementation-defined reasons.
The readonly edit option shall not be initialized to unset based on any special privileges of the
user or process. The readonly edit option shall be reinitialized each time that the contents of the
edit buffer are replaced (for example, by an edit or next command) unless the user has explicitly
set it, in which case it shall remain set until the user explicitly unsets it. Once unset, it shall again
be reinitialized each time that the contents of the edit buffer are replaced.

redraw

[Default unset]

The editor simulates an intelligent terminal on a dumb terminal. (Since this is likely to require a
large amount of output to the terminal, it is useful only at high transmission speeds.)

remap

[Default set]

If remap is set, map translation shall allow for maps defined in terms of other maps; translation
shall continue until a final product is obtained. If unset, only a one-step translation shall be
done.

report

[Default 5]

The value of this report edit option specifies what number of lines being added, copied, deleted,
or modified in the edit buffer will cause an informational message to be written to the user. The
following conditions shall cause an informational message. The message shall contain the
number of lines added, copied, deleted, or modified, but is otherwise unspecified.

• An ex or vi editor command, other than open, undo, or visual, that modifies at least the
value of the report edit option number of lines, and which is not part of an ex global or v
command, or ex or vi buffer execution, shall cause an informational message to be written.

• An ex yank or vi y or Y command, that copies at least the value of the report edit option
plus 1 number of lines, and which is not part of an ex global or v command, or ex or vi
buffer execution, shall cause an informational message to be written.

• An ex global, v, open, undo, or visual command or ex or vi buffer execution, that adds or
deletes a total of at least the value of the report edit option number of lines, and which is
not part of an ex global or v command, or ex or vi buffer execution, shall cause an
informational message to be written. (For example, if 3 lines were added and 8 lines
deleted during an ex visual command, 5 would be the number compared against the

2680 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

86832

86833

86834

86835

86836

86837

86838

86839

86840

86841

86842

86843

86844

86845

86846

86847

86848

86849

86850

86851

86852

86853

86854

86855

86856

86857

86858

86859

86860

86861

86862

86863

86864

86865

86866

86867

86868

86869

86870

86871

86872

Utilities ex

report edit option after the command completed.)

scroll, scr

[Default (number of lines in the display −1)/2]

The value of the scroll edit option shall determine the number of lines scrolled by the ex
<control>-D and z commands. For the vi <control>-D and <control>-U commands, it shall be the
initial number of lines to scroll when no previous <control>-D or <control>-U command has
been executed.

sections

[Default in the POSIX locale NHSHH HUnhsh]

The sections edit option shall define additional section boundaries for the open and visual mode
commands. The sections edit option can be set to a character string consisting of zero or more
character pairs; it shall be an error to set it to an odd number of characters.

shell, sh

[Default from the environment variable SHELL]

The value of this option shall be a string. The default shall be taken from the SHELL
environment variable. If the SHELL environment variable is null or empty, the sh (see sh) utility
shall be the default.

shiftwidth, sw

[Default 8]

The value of this option shall give the width in columns of an indentation level used during
autoindentation and by the shift commands (< and >).

showmatch, sm

[Default unset]

The functionality described for the showmatch edit option need not be supported on block-
mode terminals or terminals with insufficient capabilities.

If showmatch is set, in open or visual mode, when a ’)’ or ’}’ is typed, if the matching ’(’ or
’{’ is currently visible on the display, the matching ’(’ or ’{’ shall be flagged moving the
cursor to its location for an unspecified amount of time.

showmode

[Default unset]

If showmode is set, in open or visual mode, the current mode that the editor is in shall be
displayed on the last line of the display. Command mode and text input mode shall be
differentiated; other unspecified modes and implementation-defined information may be
displayed.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2681

86873

86874

86875

86876

86877

86878

86879

86880

86881

86882

86883

86884

86885

86886

86887

86888

86889

86890

86891

86892

86893

86894

86895

86896

86897

86898

86899

86900

86901

86902

86903

86904

86905

86906

ex Utilities

slowopen

[Default unset]

If slowopen is set during open and visual text input modes, the editor shall not update portions
of the display other than those display line columns that display the characters entered by the
user (see Input Mode Commands in vi, on page 3344).

tabstop, ts

[Default 8]

The value of this edit option shall specify the column boundary used by a <tab> in the display
(see autoprint, ap (on page 2677) and Input Mode Commands in vi, on page 3344).

taglength, tl

[Default zero]

The value of this edit option shall specify the maximum number of characters that are
considered significant in the user-specified tag name and in the tag name from the tags file. If
the value is zero, all characters in both tag names shall be significant.

tags

[Default see text]

The value of this edit option shall be a string of <blank>-delimited pathnames of files used by
the tag command. The default value is unspecified.

term

[Default from the environment variable TERM]

The value of this edit option shall be a string. The default shall be taken from the TERM variable
in the environment. If the TERM environment variable is empty or null, the default is
unspecified. The editor shall use the value of this edit option to determine the type of the display
device.

The results are unspecified if the user changes the value of the term edit option after editor
initialization.

terse

[Default unset]

If terse is set, error messages may be less verbose. However, except for this caveat, error
messages are unspecified. Furthermore, not all error messages need change for different settings
of this option.

2682 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

86907

86908

86909

86910

86911

86912

86913

86914

86915

86916

86917

86918

86919

86920

86921

86922

86923

86924

86925

86926

86927

86928

86929

86930

86931

86932

86933

86934

86935

86936

86937

Utilities ex

warn

[Default set]

If warn is set, and the contents of the edit buffer have been modified since they were last
completely written, the editor shall write a warning message before certain ! commands (see
Escape, on page 2673).

window

[Default see text]

A value used in open and visual mode, by the <control>-B and <control>-F commands, and, in
visual mode, to specify the number of lines displayed when the screen is repainted.

If the −w command-line option is not specified, the default value shall be set to the value of the
LINES environment variable. If the LINES environment variable is empty or null, the default
shall be the number of lines in the display minus 1.

Setting the window edit option to zero or to a value greater than the number of lines in the
display minus 1 (either explicitly or based on the −w option or the LINES environment variable)
shall cause the window edit option to be set to the number of lines in the display minus 1.

The baud rate of the terminal line may change the default in an implementation-defined manner.

wrapmargin, wm

[Default 0]

If the value of this edit option is zero, it shall have no effect.

If not in the POSIX locale, the effect of this edit option is implementation-defined.

Otherwise, it shall specify a number of columns from the ending margin of the terminal.

During open and visual text input modes, for each character for which any part of the character
is displayed in a column that is less than wrapmargin columns from the ending margin of the
display line, the editor shall behave as follows:

1. If the character triggering this event is a <blank>, it, and all immediately preceding
<blank> characters on the current line entered during the execution of the current text
input command, shall be discarded, and the editor shall behave as if the user had entered
a single <newline> instead. In addition, if the next user-entered character is a <space>, it
shall be discarded as well.

2. Otherwise, if there are one or more <blank> characters on the current line immediately
preceding the last group of inserted non-<blank> characters which was entered during
the execution of the current text input command, the <blank> characters shall be replaced
as if the user had entered a single <newline> instead.

If the autoindent edit option is set, and the events described in 1. or 2. are performed, any
<blank> characters at or after the cursor in the current line shall be discarded.

The ending margin shall be determined by the system or overridden by the user, as described for
COLUMNS in the ENVIRONMENT VARIABLES section and XBD Chapter 8 (on page 173).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2683

86938

86939

86940

86941

86942

86943

86944

86945

86946

86947

86948

86949

86950

86951

86952

86953

86954

86955

86956

86957

86958

86959

86960

86961

86962

86963

86964

86965

86966

86967

86968

86969

86970

86971

86972

86973

86974

ex Utilities

wrapscan, ws

[Default set]

If wrapscan is set, searches (the ex / or ? addresses, or open and visual mode /, ?, N, and n
commands) shall wrap around the beginning or end of the edit buffer; when unset, searches
shall stop at the beginning or end of the edit buffer.

writeany, wa

[Default unset]

If writeany is set, some of the checks performed when executing the ex write commands shall be
inhibited, as described in editor option autowrite.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
When any error is encountered and the standard input is not a terminal device file, ex shall not
write the file or return to command or text input mode, and shall terminate with a non-zero exit
status.

Otherwise, when an unrecoverable error is encountered, it shall be equivalent to a SIGHUP
asynchronous event.

Otherwise, when an error is encountered, the editor shall behave as specified in Command Line
Parsing in ex (on page 2646).

APPLICATION USAGE
If a SIGSEGV signal is received while ex is saving a file, the file might not be successfully saved.

The next command can accept more than one file, so usage such as:

next ‘ls [abc]*‘

is valid; it would not be valid for the edit or read commands, for example, because they expect
only one file and unspecified results occur.

EXAMPLES
None.

RATIONALE
The ex/vi specification is based on the historical practice found in the 4 BSD and System V
implementations of ex and vi.

A restricted editor (both the historical red utility and modifications to ex) were considered and
rejected for inclusion. Neither option provided the level of security that users might expect.

It is recognized that ex visual mode and related features would be difficult, if not impossible, to
implement satisfactorily on a block-mode terminal, or a terminal without any form of cursor
addressing; thus, it is not a mandatory requirement that such features should work on all
terminals. It is the intention, however, that an ex implementation should provide the full set of
capabilities on all terminals capable of supporting them.

2684 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

86975

86976

86977

86978

86979

86980

86981

86982

86983

86984

86985

86986

86987

86988

86989

86990

86991

86992

86993

86994

86995

86996

86997

86998

86999

87000

87001

87002

87003

87004

87005

87006

87007

87008

87009

87010

87011

87012

87013

Utilities ex

Options

The −c replacement for +command was inspired by the −e option of sed. Historically, all such
commands (see edit and next as well) were executed from the last line of the edit buffer. This
meant, for example, that "+/pattern" would fail unless the wrapscan option was set.
POSIX.1-2008 requires conformance to historical practice. The +command option is no longer
specified by POSIX.1-2008 but may be present in some implementations. Historically, some
implementations restricted the ex commands that could be listed as part of the command line
arguments. For consistency, POSIX.1-2008 does not permit these restrictions.

In historical implementations of the editor, the −R option (and the readonly edit option) only
prevented overwriting of files; appending to files was still permitted, mapping loosely into the
csh noclobber variable. Some implementations, however, have not followed this semantic, and
readonly does not permit appending either. POSIX.1-2008 follows the latter practice, believing
that it is a more obvious and intuitive meaning of readonly.

The −s option suppresses all interactive user feedback and is useful for editing scripts in batch
jobs. The list of specific effects is historical practice. The terminal type ‘‘incapable of supporting
open and visual modes’’ has historically been named ‘‘dumb’’.

The −t option was required because the ctags utility appears in POSIX.1-2008 and the option is
available in all historical implementations of ex.

Historically, the ex and vi utilities accepted a −x option, which did encryption based on the
algorithm found in the historical crypt utility. The −x option for encryption, and the associated
crypt utility, were omitted because the algorithm used was not specifiable and the export control
laws of some nations make it difficult to export cryptographic technology. In addition, it did not
historically provide the level of security that users might expect.

Standard Input

An end-of-file condition is not equivalent to an end-of-file character. A common end-of-file
character, <control>-D, is historically an ex command.

There was no maximum line length in historical implementations of ex. Specifically, as it was
parsed in chunks, the addresses had a different maximum length than the filenames. Further, the
maximum line buffer size was declared as BUFSIZ, which was different lengths on different
systems. This version selected the value of {LINE_MAX} to impose a reasonable restriction on
portable usage of ex and to aid test suite writers in their development of realistic tests that
exercise this limit.

Input Files

It was an explicit decision by the standard developers that a <newline> be added to any file
lacking one. It was believed that this feature of ex and vi was relied on by users in order to make
text files lacking a trailing <newline> more portable. It is recognized that this will require a user-
specified option or extension for implementations that permit ex and vi to edit files of type other
than text if such files are not otherwise identified by the system. It was agreed that the ability to
edit files of arbitrary type can be useful, but it was not considered necessary to mandate that an
ex or vi implementation be required to handle files other than text files.

The paragraph in the INPUT FILES section, ‘‘By default, . . .’’, is intended to close a long-
standing security problem in ex and vi; that of the ‘‘modeline’’ or ‘‘modelines’’ edit option. This
feature allows any line in the first or last five lines of the file containing the strings "ex:" or
"vi:" (and, apparently, "ei:" or "vx:") to be a line containing editor commands, and ex
interprets all the text up to the next ’:’ or <newline> as a command. Consider the

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2685

87014

87015

87016

87017

87018

87019

87020

87021

87022

87023

87024

87025

87026

87027

87028

87029

87030

87031

87032

87033

87034

87035

87036

87037

87038

87039

87040

87041

87042

87043

87044

87045

87046

87047

87048

87049

87050

87051

87052

87053

87054

87055

87056

87057

87058

ex Utilities

consequences, for example, of an unsuspecting user using ex or vi as the editor when replying to
a mail message in which a line such as:

ex:! rm −rf :

appeared in the signature lines. The standard developers believed strongly that an editor should
not by default interpret any lines of a file. Vendors are strongly urged to delete this feature from
their implementations of ex and vi.

Asynchronous Events

The intention of the phrase ‘‘complete write’’ is that the entire edit buffer be written to stable
storage. The note regarding temporary files is intended for implementations that use temporary
files to back edit buffers unnamed by the user.

Historically, SIGQUIT was ignored by ex, but was the equivalent of the Q command in visual
mode; that is, it exited visual mode and entered ex mode. POSIX.1-2008 permits, but does not
require, this behavior. Historically, SIGINT was often used by vi users to terminate text input
mode (<control>-C is often easier to enter than <ESC>). Some implementations of vi alerted the
terminal on this event, and some did not. POSIX.1-2008 requires that SIGINT behave identically
to <ESC>, and that the terminal not be alerted.

Historically, suspending the ex editor during text input mode was similar to SIGINT, as
completed lines were retained, but any partial line discarded, and the editor returned to
command mode. POSIX.1-2008 is silent on this issue; implementations are encouraged to follow
historical practice, where possible.

Historically, the vi editor did not treat SIGTSTP as an asynchronous event, and it was therefore
impossible to suspend the editor in visual text input mode. There are two major reasons for this.
The first is that SIGTSTP is a broadcast signal on UNIX systems, and the chain of events where
the shell execs an application that then execs vi usually caused confusion for the terminal state if
SIGTSTP was delivered to the process group in the default manner. The second was that most
implementations of the UNIX curses package did not handle SIGTSTP safely, and the receipt of
SIGTSTP at the wrong time would cause them to crash. POSIX.1-2008 is silent on this issue;
implementations are encouraged to treat suspension as an asynchronous event if possible.

Historically, modifications to the edit buffer made before SIGINT interrupted an operation were
retained; that is, anywhere from zero to all of the lines to be modified might have been modified
by the time the SIGINT arrived. These changes were not discarded by the arrival of SIGINT.
POSIX.1-2008 permits this behavior, noting that the undo command is required to be able to
undo these partially completed commands.

The action taken for signals other than SIGINT, SIGCONT, SIGHUP, and SIGTERM is
unspecified because some implementations attempt to save the edit buffer in a useful state when
other signals are received.

Standard Error

For ex/vi, diagnostic messages are those messages reported as a result of a failed attempt to
invoke ex or vi, such as invalid options or insufficient resources, or an abnormal termination
condition. Diagnostic messages should not be confused with the error messages generated by
inappropriate or illegal user commands.

2686 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

87059

87060

87061

87062

87063

87064

87065

87066

87067

87068

87069

87070

87071

87072

87073

87074

87075

87076

87077

87078

87079

87080

87081

87082

87083

87084

87085

87086

87087

87088

87089

87090

87091

87092

87093

87094

87095

87096

87097

87098

87099

Utilities ex

Initialization in ex and vi

If an ex command (other than cd, chdir, or source) has a filename argument, one or both of the
alternate and current pathnames will be set. Informally, they are set as follows:

1. If the ex command is one that replaces the contents of the edit buffer, and it succeeds, the
current pathname will be set to the filename argument (the first filename argument in the
case of the next command) and the alternate pathname will be set to the previous current
pathname, if there was one.

2. In the case of the file read/write forms of the read and write commands, if there is no
current pathname, the current pathname will be set to the filename argument.

3. Otherwise, the alternate pathname will be set to the filename argument.

For example, :edit foo and :recover foo, when successful, set the current pathname, and, if there
was a previous current pathname, the alternate pathname. The commands :write, !command,
and :edit set neither the current or alternate pathnames. If the :edit foo command were to fail for
some reason, the alternate pathname would be set. The read and write commands set the
alternate pathname to their file argument, unless the current pathname is not set, in which case
they set the current pathname to their file arguments. The alternate pathname was not
historically set by the :source command. POSIX.1-2008 requires conformance to historical
practice. Implementations adding commands that take filenames as arguments are encouraged
to set the alternate pathname as described here.

Historically, ex and vi read the .exrc file in the $HOME directory twice, if the editor was executed
in the $HOME directory. POSIX.1-2008 prohibits this behavior.

Historically, the 4 BSD ex and vi read the $HOME and local .exrc files if they were owned by the
real ID of the user, or the sourceany option was set, regardless of other considerations. This was
a security problem because it is possible to put normal UNIX system commands inside a .exrc
file. POSIX.1-2008 does not specify the sourceany option, and historical implementations are
encouraged to delete it.

The .exrc files must be owned by the real ID of the user, and not writable by anyone other than
the owner. The appropriate privileges exception is intended to permit users to acquire special
privileges, but continue to use the .exrc files in their home directories.

System V Release 3.2 and later vi implementations added the option [no]exrc. The behavior is
that local .exrc files are read-only if the exrc option is set. The default for the exrc option was off,
so by default, local .exrc files were not read. The problem this was intended to solve was that
System V permitted users to give away files, so there is no possible ownership or writeability
test to ensure that the file is safe. This is still a security problem on systems where users can give
away files, but there is nothing additional that POSIX.1-2008 can do. The implementation-
defined exception is intended to permit groups to have local .exrc files that are shared by users,
by creating pseudo-users to own the shared files.

POSIX.1-2008 does not mention system-wide ex and vi start-up files. While they exist in several
implementations of ex and vi, they are not present in any implementations considered historical
practice by POSIX.1-2008. Implementations that have such files should use them only if they are
owned by the real user ID or an appropriate user (for example, root on UNIX systems) and if
they are not writable by any user other than their owner. System-wide start-up files should be
read before the EXINIT variable, $HOME/.exrc, or local .exrc files are evaluated.

Historically, any ex command could be entered in the EXINIT variable or the .exrc file, although
ones requiring that the edit buffer already contain lines of text generally caused historical
implementations of the editor to drop core. POSIX.1-2008 requires that any ex command be

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2687

87100

87101

87102

87103

87104

87105

87106

87107

87108

87109

87110

87111

87112

87113

87114

87115

87116

87117

87118

87119

87120

87121

87122

87123

87124

87125

87126

87127

87128

87129

87130

87131

87132

87133

87134

87135

87136

87137

87138

87139

87140

87141

87142

87143

87144

87145

ex Utilities

permitted in the EXINIT variable and .exrc files, for simplicity of specification and consistency,
although many of them will obviously fail under many circumstances.

The initialization of the contents of the edit buffer uses the phrase ‘‘the effect shall be’’ with
regard to various ex commands. The intent of this phrase is that edit buffer contents loaded
during the initialization phase not be lost; that is, loading the edit buffer should fail if the .exrc
file read in the contents of a file and did not subsequently write the edit buffer. An additional
intent of this phrase is to specify that the initial current line and column is set as specified for the
individual ex commands.

Historically, the −t option behaved as if the tag search were a +command; that is, it was executed
from the last line of the file specified by the tag. This resulted in the search failing if the pattern
was a forward search pattern and the wrapscan edit option was not set. POSIX.1-2008 does not
permit this behavior, requiring that the search for the tag pattern be performed on the entire file,
and, if not found, that the current line be set to a more reasonable location in the file.

Historically, the empty edit buffer presented for editing when a file was not specified by the user
was unnamed. This is permitted by POSIX.1-2008; however, implementations are encouraged to
provide users a temporary filename for this buffer because it permits them the use of ex
commands that use the current pathname during temporary edit sessions.

Historically, the file specified using the −t option was not part of the current argument list. This
practice is permitted by POSIX.1-2008; however, implementations are encouraged to include its
name in the current argument list for consistency.

Historically, the −c command was generally not executed until a file that already exists was
edited. POSIX.1-2008 requires conformance to this historical practice. Commands that could
cause the −c command to be executed include the ex commands edit, next, recover, rewind, and
tag, and the vi commands <control>-ˆ and <control>-]. Historically, reading a file into an edit
buffer did not cause the −c command to be executed (even though it might set the current
pathname) with the exception that it did cause the −c command to be executed if: the editor was
in ex mode, the edit buffer had no current pathname, the edit buffer was empty, and no read
commands had yet been attempted. For consistency and simplicity of specification,
POSIX.1-2008 does not permit this behavior.

Historically, the −r option was the same as a normal edit session if there was no recovery
information available for the file. This allowed users to enter:

vi −r *.c

and recover whatever files were recoverable. In some implementations, recovery was attempted
only on the first file named, and the file was not entered into the argument list; in others,
recovery was attempted for each file named. In addition, some historical implementations
ignored −r if −t was specified or did not support command line file arguments with the −t option.
For consistency and simplicity of specification, POSIX.1-2008 disallows these special cases, and
requires that recovery be attempted the first time each file is edited.

Historically, vi initialized the ‘ and ’ marks, but ex did not. This meant that if the first command
in ex mode was visual or if an ex command was executed first (for example, vi +10 file), vi was
entered without the marks being initialized. Because the standard developers believed the marks
to be generally useful, and for consistency and simplicity of specification, POSIX.1-2008 requires
that they always be initialized if in open or visual mode, or if in ex mode and the edit buffer is
not empty. Not initializing it in ex mode if the edit buffer is empty is historical practice; however,
it has always been possible to set (and use) marks in empty edit buffers in open and visual mode
edit sessions.

2688 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

87146

87147

87148

87149

87150

87151

87152

87153

87154

87155

87156

87157

87158

87159

87160

87161

87162

87163

87164

87165

87166

87167

87168

87169

87170

87171

87172

87173

87174

87175

87176

87177

87178

87179

87180

87181

87182

87183

87184

87185

87186

87187

87188

87189

87190

87191

Utilities ex

Addressing

Historically, ex and vi accepted the additional addressing forms ’\/’ and ’\?’. They were
equivalent to "//" and "??", respectively. They are not required by POSIX.1-2008, mostly
because nobody can remember whether they ever did anything different historically.

Historically, ex and vi permitted an address of zero for several commands, and permitted the %
address in empty files for others. For consistency, POSIX.1-2008 requires support for the former
in the few commands where it makes sense, and disallows it otherwise. In addition, because
POSIX.1-2008 requires that % be logically equivalent to "1,$", it is also supported where it
makes sense and disallowed otherwise.

Historically, the % address could not be followed by further addresses. For consistency and
simplicity of specification, POSIX.1-2008 requires that additional addresses be supported.

All of the following are valid addresses:

+++ Three lines after the current line.

/re/− One line before the next occurrence of re.

−2 Two lines before the current line.

3 − − − − 2 Line one (note intermediate negative address).

1 2 3 Line six.

Any number of addresses can be provided to commands taking addresses; for example,
"1,2,3,4,5p" prints lines 4 and 5, because two is the greatest valid number of addresses
accepted by the print command. This, in combination with the <semicolon> delimiter, permits
users to create commands based on ordered patterns in the file. For example, the command
3;/foo/;+2print will display the first line after line 3 that contains the pattern foo, plus the next
two lines. Note that the address 3; must be evaluated before being discarded because the search
origin for the /foo/ command depends on this.

Historically, values could be added to addresses by including them after one or more <blank>
characters; for example, 3 − 5p wrote the seventh line of the file, and /foo/ 5 was the same as
/foo/+5. However, only absolute values could be added; for example, 5 /foo/ was an error.
POSIX.1-2008 requires conformance to historical practice. Address offsets are separately
specified from addresses because they could historically be provided to visual mode search
commands.

Historically, any missing addresses defaulted to the current line. This was true for leading and
trailing <comma>-delimited addresses, and for trailing <semicolon>-delimited addresses. For
consistency, POSIX.1-2008 requires it for leading <semicolon> addresses as well.

Historically, ex and vi accepted the ’ˆ’ character as both an address and as a flag offset for
commands. In both cases it was identical to the ’−’ character. POSIX.1-2008 does not require or
prohibit this behavior.

Historically, the enhancements to basic regular expressions could be used in addressing; for
example, ’˜’, ’\<’, and ’\>’. POSIX.1-2008 requires conformance to historical practice; that
is, that regular expression usage be consistent, and that regular expression enhancements be
supported wherever regular expressions are used.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2689

87192

87193

87194

87195

87196

87197

87198

87199

87200

87201

87202

87203

87204

87205

87206

87207

87208

87209

87210

87211

87212

87213

87214

87215

87216

87217

87218

87219

87220

87221

87222

87223

87224

87225

87226

87227

87228

87229

87230

87231

ex Utilities

Command Line Parsing in ex

Historical ex command parsing was even more complex than that described here. POSIX.1-2008
requires the subset of the command parsing that the standard developers believed was
documented and that users could reasonably be expected to use in a portable fashion, and that
was historically consistent between implementations. (The discarded functionality is obscure, at
best.) Historical implementations will require changes in order to comply with POSIX.1-2008;
however, users are not expected to notice any of these changes. Most of the complexity in ex
parsing is to handle three special termination cases:

1. The !, global, v, and the filter versions of the read and write commands are delimited by
<newline> characters (they can contain <vertical-line> characters that are usually shell
pipes).

2. The ex, edit, next, and visual in open and visual mode commands all take ex commands,
optionally containing <vertical-line> characters, as their first arguments.

3. The s command takes a regular expression as its first argument, and uses the delimiting
characters to delimit the command.

Historically, <vertical-line> characters in the +command argument of the ex, edit, next, vi, and
visual commands, and in the pattern and replacement parts of the s command, did not delimit the
command, and in the filter cases for read and write, and the !, global, and v commands, they did
not delimit the command at all. For example, the following commands are all valid:

:edit +25 | s/abc/ABC/ file.c
:s/ | /PIPE/
:read !spell % | columnate
:global/pattern/p | l
:s/a/b/ | s/c/d | set

Historically, empty or <blank> filled lines in .exrc files and sourced files (as well as EXINIT
variables and ex command scripts) were treated as default commands; that is, print commands.
POSIX.1-2008 specifically requires that they be ignored when encountered in .exrc and sourced
files to eliminate a common source of new user error.

Historically, ex commands with multiple adjacent (or <blank>-separated) vertical lines were
handled oddly when executed from ex mode. For example, the command ||| <carriage-return>,
when the cursor was on line 1, displayed lines 2, 3, and 5 of the file. In addition, the command |
would only display the line after the next line, instead of the next two lines. The former worked
more logically when executed from vi mode, and displayed lines 2, 3, and 4. POSIX.1-2008
requires the vi behavior; that is, a single default command and line number increment for each
command separator, and trailing <newline> characters after <vertical-line> separators are
discarded.

Historically, ex permitted a single extra <colon> as a leading command character; for example,
:g/pattern/:p was a valid command. POSIX.1-2008 generalizes this to require that any number of
leading <colon> characters be stripped.

Historically, any prefix of the delete command could be followed without intervening <blank>
characters by a flag character because in the command d p, p is interpreted as the buffer p.
POSIX.1-2008 requires conformance to historical practice.

Historically, the k command could be followed by the mark name without intervening <blank>
characters. POSIX.1-2008 requires conformance to historical practice.

Historically, the s command could be immediately followed by flag and option characters; for
example, s/e/E/|s|sgc3p was a valid command. However, flag characters could not stand alone;

2690 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

87232

87233

87234

87235

87236

87237

87238

87239

87240

87241

87242

87243

87244

87245

87246

87247

87248

87249

87250

87251

87252

87253

87254

87255

87256

87257

87258

87259

87260

87261

87262

87263

87264

87265

87266

87267

87268

87269

87270

87271

87272

87273

87274

87275

87276

87277

Utilities ex

for example, the commands sp and s l would fail, while the command sgp and s gl would
succeed. (Obviously, the ’#’ flag character was used as a delimiter character if it followed the
command.) Another issue was that option characters had to precede flag characters even when
the command was fully specified; for example, the command s/e/E/pg would fail, while the
command s/e/E/gp would succeed. POSIX.1-2008 requires conformance to historical practice.

Historically, the first command name that had a prefix matching the input from the user was the
executed command; for example, ve, ver, and vers all executed the version command.
Commands were in a specific order, however, so that a matched append, not abbreviate.
POSIX.1-2008 requires conformance to historical practice. The restriction on command search
order for implementations with extensions is to avoid the addition of commands such that the
historical prefixes would fail to work portably.

Historical implementations of ex and vi did not correctly handle multiple ex commands,
separated by <vertical-line> characters, that entered or exited visual mode or the editor. Because
implementations of vi exist that do not exhibit this failure mode, POSIX.1-2008 does not permit
it.

The requirement that alphabetic command names consist of all following alphabetic characters
up to the next non-alphabetic character means that alphabetic command names must be
separated from their arguments by one or more non-alphabetic characters, normally a <blank>
or ’!’ character, except as specified for the exceptions, the delete, k, and s commands.

Historically, the repeated execution of the ex default print commands (<control>-D, eof ,
<newline>, <carriage-return>) erased any prompting character and displayed the next lines
without scrolling the terminal; that is, immediately below any previously displayed lines. This
provided a cleaner presentation of the lines in the file for the user. POSIX.1-2008 does not require
this behavior because it may be impossible in some situations; however, implementations are
strongly encouraged to provide this semantic if possible.

Historically, it was possible to change files in the middle of a command, and have the rest of the
command executed in the new file; for example:

:edit +25 file.c | s/abc/ABC/ | 1

was a valid command, and the substitution was attempted in the newly edited file.
POSIX.1-2008 requires conformance to historical practice. The following commands are
examples that exercise the ex parser:

echo ’foo | bar’ > file1; echo ’foo/bar’ > file2;
vi
:edit +1 | s/|/PIPE/ | w file1 | e file2 | 1 | s/\//SLASH/ | wq

Historically, there was no protection in editor implementations to avoid ex global, v, @, or *
commands changing edit buffers during execution of their associated commands. Because this
would almost invariably result in catastrophic failure of the editor, and implementations exist
that do exhibit these problems, POSIX.1-2008 requires that changing the edit buffer during a
global or v command, or during a @ or * command for which there will be more than a single
execution, be an error. Implementations supporting multiple edit buffers simultaneously are
strongly encouraged to apply the same semantics to switching between buffers as well.

The ex command quoting required by POSIX.1-2008 is a superset of the quoting in historical
implementations of the editor. For example, it was not historically possible to escape a <blank>
in a filename; for example, :edit foo\\\ bar would report that too many filenames had been
entered for the edit command, and there was no method of escaping a <blank> in the first
argument of an edit, ex, next, or visual command at all. POSIX.1-2008 extends historical
practice, requiring that quoting behavior be made consistent across all ex commands, except for

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2691

87278

87279

87280

87281

87282

87283

87284

87285

87286

87287

87288

87289

87290

87291

87292

87293

87294

87295

87296

87297

87298

87299

87300

87301

87302

87303

87304

87305

87306

87307

87308

87309

87310

87311

87312

87313

87314

87315

87316

87317

87318

87319

87320

87321

87322

87323

87324

ex Utilities

the map, unmap, abbreviate, and unabbreviate commands, which historically used <control>-V
instead of <backslash> characters for quoting. For those four commands, POSIX.1-2008 requires
conformance to historical practice.

Backslash quoting in ex is non-intuitive. <backslash>-escapes are ignored unless they escape a
special character; for example, when performing file argument expansion, the string "\\%" is
equivalent to ’\%’, not "\<current pathname>". This can be confusing for users because
<backslash> is usually one of the characters that causes shell expansion to be performed, and
therefore shell quoting rules must be taken into consideration. Generally, quoting characters are
only considered if they escape a special character, and a quoting character must be provided for
each layer of parsing for which the character is special. As another example, only a single
<backslash> is necessary for the ’\l’ sequence in substitute replacement patterns, because the
character ’l’ is not special to any parsing layer above it.

<control>-V quoting in ex is slightly different from backslash quoting. In the four commands
where <control>-V quoting applies (abbreviate, unabbreviate, map, and unmap), any character
may be escaped by a <control>-V whether it would have a special meaning or not. POSIX.1-2008
requires conformance to historical practice.

Historical implementations of the editor did not require delimiters within character classes to be
escaped; for example, the command :s/[/]// on the string "xxx/yyy" would delete the ’/’ from
the string. POSIX.1-2008 disallows this historical practice for consistency and because it places a
large burden on implementations by requiring that knowledge of regular expressions be built
into the editor parser.

Historically, quoting <newline> characters in ex commands was handled inconsistently. In most
cases, the <newline> character always terminated the command, regardless of any preceding
escape character, because <backslash> characters did not escape <newline> characters for most
ex commands. However, some ex commands (for example, s, map, and abbreviation) permitted
<newline> characters to be escaped (although in the case of map and abbreviation, <control>-V
characters escaped them instead of <backslash> characters). This was true in not only the
command line, but also .exrc and sourced files. For example, the command:

map = foo<control-V><newline>bar

would succeed, although it was sometimes difficult to get the <control>-V and the inserted
<newline> passed to the ex parser. For consistency and simplicity of specification, POSIX.1-2008
requires that it be possible to escape <newline> characters in ex commands at all times, using
<backslash> characters for most ex commands, and using <control>-V characters for the map
and abbreviation commands. For example, the command print<newline>list is required to be
parsed as the single command print<newline>list. While this differs from historical practice,
POSIX.1-2008 developers believed it unlikely that any script or user depended on the historical
behavior.

Historically, an error in a command specified using the −c option did not cause the rest of the −c
commands to be discarded. POSIX.1-2008 disallows this for consistency with mapped keys, the
@, global, source, and v commands, the EXINIT environment variable, and the .exrc files.

2692 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

87325

87326

87327

87328

87329

87330

87331

87332

87333

87334

87335

87336

87337

87338

87339

87340

87341

87342

87343

87344

87345

87346

87347

87348

87349

87350

87351

87352

87353

87354

87355

87356

87357

87358

87359

87360

87361

87362

87363

87364

Utilities ex

Input Editing in ex

One of the common uses of the historical ex editor is over slow network connections. Editors that
run in canonical mode can require far less traffic to and from, and far less processing on, the host
machine, as well as more easily supporting block-mode terminals. For these reasons,
POSIX.1-2008 requires that ex be implemented using canonical mode input processing, as was
done historically.

POSIX.1-2008 does not require the historical 4 BSD input editing characters ‘‘word erase’’ or
‘‘literal next’’. For this reason, it is unspecified how they are handled by ex, although they must
have the required effect. Implementations that resolve them after the line has been ended using a
<newline> or <control>-M character, and implementations that rely on the underlying system
terminal support for this processing, are both conforming. Implementations are strongly urged
to use the underlying system functionality, if at all possible, for compatibility with other system
text input interfaces.

Historically, when the eof character was used to decrement the autoindent level, the cursor
moved to display the new end of the autoindent characters, but did not move the cursor to a
new line, nor did it erase the <control>-D character from the line. POSIX.1-2008 does not specify
that the cursor remain on the same line or that the rest of the line is erased; however,
implementations are strongly encouraged to provide the best possible user interface; that is, the
cursor should remain on the same line, and any <control>-D character on the line should be
erased.

POSIX.1-2008 does not require the historical 4 BSD input editing character ‘‘reprint’’,
traditionally <control>-R, which redisplayed the current input from the user. For this reason,
and because the functionality cannot be implemented after the line has been terminated by the
user, POSIX.1-2008 makes no requirements about this functionality. Implementations are
strongly urged to make this historical functionality available, if possible.

Historically, <control>-Q did not perform a literal next function in ex, as it did in vi.
POSIX.1-2008 requires conformance to historical practice to avoid breaking historical ex scripts
and .exrc files.

eof

Whether the eof character immediately modifies the autoindent characters in the prompt is left
unspecified so that implementations can conform in the presence of systems that do not support
this functionality. Implementations are encouraged to modify the line and redisplay it
immediately, if possible.

The specification of the handling of the eof character differs from historical practice only in that
eof characters are not discarded if they follow normal characters in the text input. Historically,
they were always discarded.

Command Descriptions in ex

Historically, several commands (for example, global, v, visual, s, write, wq, yank, !, <, >, &, and
˜) were executable in empty files (that is, the default address(es) were 0), or permitted explicit
addresses of 0 (for example, 0 was a valid address, or 0,0 was a valid range). Addresses of 0, or
command execution in an empty file, make sense only for commands that add new text to the
edit buffer or write commands (because users may wish to write empty files). POSIX.1-2008
requires this behavior for such commands and disallows it otherwise, for consistency and
simplicity of specification.

A count to an ex command has been historically corrected to be no greater than the last line in a

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2693

87365

87366

87367

87368

87369

87370

87371

87372

87373

87374

87375

87376

87377

87378

87379

87380

87381

87382

87383

87384

87385

87386

87387

87388

87389

87390

87391

87392

87393

87394

87395

87396

87397

87398

87399

87400

87401

87402

87403

87404

87405

87406

87407

87408

87409

ex Utilities

file; for example, in a five-line file, the command 1,6print would fail, but the command
1print300 would succeed. POSIX.1-2008 requires conformance to historical practice.

Historically, the use of flags in ex commands could be obscure. General historical practice was as
described by POSIX.1-2008, but there were some special cases. For instance, the list, number,
and print commands ignored trailing address offsets; for example, 3p +++# would display line
3, and 3 would be the current line after the execution of the command. The open and visual
commands ignored both the trailing offsets and the trailing flags. Also, flags specified to the
open and visual commands interacted badly with the list edit option, and setting and then
unsetting it during the open/visual session would cause vi to stop displaying lines in the
specified format. For consistency and simplicity of specification, POSIX.1-2008 does not permit
any of these exceptions to the general rule.

POSIX.1-2008 uses the word copy in several places when discussing buffers. This is not intended
to imply implementation.

Historically, ex users could not specify numeric buffers because of the ambiguity this would
cause; for example, in the command 3 delete 2, it is unclear whether 2 is a buffer name or a
count. POSIX.1-2008 requires conformance to historical practice by default, but does not
preclude extensions.

Historically, the contents of the unnamed buffer were frequently discarded after commands that
did not explicitly affect it; for example, when using the edit command to switch files. For
consistency and simplicity of specification, POSIX.1-2008 does not permit this behavior.

The ex utility did not historically have access to the numeric buffers, and, furthermore, deleting
lines in ex did not modify their contents. For example, if, after doing a delete in vi, the user
switched to ex, did another delete, and then switched back to vi, the contents of the numeric
buffers would not have changed. POSIX.1-2008 requires conformance to historical practice.
Numeric buffers are described in the ex utility in order to confine the description of buffers to a
single location in POSIX.1-2008.

The metacharacters that trigger shell expansion in file arguments match historical practice, as
does the method for doing shell expansion. Implementations wishing to provide users with the
flexibility to alter the set of metacharacters are encouraged to provide a shellmeta string edit
option.

Historically, ex commands executed from vi refreshed the screen when it did not strictly need to
do so; for example, :!date > /dev/null does not require a screen refresh because the output of
the UNIX date command requires only a single line of the screen. POSIX.1-2008 requires that the
screen be refreshed if it has been overwritten, but makes no requirements as to how an
implementation should make that determination. Implementations may prompt and refresh the
screen regardless.

Abbreviate

Historical practice was that characters that were entered as part of an abbreviation replacement
were subject to map expansions, the showmatch edit option, further abbreviation expansions,
and so on; that is, they were logically pushed onto the terminal input queue, and were not a
simple replacement. POSIX.1-2008 requires conformance to historical practice. Historical
practice was that whenever a non-word character (that had not been escaped by a <control>-V)
was entered after a word character, vi would check for abbreviations. The check was based on
the type of the character entered before the word character of the word/non-word pair that
triggered the check. The word character of the word/non-word pair that triggered the check and
all characters entered before the trigger pair that were of that type were included in the check,
with the exception of <blank> characters, which always delimited the abbreviation.

2694 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

87410

87411

87412

87413

87414

87415

87416

87417

87418

87419

87420

87421

87422

87423

87424

87425

87426

87427

87428

87429

87430

87431

87432

87433

87434

87435

87436

87437

87438

87439

87440

87441

87442

87443

87444

87445

87446

87447

87448

87449

87450

87451

87452

87453

87454

87455

87456

Utilities ex

This means that, for the abbreviation to work, the lhs must end with a word character, there can
be no transitions from word to non-word characters (or vice versa) other than between the last
and next-to-last characters in the lhs, and there can be no <blank> characters in the lhs. In
addition, because of the historical quoting rules, it was impossible to enter a literal <control>-V
in the lhs. POSIX.1-2008 requires conformance to historical practice. Historical implementations
did not inform users when abbreviations that could never be used were entered;
implementations are strongly encouraged to do so.

For example, the following abbreviations will work:

:ab (p REPLACE
:ab p REPLACE
:ab ((p REPLACE

The following abbreviations will not work:

:ab (REPLACE
:ab (pp REPLACE

Historical practice is that words on the vi colon command line were subject to abbreviation
expansion, including the arguments to the abbrev (and more interestingly) the unabbrev
command. Because there are implementations that do not do abbreviation expansion for the first
argument to those commands, this is permitted, but not required, by POSIX.1-2008. However,
the following sequence:

:ab foo bar
:ab foo baz

resulted in the addition of an abbreviation of "baz" for the string "bar" in historical ex/vi, and
the sequence:

:ab foo1 bar
:ab foo2 bar
:unabbreviate foo2

deleted the abbreviation "foo1", not "foo2". These behaviors are not permitted by
POSIX.1-2008 because they clearly violate the expectations of the user.

It was historical practice that <control>-V, not <backslash>, characters be interpreted as escaping
subsequent characters in the abbreviate command. POSIX.1-2008 requires conformance to
historical practice; however, it should be noted that an abbreviation containing a <blank> will
never work.

Append

Historically, any text following a <vertical-line> command separator after an append, change, or
insert command became part of the insert text. For example, in the command:

:g/pattern/append|stuff1

a line containing the text "stuff1" would be appended to each line matching pattern. It was
also historically valid to enter:

:append|stuff1
stuff2
.

and the text on the ex command line would be appended along with the text inserted after it.
There was an historical bug, however, that the user had to enter two terminating lines (the ’.’

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2695

87457

87458

87459

87460

87461

87462

87463

87464

87465

87466

87467

87468

87469

87470

87471

87472

87473

87474

87475

87476

87477

87478

87479

87480

87481

87482

87483

87484

87485

87486

87487

87488

87489

87490

87491

87492

87493

87494

87495

87496

87497

87498

87499

ex Utilities

lines) to terminate text input mode in this case. POSIX.1-2008 requires conformance to historical
practice, but disallows the historical need for multiple terminating lines.

Change

See the RATIONALE for the append command. Historical practice for cursor positioning after
the change command when no text is input, is as described in POSIX.1-2008. However, one
System V implementation is known to have been modified such that the cursor is positioned on
the first address specified, and not on the line before the first address. POSIX.1-2008 disallows
this modification for consistency.

Historically, the change command did not support buffer arguments, although some
implementations allow the specification of an optional buffer. This behavior is neither required
nor disallowed by POSIX.1-2008.

Change Directory

A common extension in ex implementations is to use the elements of a cdpath edit option as
prefix directories for path arguments to chdir that are relative pathnames and that do not have
’.’ or ".." as their first component. Elements in the cdpath edit option are <colon>-separated.
The initial value of the cdpath edit option is the value of the shell CDPATH environment
variable. This feature was not included in POSIX.1-2008 because it does not exist in any of the
implementations considered historical practice.

Copy

Historical implementations of ex permitted copies to lines inside of the specified range; for
example, :2,5copy3 was a valid command. POSIX.1-2008 requires conformance to historical
practice.

Delete

POSIX.1-2008 requires support for the historical parsing of a delete command followed by flags,
without any intervening <blank> characters. For example:

1dp Deletes the first line and prints the line that was second.

1delep As for 1dp.

1d Deletes the first line, saving it in buffer p.

1d p1l (Pee-one-ell.) Deletes the first line, saving it in buffer p, and listing the line that was
second.

Edit

Historically, any ex command could be entered as a +command argument to the edit command,
although some (for example, insert and append) were known to confuse historical
implementations. For consistency and simplicity of specification, POSIX.1-2008 requires that any
command be supported as an argument to the edit command.

Historically, the command argument was executed with the current line set to the last line of the
file, regardless of whether the edit command was executed from visual mode or not.
POSIX.1-2008 requires conformance to historical practice.

Historically, the +command specified to the edit and next commands was delimited by the first
<blank>, and there was no way to quote them. For consistency, POSIX.1-2008 requires that the
usual ex backslash quoting be provided.

2696 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

87500

87501

87502

87503

87504

87505

87506

87507

87508

87509

87510

87511

87512

87513

87514

87515

87516

87517

87518

87519

87520

87521

87522

87523

87524

87525

87526

87527

87528

87529

87530

87531

87532

87533

87534

87535

87536

87537

87538

87539

87540

Utilities ex

Historically, specifying the +command argument to the edit command required a filename to be
specified as well; for example, :edit +100 would always fail. For consistency and simplicity of
specification, POSIX.1-2008 does not permit this usage to fail for that reason.

Historically, only the cursor position of the last file edited was remembered by the editor.
POSIX.1-2008 requires that this be supported; however, implementations are permitted to
remember and restore the cursor position for any file previously edited.

File

Historical versions of the ex editor file command displayed a current line and number of lines in
the edit buffer of 0 when the file was empty, while the vi <control>-G command displayed a
current line and number of lines in the edit buffer of 1 in the same situation. POSIX.1-2008 does
not permit this discrepancy, instead requiring that a message be displayed indicating that the file
is empty.

Global

The two-pass operation of the global and v commands is not intended to imply implementation,
only the required result of the operation.

The current line and column are set as specified for the individual ex commands. This
requirement is cumulative; that is, the current line and column must track across all the
commands executed by the global or v commands.

Insert

See the RATIONALE for the append command.

Historically, insert could not be used with an address of zero; that is, not when the edit buffer
was empty. POSIX.1-2008 requires that this command behave consistently with the append
command.

Join

The action of the join command in relation to the special characters is only defined for the
POSIX locale because the correct amount of white space after a period varies; in Japanese none is
required, in French only a single space, and so on.

List

The historical output of the list command was potentially ambiguous. The standard developers
believed correcting this to be more important than adhering to historical practice, and
POSIX.1-2008 requires unambiguous output.

Map

Historically, command mode maps only applied to command names; for example, if the
character ’x’ was mapped to ’y’, the command fx searched for the ’x’ character, not the ’y’
character. POSIX.1-2008 requires this behavior. Historically, entering <control>-V as the first
character of a vi command was an error. Several implementations have extended the semantics
of vi such that <control>-V means that the subsequent command character is not mapped. This
is permitted, but not required, by POSIX.1-2008. Regardless, using <control>-V to escape the
second or later character in a sequence of characters that might match a map command, or any
character in text input mode, is historical practice, and stops the entered keys from matching a
map. POSIX.1-2008 requires conformance to historical practice.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2697

87541

87542

87543

87544

87545

87546

87547

87548

87549

87550

87551

87552

87553

87554

87555

87556

87557

87558

87559

87560

87561

87562

87563

87564

87565

87566

87567

87568

87569

87570

87571

87572

87573

87574

87575

87576

87577

87578

87579

87580

87581

ex Utilities

Historical implementations permitted digits to be used as a map command lhs, but then ignored
the map. POSIX.1-2008 requires that the mapped digits not be ignored.

The historical implementation of the map command did not permit map commands that were
more than a single character in length if the first character was printable. This behavior is
permitted, but not required, by POSIX.1-2008.

Historically, mapped characters were remapped unless the remap edit option was not set, or the
prefix of the mapped characters matched the mapping characters; for example, in the map:

:map ab abcd

the characters "ab" were used as is and were not remapped, but the characters "cd" were
mapped if appropriate. This can cause infinite loops in the vi mapping mechanisms.
POSIX.1-2008 requires conformance to historical practice, and that such loops be interruptible.

Text input maps had the same problems with expanding the lhs for the ex map! and unmap!
command as did the ex abbreviate and unabbreviate commands. See the RATIONALE for the ex
abbreviate command. POSIX.1-2008 requires similar modification of some historical practice for
the map and unmap commands, as described for the abbreviate and unabbreviate commands.

Historically, maps that were subsets of other maps behaved differently depending on the order
in which they were defined. For example:

:map! ab short
:map! abc long

would always translate the characters "ab" to "short", regardless of how fast the characters
"abc" were entered. If the entry order was reversed:

:map! abc long
:map! ab short

the characters "ab" would cause the editor to pause, waiting for the completing ’c’ character,
and the characters might never be mapped to "short". For consistency and simplicity of
specification, POSIX.1-2008 requires that the shortest match be used at all times.

The length of time the editor spends waiting for the characters to complete the lhs is unspecified
because the timing capabilities of systems are often inexact and variable, and it may depend on
other factors such as the speed of the connection. The time should be long enough for the user to
be able to complete the sequence, but not long enough for the user to have to wait. Some
implementations of vi have added a keytime option, which permits users to set the number of
0,1 seconds the editor waits for the completing characters. Because mapped terminal function
and cursor keys tend to start with an <ESC> character, and <ESC> is the key ending vi text input
mode, maps starting with <ESC> characters are generally exempted from this timeout period,
or, at least timed out differently.

Mark

Historically, users were able to set the ‘‘previous context’’ marks explicitly. In addition, the ex
commands ’’ and ’‘ and the vi commands ’’, ‘‘, ‘’, and ’‘ all referred to the same mark. In addition,
the previous context marks were not set if the command, with which the address setting the
mark was associated, failed. POSIX.1-2008 requires conformance to historical practice.
Historically, if marked lines were deleted, the mark was also deleted, but would reappear if the
change was undone. POSIX.1-2008 requires conformance to historical practice.

The description of the special events that set the ‘ and ’ marks matches historical practice. For
example, historically the command /a/,/b/ did not set the ‘ and ’ marks, but the command

2698 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

87582

87583

87584

87585

87586

87587

87588

87589

87590

87591

87592

87593

87594

87595

87596

87597

87598

87599

87600

87601

87602

87603

87604

87605

87606

87607

87608

87609

87610

87611

87612

87613

87614

87615

87616

87617

87618

87619

87620

87621

87622

87623

87624

87625

Utilities ex

/a/,/b/delete did.

Next

Historically, any ex command could be entered as a +command argument to the next command,
although some (for example, insert and append) were known to confuse historical
implementations. POSIX.1-2008 requires that any command be permitted and that it behave as
specified. The next command can accept more than one file, so usage such as:

next ‘ls [abc] ‘

is valid; it need not be valid for the edit or read commands, for example, because they expect
only one filename.

Historically, the next command behaved differently from the :rewind command in that it
ignored the force flag if the autowrite flag was set. For consistency, POSIX.1-2008 does not
permit this behavior.

Historically, the next command positioned the cursor as if the file had never been edited before,
regardless. POSIX.1-2008 does not permit this behavior, for consistency with the edit command.

Implementations wanting to provide a counterpart to the next command that edited the
previous file have used the command prev[ious], which takes no file argument. POSIX.1-2008
does not require this command.

Open

Historically, the open command would fail if the open edit option was not set. POSIX.1-2008
does not mention the open edit option and does not require this behavior. Some historical
implementations do not permit entering open mode from open or visual mode, only from ex
mode. For consistency, POSIX.1-2008 does not permit this behavior.

Historically, entering open mode from the command line (that is, vi +open) resulted in
anomalous behaviors; for example, the ex file and set commands, and the vi command
<control>-G did not work. For consistency, POSIX.1-2008 does not permit this behavior.

Historically, the open command only permitted ’/’ characters to be used as the search pattern
delimiter. For consistency, POSIX.1-2008 requires that the search delimiters used by the s, global,
and v commands be accepted as well.

Preserve

The preserve command does not historically cause the file to be considered unmodified for the
purposes of future commands that may exit the editor. POSIX.1-2008 requires conformance to
historical practice.

Historical documentation stated that mail was not sent to the user when preserve was executed;
however, historical implementations did send mail in this case. POSIX.1-2008 requires
conformance to the historical implementations.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2699

87626

87627

87628

87629

87630

87631

87632

87633

87634

87635

87636

87637

87638

87639

87640

87641

87642

87643

87644

87645

87646

87647

87648

87649

87650

87651

87652

87653

87654

87655

87656

87657

87658

87659

87660

ex Utilities

Print

The writing of NUL by the print command is not specified as a special case because the standard
developers did not want to require ex to support NUL characters. Historically, characters were
displayed using the ARPA standard mappings, which are as follows:

1. Printable characters are left alone.

2. Control characters less than \177 are represented as ’ˆ’ followed by the character offset
from the ’@’ character in the ASCII map; for example, \007 is represented as ’ˆG’.

3. \177 is represented as ’ˆ’ followed by ’?’.

The display of characters having their eighth bit set was less standard. Existing implementations
use hex (0x00), octal (\000), and a meta-bit display. (The latter displayed bytes that had their
eighth bit set as the two characters "M−" followed by the seven-bit display as described above.)
The latter probably has the best claim to historical practice because it was used for the −v option
of 4 BSD and 4 BSD-derived versions of the cat utility since 1980.

No specific display format is required by POSIX.1-2008.

Explicit dependence on the ASCII character set has been avoided where possible, hence the use
of the phrase an ‘‘implementation-defined multi-character sequence’’ for the display of non-
printable characters in preference to the historical usage of, for instance, "ˆI" for the <tab>.
Implementations are encouraged to conform to historical practice in the absence of any strong
reason to diverge.

Historically, all ex commands beginning with the letter ’p’ could be entered using capitalized
versions of the commands; for example, P[rint], Pre[serve], and Pu[t] were all valid command
names. POSIX.1-2008 permits, but does not require, this historical practice because capital forms
of the commands are used by some implementations for other purposes.

Put

Historically, an ex put command, executed from open or visual mode, was the same as the open
or visual mode P command, if the buffer was named and was cut in character mode, and the
same as the p command if the buffer was named and cut in line mode. If the unnamed buffer
was the source of the text, the entire line from which the text was taken was usually put, and the
buffer was handled as if in line mode, but it was possible to get extremely anomalous behavior.
In addition, using the Q command to switch into ex mode, and then doing a put often resulted in
errors as well, such as appending text that was unrelated to the (supposed) contents of the
buffer. For consistency and simplicity of specification, POSIX.1-2008 does not permit these
behaviors. All ex put commands are required to operate in line mode, and the contents of the
buffers are not altered by changing the mode of the editor.

Read

Historically, an ex read command executed from open or visual mode, executed in an empty file,
left an empty line as the first line of the file. For consistency and simplicity of specification,
POSIX.1-2008 does not permit this behavior. Historically, a read in open or visual mode from a
program left the cursor at the last line read in, not the first. For consistency, POSIX.1-2008 does
not permit this behavior.

Historical implementations of ex were unable to undo read commands that read from the output
of a program. For consistency, POSIX.1-2008 does not permit this behavior.

Historically, the ex and vi message after a successful read or write command specified
‘‘characters’’, not ‘‘bytes’’. POSIX.1-2008 requires that the number of bytes be displayed, not the

2700 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

87661

87662

87663

87664

87665

87666

87667

87668

87669

87670

87671

87672

87673

87674

87675

87676

87677

87678

87679

87680

87681

87682

87683

87684

87685

87686

87687

87688

87689

87690

87691

87692

87693

87694

87695

87696

87697

87698

87699

87700

87701

87702

87703

87704

Utilities ex

number of characters, because it may be difficult in multi-byte implementations to determine the
number of characters read. Implementations are encouraged to clarify the message displayed to
the user.

Historically, reads were not permitted on files other than type regular, except that FIFO files
could be read (probably only because they did not exist when ex and vi were originally written).
Because the historical ex evaluated read! and read ! equivalently, there can be no optional way
to force the read. POSIX.1-2008 permits, but does not require, this behavior.

Recover

Some historical implementations of the editor permitted users to recover the edit buffer contents
from a previous edit session, and then exit without saving those contents (or explicitly
discarding them). The intent of POSIX.1-2008 in requiring that the edit buffer be treated as
already modified is to prevent this user error.

Rewind

Historical implementations supported the rewind command when the user was editing the first
file in the list; that is, the file that the rewind command would edit. POSIX.1-2008 requires
conformance to historical practice.

Substitute

Historically, ex accepted an r option to the s command. The effect of the r option was to use the
last regular expression used in any command as the pattern, the same as the ˜ command. The r
option is not required by POSIX.1-2008. Historically, the c and g options were toggled; for
example, the command :s/abc/def/ was the same as s/abc/def/ccccgggg. For simplicity of
specification, POSIX.1-2008 does not permit this behavior.

The tilde command is often used to replace the last search RE. For example, in the sequence:

s/red/blue/
/green
˜

the ˜ command is equivalent to:

s/green/blue/

Historically, ex accepted all of the following forms:

s/abc/def/
s/abc/def
s/abc/
s/abc

POSIX.1-2008 requires conformance to this historical practice.

The s command presumes that the ’ˆ’ character only occupies a single column in the display.
Much of the ex and vi specification presumes that the <space> only occupies a single column in
the display. There are no known character sets for which this is not true.

Historically, the final column position for the substitute commands was based on previous
column movements; a search for a pattern followed by a substitution would leave the column
position unchanged, while a 0 command followed by a substitution would change the column
position to the first non-<blank>. For consistency and simplicity of specification, POSIX.1-2008
requires that the final column position always be set to the first non-<blank>.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2701

87705

87706

87707

87708

87709

87710

87711

87712

87713

87714

87715

87716

87717

87718

87719

87720

87721

87722

87723

87724

87725

87726

87727

87728

87729

87730

87731

87732

87733

87734

87735

87736

87737

87738

87739

87740

87741

87742

87743

87744

87745

87746

ex Utilities

Set

Historical implementations redisplayed all of the options for each occurrence of the all keyword.
POSIX.1-2008 permits, but does not require, this behavior.

Tag

No requirement is made as to where ex and vi shall look for the file referenced by the tag entry.
Historical practice has been to look for the path found in the tags file, based on the current
directory. A useful extension found in some implementations is to look based on the directory
containing the tags file that held the entry, as well. No requirement is made as to which reference
for the tag in the tags file is used. This is deliberate, in order to permit extensions such as
multiple entries in a tags file for a tag.

Because users often specify many different tags files, some of which need not be relevant or exist
at any particular time, POSIX.1-2008 requires that error messages about problem tags files be
displayed only if the requested tag is not found, and then, only once for each time that the tag
edit option is changed.

The requirement that the current edit buffer be unmodified is only necessary if the file indicated
by the tag entry is not the same as the current file (as defined by the current pathname).
Historically, the file would be reloaded if the filename had changed, as well as if the filename
was different from the current pathname. For consistency and simplicity of specification,
POSIX.1-2008 does not permit this behavior, requiring that the name be the only factor in the
decision.

Historically, vi only searched for tags in the current file from the current cursor to the end of the
file, and therefore, if the wrapscan option was not set, tags occurring before the current cursor
were not found. POSIX.1-2008 considers this a bug, and implementations are required to search
for the first occurrence in the file, regardless.

Undo

The undo description deliberately uses the word ‘‘modified’’. The undo command is not
intended to undo commands that replace the contents of the edit buffer, such as edit, next, tag,
or recover.

Cursor positioning after the undo command was inconsistent in the historical vi, sometimes
attempting to restore the original cursor position (global, undo, and v commands), and
sometimes, in the presence of maps, placing the cursor on the last line added or changed instead
of the first. POSIX.1-2008 requires a simplified behavior for consistency and simplicity of
specification.

Version

The version command cannot be exactly specified since there is no widely-accepted definition of
what the version information should contain. Implementations are encouraged to do something
reasonably intelligent.

2702 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

87747

87748

87749

87750

87751

87752

87753

87754

87755

87756

87757

87758

87759

87760

87761

87762

87763

87764

87765

87766

87767

87768

87769

87770

87771

87772

87773

87774

87775

87776

87777

87778

87779

87780

87781

87782

87783

Utilities ex

Write

Historically, the ex and vi message after a successful read or write command specified
‘‘characters’’, not ‘‘bytes’’. POSIX.1-2008 requires that the number of bytes be displayed, not the
number of characters because it may be difficult in multi-byte implementations to determine the
number of characters written. Implementations are encouraged to clarify the message displayed
to the user.

Implementation-defined tests are permitted so that implementations can make additional
checks; for example, for locks or file modification times.

Historically, attempting to append to a nonexistent file caused an error. It has been left
unspecified in POSIX.1-2008 to permit implementations to let the write succeed, so that the
append semantics are similar to those of the historical csh.

Historical vi permitted empty edit buffers to be written. However, since the way vi got around
dealing with ‘‘empty’’ files was to always have a line in the edit buffer, no matter what, it wrote
them as files of a single, empty line. POSIX.1-2008 does not permit this behavior.

Historically, ex restored standard output and standard error to their values as of when ex was
invoked, before writes to programs were performed. This could disturb the terminal
configuration as well as be a security issue for some terminals. POSIX.1-2008 does not permit
this, requiring that the program output be captured and displayed as if by the ex print
command.

Adjust Window

Historically, the line count was set to the value of the scroll option if the type character was end-
of-file. This feature was broken on most historical implementations long ago, however, and is
not documented anywhere. For this reason, POSIX.1-2008 is resolutely silent.

Historically, the z command was <blank>-sensitive and z + and z − did different things than z+
and z− because the type could not be distinguished from a flag. (The commands z . and z =
were historically invalid.) POSIX.1-2008 requires conformance to this historical practice.

Historically, the z command was further <blank>-sensitive in that the count could not be
<blank>-delimited; for example, the commands z= 5 and z− 5 were also invalid. Because the
count is not ambiguous with respect to either the type character or the flags, this is not permitted
by POSIX.1-2008.

Escape

Historically, ex filter commands only read the standard output of the commands, letting
standard error appear on the terminal as usual. The vi utility, however, read both standard
output and standard error. POSIX.1-2008 requires the latter behavior for both ex and vi, for
consistency.

Shift Left and Shift Right

Historically, it was possible to add shift characters to increase the effect of the command; for
example, <<< outdented (or >>> indented) the lines 3 levels of indentation instead of the default
1. POSIX.1-2008 requires conformance to historical practice.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2703

87784

87785

87786

87787

87788

87789

87790

87791

87792

87793

87794

87795

87796

87797

87798

87799

87800

87801

87802

87803

87804

87805

87806

87807

87808

87809

87810

87811

87812

87813

87814

87815

87816

87817

87818

87819

87820

87821

87822

ex Utilities

<control>-D

Historically, the <control>-D command erased the prompt, providing the user with an unbroken
presentation of lines from the edit buffer. This is not required by POSIX.1-2008; implementations
are encouraged to provide it if possible. Historically, the <control>-D command took, and then
ignored, a count. POSIX.1-2008 does not permit this behavior.

Write Line Number

Historically, the ex = command, when executed in ex mode in an empty edit buffer, reported 0,
and from open or visual mode, reported 1. For consistency and simplicity of specification,
POSIX.1-2008 does not permit this behavior.

Execute

Historically, ex did not correctly handle the inclusion of text input commands (that is, append,
insert, and change) in executed buffers. POSIX.1-2008 does not permit this exclusion for
consistency.

Historically, the logical contents of the buffer being executed did not change if the buffer itself
were modified by the commands being executed; that is, buffer execution did not support self-
modifying code. POSIX.1-2008 requires conformance to historical practice.

Historically, the @ command took a range of lines, and the @ buffer was executed once per line,
with the current line (’.’) set to each specified line. POSIX.1-2008 requires conformance to
historical practice.

Some historical implementations did not notice if errors occurred during buffer execution. This,
coupled with the ability to specify a range of lines for the ex @ command, makes it trivial to
cause them to drop core. POSIX.1-2008 requires that implementations stop buffer execution if
any error occurs, if the specified line doesn’t exist, or if the contents of the edit buffer itself are
replaced (for example, the buffer executes the ex :edit command).

Regular Expressions in ex

Historical practice is that the characters in the replacement part of the last s command—that is,
those matched by entering a ’˜’ in the regular expression—were not further expanded by the
regular expression engine. So, if the characters contained the string "a.," they would match
’a’ followed by ".," and not ’a’ followed by any character. POSIX.1-2008 requires
conformance to historical practice.

Edit Options in ex

The following paragraphs describe the historical behavior of some edit options that were not, for
whatever reason, included in POSIX.1-2008. Implementations are strongly encouraged to only
use these names if the functionality described here is fully supported.

extended The extended edit option has been used in some implementations of vi to provide
extended regular expressions instead of basic regular expressions This option was
omitted from POSIX.1-2008 because it is not widespread historical practice.

flash The flash edit option historically caused the screen to flash instead of beeping on
error. This option was omitted from POSIX.1-2008 because it is not found in some
historical implementations.

2704 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

87823

87824

87825

87826

87827

87828

87829

87830

87831

87832

87833

87834

87835

87836

87837

87838

87839

87840

87841

87842

87843

87844

87845

87846

87847

87848

87849

87850

87851

87852

87853

87854

87855

87856

87857

87858

87859

87860

87861

87862

Utilities ex

hardtabs The hardtabs edit option historically defined the number of columns between
hardware tab settings. This option was omitted from POSIX.1-2008 because it was
believed to no longer be generally useful.

modeline The modeline (sometimes named modelines) edit option historically caused ex or
vi to read the five first and last lines of the file for editor commands. This option is
a security problem, and vendors are strongly encouraged to delete it from
historical implementations.

open The open edit option historically disallowed the ex open and visual commands.
This edit option was omitted because these commands are required by
POSIX.1-2008.

optimize The optimize edit option historically expedited text throughput by setting the
terminal to not do automatic <carriage-return> characters when printing more
than one logical line of output. This option was omitted from POSIX.1-2008
because it was intended for terminals without addressable cursors, which are
rarely, if ever, still used.

ruler The ruler edit option has been used in some implementations of vi to present a
current row/column ruler for the user. This option was omitted from POSIX.1-2008
because it is not widespread historical practice.

sourceany The sourceany edit option historically caused ex or vi to source start-up files that
were owned by users other than the user running the editor. This option is a
security problem, and vendors are strongly encouraged to remove it from their
implementations.

timeout The timeout edit option historically enabled the (now standard) feature of only
waiting for a short period before returning keys that could be part of a macro. This
feature was omitted from POSIX.1-2008 because its behavior is now standard, it is
not widely useful, and it was rarely documented.

verbose The verbose edit option has been used in some implementations of vi to cause vi to
output error messages for common errors; for example, attempting to move the
cursor past the beginning or end of the line instead of only alerting the screen. (The
historical vi only alerted the terminal and presented no message for such errors.
The historical editor option terse did not select when to present error messages, it
only made existing error messages more or less verbose.) This option was omitted
from POSIX.1-2008 because it is not widespread historical practice; however,
implementors are encouraged to use it if they wish to provide error messages for
naive users.

wraplen The wraplen edit option has been used in some implementations of vi to specify an
automatic margin measured from the left margin instead of from the right margin.
This is useful when multiple screen sizes are being used to edit a single file. This
option was omitted from POSIX.1-2008 because it is not widespread historical
practice; however, implementors are encouraged to use it if they add this
functionality.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2705

87863

87864

87865

87866

87867

87868

87869

87870

87871

87872

87873

87874

87875

87876

87877

87878

87879

87880

87881

87882

87883

87884

87885

87886

87887

87888

87889

87890

87891

87892

87893

87894

87895

87896

87897

87898

87899

87900

87901

87902

87903

ex Utilities

autoindent, ai

Historically, the command 0a did not do any autoindentation, regardless of the current
indentation of line 1. POSIX.1-2008 requires that any indentation present in line 1 be used.

autoprint, ap

Historically, the autoprint edit option was not completely consistent or based solely on
modifications to the edit buffer. Exceptions were the read command (when reading from a file,
but not from a filter), the append, change, insert, global, and v commands, all of which were not
affected by autoprint, and the tag command, which was affected by autoprint. POSIX.1-2008
requires conformance to historical practice.

Historically, the autoprint option only applied to the last of multiple commands entered using
<vertical-line> delimiters; for example, delete <newline> was affected by autoprint, but
delete|version <newline> was not. POSIX.1-2008 requires conformance to historical practice.

autowrite, aw

Appending the ’!’ character to the ex next command to avoid performing an automatic write
was not supported in historical implementations. POSIX.1-2008 requires that the behavior match
the other ex commands for consistency.

ignorecase, ic

Historical implementations of case-insensitive matching (the ignorecase edit option) lead to
counter-intuitive situations when uppercase characters were used in range expressions.
Historically, the process was as follows:

1. Take a line of text from the edit buffer.

2. Convert uppercase to lowercase in text line.

3. Convert uppercase to lowercase in regular expressions, except in character class
specifications.

4. Match regular expressions against text.

This would mean that, with ignorecase in effect, the text:

The cat sat on the mat

would be matched by

/ˆthe/

but not by:

/ˆ[A−Z]he/

For consistency with other commands implementing regular expressions, POSIX.1-2008 does not
permit this behavior.

2706 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

87904

87905

87906

87907

87908

87909

87910

87911

87912

87913

87914

87915

87916

87917

87918

87919

87920

87921

87922

87923

87924

87925

87926

87927

87928

87929

87930

87931

87932

87933

87934

87935

87936

Utilities ex

paragraphs, para

The ISO POSIX-2: 1993 standard made the default paragraphs and sections edit options
implementation-defined, arguing they were historically oriented to the UNIX system troff text
formatter, and a ‘‘portable user’’ could use the {, }, [[,]], (, and) commands in open or visual
mode and have the cursor stop in unexpected places. POSIX.1-2008 specifies their values in the
POSIX locale because the unusual grouping (they only work when grouped into two characters
at a time) means that they cannot be used for general-purpose movement, regardless.

readonly

Implementations are encouraged to provide the best possible information to the user as to the
read-only status of the file, with the exception that they should not consider the current special
privileges of the process. This provides users with a safety net because they must force the
overwrite of read-only files, even when running with additional privileges.

The readonly edit option specification largely conforms to historical practice. The only
difference is that historical implementations did not notice that the user had set the readonly
edit option in cases where the file was already marked read-only for some reason, and would
therefore reinitialize the readonly edit option the next time the contents of the edit buffer were
replaced. This behavior is disallowed by POSIX.1-2008.

report

The requirement that lines copied to a buffer interact differently than deleted lines is historical
practice. For example, if the report edit option is set to 3, deleting 3 lines will cause a report to be
written, but 4 lines must be copied before a report is written.

The requirement that the ex global, v, open, undo, and visual commands present reports based
on the total number of lines added or deleted during the command execution, and that
commands executed by the global and v commands not present reports, is historical practice.
POSIX.1-2008 extends historical practice by requiring that buffer execution be treated similarly.
The reasons for this are two-fold. Historically, only the report by the last command executed
from the buffer would be seen by the user, as each new report would overwrite the last. In
addition, the standard developers believed that buffer execution had more in common with
global and v commands than it did with other ex commands, and should behave similarly, for
consistency and simplicity of specification.

showmatch, sm

The length of time the cursor spends on the matching character is unspecified because the
timing capabilities of systems are often inexact and variable. The time should be long enough for
the user to notice, but not long enough for the user to become annoyed. Some implementations
of vi have added a matchtime option that permits users to set the number of 0,1 second intervals
the cursor pauses on the matching character.

showmode

The showmode option has been used in some historical implementations of ex and vi to display
the current editing mode when in open or visual mode. The editing modes have generally
included ‘‘command’’ and ‘‘input’’, and sometimes other modes such as ‘‘replace’’ and
‘‘change’’. The string was usually displayed on the bottom line of the screen at the far right-hand
corner. In addition, a preceding ’*’ character often denoted whether the contents of the edit
buffer had been modified. The latter display has sometimes been part of the showmode option,
and sometimes based on another option. This option was not available in the 4 BSD historical

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2707

87937

87938

87939

87940

87941

87942

87943

87944

87945

87946

87947

87948

87949

87950

87951

87952

87953

87954

87955

87956

87957

87958

87959

87960

87961

87962

87963

87964

87965

87966

87967

87968

87969

87970

87971

87972

87973

87974

87975

87976

87977

87978

87979

87980

ex Utilities

implementation of vi, but was viewed as generally useful, particularly to novice users, and is
required by POSIX.1-2008.

The smd shorthand for the showmode option was not present in all historical implementations
of the editor. POSIX.1-2008 requires it, for consistency.

Not all historical implementations of the editor displayed a mode string for command mode,
differentiating command mode from text input mode by the absence of a mode string.
POSIX.1-2008 permits this behavior for consistency with historical practice, but implementations
are encouraged to provide a display string for both modes.

slowopen

Historically, the slowopen option was automatically set if the terminal baud rate was less than
1 200 baud, or if the baud rate was 1 200 baud and the redraw option was not set. The slowopen
option had two effects. First, when inserting characters in the middle of a line, characters after
the cursor would not be pushed ahead, but would appear to be overwritten. Second, when
creating a new line of text, lines after the current line would not be scrolled down, but would
appear to be overwritten. In both cases, ending text input mode would cause the screen to be
refreshed to match the actual contents of the edit buffer. Finally, terminals that were sufficiently
intelligent caused the editor to ignore the slowopen option. POSIX.1-2008 permits most
historical behavior, extending historical practice to require slowopen behaviors if the edit option
is set by the user.

tags

The default path for tags files is left unspecified as implementations may have their own tags
implementations that do not correspond to the historical ones. The default tags option value
should probably at least include the file ./tags.

term

Historical implementations of ex and vi ignored changes to the term edit option after the initial
terminal information was loaded. This is permitted by POSIX.1-2008; however, implementations
are encouraged to permit the user to modify their terminal type at any time.

terse

Historically, the terse edit option optionally provided a shorter, less descriptive error message,
for some error messages. This is permitted, but not required, by POSIX.1-2008. Historically, most
common visual mode errors (for example, trying to move the cursor past the end of a line) did
not result in an error message, but simply alerted the terminal. Implementations wishing to
provide messages for novice users are urged to do so based on the edit option verbose, and not
terse.

window

In historical implementations, the default for the window edit option was based on the baud
rate as follows:

1. If the baud rate was less than 1 200, the edit option w300 set the window value; for
example, the line:

set w300=12

would set the window option to 12 if the baud rate was less than 1 200.

2708 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

87981

87982

87983

87984

87985

87986

87987

87988

87989

87990

87991

87992

87993

87994

87995

87996

87997

87998

87999

88000

88001

88002

88003

88004

88005

88006

88007

88008

88009

88010

88011

88012

88013

88014

88015

88016

88017

88018

88019

88020

88021

Utilities ex

2. If the baud rate was equal to 1 200, the edit option w1200 set the window value.

3. If the baud rate was greater than 1 200, the edit option w9600 set the window value.

The w300, w1200, and w9600 options do not appear in POSIX.1-2008 because of their
dependence on specific baud rates.

In historical implementations, the size of the window displayed by various commands was
related to, but not necessarily the same as, the window edit option. For example, the size of the
window was set by the ex command visual 10, but it did not change the value of the window
edit option. However, changing the value of the window edit option did change the number of
lines that were displayed when the screen was repainted. POSIX.1-2008 does not permit this
behavior in the interests of consistency and simplicity of specification, and requires that all
commands that change the number of lines that are displayed do it by setting the value of the
window edit option.

wrapmargin, wm

Historically, the wrapmargin option did not affect maps inserting characters that also had
associated counts; for example :map K 5aABC DEF. Unfortunately, there are widely used
maps that depend on this behavior. For consistency and simplicity of specification,
POSIX.1-2008 does not permit this behavior.

Historically, wrapmargin was calculated using the column display width of all characters on the
screen. For example, an implementation using "ˆI" to represent <tab> characters when the list
edit option was set, where ’ˆ’ and ’I’ each took up a single column on the screen, would
calculate the wrapmargin based on a value of 2 for each <tab>. The number edit option
similarly changed the effective length of the line as well. POSIX.1-2008 requires conformance to
historical practice.

Earlier versions of this standard allowed for implementations with bytes other than eight bits,
but this has been modified in this version.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.9.1.1 (on page 2317), ctags , ed , sed , sh , stty , vi

XBD Table 5-1 (on page 121), Chapter 8 (on page 173), Section 9.3 (on page 183), Section 12.2 (on
page 215)

XSH access()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The obsolescent SYNOPSIS is removed, removing the +command and − options.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2709

88022

88023

88024

88025

88026

88027

88028

88029

88030

88031

88032

88033

88034

88035

88036

88037

88038

88039

88040

88041

88042

88043

88044

88045

88046

88047

88048

88049

88050

88051

88052

88053

88054

88055

88056

88057

88058

88059

88060

ex Utilities

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the map command description, the sequence #digit is added.

• The directory, edcompatible, redraw, and slowopen edit options are added.

The ex utility is extensively changed for alignment with the IEEE P1003.2b draft standard. This
includes changes as a result of the IEEE PASC Interpretations 1003.2 #31, #38, #49, #50, #51, #52,
#55, #56, #57, #61, #62, #63, #64, #65, and #78.

The −l option is removed.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/23 is applied, correcting a URL.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/8 is applied, making an editorial
correction in the EXTENDED DESCRIPTION.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/9 is applied, removing text describing
behavior on systems with bytes consisting of more than eight bits.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if an operand is
’−’.

Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior for BREs.

Austin Group Interpretation 1003.1-2001 #121 is applied, clarifying the ex write command.

Austin Group Interpretation 1003.1-2001 #156 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2710 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

88061

88062

88063

88064

88065

88066

88067

88068

88069

88070

88071

88072

88073

88074

88075

88076

88077

88078

88079

88080

Utilities expand

NAME
expand — convert tabs to spaces

SYNOPSIS
expand [−t tablist] [file...]

DESCRIPTION
The expand utility shall write files or the standard input to the standard output with <tab>
characters replaced with one or more <space> characters needed to pad to the next tab stop. Any
<backspace> characters shall be copied to the output and cause the column position count for
tab stop calculations to be decremented; the column position count shall not be decremented
below zero.

OPTIONS
The expand utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−t tablist Specify the tab stops. The application shall ensure that the argument tablist consists
of either a single positive decimal integer or a list of tabstops. If a single number is
given, tabs shall be set that number of column positions apart instead of the
default 8.

If a list of tabstops is given, the application shall ensure that it consists of a list of
two or more positive decimal integers, separated by <blank> or <comma>
characters, in ascending order. The <tab> characters shall be set at those specific
column positions. Each tab stop N shall be an integer value greater than zero, and
the list is in strictly ascending order. This is taken to mean that, from the start of a
line of output, tabbing to position N shall cause the next character output to be in
the (N+1)th column position on that line.

In the event of expand having to process a <tab> at a position beyond the last of
those specified in a multiple tab-stop list, the <tab> shall be replaced by a single
<space> in the output.

OPERANDS
The following operand shall be supported:

file The pathname of a text file to be used as input.

STDIN
See the INPUT FILES section.

INPUT FILES
Input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of expand:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), the processing of <tab> and <space> characters, and
for the determination of the width in column positions each character would

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2711

88081

88082

88083

88084

88085

88086

88087

88088

88089

88090

88091

88092

88093

88094

88095

88096

88097

88098

88099

88100

88101

88102

88103

88104

88105

88106

88107

88108

88109

88110

88111

88112

88113

88114

88115

88116

88117

88118

88119

88120

88121

88122

88123

88124

88125

expand Utilities

occupy on an output device.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be equivalent to the input files with <tab> characters converted into
the appropriate number of <space> characters.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion

>0 An error occurred.

CONSEQUENCES OF ERRORS
The expand utility shall terminate with an error message and non-zero exit status upon
encountering difficulties accessing one of the file operands.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The expand utility is useful for preprocessing text files (before sorting, looking at specific
columns, and so on) that contain <tab> characters.

See XBD Section 3.103 (on page 50).

The tablist option-argument consists of integers in ascending order. Utility Syntax Guideline 8
mandates that expand shall accept the integers (within the single argument) separated using
either <comma> or <blank> characters.

Earlier versions of this standard allowed the following form in the SYNOPSIS:

expand [−tabstop][−tab1,tab2,...,tabn][file ...]

This form is no longer specified by POSIX.1-2008 but may be present in some implementations.

FUTURE DIRECTIONS
None.

2712 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

88126

88127

88128

88129

88130

88131

88132

88133

88134

88135

88136

88137

88138

88139

88140

88141

88142

88143

88144

88145

88146

88147

88148

88149

88150

88151

88152

88153

88154

88155

88156

88157

88158

88159

88160

88161

88162

88163

88164

Utilities expand

SEE ALSO
tabs , unexpand

XBD Section 3.103 (on page 50), Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The APPLICATION USAGE section is added.

The obsolescent SYNOPSIS is removed.

The LC_CTYPE environment variable description is updated to align with the IEEE P1003.2b
draft standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The expand utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2713

88165

88166

88167

88168

88169

88170

88171

88172

88173

88174

88175

88176

88177

88178

88179

88180

88181

expr Utilities

NAME
expr — evaluate arguments as an expression

SYNOPSIS
expr operand...

DESCRIPTION
The expr utility shall evaluate an expression and write the result to standard output.

OPTIONS
None.

OPERANDS
The single expression evaluated by expr shall be formed from the operand operands, as described
in the EXTENDED DESCRIPTION section. The application shall ensure that each of the
expression operator symbols:

() | & = > >= < <= != + − * / % :

and the symbols integer and string in the table are provided as separate arguments to expr.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of expr:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions and by the string
comparison operators.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments) and the behavior of character classes within regular expressions.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The expr utility shall evaluate the expression and write the result, followed by a <newline>, to
standard output.

2714 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

88182

88183

88184

88185

88186

88187

88188

88189

88190

88191

88192

88193

88194

88195

88196

88197

88198

88199

88200

88201

88202

88203

88204

88205

88206

88207

88208

88209

88210

88211

88212

88213

88214

88215

88216

88217

88218

88219

88220

88221

88222

Utilities expr

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The formation of the expression to be evaluated is shown in the following table. The symbols
expr, expr1, and expr2 represent expressions formed from integer and string symbols and the
expression operator symbols (all separate arguments) by recursive application of the constructs
described in the table. The expressions are listed in order of increasing precedence, with equal-
precedence operators grouped between horizontal lines. All of the operators shall be left-
associative.

Expression Description

expr1 | expr2 Returns the evaluation of expr1 if it is neither null nor zero;
otherwise, returns the evaluation of expr2 if it is not null;
otherwise, zero.

expr1 & expr2 Returns the evaluation of expr1 if neither expression evaluates to
null or zero; otherwise, returns zero.

Returns the result of a decimal integer comparison if both
arguments are integers; otherwise, returns the result of a string
comparison using the locale-specific collation sequence. The
result of each comparison is 1 if the specified relationship is true,
or 0 if the relationship is false.

expr1 = expr2 Equal.
expr1 > expr2 Greater than.
expr1 >= expr2 Greater than or equal.
expr1 < expr2 Less than.
expr1 <= expr2 Less than or equal.
expr1 != expr2 Not equal.

expr1 + expr2 Addition of decimal integer-valued arguments.
expr1 − expr2 Subtraction of decimal integer-valued arguments.

expr1 * expr2 Multiplication of decimal integer-valued arguments.
expr1 / expr2 Integer division of decimal integer-valued arguments, producing

an integer result.
expr1 % expr2 Remainder of integer division of decimal integer-valued

arguments.

expr1 : expr2 Matching expression; see below.

(expr) Grouping symbols. Any expression can be placed within
parentheses. Parentheses can be nested to a depth of
{EXPR_NEST_MAX}.

integer An argument consisting only of an (optional) unary minus
followed by digits.

string A string argument; see below.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2715

88223

88224

88225

88226

88227

88228

88229

88230

88231

88232

88233

88234

88235

88236

88237

88238

88239

88240

88241

88242

88243

88244

88245

88246

88247

88248

88249

88250

88251

88252

88253

88254

88255

88256

88257

88258

88259

88260

88261

88262

88263

88264

expr Utilities

Matching Expression

The ’:’ matching operator shall compare the string resulting from the evaluation of expr1 with
the regular expression pattern resulting from the evaluation of expr2. Regular expression syntax
shall be that defined in XBD Section 9.3 (on page 183), except that all patterns are anchored to
the beginning of the string (that is, only sequences starting at the first character of a string are
matched by the regular expression) and, therefore, it is unspecified whether ’ˆ’ is a special
character in that context. Usually, the matching operator shall return a string representing the
number of characters matched (’0’ on failure). Alternatively, if the pattern contains at least one
regular expression subexpression "[\(...\)]", the string matched by the back-reference
expression "\1" shall be returned. If the back-reference expression "\1" does not match, then
the null string shall be returned.

String Operand

A string argument is an argument that cannot be identified as an integer argument or as one of
the expression operator symbols shown in the OPERANDS section.

The use of string arguments length, substr, index, or match produces unspecified results.

EXIT STATUS
The following exit values shall be returned:

0 The expression evaluates to neither null nor zero.

1 The expression evaluates to null or zero.

2 Invalid expression.

>2 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
After argument processing by the shell, expr is not required to be able to tell the difference
between an operator and an operand except by the value. If "$a" is ’=’, the command:

expr $a = ’=’

looks like:

expr = = =

as the arguments are passed to expr (and they all may be taken as the ’=’ operator). The
following works reliably:

expr X$a = X=

Also note that this volume of POSIX.1-2008 permits implementations to extend utilities. The expr
utility permits the integer arguments to be preceded with a unary minus. This means that an
integer argument could look like an option. Therefore, the conforming application must employ
the "− −" construct of Guideline 10 of XBD Section 12.2 (on page 215) to protect its operands if
there is any chance the first operand might be a negative integer (or any string with a leading
minus).

2716 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

88265

88266

88267

88268

88269

88270

88271

88272

88273

88274

88275

88276

88277

88278

88279

88280

88281

88282

88283

88284

88285

88286

88287

88288

88289

88290

88291

88292

88293

88294

88295

88296

88297

88298

88299

88300

88301

88302

Utilities expr

EXAMPLES
The expr utility has a rather difficult syntax:

• Many of the operators are also shell control operators or reserved words, so they have to
be escaped on the command line.

• Each part of the expression is composed of separate arguments, so liberal usage of <blank>
characters is required. For example:

Invalid Valid

expr 1+2 expr 1 + 2
expr "1 + 2" expr 1 + 2
expr 1 + (2 * 3) expr 1 + \(2 * 3 \)

In many cases, the arithmetic and string features provided as part of the shell command
language are easier to use than their equivalents in expr. Newly written scripts should avoid
expr in favor of the new features within the shell; see Section 2.5 (on page 2301) and Section 2.6.4
(on page 2310).

The following command:

a=$(expr $a + 1)

adds 1 to the variable a.

The following command, for "$a" equal to either /usr/abc/file or just file:

expr $a : ’.*/\(.*\)’ \| $a

returns the last segment of a pathname (that is, file). Applications should avoid the character
’/’ used alone as an argument; expr may interpret it as the division operator.

The following command:

expr "//$a" : ’.*/\(.*\)’

is a better representation of the previous example. The addition of the "//" characters
eliminates any ambiguity about the division operator and simplifies the whole expression. Also
note that pathnames may contain characters contained in the IFS variable and should be quoted
to avoid having "$a" expand into multiple arguments.

The following command:

expr "$VAR" : ’.*’

returns the number of characters in VAR.

RATIONALE
In an early proposal, EREs were used in the matching expression syntax. This was changed to
BREs to avoid breaking historical applications.

The use of a leading <circumflex> in the BRE is unspecified because many historical
implementations have treated it as a special character, despite their system documentation. For
example:

expr foo : ˆfoo expr ˆfoo : ˆfoo

return 3 and 0, respectively, on those systems; their documentation would imply the reverse.
Thus, the anchoring condition is left unspecified to avoid breaking historical scripts relying on
this undocumented feature.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2717

88303

88304

88305

88306

88307

88308

88309

88310

88311

88312

88313

88314

88315

88316

88317

88318

88319

88320

88321

88322

88323

88324

88325

88326

88327

88328

88329

88330

88331

88332

88333

88334

88335

88336

88337

88338

88339

88340

88341

88342

expr Utilities

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5 (on page 2301), Section 2.6.4 (on page 2310)

XBD Chapter 8 (on page 173), Section 9.3 (on page 183), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
The expr utility is aligned with the IEEE P1003.2b draft standard, to include resolution of IEEE
PASC Interpretation 1003.2 #104.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior for BREs.

The SYNOPSIS and OPERANDS sections are revised to explicitly state that the name of each of
the operands is operand.

2718 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

88343

88344

88345

88346

88347

88348

88349

88350

88351

88352

88353

88354

88355

88356

88357

88358

88359

Utilities false

NAME
false — return false value

SYNOPSIS
false

DESCRIPTION
The false utility shall return with a non-zero exit code.

OPTIONS
None.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
Not used.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The false utility shall always exit with a value other than zero.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
true

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2719

88360

88361

88362

88363

88364

88365

88366

88367

88368

88369

88370

88371

88372

88373

88374

88375

88376

88377

88378

88379

88380

88381

88382

88383

88384

88385

88386

88387

88388

88389

88390

88391

88392

88393

88394

88395

88396

88397

88398

88399

false Utilities

CHANGE HISTORY
First released in Issue 2.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/24 is applied, changing the STDERR
section from ‘‘None.’’ to ‘‘Not used.’’ for alignment with Section 1.4 (on page 2288).

2720 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

88400

88401

88402

88403

88404

Utilities fc

NAME
fc — process the command history list

SYNOPSIS
UP fc [−r] [−e editor] [first [last]]

fc −l [−nr] [first [last]]

fc −s [old=new] [first]

DESCRIPTION
The fc utility shall list, or shall edit and re-execute, commands previously entered to an
interactive sh.

The command history list shall reference commands by number. The first number in the list is
selected arbitrarily. The relationship of a number to its command shall not change except when
the user logs in and no other process is accessing the list, at which time the system may reset the
numbering to start the oldest retained command at another number (usually 1). When the
number reaches an implementation-defined upper limit, which shall be no smaller than the
value in HISTSIZE or 32 767 (whichever is greater), the shell may wrap the numbers, starting the
next command with a lower number (usually 1). However, despite this optional wrapping of
numbers, fc shall maintain the time-ordering sequence of the commands. For example, if four
commands in sequence are given the numbers 32 766, 32 767, 1 (wrapped), and 2 as they are
executed, command 32 767 is considered the command previous to 1, even though its number is
higher.

When commands are edited (when the −l option is not specified), the resulting lines shall be
entered at the end of the history list and then re-executed by sh. The fc command that caused the
editing shall not be entered into the history list. If the editor returns a non-zero exit status, this
shall suppress the entry into the history list and the command re-execution. Any command line
variable assignments or redirection operators used with fc shall affect both the fc command itself
as well as the command that results; for example:

fc −s − − −1 2>/dev/null

reinvokes the previous command, suppressing standard error for both fc and the previous
command.

OPTIONS
The fc utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−e editor Use the editor named by editor to edit the commands. The editor string is a utility
name, subject to search via the PA TH variable (see XBD Chapter 8, on page 173).
The value in the FCEDIT variable shall be used as a default when −e is not
specified. If FCEDIT is null or unset, ed shall be used as the editor.

−l (The letter ell.) List the commands rather than invoking an editor on them. The
commands shall be written in the sequence indicated by the first and last operands,
as affected by −r, with each command preceded by the command number.

−n Suppress command numbers when listing with −l.

−r Reverse the order of the commands listed (with −l) or edited (with neither −l nor
−s).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2721

88405

88406

88407

88408

88409

88410

88411

88412

88413

88414

88415

88416

88417

88418

88419

88420

88421

88422

88423

88424

88425

88426

88427

88428

88429

88430

88431

88432

88433

88434

88435

88436

88437

88438

88439

88440

88441

88442

88443

88444

88445

88446

fc Utilities

−s Re-execute the command without invoking an editor.

OPERANDS
The following operands shall be supported:

first, last Select the commands to list or edit. The number of previous commands that can be
accessed shall be determined by the value of the HISTSIZE variable. The value of
first or last or both shall be one of the following:

[+]number A positive number representing a command number; command
numbers can be displayed with the −l option.

−number A negative decimal number representing the command that was
executed number of commands previously. For example, −1 is the
immediately previous command.

string A string indicating the most recently entered command that begins
with that string. If the old=new operand is not also specified with −s,
the string form of the first operand cannot contain an embedded
<equals-sign>.

When the synopsis form with −s is used:

• If first is omitted, the previous command shall be used.

For the synopsis forms without −s:

• If last is omitted, last shall default to the previous command when −l is
specified; otherwise, it shall default to first.

• If first and last are both omitted, the previous 16 commands shall be listed or
the previous single command shall be edited (based on the −l option).

• If first and last are both present, all of the commands from first to last shall be
edited (without −l) or listed (with −l). Editing multiple commands shall be
accomplished by presenting to the editor all of the commands at one time,
each command starting on a new line. If first represents a newer command
than last, the commands shall be listed or edited in reverse sequence,
equivalent to using −r. For example, the following commands on the first
line are equivalent to the corresponding commands on the second:

fc −r 10 20 fc 30 40
fc 20 10 fc −r 40 30

• When a range of commands is used, it shall not be an error to specify first or
last values that are not in the history list; fc shall substitute the value
representing the oldest or newest command in the list, as appropriate. For
example, if there are only ten commands in the history list, numbered 1 to 10:

fc −l
fc 1 99

shall list and edit, respectively, all ten commands.

old=new Replace the first occurrence of string old in the commands to be re-executed by the
string new.

2722 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

88447

88448

88449

88450

88451

88452

88453

88454

88455

88456

88457

88458

88459

88460

88461

88462

88463

88464

88465

88466

88467

88468

88469

88470

88471

88472

88473

88474

88475

88476

88477

88478

88479

88480

88481

88482

88483

88484

88485

88486

Utilities fc

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of fc:

FCEDIT This variable, when expanded by the shell, shall determine the default value for
the −e editor option’s editor option-argument. If FCEDIT is null or unset, ed shall be
used as the editor.

HISTFILE Determine a pathname naming a command history file. If the HISTFILE variable is
not set, the shell may attempt to access or create a file .sh_history in the directory
referred to by the HOME environment variable. If the shell cannot obtain both read
and write access to, or create, the history file, it shall use an unspecified
mechanism that allows the history to operate properly. (References to history ‘‘file’’
in this section shall be understood to mean this unspecified mechanism in such
cases.) An implementation may choose to access this variable only when
initializing the history file; this initialization shall occur when fc or sh first attempt
to retrieve entries from, or add entries to, the file, as the result of commands issued
by the user, the file named by the ENV variable, or implementation-defined system
start-up files. In some historical shells, the history file is initialized just after the
ENV file has been processed. Therefore, it is implementation-defined whether
changes made to HISTFILE after the history file has been initialized are effective.
Implementations may choose to disable the history list mechanism for users with
appropriate privileges who do not set HISTFILE; the specific circumstances under
which this occurs are implementation-defined. If more than one instance of the
shell is using the same history file, it is unspecified how updates to the history file
from those shells interact. As entries are deleted from the history file, they shall be
deleted oldest first. It is unspecified when history file entries are physically
removed from the history file.

HISTSIZE Determine a decimal number representing the limit to the number of previous
commands that are accessible. If this variable is unset, an unspecified default
greater than or equal to 128 shall be used. The maximum number of commands in
the history list is unspecified, but shall be at least 128. An implementation may
choose to access this variable only when initializing the history file, as described
under HISTFILE. Therefore, it is unspecified whether changes made to HISTSIZE
after the history file has been initialized are effective.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2723

88487

88488

88489

88490

88491

88492

88493

88494

88495

88496

88497

88498

88499

88500

88501

88502

88503

88504

88505

88506

88507

88508

88509

88510

88511

88512

88513

88514

88515

88516

88517

88518

88519

88520

88521

88522

88523

88524

88525

88526

88527

88528

88529

88530

88531

88532

88533

fc Utilities

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When the −l option is used to list commands, the format of each command in the list shall be as
follows:

"%d\t%s\n", <line number>, <command>

If both the −l and −n options are specified, the format of each command shall be:

"\t%s\n", <command>

If the <command> consists of more than one line, the lines after the first shall be displayed as:

"\t%s\n", <continued-command>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion of the listing.

>0 An error occurred.

Otherwise, the exit status shall be that of the commands executed by fc.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Since editors sometimes use file descriptors as integral parts of their editing, redirecting their file
descriptors as part of the fc command can produce unexpected results. For example, if vi is the
FCEDIT editor, the command:

fc −s | more

does not work correctly on many systems.

Users on windowing systems may want to have separate history files for each window by
setting HISTFILE as follows:

HISTFILE=$HOME/.sh_hist$$

EXAMPLES
None.

RATIONALE
This utility is based on the fc built-in of the KornShell.

An early proposal specified the −e option as [−e editor [old= new]], which is not historical
practice. Historical practice in fc of either [−e editor] or [−e − [old= new]] is acceptable, but not
both together. To clarify this, a new option −s was introduced replacing the [−e −]. This resolves

2724 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

88534

88535

88536

88537

88538

88539

88540

88541

88542

88543

88544

88545

88546

88547

88548

88549

88550

88551

88552

88553

88554

88555

88556

88557

88558

88559

88560

88561

88562

88563

88564

88565

88566

88567

88568

88569

88570

88571

88572

88573

Utilities fc

the conflict and makes fc conform to the Utility Syntax Guidelines.

HISTFILE Some implementations of the KornShell check for the superuser and do not create
a history file unless HISTFILE is set. This is done primarily to avoid creating
unlinked files in the root file system when logging in during single-user mode.
HISTFILE must be set for the superuser to have history.

HISTSIZE Needed to limit the size of history files. It is the intent of the standard developers
that when two shells share the same history file, commands that are entered in one
shell shall be accessible by the other shell. Because of the difficulties of
synchronization over a network, the exact nature of the interaction is unspecified.

The initialization process for the history file can be dependent on the system start-up files, in
that they may contain commands that effectively preempt the settings the user has for HISTFILE
and HISTSIZE. For example, function definition commands are recorded in the history file. If
the system administrator includes function definitions in some system start-up file called before
the ENV file, the history file is initialized before the user can influence its characteristics. In some
historical shells, the history file is initialized just after the ENV file has been processed. Because
of these situations, the text requires the initialization process to be implementation-defined.

Consideration was given to omitting the fc utility in favor of the command line editing feature in
sh. For example, in vi editing mode, typing "<ESC> v" is equivalent to:

EDITOR=vi fc

However, the fc utility allows the user the flexibility to edit multiple commands simultaneously
(such as fc 10 20) and to use editors other than those supported by sh for command line editing.

In the KornShell, the alias r (‘‘re-do’’) is preset to fc −e − (equivalent to the POSIX fc −s). This is
probably an easier command name to remember than fc (‘‘fix command’’), but it does not meet
the Utility Syntax Guidelines. Renaming fc to hist or redo was considered, but since this
description closely matches historical KornShell practice already, such a renaming was seen as
gratuitous. Users are free to create aliases whenever odd historical names such as fc, awk, cat,
grep, or yacc are standardized by POSIX.

Command numbers have no ordering effects; they are like serial numbers. The −r option and
−number operand address the sequence of command execution, regardless of serial numbers. So,
for example, if the command number wrapped back to 1 at some arbitrary point, there would be
no ambiguity associated with traversing the wrap point. For example, if the command history
were:

32766: echo 1
32767: echo 2
1: echo 3

the number −2 refers to command 32 767 because it is the second previous command, regardless
of serial number.

FUTURE DIRECTIONS
None.

SEE ALSO
sh

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2725

88574

88575

88576

88577

88578

88579

88580

88581

88582

88583

88584

88585

88586

88587

88588

88589

88590

88591

88592

88593

88594

88595

88596

88597

88598

88599

88600

88601

88602

88603

88604

88605

88606

88607

88608

88609

88610

88611

88612

88613

88614

88615

fc Utilities

CHANGE HISTORY
First released in Issue 4.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the User Portability Utilities option.

In the ENVIRONMENT VARIABLES section, the text ‘‘user ’s home directory’’ is updated to
‘‘directory referred to by the HOME environment variable’’.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2726 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

88616

88617

88618

88619

88620

88621

88622

88623

88624

88625

Utilities fg

NAME
fg — run jobs in the foreground

SYNOPSIS
UP fg [job_id]

DESCRIPTION
If job control is enabled (see the description of set −m), the fg utility shall move a background job
from the current environment (see Section 2.12, on page 2331) into the foreground.

Using fg to place a job into the foreground shall remove its process ID from the list of those
‘‘known in the current shell execution environment’’; see Section 2.9.3.1 (on page 2319).

OPTIONS
None.

OPERANDS
The following operand shall be supported:

job_id Specify the job to be run as a foreground job. If no job_id operand is given, the
job_id for the job that was most recently suspended, placed in the background, or
run as a background job shall be used. The format of job_id is described in XBD
Section 3.203 (on page 65).

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of fg:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The fg utility shall write the command line of the job to standard output in the following format:

"%s\n", <command>

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2727

88626

88627

88628

88629

88630

88631

88632

88633

88634

88635

88636

88637

88638

88639

88640

88641

88642

88643

88644

88645

88646

88647

88648

88649

88650

88651

88652

88653

88654

88655

88656

88657

88658

88659

88660

88661

88662

88663

88664

88665

fg Utilities

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If job control is disabled, the fg utility shall exit with an error and no job shall be placed in the
foreground.

APPLICATION USAGE
The fg utility does not work as expected when it is operating in its own utility execution
environment because that environment has no applicable jobs to manipulate. See the
APPLICATION USAGE section for bg . For this reason, fg is generally implemented as a shell
regular built-in.

EXAMPLES
None.

RATIONALE
The extensions to the shell specified in this volume of POSIX.1-2008 have mostly been based on
features provided by the KornShell. The job control features provided by bg, fg, and jobs are also
based on the KornShell. The standard developers examined the characteristics of the C shell
versions of these utilities and found that differences exist. Despite widespread use of the C shell,
the KornShell versions were selected for this volume of POSIX.1-2008 to maintain a degree of
uniformity with the rest of the KornShell features selected (such as the very popular command
line editing features).

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.9.3.1 (on page 2319), Section 2.12 (on page 2331), bg , kill , jobs , wait

XBD Section 3.203 (on page 65), Chapter 8 (on page 173)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The APPLICATION USAGE section is added.

The JC marking is removed from the SYNOPSIS since job control is mandatory is this version.

2728 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

88666

88667

88668

88669

88670

88671

88672

88673

88674

88675

88676

88677

88678

88679

88680

88681

88682

88683

88684

88685

88686

88687

88688

88689

88690

88691

88692

88693

88694

88695

88696

88697

88698

88699

88700

88701

88702

88703

88704

Utilities file

NAME
file — determine file type

SYNOPSIS
file [−dh] [−M file] [−m file] file...

file −i [−h] file...

DESCRIPTION
The file utility shall perform a series of tests in sequence on each specified file in an attempt to
classify it:

1. If file does not exist, cannot be read, or its file status could not be determined, the output
shall indicate that the file was processed, but that its type could not be determined.

2. If the file is not a regular file, its file type shall be identified. The file types directory,
FIFO, socket, block special, and character special shall be identified as such. Other
implementation-defined file types may also be identified. If file is a symbolic link, by
default the link shall be resolved and file shall test the type of file referenced by the
symbolic link. (See the −h and −i options below.)

3. If the length of file is zero, it shall be identified as an empty file.

4. The file utility shall examine an initial segment of file and shall make a guess at
identifying its contents based on position-sensitive tests. (The answer is not guaranteed to
be correct; see the −d, −M, and −m options below.)

5. The file utility shall examine file and make a guess at identifying its contents based on
context-sensitive default system tests. (The answer is not guaranteed to be correct.)

6. The file shall be identified as a data file.

If file does not exist, cannot be read, or its file status could not be determined, the output shall
indicate that the file was processed, but that its type could not be determined.

If file is a symbolic link, by default the link shall be resolved and file shall test the type of file
referenced by the symbolic link.

OPTIONS
The file utility shall conform to XBD Section 12.2 (on page 215), except that the order of the −m,
−d, and −M options shall be significant.

The following options shall be supported by the implementation:

−d Apply any position-sensitive default system tests and context-sensitive default
system tests to the file. This is the default if no −M or −m option is specified.

−h When a symbolic link is encountered, identify the file as a symbolic link. If −h is
not specified and file is a symbolic link that refers to a nonexistent file, file shall
identify the file as a symbolic link, as if −h had been specified.

−i If a file is a regular file, do not attempt to classify the type of the file further, but
identify the file as specified in the STDOUT section.

−M file Specify the name of a file containing position-sensitive tests that shall be applied to
a file in order to classify it (see the EXTENDED DESCRIPTION). No position-
sensitive default system tests nor context-sensitive default system tests shall be
applied unless the −d option is also specified.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2729

88705

88706

88707

88708

88709

88710

88711

88712

88713

88714

88715

88716

88717

88718

88719

88720

88721

88722

88723

88724

88725

88726

88727

88728

88729

88730

88731

88732

88733

88734

88735

88736

88737

88738

88739

88740

88741

88742

88743

88744

88745

file Utilities

−m file Specify the name of a file containing position-sensitive tests that shall be applied to
a file in order to classify it (see the EXTENDED DESCRIPTION).

If the −m option is specified without specifying the −d option or the −M option, position-
sensitive default system tests shall be applied after the position-sensitive tests specified by the
−m option. If the −M option is specified with the −d option, the −m option, or both, or the −m
option is specified with the −d option, the concatenation of the position-sensitive tests specified
by these options shall be applied in the order specified by the appearance of these options. If a
−M or −m file option-argument is −, the results are unspecified.

OPERANDS
The following operand shall be supported:

file A pathname of a file to be tested.

STDIN
The standard input shall be used if a file operand is ’−’ and the implementation treats the ’−’
as meaning standard input. Otherwise, the standard input shall not be used.

INPUT FILES
The file can be any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of file:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
In the POSIX locale, the following format shall be used to identify each operand, file specified:

"%s: %s\n", <file>, <type>

The values for <type> are unspecified, except that in the POSIX locale, if file is identified as one
of the types listed in the following table, <type> shall contain (but is not limited to) the
corresponding string, unless the file is identified by a position-sensitive test specified by a −M or
−m option. Each <space> shown in the strings shall be exactly one <space>.

2730 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

88746

88747

88748

88749

88750

88751

88752

88753

88754

88755

88756

88757

88758

88759

88760

88761

88762

88763

88764

88765

88766

88767

88768

88769

88770

88771

88772

88773

88774

88775

88776

88777

88778

88779

88780

88781

88782

88783

88784

88785

Utilities file

Table 4-9 File Utility Output Strings

If file is: <type> shall contain the string: Notes

Nonexistent cannot open

Block special block special 1
Character special character special 1
Directory directory 1
FIFO fifo 1
Socket socket 1
Symbolic link symbolic link to 1
Regular file regular file 1,2
Empty regular file empty 3
Regular file that cannot be read cannot open 3

Executable binary executable 3,4,6
ar archive library (see ar) archive 3,4,6
Extended cpio format (see pax) cpio archive 3,4,6
Extended tar format (see ustar in pax) tar archive 3,4,6

Shell script commands text 3,5,6
C-language source c program text 3,5,6
FORTRAN source fortran program text 3,5,6

Regular file whose type cannot be determined data 3

Notes:

1. This is a file type test.

2. This test is applied only if the −i option is specified.

3. This test is applied only if the −i option is not specified.

4. This is a position-sensitive default system test.

5. This is a context-sensitive default system test.

6. Position-sensitive default system tests and context-sensitive default system tests are not
applied if the −M option is specified unless the −d option is also specified.

In the POSIX locale, if file is identified as a symbolic link (see the −h option), the following
alternative output format shall be used:

"%s: %s %s\n", <file>, <type>, <contents of link>"

If the file named by the file operand does not exist, cannot be read, or the type of the file named
by the file operand cannot be determined, this shall not be considered an error that affects the
exit status.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2731

88786

88787

88788

88789

88790

88791

88792

88793

88794

88795

88796

88797

88798

88799

88800

88801

88802

88803

88804

88805

88806

88807

88808

88809

88810

88811

88812

88813

88814

88815

88816

88817

88818

88819

88820

88821

88822

88823

file Utilities

EXTENDED DESCRIPTION
A file specified as an option-argument to the −m or −M options shall contain one position-
sensitive test per line, which shall be applied to the file. If the test succeeds, the message field of
the line shall be printed and no further tests shall be applied, with the exception that tests on
immediately following lines beginning with a single ’>’ character shall be applied.

Each line shall be composed of the following four <tab>-separated fields. (Implementations may
allow any combination of one or more white-space characters other than <newline> to act as
field separators.)

offset An unsigned number (optionally preceded by a single ’>’ character) specifying
the offset, in bytes, of the value in the file that is to be compared against the value
field of the line. If the file is shorter than the specified offset, the test shall fail.

If the offset begins with the character ’>’, the test contained in the line shall not be
applied to the file unless the test on the last line for which the offset did not begin
with a ’>’ was successful. By default, the offset shall be interpreted as an unsigned
decimal number. With a leading 0x or 0X, the offset shall be interpreted as a
hexadecimal number; otherwise, with a leading 0, the offset shall be interpreted as
an octal number.

type The type of the value in the file to be tested. The type shall consist of the type
specification characters d, s, and u, specifying signed decimal, string, and
unsigned decimal, respectively.

The type string shall be interpreted as the bytes from the file starting at the
specified offset and including the same number of bytes specified by the value field.
If insufficient bytes remain in the file past the offset to match the value field, the test
shall fail.

The type specification characters d and u can be followed by an optional unsigned
decimal integer that specifies the number of bytes represented by the type. The
type specification characters d and u can be followed by an optional C, S, I, or L,
indicating that the value is of type char, short, int, or long, respectively.

The default number of bytes represented by the type specifiers d, f, and u shall
correspond to their respective C-language types as follows. If the system claims
conformance to the C-Language Development Utilities option, those specifiers
shall correspond to the default sizes used in the c99 utility. Otherwise, the default
sizes shall be implementation-defined.

For the type specifier characters d and u, the default number of bytes shall
correspond to the size of a basic integer type of the implementation. For these
specifier characters, the implementation shall support values of the optional
number of bytes to be converted corresponding to the number of bytes in the C-
language types char, short, int, or long. These numbers can also be specified by an
application as the characters C, S, I, and L, respectively. The byte order used when
interpreting numeric values is implementation-defined, but shall correspond to the
order in which a constant of the corresponding type is stored in memory on the
system.

All type specifiers, except for s, can be followed by a mask specifier of the form
&number. The mask value shall be AND’ed with the value of the input file before
the comparison with the value field of the line is made. By default, the mask shall
be interpreted as an unsigned decimal number. With a leading 0x or 0X, the mask
shall be interpreted as an unsigned hexadecimal number; otherwise, with a leading

2732 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

88824

88825

88826

88827

88828

88829

88830

88831

88832

88833

88834

88835

88836

88837

88838

88839

88840

88841

88842

88843

88844

88845

88846

88847

88848

88849

88850

88851

88852

88853

88854

88855

88856

88857

88858

88859

88860

88861

88862

88863

88864

88865

88866

88867

88868

88869

88870

Utilities file

0, the mask shall be interpreted as an unsigned octal number.

The strings byte, short, long, and string shall also be supported as type fields,
being interpreted as dC, dS, dL, and s, respectively.

value The value to be compared with the value from the file.

If the specifier from the type field is s or string, then interpret the value as a string.
Otherwise, interpret it as a number. If the value is a string, then the test shall
succeed only when a string value exactly matches the bytes from the file.

If the value is a string, it can contain the following sequences:

\character The <backslash>-escape sequences as specified in XBD Table 5-1
(on page 121) (’\\’, ’\a’, ’\b’, ’\f’, ’\n’, ’\r’, ’\t’,
’\v’). In addition, the escape sequence ’\ ’ (the <backslash>
character followed by a <space> character) shall be recognized to
represent a <space> character. The results of using any other
character, other than an octal digit, following the <backslash>
are unspecified.

\octal Octal sequences that can be used to represent characters with
specific coded values. An octal sequence shall consist of a
<backslash> followed by the longest sequence of one, two, or
three octal-digit characters (01234567).

By default, any value that is not a string shall be interpreted as a signed decimal
number. Any such value, with a leading 0x or 0X, shall be interpreted as an
unsigned hexadecimal number; otherwise, with a leading zero, the value shall be
interpreted as an unsigned octal number.

If the value is not a string, it can be preceded by a character indicating the
comparison to be performed. Permissible characters and the comparisons they
specify are as follows:

= The test shall succeed if the value from the file equals the value field.

< The test shall succeed if the value from the file is less than the value field.

> The test shall succeed if the value from the file is greater than the value field.

& The test shall succeed if all of the set bits in the value field are set in the value
from the file.

ˆ The test shall succeed if at least one of the set bits in the value field is not set in
the value from the file.

x The test shall succeed if the file is large enough to contain a value of the type
specified starting at the offset specified.

message The message to be printed if the test succeeds. The message shall be interpreted
using the notation for the printf formatting specification; see printf. If the value
field was a string, then the value from the file shall be the argument for the printf
formatting specification; otherwise, the value from the file shall be the argument.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2733

88871

88872

88873

88874

88875

88876

88877

88878

88879

88880

88881

88882

88883

88884

88885

88886

88887

88888

88889

88890

88891

88892

88893

88894

88895

88896

88897

88898

88899

88900

88901

88902

88903

88904

88905

88906

88907

88908

88909

file Utilities

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The file utility can only be required to guess at many of the file types because only exhaustive
testing can determine some types with certainty. For example, binary data on some
implementations might match the initial segment of an executable or a tar archive.

Note that the table indicates that the output contains the stated string. Systems may add text
before or after the string. For executables, as an example, the machine architecture and various
facts about how the file was link-edited may be included. Note also that on systems that
recognize shell script files starting with "#!" as executable files, these may be identified as
executable binary files rather than as shell scripts.

EXAMPLES
Determine whether an argument is a binary executable file:

file − − "$1" | grep −q ’:.*executable’ &&
printf "%s is executable.\n" "$1"

RATIONALE
The −f option was omitted because the same effect can (and should) be obtained using the xargs
utility.

Historical versions of the file utility attempt to identify the following types of files: symbolic link,
directory, character special, block special, socket, tar archive, cpio archive, SCCS archive, archive
library, empty, compress output, pack output, binary data, C source, FORTRAN source, assembler
source, nroff/troff/eqn/tbl source troff output, shell script, C shell script, English text, ASCII text,
various executables, APL workspace, compiled terminfo entries, and CURSES screen images.
Only those types that are reasonably well specified in POSIX or are directly related to POSIX
utilities are listed in the table.

Historical systems have used a ‘‘magic file’’ named /etc/magic to help identify file types. Because
it is generally useful for users and scripts to be able to identify special file types, the −m flag and
a portable format for user-created magic files has been specified. No requirement is made that an
implementation of file use this method of identifying files, only that users be permitted to add
their own classifying tests.

In addition, three options have been added to historical practice. The −d flag has been added to
permit users to cause their tests to follow any default system tests. The −i flag has been added to
permit users to test portably for regular files in shell scripts. The −M flag has been added to
permit users to ignore any default system tests.

The POSIX.1-2008 description of default system tests and the interaction between the −d, −M,
and −m options did not clearly indicate that there were two types of ‘‘default system tests’’. The
‘‘position-sensitive tests’’ determine file types by looking for certain string or binary values at
specific offsets in the file being examined. These position-sensitive tests were implemented in
historical systems using the magic file described above. Some of these tests are now built into
the file utility itself on some implementations so the output can provide more detail than can be
provided by magic files. For example, a magic file can easily identify a core file on most
implementations, but cannot name the program file that dropped the core. A magic file could

2734 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

88910

88911

88912

88913

88914

88915

88916

88917

88918

88919

88920

88921

88922

88923

88924

88925

88926

88927

88928

88929

88930

88931

88932

88933

88934

88935

88936

88937

88938

88939

88940

88941

88942

88943

88944

88945

88946

88947

88948

88949

88950

88951

88952

88953

88954

88955

Utilities file

produce output such as:

/home/dwc/core: ELF 32-bit MSB core file SPARC Version 1

but by building the test into the file utility, you could get output such as:

/home/dwc/core: ELF 32-bit MSB core file SPARC Version 1, from ’testprog’

These extended built-in tests are still to be treated as position-sensitive default system tests even
if they are not listed in /etc/magic or any other magic file.

The context-sensitive default system tests were always built into the file utility. These tests
looked for language constructs in text files trying to identify shell scripts, C, FORTRAN, and
other computer language source files, and even plain text files. With the addition of the −m and
−M options the distinction between position-sensitive and context-sensitive default system tests
became important because the order of testing is important. The context-sensitive system default
tests should never be applied before any position-sensitive tests even if the −d option is specified
before a −m option or −M option due to the high probability that the context-sensitive system
default tests will incorrectly identify arbitrary text files as text files before position-sensitive tests
specified by the −m or −M option would be applied to give a more accurate identification.

Leaving the meaning of −M − and −m − unspecified allows an existing prototype of these
options to continue to work in a backwards-compatible manner. (In that implementation, −M −
was roughly equivalent to −d in POSIX.1-2008.)

The historical −c option was omitted as not particularly useful to users or portable shell scripts.
In addition, a reasonable implementation of the file utility would report any errors found each
time the magic file is read.

The historical format of the magic file was the same as that specified by the Rationale in the
ISO POSIX-2: 1993 standard for the offset, value, and message fields; however, it used less precise
type fields than the format specified by the current normative text. The new type field values are
a superset of the historical ones.

The following is an example magic file:

0 short 070707 cpio archive
0 short 0143561 Byte-swapped cpio archive
0 string 070707 ASCII cpio archive
0 long 0177555 Very old archive
0 short 0177545 Old archive
0 short 017437 Old packed data
0 string \037\036 Packed data
0 string \377\037 Compacted data
0 string \037\235 Compressed data
>2 byte&0x80 >0 Block compressed
>2 byte&0x1f x %d bits
0 string \032\001 Compiled Terminfo Entry
0 short 0433 Curses screen image
0 short 0434 Curses screen image
0 string <ar> System V Release 1 archive
0 string !<arch>\n__.SYMDEF Archive random library
0 string !<arch> Archive
0 string ARF_BEGARF PHIGS clear text archive
0 long 0x137A2950 Scalable OpenFont binary
0 long 0x137A2951 Encrypted scalable OpenFont binary

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2735

88956

88957

88958

88959

88960

88961

88962

88963

88964

88965

88966

88967

88968

88969

88970

88971

88972

88973

88974

88975

88976

88977

88978

88979

88980

88981

88982

88983

88984

88985

88986

88987

88988

88989

88990

88991

88992

88993

88994

88995

88996

88997

88998

88999

89000

89001

file Utilities

The use of a basic integer data type is intended to allow the implementation to choose a word
size commonly used by applications on that architecture.

Earlier versions of this standard allowed for implementations with bytes other than eight bits,
but this has been modified in this version.

FUTURE DIRECTIONS
None.

SEE ALSO
ar , ls , pax , printf

XBD Table 5-1 (on page 121), Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

Options and an EXTENDED DESCRIPTION are added as specified in the IEEE P1003.2b draft
standard.

IEEE PASC Interpretations 1003.2 #192 and #178 are applied.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/25 is applied, making major changes to
address ambiguities raised in defect reports.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/26 is applied, making it clear in the
OPTIONS section that the −m, −d, and −M options do not comply with Guideline 11 of the
Utility Syntax Guidelines.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/10 is applied, clarifying the specification
characters.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/11 is applied, allowing application
developers to create portable magic files that can match characters in strings, and allowing
common extensions found in existing implementations.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/12 is applied, removing text describing
behavior on systems with bytes consisting of more than eight bits.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

SD5-XCU-ERN-4 is applied, adding further entries in the Notes column in Table 4-9.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The file utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

The EXAMPLES section is revised to correct an error with the pathname "$1".

2736 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

89002

89003

89004

89005

89006

89007

89008

89009

89010

89011

89012

89013

89014

89015

89016

89017

89018

89019

89020

89021

89022

89023

89024

89025

89026

89027

89028

89029

89030

89031

89032

89033

89034

89035

89036

Utilities find

NAME
find — find files

SYNOPSIS
find [−H|−L] path... [operand_expression...]

DESCRIPTION
The find utility shall recursively descend the directory hierarchy from each file specified by path,
evaluating a Boolean expression composed of the primaries described in the OPERANDS section
for each file encountered. Each path operand shall be evaluated unaltered as it was provided,
including all trailing <slash> characters; all pathnames for other files encountered in the
hierarchy shall consist of the concatenation of the current path operand, a <slash> if the current
path operand did not end in one, and the filename relative to the path operand. The relative
portion shall contain no dot or dot-dot components, no trailing <slash> characters, and only
single <slash> characters between pathname components.

The find utility shall be able to descend to arbitrary depths in a file hierarchy and shall not fail
due to path length limitations (unless a path operand specified by the application exceeds
{PATH_MAX} requirements).

The find utility shall detect infinite loops; that is, entering a previously visited directory that is an
ancestor of the last file encountered. When it detects an infinite loop, find shall write a
diagnostic message to standard error and shall either recover its position in the hierarchy or
terminate.

OPTIONS
The find utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported by the implementation:

−H Cause the file information and file type evaluated for each symbolic link
encountered as a path operand on the command line to be those of the file
referenced by the link, and not the link itself. If the referenced file does not exist,
the file information and type shall be for the link itself. File information and type
for symbolic links encountered during the traversal of a file hierarchy shall be that
of the link itself.

−L Cause the file information and file type evaluated for each symbolic link
encountered as a path operand on the command line or encountered during the
traversal of a file hierarchy to be those of the file referenced by the link, and not the
link itself. If the referenced file does not exist, the file information and type shall be
for the link itself.

Specifying more than one of the mutually-exclusive options −H and −L shall not be considered
an error. The last option specified shall determine the behavior of the utility. If neither the −H
nor the −L option is specified, then the file information and type for symbolic links encountered
as a path operand on the command line or encountered during the traversal of a file hierarchy
shall be that of the link itself.

OPERANDS
The following operands shall be supported:

The first operand and subsequent operands up to but not including the first operand that starts
with a ’−’, or is a ’!’ or a ’(’, shall be interpreted as path operands. If the first operand starts
with a ’−’, or is a ’!’ or a ’(’, the behavior is unspecified. Each path operand is a pathname of
a starting point in the file hierarchy.

The first operand that starts with a ’−’, or is a ’!’ or a ’(’, and all subsequent arguments shall

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2737

89037

89038

89039

89040

89041

89042

89043

89044

89045

89046

89047

89048

89049

89050

89051

89052

89053

89054

89055

89056

89057

89058

89059

89060

89061

89062

89063

89064

89065

89066

89067

89068

89069

89070

89071

89072

89073

89074

89075

89076

89077

89078

89079

89080

89081

89082

find Utilities

be interpreted as an expression made up of the following primaries and operators. In the
descriptions, wherever n is used as a primary argument, it shall be interpreted as a decimal
integer optionally preceded by a plus (’+’) or minus-sign (’−’) sign, as follows:

+n More than n.

n Exactly n.

−n Less than n.

The following primaries shall be supported:

−name pattern
The primary shall evaluate as true if the basename of the current pathname
matches pattern using the pattern matching notation described in Section 2.13 (on
page 2332). The additional rules in Section 2.13.3 (on page 2333) do not apply as
this is a matching operation, not an expansion.

−path pattern
The primary shall evaluate as true if the current pathname matches pattern using
the pattern matching notation described in Section 2.13 (on page 2332). The
additional rules in Section 2.13.3 (on page 2333) do not apply as this is a matching
operation, not an expansion.

−nouser The primary shall evaluate as true if the file belongs to a user ID for which the
getpwuid() function defined in the System Interfaces volume of POSIX.1-2008 (or
equivalent) returns NULL.

−nogroup The primary shall evaluate as true if the file belongs to a group ID for which the
getgrgid() function defined in the System Interfaces volume of POSIX.1-2008 (or
equivalent) returns NULL.

−xdev The primary shall always evaluate as true; it shall cause find not to continue
descending past directories that have a different device ID (st_dev, see the stat()
function defined in the System Interfaces volume of POSIX.1-2008). If any −xdev
primary is specified, it shall apply to the entire expression even if the −xdev
primary would not normally be evaluated.

−prune The primary shall always evaluate as true; it shall cause find not to descend the
current pathname if it is a directory. If the −depth primary is specified, the −prune
primary shall have no effect.

−perm [−]mode
The mode argument is used to represent file mode bits. It shall be identical in
format to the symbolic_mode operand described in chmod, and shall be interpreted
as follows. To start, a template shall be assumed with all file mode bits cleared. An
op symbol of ’+’ shall set the appropriate mode bits in the template; ’−’ shall
clear the appropriate bits; ’=’ shall set the appropriate mode bits, without regard
to the contents of the file mode creation mask of the process. The op symbol of ’−’
cannot be the first character of mode; this avoids ambiguity with the optional
leading <hyphen>. Since the initial mode is all bits off, there are not any symbolic
modes that need to use ’−’ as the first character.

If the <hyphen> is omitted, the primary shall evaluate as true when the file
permission bits exactly match the value of the resulting template.

Otherwise, if mode is prefixed by a <hyphen>, the primary shall evaluate as true if
at least all the bits in the resulting template are set in the file permission bits.

2738 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

89083

89084

89085

89086

89087

89088

89089

89090

89091

89092

89093

89094

89095

89096

89097

89098

89099

89100

89101

89102

89103

89104

89105

89106

89107

89108

89109

89110

89111

89112

89113

89114

89115

89116

89117

89118

89119

89120

89121

89122

89123

89124

89125

89126

89127

Utilities find

−perm [−]onum
If the <hyphen> is omitted, the primary shall evaluate as true when the file mode
bits exactly match the value of the octal number onum (see the description of the
octal mode in chmod). Otherwise, if onum is prefixed by a <hyphen>, the primary
shall evaluate as true if at least all of the bits specified in onum are set. In both
cases, the behavior is unspecified when onum exceeds 07777.

−type c The primary shall evaluate as true if the type of the file is c, where c is ’b’, ’c’,
’d’, ’l’, ’p’, ’f’, or ’s’ for block special file, character special file, directory,
symbolic link, FIFO, regular file, or socket, respectively.

−links n The primary shall evaluate as true if the file has n links.

−user uname The primary shall evaluate as true if the file belongs to the user uname. If uname is
a decimal integer and the getpwnam() (or equivalent) function does not return a
valid user name, uname shall be interpreted as a user ID.

−group gname
The primary shall evaluate as true if the file belongs to the group gname. If gname
is a decimal integer and the getgrnam() (or equivalent) function does not return a
valid group name, gname shall be interpreted as a group ID.

−size n[c] The primary shall evaluate as true if the file size in bytes, divided by 512 and
rounded up to the next integer, is n. If n is followed by the character ’c’, the size
shall be in bytes.

−atime n The primary shall evaluate as true if the file access time subtracted from the
initialization time, divided by 86 400 (with any remainder discarded), is n.

−ctime n The primary shall evaluate as true if the time of last change of file status
information subtracted from the initialization time, divided by 86 400 (with any
remainder discarded), is n.

−mtime n The primary shall evaluate as true if the file modification time subtracted from the
initialization time, divided by 86 400 (with any remainder discarded), is n.

−exec utility_name [argument . . .] ;
−exec utility_name [argument . . .] { } +

The end of the primary expression shall be punctuated by a <semicolon> or by a
<plus-sign>. Only a <plus-sign> that immediately follows an argument
containing the two characters "{}" shall punctuate the end of the primary
expression. Other uses of the <plus-sign> shall not be treated as special.

If the primary expression is punctuated by a <semicolon>, the utility utility_name
shall be invoked once for each pathname and the primary shall evaluate as true if
the utility returns a zero value as exit status. A utility_name or argument containing
only the two characters "{}" shall be replaced by the current pathname.

If the primary expression is punctuated by a <plus-sign>, the primary shall always
evaluate as true, and the pathnames for which the primary is evaluated shall be
aggregated into sets. The utility utility_name shall be invoked once for each set of
aggregated pathnames. Each invocation shall begin after the last pathname in the
set is aggregated, and shall be completed before the find utility exits and before the
first pathname in the next set (if any) is aggregated for this primary, but it is
otherwise unspecified whether the invocation occurs before, during, or after the
evaluations of other primaries. If any invocation returns a non-zero value as exit
status, the find utility shall return a non-zero exit status. An argument containing

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2739

89128

89129

89130

89131

89132

89133

89134

89135

89136

89137

89138

89139

89140

89141

89142

89143

89144

89145

89146

89147

89148

89149

89150

89151

89152

89153

89154

89155

89156

89157

89158

89159

89160

89161

89162

89163

89164

89165

89166

89167

89168

89169

89170

89171

89172

89173

find Utilities

only the two characters "{}" shall be replaced by the set of aggregated
pathnames, with each pathname passed as a separate argument to the invoked
utility in the same order that it was aggregated. The size of any set of two or more
pathnames shall be limited such that execution of the utility does not cause the
system’s {ARG_MAX} limit to be exceeded. If more than one argument containing
only the two characters "{}" is present, the behavior is unspecified.

If a utility_name or argument string contains the two characters "{}", but not just
the two characters "{}", it is implementation-defined whether find replaces those
two characters or uses the string without change. The current directory for the
invocation of utility_name shall be the same as the current directory when the find
utility was started. If the utility_name names any of the special built-in utilities (see
Section 2.14, on page 2334), the results are undefined.

−ok utility_name [argument . . .] ;
The −ok primary shall be equivalent to −exec, except that the use of a <plus-sign>
to punctuate the end of the primary expression need not be supported, and find
shall request affirmation of the invocation of utility_name using the current file as
an argument by writing to standard error as described in the STDERR section. If
the response on standard input is affirmative, the utility shall be invoked.
Otherwise, the command shall not be invoked and the value of the −ok operand
shall be false.

−print The primary shall always evaluate as true; it shall cause the current pathname to
be written to standard output.

−newer file The primary shall evaluate as true if the modification time of the current file is
more recent than the modification time of the file named by the pathname file.

−depth The primary shall always evaluate as true; it shall cause descent of the directory
hierarchy to be done so that all entries in a directory are acted on before the
directory itself. If a −depth primary is not specified, all entries in a directory shall
be acted on after the directory itself. If any −depth primary is specified, it shall
apply to the entire expression even if the −depth primary would not normally be
evaluated.

The primaries can be combined using the following operators (in order of decreasing
precedence):

(expression) True if expression is true.

! expression Negation of a primary; the unary NOT operator.

expression [−a] expression
Conjunction of primaries; the AND operator is implied by the juxtaposition of two
primaries or made explicit by the optional −a operator. The second expression shall
not be evaluated if the first expression is false.

expression −o expression
Alternation of primaries; the OR operator. The second expression shall not be
evaluated if the first expression is true.

If no expression is present, −print shall be used as the expression. Otherwise, if the given
expression does not contain any of the primaries −exec, −ok, or −print, the given expression
shall be effectively replaced by:

(given_expression) −print

2740 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

89174

89175

89176

89177

89178

89179

89180

89181

89182

89183

89184

89185

89186

89187

89188

89189

89190

89191

89192

89193

89194

89195

89196

89197

89198

89199

89200

89201

89202

89203

89204

89205

89206

89207

89208

89209

89210

89211

89212

89213

89214

89215

89216

89217

89218

Utilities find

The −user, −group, and −newer primaries each shall evaluate their respective arguments only
once.

When the file type evaluated for the current file is a symbolic link, the results of evaluating the
−perm primary are implementation-defined.

STDIN
If the −ok primary is used, the response shall be read from the standard input. An entire line
shall be read as the response. Otherwise, the standard input shall not be used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of find:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the pattern matching notation for the −n
option and in the extended regular expression defined for the yesexpr locale
keyword in the LC_MESSAGES category.

LC_CTYPE This variable determines the locale for the interpretation of sequences of bytes of
text data as characters (for example, single-byte as opposed to multi-byte
characters in arguments), the behavior of character classes within the pattern
matching notation used for the −n option, and the behavior of character classes
within regular expressions used in the extended regular expression defined for the
yesexpr locale keyword in the LC_MESSAGES category.

LC_MESSAGES
Determine the locale used to process affirmative responses, and the locale used to
affect the format and contents of diagnostic messages and prompts written to
standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PA TH Determine the location of the utility_name for the −exec and −ok primaries, as
described in XBD Chapter 8 (on page 173).

ASYNCHRONOUS EVENTS
Default.

STDOUT
The −print primary shall cause the current pathnames to be written to standard output. The
format shall be:

"%s\n", <path>

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2741

89219

89220

89221

89222

89223

89224

89225

89226

89227

89228

89229

89230

89231

89232

89233

89234

89235

89236

89237

89238

89239

89240

89241

89242

89243

89244

89245

89246

89247

89248

89249

89250

89251

89252

89253

89254

89255

89256

89257

89258

find Utilities

STDERR
The −ok primary shall write a prompt to standard error containing at least the utility_name to be
invoked and the current pathname. In the POSIX locale, the last non-<blank> in the prompt shall
be ’?’. The exact format used is unspecified.

Otherwise, the standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All path operands were traversed successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
When used in operands, pattern matching notation, <semicolon>, <left-parenthesis>, and
<right-parenthesis> characters are special to the shell and must be quoted (see Section 2.2, on
page 2298).

The bit that is traditionally used for sticky (historically 01000) is specified in the −perm primary
using the octal number argument form. Since this bit is not defined by this volume of
POSIX.1-2008, applications must not assume that it actually refers to the traditional sticky bit.

EXAMPLES

1. The following commands are equivalent:

find .
find . −print

They both write out the entire directory hierarchy from the current directory.

2. The following command:

find / \(−name tmp −o −name ’*.xx’ \) −atime +7 −exec rm {} \;

removes all files named tmp or ending in .xx that have not been accessed for seven or
more 24-hour periods.

3. The following command:

find . −perm −o+w,+s

prints (−print is assumed) the names of all files in or below the current directory, with all
of the file permission bits S_ISUID, S_ISGID, and S_IWOTH set.

4. The following command:

find . −name SCCS −prune −o −print

recursively prints pathnames of all files in the current directory and below, but skips
directories named SCCS and files in them.

2742 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

89259

89260

89261

89262

89263

89264

89265

89266

89267

89268

89269

89270

89271

89272

89273

89274

89275

89276

89277

89278

89279

89280

89281

89282

89283

89284

89285

89286

89287

89288

89289

89290

89291

89292

89293

89294

89295

89296

89297

Utilities find

5. The following command:

find . −print −name SCCS −prune

behaves as in the previous example, but prints the names of the SCCS directories.

6. The following command is roughly equivalent to the −nt extension to test:

if [−n "$(find file1 −prune −newer file2)"]; then
printf %s\\n "file1 is newer than file2"

fi

7. The descriptions of −atime, −ctime, and −mtime use the terminology n ‘‘86 400 second
periods (days)’’. For example, a file accessed at 23:59 is selected by:

find . −atime −1 −print

at 00:01 the next day (less than 24 hours later, not more than one day ago); the midnight
boundary between days has no effect on the 24-hour calculation.

8. The following command:

find . ! −name . −prune −name ’*.old’ −exec \
sh −c ’mv "$@" ../old/’ sh {} +

performs the same task as:

mv ./*.old ./.*.old ../old/

while avoiding an ‘‘Argument list too long’’ error if there are a large number of files
ending with .old (and avoiding ‘‘No such file or directory’’ errors if no files match ./*.old
or ./.*.old).

The alternative:

find . ! −name . −prune −name ’*.old’ −exec mv {} ../old/ \;

is less efficient if there are many files to move because it executes one mv command per
file.

9. On systems configured to mount removable media on directories under /media, the
following command searches the file hierarchy for files larger than 100 000 KB without
searching any mounted removable media:

find / −path /media −prune −o −size +200000 −print

10. Except for the root directory, and "//" on implementations where "//" does not refer to
the root directory, no pattern given to −name will match a <slash>, because trailing
<slash> characters are ignored when computing the basename of the file under
evaluation. Given two empty directories named foo and bar, the following command:

find foo/// bar/// −name foo −o −name ’bar?*’

prints only the line "foo///".

RATIONALE
The −a operator was retained as an optional operator for compatibility with historical shell
scripts, even though it is redundant with expression concatenation.

The descriptions of the ’−’ modifier on the mode and onum arguments to the −perm primary
agree with historical practice on BSD and System V implementations. System V and BSD
documentation both describe it in terms of checking additional bits; in fact, it uses the same bits,
but checks for having at least all of the matching bits set instead of having exactly the matching

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2743

89298

89299

89300

89301

89302

89303

89304

89305

89306

89307

89308

89309

89310

89311

89312

89313

89314

89315

89316

89317

89318

89319

89320

89321

89322

89323

89324

89325

89326

89327

89328

89329

89330

89331

89332

89333

89334

89335

89336

89337

89338

find Utilities

bits set.

The exact format of the interactive prompts is unspecified. Only the general nature of the
contents of prompts are specified because:

• Implementations may desire more descriptive prompts than those used on historical
implementations.

• Since the historical prompt strings do not terminate with <newline> characters, there is no
portable way for another program to interact with the prompts of this utility via pipes.

Therefore, an application using this prompting option relies on the system to provide the most
suitable dialog directly with the user, based on the general guidelines specified.

The −name file operand was changed to use the shell pattern matching notation so that find is
consistent with other utilities using pattern matching.

The −size operand refers to the size of a file, rather than the number of blocks it may occupy in
the file system. The intent is that the st_size field defined in the System Interfaces volume of
POSIX.1-2008 should be used, not the st_blocks found in historical implementations. There are at
least two reasons for this:

1. In both System V and BSD, find only uses st_size in size calculations for the operands
specified by this volume of POSIX.1-2008. (BSD uses st_blocks only when processing the
−ls primary.)

2. Users usually think of file size in terms of bytes, which is also the unit used by the ls
utility for the output from the −l option. (In both System V and BSD, ls uses st_size for the
−l option size field and uses st_blocks for the ls −s calculations. This volume of
POSIX.1-2008 does not specify ls −s.)

The descriptions of −atime, −ctime, and −mtime were changed from the SVID description of n
‘‘days’’ to n being the result of the integer division of the time difference in seconds by 86 400.
The description is also different in terms of the exact timeframe for the n case (versus the +n or
−n), but it matches all known historical implementations. It refers to one 86 400 second period in
the past, not any time from the beginning of that period to the current time. For example, −atime
2 is true if the file was accessed any time in the period from 72 hours to 48 hours ago.

Historical implementations do not modify "{}" when it appears as a substring of an −exec or
−ok utility_name or argument string. There have been numerous user requests for this extension,
so this volume of POSIX.1-2008 allows the desired behavior. At least one recent implementation
does support this feature, but encountered several problems in managing memory allocation
and dealing with multiple occurrences of "{}" in a string while it was being developed, so it is
not yet required behavior.

Assuming the presence of −print was added to correct a historical pitfall that plagues novice
users, it is entirely upwards-compatible from the historical System V find utility. In its simplest
form (find directory), it could be confused with the historical BSD fast find. The BSD developers
agreed that adding −print as a default expression was the correct decision and have added the
fast find functionality within a new utility called locate.

Historically, the −L option was implemented using the primary −follow. The −H and −L options
were added for two reasons. First, they offer a finer granularity of control and consistency with
other programs that walk file hierarchies. Second, the −follow primary always evaluated to true.
As they were historically really global variables that took effect before the traversal began, some
valid expressions had unexpected results. An example is the expression −print −o −follow.
Because −print always evaluates to true, the standard order of evaluation implies that −follow
would never be evaluated. This was never the case. Historical practice for the −follow primary,

2744 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

89339

89340

89341

89342

89343

89344

89345

89346

89347

89348

89349

89350

89351

89352

89353

89354

89355

89356

89357

89358

89359

89360

89361

89362

89363

89364

89365

89366

89367

89368

89369

89370

89371

89372

89373

89374

89375

89376

89377

89378

89379

89380

89381

89382

89383

89384

Utilities find

however, is not consistent. Some implementations always follow symbolic links on the
command line whether −follow is specified or not. Others follow symbolic links on the
command line only if −follow is specified. Both behaviors are provided by the −H and −L
options, but scripts using the current −follow primary would be broken if the −follow option is
specified to work either way.

Since the −L option resolves all symbolic links and the −type l primary is true for symbolic links
that still exist after symbolic links have been resolved, the command:

find −L . −type l

prints a list of symbolic links reachable from the current directory that do not resolve to
accessible files.

A feature of SVR4’s find utility was the −exec primary’s + terminator. This allowed filenames
containing special characters (especially <newline> characters) to be grouped together without
the problems that occur if such filenames are piped to xargs. Other implementations have added
other ways to get around this problem, notably a −print0 primary that wrote filenames with a
null byte terminator. This was considered here, but not adopted. Using a null terminator meant
that any utility that was going to process find’s −print0 output had to add a new option to parse
the null terminators it would now be reading.

The "−exec ... {} +" syntax adopted was a result of IEEE PASC Interpretation 1003.2 #210.
It should be noted that this is an incompatible change to the ISO/IEC 9899: 1999 standard. For
example, the following command prints all files with a ’−’ after their name if they are regular
files, and a ’+’ otherwise:

find / −type f −exec echo {} − ’;’ −o −exec echo {} + ’;’

The change invalidates usage like this. Even though the previous standard stated that this usage
would work, in practice many did not support it and the standard developers felt it better to
now state that this was not allowable.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.2 (on page 2298), Section 2.13 (on page 2332), Section 2.14 (on page 2334), chmod , pax ,
sh , test

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH fstatat(), getgrgid(), getpwuid()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The −perm [−]onum primary is supported.

The find utility is aligned with the IEEE P1003.2b draft standard, to include processing of
symbolic links and changes to the description of the atime, ctime, and mtime operands.

IEEE PASC Interpretation 1003.2 #210 is applied, extending the −exec operand.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2745

89385

89386

89387

89388

89389

89390

89391

89392

89393

89394

89395

89396

89397

89398

89399

89400

89401

89402

89403

89404

89405

89406

89407

89408

89409

89410

89411

89412

89413

89414

89415

89416

89417

89418

89419

89420

89421

89422

89423

89424

89425

89426

89427

find Utilities

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/13 is applied, updating the RATIONALE
section to be consistent with the normative text.

Issue 7
Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description of the
LC_MESSAGES environment variable.

Austin Group Interpretation 1003.1-2001 #127 is applied, rephrasing the description of the −exec
primary to be ‘‘immediately follows’’.

Austin Group Interpretation 1003.1-2001 #185 is applied, clarifying the requirements for the −H
and −L options.

Austin Group Interpretation 1003.1-2001 #186 is applied, clarifying the requirements for the
evaluation of path operands.

Austin Group Interpretation 1003.1-2001 #195 is applied, clarifying the interpretation of the first
operand.

SD5-XCU-ERN-48 is applied, clarifying the −L option in the case that the referenced file does not
exist.

SD5-XCU-ERN-89 is applied, updating the OPERANDS section.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-117 is applied, clarifying the −perm operand.

SD5-XCU-ERN-122 is applied, adding a new EXAMPLE.

The description of the −name primary is revised and the −path primary is added (with a new
example).

2746 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

89428

89429

89430

89431

89432

89433

89434

89435

89436

89437

89438

89439

89440

89441

89442

89443

89444

89445

89446

89447

89448

Utilities fold

NAME
fold — filter for folding lines

SYNOPSIS
fold [−bs] [−w width] [file...]

DESCRIPTION
The fold utility is a filter that shall fold lines from its input files, breaking the lines to have a
maximum of width column positions (or bytes, if the −b option is specified). Lines shall be
broken by the insertion of a <newline> such that each output line (referred to later in this section
as a segment) is the maximum width possible that does not exceed the specified number of
column positions (or bytes). A line shall not be broken in the middle of a character. The behavior
is undefined if width is less than the number of columns any single character in the input would
occupy.

If the <carriage-return>, <backspace>, or <tab> characters are encountered in the input, and the
−b option is not specified, they shall be treated specially:

<backspace> The current count of line width shall be decremented by one, although the count
never shall become negative. The fold utility shall not insert a <newline>
immediately before or after any <backspace>, unless the following character has a
width greater than 1 and would cause the line width to exceed width.

<carriage-return>
The current count of line width shall be set to zero. The fold utility shall not insert a
<newline> immediately before or after any <carriage-return>.

<tab> Each <tab> encountered shall advance the column position pointer to the next tab
stop. Tab stops shall be at each column position n such that n modulo 8 equals 1.

OPTIONS
The fold utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−b Count width in bytes rather than column positions.

−s If a segment of a line contains a <blank> within the first width column positions (or
bytes), break the line after the last such <blank> meeting the width constraints. If
there is no <blank> meeting the requirements, the −s option shall have no effect for
that output segment of the input line.

−w width Specify the maximum line length, in column positions (or bytes if −b is specified).
The results are unspecified if width is not a positive decimal number. The default
value shall be 80.

OPERANDS
The following operand shall be supported:

file A pathname of a text file to be folded. If no file operands are specified, the standard
input shall be used.

STDIN
The standard input shall be used if no file operands are specified, and shall be used if a file
operand is ’−’ and the implementation treats the ’−’ as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2747

89449

89450

89451

89452

89453

89454

89455

89456

89457

89458

89459

89460

89461

89462

89463

89464

89465

89466

89467

89468

89469

89470

89471

89472

89473

89474

89475

89476

89477

89478

89479

89480

89481

89482

89483

89484

89485

89486

89487

89488

89489

89490

fold Utilities

INPUT FILES
If the −b option is specified, the input files shall be text files except that the lines are not limited
to {LINE_MAX} bytes in length. If the −b option is not specified, the input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of fold:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), and for the determination of the width in column
positions each character would occupy on a constant-width font output device.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be a file containing a sequence of characters whose order shall be
preserved from the input files, possibly with inserted <newline> characters.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All input files were processed successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

2748 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

89491

89492

89493

89494

89495

89496

89497

89498

89499

89500

89501

89502

89503

89504

89505

89506

89507

89508

89509

89510

89511

89512

89513

89514

89515

89516

89517

89518

89519

89520

89521

89522

89523

89524

89525

Utilities fold

APPLICATION USAGE
The cut and fold utilities can be used to create text files out of files with arbitrary line lengths.
The cut utility should be used when the number of lines (or records) needs to remain constant.
The fold utility should be used when the contents of long lines need to be kept contiguous.

The fold utility is frequently used to send text files to printers that truncate, rather than fold, lines
wider than the printer is able to print (usually 80 or 132 column positions).

EXAMPLES
An example invocation that submits a file of possibly long lines to the printer (under the
assumption that the user knows the line width of the printer to be assigned by lp):

fold −w 132 bigfile | lp

RATIONALE
Although terminal input in canonical processing mode requires the erase character (frequently
set to <backspace>) to erase the previous character (not byte or column position), terminal
output is not buffered and is extremely difficult, if not impossible, to parse correctly; the
interpretation depends entirely on the physical device that actually displays/prints/stores the
output. In all known internationalized implementations, the utilities producing output for
mixed column-width output assume that a <backspace> character backs up one column position
and outputs enough <backspace> characters to return to the start of the character when
<backspace> is used to provide local line motions to support underlining and emboldening
operations. Since fold without the −b option is dealing with these same constraints, <backspace>
is always treated as backing up one column position rather than backing up one character.

Historical versions of the fold utility assumed 1 byte was one character and occupied one column
position when written out. This is no longer always true. Since the most common usage of fold is
believed to be folding long lines for output to limited-length output devices, this capability was
preserved as the default case. The −b option was added so that applications could fold files with
arbitrary length lines into text files that could then be processed by the standard utilities. Note
that although the width for the −b option is in bytes, a line is never split in the middle of a
character. (It is unspecified what happens if a width is specified that is too small to hold a single
character found in the input followed by a <newline>.)

The tab stops are hardcoded to be every eighth column to meet historical practice. No new
method of specifying other tab stops was invented.

FUTURE DIRECTIONS
None.

SEE ALSO
cut

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2749

89526

89527

89528

89529

89530

89531

89532

89533

89534

89535

89536

89537

89538

89539

89540

89541

89542

89543

89544

89545

89546

89547

89548

89549

89550

89551

89552

89553

89554

89555

89556

89557

89558

89559

89560

89561

89562

89563

89564

89565

89566

89567

fold Utilities

Austin Group Interpretation 1003.1-2001 #204 is applied, updating the DESCRIPTION to clarify
when a <newline> can be inserted before or after a <backspace>.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2750 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

89568

89569

89570

Utilities fort77

NAME
fort77 — FORTRAN compiler (FORTRAN)

SYNOPSIS
FD fort77 [−c] [−g] [−L directory]... [−O optlevel] [−o outfile] [−s]

[−w] operand...

DESCRIPTION
The fort77 utility is the interface to the FORTRAN compilation system; it shall accept the full
FORTRAN-77 language defined by the ANSI X3.9-1978 standard. The system conceptually
consists of a compiler and link editor. The files referenced by operands are compiled and linked
to produce an executable file. It is unspecified whether the linking occurs entirely within the
operation of fort77; some implementations may produce objects that are not fully resolved until
the file is executed.

If the −c option is present, for all pathname operands of the form file.f, the files:

$(basename pathname.f).o

shall be created or overwritten as the result of successful compilation. If the −c option is not
specified, it is unspecified whether such .o files are created or deleted for the file.f operands.

If there are no options that prevent link editing (such as −c) and all operands compile and link
without error, the resulting executable file shall be written into the file named by the −o option
(if present) or to the file a.out. The executable file shall be created as specified in the System
Interfaces volume of POSIX.1-2008, except that the file permissions shall be set to:

S_IRWXO | S_IRWXG | S_IRWXU

and that the bits specified by the umask of the process shall be cleared.

OPTIONS
The fort77 utility shall conform to XBD Section 12.2 (on page 215), except that:

• The −l library operands have the format of options, but their position within a list of
operands affects the order in which libraries are searched.

• The order of specifying the multiple −L options is significant.

• Conforming applications shall specify each option separately; that is, grouping option
letters (for example, −cg) need not be recognized by all implementations.

The following options shall be supported:

−c Suppress the link-edit phase of the compilation, and do not remove any object files
that are produced.

−g Produce symbolic information in the object or executable files; the nature of this
information is unspecified, and may be modified by implementation-defined
interactions with other options.

−s Produce object or executable files, or both, from which symbolic and other
information not required for proper execution using the exec family of functions
defined in the System Interfaces volume of POSIX.1-2008 has been removed
(stripped). If both −g and −s options are present, the action taken is unspecified.

−o outfile Use the pathname outfile, instead of the default a.out, for the executable file
produced. If the −o option is present with −c, the result is unspecified.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2751

89571

89572

89573

89574

89575

89576

89577

89578

89579

89580

89581

89582

89583

89584

89585

89586

89587

89588

89589

89590

89591

89592

89593

89594

89595

89596

89597

89598

89599

89600

89601

89602

89603

89604

89605

89606

89607

89608

89609

89610

89611

fort77 Utilities

−L directory Change the algorithm of searching for the libraries named in −l operands to look in
the directory named by the directory pathname before looking in the usual places.
Directories named in −L options shall be searched in the specified order. At least
ten instances of this option shall be supported in a single fort77 command
invocation. If a directory specified by a −L option contains a file named libf.a, the
results are unspecified.

−O optlevel Specify the level of code optimization. If the optlevel option-argument is the digit
’0’, all special code optimizations shall be disabled. If it is the digit ’1’, the
nature of the optimization is unspecified. If the −O option is omitted, the nature of
the system’s default optimization is unspecified. It is unspecified whether code
generated in the presence of the −O 0 option is the same as that generated when
−O is omitted. Other optlevel values may be supported.

−w Suppress warnings.

Multiple instances of −L options can be specified.

OPERANDS
An operand is either in the form of a pathname or the form −l library. At least one operand of the
pathname form shall be specified. The following operands shall be supported:

file.f The pathname of a FORTRAN source file to be compiled and optionally passed to
the link editor. The filename operand shall be of this form if the −c option is used.

file.a A library of object files typically produced by ar, and passed directly to the link
editor. Implementations may recognize implementation-defined suffixes other
than .a as denoting object file libraries.

file.o An object file produced by fort77 −c and passed directly to the link editor.
Implementations may recognize implementation-defined suffixes other than .o as
denoting object files.

The processing of other files is implementation-defined.

−l library (The letter ell.) Search the library named:

liblibrary.a

A library is searched when its name is encountered, so the placement of a −l
operand is significant. Several standard libraries can be specified in this manner, as
described in the EXTENDED DESCRIPTION section. Implementations may
recognize implementation-defined suffixes other than .a as denoting libraries.

STDIN
Not used.

INPUT FILES
The input file shall be one of the following: a text file containing FORTRAN source code; an
object file in the format produced by fort77 −c; or a library of object files, in the format produced
by archiving zero or more object files, using ar. Implementations may supply additional utilities
that produce files in these formats. Additional input files are implementation-defined.

A <tab> encountered within the first six characters on a line of source code shall cause the
compiler to interpret the following character as if it were the seventh character on the line (that
is, in column 7).

2752 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

89612

89613

89614

89615

89616

89617

89618

89619

89620

89621

89622

89623

89624

89625

89626

89627

89628

89629

89630

89631

89632

89633

89634

89635

89636

89637

89638

89639

89640

89641

89642

89643

89644

89645

89646

89647

89648

89649

89650

89651

89652

89653

Utilities fort77

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of fort77:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TMPDIR Determine the pathname that should override the default directory for temporary
files, if any.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages. If more than one file operand
ending in .f (or possibly other unspecified suffixes) is given, for each such file:

"%s:\n", <file>

may be written to allow identification of the diagnostic message with the appropriate input file.

This utility may produce warning messages about certain conditions that do not warrant
returning an error (non-zero) exit value.

OUTPUT FILES
Object files, listing files, and executable files shall be produced in unspecified formats.

EXTENDED DESCRIPTION

Standard Libraries

The fort77 utility shall recognize the following −l operand for the standard library:

−l f This library contains all functions referenced in the ANSI X3.9-1978 standard. This
operand shall not be required to be present to cause a search of this library.

In the absence of options that inhibit invocation of the link editor, such as −c, the fort77 utility
shall cause the equivalent of a −l f operand to be passed to the link editor as the last −l operand,
causing it to be searched after all other object files and libraries are loaded.

It is unspecified whether the library libf.a exists as a regular file. The implementation may
accept as −l operands names of objects that do not exist as regular files.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2753

89654

89655

89656

89657

89658

89659

89660

89661

89662

89663

89664

89665

89666

89667

89668

89669

89670

89671

89672

89673

89674

89675

89676

89677

89678

89679

89680

89681

89682

89683

89684

89685

89686

89687

89688

89689

89690

89691

89692

fort77 Utilities

External Symbols

The FORTRAN compiler and link editor shall support the significance of external symbols up to
a length of at least 31 bytes; case folding is permitted. The action taken upon encountering
symbols exceeding the implementation-defined maximum symbol length is unspecified.

The compiler and link editor shall support a minimum of 511 external symbols per source or
object file, and a minimum of 4 095 external symbols total. A diagnostic message is written to
standard output if the implementation-defined limit is exceeded; other actions are unspecified.

EXIT STATUS
The following exit values shall be returned:

0 Successful compilation or link edit.

>0 An error occurred.

CONSEQUENCES OF ERRORS
When fort77 encounters a compilation error, it shall write a diagnostic to standard error and
continue to compile other source code operands. It shall return a non-zero exit status, but it is
implementation-defined whether an object module is created. If the link edit is unsuccessful, a
diagnostic message shall be written to standard error, and fort77 shall exit with a non-zero status.

APPLICATION USAGE
None.

EXAMPLES
The following usage example compiles xyz.f and creates the executable file foo:

fort77 −o foo xyz.f

The following example compiles xyz.f and creates the object file xyz.o:

fort77 −c xyz.f

The following example compiles xyz.f and creates the executable file a.out:

fort77 xyz.f

The following example compiles xyz.f, links it with b.o, and creates the executable a.out:

fort77 xyz.f b.o

RATIONALE
The name of this utility was chosen as fort77 to parallel the renaming of the C compiler. The
name f77 was not chosen to avoid problems with historical implementations. The
ANSI X3.9-1978 standard was selected as a normative reference because the ISO/IEC version of
FORTRAN-77 has been superseded by the ISO/IEC 1539: 1991 standard.

The file inclusion and symbol definition #define mechanisms used by the c99 utility were not
included in this volume of POSIX.1-2008—even though they are commonly implemented—since
there is no requirement that the FORTRAN compiler use the C preprocessor.

The −onetrip option was not included in this volume of POSIX.1-2008, even though many
historical compilers support it, because it is derived from FORTRAN-66; it is an anachronism
that should not be perpetuated.

Some implementations produce compilation listings. This aspect of FORTRAN has been left
unspecified because there was controversy concerning the various methods proposed for
implementing it: a −V option overlapped with historical vendor practice and a naming
convention of creating files with .l suffixes collided with historical lex file naming practice.

2754 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

89693

89694

89695

89696

89697

89698

89699

89700

89701

89702

89703

89704

89705

89706

89707

89708

89709

89710

89711

89712

89713

89714

89715

89716

89717

89718

89719

89720

89721

89722

89723

89724

89725

89726

89727

89728

89729

89730

89731

89732

89733

89734

Utilities fort77

There is no −I option in this version of this volume of POSIX.1-2008 to specify a directory for file
inclusion. An INCLUDE directive has been a part of the Fortran-90 discussions, but an interface
supporting that standard is not in the current scope.

It is noted that many FORTRAN compilers produce an object module even when compilation
errors occur; during a subsequent compilation, the compiler may patch the object module rather
than recompiling all the code. Consequently, it is left to the implementor whether or not an
object file is created.

A reference to MIL-STD-1753 was removed from an early proposal in response to a request from
the POSIX FORTRAN-binding standard developers. It was not the intention of the standard
developers to require certification of the FORTRAN compiler, and IEEE Std 1003.9-1992 does not
specify the military standard or any special preprocessing requirements. Furthermore, use of
that document would have been inappropriate for an international standard.

The specification of optimization has been subject to changes through early proposals. At one
time, −O and −N were Booleans: optimize and do not optimize (with an unspecified default).
Some historical practice led this to be changed to:

−O 0 No optimization.

−O 1 Some level of optimization.

−O n Other, unspecified levels of optimization.

It is not always clear whether ‘‘good code generation’’ is the same thing as optimization. Simple
optimizations of local actions do not usually affect the semantics of a program. The −O 0 option
has been included to accommodate the very particular nature of scientific calculations in a
highly optimized environment; compilers make errors. Some degree of optimization is expected,
even if it is not documented here, and the ability to shut it off completely could be important
when porting an application. An implementation may treat −O 0 as ‘‘do less than normal’’ if it
wishes, but this is only meaningful if any of the operations it performs can affect the semantics
of a program. It is highly dependent on the implementation whether doing less than normal is
logical. It is not the intent of the −O 0 option to ask for inefficient code generation, but rather to
assure that any semantically visible optimization is suppressed.

The specification of standard library access is consistent with the C compiler specification.
Implementations are not required to have /usr/lib/libf.a, as many historical implementations do,
but if not they are required to recognize f as a token.

External symbol size limits are in normative text; conforming applications need to know these
limits. However, the minimum maximum symbol length should be taken as a constraint on a
conforming application, not on an implementation, and consequently the action taken for a
symbol exceeding the limit is unspecified. The minimum size for the external symbol table was
added for similar reasons.

The CONSEQUENCES OF ERRORS section clearly specifies the behavior of the compiler when
compilation or link-edit errors occur. The behavior of several historical implementations was
examined, and the choice was made to be silent on the status of the executable, or a.out, file in
the face of compiler or linker errors. If a linker writes the executable file, then links it on disk
with lseek()s and write()s, the partially linked executable file can be left on disk and its execute
bits turned off if the link edit fails. However, if the linker links the image in memory before
writing the file to disk, it need not touch the executable file (if it already exists) because the link
edit fails. Since both approaches are historical practice, a conforming application shall rely on
the exit status of fort77, rather than on the existence or mode of the executable file.

The −g and −s options are not specified as mutually-exclusive. Historically, these two options

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2755

89735

89736

89737

89738

89739

89740

89741

89742

89743

89744

89745

89746

89747

89748

89749

89750

89751

89752

89753

89754

89755

89756

89757

89758

89759

89760

89761

89762

89763

89764

89765

89766

89767

89768

89769

89770

89771

89772

89773

89774

89775

89776

89777

89778

89779

89780

fort77 Utilities

have been mutually-exclusive, but because both are so loosely specified, it seemed appropriate
to leave their interaction unspecified.

The requirement that conforming applications specify compiler options separately is to reserve
the multi-character option name space for vendor-specific compiler options, which are known to
exist in many historical implementations. Implementations are not required to recognize, for
example, −gc as if it were −g −c; nor are they forbidden from doing so. The SYNOPSIS shows all
of the options separately to highlight this requirement on applications.

Echoing filenames to standard error is considered a diagnostic message because it would
otherwise be difficult to associate an error message with the erring file. They are described with
‘‘may’’ to allow implementations to use other methods of identifying files and to parallel the
description in c99.

FUTURE DIRECTIONS
A compilation system based on the ISO/IEC 1539: 1991 standard may be considered for a future
version; it may have a different utility name from fort77.

SEE ALSO
ar , asa , c99 , umask

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH exec

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the FORTRAN Development Utilities option.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2756 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

89781

89782

89783

89784

89785

89786

89787

89788

89789

89790

89791

89792

89793

89794

89795

89796

89797

89798

89799

89800

89801

89802

89803

89804

89805

Utilities fuser

NAME
fuser — list process IDs of all processes that have one or more files open

SYNOPSIS
XSI fuser [−cfu] file...

DESCRIPTION
The fuser utility shall write to standard output the process IDs of processes running on the local
system that have one or more named files open. For block special devices, all processes using
any file on that device are listed.

The fuser utility shall write to standard error additional information about the named files
indicating how the file is being used.

Any output for processes running on remote systems that have a named file open is unspecified.

A user may need appropriate privileges to invoke the fuser utility.

OPTIONS
The fuser utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−c The file is treated as a mount point and the utility shall report on any files open in
the file system.

−f The report shall be only for the named files.

−u The user name, in parentheses, associated with each process ID written to standard
output shall be written to standard error.

OPERANDS
The following operand shall be supported:

file A pathname on which the file or file system is to be reported.

STDIN
Not used.

INPUT FILES
The user database.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of fuser:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2757

89806

89807

89808

89809

89810

89811

89812

89813

89814

89815

89816

89817

89818

89819

89820

89821

89822

89823

89824

89825

89826

89827

89828

89829

89830

89831

89832

89833

89834

89835

89836

89837

89838

89839

89840

89841

89842

89843

89844

89845

fuser Utilities

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The fuser utility shall write the process ID for each process using each file given as an operand to
standard output in the following format:

"%d", <process_id>

STDERR
The fuser utility shall write diagnostic messages to standard error.

The fuser utility also shall write the following to standard error:

• The pathname of each named file is written followed immediately by a <colon>.

• For each process ID written to standard output, the character ’c’ shall be written to
standard error if the process is using the file as its current directory and the character ’r’
shall be written to standard error if the process is using the file as its root directory.
Implementations may write other alphabetic characters to indicate other uses of files.

• When the −u option is specified, characters indicating the use of the file shall be followed
immediately by the user name, in parentheses, corresponding to the real user ID of the
process. If the user name cannot be resolved from the real user ID of the process, the real
user ID of the process shall be written instead of the user name.

When standard output and standard error are directed to the same file, the output shall be
interleaved so that the filename appears at the start of each line, followed by the process ID and
characters indicating the use of the file. Then, if the −u option is specified, the user name or user
ID for each process using that file shall be written.

A <newline> shall be written to standard error after the last output described above for each file
operand.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

2758 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

89846

89847

89848

89849

89850

89851

89852

89853

89854

89855

89856

89857

89858

89859

89860

89861

89862

89863

89864

89865

89866

89867

89868

89869

89870

89871

89872

89873

89874

89875

89876

89877

89878

89879

89880

Utilities fuser

APPLICATION USAGE
None.

EXAMPLES
The command:

fuser −fu .

writes to standard output the process IDs of processes that are using the current directory and
writes to standard error an indication of how those processes are using the directory and the
user names associated with the processes that are using the current directory.

fuser −c <mount point>

writes to standard output the process IDs of processes that are using any file in the file system
which is mounted on <mount point> and writes to standard error an indication of how those
processes are using the files.

fuser <mount point>

writes to standard output the process IDs of processes that are using the file which is named by
<mount point> and writes to standard error an indication of how those processes are using the
file.

fuser <block device>

writes to standard output the process IDs of processes that are using any file which is on the
device named by <block device> and writes to standard error an indication of how those
processes are using the file.

fuser −-f <block device>

writes to standard output the process IDs of processes that are using the file <block device> itself
and writes to standard error an indication of how those processes are using the file.

RATIONALE
The definition of the fuser utility follows existing practice.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 5.

Issue 7
SD5-XCU-ERN-90 is applied, updating the EXAMPLES section.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2759

89881

89882

89883

89884

89885

89886

89887

89888

89889

89890

89891

89892

89893

89894

89895

89896

89897

89898

89899

89900

89901

89902

89903

89904

89905

89906

89907

89908

89909

89910

89911

89912

89913

89914

gencat Utilities

NAME
gencat — generate a formatted message catalog

SYNOPSIS
gencat catfile msgfile...

DESCRIPTION
The gencat utility shall merge the message text source file msgfile into a formatted message
catalog catfile. The file catfile shall be created if it does not already exist. If catfile does exist, its
messages shall be included in the new catfile. If set and message numbers collide, the new
message text defined in msgfile shall replace the old message text currently contained in catfile.

OPTIONS
None.

OPERANDS
The following operands shall be supported:

catfile A pathname of the formatted message catalog. If ’−’ is specified, standard output
shall be used. The format of the message catalog produced is unspecified.

msgfile A pathname of a message text source file. If ’−’ is specified for an instance of
msgfile, standard input shall be used. The format of message text source files is
defined in the EXTENDED DESCRIPTION section.

STDIN
The standard input shall not be used unless a msgfile operand is specified as ’−’.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of gencat:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall not be used unless the catfile operand is specified as ’−’.

2760 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

89915

89916

89917

89918

89919

89920

89921

89922

89923

89924

89925

89926

89927

89928

89929

89930

89931

89932

89933

89934

89935

89936

89937

89938

89939

89940

89941

89942

89943

89944

89945

89946

89947

89948

89949

89950

89951

89952

89953

89954

Utilities gencat

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The content of a message text file shall be in the format defined as follows. Note that the fields of
a message text source line are separated by a single <blank> character. Any other <blank>
characters are considered to be part of the subsequent field.

$set n comment
This line specifies the set identifier of the following messages until the next $set or
end-of-file appears. The n denotes the set identifier, which is defined as a number
in the range [1, {NL_SETMAX}] (see the <limits.h> header defined in the Base
Definitions volume of POSIX.1-2008). The application shall ensure that set
identifiers are presented in ascending order within a single source file, but need
not be contiguous. Any string following the set identifier shall be treated as a
comment. If no $set directive is specified in a message text source file, all messages
shall be located in an implementation-defined default message set NL_SETD (see
the <nl_types.h> header defined in the Base Definitions volume of POSIX.1-2008).

$delset n comment
This line deletes message set n from an existing message catalog. The n denotes the
set number [1, {NL_SETMAX}]. Any string following the set number shall be
treated as a comment.

$ comment A line beginning with ’$’ followed by a <blank> shall be treated as a comment.

m message-text
The m denotes the message identifier, which is defined as a number in the range [1,
{NL_MSGMAX}] (see the <limits.h> header). The message-text shall be stored in the
message catalog with the set identifier specified by the last $set directive, and with
message identifier m. If the message-text is empty, and a <blank> field separator is
present, an empty string shall be stored in the message catalog. If a message source
line has a message number, but neither a field separator nor message-text, the
existing message with that number (if any) shall be deleted from the catalog. The
application shall ensure that message identifiers are in ascending order within a
single set, but need not be contiguous. The application shall ensure that the length
of message-text is in the range [0, {NL_TEXTMAX}] (see the <limits.h> header).

$quote n This line specifies an optional quote character c, which can be used to surround
message-text so that trailing <space> characters or null (empty) messages are visible
in a message source line. By default, or if an empty $quote directive is supplied, no
quoting of message-text shall be recognized.

Empty lines in a message text source file shall be ignored. The effects of lines starting with any
character other than those defined above are implementation-defined.

Text strings can contain the special characters and escape sequences defined in the following
table:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2761

89955

89956

89957

89958

89959

89960

89961

89962

89963

89964

89965

89966

89967

89968

89969

89970

89971

89972

89973

89974

89975

89976

89977

89978

89979

89980

89981

89982

89983

89984

89985

89986

89987

89988

89989

89990

89991

89992

89993

89994

89995

89996

gencat Utilities

Description Symbol Sequence

<newline> NL(LF) \n
Horizontal-tab HT \t
<vertical-tab> VT \v
<backspace> BS \b
<carriage-return> CR \r
<form-feed> FF \f
Backslash \ \\
Bit pattern ddd \ddd

The escape sequence "\ddd" consists of <backslash> followed by one, two, or three octal digits,
which shall be taken to specify the value of the desired character. If the character following a
<backslash> is not one of those specified, the <backslash> shall be ignored.

A <backslash> followed by a <newline> is also used to continue a string on the following line.
Thus, the following two lines describe a single message string:

1 This line continues \
to the next line

which shall be equivalent to:

1 This line continues to the next line

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Message catalogs produced by gencat are binary encoded, meaning that their portability cannot
be guaranteed between different types of machine. Thus, just as C programs need to be
recompiled for each type of machine, so message catalogs must be recreated via gencat.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv

XBD Chapter 8 (on page 173), <limits.h>, <nl_types.h>

CHANGE HISTORY
First released in Issue 3.

Issue 6
The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2762 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

89997

89998

89999

90000

90001

90002

90003

90004

90005

90006

90007

90008

90009

90010

90011

90012

90013

90014

90015

90016

90017

90018

90019

90020

90021

90022

90023

90024

90025

90026

90027

90028

90029

90030

90031

90032

90033

90034

90035

90036

90037

Utilities gencat

Issue 7
The gencat utility is moved from the XSI option to the Base.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2763

90038

90039

get Utilities

NAME
get — get a version of an SCCS file (DEVELOPMENT)

SYNOPSIS
XSI get [−begkmnlLpst] [−c cutoff] [−i list] [−r SID] [−x list] file...

DESCRIPTION
The get utility shall generate a text file from each named SCCS file according to the specifications
given by its options.

The generated text shall normally be written into a file called the g-file whose name is derived
from the SCCS filename by simply removing the leading "s.".

OPTIONS
The get utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−r SID Indicate the SCCS Identification String (SID) of the version (delta) of an SCCS file
to be retrieved. The table shows, for the most useful cases, what version of an
SCCS file is retrieved (as well as the SID of the version to be eventually created by
delta if the −e option is also used), as a function of the SID specified.

−c cutoff Indicate the cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]]]]]

For the YY component, values in the range [69,99] shall refer to years 1969 to 1999
inclusive, and values in the range [00,68] shall refer to years 2000 to 2068 inclusive.

Note: It is expected that in a future version of this standard the default century inferred
from a 2-digit year will change. (This would apply to all commands accepting a
2-digit year as input.)

No changes (deltas) to the SCCS file that were created after the specified cutoff
date-time shall be included in the generated text file. Units omitted from the date-
time default to their maximum possible values; for example, −c 7502 is equivalent
to −c 750228235959.

Any number of non-numeric characters may separate the various 2-digit pieces of
the cutoff date-time. This feature allows the user to specify a cutoff date in the form:
−c "77/2/2 9:22:25".

−e Indicate that the get is for the purpose of editing or making a change (delta) to the
SCCS file via a subsequent use of delta. The −e option used in a get for a particular
version (SID) of the SCCS file shall prevent further get commands from editing on
the same SID until delta is executed or the j (joint edit) flag is set in the SCCS file.
Concurrent use of get −e for different SIDs is always allowed.

If the g-file generated by get with a −e option is accidentally ruined in the process
of editing, it may be regenerated by re-executing the get command with the −k
option in place of the −e option.

SCCS file protection specified via the ceiling, floor, and authorized user list stored
in the SCCS file shall be enforced when the −e option is used.

−b Use with the −e option to indicate that the new delta should have an SID in a new
branch as shown in the table below. This option shall be ignored if the b flag is not
present in the file or if the retrieved delta is not a leaf delta. (A leaf delta is one that
has no successors on the SCCS file tree.)

2764 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

90040

90041

90042

90043

90044

90045

90046

90047

90048

90049

90050

90051

90052

90053

90054

90055

90056

90057

90058

90059

90060

90061

90062

90063

90064

90065

90066

90067

90068

90069

90070

90071

90072

90073

90074

90075

90076

90077

90078

90079

90080

90081

90082

90083

Utilities get

Note: A branch delta may always be created from a non-leaf delta.

−i list Indicate a list of deltas to be included (forced to be applied) in the creation of the
generated file. The list has the following syntax:

<list> ::= <range> | <list> , <range>
<range> ::= SID | SID − SID

SID, the SCCS Identification of a delta, may be in any form shown in the ‘‘SID
Specified’’ column of the table in the EXTENDED DESCRIPTION section, except
that the result of supplying a partial SID is unspecified. A diagnostic message shall
be written if the first SID in the range is not an ancestor of the second SID in the
range.

−x list Indicate a list of deltas to be excluded (forced not to be applied) in the creation of
the generated file. See the −i option for the list format.

−k Suppress replacement of identification keywords (see below) in the retrieved text
by their value. The −k option shall be implied by the −e option.

−l Write a delta summary into an l-file.

−L Write a delta summary to standard output. All informative output that normally is
written to standard output shall be written to standard error instead, unless the −s
option is used, in which case it shall be suppressed.

−p Write the text retrieved from the SCCS file to the standard output. No g-file shall
be created. All informative output that normally goes to the standard output shall
go to standard error instead, unless the −s option is used, in which case it shall
disappear.

−s Suppress all informative output normally written to standard output. However,
fatal error messages (which shall always be written to the standard error) shall
remain unaffected.

−m Precede each text line retrieved from the SCCS file by the SID of the delta that
inserted the text line in the SCCS file. The format shall be:

"%s\t%s", <SID>, <text line>

−n Precede each generated text line with the %M% identification keyword value (see
below). The format shall be:

"%s\t%s", <%M% value>, <text line>

When both the −m and −n options are used, the <text line> shall be replaced by the
−m option-generated format.

−g Suppress the actual retrieval of text from the SCCS file. It is primarily used to
generate an l-file, or to verify the existence of a particular SID.

−t Use to access the most recently created (top) delta in a given release (for example,
−r 1), or release and level (for example, −r 1.2).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2765

90084

90085

90086

90087

90088

90089

90090

90091

90092

90093

90094

90095

90096

90097

90098

90099

90100

90101

90102

90103

90104

90105

90106

90107

90108

90109

90110

90111

90112

90113

90114

90115

90116

90117

90118

90119

90120

get Utilities

OPERANDS
The following operands shall be supported:

file A pathname of an existing SCCS file or a directory. If file is a directory, the get
utility shall behave as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the pathname does not begin
with s.) and unreadable files shall be silently ignored.

If exactly one file operand appears, and it is ’−’, the standard input shall be read;
each line of the standard input is taken to be the name of an SCCS file to be
processed. Non-SCCS files and unreadable files shall be silently ignored.

STDIN
The standard input shall be a text file used only if the file operand is specified as ’−’. Each line
of the text file shall be interpreted as an SCCS pathname.

INPUT FILES
The SCCS files shall be files of an unspecified format.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of get:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error, and informative messages written
to standard output (or standard error, if the −p option is used).

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TZ Determine the timezone in which the times and dates written in the SCCS file are
evaluated. If the TZ variable is unset or NULL, an unspecified system default
timezone is used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
For each file processed, get shall write to standard output the SID being accessed and the
number of lines retrieved from the SCCS file, in the following format:

"%s\n%d lines\n", <SID>, <number of lines>

If the −e option is used, the SID of the delta to be made shall appear after the SID accessed and
before the number of lines generated, in the POSIX locale:

"%s\nnew delta %s\n%d lines\n", <SID accessed>,
<SID to be made>, <number of lines>

If there is more than one named file or if a directory or standard input is named, each pathname

2766 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

90121

90122

90123

90124

90125

90126

90127

90128

90129

90130

90131

90132

90133

90134

90135

90136

90137

90138

90139

90140

90141

90142

90143

90144

90145

90146

90147

90148

90149

90150

90151

90152

90153

90154

90155

90156

90157

90158

90159

90160

90161

90162

90163

Utilities get

shall be written before each of the lines shown in one of the preceding formats:

"\n%s:\n", <pathname>

If the −L option is used, a delta summary shall be written following the format specified below
for l-files.

If the −i option is used, included deltas shall be listed following the notation, in the POSIX
locale:

"Included:\n"

If the −x option is used, excluded deltas shall be listed following the notation, in the POSIX
locale:

"Excluded:\n"

If the −p or −L options are specified, the standard output shall consist of the text retrieved from
the SCCS file.

STDERR
The standard error shall be used only for diagnostic messages, except if the −p or −L options are
specified, it shall include all informative messages normally sent to standard output.

OUTPUT FILES
Several auxiliary files may be created by get. These files are known generically as the g-file, l-
file, p-file, and z-file. The letter before the <hyphen> is called the tag. An auxiliary filename
shall be formed from the SCCS filename: the application shall ensure that the last component of
all SCCS filenames is of the form s.module-name; the auxiliary files shall be named by replacing
the leading s with the tag. The g-file shall be an exception to this scheme: the g-file is named by
removing the s. prefix. For example, for s.xyz.c, the auxiliary filenames would be xyz.c, l.xyz.c,
p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, shall be created in the current directory (unless the
−p option is used). A g-file shall be created in all cases, whether or not any lines of text were
generated by the get. It shall be owned by the real user. If the −k option is used or implied, the
g-file shall be writable by the owner only (read-only for everyone else); otherwise, it shall be
read-only. Only the real user need have write permission in the current directory.

The l-file shall contain a table showing which deltas were applied in generating the retrieved
text. The l-file shall be created in the current directory if the −l option is used; it shall be read-
only and it is owned by the real user. Only the real user need have write permission in the
current directory.

Lines in the l-file shall have the following format:

"%c%c%c∆%s\t%s∆%s\n", <code1>, <code2>, <code3>,
<SID>, <date-time>, <login>

where the entries are:

<code1> A <space> if the delta was applied; ’*’ otherwise.

<code2> A <space> if the delta was applied or was not applied and ignored; ’*’ if the delta
was not applied and was not ignored.

<code3> A character indicating a special reason why the delta was or was not applied:

I Included.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2767

90164

90165

90166

90167

90168

90169

90170

90171

90172

90173

90174

90175

90176

90177

90178

90179

90180

90181

90182

90183

90184

90185

90186

90187

90188

90189

90190

90191

90192

90193

90194

90195

90196

90197

90198

90199

90200

90201

90202

90203

90204

get Utilities

X Excluded.

C Cut off (by a −c option).

<date-time> Date and time (using the format of the date utility’s %y/%m/%d %T conversion
specification format) of creation.

<login> Login name of person who created delta.

The comments and MR data shall follow on subsequent lines, indented one <tab>. A blank line
shall terminate each entry.

The p-file shall be used to pass information resulting from a get with a −e option along to delta.
Its contents shall also be used to prevent a subsequent execution of get with a −e option for the
same SID until delta is executed or the joint edit flag, j, is set in the SCCS file. The p-file shall be
created in the directory containing the SCCS file and the application shall ensure that the
effective user has write permission in that directory. It shall be writable by owner only, and
owned by the effective user. Each line in the p-file shall have the following format:

"%s∆%s∆%s∆%s%s%s\n", <g-file SID>,
<SID of new delta>, <login-name of real user>,
<date-time>, <i-value>, <x-value>

where <i-value> uses the format "" if no −i option was specified, and shall use the format:

"∆−i%s", <−i option option-argument>

if a −i option was specified and <x-value> uses the format "" if no −x option was specified, and
shall use the format:

"∆−x%s", <−x option option-argument>

if a −x option was specified. There can be an arbitrary number of lines in the p-file at any time;
no two lines shall have the same new delta SID.

The z-file shall serve as a lock-out mechanism against simultaneous updates. Its contents shall
be the binary process ID of the command (that is, get) that created it. The z-file shall be created
in the directory containing the SCCS file for the duration of get. The same protection restrictions
as those for the p-file shall apply for the z-file. The z-file shall be created read-only.

2768 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

90205

90206

90207

90208

90209

90210

90211

90212

90213

90214

90215

90216

90217

90218

90219

90220

90221

90222

90223

90224

90225

90226

90227

90228

90229

90230

90231

Utilities get

EXTENDED DESCRIPTION

Determination of SCCS Identification String

SID* −b Keyletter Other SID SID of Delta
Specified Used† Conditions Retrieved to be Created

none‡ no R defaults to mR mR.mL mR.(mL+1)

none‡ yes R defaults to mR mR.mL mR.mL.(mB+1).1

R no R > mR mR.mL R.1***

R no R = mR mR.mL mR.(mL+1)

R yes R > mR mR.mL mR.mL.(mB+1).1

R yes R = mR mR.mL mR.mL.(mB+1).1

R − hR.mL** hR.mL.(mB+1).1R < mR and
R does not exist

R − R.mL R.mL.(mB+1).1Tr unk successor in release > R
and R exists

R.L no No trunk successor R.L R.(L+1)

R.L yes No trunk successor R.L R.L.(mB+1).1

R.L − R.L R.L.(mB+1).1Tr unk successor
in release ≥ R

R.L.B no No branch successor R.L.B.mS R.L.B.(mS+1)

R.L.B yes No branch successor R.L.B.mS R.L.(mB+1).1

R.L.B.S no No branch successor R.L.B.S R.L.B.(S+1)

R.L.B.S yes No branch successor R.L.B.S R.L.(mB+1).1

R.L.B.S − Branch successor R.L.B.S R.L.(mB+1).1

* R, L, B, and S are the release, level, branch, and sequence components of the SID,
respectively; m means maximum. Thus, for example, R.mL means ‘‘the maximum level
number within release R’’; R.L.(mB+1).1 means ‘‘the first sequence number on the new
branch (that is, maximum branch number plus one) of level L within release R’’. Note
that if the SID specified is of the form R.L, R.L.B, or R.L.B.S, each of the specified
components shall exist.

** hR is the highest existing release that is lower than the specified, nonexistent, release R.

*** This is used to force creation of the first delta in a new release.

† The −b option is effective only if the b flag is present in the file. An entry of ’−’ means
‘‘irrelevant’’.

‡ This case applies if the d (default SID) flag is not present in the file. If the d flag is
present in the file, then the SID obtained from the d flag is interpreted as if it had been
specified on the command line. Thus, one of the other cases in this table applies.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2769

90232

90233

90234

90235

90236

90237

90238

90239

90240

90241

90242

90243

90244

90245

90246

90247

90248

90249

90250

90251

90252

90253

90254

90255

90256

90257

90258

90259

90260

90261

90262

90263

90264

90265

90266

90267

get Utilities

System Date and Time

When a g-file is generated, the creation time of deltas in the SCCS file may be taken into
account. If any of these times are apparently in the future, the behavior is unspecified.

Identification Keywords

Identifying information shall be inserted into the text retrieved from the SCCS file by replacing
identification keywords with their value wherever they occur. The following keywords may be
used in the text stored in an SCCS file:

%M% Module name: either the value of the m flag in the file, or if absent, the name of the
SCCS file with the leading s. removed.

%I% SCCS identification (SID) (%R%.%L% or %R%.%L%.%B%.%S%) of the retrieved
text.

%R% Release.

%L% Level.

%B% Branch.

%S% Sequence.

%D% Current date (YY/MM/DD).

%H% Current date (MM/DD/YY).

%T% Current time (HH:MM:SS).

%E% Date newest applied delta was created (YY/MM/DD).

%G% Date newest applied delta was created (MM/DD/YY).

%U% Time newest applied delta was created (HH:MM:SS).

%Y% Module type: value of the t flag in the SCCS file.

%F% SCCS filename.

%P% SCCS absolute pathname.

%Q% The value of the q flag in the file.

%C% Current line number. This keyword is intended for identifying messages output by
the program, such as ‘‘this should not have happened’’ type errors. It is not
intended to be used on every line to provide sequence numbers.

%Z% The four-character string "@(#)" recognizable by what.

%W% A shorthand notation for constructing what strings:

%W%=% Z %% M %<tab>% I %

%A% Another shorthand notation for constructing what strings:

%A%=% Z %% Y %% M %% I %% Z %

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

2770 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

90268

90269

90270

90271

90272

90273

90274

90275

90276

90277

90278

90279

90280

90281

90282

90283

90284

90285

90286

90287

90288

90289

90290

90291

90292

90293

90294

90295

90296

90297

90298

90299

90300

90301

90302

90303

Utilities get

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Problems can arise if the system date and time have been modified (for example, put forward
and then back again, or unsynchronized clocks across a network) and can also arise when
different values of the TZ environment variable are used.

Problems of a similar nature can also arise for the operation of the delta utility, which compares
the previous file body against the working file as part of its normal operation.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
admin , delta , prs , what

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
A correction is made to the first format string in STDOUT.

The interpretation of the YY component of the −c cutoff argument is noted.

Issue 6
The obsolescent SYNOPSIS is removed, removing the −lp option.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

The Open Group Corrigendum U025/5 is applied, correcting text in the OPTIONS section.

The Open Group Corrigendum U048/1 is applied.

The Open Group Interpretation PIN4C.00014 is applied.

The Open Group Base Resolution bwg2001-007 is applied as follows:

• The EXTENDED DESCRIPTION section is updated to make partial SID handling
unspecified, reflecting common usage, and to clarify SID ranges.

• New text is added to the EXTENDED DESCRIPTION and APPLICATION USAGE sections
regarding how the system date and time may be taken into account.

• The TZ environment variable is added to the ENVIRONMENT VARIABLES section.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2771

90304

90305

90306

90307

90308

90309

90310

90311

90312

90313

90314

90315

90316

90317

90318

90319

90320

90321

90322

90323

90324

90325

90326

90327

90328

90329

90330

90331

90332

90333

90334

90335

90336

90337

90338

90339

90340

getconf Utilities

NAME
getconf — get configuration values

SYNOPSIS
getconf [−v specification] system_var

getconf [−v specification] path_var pathname

DESCRIPTION
In the first synopsis form, the getconf utility shall write to the standard output the value of the
variable specified by the system_var operand.

In the second synopsis form, the getconf utility shall write to the standard output the value of the
variable specified by the path_var operand for the path specified by the pathname operand.

The value of each configuration variable shall be determined as if it were obtained by calling the
function from which it is defined to be available by this volume of POSIX.1-2008 or by the
System Interfaces volume of POSIX.1-2008 (see the OPERANDS section). The value shall reflect
conditions in the current operating environment.

OPTIONS
The getconf utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−v specification
Indicate a specific specification and version for which configuration variables shall
be determined. If this option is not specified, the values returned correspond to an
implementation default conforming compilation environment.

If the command:

getconf _POSIX_V7_ILP32_OFF32

does not write "−1\n" or "undefined\n" to standard output, then commands of
the form:

getconf −v POSIX_V7_ILP32_OFF32 ...

determine values for configuration variables corresponding to the
POSIX_V7_ILP32_OFF32 compilation environment specified in c99 , the
EXTENDED DESCRIPTION.

If the command:

getconf _POSIX_V7_ILP32_OFFBIG

does not write "−1\n" or "undefined\n" to standard output, then commands of
the form:

getconf −v POSIX_V7_ILP32_OFFBIG ...

determine values for configuration variables corresponding to the
POSIX_V7_ILP32_OFFBIG compilation environment specified in c99 , the
EXTENDED DESCRIPTION.

If the command:

getconf _POSIX_V7_LP64_OFF64

does not write "−1\n" or "undefined\n" to standard output, then commands of
the form:

2772 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

90341

90342

90343

90344

90345

90346

90347

90348

90349

90350

90351

90352

90353

90354

90355

90356

90357

90358

90359

90360

90361

90362

90363

90364

90365

90366

90367

90368

90369

90370

90371

90372

90373

90374

90375

90376

90377

90378

90379

90380

90381

Utilities getconf

getconf −v POSIX_V7_LP64_OFF64 ...

determine values for configuration variables corresponding to the
POSIX_V7_LP64_OFF64 compilation environment specified in c99 , the
EXTENDED DESCRIPTION.

If the command:

getconf _POSIX_V7_LPBIG_OFFBIG

does not write "−1\n" or "undefined\n" to standard output, then commands of
the form:

getconf −v POSIX_V7_LPBIG_OFFBIG ...

determine values for configuration variables corresponding to the
POSIX_V7_LPBIG_OFFBIG compilation environment specified in c99 , the
EXTENDED DESCRIPTION.

OPERANDS
The following operands shall be supported:

path_var A name of a configuration variable. All of the variables in the Variable column of
the table in the DESCRIPTION of the fpathconf() function defined in the System
Interfaces volume of POSIX.1-2008, without the enclosing braces, shall be
supported. The implementation may add other local variables.

pathname A pathname for which the variable specified by path_var is to be determined.

system_var A name of a configuration variable. All of the following variables shall be
supported:

• The names in the Variable column of the table in the DESCRIPTION of the
sysconf() function in the System Interfaces volume of POSIX.1-2008, except
for the entries corresponding to _SC_CLK_TCK, _SC_GETGR_R_SIZE_MAX,
and _SC_GETPW_R_SIZE_MAX, without the enclosing braces.

For compatibility with earlier versions, the following variable names shall
also be supported:

POSIX2_C_BIND
POSIX2_C_DEV
POSIX2_CHAR_TERM
POSIX2_FORT_DEV
POSIX2_FORT_RUN
POSIX2_LOCALEDEF
POSIX2_SW_DEV
POSIX2_UPE
POSIX2_VERSION

and shall be equivalent to the same name prefixed with an <underscore>.
This requirement may be removed in a future version.

• The names of the symbolic constants used as the name argument of the
confstr() function in the System Interfaces volume of POSIX.1-2008, without
the _CS_ prefix.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2773

90382

90383

90384

90385

90386

90387

90388

90389

90390

90391

90392

90393

90394

90395

90396

90397

90398

90399

90400

90401

90402

90403

90404

90405

90406

90407

90408

90409

90410

90411

90412

90413

90414

90415

90416

90417

90418

90419

90420

90421

90422

getconf Utilities

• The names of the symbolic constants listed under the headings ‘‘Maximum
Values’’ and ‘‘Minimum Values’’ in the description of the <limits.h> header
in the Base Definitions volume of POSIX.1-2008, without the enclosing
braces.

For compatibility with earlier versions, the following variable names shall
also be supported:

POSIX2_BC_BASE_MAX
POSIX2_BC_DIM_MAX
POSIX2_BC_SCALE_MAX
POSIX2_BC_STRING_MAX
POSIX2_COLL_WEIGHTS_MAX
POSIX2_EXPR_NEST_MAX
POSIX2_LINE_MAX
POSIX2_RE_DUP_MAX

and shall be equivalent to the same name prefixed with an <underscore>.
This requirement may be removed in a future version.

The implementation may add other local values.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of getconf:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If the specified variable is defined on the system and its value is described to be available from
the confstr() function defined in the System Interfaces volume of POSIX.1-2008, its value shall be
written in the following format:

"%s\n", <value>

Otherwise, if the specified variable is defined on the system, its value shall be written in the

2774 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

90423

90424

90425

90426

90427

90428

90429

90430

90431

90432

90433

90434

90435

90436

90437

90438

90439

90440

90441

90442

90443

90444

90445

90446

90447

90448

90449

90450

90451

90452

90453

90454

90455

90456

90457

90458

90459

90460

90461

90462

90463

90464

90465

Utilities getconf

following format:

"%d\n", <value>

If the specified variable is valid, but is undefined on the system, getconf shall write using the
following format:

"undefined\n"

If the variable name is invalid or an error occurs, nothing shall be written to standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The specified variable is valid and information about its current state was written
successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
The following example illustrates the value of {NGROUPS_MAX}:

getconf NGROUPS_MAX

The following example illustrates the value of {NAME_MAX} for a specific directory:

getconf NAME_MAX /usr

The following example shows how to deal more carefully with results that might be unspecified:

if value=$(getconf PATH_MAX /usr); then
if ["$value" = "undefined"]; then

echo PATH_MAX in /usr is indeterminate.
else

echo PATH_MAX in /usr is $value.
fi

else
echo Error in getconf.

fi

Note that:

sysconf(_SC_2_C_BIND);

and:

system("getconf _POSIX2_C_BIND");

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2775

90466

90467

90468

90469

90470

90471

90472

90473

90474

90475

90476

90477

90478

90479

90480

90481

90482

90483

90484

90485

90486

90487

90488

90489

90490

90491

90492

90493

90494

90495

90496

90497

90498

90499

90500

90501

90502

90503

90504

90505

getconf Utilities

in a C program could give different answers. The sysconf() call supplies a value that corresponds
to the conditions when the program was either compiled or executed, depending on the
implementation; the system() call to getconf always supplies a value corresponding to conditions
when the program is executed.

RATIONALE
The original need for this utility, and for the confstr() function, was to provide a way of finding
the configuration-defined default value for the PA TH environment variable. Since PA TH can be
modified by the user to include directories that could contain utilities replacing the standard
utilities, shell scripts need a way to determine the system-supplied PA TH environment variable
value that contains the correct search path for the standard utilities. It was later suggested that
access to the other variables described in this volume of POSIX.1-2008 could also be useful to
applications.

This functionality of getconf would not be adequately subsumed by another command such as:

grep var /etc/conf

because such a strategy would provide correct values for neither those variables that can vary at
runtime, nor those that can vary depending on the path.

Early proposal versions of getconf specified exit status 1 when the specified variable was valid,
but not defined on the system. The output string "undefined" is now used to specify this case
with exit code 0 because so many things depend on an exit code of zero when an invoked utility
is successful.

FUTURE DIRECTIONS
None.

SEE ALSO
c99

XBD Chapter 8 (on page 173), Section 12.2 (on page 215), <limits.h>

XSH confstr(), fpathconf(), sysconf(), system()

CHANGE HISTORY
First released in Issue 4.

Issue 5
In the OPERANDS section:

• {NL_MAX} is changed to {NL_NMAX}.

• Entries beginning NL_ are deleted from the list of standard configuration variables.

• The list of variables previously marked UX is merged with the list marked EX.

• Operands are added to support new Option Groups.

• Operands are added so that getconf can determine supported programming environments.

Issue 6
The Open Group Corrigendum U029/4 is applied, correcting the example command in the last
paragraph of the OPTIONS section.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

2776 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

90506

90507

90508

90509

90510

90511

90512

90513

90514

90515

90516

90517

90518

90519

90520

90521

90522

90523

90524

90525

90526

90527

90528

90529

90530

90531

90532

90533

90534

90535

90536

90537

90538

90539

90540

90541

90542

90543

90544

90545

Utilities getconf

• Operands are added to determine supported programming environments.

This reference page is updated for alignment with the ISO/IEC 9899: 1999 standard. Specifically,
new macros for c99 programming environments are introduced.

XSI marked system_var (XBS5_*) values are marked LEGACY.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/27 is applied, correcting the descriptions
of path_var and system_var in the OPERANDS section.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The EXAMPLES section is corrected.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2777

90546

90547

90548

90549

90550

90551

90552

90553

90554

getopts Utilities

NAME
getopts — parse utility options

SYNOPSIS
getopts optstring name [arg...]

DESCRIPTION
The getopts utility shall retrieve options and option-arguments from a list of parameters. It shall
support the Utility Syntax Guidelines 3 to 10, inclusive, described in XBD Section 12.2 (on page
215).

Each time it is invoked, the getopts utility shall place the value of the next option in the shell
variable specified by the name operand and the index of the next argument to be processed in the
shell variable OPTIND. Whenever the shell is invoked, OPTIND shall be initialized to 1.

When the option requires an option-argument, the getopts utility shall place it in the shell
variable OPTARG. If no option was found, or if the option that was found does not have an
option-argument, OPTARG shall be unset.

If an option character not contained in the optstring operand is found where an option character
is expected, the shell variable specified by name shall be set to the <question-mark> (’?’)
character. In this case, if the first character in optstring is a <colon> (’:’), the shell variable
OPTARG shall be set to the option character found, but no output shall be written to standard
error; otherwise, the shell variable OPTARG shall be unset and a diagnostic message shall be
written to standard error. This condition shall be considered to be an error detected in the way
arguments were presented to the invoking application, but shall not be an error in getopts
processing.

If an option-argument is missing:

• If the first character of optstring is a <colon>, the shell variable specified by name shall be
set to the <colon> character and the shell variable OPTARG shall be set to the option
character found.

• Otherwise, the shell variable specified by name shall be set to the <question-mark>
character, the shell variable OPTARG shall be unset, and a diagnostic message shall be
written to standard error. This condition shall be considered to be an error detected in the
way arguments were presented to the invoking application, but shall not be an error in
getopts processing; a diagnostic message shall be written as stated, but the exit status shall
be zero.

When the end of options is encountered, the getopts utility shall exit with a return value greater
than zero; the shell variable OPTIND shall be set to the index of the first non-option-argument,
where the first "− −" argument is considered to be an option-argument if there are no other non-
option-arguments appearing before it, or the value "$#"+1 if there are no non-option-
arguments; the name variable shall be set to the <question-mark> character. Any of the following
shall identify the end of options: the special option "− −", finding an argument that does not
begin with a ’−’, or encountering an error.

The shell variables OPTIND and OPTARG shall be local to the caller of getopts and shall not be
exported by default.

The shell variable specified by the name operand, OPTIND, and OPTARG shall affect the current
shell execution environment; see Section 2.12 (on page 2331).

If the application sets OPTIND to the value 1, a new set of parameters can be used: either the
current positional parameters or new arg values. Any other attempt to invoke getopts multiple
times in a single shell execution environment with parameters (positional parameters or arg

2778 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

90555

90556

90557

90558

90559

90560

90561

90562

90563

90564

90565

90566

90567

90568

90569

90570

90571

90572

90573

90574

90575

90576

90577

90578

90579

90580

90581

90582

90583

90584

90585

90586

90587

90588

90589

90590

90591

90592

90593

90594

90595

90596

90597

90598

90599

90600

Utilities getopts

operands) that are not the same in all invocations, or with an OPTIND value modified to be a
value other than 1, produces unspecified results.

OPTIONS
None.

OPERANDS
The following operands shall be supported:

optstring A string containing the option characters recognized by the utility invoking getopts.
If a character is followed by a <colon>, the option shall be expected to have an
argument, which should be supplied as a separate argument. Applications should
specify an option character and its option-argument as separate arguments, but
getopts shall interpret the characters following an option character requiring
arguments as an argument whether or not this is done. An explicit null option-
argument need not be recognized if it is not supplied as a separate argument when
getopts is invoked. (See also the getopt() function defined in the System Interfaces
volume of POSIX.1-2008.) The characters <question-mark> and <colon> shall not
be used as option characters by an application. The use of other option characters
that are not alphanumeric produces unspecified results. If the option-argument is
not supplied as a separate argument from the option character, the value in
OPTARG shall be stripped of the option character and the ’−’. The first character
in optstring determines how getopts behaves if an option character is not known or
an option-argument is missing.

name The name of a shell variable that shall be set by the getopts utility to the option
character that was found.

The getopts utility by default shall parse positional parameters passed to the invoking shell
procedure. If args are given, they shall be parsed instead of the positional parameters.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of getopts:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2779

90601

90602

90603

90604

90605

90606

90607

90608

90609

90610

90611

90612

90613

90614

90615

90616

90617

90618

90619

90620

90621

90622

90623

90624

90625

90626

90627

90628

90629

90630

90631

90632

90633

90634

90635

90636

90637

90638

90639

90640

90641

90642

90643

getopts Utilities

OPTIND This variable shall be used by the getopts utility as the index of the next argument
to be processed.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
Whenever an error is detected and the first character in the optstring operand is not a <colon>
(’:’), a diagnostic message shall be written to standard error with the following information in
an unspecified format:

• The invoking program name shall be identified in the message. The invoking program
name shall be the value of the shell special parameter 0 (see Section 2.5.2, on page 2302) at
the time the getopts utility is invoked. A name equivalent to:

basename "$0"

may be used.

• If an option is found that was not specified in optstring, this error is identified and the
invalid option character shall be identified in the message.

• If an option requiring an option-argument is found, but an option-argument is not found,
this error shall be identified and the invalid option character shall be identified in the
message.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 An option, specified or unspecified by optstring, was found.

>0 The end of options was encountered or an error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Since getopts affects the current shell execution environment, it is generally provided as a shell
regular built-in. If it is called in a subshell or separate utility execution environment, such as one
of the following:

(getopts abc value "$@")
nohup getopts ...
find . −exec getopts ... \;

it does not affect the shell variables in the caller’s environment.

Note that shell functions share OPTIND with the calling shell even though the positional
parameters are changed. If the calling shell and any of its functions uses getopts to parse
arguments, the results are unspecified.

2780 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

90644

90645

90646

90647

90648

90649

90650

90651

90652

90653

90654

90655

90656

90657

90658

90659

90660

90661

90662

90663

90664

90665

90666

90667

90668

90669

90670

90671

90672

90673

90674

90675

90676

90677

90678

90679

90680

90681

90682

90683

90684

Utilities getopts

EXAMPLES
The following example script parses and displays its arguments:

aflag=
bflag=
while getopts ab: name
do

case $name in
a) aflag=1;;
b) bflag=1

bval="$OPTARG";;
?) printf "Usage: %s: [−a] [−b value] args\n" $0

exit 2;;
esac

done
if [! −z "$aflag"]; then

printf "Option −a specified\n"
fi
if [! −z "$bflag"]; then

printf ’Option −b "%s" specified\n’ "$bval"
fi
shift $(($OPTIND − 1))
printf "Remaining arguments are: %s\n" "$*"

RATIONALE
The getopts utility was chosen in preference to the System V getopt utility because getopts handles
option-arguments containing <blank> characters.

The OPTARG variable is not mentioned in the ENVIRONMENT VARIABLES section because it
does not affect the execution of getopts; it is one of the few ‘‘output-only’’ variables used by the
standard utilities.

The <colon> is not allowed as an option character because that is not historical behavior, and it
violates the Utility Syntax Guidelines. The <colon> is now specified to behave as in the
KornShell version of the getopts utility; when used as the first character in the optstring operand,
it disables diagnostics concerning missing option-arguments and unexpected option characters.
This replaces the use of the OPTERR variable that was specified in an early proposal.

The formats of the diagnostic messages produced by the getopts utility and the getopt() function
are not fully specified because implementations with superior (‘‘friendlier ’’) formats objected to
the formats used by some historical implementations. The standard developers considered it
important that the information in the messages used be uniform between getopts and getopt().
Exact duplication of the messages might not be possible, particularly if a utility is built on
another system that has a different getopt() function, but the messages must have specific
information included so that the program name, invalid option character, and type of error can
be distinguished by a user.

Only a rare application program intercepts a getopts standard error message and wants to parse
it. Therefore, implementations are free to choose the most usable messages they can devise. The
following formats are used by many historical implementations:

"%s: illegal option − − %c\n", <program name>, <option character>

"%s: option requires an argument − − %c\n", <program name>, \
<option character>

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2781

90685

90686

90687

90688

90689

90690

90691

90692

90693

90694

90695

90696

90697

90698

90699

90700

90701

90702

90703

90704

90705

90706

90707

90708

90709

90710

90711

90712

90713

90714

90715

90716

90717

90718

90719

90720

90721

90722

90723

90724

90725

90726

90727

90728

90729

90730

90731

getopts Utilities

Historical shells with built-in versions of getopt() or getopts have used different formats,
frequently not even indicating the option character found in error.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5.2 (on page 2302)

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH getopt()

CHANGE HISTORY
First released in Issue 4.

Issue 6
The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

2782 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

90732

90733

90734

90735

90736

90737

90738

90739

90740

90741

90742

90743

Utilities grep

NAME
grep — search a file for a pattern

SYNOPSIS
grep [−E|−F] [−c|−l|−q] [−insvx] −e pattern_list

[−e pattern_list]... [−f pattern_file]... [file...]

grep [−E|−F] [−c|−l|−q] [−insvx] [−e pattern_list]...

−f pattern_file [−f pattern_file]... [file...]

grep [−E|−F] [−c|−l|−q] [−insvx] pattern_list [file...]

DESCRIPTION
The grep utility shall search the input files, selecting lines matching one or more patterns; the
types of patterns are controlled by the options specified. The patterns are specified by the −e
option, −f option, or the pattern_list operand. The pattern_list’s value shall consist of one or more
patterns separated by <newline> characters; the pattern_file’s contents shall consist of one or
more patterns terminated by a <newline> character. By default, an input line shall be selected if
any pattern, treated as an entire basic regular expression (BRE) as described in XBD Section 9.3
(on page 183), matches any part of the line excluding the terminating <newline>; a null BRE
shall match every line. By default, each selected input line shall be written to the standard
output.

Regular expression matching shall be based on text lines. Since a <newline> separates or
terminates patterns (see the −e and −f options below), regular expressions cannot contain a
<newline>. Similarly, since patterns are matched against individual lines (excluding the
terminating <newline> characters) of the input, there is no way for a pattern to match a
<newline> found in the input.

OPTIONS
The grep utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−E Match using extended regular expressions. Treat each pattern specified as an ERE,
as described in XBD Section 9.4 (on page 188). If any entire ERE pattern matches
some part of an input line excluding the terminating <newline>, the line shall be
matched. A null ERE shall match every line.

−F Match using fixed strings. Treat each pattern specified as a string instead of a
regular expression. If an input line contains any of the patterns as a contiguous
sequence of bytes, the line shall be matched. A null string shall match every line.

−c Write only a count of selected lines to standard output.

−e pattern_list
Specify one or more patterns to be used during the search for input. The
application shall ensure that patterns in pattern_list are separated by a <newline>.
A null pattern can be specified by two adjacent <newline> characters in
pattern_list. Unless the −E or −F option is also specified, each pattern shall be
treated as a BRE, as described in XBD Section 9.3 (on page 183). Multiple −e and −f
options shall be accepted by the grep utility. All of the specified patterns shall be
used when matching lines, but the order of evaluation is unspecified.

−f pattern_file
Read one or more patterns from the file named by the pathname pattern_file.
Patterns in pattern_file shall be terminated by a <newline>. A null pattern can be
specified by an empty line in pattern_file. Unless the −E or −F option is also

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2783

90744

90745

90746

90747

90748

90749

90750

90751

90752

90753

90754

90755

90756

90757

90758

90759

90760

90761

90762

90763

90764

90765

90766

90767

90768

90769

90770

90771

90772

90773

90774

90775

90776

90777

90778

90779

90780

90781

90782

90783

90784

90785

90786

90787

90788

90789

grep Utilities

specified, each pattern shall be treated as a BRE, as described in XBD Section 9.3
(on page 183).

−i Perform pattern matching in searches without regard to case; see XBD Section 9.2
(on page 182).

−l (The letter ell.) Write only the names of files containing selected lines to standard
output. Pathnames shall be written once per file searched. If the standard input is
searched, a pathname of "(standard input)" shall be written, in the POSIX
locale. In other locales, "standard input" may be replaced by something more
appropriate in those locales.

−n Precede each output line by its relative line number in the file, each file starting at
line 1. The line number counter shall be reset for each file processed.

−q Quiet. Nothing shall be written to the standard output, regardless of matching
lines. Exit with zero status if an input line is selected.

−s Suppress the error messages ordinarily written for nonexistent or unreadable files.
Other error messages shall not be suppressed.

−v Select lines not matching any of the specified patterns. If the −v option is not
specified, selected lines shall be those that match any of the specified patterns.

−x Consider only input lines that use all characters in the line excluding the
terminating <newline> to match an entire fixed string or regular expression to be
matching lines.

OPERANDS
The following operands shall be supported:

pattern_list Specify one or more patterns to be used during the search for input. This operand
shall be treated as if it were specified as −e pattern_list.

file A pathname of a file to be searched for the patterns. If no file operands are
specified, the standard input shall be used.

STDIN
The standard input shall be used if no file operands are specified, and shall be used if a file
operand is ’−’ and the implementation treats the ’−’ as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of grep:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions.

2784 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

90790

90791

90792

90793

90794

90795

90796

90797

90798

90799

90800

90801

90802

90803

90804

90805

90806

90807

90808

90809

90810

90811

90812

90813

90814

90815

90816

90817

90818

90819

90820

90821

90822

90823

90824

90825

90826

90827

90828

90829

90830

90831

Utilities grep

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the behavior of character classes within regular
expressions.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If the −l option is in effect, the following shall be written for each file containing at least one
selected input line:

"%s\n", <file>

Otherwise, if more than one file argument appears, and −q is not specified, the grep utility shall
prefix each output line by:

"%s:", <file>

The remainder of each output line shall depend on the other options specified:

• If the −c option is in effect, the remainder of each output line shall contain:

"%d\n", <count>

• Otherwise, if −c is not in effect and the −n option is in effect, the following shall be written
to standard output:

"%d:", <line number>

• Finally, the following shall be written to standard output:

"%s", <selected-line contents>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 One or more lines were selected.

1 No lines were selected.

>1 An error occurred.

CONSEQUENCES OF ERRORS
If the −q option is specified, the exit status shall be zero if an input line is selected, even if an
error was detected. Otherwise, default actions shall be performed.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2785

90832

90833

90834

90835

90836

90837

90838

90839

90840

90841

90842

90843

90844

90845

90846

90847

90848

90849

90850

90851

90852

90853

90854

90855

90856

90857

90858

90859

90860

90861

90862

90863

90864

90865

90866

90867

90868

90869

90870

grep Utilities

APPLICATION USAGE
Care should be taken when using characters in pattern_list that may also be meaningful to the
command interpreter. It is safest to enclose the entire pattern_list argument in single-quotes:

’...’

The −e pattern_list option has the same effect as the pattern_list operand, but is useful when
pattern_list begins with the <hyphen> delimiter. It is also useful when it is more convenient to
provide multiple patterns as separate arguments.

Multiple −e and −f options are accepted and grep uses all of the patterns it is given while
matching input text lines. (Note that the order of evaluation is not specified. If an
implementation finds a null string as a pattern, it is allowed to use that pattern first, matching
every line, and effectively ignore any other patterns.)

The −q option provides a means of easily determining whether or not a pattern (or string) exists
in a group of files. When searching several files, it provides a performance improvement
(because it can quit as soon as it finds the first match) and requires less care by the user in
choosing the set of files to supply as arguments (because it exits zero if it finds a match even if
grep detected an access or read error on earlier file operands).

EXAMPLES

1. To find all uses of the word "Posix" (in any case) in file text.mm and write with line
numbers:

grep −i −n posix text.mm

2. To find all empty lines in the standard input:

grep ˆ$

or:

grep −v .

3. Both of the following commands print all lines containing strings "abc" or "def" or
both:

grep −E ’abc|def’

grep −F ’abc
def’

4. Both of the following commands print all lines matching exactly "abc" or "def":

grep −E ’ˆabc$|ˆdef$’

grep −F −x ’abc
def’

RATIONALE
This grep has been enhanced in an upwards-compatible way to provide the exact functionality of
the historical egrep and fgrep commands as well. It was the clear intention of the standard
developers to consolidate the three greps into a single command.

The old egrep and fgrep commands are likely to be supported for many years to come as
implementation extensions, allowing historical applications to operate unmodified.

Historical implementations usually silently ignored all but one of multiply-specified −e and −f
options, but were not consistent as to which specification was actually used.

2786 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

90871

90872

90873

90874

90875

90876

90877

90878

90879

90880

90881

90882

90883

90884

90885

90886

90887

90888

90889

90890

90891

90892

90893

90894

90895

90896

90897

90898

90899

90900

90901

90902

90903

90904

90905

90906

90907

90908

90909

90910

90911

Utilities grep

The −b option was omitted from the OPTIONS section because block numbers are
implementation-defined.

The System V restriction on using − to mean standard input was omitted.

A definition of action taken when given a null BRE or ERE is specified. This is an error
condition in some historical implementations.

The −l option previously indicated that its use was undefined when no files were explicitly
named. This behavior was historical and placed an unnecessary restriction on future
implementations. It has been removed.

The historical BSD grep −s option practice is easily duplicated by redirecting standard output to
/dev/null. The −s option required here is from System V.

The −x option, historically available only with fgrep, is available here for all of the non-
obsolescent versions.

FUTURE DIRECTIONS
None.

SEE ALSO
sed

XBD Chapter 8 (on page 173), Chapter 9 (on page 181), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The Open Group Corrigendum U029/5 is applied, correcting the SYNOPSIS.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/28 is applied, correcting the examples
using the grep −F option which did not match the normative description of the −F option.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-98 is applied, updating the STDOUT section.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2787

90912

90913

90914

90915

90916

90917

90918

90919

90920

90921

90922

90923

90924

90925

90926

90927

90928

90929

90930

90931

90932

90933

90934

90935

90936

90937

90938

90939

hash Utilities

NAME
hash — remember or report utility locations

SYNOPSIS
hash [utility...]

hash −r

DESCRIPTION
The hash utility shall affect the way the current shell environment remembers the locations of
utilities found as described in Section 2.9.1.1 (on page 2317). Depending on the arguments
specified, it shall add utility locations to its list of remembered locations or it shall purge the
contents of the list. When no arguments are specified, it shall report on the contents of the list.

Utilities provided as built-ins to the shell shall not be reported by hash.

OPTIONS
The hash utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−r Forget all previously remembered utility locations.

OPERANDS
The following operand shall be supported:

utility The name of a utility to be searched for and added to the list of remembered
locations. If utility contains one or more <slash> characters, the results are
unspecified.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of hash:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PA TH Determine the location of utility, as described in XBD Chapter 8 (on page 173).

2788 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

90940

90941

90942

90943

90944

90945

90946

90947

90948

90949

90950

90951

90952

90953

90954

90955

90956

90957

90958

90959

90960

90961

90962

90963

90964

90965

90966

90967

90968

90969

90970

90971

90972

90973

90974

90975

90976

90977

90978

Utilities hash

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output of hash shall be used when no arguments are specified. Its format is
unspecified, but includes the pathname of each utility in the list of remembered locations for the
current shell environment. This list shall consist of those utilities named in previous hash
invocations that have been invoked, and may contain those invoked and found through the
normal command search process.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Since hash affects the current shell execution environment, it is always provided as a shell
regular built-in. If it is called in a separate utility execution environment, such as one of the
following:

nohup hash −r
find . −type f | xargs hash

it does not affect the command search process of the caller’s environment.

The hash utility may be implemented as an alias—for example, alias −t −, in which case utilities
found through normal command search are not listed by the hash command.

The effects of hash −r can also be achieved portably by resetting the value of PA TH; in the
simplest form, this can be:

PATH="$PATH"

The use of hash with utility names is unnecessary for most applications, but may provide a
performance improvement on a few implementations; normally, the hashing process is included
by default.

EXAMPLES
None.

RATIONALE
None.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2789

90979

90980

90981

90982

90983

90984

90985

90986

90987

90988

90989

90990

90991

90992

90993

90994

90995

90996

90997

90998

90999

91000

91001

91002

91003

91004

91005

91006

91007

91008

91009

91010

91011

91012

91013

91014

91015

91016

91017

hash Utilities

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.9.1.1 (on page 2317)

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 7
The hash utility is moved from the XSI option to the Base.

2790 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

91018

91019

91020

91021

91022

91023

91024

91025

91026

Utilities head

NAME
head — copy the first part of files

SYNOPSIS
head [−n number] [file...]

DESCRIPTION
The head utility shall copy its input files to the standard output, ending the output for each file at
a designated point.

Copying shall end at the point in each input file indicated by the −n number option. The option-
argument number shall be counted in units of lines.

OPTIONS
The head utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−n number The first number lines of each input file shall be copied to standard output. The
application shall ensure that the number option-argument is a positive decimal
integer.

When a file contains less than number lines, it shall be copied to standard output in its entirety.
This shall not be an error.

If no options are specified, head shall act as if −n 10 had been specified.

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If no file operands are specified, the standard input
shall be used.

STDIN
The standard input shall be used if no file operands are specified, and shall be used if a file
operand is ’−’ and the implementation treats the ’−’ as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
Input files shall be text files, but the line length is not restricted to {LINE_MAX} bytes.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of head:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2791

91027

91028

91029

91030

91031

91032

91033

91034

91035

91036

91037

91038

91039

91040

91041

91042

91043

91044

91045

91046

91047

91048

91049

91050

91051

91052

91053

91054

91055

91056

91057

91058

91059

91060

91061

91062

91063

91064

91065

91066

91067

head Utilities

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall contain designated portions of the input files.

If multiple file operands are specified, head shall precede the output for each with the header:

"\n==> %s <==\n", <pathname>

except that the first header written shall not include the initial <newline>.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
To write the first ten lines of all files (except those with a leading period) in the directory:

head − − *

RATIONALE
Although it is possible to simulate head with sed 10q for a single file, the standard developers
decided that the popularity of head on historical BSD systems warranted its inclusion alongside
tail.

POSIX.1-2008 version of head follows the Utility Syntax Guidelines. The −n option was added to
this new interface so that head and tail would be more logically related. Earlier versions of this
standard allowed a −number option. This form is no longer specified by POSIX.1-2008 but may
be present in some implementations.

There is no −c option (as there is in tail) because it is not historical practice and because other
utilities in this volume of POSIX.1-2008 provide similar functionality.

FUTURE DIRECTIONS
None.

SEE ALSO
sed , tail

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

2792 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

91068

91069

91070

91071

91072

91073

91074

91075

91076

91077

91078

91079

91080

91081

91082

91083

91084

91085

91086

91087

91088

91089

91090

91091

91092

91093

91094

91095

91096

91097

91098

91099

91100

91101

91102

91103

91104

91105

91106

91107

Utilities head

CHANGE HISTORY
First released in Issue 4.

Issue 6
The obsolescent −number form is removed.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

The DESCRIPTION is updated to clarify that when a file contains less than the number of lines
requested, the entire file is copied to standard output.

Issue 7
Austin Group Interpretations 1003.1-2001 #027 and #092 are applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The APPLICATION USAGE section is removed and the EXAMPLES section is corrected.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2793

91108

91109

91110

91111

91112

91113

91114

91115

91116

91117

91118

iconv Utilities

NAME
iconv — codeset conversion

SYNOPSIS
iconv [−cs] −f frommap −t tomap [file...]

iconv −f fromcode [−cs] [−t tocode] [file...]

iconv −t tocode [−cs] [−f fromcode] [file...]

iconv −l

DESCRIPTION
The iconv utility shall convert the encoding of characters in file from one codeset to another and
write the results to standard output.

When the options indicate that charmap files are used to specify the codesets (see OPTIONS),
the codeset conversion shall be accomplished by performing a logical join on the symbolic
character names in the two charmaps. The implementation need not support the use of charmap
files for codeset conversion unless the POSIX2_LOCALEDEF symbol is defined on the system.

OPTIONS
The iconv utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−c Omit any characters that are invalid in the codeset of the input file from the
output. When −c is not used, the results of encountering invalid characters in the
input stream (either those that are not characters in the codeset of the input file or
that have no corresponding character in the codeset of the output file) shall be
specified in the system documentation. The presence or absence of −c shall not
affect the exit status of iconv.

−f fromcodeset
Identify the codeset of the input file. The implementation shall recognize the
following two forms of the fromcodeset option-argument:

fromcode The fromcode option-argument must not contain a <slash> character.
It shall be interpreted as the name of one of the codeset descriptions
provided by the implementation in an unspecified format. Valid
values of fromcode are implementation-defined.

frommap The frommap option-argument must contain a <slash> character. It
shall be interpreted as the pathname of a charmap file as defined in
XBD Section 6.4 (on page 129). If the pathname does not represent a
valid, readable charmap file, the results are undefined.

If this option is omitted, the codeset of the current locale shall be used.

−l Write all supported fromcode and tocode values to standard output in an unspecified
format.

−s Suppress any messages written to standard error concerning invalid characters.
When −s is not used, the results of encountering invalid characters in the input
stream (either those that are not valid characters in the codeset of the input file or
that have no corresponding character in the codeset of the output file) shall be
specified in the system documentation. The presence or absence of −s shall not
affect the exit status of iconv.

2794 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

91119

91120

91121

91122

91123

91124

91125

91126

91127

91128

91129

91130

91131

91132

91133

91134

91135

91136

91137

91138

91139

91140

91141

91142

91143

91144

91145

91146

91147

91148

91149

91150

91151

91152

91153

91154

91155

91156

91157

91158

91159

91160

91161

Utilities iconv

−t tocodeset Identify the codeset to be used for the output file. The implementation shall
recognize the following two forms of the tocodeset option-argument:

tocode The semantics shall be equivalent to the −f fromcode option.

tomap The semantics shall be equivalent to the −f frommap option.

If this option is omitted, the codeset of the current locale shall be used.

If either −f or −t represents a charmap file, but the other does not (or is omitted), or both −f and
−t are omitted, the results are undefined.

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If no file operands are specified, or if a file operand is
’−’, the standard input shall be used.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is ’−’.

INPUT FILES
The input file shall be a text file.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of iconv:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments). During translation of the file, this variable is superseded by the use of
the fromcode option-argument.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When the −l option is used, the standard output shall contain all supported fromcode and tocode
values, written in an unspecified format.

When the −l option is not used, the standard output shall contain the sequence of characters
read from the input files, translated to the specified codeset. Nothing else shall be written to the
standard output.

STDERR
The standard error shall be used only for diagnostic messages.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2795

91162

91163

91164

91165

91166

91167

91168

91169

91170

91171

91172

91173

91174

91175

91176

91177

91178

91179

91180

91181

91182

91183

91184

91185

91186

91187

91188

91189

91190

91191

91192

91193

91194

91195

91196

91197

91198

91199

91200

91201

iconv Utilities

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The user must ensure that both charmap files use the same symbolic names for characters the
two codesets have in common.

EXAMPLES
The following example converts the contents of file mail.x400 from the ISO/IEC 6937: 2001
standard codeset to the ISO/IEC 8859-1: 1998 standard codeset, and stores the results in file
mail.local:

iconv −f IS6937 −t IS8859 mail.x400 > mail.local

RATIONALE
The iconv utility can be used portably only when the user provides two charmap files as option-
arguments. This is because a single charmap provided by the user cannot reliably be joined with
the names in a system-provided character set description. The valid values for fromcode and
tocode are implementation-defined and do not have to have any relation to the charmap
mechanisms. As an aid to interactive users, the −l option was adopted from the Plan 9 operating
system. It writes information concerning these implementation-defined values. The format is
unspecified because there are many possible useful formats that could be chosen, such as a
matrix of valid combinations of fromcode and tocode. The −l option is not intended for shell script
usage; conforming applications will have to use charmaps.

FUTURE DIRECTIONS
None.

SEE ALSO
gencat

XBD Section 6.4 (on page 129), Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 3.

Issue 6
This utility has been rewritten to align with the IEEE P1003.2b draft standard. Specifically, the
ability to use charmap files for conversion has been added.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/29 is applied, making changes to address
inconsistencies with the iconv() function in the System Interfaces volume of POSIX.1-2008.

2796 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

91202

91203

91204

91205

91206

91207

91208

91209

91210

91211

91212

91213

91214

91215

91216

91217

91218

91219

91220

91221

91222

91223

91224

91225

91226

91227

91228

91229

91230

91231

91232

91233

91234

91235

91236

91237

91238

91239

91240

91241

Utilities iconv

Issue 7
Austin Group Interpretation 1003.1-2001 #206 is applied, correcting the tomap option.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2797

91242

91243

91244

id Utilities

NAME
id — return user identity

SYNOPSIS
id [user]

id −G [−n] [user]

id −g [−nr] [user]

id −u [−nr] [user]

DESCRIPTION
If no user operand is provided, the id utility shall write the user and group IDs and the
corresponding user and group names of the invoking process to standard output. If the effective
and real IDs do not match, both shall be written. If multiple groups are supported by the
underlying system (see the description of {NGROUPS_MAX} in the System Interfaces volume of
POSIX.1-2008), the supplementary group affiliations of the invoking process shall also be
written.

If a user operand is provided and the process has appropriate privileges, the user and group IDs
of the selected user shall be written. In this case, effective IDs shall be assumed to be identical to
real IDs. If the selected user has more than one allowable group membership listed in the group
database, these shall be written in the same manner as the supplementary groups described in
the preceding paragraph.

OPTIONS
The id utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−G Output all different group IDs (effective, real, and supplementary) only, using the
format "%u\n". If there is more than one distinct group affiliation, output each
such affiliation, using the format " %u", before the <newline> is output.

−g Output only the effective group ID, using the format "%u\n".

−n Output the name in the format "%s" instead of the numeric ID using the format
"%u".

−r Output the real ID instead of the effective ID.

−u Output only the effective user ID, using the format "%u\n".

OPERANDS
The following operand shall be supported:

user The login name for which information is to be written.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of id:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

2798 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

91245

91246

91247

91248

91249

91250

91251

91252

91253

91254

91255

91256

91257

91258

91259

91260

91261

91262

91263

91264

91265

91266

91267

91268

91269

91270

91271

91272

91273

91274

91275

91276

91277

91278

91279

91280

91281

91282

91283

91284

91285

91286

Utilities id

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The following formats shall be used when the LC_MESSAGES locale category specifies the
POSIX locale. In other locales, the strings uid, gid, euid, egid, and groups may be replaced with
more appropriate strings corresponding to the locale.

"uid=%u(%s) gid=%u(%s)\n", <real user ID>, <user-name>,
<real group ID>, <group-name>

If the effective and real user IDs do not match, the following shall be inserted immediately
before the ’\n’ character in the previous format:

" euid=%u(%s)"

with the following arguments added at the end of the argument list:

<effective user ID>, <effective user-name>

If the effective and real group IDs do not match, the following shall be inserted directly before
the ’\n’ character in the format string (and after any addition resulting from the effective and
real user IDs not matching):

" egid=%u(%s)"

with the following arguments added at the end of the argument list:

<effective group-ID>, <effective group name>

If the process has supplementary group affiliations or the selected user is allowed to belong to
multiple groups, the first shall be added directly before the <newline> in the format string:

" groups=%u(%s)"

with the following arguments added at the end of the argument list:

<supplementary group ID>, <supplementary group name>

and the necessary number of the following added after that for any remaining supplementary
group IDs:

",%u(%s)"

and the necessary number of the following arguments added at the end of the argument list:

<supplementary group ID>, <supplementary group name>

If any of the user ID, group ID, effective user ID, effective group ID, or supplementary/multiple

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2799

91287

91288

91289

91290

91291

91292

91293

91294

91295

91296

91297

91298

91299

91300

91301

91302

91303

91304

91305

91306

91307

91308

91309

91310

91311

91312

91313

91314

91315

91316

91317

91318

91319

91320

91321

91322

91323

91324

91325

91326

id Utilities

group IDs cannot be mapped by the system into printable user or group names, the
corresponding "(%s)" and name argument shall be omitted from the corresponding format
string.

When any of the options are specified, the output format shall be as described in the OPTIONS
section.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Output produced by the −G option and by the default case could potentially produce very long
lines on systems that support large numbers of supplementary groups. (On systems with user
and group IDs that are 32-bit integers and with group names with a maximum of 8 bytes per
name, 93 supplementary groups plus distinct effective and real group and user IDs could
theoretically overflow the 2 048-byte {LINE_MAX} text file line limit on the default output case.
It would take about 186 supplementary groups to overflow the 2 048-byte barrier using id −G).
This is not expected to be a problem in practice, but in cases where it is a concern, applications
should consider using fold −s before post-processing the output of id.

EXAMPLES
None.

RATIONALE
The functionality provided by the 4 BSD groups utility can be simulated using:

id −Gn [user]

The 4 BSD command groups was considered, but it was not included because it did not provide
the functionality of the id utility of the SVID. Also, it was thought that it would be easier to
modify id to provide the additional functionality necessary to systems with multiple groups than
to invent another command.

The options −u, −g, −n, and −r were added to ease the use of id with shell commands
substitution. Without these options it is necessary to use some preprocessor such as sed to select
the desired piece of information. Since output such as that produced by:

id −u −n

is frequently wanted, it seemed desirable to add the options.

2800 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

91327

91328

91329

91330

91331

91332

91333

91334

91335

91336

91337

91338

91339

91340

91341

91342

91343

91344

91345

91346

91347

91348

91349

91350

91351

91352

91353

91354

91355

91356

91357

91358

91359

91360

91361

91362

91363

91364

91365

91366

Utilities id

FUTURE DIRECTIONS
None.

SEE ALSO
fold , logname , who

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH getgid(), getgroups(), getuid()

CHANGE HISTORY
First released in Issue 2.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2801

91367

91368

91369

91370

91371

91372

91373

91374

91375

91376

ipcrm Utilities

NAME
ipcrm — remove an XSI message queue, semaphore set, or shared memory segment identifier

SYNOPSIS
XSI ipcrm [−q msgid|−Q msgkey|−s semid|−S semkey|−m shmid|−M shmkey]...

DESCRIPTION
The ipcrm utility shall remove zero or more message queues, semaphore sets, or shared memory
segments. The interprocess communication facilities to be removed are specified by the options.

Only a user with appropriate privileges shall be allowed to remove an interprocess
communication facility that was not created by or owned by the user invoking ipcrm.

OPTIONS
The ipcrm utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−q msgid Remove the message queue identifier msgid from the system and destroy the
message queue and data structure associated with it.

−m shmid Remove the shared memory identifier shmid from the system. The shared memory
segment and data structure associated with it shall be destroyed after the last
detach.

−s semid Remove the semaphore identifier semid from the system and destroy the set of
semaphores and data structure associated with it.

−Q msgkey Remove the message queue identifier, created with key msgkey, from the system
and destroy the message queue and data structure associated with it.

−M shmkey Remove the shared memory identifier, created with key shmkey, from the system.
The shared memory segment and data structure associated with it shall be
destroyed after the last detach.

−S semkey Remove the semaphore identifier, created with key semkey, from the system and
destroy the set of semaphores and data structure associated with it.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ipcrm:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

2802 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

91377

91378

91379

91380

91381

91382

91383

91384

91385

91386

91387

91388

91389

91390

91391

91392

91393

91394

91395

91396

91397

91398

91399

91400

91401

91402

91403

91404

91405

91406

91407

91408

91409

91410

91411

91412

91413

91414

91415

91416

91417

91418

Utilities ipcrm

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ipcs

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH msgctl(), semctl(), shmctl()

CHANGE HISTORY
First released in Issue 5.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2803

91419

91420

91421

91422

91423

91424

91425

91426

91427

91428

91429

91430

91431

91432

91433

91434

91435

91436

91437

91438

91439

91440

91441

91442

91443

91444

91445

91446

91447

91448

91449

91450

91451

91452

91453

91454

ipcs Utilities

NAME
ipcs — report XSI interprocess communication facilities status

SYNOPSIS
XSI ipcs [−qms] [−a|−bcopt]

DESCRIPTION
The ipcs utility shall write information about active interprocess communication facilities.

Without options, information shall be written in short format for message queues, shared
memory segments, and semaphore sets that are currently active in the system. Otherwise, the
information that is displayed is controlled by the options specified.

OPTIONS
The ipcs utility shall conform to XBD Section 12.2 (on page 215).

The ipcs utility accepts the following options:

−q Write information about active message queues.

−m Write information about active shared memory segments.

−s Write information about active semaphore sets.

If −q, −m, or −s are specified, only information about those facilities shall be written. If none of
these three are specified, information about all three shall be written subject to the following
options:

−a Use all print options. (This is a shorthand notation for −b, −c, −o, −p, and −t.)

−b Write information on maximum allowable size. (Maximum number of bytes in
messages on queue for message queues, size of segments for shared memory, and
number of semaphores in each set for semaphores.)

−c Write creator ’s user name and group name; see below.

−o Write information on outstanding usage. (Number of messages on queue and total
number of bytes in messages on queue for message queues, and number of
processes attached to shared memory segments.)

−p Write process number information. (Process ID of the last process to send a
message and process ID of the last process to receive a message on message
queues, process ID of the creating process, and process ID of the last process to
attach or detach on shared memory segments.)

−t Write time information. (Time of the last control operation that changed the access
permissions for all facilities, time of the last msgsnd() and msgrcv() operations on
message queues, time of the last shmat() and shmdt() operations on shared
memory, and time of the last semop() operation on semaphores.)

OPERANDS
None.

STDIN
Not used.

INPUT FILES

• The group database

2804 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

91455

91456

91457

91458

91459

91460

91461

91462

91463

91464

91465

91466

91467

91468

91469

91470

91471

91472

91473

91474

91475

91476

91477

91478

91479

91480

91481

91482

91483

91484

91485

91486

91487

91488

91489

91490

91491

91492

91493

91494

Utilities ipcs

• The user database

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ipcs:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TZ Determine the timezone for the date and time strings written by ipcs. If TZ is unset
or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
An introductory line shall be written with the format:

"IPC status from %s as of %s\n", <source>, <date>

where <source> indicates the source used to gather the statistics and <date> is the information
that would be produced by the date command when invoked in the POSIX locale.

The ipcs utility then shall create up to three reports depending upon the −q, −m, and −s options.
The first report shall indicate the status of message queues, the second report shall indicate the
status of shared memory segments, and the third report shall indicate the status of semaphore
sets.

If the corresponding facility is not installed or has not been used since the last reboot, then the
report shall be written out in the format:

"%s facility not in system.\n", <facility>

where <facility> is Message Queue, Shared Memory, or Semaphore, as appropriate. If the facility has
been installed and has been used since the last reboot, column headings separated by one or
more <space> characters and followed by a <newline> shall be written as indicated below
followed by the facility name written out using the format:

"%s:\n", <facility>

where <facility> is Message Queues, Shared Memory, or Semaphores, as appropriate. On the second
and third reports the column headings need not be written if the last column headings written
already provide column headings for all information in that report.

The column headings provided in the first column below and the meaning of the information in
those columns shall be given in order below; the letters in parentheses indicate the options that
shall cause the corresponding column to appear; ‘‘all’’ means that the column shall always
appear. Each column is separated by one or more <space> characters. Note that these options

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2805

91495

91496

91497

91498

91499

91500

91501

91502

91503

91504

91505

91506

91507

91508

91509

91510

91511

91512

91513

91514

91515

91516

91517

91518

91519

91520

91521

91522

91523

91524

91525

91526

91527

91528

91529

91530

91531

91532

91533

91534

91535

91536

91537

ipcs Utilities

only determine what information is provided for each report; they do not determine which
reports are written.

T (all) Type of facility:

q Message queue.

m Shared memory segment.

s Semaphore.

This field is a single character written using the format %c.

ID (all) The identifier for the facility entry. This field shall be written using the format
%d.

KEY (all) The key used as an argument to msgget(), semget(), or shmget() to create the
facility entry.

Note: The key of a shared memory segment is changed to IPC_PRIVATE when the
segment has been removed until all processes attached to the segment
detach it.

This field shall be written using the format 0x%x.

MODE (all) The facility access modes and flags. The mode shall consist of 11 characters
that are interpreted as follows.

The first character shall be:

S If a process is waiting on a msgsnd() operation.

− If the above is not true.

The second character shall be:

R If a process is waiting on a msgrcv() operation.

C or − If the associated shared memory segment is to be cleared when the
first attach operation is executed.

− If none of the above is true.

The next nine characters shall be interpreted as three sets of three bits each.
The first set refers to the owner’s permissions; the next to permissions of
others in the usergroup of the facility entry; and the last to all others. Within
each set, the first character indicates permission to read, the second character
indicates permission to write or alter the facility entry, and the last character is
a minus-sign (’−’).

The permissions shall be indicated as follows:

r If read permission is granted.

w If write permission is granted.

a If alter permission is granted.

− If the indicated permission is not granted.

The first character following the permissions specifies if there is an alternate or
additional access control method associated with the facility. If there is no
alternate or additional access control method associated with the facility, a
single <space> shall be written; otherwise, another printable character is

2806 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

91538

91539

91540

91541

91542

91543

91544

91545

91546

91547

91548

91549

91550

91551

91552

91553

91554

91555

91556

91557

91558

91559

91560

91561

91562

91563

91564

91565

91566

91567

91568

91569

91570

91571

91572

91573

91574

91575

91576

91577

Utilities ipcs

written.

OWNER (all) The user name of the owner of the facility entry. If the user name of the owner
is found in the user database, at least the first eight column positions of the
name shall be written using the format %s. Otherwise, the user ID of the
owner shall be written using the format %d.

GROUP (all) The group name of the owner of the facility entry. If the group name of the
owner is found in the group database, at least the first eight column positions
of the name shall be written using the format %s. Otherwise, the group ID of
the owner shall be written using the format %d.

The following nine columns shall be only written out for message queues:

CREATOR (a,c) The user name of the creator of the facility entry. If the user name of the
creator is found in the user database, at least the first eight column positions of
the name shall be written using the format %s. Otherwise, the user ID of the
creator shall be written using the format %d.

CGROUP (a,c) The group name of the creator of the facility entry. If the group name of the
creator is found in the group database, at least the first eight column positions
of the name shall be written using the format %s. Otherwise, the group ID of
the creator shall be written using the format %d.

CBYTES (a,o) The number of bytes in messages currently outstanding on the associated
message queue. This field shall be written using the format %d.

QNUM (a,o) The number of messages currently outstanding on the associated message
queue. This field shall be written using the format %d.

QBYTES (a,b) The maximum number of bytes allowed in messages outstanding on the
associated message queue. This field shall be written using the format %d.

LSPID (a,p) The process ID of the last process to send a message to the associated queue.
This field shall be written using the format:

"%d", <pid>

where <pid> is 0 if no message has been sent to the corresponding message
queue; otherwise, <pid> shall be the process ID of the last process to send a
message to the queue.

LRPID (a,p) The process ID of the last process to receive a message from the associated
queue. This field shall be written using the format:

"%d", <pid>

where <pid> is 0 if no message has been received from the corresponding
message queue; otherwise, <pid> shall be the process ID of the last process to
receive a message from the queue.

STIME (a,t) The time the last message was sent to the associated queue. If a message has
been sent to the corresponding message queue, the hour, minute, and second
of the last time a message was sent to the queue shall be written using the
format %d:%2.2d:%2.2d. Otherwise, the format " no-entry" shall be
written.

RTIME (a,t) The time the last message was received from the associated queue. If a
message has been received from the corresponding message queue, the hour,
minute, and second of the last time a message was received from the queue

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2807

91578

91579

91580

91581

91582

91583

91584

91585

91586

91587

91588

91589

91590

91591

91592

91593

91594

91595

91596

91597

91598

91599

91600

91601

91602

91603

91604

91605

91606

91607

91608

91609

91610

91611

91612

91613

91614

91615

91616

91617

91618

91619

91620

91621

ipcs Utilities

shall be written using the format %d:%2.2d:%2.2d. Otherwise, the format
" no-entry" shall be written.

The following eight columns shall be only written out for shared memory segments.

CREATOR (a,c) The user of the creator of the facility entry. If the user name of the creator is
found in the user database, at least the first eight column positions of the
name shall be written using the format %s. Otherwise, the user ID of the
creator shall be written using the format %d.

CGROUP (a,c) The group name of the creator of the facility entry. If the group name of the
creator is found in the group database, at least the first eight column positions
of the name shall be written using the format %s. Otherwise, the group ID of
the creator shall be written using the format %d.

NATTCH (a,o) The number of processes attached to the associated shared memory segment.
This field shall be written using the format %d.

SEGSZ (a,b) The size of the associated shared memory segment. This field shall be written
using the format %d.

CPID (a,p) The process ID of the creator of the shared memory entry. This field shall be
written using the format %d.

LPID (a,p) The process ID of the last process to attach or detach the shared memory
segment. This field shall be written using the format:

"%d", <pid>

where <pid> is 0 if no process has attached the corresponding shared memory
segment; otherwise, <pid> shall be the process ID of the last process to attach
or detach the segment.

ATIME (a,t) The time the last attach on the associated shared memory segment was
completed. If the corresponding shared memory segment has ever been
attached, the hour, minute, and second of the last time the segment was
attached shall be written using the format %d:%2.2d:%2.2d. Otherwise, the
format " no-entry" shall be written.

DTIME (a,t) The time the last detach on the associated shared memory segment was
completed. If the corresponding shared memory segment has ever been
detached, the hour, minute, and second of the last time the segment was
detached shall be written using the format %d:%2.2d:%2.2d. Otherwise, the
format " no-entry" shall be written.

The following four columns shall be only written out for semaphore sets:

CREATOR (a,c) The user of the creator of the facility entry. If the user name of the creator is
found in the user database, at least the first eight column positions of the
name shall be written using the format %s. Otherwise, the user ID of the
creator shall be written using the format %d.

CGROUP (a,c) The group name of the creator of the facility entry. If the group name of the
creator is found in the group database, at least the first eight column positions
of the name shall be written using the format %s. Otherwise, the group ID of
the creator shall be written using the format %d.

2808 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

91622

91623

91624

91625

91626

91627

91628

91629

91630

91631

91632

91633

91634

91635

91636

91637

91638

91639

91640

91641

91642

91643

91644

91645

91646

91647

91648

91649

91650

91651

91652

91653

91654

91655

91656

91657

91658

91659

91660

91661

91662

91663

Utilities ipcs

NSEMS (a,b) The number of semaphores in the set associated with the semaphore entry.
This field shall be written using the format %d.

OTIME (a,t) The time the last semaphore operation on the set associated with the
semaphore entry was completed. If a semaphore operation has ever been
performed on the corresponding semaphore set, the hour, minute, and second
of the last semaphore operation on the semaphore set shall be written using
the format %d:%2.2d:%2.2d. Otherwise, the format " no-entry" shall be
written.

The following column shall be written for all three reports when it is requested:

CTIME (a,t) The time the associated entry was created or changed. The hour, minute, and
second of the time when the associated entry was created shall be written
using the format %d:%2.2d:%2.2d.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Things can change while ipcs is running; the information it gives is guaranteed to be accurate
only when it was retrieved.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ipcrm

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH msgrcv(), msgsnd(), semget(), semop(), shmat(), shmdt(), shmget()

CHANGE HISTORY
First released in Issue 5.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2809

91664

91665

91666

91667

91668

91669

91670

91671

91672

91673

91674

91675

91676

91677

91678

91679

91680

91681

91682

91683

91684

91685

91686

91687

91688

91689

91690

91691

91692

91693

91694

91695

91696

91697

91698

91699

91700

91701

91702

ipcs Utilities

Issue 6
The Open Group Corrigendum U020/1 is applied, correcting the SYNOPSIS.

The Open Group Corrigenda U032/1 and U032/2 are applied, clarifying the output format.

The Open Group Base Resolution bwg98-004 is applied.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-139 is applied, adding the ipcrm utility to the SEE ALSO section.

2810 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

91703

91704

91705

91706

91707

91708

91709

Utilities jobs

NAME
jobs — display status of jobs in the current session

SYNOPSIS
UP jobs [−l|−p] [job_id...]

DESCRIPTION
The jobs utility shall display the status of jobs that were started in the current shell environment;
see Section 2.12 (on page 2331).

When jobs reports the termination status of a job, the shell shall remove its process ID from the
list of those ‘‘known in the current shell execution environment’’; see Section 2.9.3.1 (on page
2319).

OPTIONS
The jobs utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−l (The letter ell.) Provide more information about each job listed. This information
shall include the job number, current job, process group ID, state, and the
command that formed the job.

−p Display only the process IDs for the process group leaders of the selected jobs.

By default, the jobs utility shall display the status of all stopped jobs, running background jobs
and all jobs whose status has changed and have not been reported by the shell.

OPERANDS
The following operand shall be supported:

job_id Specifies the jobs for which the status is to be displayed. If no job_id is given, the
status information for all jobs shall be displayed. The format of job_id is described
in XBD Section 3.203 (on page 65).

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of jobs:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2811

91710

91711

91712

91713

91714

91715

91716

91717

91718

91719

91720

91721

91722

91723

91724

91725

91726

91727

91728

91729

91730

91731

91732

91733

91734

91735

91736

91737

91738

91739

91740

91741

91742

91743

91744

91745

91746

91747

91748

91749

91750

91751

jobs Utilities

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If the −p option is specified, the output shall consist of one line for each process ID:

"%d\n", <process ID>

Otherwise, if the −l option is not specified, the output shall be a series of lines of the form:

"[%d] %c %s %s\n", <job-number>, <current>, <state>, <command>

where the fields shall be as follows:

<current> The character ’+’ identifies the job that would be used as a default for the fg or bg
utilities; this job can also be specified using the job_id %+ or "%%". The character
’−’ identifies the job that would become the default if the current default job were
to exit; this job can also be specified using the job_id %−. For other jobs, this field is
a <space>. At most one job can be identified with ’+’ and at most one job can be
identified with ’−’. If there is any suspended job, then the current job shall be a
suspended job. If there are at least two suspended jobs, then the previous job also
shall be a suspended job.

<job-number> A number that can be used to identify the process group to the wait, fg, bg, and kill
utilities. Using these utilities, the job can be identified by prefixing the job number
with ’%’.

<state> One of the following strings (in the POSIX locale):

Running Indicates that the job has not been suspended by a signal and has not
exited.

Done Indicates that the job completed and returned exit status zero.

Done(code) Indicates that the job completed normally and that it exited with the
specified non-zero exit status, code, expressed as a decimal number.

Stopped Indicates that the job was suspended by the SIGTSTP signal.

Stopped (SIGTSTP)
Indicates that the job was suspended by the SIGTSTP signal.

Stopped (SIGSTOP)
Indicates that the job was suspended by the SIGSTOP signal.

Stopped (SIGTTIN)
Indicates that the job was suspended by the SIGTTIN signal.

Stopped (SIGTTOU)
Indicates that the job was suspended by the SIGTTOU signal.

The implementation may substitute the string Suspended in place of Stopped. If
the job was terminated by a signal, the format of <state> is unspecified, but it shall
be visibly distinct from all of the other <state> formats shown here and shall
indicate the name or description of the signal causing the termination.

<command> The associated command that was given to the shell.

If the −l option is specified, a field containing the process group ID shall be inserted before the
<state> field. Also, more processes in a process group may be output on separate lines, using

2812 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

91752

91753

91754

91755

91756

91757

91758

91759

91760

91761

91762

91763

91764

91765

91766

91767

91768

91769

91770

91771

91772

91773

91774

91775

91776

91777

91778

91779

91780

91781

91782

91783

91784

91785

91786

91787

91788

91789

91790

91791

91792

91793

Utilities jobs

only the process ID and <command> fields.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The −p option is the only portable way to find out the process group of a job because different
implementations have different strategies for defining the process group of the job. Usage such
as $(jobs −p) provides a way of referring to the process group of the job in an implementation-
independent way.

The jobs utility does not work as expected when it is operating in its own utility execution
environment because that environment has no applicable jobs to manipulate. See the
APPLICATION USAGE section for bg . For this reason, jobs is generally implemented as a shell
regular built-in.

EXAMPLES
None.

RATIONALE
Both "%%" and "%+" are used to refer to the current job. Both forms are of equal validity—the
"%%" mirroring "$$" and "%+" mirroring the output of jobs. Both forms reflect historical
practice of the KornShell and the C shell with job control.

The job control features provided by bg, fg, and jobs are based on the KornShell. The standard
developers examined the characteristics of the C shell versions of these utilities and found that
differences exist. Despite widespread use of the C shell, the KornShell versions were selected for
this volume of POSIX.1-2008 to maintain a degree of uniformity with the rest of the KornShell
features selected (such as the very popular command line editing features).

The jobs utility is not dependent on the job control option, as are the seemingly related bg and fg
utilities because jobs is useful for examining background jobs, regardless of the condition of job
control. When the user has invoked a set +m command and job control has been turned off, jobs
can still be used to examine the background jobs associated with that current session. Similarly,
kill can then be used to kill background jobs with kill %<background job number>.

The output for terminated jobs is left unspecified to accommodate various historical systems.
The following formats have been witnessed:

1. Killed(signal name)

2. signal name

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2813

91794

91795

91796

91797

91798

91799

91800

91801

91802

91803

91804

91805

91806

91807

91808

91809

91810

91811

91812

91813

91814

91815

91816

91817

91818

91819

91820

91821

91822

91823

91824

91825

91826

91827

91828

91829

91830

91831

91832

91833

91834

91835

jobs Utilities

3. signal name(coredump)

4. signal description− core dumped

Most users should be able to understand these formats, although it means that applications have
trouble parsing them.

The calculation of job IDs was not described since this would suggest an implementation, which
may impose unnecessary restrictions.

In an early proposal, a −n option was included to ‘‘Display the status of jobs that have changed,
exited, or stopped since the last status report’’. It was removed because the shell always writes
any changed status of jobs before each prompt.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.12 (on page 2331), bg , fg , kill , wait

XBD Section 3.203 (on page 65), Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The JC shading is removed as job control is mandatory in this version.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2814 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

91836

91837

91838

91839

91840

91841

91842

91843

91844

91845

91846

91847

91848

91849

91850

91851

91852

91853

91854

91855

91856

Utilities join

NAME
join — relational database operator

SYNOPSIS
join [−a file_number|−v file_number] [−e string] [−o list] [−t char]

[−1 field] [−2 field] file1 file2

DESCRIPTION
The join utility shall perform an equality join on the files file1 and file2. The joined files shall be
written to the standard output.

The join field is a field in each file on which the files are compared. The join utility shall write
one line in the output for each pair of lines in file1 and file2 that have identical join fields. The
output line by default shall consist of the join field, then the remaining fields from file1, then the
remaining fields from file2. This format can be changed by using the −o option (see below). The
−a option can be used to add unmatched lines to the output. The −v option can be used to
output only unmatched lines.

The files file1 and file2 shall be ordered in the collating sequence of sort −b on the fields on which
they shall be joined, by default the first in each line. All selected output shall be written in the
same collating sequence.

The default input field separators shall be <blank> characters. In this case, multiple separators
shall count as one field separator, and leading separators shall be ignored. The default output
field separator shall be a <space>.

The field separator and collating sequence can be changed by using the −t option (see below).

If the same key appears more than once in either file, all combinations of the set of remaining
fields in file1 and the set of remaining fields in file2 are output in the order of the lines
encountered.

If the input files are not in the appropriate collating sequence, the results are unspecified.

OPTIONS
The join utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a file_number
Produce a line for each unpairable line in file file_number, where file_number is 1 or
2, in addition to the default output. If both −a1 and −a2 are specified, all unpairable
lines shall be output.

−e string Replace empty output fields in the list selected by −o with the string string.

−o list Construct the output line to comprise the fields specified in list, each element of
which shall have one of the following two forms:

1. file_number.field, where file_number is a file number and field is a decimal
integer field number

2. 0 (zero), representing the join field

The elements of list shall be either <comma>-separated or <blank>-separated, as
specified in Guideline 8 of XBD Section 12.2 (on page 215). The fields specified by
list shall be written for all selected output lines. Fields selected by list that do not
appear in the input shall be treated as empty output fields. (See the −e option.)
Only specifically requested fields shall be written. The application shall ensure that
list is a single command line argument.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2815

91857

91858

91859

91860

91861

91862

91863

91864

91865

91866

91867

91868

91869

91870

91871

91872

91873

91874

91875

91876

91877

91878

91879

91880

91881

91882

91883

91884

91885

91886

91887

91888

91889

91890

91891

91892

91893

91894

91895

91896

91897

91898

91899

91900

join Utilities

−t char Use character char as a separator, for both input and output. Every appearance of
char in a line shall be significant. When this option is specified, the collating
sequence shall be the same as sort without the −b option.

−v file_number
Instead of the default output, produce a line only for each unpairable line in
file_number, where file_number is 1 or 2. If both −v1 and −v2 are specified, all
unpairable lines shall be output.

−1 field Join on the fieldth field of file 1. Fields are decimal integers starting with 1.

−2 field Join on the fieldth field of file 2. Fields are decimal integers starting with 1.

OPERANDS
The following operands shall be supported:

file1, file2 A pathname of a file to be joined. If either of the file1 or file2 operands is ’−’, the
standard input shall be used in its place.

STDIN
The standard input shall be used only if the file1 or file2 operand is ’−’. See the INPUT FILES
section.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of join:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale of the collating sequence join expects to have been used when
the input files were sorted.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The join utility output shall be a concatenation of selected character fields. When the −o option
is not specified, the output shall be:

"%s%s%s\n", <join field>, <other file1 fields>,
<other file2 fields>

If the join field is not the first field in a file, the <other file fields> for that file shall be:

2816 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

91901

91902

91903

91904

91905

91906

91907

91908

91909

91910

91911

91912

91913

91914

91915

91916

91917

91918

91919

91920

91921

91922

91923

91924

91925

91926

91927

91928

91929

91930

91931

91932

91933

91934

91935

91936

91937

91938

91939

91940

91941

91942

91943

Utilities join

<fields preceding join field>, <fields following join field>

When the −o option is specified, the output format shall be:

"%s\n", <concatenation of fields>

where the concatenation of fields is described by the −o option, above.

For either format, each field (except the last) shall be written with its trailing separator character.
If the separator is the default (<blank> characters), a single <space> shall be written after each
field (except the last).

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All input files were output successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Pathnames consisting of numeric digits or of the form string.string should not be specified
directly following the −o list.

EXAMPLES
The −o 0 field essentially selects the union of the join fields. For example, given file phone:

!Name Phone Number
Don +1 123-456-7890
Hal +1 234-567-8901
Yasushi +2 345-678-9012

and file fax:

!Name Fax Number
Don +1 123-456-7899
Keith +1 456-789-0122
Yasushi +2 345-678-9011

(where the large expanses of white space are meant to each represent a single <tab>), the
command:

join −t "<tab>" −a 1 −a 2 −e ’(unknown)’ −o 0,1.2,2.2 phone fax

would produce:

!Name Phone Number Fax Number
Don +1 123-456-7890 +1 123-456-7899
Hal +1 234-567-8901 (unknown)
Keith (unknown) +1 456-789-0122
Yasushi +2 345-678-9012 +2 345-678-9011

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2817

91944

91945

91946

91947

91948

91949

91950

91951

91952

91953

91954

91955

91956

91957

91958

91959

91960

91961

91962

91963

91964

91965

91966

91967

91968

91969

91970

91971

91972

91973

91974

91975

91976

91977

91978

91979

91980

91981

91982

91983

91984

91985

join Utilities

Multiple instances of the same key will produce combinatorial results. The following:

fa:
a x
a y
a z

fb:
a p

will produce:

a x p
a y p
a z p

And the following:

fa:
a b c
a d e

fb:
a w x
a y z
a o p

will produce:

a b c w x
a b c y z
a b c o p
a d e w x
a d e y z
a d e o p

RATIONALE
The −e option is only effective when used with −o because, unless specific fields are identified
using −o, join is not aware of what fields might be empty. The exception to this is the join field,
but identifying an empty join field with the −e string is not historical practice and some scripts
might break if this were changed.

The 0 field in the −o list was adopted from the Tenth Edition version of join to satisfy
international objections that the join in the base documents does not support the ‘‘full join’’ or
‘‘outer join’’ described in relational database literature. Although it has been possible to include
a join field in the output (by default, or by field number using −o), the join field could not be
included for an unpaired line selected by −a. The −o 0 field essentially selects the union of the
join fields.

This sort of outer join was not possible with the join commands in the base documents. The −o 0
field was chosen because it is an upwards-compatible change for applications. An alternative
was considered: have the join field represent the union of the fields in the files (where they are
identical for matched lines, and one or both are null for unmatched lines). This was not adopted
because it would break some historical applications.

The ability to specify file2 as − is not historical practice; it was added for completeness.

The −v option is not historical practice, but was considered necessary because it permitted the
writing of only those lines that do not match on the join field, as opposed to the −a option, which
prints both lines that do and do not match. This additional facility is parallel with the −v option

2818 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

91986

91987

91988

91989

91990

91991

91992

91993

91994

91995

91996

91997

91998

91999

92000

92001

92002

92003

92004

92005

92006

92007

92008

92009

92010

92011

92012

92013

92014

92015

92016

92017

92018

92019

92020

92021

92022

92023

92024

92025

92026

92027

92028

92029

92030

92031

Utilities join

of grep.

Some historical implementations have been encountered where a blank line in one of the input
files was considered to be the end of the file; the description in this volume of POSIX.1-2008 does
not cite this as an allowable case.

Earlier versions of this standard allowed −j, −j1, −j2 options, and a form of the −o option that
allowed the list option-argument to be multiple arguments. These forms are no longer specified
by POSIX.1-2008 but may be present in some implementations.

FUTURE DIRECTIONS
None.

SEE ALSO
awk , comm , sort , uniq

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The obsolescent −j options and the multi-argument −o option are removed in this version.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2819

92032

92033

92034

92035

92036

92037

92038

92039

92040

92041

92042

92043

92044

92045

92046

92047

92048

92049

92050

92051

kill Utilities

NAME
kill — terminate or signal processes

SYNOPSIS
kill −s signal_name pid...

kill −l [exit_status]

XSI kill [−signal_name] pid...

kill [−signal_number] pid...

DESCRIPTION
The kill utility shall send a signal to the process or processes specified by each pid operand.

For each pid operand, the kill utility shall perform actions equivalent to the kill() function
defined in the System Interfaces volume of POSIX.1-2008 called with the following arguments:

• The value of the pid operand shall be used as the pid argument.

• The sig argument is the value specified by the −s option, −signal_number option, or the
−signal_name option, or by SIGTERM, if none of these options is specified.

OPTIONS
XSI The kill utility shall conform to XBD Section 12.2 (on page 215), except that in the last two

SYNOPSIS forms, the −signal_number and −signal_name options are usually more than a single
character.

The following options shall be supported:

−l (The letter ell.) Write all values of signal_name supported by the implementation, if
no operand is given. If an exit_status operand is given and it is a value of the ’?’
shell special parameter (see Section 2.5.2 (on page 2302) and wait) corresponding to
a process that was terminated by a signal, the signal_name corresponding to the
signal that terminated the process shall be written. If an exit_status operand is
given and it is the unsigned decimal integer value of a signal number, the
signal_name (the symbolic constant name without the SIG prefix defined in the
Base Definitions volume of POSIX.1-2008) corresponding to that signal shall be
written. Otherwise, the results are unspecified.

−s signal_name
Specify the signal to send, using one of the symbolic names defined in the
<signal.h> header. Values of signal_name shall be recognized in a case-independent
fashion, without the SIG prefix. In addition, the symbolic name 0 shall be
recognized, representing the signal value zero. The corresponding signal shall be
sent instead of SIGTERM.

XSI −signal_name
Equivalent to −s signal_name.

XSI −signal_number
Specify a non-negative decimal integer, signal_number, representing the signal to be
used instead of SIGTERM, as the sig argument in the effective call to kill(). The
correspondence between integer values and the sig value used is shown in the
following list.

The effects of specifying any signal_number other than those listed below are
undefined.

2820 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

92052

92053

92054

92055

92056

92057

92058

92059

92060

92061

92062

92063

92064

92065

92066

92067

92068

92069

92070

92071

92072

92073

92074

92075

92076

92077

92078

92079

92080

92081

92082

92083

92084

92085

92086

92087

92088

92089

92090

92091

92092

92093

92094

Utilities kill

0 0

1 SIGHUP

2 SIGINT

3 SIGQUIT

6 SIGABRT

9 SIGKILL

14 SIGALRM

15 SIGTERM

If the first argument is a negative integer, it shall be interpreted as a −signal_number
option, not as a negative pid operand specifying a process group.

OPERANDS
The following operands shall be supported:

pid One of the following:

1. A decimal integer specifying a process or process group to be signaled. The
process or processes selected by positive, negative, and zero values of the
pid operand shall be as described for the kill() function. If process number 0
is specified, all processes in the current process group shall be signaled. For
the effects of negative pid numbers, see the kill() function defined in the
System Interfaces volume of POSIX.1-2008. If the first pid operand is
negative, it should be preceded by "− −" to keep it from being interpreted as
an option.

2. A job control job ID (see XBD Section 3.203, on page 65) that identifies a
background process group to be signaled. The job control job ID notation is
applicable only for invocations of kill in the current shell execution
environment; see Section 2.12 (on page 2331).

exit_status A decimal integer specifying a signal number or the exit status of a process
terminated by a signal.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of kill:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2821

92095

92096

92097

92098

92099

92100

92101

92102

92103

92104

92105

92106

92107

92108

92109

92110

92111

92112

92113

92114

92115

92116

92117

92118

92119

92120

92121

92122

92123

92124

92125

92126

92127

92128

92129

92130

92131

92132

92133

92134

92135

kill Utilities

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When the −l option is not specified, the standard output shall not be used.

When the −l option is specified, the symbolic name of each signal shall be written in the
following format:

"%s%c", <signal_name>, <separator>

where the <signal_name> is in uppercase, without the SIG prefix, and the <separator> shall be
either a <newline> or a <space>. For the last signal written, <separator> shall be a <newline>.

When both the −l option and exit_status operand are specified, the symbolic name of the
corresponding signal shall be written in the following format:

"%s\n", <signal_name>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 At least one matching process was found for each pid operand, and the specified signal was
successfully processed for at least one matching process.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Process numbers can be found by using ps.

The job control job ID notation is not required to work as expected when kill is operating in its
own utility execution environment. In either of the following examples:

nohup kill %1 &
system("kill %1");

the kill operates in a different environment and does not share the shell’s understanding of job
numbers.

EXAMPLES
Any of the commands:

kill −9 100 −165
kill −s kill 100 −165

2822 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

92136

92137

92138

92139

92140

92141

92142

92143

92144

92145

92146

92147

92148

92149

92150

92151

92152

92153

92154

92155

92156

92157

92158

92159

92160

92161

92162

92163

92164

92165

92166

92167

92168

92169

92170

92171

92172

92173

92174

92175

92176

Utilities kill

kill −s KILL 100 −165

sends the SIGKILL signal to the process whose process ID is 100 and to all processes whose
process group ID is 165, assuming the sending process has permission to send that signal to the
specified processes, and that they exist.

The System Interfaces volume of POSIX.1-2008 and this volume of POSIX.1-2008 do not require
specific signal numbers for any signal_names. Even the −signal_number option provides symbolic
(although numeric) names for signals. If a process is terminated by a signal, its exit status
indicates the signal that killed it, but the exact values are not specified. The kill −l option,
however, can be used to map decimal signal numbers and exit status values into the name of a
signal. The following example reports the status of a terminated job:

job
stat=$?
if [$stat −eq 0]
then

echo job completed successfully.
elif [$stat −gt 128]
then

echo job terminated by signal SIG$(kill −l $stat).
else

echo job terminated with error code $stat.
fi

To send the default signal to a process group (say 123), an application should use a command
similar to one of the following:

kill −TERM −123
kill − − −123

RATIONALE
The −l option originated from the C shell, and is also implemented in the KornShell. The C shell
output can consist of multiple output lines because the signal names do not always fit on a
single line on some terminal screens. The KornShell output also included the implementation-
defined signal numbers and was considered by the standard developers to be too difficult for
scripts to parse conveniently. The specified output format is intended not only to accommodate
the historical C shell output, but also to permit an entirely vertical or entirely horizontal listing
on systems for which this is appropriate.

An early proposal invented the name SIGNULL as a signal_name for signal 0 (used by the System
Interfaces volume of POSIX.1-2008 to test for the existence of a process without sending it a
signal). Since the signal_name 0 can be used in this case unambiguously, SIGNULL has been
removed.

An early proposal also required symbolic signal_names to be recognized with or without the SIG
prefix. Historical versions of kill have not written the SIG prefix for the −l option and have not
recognized the SIG prefix on signal_names. Since neither applications portability nor ease-of-use
would be improved by requiring this extension, it is no longer required.

To avoid an ambiguity of an initial negative number argument specifying either a signal number
or a process group, POSIX.1-2008 mandates that it is always considered the former by
implementations that support the XSI option. It also requires that conforming applications
always use the "− −" options terminator argument when specifying a process group, unless an
option is also specified.

The −s option was added in response to international interest in providing some form of kill that

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2823

92177

92178

92179

92180

92181

92182

92183

92184

92185

92186

92187

92188

92189

92190

92191

92192

92193

92194

92195

92196

92197

92198

92199

92200

92201

92202

92203

92204

92205

92206

92207

92208

92209

92210

92211

92212

92213

92214

92215

92216

92217

92218

92219

92220

92221

92222

92223

kill Utilities

meets the Utility Syntax Guidelines.

The job control job ID notation is not required to work as expected when kill is operating in its
own utility execution environment. In either of the following examples:

nohup kill %1 &
system("kill %1");

the kill operates in a different environment and does not understand how the shell has managed
its job numbers.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2297), ps , wait

XBD Section 3.203 (on page 65), Chapter 8 (on page 173), Section 12.2 (on page 215), <signal.h>

XSH kill()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The obsolescent versions of the SYNOPSIS are turned into non-obsolescent features of the XSI
option, corresponding to a similar change in the trap special built-in.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2824 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

92224

92225

92226

92227

92228

92229

92230

92231

92232

92233

92234

92235

92236

92237

92238

92239

92240

92241

92242

92243

Utilities lex

NAME
lex — generate programs for lexical tasks (DEVELOPMENT)

SYNOPSIS
CD lex [−t] [−n|−v] [file...]

DESCRIPTION
The lex utility shall generate C programs to be used in lexical processing of character input, and
that can be used as an interface to yacc. The C programs shall be generated from lex source code
and conform to the ISO C standard, without depending on any undefined, unspecified, or
implementation-defined behavior, except in cases where the code is copied directly from the
supplied source, or in cases that are documented by the implementation. Usually, the lex utility
shall write the program it generates to the file lex.yy.c; the state of this file is unspecified if lex
exits with a non-zero exit status. See the EXTENDED DESCRIPTION section for a complete
description of the lex input language.

OPTIONS
The lex utility shall conform to XBD Section 12.2 (on page 215), except for Guideline 9.

The following options shall be supported:

−n Suppress the summary of statistics usually written with the −v option. If no table
sizes are specified in the lex source code and the −v option is not specified, then −n
is implied.

−t Write the resulting program to standard output instead of lex.yy.c.

−v Write a summary of lex statistics to the standard output. (See the discussion of lex
table sizes in Definitions in lex (on page 2828).) If the −t option is specified and −n
is not specified, this report shall be written to standard error. If table sizes are
specified in the lex source code, and if the −n option is not specified, the −v option
may be enabled.

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If more than one such file is specified, all files shall be
concatenated to produce a single lex program. If no file operands are specified, or if
a file operand is ’−’, the standard input shall be used.

STDIN
The standard input shall be used if no file operands are specified, or if a file operand is ’−’. See
INPUT FILES.

INPUT FILES
The input files shall be text files containing lex source code, as described in the EXTENDED
DESCRIPTION section.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of lex:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2825

92244

92245

92246

92247

92248

92249

92250

92251

92252

92253

92254

92255

92256

92257

92258

92259

92260

92261

92262

92263

92264

92265

92266

92267

92268

92269

92270

92271

92272

92273

92274

92275

92276

92277

92278

92279

92280

92281

92282

92283

92284

92285

92286

lex Utilities

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions. If this variable is not set to
the POSIX locale, the results are unspecified.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), and the behavior of character classes within regular
expressions. If this variable is not set to the POSIX locale, the results are
unspecified.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If the −t option is specified, the text file of C source code output of lex shall be written to
standard output.

If the −t option is not specified:

• Implementation-defined informational, error, and warning messages concerning the
contents of lex source code input shall be written to either the standard output or standard
error.

• If the −v option is specified and the −n option is not specified, lex statistics shall also be
written to either the standard output or standard error, in an implementation-defined
format. These statistics may also be generated if table sizes are specified with a ’%’
operator in the Definitions section, as long as the −n option is not specified.

STDERR
If the −t option is specified, implementation-defined informational, error, and warning messages
concerning the contents of lex source code input shall be written to the standard error.

If the −t option is not specified:

1. Implementation-defined informational, error, and warning messages concerning the
contents of lex source code input shall be written to either the standard output or
standard error.

2. If the −v option is specified and the −n option is not specified, lex statistics shall also be
written to either the standard output or standard error, in an implementation-defined
format. These statistics may also be generated if table sizes are specified with a ’%’
operator in the Definitions section, as long as the −n option is not specified.

OUTPUT FILES
A text file containing C source code shall be written to lex.yy.c, or to the standard output if the −t
option is present.

EXTENDED DESCRIPTION
Each input file shall contain lex source code, which is a table of regular expressions with
corresponding actions in the form of C program fragments.

When lex.yy.c is compiled and linked with the lex library (using the −l l operand with c99), the

2826 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

92287

92288

92289

92290

92291

92292

92293

92294

92295

92296

92297

92298

92299

92300

92301

92302

92303

92304

92305

92306

92307

92308

92309

92310

92311

92312

92313

92314

92315

92316

92317

92318

92319

92320

92321

92322

92323

92324

92325

92326

92327

92328

92329

92330

Utilities lex

resulting program shall read character input from the standard input and shall partition it into
strings that match the given expressions.

When an expression is matched, these actions shall occur:

• The input string that was matched shall be left in yytext as a null-terminated string; yytext
shall either be an external character array or a pointer to a character string. As explained in
Definitions in lex (on page 2828), the type can be explicitly selected using the %array or
%pointer declarations, but the default is implementation-defined.

• The external int yyleng shall be set to the length of the matching string.

• The expression’s corresponding program fragment, or action, shall be executed.

During pattern matching, lex shall search the set of patterns for the single longest possible
match. Among rules that match the same number of characters, the rule given first shall be
chosen.

The general format of lex source shall be:

Definitions
%%
Rules
%%
UserSubroutines

The first "%%" is required to mark the beginning of the rules (regular expressions and actions);
the second "%%" is required only if user subroutines follow.

Any line in the Definitions section beginning with a <blank> shall be assumed to be a C program
fragment and shall be copied to the external definition area of the lex.yy.c file. Similarly,
anything in the Definitions section included between delimiter lines containing only "%{" and
"%}" shall also be copied unchanged to the external definition area of the lex.yy.c file.

Any such input (beginning with a <blank> or within "%{" and "%}" delimiter lines) appearing
at the beginning of the Rules section before any rules are specified shall be written to lex.yy.c
after the declarations of variables for the yylex() function and before the first line of code in
yylex(). Thus, user variables local to yylex() can be declared here, as well as application code to
execute upon entry to yylex().

The action taken by lex when encountering any input beginning with a <blank> or within "%{"
and "%}" delimiter lines appearing in the Rules section but coming after one or more rules is
undefined. The presence of such input may result in an erroneous definition of the yylex()
function.

C-language code in the input shall not contain C-language trigraphs. The C-language code
within "%{" and "%}" delimiter lines shall not contain any lines consisting only of "%}", or
only of "%%".

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2827

92331

92332

92333

92334

92335

92336

92337

92338

92339

92340

92341

92342

92343

92344

92345

92346

92347

92348

92349

92350

92351

92352

92353

92354

92355

92356

92357

92358

92359

92360

92361

92362

92363

92364

92365

92366

lex Utilities

Definitions in lex

Definitions appear before the first "%%" delimiter. Any line in this section not contained between
"%{" and "%}" lines and not beginning with a <blank> shall be assumed to define a lex
substitution string. The format of these lines shall be:

name substitute

If a name does not meet the requirements for identifiers in the ISO C standard, the result is
undefined. The string substitute shall replace the string {name} when it is used in a rule. The name
string shall be recognized in this context only when the braces are provided and when it does
not appear within a bracket expression or within double-quotes.

In the Definitions section, any line beginning with a <percent-sign> (’%’) character and followed
by an alphanumeric word beginning with either ’s’ or ’S’ shall define a set of start conditions.
Any line beginning with a ’%’ followed by a word beginning with either ’x’ or ’X’ shall
define a set of exclusive start conditions. When the generated scanner is in a %s state, patterns
with no state specified shall be also active; in a %x state, such patterns shall not be active. The
rest of the line, after the first word, shall be considered to be one or more <blank>-separated
names of start conditions. Start condition names shall be constructed in the same way as
definition names. Start conditions can be used to restrict the matching of regular expressions to
one or more states as described in Regular Expressions in lex (on page 2829).

Implementations shall accept either of the following two mutually-exclusive declarations in the
Definitions section:

%array Declare the type of yytext to be a null-terminated character array.

%pointer Declare the type of yytext to be a pointer to a null-terminated character string.

The default type of yytext is implementation-defined. If an application refers to yytext outside of
the scanner source file (that is, via an extern), the application shall include the appropriate
%array or %pointer declaration in the scanner source file.

Implementations shall accept declarations in the Definitions section for setting certain internal
table sizes. The declarations are shown in the following table.

Table 4-10 Table Size Declarations in lex

Declaration Description Minimum Value

%p n Number of positions 2 500
%n n Number of states 500
%a n Number of transitions 2 000
%e n Number of parse tree nodes 1 000
%k n Number of packed character classes 1 000
%o n Size of the output array 3 000

In the table, n represents a positive decimal integer, preceded by one or more <blank>
characters. The exact meaning of these table size numbers is implementation-defined. The
implementation shall document how these numbers affect the lex utility and how they are
related to any output that may be generated by the implementation should limitations be
encountered during the execution of lex. It shall be possible to determine from this output
which of the table size values needs to be modified to permit lex to successfully generate tables
for the input language. The values in the column Minimum Value represent the lowest values
conforming implementations shall provide.

2828 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

92367

92368

92369

92370

92371

92372

92373

92374

92375

92376

92377

92378

92379

92380

92381

92382

92383

92384

92385

92386

92387

92388

92389

92390

92391

92392

92393

92394

92395

92396

92397

92398

92399

92400

92401

92402

92403

92404

92405

92406

92407

92408

92409

Utilities lex

Rules in lex

The rules in lex source files are a table in which the left column contains regular expressions and
the right column contains actions (C program fragments) to be executed when the expressions
are recognized.

ERE action

ERE action

...

The extended regular expression (ERE) portion of a row shall be separated from action by one or
more <blank> characters. A regular expression containing <blank> characters shall be
recognized under one of the following conditions:

• The entire expression appears within double-quotes.

• The <blank> characters appear within double-quotes or square brackets.

• Each <blank> is preceded by a <backslash> character.

User Subroutines in lex

Anything in the user subroutines section shall be copied to lex.yy.c following yylex().

Regular Expressions in lex

The lex utility shall support the set of extended regular expressions (see XBD Section 9.4, on page
188), with the following additions and exceptions to the syntax:

"..." Any string enclosed in double-quotes shall represent the characters within the
double-quotes as themselves, except that <backslash>-escapes (which appear in
the following table) shall be recognized. Any <backslash>-escape sequence shall be
terminated by the closing quote. For example, "\01""1" represents a single
string: the octal value 1 followed by the character ’1’.

<state>r, <state1,state2,. . .>r
The regular expression r shall be matched only when the program is in one of the
start conditions indicated by state, state1, and so on; see Actions in lex (on page
2831). (As an exception to the typographical conventions of the rest of this volume
of POSIX.1-2008, in this case <state> does not represent a metavariable, but the
literal angle-bracket characters surrounding a symbol.) The start condition shall be
recognized as such only at the beginning of a regular expression.

r/x The regular expression r shall be matched only if it is followed by an occurrence of
regular expression x (x is the instance of trailing context, further defined below).
The token returned in yytext shall only match r. If the trailing portion of r matches
the beginning of x, the result is unspecified. The r expression cannot include
further trailing context or the ’$’ (match-end-of-line) operator; x cannot include
the ’ˆ’ (match-beginning-of-line) operator, nor trailing context, nor the ’$’
operator. That is, only one occurrence of trailing context is allowed in a lex regular
expression, and the ’ˆ’ operator only can be used at the beginning of such an
expression.

{name} When name is one of the substitution symbols from the Definitions section, the
string, including the enclosing braces, shall be replaced by the substitute value. The
substitute value shall be treated in the extended regular expression as if it were
enclosed in parentheses. No substitution shall occur if {name} occurs within a
bracket expression or within double-quotes.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2829

92410

92411

92412

92413

92414

92415

92416

92417

92418

92419

92420

92421

92422

92423

92424

92425

92426

92427

92428

92429

92430

92431

92432

92433

92434

92435

92436

92437

92438

92439

92440

92441

92442

92443

92444

92445

92446

92447

92448

92449

92450

92451

92452

92453

lex Utilities

Within an ERE, a <backslash> character shall be considered to begin an escape sequence as
specified in the table in XBD Chapter 5 (on page 121) (’\\’, ’\a’, ’\b’, ’\f’, ’\n’, ’\r’,
’\t’, ’\v’). In addition, the escape sequences in the following table shall be recognized.

A literal <newline> cannot occur within an ERE; the escape sequence ’\n’ can be used to
represent a <newline>. A <newline> shall not be matched by a period operator.

Table 4-11 Escape Sequences in lex

Escape
Sequence Description Meaning

\digits A <backslash> character followed by
the longest sequence of one, two, or
three octal-digit characters (01234567).
If all of the digits are 0 (that is,
representation of the NUL character),
the behavior is undefined.

The character whose encoding is
represented by the one, two, or three-
digit octal integer. Multi-byte
characters require multiple,
concatenated escape sequences of this
type, including the leading
<backslash> for each byte.

\xdigits A <backslash> character followed by
the longest sequence of hexadecimal-
digit characters
(01234567abcdefABCDEF). If all of the
digits are 0 (that is, representation of
the NUL character), the behavior is
undefined.

The character whose encoding is
represented by the hexadecimal
integer.

\c A <backslash> character followed by
any character not described in this
table or in the table in XBD Chapter 5
(on page 121) (’\\’, ’\a’, ’\b’,
’\f’, ’\n’, ’\r’, ’\t’, ’\v’).

The character ’c’, unchanged.

Note: If a ’\x’ sequence needs to be immediately followed by a hexadecimal digit character, a
sequence such as "\x1""1" can be used, which represents a character containing the value 1,
followed by the character ’1’.

The order of precedence given to extended regular expressions for lex differs from that specified
in XBD Section 9.4 (on page 188). The order of precedence for lex shall be as shown in the
following table, from high to low.

Note: The escaped characters entry is not meant to imply that these are operators, but they are
included in the table to show their relationships to the true operators. The start condition,
trailing context, and anchoring notations have been omitted from the table because of the
placement restrictions described in this section; they can only appear at the beginning or ending
of an ERE.

2830 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

92454

92455

92456

92457

92458

92459

92460

92461

92462

92463

92464

92465

92466

92467

92468

92469

92470

92471

92472

92473

92474

92475

92476

92477

92478

92479

92480

92481

92482

92483

92484

92485

92486

92487

92488

92489

92490

92491

Utilities lex

Table 4-12 ERE Precedence in lex

Extended Regular Expression Precedence

collation-related bracket symbols [= =] [: :] [. .]
escaped characters \<special character>
bracket expression []
quoting "..."
grouping ()
definition {name}
single-character RE duplication * + ?
concatenation
interval expression {m,n}
alternation |

The ERE anchoring operators ’ˆ’ and ’$’ do not appear in the table. With lex regular
expressions, these operators are restricted in their use: the ’ˆ’ operator can only be used at the
beginning of an entire regular expression, and the ’$’ operator only at the end. The operators
apply to the entire regular expression. Thus, for example, the pattern "(ˆabc)|(def$)" is
undefined; it can instead be written as two separate rules, one with the regular expression
"ˆabc" and one with "def$", which share a common action via the special ’|’ action (see
below). If the pattern were written "ˆabc|def$", it would match either "abc" or "def" on a
line by itself.

Unlike the general ERE rules, embedded anchoring is not allowed by most historical lex
implementations. An example of embedded anchoring would be for patterns such as
"(ˆ|)foo(|$)" to match "foo" when it exists as a complete word. This functionality can
be obtained using existing lex features:

ˆfoo/[\n] |
" foo"/[\n] /* Found foo as a separate word. */

Note also that ’$’ is a form of trailing context (it is equivalent to "/\n") and as such cannot be
used with regular expressions containing another instance of the operator (see the preceding
discussion of trailing context).

The additional regular expressions trailing-context operator ’/’ can be used as an ordinary
character if presented within double-quotes, "/"; preceded by a <backslash>, "\/"; or within a
bracket expression, "[/]". The start-condition ’<’ and ’>’ operators shall be special only in a
start condition at the beginning of a regular expression; elsewhere in the regular expression they
shall be treated as ordinary characters.

Actions in lex

The action to be taken when an ERE is matched can be a C program fragment or the special
actions described below; the program fragment can contain one or more C statements, and can
also include special actions. The empty C statement ’;’ shall be a valid action; any string in the
lex.yy.c input that matches the pattern portion of such a rule is effectively ignored or skipped.
However, the absence of an action shall not be valid, and the action lex takes in such a condition
is undefined.

The specification for an action, including C statements and special actions, can extend across
several lines if enclosed in braces:

ERE <one or more blanks> { program statement

program statement }

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2831

92492

92493

92494

92495

92496

92497

92498

92499

92500

92501

92502

92503

92504

92505

92506

92507

92508

92509

92510

92511

92512

92513

92514

92515

92516

92517

92518

92519

92520

92521

92522

92523

92524

92525

92526

92527

92528

92529

92530

92531

92532

92533

92534

92535

92536

lex Utilities

The program statements shall not contain unbalanced curly brace preprocessing tokens.

The default action when a string in the input to a lex.yy.c program is not matched by any
expression shall be to copy the string to the output. Because the default behavior of a program
generated by lex is to read the input and copy it to the output, a minimal lex source program that
has just "%%" shall generate a C program that simply copies the input to the output unchanged.

Four special actions shall be available:

| ECHO; REJECT; BEGIN

| The action ’|’ means that the action for the next rule is the action for this rule.
Unlike the other three actions, ’|’ cannot be enclosed in braces or be
<semicolon>-terminated; the application shall ensure that it is specified alone, with
no other actions.

ECHO; Write the contents of the string yytext on the output.

REJECT; Usually only a single expression is matched by a given string in the input.
REJECT means ‘‘continue to the next expression that matches the current input’’,
and shall cause whatever rule was the second choice after the current rule to be
executed for the same input. Thus, multiple rules can be matched and executed for
one input string or overlapping input strings. For example, given the regular
expressions "xyz" and "xy" and the input "xyz", usually only the regular
expression "xyz" would match. The next attempted match would start after z. If
the last action in the "xyz" rule is REJECT, both this rule and the "xy" rule
would be executed. The REJECT action may be implemented in such a fashion that
flow of control does not continue after it, as if it were equivalent to a goto to
another part of yylex(). The use of REJECT may result in somewhat larger and
slower scanners.

BEGIN The action:

BEGIN newstate;

switches the state (start condition) to newstate. If the string newstate has not been
declared previously as a start condition in the Definitions section, the results are
unspecified. The initial state is indicated by the digit ’0’ or the token INITIAL.

The functions or macros described below are accessible to user code included in the lex input. It
is unspecified whether they appear in the C code output of lex, or are accessible only through the
−l l operand to c99 (the lex library).

int yylex(void)
Performs lexical analysis on the input; this is the primary function generated by the lex
utility. The function shall return zero when the end of input is reached; otherwise, it shall
return non-zero values (tokens) determined by the actions that are selected.

int yymore(void)
When called, indicates that when the next input string is recognized, it is to be appended to
the current value of yytext rather than replacing it; the value in yyleng shall be adjusted
accordingly.

int yyless(int n)
Retains n initial characters in yytext, NUL-terminated, and treats the remaining characters as
if they had not been read; the value in yyleng shall be adjusted accordingly.

2832 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

92537

92538

92539

92540

92541

92542

92543

92544

92545

92546

92547

92548

92549

92550

92551

92552

92553

92554

92555

92556

92557

92558

92559

92560

92561

92562

92563

92564

92565

92566

92567

92568

92569

92570

92571

92572

92573

92574

92575

92576

92577

92578

92579

Utilities lex

int input(void)
Returns the next character from the input, or zero on end-of-file. It shall obtain input from
the stream pointer yyin, although possibly via an intermediate buffer. Thus, once scanning
has begun, the effect of altering the value of yyin is undefined. The character read shall be
removed from the input stream of the scanner without any processing by the scanner.

int unput(int c)
Returns the character ’c’ to the input; yytext and yyleng are undefined until the next
expression is matched. The result of using unput() for more characters than have been input
is unspecified.

The following functions shall appear only in the lex library accessible through the −l l operand;
they can therefore be redefined by a conforming application:

int yywrap(void)
Called by yylex() at end-of-file; the default yywrap() shall always return 1. If the application
requires yylex() to continue processing with another source of input, then the application
can include a function yywrap(), which associates another file with the external variable
FILE * yyin and shall return a value of zero.

int main(int argc, char *argv[])
Calls yylex() to perform lexical analysis, then exits. The user code can contain main() to
perform application-specific operations, calling yylex() as applicable.

Except for input(), unput(), and main(), all external and static names generated by lex shall begin
with the prefix yy or YY.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Conforming applications are warned that in the Rules section, an ERE without an action is not
acceptable, but need not be detected as erroneous by lex. This may result in compilation or
runtime errors.

The purpose of input() is to take characters off the input stream and discard them as far as the
lexical analysis is concerned. A common use is to discard the body of a comment once the
beginning of a comment is recognized.

The lex utility is not fully internationalized in its treatment of regular expressions in the lex
source code or generated lexical analyzer. It would seem desirable to have the lexical analyzer
interpret the regular expressions given in the lex source according to the environment specified
when the lexical analyzer is executed, but this is not possible with the current lex technology.
Furthermore, the very nature of the lexical analyzers produced by lex must be closely tied to the
lexical requirements of the input language being described, which is frequently locale-specific
anyway. (For example, writing an analyzer that is used for French text is not automatically
useful for processing other languages.)

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2833

92580

92581

92582

92583

92584

92585

92586

92587

92588

92589

92590

92591

92592

92593

92594

92595

92596

92597

92598

92599

92600

92601

92602

92603

92604

92605

92606

92607

92608

92609

92610

92611

92612

92613

92614

92615

92616

92617

92618

92619

92620

92621

lex Utilities

EXAMPLES
The following is an example of a lex program that implements a rudimentary scanner for a
Pascal-like syntax:

%{
/* Need this for the call to atof() below. */
#include <math.h>
/* Need this for printf(), fopen(), and stdin below. */
#include <stdio.h>
%}

DIGIT [0−9]
ID [a−z][a−z0−9]*

%%

{DIGIT}+ {
printf("An integer: %s (%d)\n", yytext,

atoi(yytext));
}

{DIGIT}+"."{DIGIT}* {
printf("A float: %s (%g)\n", yytext,

atof(yytext));
}

if|then|begin|end|procedure|function {
printf("A keyword: %s\n", yytext);
}

{ID} printf("An identifier: %s\n", yytext);

"+"|"−"|"*"|"/" printf("An operator: %s\n", yytext);

"{"[ˆ}\n]*"}" /* Eat up one-line comments. */

[\t\n]+ /* Eat up white space. */

. printf("Unrecognized character: %s\n", yytext);

%%

int main(int argc, char *argv[])
{

++argv, − −argc; /* Skip over program name. */
if (argc > 0)

yyin = fopen(argv[0], "r");
else

yyin = stdin;

yylex();
}

RATIONALE
Even though the −c option and references to the C language are retained in this description, lex
may be generalized to other languages, as was done at one time for EFL, the Extended
FORTRAN Language. Since the lex input specification is essentially language-independent,
versions of this utility could be written to produce Ada, Modula-2, or Pascal code, and there are
known historical implementations that do so.

2834 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

92622

92623

92624

92625

92626

92627

92628

92629

92630

92631

92632

92633

92634

92635

92636

92637

92638

92639

92640

92641

92642

92643

92644

92645

92646

92647

92648

92649

92650

92651

92652

92653

92654

92655

92656

92657

92658

92659

92660

92661

92662

92663

92664

92665

Utilities lex

The current description of lex bypasses the issue of dealing with internationalized EREs in the lex
source code or generated lexical analyzer. If it follows the model used by awk (the source code is
assumed to be presented in the POSIX locale, but input and output are in the locale specified by
the environment variables), then the tables in the lexical analyzer produced by lex would
interpret EREs specified in the lex source in terms of the environment variables specified when
lex was executed. The desired effect would be to have the lexical analyzer interpret the EREs
given in the lex source according to the environment specified when the lexical analyzer is
executed, but this is not possible with the current lex technology.

The description of octal and hexadecimal-digit escape sequences agrees with the ISO C standard
use of escape sequences.

Earlier versions of this standard allowed for implementations with bytes other than eight bits,
but this has been modified in this version.

There is no detailed output format specification. The observed behavior of lex under four
different historical implementations was that none of these implementations consistently
reported the line numbers for error and warning messages. Furthermore, there was a desire that
lex be allowed to output additional diagnostic messages. Leaving message formats unspecified
avoids these formatting questions and problems with internationalization.

Although the %x specifier for exclusive start conditions is not historical practice, it is believed to
be a minor change to historical implementations and greatly enhances the usability of lex
programs since it permits an application to obtain the expected functionality with fewer
statements.

The %array and %pointer declarations were added as a compromise between historical systems.
The System V-based lex copies the matched text to a yytext array. The flex program, supported in
BSD and GNU systems, uses a pointer. In the latter case, significant performance improvements
are available for some scanners. Most historical programs should require no change in porting
from one system to another because the string being referenced is null-terminated in both cases.
(The method used by flex in its case is to null-terminate the token in place by remembering the
character that used to come right after the token and replacing it before continuing on to the next
scan.) Multi-file programs with external references to yytext outside the scanner source file
should continue to operate on their historical systems, but would require one of the new
declarations to be considered strictly portable.

The description of EREs avoids unnecessary duplication of ERE details because their meanings
within a lex ERE are the same as that for the ERE in this volume of POSIX.1-2008.

The reason for the undefined condition associated with text beginning with a <blank> or within
"%{" and "%}" delimiter lines appearing in the Rules section is historical practice. Both the BSD
and System V lex copy the indented (or enclosed) input in the Rules section (except at the
beginning) to unreachable areas of the yylex() function (the code is written directly after a break
statement). In some cases, the System V lex generates an error message or a syntax error,
depending on the form of indented input.

The intention in breaking the list of functions into those that may appear in lex.yy.c versus those
that only appear in libl.a is that only those functions in libl.a can be reliably redefined by a
conforming application.

The descriptions of standard output and standard error are somewhat complicated because
historical lex implementations chose to issue diagnostic messages to standard output (unless −t
was given). POSIX.1-2008 allows this behavior, but leaves an opening for the more expected
behavior of using standard error for diagnostics. Also, the System V behavior of writing the
statistics when any table sizes are given is allowed, while BSD-derived systems can avoid it. The

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2835

92666

92667

92668

92669

92670

92671

92672

92673

92674

92675

92676

92677

92678

92679

92680

92681

92682

92683

92684

92685

92686

92687

92688

92689

92690

92691

92692

92693

92694

92695

92696

92697

92698

92699

92700

92701

92702

92703

92704

92705

92706

92707

92708

92709

92710

92711

92712

lex Utilities

programmer can always precisely obtain the desired results by using either the −t or −n options.

The OPERANDS section does not mention the use of − as a synonym for standard input; not all
historical implementations support such usage for any of the file operands.

A description of the translation table was deleted from early proposals because of its relatively
low usage in historical applications.

The change to the definition of the input() function that allows buffering of input presents the
opportunity for major performance gains in some applications.

The following examples clarify the differences between lex regular expressions and regular
expressions appearing elsewhere in this volume of POSIX.1-2008. For regular expressions of the
form "r/x", the string matching r is always returned; confusion may arise when the beginning
of x matches the trailing portion of r. For example, given the regular expression "a*b/cc" and
the input "aaabcc", yytext would contain the string "aaab" on this match. But given the
regular expression "x*/xy" and the input "xxxy", the token xxx, not xx, is returned by some
implementations because xxx matches "x*".

In the rule "ab*/bc", the "b*" at the end of r extends r’s match into the beginning of the
trailing context, so the result is unspecified. If this rule were "ab/bc", however, the rule
matches the text "ab" when it is followed by the text "bc". In this latter case, the matching of r
cannot extend into the beginning of x, so the result is specified.

FUTURE DIRECTIONS
None.

SEE ALSO
c99 , ed , yacc

XBD Chapter 5 (on page 121), Chapter 8 (on page 173), Chapter 9 (on page 181), Section 12.2 (on
page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the C-Language Development Utilities option.

The obsolescent −c option is removed.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/14 is applied, removing text describing
behavior on systems with bytes consisting of more than eight bits.

Issue 7
Austin Group Interpretation 1003.1-2001 #190 is applied, clarifying the requirements for
generated code to conform to the ISO C standard.

Austin Group Interpretation 1003.1-2001 #191 is applied, clarifying the handling of C-language
trigraphs and curly brace preprocessing tokens.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax Guidelines does not
apply.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2836 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

92713

92714

92715

92716

92717

92718

92719

92720

92721

92722

92723

92724

92725

92726

92727

92728

92729

92730

92731

92732

92733

92734

92735

92736

92737

92738

92739

92740

92741

92742

92743

92744

92745

92746

92747

92748

92749

92750

92751

92752

Utilities link

NAME
link — call link() function

SYNOPSIS
XSI link file1 file2

DESCRIPTION
The link utility shall perform the function call:

link(file1, file2);

A user may need appropriate privileges to invoke the link utility.

OPTIONS
None.

OPERANDS
The following operands shall be supported:

file1 The pathname of an existing file.

file2 The pathname of the new directory entry to be created.

STDIN
Not used.

INPUT FILES
Not used.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of link:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
None.

STDERR
The standard error shall be used only for diagnostic messages.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2837

92753

92754

92755

92756

92757

92758

92759

92760

92761

92762

92763

92764

92765

92766

92767

92768

92769

92770

92771

92772

92773

92774

92775

92776

92777

92778

92779

92780

92781

92782

92783

92784

92785

92786

92787

92788

92789

92790

link Utilities

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ln , unlink

XBD Chapter 8 (on page 173)

XSH link()

CHANGE HISTORY
First released in Issue 5.

2838 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

92791

92792

92793

92794

92795

92796

92797

92798

92799

92800

92801

92802

92803

92804

92805

92806

92807

92808

92809

92810

92811

92812

92813

92814

Utilities ln

NAME
ln — link files

SYNOPSIS
ln [−fs] [−L|−P] source_file target_file

ln [−fs] [−L|−P] source_file... target_dir

DESCRIPTION
In the first synopsis form, the ln utility shall create a new directory entry (link) at the destination
path specified by the target_file operand. If the −s option is specified, a symbolic link shall be
created for the file specified by the source_file operand. This first synopsis form shall be assumed
when the final operand does not name an existing directory; if more than two operands are
specified and the final is not an existing directory, an error shall result.

In the second synopsis form, the ln utility shall create a new directory entry (link), or if the −s
option is specified a symbolic link, for each file specified by a source_file operand, at a
destination path in the existing directory named by target_dir.

If the last operand specifies an existing file of a type not specified by the System Interfaces
volume of POSIX.1-2008, the behavior is implementation-defined.

The corresponding destination path for each source_file shall be the concatenation of the target
directory pathname, a <slash> character if the target directory pathname did not end in a
<slash>, and the last pathname component of the source_file. The second synopsis form shall be
assumed when the final operand names an existing directory.

For each source_file:

1. If the destination path exists and was created by a previous step, it is unspecified whether
ln shall write a diagnostic message to standard error, do nothing more with the current
source_file, and go on to any remaining source_files; or will continue processing the current
source_file. If the destination path exists:

a. If the −f option is not specified, ln shall write a diagnostic message to standard
error, do nothing more with the current source_file, and go on to any remaining
source_files.

b. If destination names the same directory entry as the current source_file ln shall write
a diagnostic message to standard error, do nothing more with the current
source_file, and go on to any remaining source_files.

c. Actions shall be performed equivalent to the unlink() function defined in the
System Interfaces volume of POSIX.1-2008, called using destination as the path
argument. If this fails for any reason, ln shall write a diagnostic message to
standard error, do nothing more with the current source_file, and go on to any
remaining source_files.

2. If the −s option is specified, ln shall create a symbolic link named by the destination path
and containing as its pathname source_file. The ln utility shall do nothing more with
source_file and shall go on to any remaining files.

3. If source_file is a symbolic link:

a. If the −P option is in effect, actions shall be performed equivalent to the linkat()
function with source_file as the path1 argument, the destination path as the path2
argument, AT_FDCWD as the fd1 and fd2 arguments, and zero as the flag
argument.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2839

92815

92816

92817

92818

92819

92820

92821

92822

92823

92824

92825

92826

92827

92828

92829

92830

92831

92832

92833

92834

92835

92836

92837

92838

92839

92840

92841

92842

92843

92844

92845

92846

92847

92848

92849

92850

92851

92852

92853

92854

92855

92856

92857

92858

ln Utilities

b. If the −L option is in effect, actions shall be performed equivalent to the linkat()
function with source_file as the path1 argument, the destination path as the path2
argument, AT_FDCWD as the fd1 and fd2 arguments, and
AT_SYMLINK_FOLLOW as the flag argument.

The ln utility shall do nothing more with source_file and shall go on to any remaining files.

4. Actions shall be performed equivalent to the link() function defined in the System
Interfaces volume of POSIX.1-2008 using source_file as the path1 argument, and the
destination path as the path2 argument.

OPTIONS
The ln utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−f Force existing destination pathnames to be removed to allow the link.

−L For each source_file operand that names a file of type symbolic link, create a (hard)
link to the file referenced by the symbolic link.

−P For each source_file operand that names a file of type symbolic link, create a (hard)
link to the symbolic link itself.

−s Create symbolic links instead of hard links. If the −s option is specified, the −L and
−P options shall be silently ignored.

Specifying more than one of the mutually-exclusive options −L and −P shall not be considered
an error. The last option specified shall determine the behavior of the utility (unless the −s
option causes it to be ignored).

If the −s option is not specified and neither a −L nor a −P option is specified, it is
implementation-defined which of the −L and −P options will be used as the default.

OPERANDS
The following operands shall be supported:

source_file A pathname of a file to be linked. If the −s option is specified, no restrictions on the
type of file or on its existence shall be made. If the −s option is not specified,
whether a directory can be linked is implementation-defined.

target_file The pathname of the new directory entry to be created.

target_dir A pathname of an existing directory in which the new directory entries are created.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ln:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

2840 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

92859

92860

92861

92862

92863

92864

92865

92866

92867

92868

92869

92870

92871

92872

92873

92874

92875

92876

92877

92878

92879

92880

92881

92882

92883

92884

92885

92886

92887

92888

92889

92890

92891

92892

92893

92894

92895

92896

92897

92898

92899

Utilities ln

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All the specified files were linked successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The CONSEQUENCES OF ERRORS section does not require ln −f a b to remove b if a
subsequent link operation would fail.

Some historic versions of ln (including the one specified by the SVID) unlink the destination file,
if it exists, by default. If the mode does not permit writing, these versions prompt for
confirmation before attempting the unlink. In these versions the −f option causes ln not to
attempt to prompt for confirmation.

This allows ln to succeed in creating links when the target file already exists, even if the file itself
is not writable (although the directory must be). Early proposals specified this functionality.

This volume of POSIX.1-2008 does not allow the ln utility to unlink existing destination paths by
default for the following reasons:

• The ln utility has historically been used to provide locking for shell applications, a usage
that is incompatible with ln unlinking the destination path by default. There was no
corresponding technical advantage to adding this functionality.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2841

92900

92901

92902

92903

92904

92905

92906

92907

92908

92909

92910

92911

92912

92913

92914

92915

92916

92917

92918

92919

92920

92921

92922

92923

92924

92925

92926

92927

92928

92929

92930

92931

92932

92933

92934

92935

92936

92937

92938

92939

92940

ln Utilities

• This functionality gave ln the ability to destroy the link structure of files, which changes
the historical behavior of ln.

• This functionality is easily replicated with a combination of rm and ln.

• It is not historical practice in many systems; BSD and BSD-derived systems do not support
this behavior. Unfortunately, whichever behavior is selected can cause scripts written
expecting the other behavior to fail.

• It is preferable that ln perform in the same manner as the link() function, which does not
permit the target to exist already.

This volume of POSIX.1-2008 retains the −f option to provide support for shell scripts depending
on the SVID semantics. It seems likely that shell scripts would not be written to handle
prompting by ln and would therefore have specified the −f option.

The −f option is an undocumented feature of many historical versions of the ln utility, allowing
linking to directories. These versions require modification.

Early proposals of this volume of POSIX.1-2008 also required a −i option, which behaved like the
−i options in cp and mv, prompting for confirmation before unlinking existing files. This was not
historical practice for the ln utility and has been omitted.

The −L and −P options allow for implementing both common behaviors of the ln utility. Earlier
versions of this standard did not specify these options and required the behavior now described
for the −L option. Many systems by default or as an alternative provided a non-conforming ln
utility with the behavior now described for the −P option. Since applications could not rely on ln
following links in practice, the −L and −P options were added to specify the desired behavior for
the application.

The −L and −P options are ignored when −s is specified in order to allow an alias to be created to
alter the default behavior when creating hard links (for example, alias ln=’ln −L’). They serve no
purpose when −s is specified, since source_file is then just a string to be used as the contents of
the created symbolic link and need not exist as a file.

The specification ensures that ln a a with or without the −f option will not unlink the file a.
Earlier versions of this standard were unclear in this case.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod , find , pax , rm

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH link(), unlink()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The ln utility is updated to include symbolic link processing as defined in the IEEE P1003.2b
draft standard.

Issue 7
Austin Group Interpretations 1003.1-2001 #164, #168, and #169 are applied.

SD5-XCU-ERN-27 is applied, adding a new paragraph to the RATIONALE.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2842 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

92941

92942

92943

92944

92945

92946

92947

92948

92949

92950

92951

92952

92953

92954

92955

92956

92957

92958

92959

92960

92961

92962

92963

92964

92965

92966

92967

92968

92969

92970

92971

92972

92973

92974

92975

92976

92977

92978

92979

92980

92981

92982

92983

Utilities ln

The −L and −P options are added to make it implementation-defined whether the ln utility
follows symbolic links.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2843

92984

92985

locale Utilities

NAME
locale — get locale-specific information

SYNOPSIS
locale [−a|−m]

locale [−ck] name...

DESCRIPTION
The locale utility shall write information about the current locale environment, or all public
locales, to the standard output. For the purposes of this section, a public locale is one provided by
the implementation that is accessible to the application.

When locale is invoked without any arguments, it shall summarize the current locale
environment for each locale category as determined by the settings of the environment variables
defined in XBD Chapter 7 (on page 135).

When invoked with operands, it shall write values that have been assigned to the keywords in
the locale categories, as follows:

• Specifying a keyword name shall select the named keyword and the category containing
that keyword.

• Specifying a category name shall select the named category and all keywords in that
category.

OPTIONS
The locale utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a Write information about all available public locales. The available locales shall
include POSIX, representing the POSIX locale. The manner in which the
implementation determines what other locales are available is implementation-
defined.

−c Write the names of selected locale categories; see the STDOUT section. The −c
option increases readability when more than one category is selected (for example,
via more than one keyword name or via a category name). It is valid both with
and without the −k option.

−k Write the names and values of selected keywords. The implementation may omit
values for some keywords; see the OPERANDS section.

−m Write names of available charmaps; see XBD Section 6.1 (on page 125).

OPERANDS
The following operand shall be supported:

name The name of a locale category as defined in XBD Chapter 7 (on page 135), the name
of a keyword in a locale category, or the reserved name charmap. The named
category or keyword shall be selected for output. If a single name represents both a
locale category name and a keyword name in the current locale, the results are
unspecified. Otherwise, both category and keyword names can be specified as
name operands, in any sequence. It is implementation-defined whether any
keyword values are written for the categories LC_CTYPE and LC_COLLATE.

2844 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

92986

92987

92988

92989

92990

92991

92992

92993

92994

92995

92996

92997

92998

92999

93000

93001

93002

93003

93004

93005

93006

93007

93008

93009

93010

93011

93012

93013

93014

93015

93016

93017

93018

93019

93020

93021

93022

93023

93024

93025

93026

Utilities locale

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of locale:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

XSI The application shall ensure that the LANG, LC_*, and NLSPATH environment variables specify
the current locale environment to be written out; they shall be used if the −a option is not
specified.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The LANG variable shall be written first using the format:

"LANG=%s\n", <value>

If LANG is not set or is an empty string, the value is the empty string.

If locale is invoked without any options or operands, the names and values of the LC_*
environment variables described in this volume of POSIX.1-2008 shall be written to the standard
output, one variable per line, and each line using the following format. Only those variables set
in the environment and not overridden by LC_ALL shall be written using this format:

"%s=%s\n", <variable_name>, <value>

The names of those LC_* variables associated with locale categories defined in this volume of
POSIX.1-2008 that are not set in the environment or are overridden by LC_ALL shall be written
in the following format:

"%s=\"%s\"\n", <variable_name>, <implied value>

The <implied value> shall be the name of the locale that has been selected for that category by the
implementation, based on the values in LANG and LC_ALL, as described in XBD Chapter 8 (on
page 173).

The <value> and <implied value> shown above shall be properly quoted for possible later reentry
to the shell. The <value> shall not be quoted using double-quotes (so that it can be distinguished
by the user from the <implied value> case, which always requires double-quotes).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2845

93027

93028

93029

93030

93031

93032

93033

93034

93035

93036

93037

93038

93039

93040

93041

93042

93043

93044

93045

93046

93047

93048

93049

93050

93051

93052

93053

93054

93055

93056

93057

93058

93059

93060

93061

93062

93063

93064

93065

93066

93067

93068

locale Utilities

The LC_ALL variable shall be written last, using the first format shown above. If it is not set, it
shall be written as:

"LC_ALL=\n"

If any arguments are specified:

1. If the −a option is specified, the names of all the public locales shall be written, each in the
following format:

"%s\n", <locale name>

2. If the −c option is specified, the names of all selected categories shall be written, each in
the following format:

"%s\n", <category name>

If keywords are also selected for writing (see following items), the category name output
shall precede the keyword output for that category.

If the −c option is not specified, the names of the categories shall not be written; only the
keywords, as selected by the <name> operand, shall be written.

3. If the −k option is specified, the names and values of selected keywords shall be written.
If a value is non-numeric and is not a compound keyword value, it shall be written in the
following format:

"%s=\"%s\"\n", <keyword name>, <keyword value>

If a value is a non-numeric compound keyword value, it shall either be written in the
format:

"%s=\"%s\"\n", <keyword name>, <keyword value>

where the <keyword value> is a single string of values separated by <semicolon>
characters, or it shall be written in the format:

"%s=%s\n", <keyword name>, <keyword value>

where the <keyword value> is encoded as a set of strings, each enclosed in double-
quotation-marks, separated by <semicolon> characters.

If the keyword was charmap, the name of the charmap (if any) that was specified via the
localedef −f option when the locale was created shall be written, with the word charmap as
<keyword name>.

If a value is numeric, it shall be written in one of the following formats:

"%s=%d\n", <keyword name>, <keyword value>

"%s=%c%o\n", <keyword name>, <escape character>, <keyword value>

"%s=%cx%x\n", <keyword name>, <escape character>, <keyword value>

where the <escape character> is that identified by the escape_char keyword in the current
locale; see XBD Section 7.3 (on page 136).

Compound keyword values (list entries) shall be separated in the output by <semicolon>
characters. When included in keyword values, the <semicolon>, <backslash>, double-
quote, and any control character shall be preceded (escaped) with the escape character.

2846 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

93069

93070

93071

93072

93073

93074

93075

93076

93077

93078

93079

93080

93081

93082

93083

93084

93085

93086

93087

93088

93089

93090

93091

93092

93093

93094

93095

93096

93097

93098

93099

93100

93101

93102

93103

93104

93105

93106

Utilities locale

4. If the −k option is not specified, selected keyword values shall be written, each in the
following format:

"%s\n", <keyword value>

If the keyword was charmap, the name of the charmap (if any) that was specified via the
localedef −f option when the locale was created shall be written.

5. If the −m option is specified, then a list of all available charmaps shall be written, each in
the format:

"%s\n", <charmap>

where <charmap> is in a format suitable for use as the option-argument to the localedef −f
option.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All the requested information was found and output successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
If the LANG environment variable is not set or set to an empty value, or one of the LC_*
environment variables is set to an unrecognized value, the actual locales assumed (if any) are
implementation-defined as described in XBD Chapter 8 (on page 173).

Implementations are not required to write out the actual values for keywords in the categories
LC_CTYPE and LC_COLLATE; however, they must write out the categories (allowing an
application to determine, for example, which character classes are available).

EXAMPLES
In the following examples, the assumption is that locale environment variables are set as
follows:

LANG=locale_x
LC_COLLATE=locale_y

The command locale would result in the following output:

LANG=locale_x
LC_CTYPE="locale_x"
LC_COLLATE=locale_y
LC_TIME="locale_x"
LC_NUMERIC="locale_x"
LC_MONETARY="locale_x"
LC_MESSAGES="locale_x"
LC_ALL=

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2847

93107

93108

93109

93110

93111

93112

93113

93114

93115

93116

93117

93118

93119

93120

93121

93122

93123

93124

93125

93126

93127

93128

93129

93130

93131

93132

93133

93134

93135

93136

93137

93138

93139

93140

93141

93142

93143

93144

93145

93146

93147

93148

93149

locale Utilities

The order of presentation of the categories is not specified by this volume of POSIX.1-2008.

The command:

LC_ALL=POSIX locale −ck decimal_point

would produce:

LC_NUMERIC
decimal_point="."

The following command shows an application of locale to determine whether a user-supplied
response is affirmative:

if printf "%s\n" "$response" | grep −Eq "$(locale yesexpr)"
then

affirmative processing goes here
else

non-affirmative processing goes here
fi

RATIONALE
The output for categories LC_CTYPE and LC_COLLATE has been made implementation-defined
because there is a questionable value in having a shell script receive an entire array of characters.
It is also difficult to return a logical collation description, short of returning a complete localedef
source.

The −m option was included to allow applications to query for the existence of charmaps. The
output is a list of the charmaps (implementation-supplied and user-supplied, if any) on the
system.

The −c option was included for readability when more than one category is selected (for
example, via more than one keyword name or via a category name). It is valid both with and
without the −k option.

The charmap keyword, which returns the name of the charmap (if any) that was used when the
current locale was created, was included to allow applications needing the information to
retrieve it.

FUTURE DIRECTIONS
None.

SEE ALSO
localedef

XBD Section 6.1 (on page 125), Chapter 7 (on page 135), Chapter 8 (on page 173), Section 12.2 (on
page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/30 is applied, correcting an editorial error
in the STDOUT section.

2848 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

93150

93151

93152

93153

93154

93155

93156

93157

93158

93159

93160

93161

93162

93163

93164

93165

93166

93167

93168

93169

93170

93171

93172

93173

93174

93175

93176

93177

93178

93179

93180

93181

93182

93183

93184

93185

93186

93187

93188

93189

93190

93191

Utilities locale

Issue 7
Austin Group Interpretations 1003.1-2001 #017, #021, and #088 are applied, clarifying the
standard output for the −k option when LANG is not set or is an empty string.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2849

93192

93193

93194

93195

localedef Utilities

NAME
localedef — define locale environment

SYNOPSIS
localedef [−c] [−f charmap] [−i sourcefile] [−u code_set_name] name

DESCRIPTION
The localedef utility shall convert source definitions for locale categories into a format usable by
the functions and utilities whose operational behavior is determined by the setting of the locale
environment variables defined in XBD Chapter 7 (on page 135). It is implementation-defined
whether users have the capability to create new locales, in addition to those supplied by the
implementation. If the symbolic constant POSIX2_LOCALEDEF is defined, the system supports

XSI the creation of new locales. On XSI-conformant systems, the symbolic constant
POSIX2_LOCALEDEF shall be defined.

The utility shall read source definitions for one or more locale categories belonging to the same
locale from the file named in the −i option (if specified) or from standard input.

The name operand identifies the target locale. The utility shall support the creation of public, or
generally accessible locales, as well as private, or restricted-access locales. Implementations may
restrict the capability to create or modify public locales to users with appropriate privileges.

Each category source definition shall be identified by the corresponding environment variable
name and terminated by an END category-name statement. The following categories shall be
supported. In addition, the input may contain source for implementation-defined categories.

LC_CTYPE Defines character classification and case conversion.

LC_COLLATE
Defines collation rules.

LC_MONETARY
Defines the format and symbols used in formatting of monetary information.

LC_NUMERIC
Defines the decimal delimiter, grouping, and grouping symbol for non-monetary
numeric editing.

LC_TIME Defines the format and content of date and time information.

LC_MESSAGES
Defines the format and values of affirmative and negative responses.

OPTIONS
The localedef utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−c Create permanent output even if warning messages have been issued.

−f charmap Specify the pathname of a file containing a mapping of character symbols and
collating element symbols to actual character encodings. The format of the
charmap is described in XBD Section 6.4 (on page 129). The application shall ensure
that this option is specified if symbolic names (other than collating symbols
defined in a collating-symbol keyword) are used. If the −f option is not present, an
implementation-defined character mapping shall be used.

−i inputfile The pathname of a file containing the source definitions. If this option is not
present, source definitions shall be read from standard input. The format of the
inputfile is described in XBD Section 7.3 (on page 136).

2850 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

93196

93197

93198

93199

93200

93201

93202

93203

93204

93205

93206

93207

93208

93209

93210

93211

93212

93213

93214

93215

93216

93217

93218

93219

93220

93221

93222

93223

93224

93225

93226

93227

93228

93229

93230

93231

93232

93233

93234

93235

93236

93237

93238

93239

Utilities localedef

−u code_set_name
Specify the name of a codeset used as the target mapping of character symbols and
collating element symbols whose encoding values are defined in terms of the
ISO/IEC 10646-1: 2000 standard position constant values.

OPERANDS
The following operand shall be supported:

name Identifies the locale; see XBD Chapter 7 (on page 135) for a description of the use of
this name. If the name contains one or more <slash> characters, name shall be
interpreted as a pathname where the created locale definitions shall be stored. If
name does not contain any <slash> characters, the interpretation of the name is
implementation-defined and the locale shall be public. The ability to create public
locales in this way may be restricted to users with appropriate privileges. (As a
consequence of specifying one name, although several categories can be processed
in one execution, only categories belonging to the same locale can be processed.)

STDIN
Unless the −i option is specified, the standard input shall be a text file containing one or more
locale category source definitions, as described in XBD Section 7.3 (on page 136). When lines are
continued using the escape character mechanism, there is no limit to the length of the
accumulated continued line.

INPUT FILES
The character set mapping file specified as the charmap option-argument is described in XBD
Section 6.4 (on page 129). If a locale category source definition contains a copy statement, as
defined in XBD Chapter 7 (on page 135), and the copy statement names a valid, existing locale,
then localedef shall behave as if the source definition had contained a valid category source
definition for the named locale.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of localedef:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
(This variable has no affect on localedef; the POSIX locale is used for this category.)

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files). This variable has no affect on the processing of localedef
input data; the POSIX locale is used for this purpose, regardless of the value of this
variable.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2851

93240

93241

93242

93243

93244

93245

93246

93247

93248

93249

93250

93251

93252

93253

93254

93255

93256

93257

93258

93259

93260

93261

93262

93263

93264

93265

93266

93267

93268

93269

93270

93271

93272

93273

93274

93275

93276

93277

93278

93279

93280

93281

93282

localedef Utilities

ASYNCHRONOUS EVENTS
Default.

STDOUT
The utility shall report all categories successfully processed, in an unspecified format.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The format of the created output is unspecified. If the name operand does not contain a <slash>,
the existence of an output file for the locale is unspecified.

EXTENDED DESCRIPTION
When the −u option is used, the code_set_name option-argument shall be interpreted as an
implementation-defined name of a codeset to which the ISO/IEC 10646-1: 2000 standard
position constant values shall be converted via an implementation-defined method. Both the
ISO/IEC 10646-1: 2000 standard position constant values and other formats (decimal,
hexadecimal, or octal) shall be valid as encoding values within the charmap file. The codeset
represented by the implementation-defined name can be any codeset that is supported by the
implementation.

When conflicts occur between the charmap specification of <code_set_name>, <mb_cur_max>, or
<mb_cur_min> and the implementation-defined interpretation of these respective items for the
codeset represented by the −u option-argument code_set_name, the result is unspecified.

When conflicts occur between the charmap encoding values specified for symbolic names of
characters of the portable character set and the implementation-defined assignment of character
encoding values, the result is unspecified.

If a non-printable character in the charmap has a width specified that is not −1, the result will be
undefined.

EXIT STATUS
The following exit values shall be returned:

0 No errors occurred and the locales were successfully created.

1 Warnings occurred and the locales were successfully created.

2 The locale specification exceeded implementation limits or the coded character set or sets
used were not supported by the implementation, and no locale was created.

3 The capability to create new locales is not supported by the implementation.

>3 Warnings or errors occurred and no output was created.

CONSEQUENCES OF ERRORS
If an error is detected, no permanent output shall be created.

If warnings occur, permanent output shall be created if the −c option was specified. The
following conditions shall cause warning messages to be issued:

• If a symbolic name not found in the charmap file is used for the descriptions of the
LC_CTYPE or LC_COLLATE categories (for other categories, this shall be an error
condition).

• If the number of operands to the order keyword exceeds the {COLL_WEIGHTS_MAX}
limit.

2852 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

93283

93284

93285

93286

93287

93288

93289

93290

93291

93292

93293

93294

93295

93296

93297

93298

93299

93300

93301

93302

93303

93304

93305

93306

93307

93308

93309

93310

93311

93312

93313

93314

93315

93316

93317

93318

93319

93320

93321

93322

93323

93324

Utilities localedef

• If optional keywords not supported by the implementation are present in the source.

Other implementation-defined conditions may also cause warnings.

APPLICATION USAGE
The charmap definition is optional, and is contained outside the locale definition. This allows
both completely self-defined source files, and generic sources (applicable to more than one
codeset). To aid portability, all charmap definitions must use the same symbolic names for the
portable character set. As explained in XBD Section 6.4 (on page 129), it is implementation-
defined whether or not users or applications can provide additional character set description
files. Therefore, the −f option might be operable only when an implementation-defined charmap
is named.

EXAMPLES
None.

RATIONALE
The output produced by the localedef utility is implementation-defined. The name operand is
used to identify the specific locale. (As a consequence, although several categories can be
processed in one execution, only categories belonging to the same locale can be processed.)

FUTURE DIRECTIONS
None.

SEE ALSO
locale

XBD Section 6.4 (on page 129), Chapter 7 (on page 135), Chapter 8 (on page 173), Section 12.2 (on
page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
The −u option is added, as specified in the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/15 is applied, rewording text in the
OPERANDS section describing the ability to create public locales.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/16 is applied, making the text consistent
with the descriptions of WIDTH and WIDTH_DEFAULT in the Base Definitions volume of
POSIX.1-2008.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2853

93325

93326

93327

93328

93329

93330

93331

93332

93333

93334

93335

93336

93337

93338

93339

93340

93341

93342

93343

93344

93345

93346

93347

93348

93349

93350

93351

93352

93353

93354

93355

93356

93357

93358

logger Utilities

NAME
logger — log messages

SYNOPSIS
logger string...

DESCRIPTION
The logger utility saves a message, in an unspecified manner and format, containing the string
operands provided by the user. The messages are expected to be evaluated later by personnel
performing system administration tasks.

It is implementation-defined whether messages written in locales other than the POSIX locale
are effective.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

string One of the string arguments whose contents are concatenated together, in the order
specified, separated by single <space> characters.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of logger:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error. (This means diagnostics from logger
to the user or application, not diagnostic messages that the user is sending to the
system administrator.)

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

2854 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

93359

93360

93361

93362

93363

93364

93365

93366

93367

93368

93369

93370

93371

93372

93373

93374

93375

93376

93377

93378

93379

93380

93381

93382

93383

93384

93385

93386

93387

93388

93389

93390

93391

93392

93393

93394

93395

93396

93397

93398

Utilities logger

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
Unspecified.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility allows logging of information for later use by a system administrator or programmer
in determining why non-interactive utilities have failed. The locations of the saved messages,
their format, and retention period are all unspecified. There is no method for a conforming
application to read messages, once written.

EXAMPLES
A batch application, running non-interactively, tries to read a configuration file and fails; it may
attempt to notify the system administrator with:

logger myname: unable to read file foo. [timestamp]

RATIONALE
The standard developers believed strongly that some method of alerting administrators to errors
was necessary. The obvious example is a batch utility, running non-interactively, that is unable to
read its configuration files or that is unable to create or write its results file. However, the
standard developers did not wish to define the format or delivery mechanisms as they have
historically been (and will probably continue to be) very system-specific, as well as involving
functionality clearly outside the scope of this volume of POSIX.1-2008.

The text with LC_MESSAGES about diagnostic messages means diagnostics from logger to the
user or application, not diagnostic messages that the user is sending to the system administrator.

Multiple string arguments are allowed, similar to echo, for ease-of-use.

Like the utilities mailx and lp, logger is admittedly difficult to test. This was not deemed sufficient
justification to exclude these utilities from this volume of POSIX.1-2008. It is also arguable that
they are, in fact, testable, but that the tests themselves are not portable.

FUTURE DIRECTIONS
None.

SEE ALSO
lp , mailx , write

XBD Chapter 8 (on page 173)

CHANGE HISTORY
First released in Issue 4.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2855

93399

93400

93401

93402

93403

93404

93405

93406

93407

93408

93409

93410

93411

93412

93413

93414

93415

93416

93417

93418

93419

93420

93421

93422

93423

93424

93425

93426

93427

93428

93429

93430

93431

93432

93433

93434

93435

93436

93437

93438

93439

logger Utilities

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2856 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

93440

93441

Utilities logname

NAME
logname — return the user’s login name

SYNOPSIS
logname

DESCRIPTION
The logname utility shall write the user’s login name to standard output. The login name shall be
the string that would be returned by the getlogin() function defined in the System Interfaces
volume of POSIX.1-2008. Under the conditions where the getlogin() function would fail, the
logname utility shall write a diagnostic message to standard error and exit with a non-zero exit
status.

OPTIONS
None.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of logname:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The logname utility output shall be a single line consisting of the user’s login name:

"%s\n", <login name>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2857

93442

93443

93444

93445

93446

93447

93448

93449

93450

93451

93452

93453

93454

93455

93456

93457

93458

93459

93460

93461

93462

93463

93464

93465

93466

93467

93468

93469

93470

93471

93472

93473

93474

93475

93476

93477

93478

93479

93480

93481

93482

logname Utilities

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The logname utility explicitly ignores the LOGNAME environment variable because environment
changes could produce erroneous results.

EXAMPLES
None.

RATIONALE
The passwd file is not listed as required because the implementation may have other means of
mapping login names.

FUTURE DIRECTIONS
None.

SEE ALSO
id , who

XBD Chapter 8 (on page 173)

XSH getlogin()

CHANGE HISTORY
First released in Issue 2.

2858 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

93483

93484

93485

93486

93487

93488

93489

93490

93491

93492

93493

93494

93495

93496

93497

93498

93499

93500

93501

93502

93503

93504

93505

93506

Utilities lp

NAME
lp — send files to a printer

SYNOPSIS
lp [−c] [−d dest] [−n copies] [−msw] [−o option]... [−t title] [file...]

DESCRIPTION
The lp utility shall copy the input files to an output destination in an unspecified manner. The
default output destination should be to a hardcopy device, such as a printer or microfilm
recorder, that produces non-volatile, human-readable documents. If such a device is not
available to the application, or if the system provides no such device, the lp utility shall exit with
a non-zero exit status.

The actual writing to the output device may occur some time after the lp utility successfully
exits. During the portion of the writing that corresponds to each input file, the implementation
shall guarantee exclusive access to the device.

The lp utility shall associate a unique request ID with each request.

Normally, a banner page is produced to separate and identify each print job. This page may be
suppressed by implementation-defined conditions, such as an operator command or one of the
−o option values.

OPTIONS
The lp utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−c Exit only after further access to any of the input files is no longer required. The
application can then safely delete or modify the files without affecting the output
operation. Normally, files are not copied, but are linked whenever possible. If the
−c option is not given, then the user should be careful not to remove any of the
files before the request has been printed in its entirety. It should also be noted that
in the absence of the −c option, any changes made to the named files after the
request is made but before it is printed may be reflected in the printed output. On
some implementations, −c may be on by default.

−d dest Specify a string that names the destination (dest). If dest is a printer, the request
shall be printed only on that specific printer. If dest is a class of printers, the request
shall be printed on the first available printer that is a member of the class. Under
certain conditions (printer unavailability, file space limitation, and so on), requests
for specific destinations need not be accepted. Destination names vary between
systems.

If −d is not specified, and neither the LPDEST nor PRINTER environment variable
is set, an unspecified destination is used. The −d dest option shall take precedence
over LPDEST, which in turn shall take precedence over PRINTER. Results are
undefined when dest contains a value that is not a valid destination name.

−m Send mail (see mailx) after the files have been printed. By default, no mail is sent
upon normal completion of the print request.

−n copies Write copies number of copies of the files, where copies is a positive decimal integer.
The methods for producing multiple copies and for arranging the multiple copies
when multiple file operands are used are unspecified, except that each file shall be
output as an integral whole, not interleaved with portions of other files.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2859

93507

93508

93509

93510

93511

93512

93513

93514

93515

93516

93517

93518

93519

93520

93521

93522

93523

93524

93525

93526

93527

93528

93529

93530

93531

93532

93533

93534

93535

93536

93537

93538

93539

93540

93541

93542

93543

93544

93545

93546

93547

93548

93549

93550

lp Utilities

−o option Specify printer-dependent or class-dependent options. Several such options may be
collected by specifying the −o option more than once.

−s Suppress messages from lp.

−t title Write title on the banner page of the output.

−w Write a message on the user’s terminal after the files have been printed. If the user
is not logged in, then mail shall be sent instead.

OPERANDS
The following operand shall be supported:

file A pathname of a file to be output. If no file operands are specified, or if a file
operand is ’−’, the standard input shall be used. If a file operand is used, but the
−c option is not specified, the process performing the writing to the output device
may have user and group permissions that differ from that of the process invoking
lp.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is ’−’.
See the INPUT FILES section.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of lp:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

LC_TIME Determine the format and contents of date and time strings displayed in the lp
banner page, if any.

LPDEST Determine the destination. If the LPDEST environment variable is not set, the
PRINTER environment variable shall be used. The −d dest option takes precedence
over LPDEST. Results are undefined when −d is not specified and LPDEST
contains a value that is not a valid destination name.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PRINTER Determine the output device or destination. If the LPDEST and PRINTER
environment variables are not set, an unspecified output device is used. The −d
dest option and the LPDEST environment variable shall take precedence over
PRINTER. Results are undefined when −d is not specified, LPDEST is unset, and
PRINTER contains a value that is not a valid device or destination name.

2860 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

93551

93552

93553

93554

93555

93556

93557

93558

93559

93560

93561

93562

93563

93564

93565

93566

93567

93568

93569

93570

93571

93572

93573

93574

93575

93576

93577

93578

93579

93580

93581

93582

93583

93584

93585

93586

93587

93588

93589

93590

93591

93592

93593

93594

Utilities lp

TZ Determine the timezone used to calculate date and time strings displayed in the lp
banner page, if any. If TZ is unset or null, an unspecified default timezone shall be
used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The lp utility shall write a request ID to the standard output, unless −s is specified. The format of
the message is unspecified. The request ID can be used on systems supporting the historical
cancel and lpstat utilities.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All input files were processed successfully.

>0 No output device was available, or an error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The pr and fold utilities can be used to achieve reasonable formatting for the implementation’s
default page size.

A conforming application can use one of the file operands only with the −c option or if the file is
publicly readable and guaranteed to be available at the time of printing. This is because
POSIX.1-2008 gives the implementation the freedom to queue up the request for printing at
some later time by a different process that might not be able to access the file.

EXAMPLES

1. To print file file:

lp −c file

2. To print multiple files with headers:

pr file1 file2 | lp

RATIONALE
The lp utility was designed to be a basic version of a utility that is already available in many
historical implementations. The standard developers considered that it should be implementable
simply as:

cat "$@" > /dev/lp

after appropriate processing of options, if that is how the implementation chose to do it and if
exclusive access could be granted (so that two users did not write to the device simultaneously).
Although in the future the standard developers may add other options to this utility, it should
always be able to execute with no options or operands and send the standard input to an

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2861

93595

93596

93597

93598

93599

93600

93601

93602

93603

93604

93605

93606

93607

93608

93609

93610

93611

93612

93613

93614

93615

93616

93617

93618

93619

93620

93621

93622

93623

93624

93625

93626

93627

93628

93629

93630

93631

93632

93633

93634

93635

93636

lp Utilities

unspecified output device.

This volume of POSIX.1-2008 makes no representations concerning the format of the printed
output, except that it must be ‘‘human-readable’’ and ‘‘non-volatile’’. Thus, writing by default to
a disk or tape drive or a display terminal would not qualify. (Such destinations are not
prohibited when −d dest, LPDEST, or PRINTER are used, however.)

This volume of POSIX.1-2008 is worded such that a ‘‘print job’’ consisting of multiple input files,
possibly in multiple copies, is guaranteed to print so that any one file is not intermixed with
another, but there is no statement that all the files or copies have to print out together.

The −c option may imply a spooling operation, but this is not required. The utility can be
implemented to wait until the printer is ready and then wait until it is finished. Because of that,
there is no attempt to define a queuing mechanism (priorities, classes of output, and so on).

On some historical systems, the request ID reported on the STDOUT can be used to later cancel
or find the status of a request using utilities not defined in this volume of POSIX.1-2008.

Although the historical System V lp and BSD lpr utilities have provided similar functionality,
they used different names for the environment variable specifying the destination printer. Since
the name of the utility here is lp, LPDEST (used by the System V lp utility) was given precedence
over PRINTER (used by the BSD lpr utility). Since environments of users frequently contain one
or the other environment variable, the lp utility is required to recognize both. If this was not
done, many applications would send output to unexpected output devices when users moved
from system to system.

Some have commented that lp has far too little functionality to make it worthwhile. Requests
have proposed additional options or operands or both that added functionality. The requests
included:

• Wording requiring the output to be ‘‘hardcopy’’

• A requirement for multiple printers

• Options for supporting various page-description languages

Given that a compliant system is not required to even have a printer, placing further restrictions
upon the behavior of the printer is not useful. Since hardcopy format is so application-
dependent, it is difficult, if not impossible, to select a reasonable subset of functionality that
should be required on all compliant systems.

The term unspecified is used in this section in lieu of implementation-defined as most known
implementations would not be able to make definitive statements in their conformance
documents; the existence and usage of printers is very dependent on how the system
administrator configures each individual system.

Since the default destination, device type, queuing mechanisms, and acceptable forms of input
are all unspecified, usage guidelines for what a conforming application can do are as follows:

• Use the command in a pipeline, or with −c, so that there are no permission problems and
the files can be safely deleted or modified.

• Limit output to text files of reasonable line lengths and printable characters and include no
device-specific formatting information, such as a page description language. The meaning
of ‘‘reasonable’’ in this context can only be answered as a quality-of-implementation issue,
but it should be apparent from historical usage patterns in the industry and the locale. The
pr and fold utilities can be used to achieve reasonable formatting for the default page size
of the implementation.

2862 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

93637

93638

93639

93640

93641

93642

93643

93644

93645

93646

93647

93648

93649

93650

93651

93652

93653

93654

93655

93656

93657

93658

93659

93660

93661

93662

93663

93664

93665

93666

93667

93668

93669

93670

93671

93672

93673

93674

93675

93676

93677

93678

93679

93680

Utilities lp

Alternatively, the application can arrange its installation in such a way that it requires the system
administrator or operator to provide the appropriate information on lp options and environment
variable values.

At a minimum, having this utility in this volume of POSIX.1-2008 tells the industry that
conforming applications require a means to print output and provides at least a command name
and LPDEST routing mechanism that can be used for discussions between vendors, application
developers, and users. The use of ‘‘should’’ in the DESCRIPTION of lp clearly shows the intent
of the standard developers, even if they cannot mandate that all systems (such as laptops) have
printers.

This volume of POSIX.1-2008 does not specify what the ownership of the process performing the
writing to the output device may be. If −c is not used, it is unspecified whether the process
performing the writing to the output device has permission to read file if there are any
restrictions in place on who may read file until after it is printed. Also, if −c is not used, the
results of deleting file before it is printed are unspecified.

FUTURE DIRECTIONS
None.

SEE ALSO
mailx

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the DESCRIPTION, the requirement to associate a unique request ID, and the normal
generation of a banner page is added.

• In the OPTIONS section:

— The −d dest description is expanded, but references to lpstat are removed.

— The −m, −o, −s, −t, and −w options are added.

• In the ENVIRONMENT VARIABLES section, LC_TIME may now affect the execution.

• The STDOUT section is added.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

The TZ entry is added to the ENVIRONMENT VARIABLES section.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2863

93681

93682

93683

93684

93685

93686

93687

93688

93689

93690

93691

93692

93693

93694

93695

93696

93697

93698

93699

93700

93701

93702

93703

93704

93705

93706

93707

93708

93709

93710

93711

93712

93713

93714

93715

ls Utilities

NAME
ls — list directory contents

SYNOPSIS
XSI ls [−ACFRSacdfiklmnpqrstux1] [−H|−L] [−go] [file...]

DESCRIPTION
For each operand that names a file of a type other than directory or symbolic link to a directory,
ls shall write the name of the file as well as any requested, associated information. For each
operand that names a file of type directory, ls shall write the names of files contained within the
directory as well as any requested, associated information. Filenames beginning with a <period>
(’.’) and any associated information shall not be written out unless explicitly referenced, the
−A or −a option is supplied, or an implementation-defined condition causes them to be written.
If one or more of the −d, −F, or −l options are specified, and neither the −H nor the −L option is
specified, for each operand that names a file of type symbolic link to a directory, ls shall write the
name of the file as well as any requested, associated information. If none of the −d, −F, or −l
options are specified, or the −H or −L options are specified, for each operand that names a file of
type symbolic link to a directory, ls shall write the names of files contained within the directory
as well as any requested, associated information. In each case where the names of files contained
within a directory are written, if the directory contains any symbolic links then ls shall evaluate
the file information and file type to be those of the symbolic link itself, unless the −L option is
specified.

If no operands are specified, ls shall behave as if a single operand of dot (’.’) had been
specified. If more than one operand is specified, ls shall write non-directory operands first; it
shall sort directory and non-directory operands separately according to the collating sequence in
the current locale.

The ls utility shall detect infinite loops; that is, entering a previously visited directory that is an
ancestor of the last file encountered. When it detects an infinite loop, ls shall write a diagnostic
message to standard error and shall either recover its position in the hierarchy or terminate.

OPTIONS
The ls utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−A Write out all directory entries, including those whose names begin with a <period>
(’.’) but excluding the entries dot and dot-dot (if they exist).

−C Write multi-text-column output with entries sorted down the columns, according
to the collating sequence. The number of text columns and the column separator
characters are unspecified, but should be adapted to the nature of the output
device.

−F Do not follow symbolic links named as operands unless the −H or −L options are
specified. Write a <slash> (’/’) immediately after each pathname that is a
directory, an <asterisk> (’*’) after each that is executable, a <vertical-line> (’|’)
after each that is a FIFO, and an at-sign (’@’) after each that is a symbolic link. For
other file types, other symbols may be written.

−H Evaluate the file information and file type for symbolic links specified on the
command line to be those of the file referenced by the link, and not the link itself;
however, ls shall write the name of the link itself and not the file referenced by the
link.

2864 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

93716

93717

93718

93719

93720

93721

93722

93723

93724

93725

93726

93727

93728

93729

93730

93731

93732

93733

93734

93735

93736

93737

93738

93739

93740

93741

93742

93743

93744

93745

93746

93747

93748

93749

93750

93751

93752

93753

93754

93755

93756

93757

93758

93759

93760

Utilities ls

−L Evaluate the file information and file type for all symbolic links (whether named
on the command line or encountered in a file hierarchy) to be those of the file
referenced by the link, and not the link itself; however, ls shall write the name of
the link itself and not the file referenced by the link. When −L is used with −l, write
the contents of symbolic links in the long format (see the STDOUT section).

−R Recursively list subdirectories encountered. When a symbolic link to a directory is
encountered, the directory shall not be recursively listed unless the −L option is
specified.

−S Sort with the primary key being file size (in decreasing order) and the secondary
key being filename in the collating sequence (in increasing order).

−a Write out all directory entries, including those whose names begin with a <period>
(’.’).

−c Use time of last modification of the file status information (see <sys/stat.h> in the
System Interfaces volume of POSIX.1-2008) instead of last modification of the file
itself for sorting (−t) or writing (−l).

−d Do not follow symbolic links named as operands unless the −H or −L options are
specified. Do not treat directories differently than other types of files. The use of −d
with −R produces unspecified results.

−f List the entries in directory operands in the order they appear in the directory. The
behavior for non-directory operands is unspecified. This option shall turn off −l, −t,
−S, −s, and −r, and shall turn on −a.

XSI −g The same as −l, except that the owner shall not be written.

−i For each file, write the file’s file serial number (see stat() in the System Interfaces
volume of POSIX.1-2008).

−k Set the block size for the −s option and the per-directory block count written for
XSI the −l, −n, −s, −g, and −o options (see the STDOUT section) to 1 024 bytes.

−l (The letter ell.) Do not follow symbolic links named as operands unless the −H or
−L options are specified. Write out in long format (see the STDOUT section). When
−l (ell) is specified, −1 (one) shall be assumed.

−m Stream output format; list files across the page, separated by <comma> characters.

−n The same as −l, except that the owner’s UID and GID numbers shall be written,
rather than the associated character strings.

XSI −o The same as −l, except that the group shall not be written.

−p Write a <slash> (’/’) after each filename if that file is a directory.

−q Force each instance of non-printable filename characters and <tab> characters to be
written as the <question-mark> (’?’) character. Implementations may provide this
option by default if the output is to a terminal device.

−r Reverse the order of the sort to get reverse collating sequence oldest first, or
smallest file size first depending on the other options given.

−s Indicate the total number of file system blocks consumed by each file displayed. If
the −k option is also specified, the block size shall be 1 024 bytes; otherwise, the
block size is implementation-defined.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2865

93761

93762

93763

93764

93765

93766

93767

93768

93769

93770

93771

93772

93773

93774

93775

93776

93777

93778

93779

93780

93781

93782

93783

93784

93785

93786

93787

93788

93789

93790

93791

93792

93793

93794

93795

93796

93797

93798

93799

93800

93801

93802

ls Utilities

−t Sort with the primary key being time modified (most recently modified first) and
the secondary key being filename in the collating sequence. For a symbolic link,
the time used as the sort key is that of the symbolic link itself, unless ls is
evaluating its file information to be that of the file referenced by the link (see the
−H and −L options).

−u Use time of last access (see <sys/stat.h>) instead of last modification of the file for
sorting (−t) or writing (−l).

−x The same as −C, except that the multi-text-column output is produced with entries
sorted across, rather than down, the columns.

−1 (The numeric digit one.) Force output to be one entry per line.

Specifying more than one of the options in the following mutually-exclusive pairs shall not be
considered an error: −C and −l (ell), −m and −l (ell), −x and −l (ell), −C and −1 (one), −H and −L,
−c and −u, −t and −S. The last option specified in each pair shall determine the output format.

OPERANDS
The following operand shall be supported:

file A pathname of a file to be written. If the file specified is not found, a diagnostic
message shall be output on standard error.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ls:

COLUMNS Determine the user’s preferred column position width for writing multiple text-
column output. If this variable contains a string representing a decimal integer, the
ls utility shall calculate how many pathname text columns to write (see −C) based
on the width provided. If COLUMNS is not set or invalid, an implementation-
defined number of column positions shall be assumed, based on the
implementation’s knowledge of the output device. The column width chosen to
write the names of files in any given directory shall be constant. Filenames shall
not be truncated to fit into the multiple text-column output.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for character collation information in determining the
pathname collation sequence.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments) and which characters are defined as printable (character class print).

2866 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

93803

93804

93805

93806

93807

93808

93809

93810

93811

93812

93813

93814

93815

93816

93817

93818

93819

93820

93821

93822

93823

93824

93825

93826

93827

93828

93829

93830

93831

93832

93833

93834

93835

93836

93837

93838

93839

93840

93841

93842

93843

93844

Utilities ls

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_TIME Determine the format and contents for date and time strings written by ls.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TZ Determine the timezone for date and time strings written by ls. If TZ is unset or
null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The default format shall be to list one entry per line to standard output; the exceptions are to
terminals or when one of the −C, −m, or −x options is specified. If the output is to a terminal, the
format is implementation-defined.

When −m is specified, the format used shall be:

"%s, %s, ...\n", <filename1>, <filename2>

where the largest number of filenames shall be written without exceeding the length of the line.

If the −i option is specified, the file’s file serial number (see <sys/stat.h>) shall be written in the
following format before any other output for the corresponding entry:

%u ", <file serial number>

If the −l option is specified without −L, the following information shall be written:

"%s %u %s %s %u %s %s\n", <file mode>, <number of links>,
<owner name>, <group name>, <number of bytes in the file>,
<date and time>, <pathname>

If the file is a symbolic link, this information shall be about the link itself and the <pathname>
field shall be of the form:

"%s −> %s", <pathname of link>, <contents of link>

If both −l and −L are specified, the following information shall be written:

"%s %u %s %s %u %s %s\n", <file mode>, <number of links>,
<owner name>, <group name>, <number of bytes in the file>,
<date and time>, <pathname of link>

where all fields except <pathname of link> shall be for the file resolved from the symbolic link.

XSI The −n, −g, and −o options use the same format as −l, but with omitted items and their
associated <blank> characters. See the OPTIONS section.

In both the preceding −l forms, if <owner name> or <group name> cannot be determined, or if −n
is given, they shall be replaced with their associated numeric values using the format %u.

The <date and time> field shall contain the appropriate date and timestamp of when the file was
last modified. In the POSIX locale, the field shall be the equivalent of the output of the following
date command:

date "+%b %e %H:%M"

if the file has been modified in the last six months, or:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2867

93845

93846

93847

93848

93849

93850

93851

93852

93853

93854

93855

93856

93857

93858

93859

93860

93861

93862

93863

93864

93865

93866

93867

93868

93869

93870

93871

93872

93873

93874

93875

93876

93877

93878

93879

93880

93881

93882

93883

93884

ls Utilities

date "+%b %e %Y"

(where two <space> characters are used between %e and %Y) if the file has not been modified in
the last six months or if the modification date is in the future, except that, in both cases, the final
<newline> produced by date shall not be included and the output shall be as if the date
command were executed at the time of the last modification date of the file rather than the
current time. When the LC_TIME locale category is not set to the POSIX locale, a different format
and order of presentation of this field may be used.

If the file is a character special or block special file, the size of the file may be replaced with
implementation-defined information associated with the device in question.

If the pathname was specified as a file operand, it shall be written as specified.

XSI The file mode written under the −l, −n, −g, and −o options shall consist of the following format:

"%c%s%s%s%s", <entry type>, <owner permissions>,
<group permissions>, <other permissions>,
<optional alternate access method flag>

The <optional alternate access method flag> shall be the empty string if there is no alternate or
additional access control method associated with the file; otherwise, it shall be a string
containing a single printable character that is not a <blank>.

The <entry type> character shall describe the type of file, as follows:

d Directory.

b Block special file.

c Character special file.

l (ell) Symbolic link.

p FIFO.

− Regular file.

Implementations may add other characters to this list to represent other implementation-defined
file types.

The next three fields shall be three characters each:

<owner permissions>
Permissions for the file owner class (see XBD Section 4.4, on page 108).

<group permissions>
Permissions for the file group class.

<other permissions>
Permissions for the file other class.

Each field shall have three character positions:

1. If ’r’, the file is readable; if ’−’, the file is not readable.

2. If ’w’, the file is writable; if ’−’, the file is not writable.

3. The first of the following that applies:

S If in <owner permissions>, the file is not executable and set-user-ID mode is set. If in
<group permissions>, the file is not executable and set-group-ID mode is set.

2868 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

93885

93886

93887

93888

93889

93890

93891

93892

93893

93894

93895

93896

93897

93898

93899

93900

93901

93902

93903

93904

93905

93906

93907

93908

93909

93910

93911

93912

93913

93914

93915

93916

93917

93918

93919

93920

93921

93922

93923

Utilities ls

s If in <owner permissions>, the file is executable and set-user-ID mode is set. If in
<group permissions>, the file is executable and set-group-ID mode is set.

XSI T If in <other permissions> and the file is a directory, search permission is not granted to
others, and the restricted deletion flag is set.

XSI t If in <other permissions> and the file is a directory, search permission is granted to
others, and the restricted deletion flag is set.

x The file is executable or the directory is searchable.

− None of the attributes of ’S’, ’s’, ’T’, ’t’, or ’x’ applies.

Implementations may add other characters to this list for the third character position.
Such additions shall, however, be written in lowercase if the file is executable or
searchable, and in uppercase if it is not.

XSI If any of the −l, −n, −s, −g, or −o options is specified, each list of files within the directory shall be
preceded by a status line indicating the number of file system blocks occupied by files in the
directory in 512-byte units if the −k option is not specified, or 1 024-byte units if the −k option is
specified, rounded up to the next integral number of units, if necessary. In the POSIX locale, the
format shall be:

"total %u\n", <number of units in the directory>

If more than one directory, or a combination of non-directory files and directories are written,
either as a result of specifying multiple operands, or the −R option, each list of files within a
directory shall be preceded by:

"\n%s:\n", <directory name>

If this string is the first thing to be written, the first <newline> shall not be written. This output
shall precede the number of units in the directory.

If the −s option is given, each file shall be written with the number of blocks used by the file.
XSI Along with −C, −1, −m, or −x, the number and a <space> shall precede the filename; with −l, −n,

−g, or −o, they shall precede each line describing a file.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2869

93924

93925

93926

93927

93928

93929

93930

93931

93932

93933

93934

93935

93936

93937

93938

93939

93940

93941

93942

93943

93944

93945

93946

93947

93948

93949

93950

93951

93952

93953

93954

93955

93956

93957

93958

93959

93960

93961

ls Utilities

APPLICATION USAGE
Many implementations use the <equals-sign> (’=’) to denote sockets bound to the file system
for the −F option. Similarly, many historical implementations use the ’s’ character to denote
sockets as the entry type characters for the −l option.

It is difficult for an application to use every part of the file modes field of ls −l in a portable
manner. Certain file types and executable bits are not guaranteed to be exactly as shown, as
implementations may have extensions. Applications can use this field to pass directly to a user
printout or prompt, but actions based on its contents should generally be deferred, instead, to
the test utility.

The output of ls (with the −l and related options) contains information that logically could be
used by utilities such as chmod and touch to restore files to a known state. However, this
information is presented in a format that cannot be used directly by those utilities or be easily
translated into a format that can be used. A character has been added to the end of the
permissions string so that applications at least have an indication that they may be working in
an area they do not understand instead of assuming that they can translate the permissions
string into something that can be used. Future versions or related documents may define one or
more specific characters to be used based on different standard additional or alternative access
control mechanisms.

As with many of the utilities that deal with filenames, the output of ls for multiple files or in one
of the long listing formats must be used carefully on systems where filenames can contain
embedded white space. Systems and system administrators should institute policies and user
training to limit the use of such filenames.

The number of disk blocks occupied by the file that it reports varies depending on underlying
file system type, block size units reported, and the method of calculating the number of blocks.
On some file system types, the number is the actual number of blocks occupied by the file
(counting indirect blocks and ignoring holes in the file); on others it is calculated based on the
file size (usually making an allowance for indirect blocks, but ignoring holes).

EXAMPLES
An example of a small directory tree being fully listed with ls −laRF a in the POSIX locale:

total 11
drwxr-xr-x 3 fox prog 64 Jul 4 12:07 ./
drwxrwxrwx 4 fox prog 3264 Jul 4 12:09 ../
drwxr-xr-x 2 fox prog 48 Jul 4 12:07 b/
-rwxr--r-- 1 fox prog 572 Jul 4 12:07 foo*

a/b:
total 4
drwxr-xr-x 2 fox prog 48 Jul 4 12:07 ./
drwxr-xr-x 3 fox prog 64 Jul 4 12:07 ../
-rw-r--r-- 1 fox prog 700 Jul 4 12:07 bar

RATIONALE
Some historical implementations of the ls utility show all entries in a directory except dot and
dot-dot when a superuser invokes ls without specifying the −a option. When ‘‘normal’’ users
invoke ls without specifying −a, they should not see information about any files with names
beginning with a <period> unless they were named as file operands.

Implementations are expected to traverse arbitrary depths when processing the −R option. The
only limitation on depth should be based on running out of physical storage for keeping track of
untraversed directories.

2870 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

93962

93963

93964

93965

93966

93967

93968

93969

93970

93971

93972

93973

93974

93975

93976

93977

93978

93979

93980

93981

93982

93983

93984

93985

93986

93987

93988

93989

93990

93991

93992

93993

93994

93995

93996

93997

93998

93999

94000

94001

94002

94003

94004

94005

94006

94007

94008

Utilities ls

The −1 (one) option was historically found in BSD and BSD-derived implementations only. It is
required in this volume of POSIX.1-2008 so that conforming applications might ensure that
output is one entry per line, even if the output is to a terminal.

The −S option was added in Issue 7, but had been provided by several implementations for
many years. The description given in the standard documents historic practice, but does not
match much of the documentation that described its behavior. Historical documentation
typically described it as something like:

−S Sort by size (largest size first) instead of by name. Special character devices (listed
last) are sorted by name.

even though the file type was never considered when sorting the output. Character special files
do typically sort close to the end of the list because their file size on most implementations is
zero. But they are sorted alphabetically with any other files that happen to have the same file
size (zero), not sorted separately and added to the end.

Generally, this volume of POSIX.1-2008 is silent about what happens when options are given
multiple times. In the cases of −C, −l, and −1, however, it does specify the results of these
overlapping options. Since ls is one of the most aliased commands, it is important that the
implementation perform intuitively. For example, if the alias were:

alias ls="ls −C"

and the user typed ls −1, single-text-column output should result, not an error.

Earlier versions of this standard did not describe the BSD −A option (like −a, but dot and dot-dot
are not written out). It has been added due to widespread implementation.

Implementations may make −q the default for terminals to prevent trojan horse attacks on
terminals with special escape sequences. This is not required because:

• Some control characters may be useful on some terminals; for example, a system might
write them as "\001" or "ˆA".

• Special behavior for terminals is not relevant to applications portability.

An early proposal specified that the <optional alternate access method flag> had to be ’+’ if there
was an alternate access method used on the file or <space> if there was not. This was changed to
be <space> if there is not and a single printable character if there is. This was done for three
reasons:

1. There are historical implementations using characters other than ’+’.

2. There are implementations that vary this character used in that position to distinguish
between various alternate access methods in use.

3. The standard developers did not want to preclude future specifications that might need a
way to specify more than one alternate access method.

Nonetheless, implementations providing a single alternate access method are encouraged to use
’+’.

Earlier versions of this standard did not have the −k option, which meant that the −s option
could not be used portably as its block size was implementation-defined, and the units used to
specify the number of blocks occupied by files in a directory in an ls −l listing were fixed as
512-byte units. The −k option has been added to provide a way for the −s option to be used
portably, and for consistency it also changes the aforementioned units from 512-byte to
1 024-byte.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2871

94009

94010

94011

94012

94013

94014

94015

94016

94017

94018

94019

94020

94021

94022

94023

94024

94025

94026

94027

94028

94029

94030

94031

94032

94033

94034

94035

94036

94037

94038

94039

94040

94041

94042

94043

94044

94045

94046

94047

94048

94049

94050

94051

ls Utilities

The <date and time> field in the −l format is specified only for the POSIX locale. As noted, the
format can be different in other locales. No mechanism for defining this is present in this volume
of POSIX.1-2008, as the appropriate vehicle is a messaging system; that is, the format should be
specified as a ‘‘message’’.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod , find

XBD Section 4.4 (on page 108), Chapter 8 (on page 173), Section 12.2 (on page 215), <sys/stat.h>

XSH fstatat()

CHANGE HISTORY
First released in Issue 2.

Issue 5
A second FUTURE DIRECTION is added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the −F option, other symbols are allowed for other file types.

Tr eatment of symbolic links is added, as defined in the IEEE P1003.2b draft standard.

The Open Group Base Resolution bwg2001-010 is applied, adding the T and t fields as part of
the XSI option.

Issue 7
Austin Group Interpretation 1003.1-2001 #101 is applied, clarifying the optional alternate access
method flag in the STDOUT section.

Austin Group Interpretation 1003.1-2001 #128 is applied, clarifying the DESCRIPTION and the
definition of the −R option.

Austin Group Interpretation 1003.1-2001 #129 is applied, clarifying the behavior of ls when no
operands are specified.

Austin Group Interpretation 1003.1-2001 #198 is applied, clarifying the requirements for the −H
option.

SD5-XCU-ERN-50 is applied, adding the −A option.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The −S option is added from The Open Group Technical Standard, 2006, Extended API Set
Part 1.

The −f, −m, −n, −p, −s, and −x options are moved from the XSI option to the Base.

The description of the −f, −s, and −t options are revised and the −k option is added.

2872 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

94052

94053

94054

94055

94056

94057

94058

94059

94060

94061

94062

94063

94064

94065

94066

94067

94068

94069

94070

94071

94072

94073

94074

94075

94076

94077

94078

94079

94080

94081

94082

94083

94084

94085

94086

94087

Utilities m4

NAME
m4 — macro processor

SYNOPSIS
m4 [−s] [−D name[=val]]... [−U name]... file...

DESCRIPTION
The m4 utility is a macro processor that shall read one or more text files, process them according
to their included macro statements, and write the results to standard output.

OPTIONS
The m4 utility shall conform to XBD Section 12.2 (on page 215), except that the order of the −D
and −U options shall be significant, and options can be interspersed with operands.

The following options shall be supported:

−s Enable line synchronization output for the c99 preprocessor phase (that is, #line
directives).

−D name[=val]
Define name to val or to null if =val is omitted.

−U name Undefine name.

OPERANDS
The following operand shall be supported:

file A pathname of a text file to be processed. If no file is given, or if it is ’−’, the
standard input shall be read.

STDIN
The standard input shall be a text file that is used if no file operand is given, or if it is ’−’.

INPUT FILES
The input file named by the file operand shall be a text file.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of m4:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2873

94088

94089

94090

94091

94092

94093

94094

94095

94096

94097

94098

94099

94100

94101

94102

94103

94104

94105

94106

94107

94108

94109

94110

94111

94112

94113

94114

94115

94116

94117

94118

94119

94120

94121

94122

94123

94124

94125

94126

94127

m4 Utilities

STDOUT
The standard output shall be the same as the input files, after being processed for macro
expansion.

STDERR
The standard error shall be used to display strings with the errprint macro, macro tracing
enabled by the traceon macro, the defined text for macros written by the dumpdef macro, or for
diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The m4 utility shall compare each token from the input against the set of built-in and user-
defined macros. If the token matches the name of a macro, then the token shall be replaced by
the macro’s defining text, if any, and rescanned for matching macro names. Once no portion of
the token matches the name of a macro, it shall be written to standard output. Macros may have
arguments, in which case the arguments shall be substituted into the defining text before it is
rescanned.

Macro calls have the form:

name(arg1, arg2, ..., argn)

Macro names shall consist of letters, digits, and underscores, where the first character is not a
digit. Tokens not of this form shall not be treated as macros.

The application shall ensure that the <left-parenthesis> immediately follows the name of the
macro. If a token matching the name of a macro is not followed by a <left-parenthesis>, it is
handled as a use of that macro without arguments.

If a macro name is followed by a <left-parenthesis>, its arguments are the <comma>-separated
tokens between the <left-parenthesis> and the matching <right-parenthesis>. Unquoted white-
space characters preceding each argument shall be ignored. All other characters, including
trailing white-space characters, are retained. <comma> characters enclosed between <left-
parenthesis> and <right-parenthesis> characters do not delimit arguments.

Arguments are positionally defined and referenced. The string "$1" in the defining text shall be
replaced by the first argument. Systems shall support at least nine arguments; only the first nine
can be referenced, using the strings "$1" to "$9", inclusive. The string "$0" is replaced with
the name of the macro. The string "$#" is replaced by the number of arguments as a string. The
string "$*" is replaced by a list of all of the arguments, separated by <comma> characters. The
string "$@" is replaced by a list of all of the arguments separated by <comma> characters, and
each argument is quoted using the current left and right quoting strings. The string "${"
produces unspecified behavior.

If fewer arguments are supplied than are in the macro definition, the omitted arguments are
taken to be null. It is not an error if more arguments are supplied than are in the macro
definition.

No special meaning is given to any characters enclosed between matching left and right quoting
strings, but the quoting strings are themselves discarded. By default, the left quoting string
consists of a grave accent (backquote) and the right quoting string consists of an acute accent
(single-quote); see also the changequote macro.

Comments are written but not scanned for matching macro names; by default, the begin-
comment string consists of the <number-sign> character and the end-comment string consists of
a <newline>. See also the changecom and dnl macros.

2874 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

94128

94129

94130

94131

94132

94133

94134

94135

94136

94137

94138

94139

94140

94141

94142

94143

94144

94145

94146

94147

94148

94149

94150

94151

94152

94153

94154

94155

94156

94157

94158

94159

94160

94161

94162

94163

94164

94165

94166

94167

94168

94169

94170

94171

94172

94173

Utilities m4

The m4 utility shall make available the following built-in macros. They can be redefined, but
once this is done the original meaning is lost. Their values shall be null unless otherwise stated.
In the descriptions below, the term defining text refers to the value of the macro: the second
argument to the define macro, among other things. Except for the first argument to the eval
macro, all numeric arguments to built-in macros shall be interpreted as decimal values. The
string values produced as the defining text of the decr, divnum, incr, index, len, and sysval
built-in macros shall be in the form of a decimal-constant as defined in the C language.

changecom The changecom macro shall set the begin-comment and end-comment strings.
With no arguments, the comment mechanism shall be disabled. With a single non-
null argument, that argument shall become the begin-comment and the <newline>
shall become the end-comment string. With two non-null arguments, the first
argument shall become the begin-comment string and the second argument shall
become the end-comment string. The behavior is unspecified if either argument is
provided but null. Systems shall support comment strings of at least five
characters.

changequote The changequote macro shall set the begin-quote and end-quote strings. With no
arguments, the quote strings shall be set to the default values (that is, ‘’). The
behavior is unspecified if there is a single argument or either argument is null.
With two non-null arguments, the first argument shall become the begin-quote
string and the second argument shall become the end-quote string. Systems shall
support quote strings of at least five characters.

decr The defining text of the decr macro shall be its first argument decremented by 1. It
shall be an error to specify an argument containing any non-numeric characters.
The behavior is unspecified if decr is not immediately followed by a <left-
parenthesis>.

define The second argument shall become the defining text of the macro whose name is
the first argument. It is unspecified whether the define macro deletes all prior
definitions of the macro named by its first argument or preserves all but the
current definition of the macro. The behavior is unspecified if define is not
immediately followed by a <left-parenthesis>.

defn The defining text of the defn macro shall be the quoted definition (using the
current quoting strings) of its arguments. The behavior is unspecified if defn is not
immediately followed by a <left-parenthesis>.

divert The m4 utility maintains nine temporary buffers, numbered 1 to 9, inclusive.
When the last of the input has been processed, any output that has been placed in
these buffers shall be written to standard output in buffer-numerical order. The
divert macro shall divert future output to the buffer specified by its argument.
Specifying no argument or an argument of 0 shall resume the normal output
process. Output diverted to a stream with a negative number shall be discarded.
Behavior is implementation-defined if a stream number larger than 9 is specified. It
shall be an error to specify an argument containing any non-numeric characters.

divnum The defining text of the divnum macro shall be the number of the current output
stream as a string.

dnl The dnl macro shall cause m4 to discard all input characters up to and including
the next <newline>.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2875

94174

94175

94176

94177

94178

94179

94180

94181

94182

94183

94184

94185

94186

94187

94188

94189

94190

94191

94192

94193

94194

94195

94196

94197

94198

94199

94200

94201

94202

94203

94204

94205

94206

94207

94208

94209

94210

94211

94212

94213

94214

94215

94216

94217

94218

m4 Utilities

dumpdef The dumpdef macro shall write the defined text to standard error for each of the
macros specified as arguments, or, if no arguments are specified, for all macros.

errprint The errprint macro shall write its arguments to standard error. The behavior is
unspecified if errprint is not immediately followed by a <left-parenthesis>.

eval The eval macro shall evaluate its first argument as an arithmetic expression, using
signed integer arithmetic with at least 32-bit precision. At least the following C-
language operators shall be supported, with precedence, associativity, and
behavior as described in Section 1.1.2.1 (on page 2283):

()
unary +
unary −
˜

!
binary *
/
%
binary +
binary −
<<
>>
<
<=
>
>=
==
!=
binary &
ˆ
|
&&
||

Systems shall support octal and hexadecimal numbers as in the ISO C standard.
The second argument, if specified, shall set the radix for the result; if the argument
is blank or unspecified, the default is 10. Behavior is unspecified if the radix falls
outside the range 2 to 36, inclusive. The third argument, if specified, sets the
minimum number of digits in the result. Behavior is unspecified if the third
argument is less than zero. It shall be an error to specify the second or third
argument containing any non-numeric characters. The behavior is unspecified if
eval is not immediately followed by a <left-parenthesis>.

ifdef If the first argument to the ifdef macro is defined, the defining text shall be the
second argument. Otherwise, the defining text shall be the third argument, if
specified, or the null string, if not. The behavior is unspecified if ifdef is not
immediately followed by a <left-parenthesis>.

ifelse The ifelse macro takes three or more arguments. If the first two arguments
compare as equal strings (after macro expansion of both arguments), the defining
text shall be the third argument. If the first two arguments do not compare as equal
strings and there are three arguments, the defining text shall be null. If the first two
arguments do not compare as equal strings and there are four or five arguments,

2876 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

94219

94220

94221

94222

94223

94224

94225

94226

94227

94228

94229

94230

94231

94232

94233

94234

94235

94236

94237

94238

94239

94240

94241

94242

94243

94244

94245

94246

94247

94248

94249

94250

94251

94252

94253

94254

94255

94256

94257

94258

94259

94260

94261

94262

94263

94264

94265

94266

Utilities m4

the defining text shall be the fourth argument. If the first two arguments do not
compare as equal strings and there are six or more arguments, the first three
arguments shall be discarded and processing shall restart with the remaining
arguments. The behavior is unspecified if ifelse is not immediately followed by a
<left-parenthesis>.

include The defining text for the include macro shall be the contents of the file named by
the first argument. It shall be an error if the file cannot be read. The behavior is
unspecified if include is not immediately followed by a <left-parenthesis>.

incr The defining text of the incr macro shall be its first argument incremented by 1. It
shall be an error to specify an argument containing any non-numeric characters.
The behavior is unspecified if incr is not immediately followed by a <left-
parenthesis>.

index The defining text of the index macro shall be the first character position (as a
string) in the first argument where a string matching the second argument begins
(zero origin), or −1 if the second argument does not occur. The behavior is
unspecified if index is not immediately followed by a <left-parenthesis>.

len The defining text of the len macro shall be the length (as a string) of the first
argument. The behavior is unspecified if len is not immediately followed by a
<left-parenthesis>.

m4exit Exit from the m4 utility. If the first argument is specified, it is the exit code. The
default is zero. It shall be an error to specify an argument containing any non-
numeric characters.

m4wrap The first argument shall be processed when EOF is reached. If the m4wrap macro
is used multiple times, the arguments specified shall be processed in the order in
which the m4wrap macros were processed. The behavior is unspecified if m4wrap
is not immediately followed by a <left-parenthesis>.

OB maketemp The defining text shall be the first argument, with any trailing ’X’ characters
replaced with the current process ID as a string. The behavior is unspecified if
maketemp is not immediately followed by a <left-parenthesis>.

mkstemp The first argument shall be taken as a template for creating an empty file, with
trailing ’X’ characters replaced with characters from the portable filename
character set. The behavior is unspecified if the first argument does not end in at
least six ’X’ characters. If a temporary file is successfully created, then the
defining text of the macro shall be the name of the new file. The user ID of the file
shall be set to the effective user ID of the process. The group ID of the file shall be
set to the group ID of the file’s parent directory or to the effective group ID of the
process. The file access permission bits are set such that only the owner can both
read and write the file, regardless of the current umask of the process. If a file could
not be created, the defining text of the macro shall be the empty string. The
behavior is unspecified if mkstemp is not immediately followed by a <left-
parenthesis>.

popdef The popdef macro shall delete the current definition of its arguments, replacing
that definition with the previous one. If there is no previous definition, the macro
is undefined. The behavior is unspecified if popdef is not immediately followed by
a <left-parenthesis>.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2877

94267

94268

94269

94270

94271

94272

94273

94274

94275

94276

94277

94278

94279

94280

94281

94282

94283

94284

94285

94286

94287

94288

94289

94290

94291

94292

94293

94294

94295

94296

94297

94298

94299

94300

94301

94302

94303

94304

94305

94306

94307

94308

94309

94310

94311

m4 Utilities

pushdef The pushdef macro shall be equivalent to the define macro with the exception that
it shall preserve any current definition for future retrieval using the popdef macro.
The behavior is unspecified if pushdef is not immediately followed by a <left-
parenthesis>.

shift The defining text for the shift macro shall be all of its arguments except for the first
one. The behavior is unspecified if shift is not immediately followed by a <left-
parenthesis>.

sinclude The sinclude macro shall be equivalent to the include macro, except that it shall
not be an error if the file is inaccessible. The behavior is unspecified if sinclude is
not immediately followed by a <left-parenthesis>.

substr The defining text for the substr macro shall be the substring of the first argument
beginning at the zero-offset character position specified by the second argument.
The third argument, if specified, shall be the number of characters to select; if not
specified, the characters from the starting point to the end of the first argument
shall become the defining text. It shall not be an error to specify a starting point
beyond the end of the first argument and the defining text shall be null. It shall be
an error to specify an argument containing any non-numeric characters. The
behavior is unspecified if substr is not immediately followed by a <left-
parenthesis>.

syscmd The syscmd macro shall interpret its first argument as a shell command line. The
defining text shall be the string result of that command. The string result shall not
be rescanned for macros while setting the defining text. No output redirection shall
be performed by the m4 utility. The exit status value from the command can be
retrieved using the sysval macro. The behavior is unspecified if syscmd is not
immediately followed by a <left-parenthesis>.

sysval The defining text of the sysval macro shall be the exit value of the utility last
invoked by the syscmd macro (as a string).

traceon The traceon macro shall enable tracing for the macros specified as arguments, or, if
no arguments are specified, for all macros. The trace output shall be written to
standard error in an unspecified format.

traceoff The traceoff macro shall disable tracing for the macros specified as arguments, or,
if no arguments are specified, for all macros.

translit The defining text of the translit macro shall be the first argument with every
character that occurs in the second argument replaced with the corresponding
character from the third argument. The behavior is unspecified if the ’−’ character
appears within the second or third argument anywhere besides the first or last
character. The behavior is unspecified if translit is not immediately followed by a
<left-parenthesis>.

undefine The undefine macro shall delete all definitions (including those preserved using
the pushdef macro) of the macros named by its arguments. The behavior is
unspecified if undefine is not immediately followed by a <left-parenthesis>.

undivert The undivert macro shall cause immediate output of any text in temporary buffers
named as arguments, or all temporary buffers if no arguments are specified.
Buffers can be undiverted into other temporary buffers. Undiverting shall discard
the contents of the temporary buffer. The behavior is unspecified if an argument
contains any non-numeric characters.

2878 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

94312

94313

94314

94315

94316

94317

94318

94319

94320

94321

94322

94323

94324

94325

94326

94327

94328

94329

94330

94331

94332

94333

94334

94335

94336

94337

94338

94339

94340

94341

94342

94343

94344

94345

94346

94347

94348

94349

94350

94351

94352

94353

94354

94355

94356

94357

Utilities m4

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred

If the m4exit macro is used, the exit value can be specified by the input file.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The defn macro is useful for renaming macros, especially built-ins.

Since eval defers to the ISO C standard, some operations have undefined behavior. In some
implementations, division or remainder by zero cause a fatal signal, even if the division occurs
on the short-circuited branch of "&&" or "||". Any operation that overflows in signed
arithmetic produces undefined behavior. Likewise, using the shift operators with a shift amount
that is not positive and smaller than the precision is undefined, as is shifting a negative number
to the right. Historically, not all implementations obeyed C-language precedence rules: ’˜’ and
’!’ were lower than ’==’; ’==’ and ’!=’ were not lower than ’<’; and ’|’ was not lower
than ’ˆ’; the liberal use of "()" can force the desired precedence even with these non-
compliant implementations. Furthermore, some traditional implementations treated ’ˆ’ as an
exponentiation operator, although most implementations now use "**" as an extension for this
purpose.

When a macro has been multiply defined via the pushdef macro, it is unspecified whether the
define macro will alter only the most recent definition (as though by popdef and pushdef), or
replace the entire stack of definitions with a single definition (as though by undefine and
pushdef). An application desiring particular behavior for the define macro in this case can
redefine it accordingly.

Applications should use the mkstemp macro instead of the obsolescent maketemp macro for
creating temporary files.

EXAMPLES
If the file m4src contains the lines:

The value of ‘VER’ is "VER".
ifdef(‘VER’, ‘‘VER’’ is defined to be VER., VER is not defined.)
ifelse(VER, 1, ‘‘VER’’ is ‘VER’.)
ifelse(VER, 2, ‘‘VER’’ is ‘VER’., ‘‘VER’’ is not 2.)
end

then the command

m4 m4src

or the command:

m4 −U VER m4src

produces the output:

The value of VER is "VER".
VER is not defined.

VER is not 2.
end

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2879

94358

94359

94360

94361

94362

94363

94364

94365

94366

94367

94368

94369

94370

94371

94372

94373

94374

94375

94376

94377

94378

94379

94380

94381

94382

94383

94384

94385

94386

94387

94388

94389

94390

94391

94392

94393

94394

94395

94396

94397

94398

94399

94400

m4 Utilities

The command:

m4 −D VER m4src

produces the output:

The value of VER is "".
VER is defined to be .

VER is not 2.
end

The command:

m4 −D VER=1 m4src

produces the output:

The value of VER is "1".
VER is defined to be 1.
VER is 1.
VER is not 2.
end

The command:

m4 −D VER=2 m4src

produces the output:

The value of VER is "2".
VER is defined to be 2.

VER is 2.
end

RATIONALE
Historic System V-based behavior treated "${" in a macro definition as two literal characters.
However, this sequence is left unspecified so that implementations may offer extensions such as
"${11}" meaning the eleventh positional parameter. Macros can still be defined with
appropriate uses of nested quoting to result in a literal "${" in the output after rescanning
removes the nested quotes.

In the translit built-in, historic System V-based behavior treated ’−’ as a literal; GNU behavior
treats it as a range. This version of the standard allows either behavior.

FUTURE DIRECTIONS
None.

SEE ALSO
c99

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The phrase ‘‘the defined text for macros written by the dumpdef macro’’ is added to the
description of STDERR, and the description of dumpdef is updated to indicate that output is
written to standard error. The description of eval is updated to indicate that the list of excluded
C operators excludes unary ’&’ and ’.’. In the description of ifdef, the phrase ‘‘and it is not

2880 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

94401

94402

94403

94404

94405

94406

94407

94408

94409

94410

94411

94412

94413

94414

94415

94416

94417

94418

94419

94420

94421

94422

94423

94424

94425

94426

94427

94428

94429

94430

94431

94432

94433

94434

94435

94436

94437

94438

94439

94440

94441

94442

Utilities m4

defined to be zero’’ is deleted.

Issue 6
In the EXTENDED DESCRIPTION, the eval text is updated to include a ’&’ character in the
excepted list.

The EXTENDED DESCRIPTION of divert is updated to clarify that there are only nine diversion
buffers.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

The Open Group Base Resolution bwg2000-006 is applied.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/31 is applied, replacing the EXAMPLES
section.

Issue 7
Austin Group Interpretation 1003.1-2001 #117 is applied, marking the maketemp macro
obsolescent and adding a new mkstemp macro.

Austin Group Interpretation 1003.1-2001 #207 is applied, clarifying the handling of white-space
characters that precede or trail any macro arguments.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax Guidelines does not
apply (options can be interspersed with operands).

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-99 is applied, clarifying the definition of the divert macro in the EXTENDED
DESCRIPTION.

SD5-XCU-ERN-100 is applied, clarifying the definition of the syscmd macro in the EXTENDED
DESCRIPTION.

SD5-XCU-ERN-101 is applied, clarifying the definition of the undivert macro in the EXTENDED
DESCRIPTION.

SD5-XCU-ERN-111 is applied to the EXTENDED DESCRIPTION, clarifying that the string "${"
produces unspecified behavior.

SD5-XCU-ERN-112 is applied, updating the changequote macro.

SD5-XCU-ERN-118 is applied, clarifying the definition of the define macro in the EXTENDED
DESCRIPTION and APPLICATION USAGE sections.

SD5-XCU-ERN-119 is applied, clarifying the definition of the translit macro in the EXTENDED
DESCRIPTION and RATIONALE sections.

SD5-XCU-ERN-130, SD5-XCU-ERN-131, and SD5-XCU-ERN-137 are applied.

The m4 utility is moved from the XSI option to the Base.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2881

94443

94444

94445

94446

94447

94448

94449

94450

94451

94452

94453

94454

94455

94456

94457

94458

94459

94460

94461

94462

94463

94464

94465

94466

94467

94468

94469

94470

94471

94472

94473

94474

94475

mailx Utilities

NAME
mailx — process messages

SYNOPSIS

Send Mode

mailx [−s subject] address...

Receive Mode

UP mailx −e

mailx [−HiNn] [−F] [−u user]

mailx −f [−HiNn] [−F] [file]

DESCRIPTION
The mailx utility provides a message sending and receiving facility. It has two major modes,
selected by the options used: Send Mode and Receive Mode.

On systems that do not support the User Portability Utilities option, an application using mailx
shall have the ability to send messages in an unspecified manner (Send Mode). Unless the first
character of one or more lines is <tilde> (’˜’), all characters in the input message shall appear in
the delivered message, but additional characters may be inserted in the message before it is
retrieved.

UP On systems supporting the User Portability Utilities option, mail-receiving capabilities and other
interactive features, Receive Mode, described below, also shall be enabled.

Send Mode

Send Mode can be used by applications or users to send messages from the text in standard
input.

UP Receive Mode

Receive Mode is more oriented towards interactive users. Mail can be read and sent in this
interactive mode.

When reading mail, mailx provides commands to facilitate saving, deleting, and responding to
messages. When sending mail, mailx allows editing, reviewing, and other modification of the
message as it is entered.

Incoming mail shall be stored in one or more unspecified locations for each user, collectively
called the system mailbox for that user. When mailx is invoked in Receive Mode, the system
mailbox shall be the default place to find new mail. As messages are read, they shall be marked
to be moved to a secondary file for storage, unless specific action is taken. This secondary file is
called the mbox and is normally located in the directory referred to by the HOME environment
variable (see MBOX in the ENVIRONMENT VARIABLES section for a description of this file).
Messages shall remain in this file until explicitly removed. When the −f option is used to read
mail messages from secondary files, messages shall be retained in those files unless specifically
removed. All three of these locations—system mailbox, mbox, and secondary file—are referred
to in this section as simply ‘‘mailboxes’’, unless more specific identification is required.

2882 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

94476

94477

94478

94479

94480

94481

94482

94483

94484

94485

94486

94487

94488

94489

94490

94491

94492

94493

94494

94495

94496

94497

94498

94499

94500

94501

94502

94503

94504

94505

94506

94507

94508

94509

94510

94511

94512

94513

Utilities mailx

OPTIONS
The mailx utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported. (Only the −s subject option shall be required on all
systems. The other options are required only on systems supporting the User Portability Utilities
option.)

UP −e Test for the presence of mail in the system mailbox. The mailx utility shall write
nothing and exit with a successful return code if there is mail to read.

UP −f Read messages from the file named by the file operand instead of the system
mailbox. (See also folder.) If no file operand is specified, read messages from mbox
instead of the system mailbox.

UP −F Record the message in a file named after the first recipient. The name is the login-
name portion of the address found first on the To: line in the mail header.
Overrides the record variable, if set (see Internal Variables in mailx, on page 2889).

UP −H Write a header summary only.

UP −i Ignore interrupts. (See also ignore.)

UP −n Do not initialize from the system default start-up file. See the EXTENDED
DESCRIPTION section.

UP −N Do not write an initial header summary.

−s subject Set the Subject header field to subject. All characters in the subject string shall
appear in the delivered message. The results are unspecified if subject is longer
than {LINE_MAX} − 10 bytes or contains a <newline>.

UP −u user Read the system mailbox of the login name user. This shall only be successful if
the invoking user has appropriate privileges to read the system mailbox of that
user.

OPERANDS
The following operands shall be supported:

address Addressee of message. When −n is specified and no user start-up files are accessed
(see the EXTENDED DESCRIPTION section), the user or application shall ensure
this is an address to pass to the mail delivery system. Any system or user start-up
files may enable aliases (see alias under Commands in mailx, on page 2892) that
may modify the form of address before it is passed to the mail delivery system.

UP file A pathname of a file to be read instead of the system mailbox when −f is specified.
The meaning of the file option-argument shall be affected by the contents of the
folder internal variable; see Internal Variables in mailx (on page 2889).

STDIN
When mailx is invoked in Send Mode (the first synopsis line), standard input shall be the

UP message to be delivered to the specified addresses. When in Receive Mode, user commands
shall be accepted from stdin. If the User Portability Utilities option is not supported, standard
input lines beginning with a <tilde> (’˜’) character produce unspecified results.

UP If the User Portability Utilities option is supported, then in both Send and Receive Modes,
standard input lines beginning with the escape character (usually <tilde> (’˜’)) shall affect
processing as described in Command Escapes in mailx (on page 2901).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2883

94514

94515

94516

94517

94518

94519

94520

94521

94522

94523

94524

94525

94526

94527

94528

94529

94530

94531

94532

94533

94534

94535

94536

94537

94538

94539

94540

94541

94542

94543

94544

94545

94546

94547

94548

94549

94550

94551

94552

94553

94554

94555

mailx Utilities

INPUT FILES
When mailx is used as described by this volume of POSIX.1-2008, the file option-argument (see
the −f option) and the mbox shall be text files containing mail messages, formatted as described
in the OUTPUT FILES section. The nature of the system mailbox is unspecified; it need not be a
file.

ENVIRONMENT VARIABLES
UP Some of the functionality described in this section shall be provided on implementations that

support the User Portability Utilities option as described in the text, and is not further shaded
for this option.

The following environment variables shall affect the execution of mailx:

DEAD Determine the pathname of the file in which to save partial messages in case of
interrupts or delivery errors. The default shall be dead.letter in the directory
named by the HOME variable. The behavior of mailx in saving partial messages is
unspecified if the User Portability Utilities option is not supported and DEAD is
not defined with the value /dev/null.

EDITOR Determine the name of a utility to invoke when the edit (see Commands in mailx,
on page 2892) or ˜e (see Command Escapes in mailx, on page 2901) command is

XSI used. The default editor is unspecified. On XSI-conformant systems it is ed. The
effects of this variable are unspecified if the User Portability Utilities option is not
supported.

HOME Determine the pathname of the user’s home directory.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the handling of case-insensitive address and
header-field comparisons.

LC_TIME This variable may determine the format and contents of the date and time strings
written by mailx. This volume of POSIX.1-2008 specifies the effects of this variable
only for systems supporting the User Portability Utilities option.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

LISTER Determine a string representing the command for writing the contents of the
folder directory to standard output when the folders command is given (see
folders in Commands in mailx, on page 2892). Any string acceptable as a
command_string operand to the sh −c command shall be valid. If this variable is null
or not set, the output command shall be ls. The effects of this variable are
unspecified if the User Portability Utilities option is not supported.

MAILRC Determine the pathname of the start-up file. The default shall be .mailrc in the
directory referred to by the HOME environment variable. The behavior of mailx is
unspecified if the User Portability Utilities option is not supported and MAILRC is

2884 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

94556

94557

94558

94559

94560

94561

94562

94563

94564

94565

94566

94567

94568

94569

94570

94571

94572

94573

94574

94575

94576

94577

94578

94579

94580

94581

94582

94583

94584

94585

94586

94587

94588

94589

94590

94591

94592

94593

94594

94595

94596

94597

94598

94599

94600

94601

Utilities mailx

not defined with the value /dev/null.

MBOX Determine a pathname of the file to save messages from the system mailbox that
have been read. The exit command shall override this function, as shall saving the
message explicitly in another file. The default shall be mbox in the directory
named by the HOME variable. The effects of this variable are unspecified if the
User Portability Utilities option is not supported.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PAGER Determine a string representing an output filtering or pagination command for
writing the output to the terminal. Any string acceptable as a command_string
operand to the sh −c command shall be valid. When standard output is a terminal
device, the message output shall be piped through the command if the mailx
internal variable crt is set to a value less the number of lines in the message; see
Internal Variables in mailx (on page 2889). If the PAGER variable is null or not set,
the paginator shall be either more or another paginator utility documented in the
system documentation. The effects of this variable are unspecified if the User
Portability Utilities option is not supported.

SHELL Determine the name of a preferred command interpreter. The default shall be sh.
The effects of this variable are unspecified if the User Portability Utilities option is
not supported.

TERM If the internal variable screen is not specified, determine the name of the terminal
type to indicate in an unspecified manner the number of lines in a screenful of
headers. If TERM is not set or is set to null, an unspecified default terminal type
shall be used and the value of a screenful is unspecified. The effects of this variable
are unspecified if the User Portability Utilities option is not supported.

TZ This variable may determine the timezone used to calculate date and time strings
written by mailx. If TZ is unset or null, an unspecified default timezone shall be
used.

VISUAL Determine a pathname of a utility to invoke when the visual command (see
Commands in mailx, on page 2892) or ˜v command-escape (see Command Escapes
in mailx, on page 2901) is used. If this variable is null or not set, the full-screen
editor shall be vi. The effects of this variable are unspecified if the User Portability
Utilities option is not supported.

ASYNCHRONOUS EVENTS
When mailx is in Send Mode and standard input is not a terminal, it shall take the standard
action for all signals.

UP In Receive Mode, or in Send Mode when standard input is a terminal, if a SIGINT signal is
received:

UP 1. If in command mode, the current command, if there is one, shall be aborted, and a
command-mode prompt shall be written.

2. If in input mode:

UP a. If ignore is set, mailx shall write "@\n", discard the current input line, and
continue processing, bypassing the message-abort mechanism described in item
2b.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2885

94602

94603

94604

94605

94606

94607

94608

94609

94610

94611

94612

94613

94614

94615

94616

94617

94618

94619

94620

94621

94622

94623

94624

94625

94626

94627

94628

94629

94630

94631

94632

94633

94634

94635

94636

94637

94638

94639

94640

94641

94642

94643

94644

mailx Utilities

UP b. If the interrupt was received while sending mail, either when in Receive Mode or
in Send Mode, a message shall be written, and another subsequent interrupt, with
no other intervening characters typed, shall be required to abort the mail message.

UP If in Receive Mode and another interrupt is received, a command-mode prompt
shall be written. If in Send Mode and another interrupt is received, mailx shall
terminate with a non-zero status.

In both cases listed in item b, if the message is not empty:

UP i. If save is enabled and the file named by DEAD can be created, the message
shall be written to the file named by DEAD. If the file exists, the message
shall be written to replace the contents of the file.

UP ii. If save is not enabled, or the file named by DEAD cannot be created, the
message shall not be saved.

The mailx utility shall take the standard action for all other signals.

STDOUT
In command and input modes, all output, including prompts and messages, shall be written to
standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
Various mailx commands and command escapes can create or add to files, including the mbox,
the dead-letter file, and secondary mailboxes. When mailx is used as described in this volume of
POSIX.1-2008, these files shall be text files, formatted as follows:

line beginning with From<space>

[one or more header-lines; see Commands in mailx (on page 2892)]
empty line

[zero or more body lines

empty line]

[line beginning with From<space>...]

where each message begins with the From <space> line shown, preceded by the beginning of
the file or an empty line. (The From <space> line is considered to be part of the message header,
but not one of the header-lines referred to in Commands in mailx (on page 2892); thus, it shall
not be affected by the discard, ignore, or retain commands.) The formats of the remainder of the
From <space> line and any additional header lines are unspecified, except that none shall be
empty. The format of a message body line is also unspecified, except that no line following an
empty line shall start with From <space>; mailx shall modify any such user-entered message
body lines (following an empty line and beginning with From <space>) by adding one or more
characters to precede the ’F’; it may add these characters to From <space> lines that are not
preceded by an empty line.

When a message from the system mailbox or entered by the user is not a text file, it is
implementation-defined how such a message is stored in files written by mailx.

EXTENDED DESCRIPTION
UP The functionality in the entire EXTENDED DESCRIPTION section shall be provided on

implementations supporting the User Portability Utilities option. The functionality described in
this section shall be provided on implementations that support the User Portability Utilities
option (and the rest of this section is not further shaded for this option).

2886 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

94645

94646

94647

94648

94649

94650

94651

94652

94653

94654

94655

94656

94657

94658

94659

94660

94661

94662

94663

94664

94665

94666

94667

94668

94669

94670

94671

94672

94673

94674

94675

94676

94677

94678

94679

94680

94681

94682

94683

94684

94685

94686

94687

94688

94689

Utilities mailx

The mailx utility need not support for all character encodings in all circumstances. For example,
inter-system mail may be restricted to 7-bit data by the underlying network, 8-bit data need not
be portable to non-internationalized systems, and so on. Under these circumstances, it is
recommended that only characters defined in the ISO/IEC 646: 1991 standard International
Reference Version (equivalent to ASCII) 7-bit range of characters be used.

When mailx is invoked using one of the Receive Mode synopsis forms, it shall write a page of
header-summary lines (if −N was not specified and there are messages, see below), followed by
a prompt indicating that mailx can accept regular commands (see Commands in mailx, on page
2892); this is termed command mode. The page of header-summary lines shall contain the first
new message if there are new messages, or the first unread message if there are unread
messages, or the first message. When mailx is invoked using the Send Mode synopsis and
standard input is a terminal, if no subject is specified on the command line and the asksub
variable is set, a prompt for the subject shall be written. At this point, mailx shall be in input
mode. This input mode shall also be entered when using one of the Receive Mode synopsis
forms and a reply or new message is composed using the reply, Reply, followup, Followup, or
mail commands and standard input is a terminal. When the message is typed and the end of the
message is encountered, the message shall be passed to the mail delivery software. Commands
can be entered by beginning a line with the escape character (by default, <tilde> (’˜’)) followed
by a single command letter and optional arguments. See Commands in mailx (on page 2892) for
a summary of these commands. It is unspecified what effect these commands will have if
standard input is not a terminal when a message is entered using either the Send Mode
synopsis, or the Read Mode commands reply, Reply, followup, Followup, or mail.

Note: For notational convenience, this section uses the default escape character, <tilde>, in all
references and examples.

At any time, the behavior of mailx shall be governed by a set of environmental and internal
variables. These are flags and valued parameters that can be set and cleared via the mailx set
and unset commands.

Regular commands are of the form:

[command] [msglist] [argument ...]

If no command is specified in command mode, next shall be assumed. In input mode, commands
shall be recognized by the escape character, and lines not treated as commands shall be taken as
input for the message.

In command mode, each message shall be assigned a sequential number, starting with 1.

All messages have a state that shall affect how they are displayed in the header summary and
how they are retained or deleted upon termination of mailx. There is at any time the notion of a
current message, which shall be marked by a ’>’ at the beginning of a line in the header
summary. When mailx is invoked using one of the Receive Mode synopsis forms, the current
message shall be the first new message, if there is a new message, or the first unread message if
there is an unread message, or the first message if there are any messages, or unspecified if there
are no messages in the mailbox. Each command that takes an optional list of messages (msglist)
or an optional single message (message) on which to operate shall leave the current message set
to the highest-numbered message of the messages specified, unless the command deletes
messages, in which case the current message shall be set to the first undeleted message (that is, a
message not in the deleted state) after the highest-numbered message deleted by the command,
if one exists, or the first undeleted message before the highest-numbered message deleted by the
command, if one exists, or to an unspecified value if there are no remaining undeleted messages.
All messages shall be in one of the following states:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2887

94690

94691

94692

94693

94694

94695

94696

94697

94698

94699

94700

94701

94702

94703

94704

94705

94706

94707

94708

94709

94710

94711

94712

94713

94714

94715

94716

94717

94718

94719

94720

94721

94722

94723

94724

94725

94726

94727

94728

94729

94730

94731

94732

94733

94734

94735

94736

mailx Utilities

new The message is present in the system mailbox and has not been viewed by the user
or moved to any other state. Messages in state new when mailx quits shall be
retained in the system mailbox.

unread The message has been present in the system mailbox for more than one invocation
of mailx and has not been viewed by the user or moved to any other state.
Messages in state unread when mailx quits shall be retained in the system mailbox.

read The message has been processed by one of the following commands: ˜f, ˜m, ˜F, ˜M,
copy, mbox, next, pipe, print, Print, top, type, Type, undelete. The delete, dp,
and dt commands may also cause the next message to be marked as read,
depending on the value of the autoprint variable. Messages that are in the system
mailbox and in state read when mailx quits shall be saved in the mbox, unless the
internal variable hold was set. Messages that are in the mbox or in a secondary
mailbox and in state read when mailx quits shall be retained in their current
location.

deleted The message has been processed by one of the following commands: delete, dp, dt.
Messages in state deleted when mailx quits shall be deleted. Deleted messages shall
be ignored until mailx quits or changes mailboxes or they are specified to the
undelete command; for example, the message specification /string shall only
search the subject lines of messages that have not yet been deleted, unless the
command operating on the list of messages is undelete. No deleted message or
deleted message header shall be displayed by any mailx command other than
undelete.

preserved The message has been processed by a preserve command. When mailx quits, the
message shall be retained in its current location.

saved The message has been processed by one of the following commands: save or write.
If the current mailbox is the system mailbox, and the internal variable keepsave is
set, messages in the state saved shall be saved to the file designated by the MBOX
variable (see the ENVIRONMENT VARIABLES section). If the current mailbox is
the system mailbox, messages in the state saved shall be deleted from the current
mailbox, when the quit or file command is used to exit the current mailbox.

The header-summary line for each message shall indicate the state of the message.

Many commands take an optional list of messages (msglist) on which to operate, which defaults
to the current message. A msglist is a list of message specifications separated by <blank>
characters, which can include:

n Message number n.

+ The next undeleted message, or the next deleted message for the undelete command.

− The next previous undeleted message, or the next previous deleted message for the
undelete command.

. The current message.

ˆ The first undeleted message, or the first deleted message for the undelete command.

$ The last message.

* All messages.

2888 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

94737

94738

94739

94740

94741

94742

94743

94744

94745

94746

94747

94748

94749

94750

94751

94752

94753

94754

94755

94756

94757

94758

94759

94760

94761

94762

94763

94764

94765

94766

94767

94768

94769

94770

94771

94772

94773

94774

94775

94776

94777

94778

Utilities mailx

n-m An inclusive range of message numbers.

address All messages from address; any address as shown in a header summary shall be
matchable in this form.

/string All messages with string in the subject line (case ignored).

:c All messages of type c, where c shall be one of:

d Deleted messages.

n New messages.

o Old messages (any not in state read or new).

r Read messages.

u Unread messages.

Other commands take an optional message (message) on which to operate, which defaults to the
current message. All of the forms allowed for msglist are also allowed for message, but if more
than one message is specified, only the first shall be operated on.

Other arguments are usually arbitrary strings whose usage depends on the command involved.

Start-Up in mailx

At start-up time, mailx shall take the following steps in sequence:

1. Establish all variables at their stated default values.

2. Process command line options, overriding corresponding default values.

3. Import any of the DEAD, EDITOR, MBOX, LISTER, PAGER, SHELL, or VISUAL variables
that are present in the environment, overriding the corresponding default values.

4. Read mailx commands from an unspecified system start-up file, unless the −n option is
given, to initialize any internal mailx variables and aliases.

5. Process the start-up file of mailx commands named in the user MAILRC variable.

Most regular mailx commands are valid inside start-up files, the most common use being to set
up initial display options and alias lists. The following commands shall be invalid in the start-up
file: !, edit, hold, mail, preserve, reply, Reply, shell, visual, Copy, followup, and Followup.
Any errors in the start-up file shall either cause mailx to terminate with a diagnostic message and
a non-zero status or to continue after writing a diagnostic message, ignoring the remainder of
the lines in the start-up file.

A blank line in a start-up file shall be ignored.

Internal Variables in mailx

The following variables are internal mailx variables. Each internal variable can be set via the
mailx set command at any time. The unset and set no name commands can be used to erase
variables.

In the following list, variables shown as:

variable

represent Boolean values. Variables shown as:

variable=value

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2889

94779

94780

94781

94782

94783

94784

94785

94786

94787

94788

94789

94790

94791

94792

94793

94794

94795

94796

94797

94798

94799

94800

94801

94802

94803

94804

94805

94806

94807

94808

94809

94810

94811

94812

94813

94814

94815

94816

mailx Utilities

shall be assigned string or numeric values. For string values, the rules in Commands in mailx
(on page 2892) concerning filenames and quoting shall also apply.

The defaults specified here may be changed by the unspecified system start-up file unless the
user specifies the −n option.

allnet All network names whose login name components match shall be treated as
identical. This shall cause the msglist message specifications to behave similarly.
The default shall be noallnet. See also the alternates command and the metoo
variable.

append Append messages to the end of the mbox file upon termination instead of placing
them at the beginning. The default shall be noappend. This variable shall not
affect the save command when saving to mbox.

ask, asksub Prompt for a subject line on outgoing mail if one is not specified on the command
line with the −s option. The ask and asksub forms are synonyms; the system shall
refer to asksub and noasksub in its messages, but shall accept ask and noask as
user input to mean asksub and noasksub. It shall not be possible to set both ask
and noasksub, or noask and asksub. The default shall be asksub, but no
prompting shall be done if standard input is not a terminal.

askbcc Prompt for the blind copy list. The default shall be noaskbcc.

askcc Prompt for the copy list. The default shall be noaskcc.

autoprint Enable automatic writing of messages after delete and undelete commands. The
default shall be noautoprint.

bang Enable the special-case treatment of <exclamation-mark> characters (’!’) in
escape command lines; see the escape command and Command Escapes in mailx
(on page 2901). The default shall be nobang, disabling the expansion of ’!’ in the
command argument to the ˜! command and the ˜<!command escape.

cmd=command
Set the default command to be invoked by the pipe command. The default shall be
nocmd.

crt=number Pipe messages having more than number lines through the command specified by
the value of the PAGER variable. The default shall be nocrt. If it is set to null, the
value used is implementation-defined.

XSI debug Enable verbose diagnostics for debugging. Messages are not delivered. The
default shall be nodebug.

dot When dot is set, a <period> on a line by itself during message input from a
terminal shall also signify end-of-file (in addition to normal end-of-file). The
default shall be nodot. If ignoreeof is set (see below), a setting of nodot shall be
ignored and the <period> is the only method to terminate input mode.

escape=c Set the command escape character to be the character ’c’. By default, the
command escape character shall be <tilde>. If escape is unset, <tilde> shall be
used; if it is set to null, command escaping shall be disabled.

flipr Reverse the meanings of the R and r commands. The default shall be noflipr.

folder=directory
The default directory for saving mail files. User-specified filenames beginning with
a <plus-sign> (’+’) shall be expanded by preceding the filename with this

2890 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

94817

94818

94819

94820

94821

94822

94823

94824

94825

94826

94827

94828

94829

94830

94831

94832

94833

94834

94835

94836

94837

94838

94839

94840

94841

94842

94843

94844

94845

94846

94847

94848

94849

94850

94851

94852

94853

94854

94855

94856

94857

94858

94859

94860

Utilities mailx

directory name to obtain the real pathname. If directory does not start with a
<slash> (’/’), the contents of HOME shall be prefixed to it. The default shall be
nofolder. If folder is unset or set to null, user-specified filenames beginning with
’+’ shall refer to files in the current directory that begin with the literal ’+’
character. See also outfolder below. The folder value need not affect the processing
of the files named in MBOX and DEAD.

header Enable writing of the header summary when entering mailx in Receive Mode. The
default shall be header.

hold Preserve all messages that are read in the system mailbox instead of putting them
in the mbox save file. The default shall be nohold.

ignore Ignore interrupts while entering messages. The default shall be noignore.

ignoreeof Ignore normal end-of-file during message input. Input can be terminated only by
entering a <period> (’.’) on a line by itself or by the ˜. command escape. The
default shall be noignoreeof. See also dot above.

indentprefix=string
A string that shall be added as a prefix to each line that is inserted into the message
by the ˜m command escape. This variable shall default to one <tab>.

keep When a system mailbox, secondary mailbox, or mbox is empty, truncate it to zero
length instead of removing it. The default shall be nokeep.

keepsave Keep the messages that have been saved from the system mailbox into other files
in the file designated by the variable MBOX, instead of deleting them. The default
shall be nokeepsave.

metoo Suppress the deletion of the login name of the user from the recipient list when
replying to a message or sending to a group. The default shall be nometoo.

XSI onehop When responding to a message that was originally sent to several recipients, the
other recipient addresses are normally forced to be relative to the originating
author ’s machine for the response. This flag disables alteration of the recipients’
addresses, improving efficiency in a network where all machines can send directly
to all other machines (that is, one hop away). The default shall be noonehop.

outfolder Cause the files used to record outgoing messages to be located in the directory
specified by the folder variable unless the pathname is absolute. The default shall
be nooutfolder. See the record variable.

page Insert a <form-feed> after each message sent through the pipe created by the pipe
command. The default shall be nopage.

prompt=string
Set the command-mode prompt to string. If string is null or if noprompt is set, no
prompting shall occur. The default shall be to prompt with the string "? ".

quiet Refrain from writing the opening message and version when entering mailx. The
default shall be noquiet.

record=file Record all outgoing mail in the file with the pathname file. The default shall be
norecord. See also outfolder above.

save Enable saving of messages in the dead-letter file on interrupt or delivery error. See
the variable DEAD for the location of the dead-letter file. The default shall be save.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2891

94861

94862

94863

94864

94865

94866

94867

94868

94869

94870

94871

94872

94873

94874

94875

94876

94877

94878

94879

94880

94881

94882

94883

94884

94885

94886

94887

94888

94889

94890

94891

94892

94893

94894

94895

94896

94897

94898

94899

94900

94901

94902

94903

mailx Utilities

screen=number
Set the number of lines in a screenful of headers for the headers and z commands.
If screen is not specified, a value based on the terminal type identified by the
TERM environment variable, the window size, the baud rate, or some combination
of these shall be used.

sendwait Wait for the background mailer to finish before returning. The default shall be
nosendwait.

showto When the sender of the message was the user who is invoking mailx, write the
information from the To: line instead of the From: line in the header summary. The
default shall be noshowto.

sign=string Set the variable inserted into the text of a message when the ˜a command escape is
given. The default shall be nosign. The character sequences ’\t’ and ’\n’ shall
be recognized in the variable as <tab> and <newline> characters, respectively. (See
also ˜i in Command Escapes in mailx (on page 2901).)

Sign=string Set the variable inserted into the text of a message when the ˜A command escape is
given. The default shall be noSign. The character sequences ’\t’ and ’\n’ shall
be recognized in the variable as <tab> and <newline> characters, respectively.

toplines=number
Set the number of lines of the message to write with the top command. The default
shall be 5.

Commands in mailx

The following mailx commands shall be provided. In the following list, header refers to lines
from the message header, as shown in the OUTPUT FILES section. Header-line refers to lines
within the header that begin with one or more non-white-space characters, immediately
followed by a <colon> and white space and continuing until the next line beginning with a non-
white-space character or an empty line. Header-field refers to the portion of a header line prior
to the first <colon> in that line.

For each of the commands listed below, the command can be entered as the abbreviation (those
characters in the Synopsis command word preceding the ’[’), the full command (all characters
shown for the command word, omitting the ’[’ and ’]’), or any truncation of the full
command down to the abbreviation. For example, the exit command (shown as ex[it] in the
Synopsis) can be entered as ex, exi, or exit.

The arguments to commands can be quoted, using the following methods:

• An argument can be enclosed between paired double-quotes ("") or single-quotes (’’);
any white space, shell word expansion, or <backslash> characters within the quotes shall
be treated literally as part of the argument. A double-quote shall be treated literally within
single-quotes and vice versa. These special properties of the <quotation-mark> characters
shall occur only when they are paired at the beginning and end of the argument.

• A <backslash> outside of the enclosing quotes shall be discarded and the following
character treated literally as part of the argument.

• An unquoted <backslash> at the end of a command line shall be discarded and the next
line shall continue the command.

2892 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

94904

94905

94906

94907

94908

94909

94910

94911

94912

94913

94914

94915

94916

94917

94918

94919

94920

94921

94922

94923

94924

94925

94926

94927

94928

94929

94930

94931

94932

94933

94934

94935

94936

94937

94938

94939

94940

94941

94942

94943

94944

94945

Utilities mailx

Filenames, where expected, shall be subjected to the following transformations, in sequence:

• If the filename begins with an unquoted <plus-sign>, and the folder variable is defined
(see the folder variable), the <plus-sign> shall be replaced by the value of the folder
variable followed by a <slash>. If the folder variable is unset or is set to null, the filename
shall be unchanged.

• Shell word expansions shall be applied to the filename (see Section 2.6, on page 2305). If
more than a single pathname results from this expansion and the command is expecting
one file, the effects are unspecified.

Declare Aliases

Synopsis: a[lias] [alias [address...]]
g[roup] [alias [address...]]

Add the given addresses to the alias specified by alias. The names shall be substituted when
alias is used as a recipient address specified by the user in an outgoing message (that is, other
recipients addressed indirectly through the reply command shall not be substituted in this
manner). Mail address alias substitution shall apply only when the alias string is used as a full
address; for example, when hlj is an alias, hlj@posix.com does not trigger the alias substitution. If
no arguments are given, write a listing of the current aliases to standard output. If only an alias
argument is given, write a listing of the specified alias to standard output. These listings need
not reflect the same order of addresses that were entered.

Declare Alternatives

Synopsis: alt[ernates] name...

(See also the metoo variable.) Declare a list of alternative names for the user’s login. When
responding to a message, these names shall be removed from the list of recipients for the
response. The comparison of names shall be in a case-insensitive manner. With no arguments,
alternates shall write the current list of alternative names.

Change Current Directory

Synopsis: cd [directory]

ch[dir] [directory]

Change directory. If directory is not specified, the contents of HOME shall be used.

Copy Messages

Synopsis: c[opy] [file]

c[opy] [msglist] file

C[opy] [msglist]

Copy messages to the file named by the pathname file without marking the messages as saved.
Otherwise, it shall be equivalent to the save command.

In the capitalized form, save the specified messages in a file whose name is derived from the
author of the message to be saved, without marking the messages as saved. Otherwise, it shall
be equivalent to the Save command.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2893

94946

94947

94948

94949

94950

94951

94952

94953

94954

94955

94956

94957

94958

94959

94960

94961

94962

94963

94964

94965

94966

94967

94968

94969

94970

94971

94972

94973

94974

94975

94976

94977

94978

94979

94980

94981

94982

94983

mailx Utilities

Delete Messages

Synopsis: d[elete] [msglist]

Mark messages for deletion from the mailbox. The deletions shall not occur until mailx quits (see
the quit command) or changes mailboxes (see the folder command). If autoprint is set and there
are messages remaining after the delete command, the current message shall be written as
described for the print command (see the print command); otherwise, the mailx prompt shall be
written.

Discard Header Fields

Synopsis: di[scard] [header-field...]
ig[nore] [header-field...]

Suppress the specified header fields when writing messages. Specified header-fields shall be
added to the list of suppressed header fields. Examples of header fields to ignore are status and
cc. The fields shall be included when the message is saved. The Print and Type commands shall
override this command. The comparison of header fields shall be in a case-insensitive manner. If
no arguments are specified, write a list of the currently suppressed header fields to standard
output; the listing need not reflect the same order of header fields that were entered.

If both retain and discard commands are given, discard commands shall be ignored.

Delete Messages and Display

Synopsis: dp [msglist]

dt [msglist]

Delete the specified messages as described for the delete command, except that the autoprint
variable shall have no effect, and the current message shall be written only if it was set to a
message after the last message deleted by the command. Otherwise, an informational message
to the effect that there are no further messages in the mailbox shall be written, followed by the
mailx prompt.

Echo a String

Synopsis: ec[ho] string ...

Echo the given strings, equivalent to the shell echo utility.

Edit Messages

Synopsis: e[dit] [msglist]

Edit the given messages. The messages shall be placed in a temporary file and the utility named
by the EDITOR variable is invoked to edit each file in sequence. The default EDITOR is
unspecified.

The edit command does not modify the contents of those messages in the mailbox.

2894 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

94984

94985

94986

94987

94988

94989

94990

94991

94992

94993

94994

94995

94996

94997

94998

94999

95000

95001

95002

95003

95004

95005

95006

95007

95008

95009

95010

95011

95012

95013

95014

95015

95016

95017

Utilities mailx

Exit

Synopsis: ex[it]
x[it]

Exit from mailx without changing the mailbox. No messages shall be saved in the mbox (see also
quit).

Change Folder

Synopsis: fi[le] [file]

fold[er] [file]

Quit (see the quit command) from the current file of messages and read in the file named by the
pathname file. If no argument is given, the name and status of the current mailbox shall be
written.

Several unquoted special characters shall be recognized when used as file names, with the
following substitutions:

% The system mailbox for the invoking user.

%user The system mailbox for user.

The previous file.

& The current mbox.

+file The named file in the folder directory. (See the folder variable.)

The default file shall be the current mailbox.

Display List of Folders

Synopsis: folders

Write the names of the files in the directory set by the folder variable. The command specified
by the LISTER environment variable shall be used (see the ENVIRONMENT VARIABLES
section).

Follow Up Specified Messages

Synopsis: fo[llowup] [message]

F[ollowup] [msglist]

In the lowercase form, respond to a message, recording the response in a file whose name is
derived from the author of the message. See also the save and copy commands and outfolder.

In the capitalized form, respond to the first message in the msglist, sending the message to the
author of each message in the msglist. The subject line shall be taken from the first message and
the response shall be recorded in a file whose name is derived from the author of the first
message. See also the Save and Copy commands and outfolder.

Both forms shall override the record variable, if set.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2895

95018

95019

95020

95021

95022

95023

95024

95025

95026

95027

95028

95029

95030

95031

95032

95033

95034

95035

95036

95037

95038

95039

95040

95041

95042

95043

95044

95045

95046

95047

95048

95049

95050

95051

mailx Utilities

Display Header Summary for Specified Messages

Synopsis: f[rom] [msglist]

Write the header summary for the specified messages.

Display Header Summary

Synopsis: h[eaders] [message]

Write the page of headers that includes the message specified. If the message argument is not
specified, the current message shall not change. However, if the message argument is specified,
the current message shall become the message that appears at the top of the page of headers that
includes the message specified. The screen variable sets the number of headers per page. See
also the z command.

Help

Synopsis: hel[p]
?

Write a summary of commands.

Hold Messages

Synopsis: ho[ld] [msglist]

pre[serve] [msglist]

Mark the messages in msglist to be retained in the mailbox when mailx terminates. This shall
override any commands that might previously have marked the messages to be deleted. During
the current invocation of mailx, only the delete, dp, or dt commands shall remove the preserve
marking of a message.

Execute Commands Conditionally

Synopsis: i[f] s|r
mail-commands
el[se]
mail-commands
en[dif]

Execute commands conditionally, where if s executes the following mail-commands, up to an
else or endif, if the program is in Send Mode, and if r shall cause the mail-commands to be
executed only in Receive Mode.

List Available Commands

Synopsis: l[ist]

Write a list of all commands available. No explanation shall be given.

2896 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

95052

95053

95054

95055

95056

95057

95058

95059

95060

95061

95062

95063

95064

95065

95066

95067

95068

95069

95070

95071

95072

95073

95074

95075

95076

95077

95078

95079

95080

95081

95082

95083

95084

Utilities mailx

Mail a Message

Synopsis: m[ail] address...

Mail a message to the specified addresses or aliases.

Direct Messages to mbox

Synopsis: mb[ox] [msglist]

Arrange for the given messages to end up in the mbox save file when mailx terminates normally.
See MBOX. See also the exit and quit commands.

Process Next Specified Message

Synopsis: n[ext] [message]

If the current message has not been written (for example, by the print command) since mailx
started or since any other message was the current message, behave as if the print command
was entered. Otherwise, if there is an undeleted message after the current message, make it the
current message and behave as if the print command was entered. Otherwise, an informational
message to the effect that there are no further messages in the mailbox shall be written, followed
by the mailx prompt. Should the current message location be the result of an immediately
preceding hold, mbox, preserve, or touch command, next will act as if the current message has
already been written.

Pipe Message

Synopsis: pi[pe] [[msglist] command]

| [[msglist] command]

Pipe the messages through the given command by invoking the command interpreter specified
by SHELL with two arguments: −c and command. (See also sh −c.) The application shall ensure
that the command is given as a single argument. Quoting, described previously, can be used to
accomplish this. If no arguments are given, the current message shall be piped through the
command specified by the value of the cmd variable. If the page variable is set, a <form-feed>
shall be inserted after each message.

Display Message with Headers

Synopsis: P[rint] [msglist]

T[ype] [msglist]

Write the specified messages, including all header lines, to standard output. Override
suppression of lines by the discard, ignore, and retain commands. If crt is set, the messages
longer than the number of lines specified by the crt variable shall be paged through the
command specified by the PAGER environment variable.

Display Message

Synopsis: p[rint] [msglist]

t[ype] [msglist]

Write the specified messages to standard output. If crt is set, the messages longer than the
number of lines specified by the crt variable shall be paged through the command specified by
the PAGER environment variable.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2897

95085

95086

95087

95088

95089

95090

95091

95092

95093

95094

95095

95096

95097

95098

95099

95100

95101

95102

95103

95104

95105

95106

95107

95108

95109

95110

95111

95112

95113

95114

95115

95116

95117

95118

95119

95120

95121

95122

95123

mailx Utilities

Quit

Synopsis: q[uit]
end-of-file

Terminate mailx, storing messages that were read in mbox (if the current mailbox is the system
mailbox and unless hold is set), deleting messages that have been explicitly saved (unless
keepsave is set), discarding messages that have been deleted, and saving all remaining messages
in the mailbox.

Reply to a Message List

Synopsis: R[eply] [msglist]

R[espond] [msglist]

Mail a reply message to the sender of each message in the msglist. The subject line shall be
formed by concatenating Re:<space> (unless it already begins with that string) and the subject
from the first message. If record is set to a filename, the response shall be saved at the end of that
file.

See also the flipr variable.

Reply to a Message

Synopsis: r[eply] [message]

r[espond] [message]

Mail a reply message to all recipients included in the header of the message. The subject line
shall be formed by concatenating Re:<space> (unless it already begins with that string) and the
subject from the message. If record is set to a filename, the response shall be saved at the end of
that file.

See also the flipr variable.

Retain Header Fields

Synopsis: ret[ain] [header-field...]

Retain the specified header fields when writing messages. This command shall override all
discard and ignore commands. The comparison of header fields shall be in a case-insensitive
manner. If no arguments are specified, write a list of the currently retained header fields to
standard output; the listing need not reflect the same order of header fields that were entered.

Save Messages

Synopsis: s[ave] [file]

s[ave] [msglist] file

S[ave] [msglist]

Save the specified messages in the file named by the pathname file, or the mbox if the file
argument is omitted. The file shall be created if it does not exist; otherwise, the messages shall be
appended to the file. The message shall be put in the state saved, and shall behave as specified in
the description of the saved state when the current mailbox is exited by the quit or file
command.

In the capitalized form, save the specified messages in a file whose name is derived from the
author of the first message. The name of the file shall be taken to be the author’s name with all
network addressing stripped off. See also the Copy, followup, and Followup commands and

2898 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

95124

95125

95126

95127

95128

95129

95130

95131

95132

95133

95134

95135

95136

95137

95138

95139

95140

95141

95142

95143

95144

95145

95146

95147

95148

95149

95150

95151

95152

95153

95154

95155

95156

95157

95158

95159

95160

95161

95162

95163

95164

Utilities mailx

outfolder variable.

Set Variables

Synopsis: se[t] [name[=[string]] ...] [name=number ...] [noname ...]

Define one or more variables called name. The variable can be given a null, string, or numeric
value. Quoting and <backslash>-escapes can occur anywhere in string, as described previously,
as if the string portion of the argument were the entire argument. The forms name and name=
shall be equivalent to name="" for variables that take string values. The set command without
arguments shall write a list of all defined variables and their values. The no name form shall be
equivalent to unset name.

Invoke a Shell

Synopsis: sh[ell]

Invoke an interactive command interpreter (see also SHELL).

Display Message Size

Synopsis: si[ze] [msglist]

Write the size in bytes of each of the specified messages.

Read mailx Commands From a File

Synopsis: so[urce] file

Read and execute commands from the file named by the pathname file and return to command
mode.

Display Beginning of Messages

Synopsis: to[p] [msglist]

Write the top few lines of each of the specified messages. If the toplines variable is set, it is taken
as the number of lines to write. The default shall be 5.

Touch Messages

Synopsis: tou[ch] [msglist]

Touch the specified messages. If any message in msglist is not specifically deleted nor saved in a
file, it shall be placed in the mbox upon normal termination. See exit and quit.

Delete Aliases

Synopsis: una[lias] [alias]...

Delete the specified alias names. If a specified alias does not exist, the results are unspecified.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2899

95165

95166

95167

95168

95169

95170

95171

95172

95173

95174

95175

95176

95177

95178

95179

95180

95181

95182

95183

95184

95185

95186

95187

95188

95189

95190

95191

95192

95193

95194

mailx Utilities

Undelete Messages

Synopsis: u[ndelete] [msglist]

Change the state of the specified messages from deleted to read. If autoprint is set, the last
message of those restored shall be written. If msglist is not specified, the message shall be
selected as follows:

• If there are any deleted messages that follow the current message, the first of these shall be
chosen.

• Otherwise, the last deleted message that also precedes the current message shall be chosen.

Unset Variables

Synopsis: uns[et] name...

Cause the specified variables to be erased.

Edit Message with Full-Screen Editor

Synopsis: v[isual] [msglist]

Edit the given messages with a screen editor. Each message shall be placed in a temporary file,
and the utility named by the VISUAL variable shall be invoked to edit each file in sequence. The
default editor shall be vi.

The visual command does not modify the contents of those messages in the mailbox.

Write Messages to a File

Synopsis: w[rite] [msglist] file

Write the given messages to the file specified by the pathname file, minus the message header.
Otherwise, it shall be equivalent to the save command.

Scroll Header Display

Synopsis: z[+|−]

Scroll the header display forward (if ’+’ is specified or if no option is specified) or backward (if
’−’ is specified) one screenful. The number of headers written shall be set by the screen
variable.

Invoke Shell Command

Synopsis: !command

Invoke the command interpreter specified by SHELL with two arguments: −c and command. (See
also sh −c.) If the bang variable is set, each unescaped occurrence of ’!’ in command shall be
replaced with the command executed by the previous ! command or ˜! command escape.

2900 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

95195

95196

95197

95198

95199

95200

95201

95202

95203

95204

95205

95206

95207

95208

95209

95210

95211

95212

95213

95214

95215

95216

95217

95218

95219

95220

95221

95222

95223

95224

95225

Utilities mailx

Null Command

Synopsis: # comment

This null command (comment) shall be ignored by mailx.

Display Current Message Number

Synopsis: =

Write the current message number.

Command Escapes in mailx

The following commands can be entered only from input mode, by beginning a line with the
escape character (by default, <tilde> (’˜’)). See the escape variable description for changing
this special character. The format for the commands shall be:

<escape-character><command-char><separator>[<arguments>]

where the <separator> can be zero or more <blank> characters.

In the following descriptions, the application shall ensure that the argument command (but not
mailx-command) is a shell command string. Any string acceptable to the command interpreter
specified by the SHELL variable when it is invoked as SHELL −c command_string shall be valid.
The command can be presented as multiple arguments (that is, quoting is not required).

Command escapes that are listed with msglist or mailx-command arguments are invalid in Send
Mode and produce unspecified results.

˜! command Invoke the command interpreter specified by SHELL with two arguments: −c and
command; and then return to input mode. If the bang variable is set, each
unescaped occurrence of ’!’ in command shall be replaced with the command
executed by the previous ! command or ˜! command escape.

˜. Simulate end-of-file (terminate message input).

˜: mailx-command, ˜_ mailx-command
Perform the command-level request.

˜? Write a summary of command escapes.

˜A This shall be equivalent to ˜i Sign.

˜a This shall be equivalent to ˜i sign.

˜b name. . . Add the names to the blind carbon copy (Bcc) list.

˜c name. . . Add the names to the carbon copy (Cc) list.

˜d Read in the dead-letter file. See DEAD for a description of this file.

˜e Invoke the editor, as specified by the EDITOR environment variable, on the partial
message.

˜ f [msglist] Forward the specified messages. The specified messages shall be inserted into the
current message without alteration. This command escape also shall insert
message headers into the message with field selection affected by the discard,
ignore, and retain commands.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2901

95226

95227

95228

95229

95230

95231

95232

95233

95234

95235

95236

95237

95238

95239

95240

95241

95242

95243

95244

95245

95246

95247

95248

95249

95250

95251

95252

95253

95254

95255

95256

95257

95258

95259

95260

95261

95262

mailx Utilities

˜ F [msglist] This shall be the equivalent of the ˜f command escape, except that all headers shall
be included in the message, regardless of previous discard, ignore, and retain
commands.

˜h If standard input is a terminal, prompt for a Subject line and the To, Cc, and Bcc
lists. Other implementation-defined headers may also be presented for editing. If
the field is written with an initial value, it can be edited as if it had just been typed.

˜i string Insert the value of the named variable, followed by a <newline>, into the text of
the message. If the string is unset or null, the message shall not be changed.

˜ m [msglist] Insert the specified messages into the message, prefixing non-empty lines with the
string in the indentprefix variable. This command escape also shall insert message
headers into the message, with field selection affected by the discard, ignore, and
retain commands.

˜ M [msglist] This shall be the equivalent of the ˜m command escape, except that all headers
shall be included in the message, regardless of previous discard, ignore, and retain
commands.

˜p Write the message being entered. If the message is longer than crt lines (see
Internal Variables in mailx, on page 2889), the output shall be paginated as
described for the PAGER variable.

˜q Quit (see the quit command) from input mode by simulating an interrupt. If the
body of the message is not empty, the partial message shall be saved in the dead-
letter file. See DEAD for a description of this file.

˜r file, ˜< file, ˜r !command, ˜< !command
Read in the file specified by the pathname file. If the argument begins with an
<exclamation-mark> (’!’), the rest of the string shall be taken as an arbitrary
system command; the command interpreter specified by SHELL shall be invoked
with two arguments: −c and command. The standard output of command shall be
inserted into the message.

˜s string Set the subject line to string.

˜t name. . . Add the given names to the To list.

˜v Invoke the full-screen editor, as specified by the VISUAL environment variable, on
the partial message.

˜w file Write the partial message, without the header, onto the file named by the
pathname file. The file shall be created or the message shall be appended to it if
the file exists.

˜x Exit as with ˜q, except the message shall not be saved in the dead-letter file.

˜| command Pipe the body of the message through the given command by invoking the
command interpreter specified by SHELL with two arguments: −c and command. If
the command returns a successful exit status, the standard output of the command
shall replace the message. Otherwise, the message shall remain unchanged. If the
command fails, an error message giving the exit status shall be written.

2902 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

95263

95264

95265

95266

95267

95268

95269

95270

95271

95272

95273

95274

95275

95276

95277

95278

95279

95280

95281

95282

95283

95284

95285

95286

95287

95288

95289

95290

95291

95292

95293

95294

95295

95296

95297

95298

95299

95300

95301

95302

Utilities mailx

EXIT STATUS
UP When the −e option is specified, the following exit values are returned:

0 Mail was found.

>0 Mail was not found or an error occurred.

Otherwise, the following exit values are returned:

0 Successful completion; note that this status implies that all messages were sent, but it gives
no assurances that any of them were actually delivered.

>0 An error occurred.

CONSEQUENCES OF ERRORS
UP When in input mode (Receive Mode) or Send Mode:

• If an error is encountered processing an input line beginning with a <tilde> (’˜’)
UP character, (see Command Escapes in mailx, on page 2901), a diagnostic message shall be

written to standard error, and the message being composed may be modified, but this
condition shall not prevent the message from being sent.

• Other errors shall prevent the sending of the message.

UP When in command mode:

• Default.

APPLICATION USAGE
Delivery of messages to remote systems requires the existence of communication paths to such
systems. These need not exist.

Input lines are limited to {LINE_MAX} bytes, but mailers between systems may impose more
severe line-length restrictions. This volume of POSIX.1-2008 does not place any restrictions on
the length of messages handled by mailx, and for delivery of local messages the only limitations
should be the normal problems of available disk space for the target mail file. When sending
messages to external machines, applications are advised to limit messages to less than 100 000
bytes because some mail gateways impose message-length restrictions.

The format of the system mailbox is intentionally unspecified. Not all systems implement
system mailboxes as flat files, particularly with the advent of multimedia mail messages. Some
system mailboxes may be multiple files, others records in a database. The internal format of the
messages themselves is specified with the historical format from Version 7, but only after the
messages have been saved in some file other than the system mailbox. This was done so that
many historical applications expecting text-file mailboxes are not broken.

Some new formats for messages can be expected in the future, probably including binary data,
bit maps, and various multimedia objects. As described here, mailx is not prohibited from
handling such messages, but it must store them as text files in secondary mailboxes (unless some
extension, such as a variable or command line option, is used to change the stored format). Its
method of doing so is implementation-defined and might include translating the data into text
file-compatible or readable form or omitting certain portions of the message from the stored
output.

The discard and ignore commands are not inverses of the retain command. The retain
command discards all header-fields except those explicitly retained. The discard command
keeps all header-fields except those explicitly discarded. If headers exist on the retained header

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2903

95303

95304

95305

95306

95307

95308

95309

95310

95311

95312

95313

95314

95315

95316

95317

95318

95319

95320

95321

95322

95323

95324

95325

95326

95327

95328

95329

95330

95331

95332

95333

95334

95335

95336

95337

95338

95339

95340

95341

95342

95343

95344

mailx Utilities

list, discard and ignore commands are ignored.

EXAMPLES
None.

RATIONALE
The standard developers felt strongly that a method for applications to send messages to specific
users was necessary. The obvious example is a batch utility, running non-interactively, that
wishes to communicate errors or results to a user. However, the actual format, delivery
mechanism, and method of reading the message are clearly beyond the scope of this volume of
POSIX.1-2008.

The intent of this command is to provide a simple, portable interface for sending messages non-
interactively. It merely defines a ‘‘front-end’’ to the historical mail system. It is suggested that
implementations explicitly denote the sender and recipient in the body of the delivered message.
Further specification of formats for either the message envelope or the message itself were
deliberately not made, as the industry is in the midst of changing from the current standards to a
more internationalized standard and it is probably incorrect, at this time, to require either one.

Implementations are encouraged to conform to the various delivery mechanisms described in
the CCITT X.400 standards or to the equivalent Internet standards, described in Internet Request
for Comment (RFC) documents RFC 819, RFC 822, RFC 920, RFC 921, and RFC 1123.

Many historical systems modified each body line that started with From by prefixing the ’F’
with ’>’. It is unnecessary, but allowed, to do that when the string does not follow a blank line
because it cannot be confused with the next header.

The edit and visual commands merely edit the specified messages in a temporary file. They do
not modify the contents of those messages in the mailbox; such a capability could be added as an
extension, such as by using different command names.

The restriction on a subject line being {LINE_MAX}−10 bytes is based on the historical format
that consumes 10 bytes for Subject: and the trailing <newline>. Many historical mailers that a
message may encounter on other systems are not able to handle lines that long, however.

Like the utilities logger and lp, mailx admittedly is difficult to test. This was not deemed sufficient
justification to exclude this utility from this volume of POSIX.1-2008. It is also arguable that it is,
in fact, testable, but that the tests themselves are not portable.

When mailx is being used by an application that wishes to receive the results as if none of the
User Portability Utilities option features were supported, the DEAD environment variable must
be set to /dev/null. Otherwise, it may be subject to the file creations described in mailx
ASYNCHRONOUS EVENTS. Similarly, if the MAILRC environment variable is not set to
/dev/null, historical versions of mailx and Mail read initialization commands from a file before
processing begins. Since the initialization that a user specifies could alter the contents of
messages an application is trying to send, such applications must set MAILRC to /dev/null.

The description of LC_TIME uses ‘‘may affect’’ because many historical implementations do not
or cannot manipulate the date and time strings in the incoming mail headers. Some headers
found in incoming mail do not have enough information to determine the timezone in which the
mail originated, and, therefore, mailx cannot convert the date and time strings into the internal
form that then is parsed by routines like strftime() that can take LC_TIME settings into account.
Changing all these times to a user-specified format is allowed, but not required.

The paginator selected when PAGER is null or unset is partially unspecified to allow the System
V historical practice of using pg as the default. Bypassing the pagination function, such as by
declaring that cat is the paginator, would not meet with the intended meaning of this

2904 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

95345

95346

95347

95348

95349

95350

95351

95352

95353

95354

95355

95356

95357

95358

95359

95360

95361

95362

95363

95364

95365

95366

95367

95368

95369

95370

95371

95372

95373

95374

95375

95376

95377

95378

95379

95380

95381

95382

95383

95384

95385

95386

95387

95388

95389

95390

Utilities mailx

description. However, any ‘‘portable user’’ would have to set PAGER explicitly to get his or her
preferred paginator on all systems. The paginator choice was made partially unspecified, unlike
the VISUAL editor choice (mandated to be vi) because most historical pagers follow a common
theme of user input, whereas editors differ dramatically.

Options to specify addresses as cc (carbon copy) or bcc (blind carbon copy) were considered to
be format details and were omitted.

A zero exit status implies that all messages were sent, but it gives no assurances that any of them
were actually delivered. The reliability of the delivery mechanism is unspecified and is an
appropriate marketing distinction between systems.

In order to conform to the Utility Syntax Guidelines, a solution was required to the optional file
option-argument to −f. By making file an operand, the guidelines are satisfied and users remain
portable. However, it does force implementations to support usage such as:

mailx −fin mymail.box

The no name method of unsetting variables is not present in all historical systems, but it is in
System V and provides a logical set of commands corresponding to the format of the display of
options from the mailx set command without arguments.

The ask and asksub variables are the names selected by BSD and System V, respectively, for the
same feature. They are synonyms in this volume of POSIX.1-2008.

The mailx echo command was not documented in the BSD version and has been omitted here
because it is not obviously useful for interactive users.

The default prompt on the System V mailx is a <question-mark>, on BSD Mail an <ampersand>.
Since this volume of POSIX.1-2008 chose the mailx name, it kept the System V default, assuming
that BSD users would not have difficulty with this minor incompatibility (that they can
override).

The meanings of r and R are reversed between System V mailx and SunOS Mail. Once again,
since this volume of POSIX.1-2008 chose the mailx name, it kept the System V default, but allows
the SunOS user to achieve the desired results using flipr, an internal variable in System V mailx,
although it has not been documented in the SVID.

The indentprefix variable, the retain and unalias commands, and the ˜F and ˜M command
escapes were adopted from 4.3 BSD Mail.

The version command was not included because no sufficiently general specification of the
version information could be devised that would still be useful to a portable user. This
command name should be used by suppliers who wish to provide version information about the
mailx command.

The ‘‘implementation-specific (unspecified) system start-up file’’ historically has been named
/etc/mailx.rc, but this specific name and location are not required.

The intent of the wording for the next command is that if any command has already displayed
the current message it should display a following message, but, otherwise, it should display the
current message. Consider the command sequence:

next 3
delete 3
next

where the autoprint option was not set. The normative text specifies that the second next
command should display a message following the third message, because even though the

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2905

95391

95392

95393

95394

95395

95396

95397

95398

95399

95400

95401

95402

95403

95404

95405

95406

95407

95408

95409

95410

95411

95412

95413

95414

95415

95416

95417

95418

95419

95420

95421

95422

95423

95424

95425

95426

95427

95428

95429

95430

95431

95432

95433

95434

mailx Utilities

current message has not been displayed since it was set by the delete command, it has been
displayed since the current message was anything other than message number 3. This does not
always match historical practice in some implementations, where the command file address
followed by next (or the default command) would skip the message for which the user had
searched.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2297), ed , ls , more , vi

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The description of the EDITOR environment variable is changed to indicate that ed is the default
editor if this variable is not set. In previous issues, this default was not stated explicitly at this
point but was implied further down in the text.

The FUTURE DIRECTIONS section is added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The −F option is added.

• The allnet, debug, and sendwait internal variables are added.

• The C, ec, fo, F, and S mailx commands are added.

In the DESCRIPTION and ENVIRONMENT VARIABLES sections, text stating ‘‘HOME
directory’’ is replaced by ‘‘directory referred to by the HOME environment variable’’.

The mailx utility is aligned with the IEEE P1003.2b draft standard, which includes various
clarifications to resolve IEEE PASC Interpretations submitted for the ISO POSIX-2: 1993
standard. In particular, the changes here address IEEE PASC Interpretations 1003.2 #10, #11,
#103, #106, #108, #114, #115, #122, and #129.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

The TZ entry is added to the ENVIRONMENT VARIABLES section.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/32 is applied, applying a change to the
EXTENDED DESCRIPTION, raised by IEEE PASC Interpretation 1003.2 #122, which was
overlooked in the first version of this standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/17 is applied, updating the EXTENDED
DESCRIPTION (Internal Variables in mailx). The system start-up file is changed from
‘‘implementation-defined’’ to ‘‘unspecified’’ for consistency with other text in the EXTENDED
DESCRIPTION.

Issue 7
Austin Group Interpretation 1003.1-2001 #089 is applied, clarifying the effect of the LC_TIME
environment variable.

Austin Group Interpretation 1003.1-2001 #090 is applied, updating the description of the next
command.

2906 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

95435

95436

95437

95438

95439

95440

95441

95442

95443

95444

95445

95446

95447

95448

95449

95450

95451

95452

95453

95454

95455

95456

95457

95458

95459

95460

95461

95462

95463

95464

95465

95466

95467

95468

95469

95470

95471

95472

95473

95474

95475

95476

95477

Utilities mailx

SD5-XCU-ERN-69 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Shading to indicate support for the User Portability Utilities option is added.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2907

95478

95479

95480

make Utilities

NAME
make — maintain, update, and regenerate groups of programs (DEVELOPMENT)

SYNOPSIS
SD make [−einpqrst] [−f makefile]... [−k|−S] [macro=value...]

[target_name...]

DESCRIPTION
The make utility shall update files that are derived from other files. A typical case is one where
object files are derived from the corresponding source files. The make utility examines time
relationships and shall update those derived files (called targets) that have modified times
earlier than the modified times of the files (called prerequisites) from which they are derived. A
description file (makefile) contains a description of the relationships between files, and the
commands that need to be executed to update the targets to reflect changes in their
prerequisites. Each specification, or rule, shall consist of a target, optional prerequisites, and
optional commands to be executed when a prerequisite is newer than the target. There are two
types of rule:

1. Inference rules, which have one target name with at least one <period> (’.’) and no
<slash> (’/’)

2. Target rules, which can have more than one target name

In addition, make shall have a collection of built-in macros and inference rules that infer
prerequisite relationships to simplify maintenance of programs.

To receive exactly the behavior described in this section, the user shall ensure that a portable
makefile shall:

• Include the special target .POSIX

• Omit any special target reserved for implementations (a leading period followed by
uppercase letters) that has not been specified by this section

The behavior of make is unspecified if either or both of these conditions are not met.

OPTIONS
The make utility shall conform to XBD Section 12.2 (on page 215), except for Guideline 9.

The following options shall be supported:

−e Cause environment variables, including those with null values, to override macro
assignments within makefiles.

−f makefile Specify a different makefile. The argument makefile is a pathname of a description
file, which is also referred to as the makefile. A pathname of ’−’ shall denote the
standard input. There can be multiple instances of this option, and they shall be
processed in the order specified. The effect of specifying the same option-argument
more than once is unspecified.

−i Ignore error codes returned by invoked commands. This mode is the same as if the
special target .IGNORE were specified without prerequisites.

−k Continue to update other targets that do not depend on the current target if a non-
ignored error occurs while executing the commands to bring a target up-to-date.

−n Write commands that would be executed on standard output, but do not execute
them. However, lines with a <plus-sign> (’+’) prefix shall be executed. In this
mode, lines with an at-sign (’@’) character prefix shall be written to standard

2908 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

95481

95482

95483

95484

95485

95486

95487

95488

95489

95490

95491

95492

95493

95494

95495

95496

95497

95498

95499

95500

95501

95502

95503

95504

95505

95506

95507

95508

95509

95510

95511

95512

95513

95514

95515

95516

95517

95518

95519

95520

95521

95522

95523

Utilities make

output.

−p Write to standard output the complete set of macro definitions and target
descriptions. The output format is unspecified.

−q Return a zero exit value if the target file is up-to-date; otherwise, return an exit
value of 1. Targets shall not be updated if this option is specified. However, a
makefile command line (associated with the targets) with a <plus-sign> (’+’)
prefix shall be executed.

−r Clear the suffix list and do not use the built-in rules.

−S Terminate make if an error occurs while executing the commands to bring a target
up-to-date. This shall be the default and the opposite of −k.

−s Do not write makefile command lines or touch messages (see −t) to standard
output before executing. This mode shall be the same as if the special target
.SILENT were specified without prerequisites.

−t Update the modification time of each target as though a touch target had been
executed. Targets that have prerequisites but no commands (see Target Rules, on
page 2913), or that are already up-to-date, shall not be touched in this manner.
Write messages to standard output for each target file indicating the name of the
file and that it was touched. Normally, the makefile command lines associated with
each target are not executed. However, a command line with a <plus-sign> (’+’)
prefix shall be executed.

Any options specified in the MAKEFLAGS environment variable shall be evaluated before any
options specified on the make utility command line. If the −k and −S options are both specified
on the make utility command line or by the MAKEFLAGS environment variable, the last option
specified shall take precedence. If the −f or −p options appear in the MAKEFLAGS environment
variable, the result is undefined.

OPERANDS
The following operands shall be supported:

target_name Target names, as defined in the EXTENDED DESCRIPTION section. If no target is
specified, while make is processing the makefiles, the first target that make
encounters that is not a special target or an inference rule shall be used.

macro=value Macro definitions, as defined in Macros (on page 2914).

If the target_name and macro=value operands are intermixed on the make utility command line,
the results are unspecified.

STDIN
The standard input shall be used only if the makefile option-argument is ’−’. See the INPUT
FILES section.

INPUT FILES
The input file, otherwise known as the makefile, is a text file containing rules, macro definitions,
and comments. See the EXTENDED DESCRIPTION section.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of make:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2909

95524

95525

95526

95527

95528

95529

95530

95531

95532

95533

95534

95535

95536

95537

95538

95539

95540

95541

95542

95543

95544

95545

95546

95547

95548

95549

95550

95551

95552

95553

95554

95555

95556

95557

95558

95559

95560

95561

95562

95563

95564

95565

95566

95567

make Utilities

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

MAKEFLAGS
This variable shall be interpreted as a character string representing a series of
option characters to be used as the default options. The implementation shall
accept both of the following formats (but need not accept them when intermixed):

• The characters are option letters without the leading <hyphen> characters or
<blank> separation used on a make utility command line.

• The characters are formatted in a manner similar to a portion of the make
utility command line: options are preceded by <hyphen> characters and
<blank>-separated as described in XBD Section 12.2 (on page 215). The
macro=value macro definition operands can also be included. The difference
between the contents of MAKEFLAGS and the make utility command line is
that the contents of the variable shall not be subjected to the word expansions
(see Section 2.6, on page 2305) associated with parsing the command line
values.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

XSI PROJECTDIR
Provide a directory to be used to search for SCCS files not found in the current
directory. In all of the following cases, the search for SCCS files is made in the
directory SCCS in the identified directory. If the value of PROJECTDIR begins with
a <slash>, it shall be considered an absolute pathname; otherwise, the value of
PROJECTDIR is treated as a user name and that user’s initial working directory
shall be examined for a subdirectory src or source. If such a directory is found, it
shall be used. Otherwise, the value is used as a relative pathname.

If PROJECTDIR is not set or has a null value, the search for SCCS files shall be
made in the directory SCCS in the current directory.

The setting of PROJECTDIR affects all files listed in the remainder of this utility
description for files with a component named SCCS.

The value of the SHELL environment variable shall not be used as a macro and shall not be
modified by defining the SHELL macro in a makefile or on the command line. All other
environment variables, including those with null values, shall be used as macros, as defined in
Macros (on page 2914).

ASYNCHRONOUS EVENTS
If not already ignored, make shall trap SIGHUP, SIGTERM, SIGINT, and SIGQUIT and remove
the current target unless the target is a directory or the target is a prerequisite of the special
target .PRECIOUS or unless one of the −n, −p, or −q options was specified. Any targets removed
in this manner shall be reported in diagnostic messages of unspecified format, written to
standard error. After this cleanup process, if any, make shall take the standard action for all other
signals.

2910 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

95568

95569

95570

95571

95572

95573

95574

95575

95576

95577

95578

95579

95580

95581

95582

95583

95584

95585

95586

95587

95588

95589

95590

95591

95592

95593

95594

95595

95596

95597

95598

95599

95600

95601

95602

95603

95604

95605

95606

95607

95608

95609

95610

95611

95612

95613

Utilities make

STDOUT
The make utility shall write all commands to be executed to standard output unless the −s option
was specified, the command is prefixed with an at-sign, or the special target .SILENT has either
the current target as a prerequisite or has no prerequisites. If make is invoked without any work
needing to be done, it shall write a message to standard output indicating that no action was
taken. If the −t option is present and a file is touched, make shall write to standard output a
message of unspecified format indicating that the file was touched, including the filename of the
file.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
Files can be created when the −t option is present. Additional files can also be created by the
utilities invoked by make.

EXTENDED DESCRIPTION
The make utility attempts to perform the actions required to ensure that the specified targets are
up-to-date. A target is considered out-of-date if it is older than any of its prerequisites or if it
does not exist. The make utility shall treat all prerequisites as targets themselves and recursively
ensure that they are up-to-date, processing them in the order in which they appear in the rule.
The make utility shall use the modification times of files to determine whether the corresponding
targets are out-of-date.

After make has ensured that all of the prerequisites of a target are up-to-date and if the target is
out-of-date, the commands associated with the target entry shall be executed. If there are no
commands listed for the target, the target shall be treated as up-to-date.

Makefile Syntax

A makefile can contain rules, macro definitions (see Macros, on page 2914), include lines, and
comments. There are two kinds of rules: inference rules and target rules. The make utility shall
contain a set of built-in inference rules. If the −r option is present, the built-in rules shall not be
used and the suffix list shall be cleared. Additional rules of both types can be specified in a
makefile. If a rule is defined more than once, the value of the rule shall be that of the last one
specified. Macros can also be defined more than once, and the value of the macro is specified in
Macros (on page 2914). Comments start with a <number-sign> (’#’) and continue until an
unescaped <newline> is reached.

By default, the following files shall be tried in sequence: ./makefile and ./Makefile. If neither
XSI ./makefile or ./Makefile are found, other implementation-defined files may also be tried. On

XSI-conformant systems, the additional files ./s.makefile, SCCS/s.makefile, ./s.Makefile, and
SCCS/s.Makefile shall also be tried.

The −f option shall direct make to ignore any of these default files and use the specified argument
as a makefile instead. If the ’−’ argument is specified, standard input shall be used.

The term makefile is used to refer to any rules provided by the user, whether in ./makefile or its
variants, or specified by the −f option.

The rules in makefiles shall consist of the following types of lines: target rules, including special
targets (see Target Rules, on page 2913), inference rules (see Inference Rules, on page 2916),
macro definitions (see Macros, on page 2914), empty lines, and comments.

Target and Inference Rules may contain command lines. Command lines can have a prefix that
shall be removed before execution (see Makefile Execution, on page 2912).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2911

95614

95615

95616

95617

95618

95619

95620

95621

95622

95623

95624

95625

95626

95627

95628

95629

95630

95631

95632

95633

95634

95635

95636

95637

95638

95639

95640

95641

95642

95643

95644

95645

95646

95647

95648

95649

95650

95651

95652

95653

95654

95655

95656

95657

95658

make Utilities

When an escaped <newline> (one preceded by a <backslash>) is found anywhere in the
makefile except in a command line, an include line, or a line immediately preceding an include
line, it shall be replaced, along with any leading white space on the following line, with a single
<space>. When an escaped <newline> is found in a command line in a makefile, the command
line shall contain the <backslash>, the <newline>, and the next line, except that the first
character of the next line shall not be included if it is a <tab>. When an escaped <newline> is
found in an include line or in a line immediately preceding an include line, the behavior is
unspecified.

Include Lines

If the word include appears at the beginning of a line and is followed by one or more <blank>
characters, the string formed by the remainder of the line shall be processed as follows to
produce a pathname:

• The trailing <newline> and any comment shall be discarded. If the resulting string
contains any double-quote characters (’"’) the behavior is unspecified.

• The resulting string shall be processed for macro expansion (see Macros (on page 2914).

• Any <blank> characters that appear after the first non-<blank> shall be used as separators
to divide the macro-expanded string into fields. It is unspecified whether any other white-
space characters are also used as separators. It is unspecified whether pathname expansion
(see Section 2.13, on page 2332) is also performed.

• If the processing of separators and optional pathname expansion results in either zero or
two or more non-empty fields, the behavior is unspecified. If it results in one non-empty
field, that field is taken as the pathname.

If the pathname does not begin with a ’/’ it shall be treated as relative to the current working
directory of the process, not relative to the directory containing the makefile. If the file does not
exist in this location, it is unspecified whether additional directories are searched.

The contents of the file specified by the pathname shall be read and processed as if they
appeared in the makefile in place of the include line. If the file ends with an escaped <newline>
the behavior is unspecified.

The file may itself contain further include lines. Implementations shall support nesting of
include files up to a depth of at least 16.

Makefile Execution

Makefile command lines shall be processed one at a time.

Makefile command lines can have one or more of the following prefixes: a <hyphen> (’-’), an
at-sign (’@’), or a <plus-sign> (’+’). These shall modify the way in which make processes the
command.

− If the command prefix contains a <hyphen>, or the −i option is present, or the special target
.IGNORE has either the current target as a prerequisite or has no prerequisites, any error
found while executing the command shall be ignored.

@ If the command prefix contains an at-sign and the make utility command line −n option is
not specified, or the −s option is present, or the special target .SILENT has either the current
target as a prerequisite or has no prerequisites, the command shall not be written to
standard output before it is executed.

2912 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

95659

95660

95661

95662

95663

95664

95665

95666

95667

95668

95669

95670

95671

95672

95673

95674

95675

95676

95677

95678

95679

95680

95681

95682

95683

95684

95685

95686

95687

95688

95689

95690

95691

95692

95693

95694

95695

95696

95697

95698

95699

95700

Utilities make

+ If the command prefix contains a <plus-sign>, this indicates a makefile command line that
shall be executed even if −n, −q, or −t is specified.

An execution line is built from the command line by removing any prefix characters. Except as
described under the at-sign prefix, the execution line shall be written to the standard output,
optionally preceded by a <tab>. The execution line shall then be executed by a shell as if it were
passed as the argument to the system() interface, except that the shell −e option shall also be in
effect. The environment for the command being executed shall contain all of the variables in the
environment of make.

By default, when make receives a non-zero status from the execution of a command, it shall
terminate with an error message to standard error.

Target Rules

Target rules are formatted as follows:

target [target...]: [prerequisite...][;command]
[<tab>command
<tab>command
...]

line that does not begin with <tab>

Target entries are specified by a <blank>-separated, non-null list of targets, then a <colon>, then
a <blank>-separated, possibly empty list of prerequisites. Text following a <semicolon>, if any,
and all following lines that begin with a <tab>, are makefile command lines to be executed to
update the target. The first non-empty line that does not begin with a <tab> or ’#’ shall begin a
new entry. An empty or blank line, or a line beginning with ’#’, may begin a new entry.

Applications shall select target names from the set of characters consisting solely of periods,
underscores, digits, and alphabetics from the portable character set (see XBD Section 6.1, on
page 125). Implementations may allow other characters in target names as extensions. The
interpretation of targets containing the characters ’%’ and ’"’ is implementation-defined.

A target that has prerequisites, but does not have any commands, can be used to add to the
prerequisite list for that target. Only one target rule for any given target can contain commands.

Lines that begin with one of the following are called special targets and control the operation of
make:

.DEFAULT If the makefile uses this special target, the application shall ensure that it is
specified with commands, but without prerequisites. The commands shall be used
by make if there are no other rules available to build a target.

.IGNORE Prerequisites of this special target are targets themselves; this shall cause errors
from commands associated with them to be ignored in the same manner as
specified by the −i option. Subsequent occurrences of .IGNORE shall add to the
list of targets ignoring command errors. If no prerequisites are specified, make shall
behave as if the −i option had been specified and errors from all commands
associated with all targets shall be ignored.

.POSIX The application shall ensure that this special target is specified without
prerequisites or commands. If it appears as the first non-comment line in the
makefile, make shall process the makefile as specified by this section; otherwise, the
behavior of make is unspecified.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2913

95701

95702

95703

95704

95705

95706

95707

95708

95709

95710

95711

95712

95713

95714

95715

95716

95717

95718

95719

95720

95721

95722

95723

95724

95725

95726

95727

95728

95729

95730

95731

95732

95733

95734

95735

95736

95737

95738

95739

95740

95741

95742

95743

make Utilities

.PRECIOUS Prerequisites of this special target shall not be removed if make receives one of the
asynchronous events explicitly described in the ASYNCHRONOUS EVENTS
section. Subsequent occurrences of .PRECIOUS shall add to the list of precious
files. If no prerequisites are specified, all targets in the makefile shall be treated as
if specified with .PRECIOUS.

XSI .SCCS_GET The application shall ensure that this special target is specified without
prerequisites. If this special target is included in a makefile, the commands
specified with this target shall replace the default commands associated with this
special target (see Default Rules, on page 2919). The commands specified with this
target are used to get all SCCS files that are not found in the current directory.

When source files are named in a dependency list, make shall treat them just like
any other target. Because the source file is presumed to be present in the directory,
there is no need to add an entry for it to the makefile. When a target has no
dependencies, but is present in the directory, make shall assume that that file is up-
to-date. If, however, an SCCS file named SCCS/s.source_file is found for a target
source_file, make compares the timestamp of the target file with that of the
SCCS/s.source_file to ensure the target is up-to-date. If the target is missing, or if
the SCCS file is newer, make shall automatically issue the commands specified for
the .SCCS_GET special target to retrieve the most recent version. However, if the
target is writable by anyone, make shall not retrieve a new version.

.SILENT Prerequisites of this special target are targets themselves; this shall cause
commands associated with them not to be written to the standard output before
they are executed. Subsequent occurrences of .SILENT shall add to the list of
targets with silent commands. If no prerequisites are specified, make shall behave
as if the −s option had been specified and no commands or touch messages
associated with any target shall be written to standard output.

.SUFFIXES Prerequisites of .SUFFIXES shall be appended to the list of known suffixes and are
used in conjunction with the inference rules (see Inference Rules, on page 2916). If
.SUFFIXES does not have any prerequisites, the list of known suffixes shall be
cleared.

The special targets .IGNORE, .POSIX, .PRECIOUS, .SILENT, and .SUFFIXES shall be specified
without commands.

Targets with names consisting of a leading <period> followed by the uppercase letters "POSIX"
and then any other characters are reserved for future standardization. Targets with names
consisting of a leading <period> followed by one or more uppercase letters are reserved for
implementation extensions.

Macros

Macro definitions are in the form:

string1 = [string2]

The macro named string1 is defined as having the value of string2, where string2 is defined as all
characters, if any, after the <equals-sign>, up to a comment character (’#’) or an unescaped
<newline>. Any <blank> characters immediately before or after the <equals-sign> shall be
ignored.

Applications shall select macro names from the set of characters consisting solely of periods,
underscores, digits, and alphabetics from the portable character set (see XBD Section 6.1, on
page 125). A macro name shall not contain an <equals-sign>. Implementations may allow other

2914 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

95744

95745

95746

95747

95748

95749

95750

95751

95752

95753

95754

95755

95756

95757

95758

95759

95760

95761

95762

95763

95764

95765

95766

95767

95768

95769

95770

95771

95772

95773

95774

95775

95776

95777

95778

95779

95780

95781

95782

95783

95784

95785

95786

95787

95788

95789

Utilities make

characters in macro names as extensions.

Macros can appear anywhere in the makefile. Macro expansions using the forms $(string1) or
${string1} shall be replaced by string2, as follows:

• Macros in target lines shall be evaluated when the target line is read.

• Macros in makefile command lines shall be evaluated when the command is executed.

• Macros in the string before the <equals-sign> in a macro definition shall be evaluated
when the macro assignment is made.

• Macros after the <equals-sign> in a macro definition shall not be evaluated until the
defined macro is used in a rule or command, or before the <equals-sign> in a macro
definition.

The parentheses or braces are optional if string1 is a single character. The macro $$ shall be
replaced by the single character ’$’. If string1 in a macro expansion contains a macro
expansion, the results are unspecified.

Macro expansions using the forms $(string1[:subst1=[subst2]]) or ${string1[:subst1=[subst2]]} can
be used to replace all occurrences of subst1 with subst2 when the macro substitution is
performed. The subst1 to be replaced shall be recognized when it is a suffix at the end of a word
in string1 (where a word, in this context, is defined to be a string delimited by the beginning of
the line, a <blank>, or a <newline>). If string1 in a macro expansion contains a macro expansion,
the results are unspecified.

Macro expansions in string1 of macro definition lines shall be evaluated when read. Macro
expansions in string2 of macro definition lines shall be performed when the macro identified by
string1 is expanded in a rule or command.

Macro definitions shall be taken from the following sources, in the following logical order,
before the makefile(s) are read.

1. Macros specified on the make utility command line, in the order specified on the
command line. It is unspecified whether the internal macros defined in Internal Macros
(on page 2917) are accepted from this source.

2. Macros defined by the MAKEFLAGS environment variable, in the order specified in the
environment variable. It is unspecified whether the internal macros defined in Internal
Macros (on page 2917) are accepted from this source.

3. The contents of the environment, excluding the MAKEFLAGS and SHELL variables and
including the variables with null values.

4. Macros defined in the inference rules built into make.

Macro definitions from these sources shall not override macro definitions from a lower-
numbered source. Macro definitions from a single source (for example, the make utility
command line, the MAKEFLAGS environment variable, or the other environment variables)
shall override previous macro definitions from the same source.

Macros defined in the makefile(s) shall override macro definitions that occur before them in the
makefile(s) and macro definitions from source 4. If the −e option is not specified, macros defined
in the makefile(s) shall override macro definitions from source 3. Macros defined in the
makefile(s) shall not override macro definitions from source 1 or source 2.

Before the makefile(s) are read, all of the make utility command line options (except −f and −p)
and make utility command line macro definitions (except any for the MAKEFLAGS macro), not
already included in the MAKEFLAGS macro, shall be added to the MAKEFLAGS macro, quoted

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2915

95790

95791

95792

95793

95794

95795

95796

95797

95798

95799

95800

95801

95802

95803

95804

95805

95806

95807

95808

95809

95810

95811

95812

95813

95814

95815

95816

95817

95818

95819

95820

95821

95822

95823

95824

95825

95826

95827

95828

95829

95830

95831

95832

95833

make Utilities

in an implementation-defined manner such that when MAKEFLAGS is read by another instance
of the make command, the original macro’s value is recovered. Other implementation-defined
options and macros may also be added to the MAKEFLAGS macro. If this modifies the value of
the MAKEFLAGS macro, or, if the MAKEFLAGS macro is modified at any subsequent time, the
MAKEFLAGS environment variable shall be modified to match the new value of the
MAKEFLAGS macro. The result of setting MAKEFLAGS in the Makefile is unspecified.

Before the makefile(s) are read, all of the make utility command line macro definitions (except the
MAKEFLAGS macro or the SHELL macro) shall be added to the environment of make. Other
implementation-defined variables may also be added to the environment of make.

The SHELL macro shall be treated specially. It shall be provided by make and set to the
pathname of the shell command language interpreter (see sh). The SHELL environment variable
shall not affect the value of the SHELL macro. If SHELL is defined in the makefile or is specified
on the command line, it shall replace the original value of the SHELL macro, but shall not affect
the SHELL environment variable. Other effects of defining SHELL in the makefile or on the
command line are implementation-defined.

Inference Rules

Inference rules are formatted as follows:

target:
<tab>command
[<tab>command]
...

line that does not begin with <tab> or #

The application shall ensure that the target portion is a valid target name (see Target Rules, on
page 2913) of the form .s2 or .s1.s2 (where .s1 and .s2 are suffixes that have been given as
prerequisites of the .SUFFIXES special target and s1 and s2 do not contain any <slash> or
<period> characters.) If there is only one <period> in the target, it is a single-suffix inference
rule. Targets with two periods are double-suffix inference rules. Inference rules can have only
one target before the <colon>.

The application shall ensure that the makefile does not specify prerequisites for inference rules;
no characters other than white space shall follow the <colon> in the first line, except when
creating the empty rule, described below. Prerequisites are inferred, as described below.

Inference rules can be redefined. A target that matches an existing inference rule shall overwrite
the old inference rule. An empty rule can be created with a command consisting of simply a
<semicolon> (that is, the rule still exists and is found during inference rule search, but since it is
empty, execution has no effect). The empty rule can also be formatted as follows:

rule: ;

where zero or more <blank> characters separate the <colon> and <semicolon>.

The make utility uses the suffixes of targets and their prerequisites to infer how a target can be
made up-to-date. A list of inference rules defines the commands to be executed. By default, make
contains a built-in set of inference rules. Additional rules can be specified in the makefile.

The special target .SUFFIXES contains as its prerequisites a list of suffixes that shall be used by
the inference rules. The order in which the suffixes are specified defines the order in which the
inference rules for the suffixes are used. New suffixes shall be appended to the current list by
specifying a .SUFFIXES special target in the makefile. A .SUFFIXES target with no prerequisites
shall clear the list of suffixes. An empty .SUFFIXES target followed by a new .SUFFIXES list is

2916 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

95834

95835

95836

95837

95838

95839

95840

95841

95842

95843

95844

95845

95846

95847

95848

95849

95850

95851

95852

95853

95854

95855

95856

95857

95858

95859

95860

95861

95862

95863

95864

95865

95866

95867

95868

95869

95870

95871

95872

95873

95874

95875

95876

95877

95878

Utilities make

required to change the order of the suffixes.

Normally, the user would provide an inference rule for each suffix. The inference rule to update
a target with a suffix .s1 from a prerequisite with a suffix .s2 is specified as a target .s2.s1. The
internal macros provide the means to specify general inference rules (see Internal Macros).

When no target rule is found to update a target, the inference rules shall be checked. The suffix
of the target (.s1) to be built is compared to the list of suffixes specified by the .SUFFIXES special
targets. If the .s1 suffix is found in .SUFFIXES, the inference rules shall be searched in the order
defined for the first .s2.s1 rule whose prerequisite file ($*.s2) exists. If the target is out-of-date
with respect to this prerequisite, the commands for that inference rule shall be executed.

If the target to be built does not contain a suffix and there is no rule for the target, the single
suffix inference rules shall be checked. The single-suffix inference rules define how to build a
target if a file is found with a name that matches the target name with one of the single suffixes
appended. A rule with one suffix .s2 is the definition of how to build target from target.s2. The
other suffix (.s1) is treated as null.

XSI A <tilde> (’˜’) in the above rules refers to an SCCS file in the current directory. Thus, the rule
.c˜.o would transform an SCCS C-language source file into an object file (.o). Because the s. of
the SCCS files is a prefix, it is incompatible with make’s suffix point of view. Hence, the ’˜’ is a
way of changing any file reference into an SCCS file reference.

Libraries

If a target or prerequisite contains parentheses, it shall be treated as a member of an archive
library. For the lib(member.o) expression lib refers to the name of the archive library and member.o
to the member name. The application shall ensure that the member is an object file with the .o
suffix. The modification time of the expression is the modification time for the member as kept
in the archive library; see ar . The .a suffix shall refer to an archive library. The .s2.a rule shall be
used to update a member in the library from a file with a suffix .s2.

Internal Macros

The make utility shall maintain five internal macros that can be used in target and inference rules.
In order to clearly define the meaning of these macros, some clarification of the terms target rule,
inference rule, target, and prerequisite is necessary.

Target rules are specified by the user in a makefile for a particular target. Inference rules are
user-specified or make-specified rules for a particular class of target name. Explicit prerequisites
are those prerequisites specified in a makefile on target lines. Implicit prerequisites are those
prerequisites that are generated when inference rules are used. Inference rules are applied to
implicit prerequisites or to explicit prerequisites that do not have target rules defined for them in
the makefile. Target rules are applied to targets specified in the makefile.

Before any target in the makefile is updated, each of its prerequisites (both explicit and implicit)
shall be updated. This shall be accomplished by recursively processing each prerequisite. Upon
recursion, each prerequisite shall become a target itself. Its prerequisites in turn shall be
processed recursively until a target is found that has no prerequisites, at which point the
recursion stops. The recursion shall then back up, updating each target as it goes.

In the definitions that follow, the word target refers to one of:

• A target specified in the makefile

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2917

95879

95880

95881

95882

95883

95884

95885

95886

95887

95888

95889

95890

95891

95892

95893

95894

95895

95896

95897

95898

95899

95900

95901

95902

95903

95904

95905

95906

95907

95908

95909

95910

95911

95912

95913

95914

95915

95916

95917

95918

95919

95920

make Utilities

• An explicit prerequisite specified in the makefile that becomes the target when make
processes it during recursion

• An implicit prerequisite that becomes a target when make processes it during recursion

In the definitions that follow, the word prerequisite refers to one of the following:

• An explicit prerequisite specified in the makefile for a particular target

• An implicit prerequisite generated as a result of locating an appropriate inference rule and
corresponding file that matches the suffix of the target

The five internal macros are:

$@ The $@ shall evaluate to the full target name of the current target, or the archive
filename part of a library archive target. It shall be evaluated for both target and
inference rules.

For example, in the .c.a inference rule, $@ represents the out-of-date .a file to be built.
Similarly, in a makefile target rule to build lib.a from file.c, $@ represents the out-of-
date lib.a.

$% The $% macro shall be evaluated only when the current target is an archive library
member of the form libname(member.o). In these cases, $@ shall evaluate to libname and
$% shall evaluate to member.o. The $% macro shall be evaluated for both target and
inference rules.

For example, in a makefile target rule to build lib.a(file.o), $% represents file.o, as
opposed to $@, which represents lib.a.

$? The $? macro shall evaluate to the list of prerequisites that are newer than the current
target. It shall be evaluated for both target and inference rules.

For example, in a makefile target rule to build prog from file1.o, file2.o, and file3.o, and
where prog is not out-of-date with respect to file1.o, but is out-of-date with respect to
file2.o and file3.o, $? represents file2.o and file3.o.

$< In an inference rule, the $< macro shall evaluate to the filename whose existence
allowed the inference rule to be chosen for the target. In the .DEFAULT rule, the $<
macro shall evaluate to the current target name. The meaning of the $< macro shall be
otherwise unspecified.

For example, in the .c.a inference rule, $< represents the prerequisite .c file.

$* The $* macro shall evaluate to the current target name with its suffix deleted. It shall be
evaluated at least for inference rules.

For example, in the .c.a inference rule, $*.o represents the out-of-date .o file that
corresponds to the prerequisite .c file.

Each of the internal macros has an alternative form. When an uppercase ’D’ or ’F’ is appended
to any of the macros, the meaning shall be changed to the directory part for ’D’ and filename part
for ’F’. The directory part is the path prefix of the file without a trailing <slash>; for the current
directory, the directory part is ’.’. When the $? macro contains more than one prerequisite
filename, the $(?D) and $(?F) (or ${?D} and ${?F}) macros expand to a list of directory name parts
and filename parts respectively.

For the target lib(member.o) and the s2.a rule, the internal macros shall be defined as:

2918 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

95921

95922

95923

95924

95925

95926

95927

95928

95929

95930

95931

95932

95933

95934

95935

95936

95937

95938

95939

95940

95941

95942

95943

95944

95945

95946

95947

95948

95949

95950

95951

95952

95953

95954

95955

95956

95957

95958

95959

95960

95961

Utilities make

$< member.s2

$* member

$@ lib

$? member.s2

$% member.o

Default Rules

The default rules for make shall achieve results that are the same as if the following were used.
Implementations that do not support the C-Language Development Utilities option may omit
CC, CFLAGS, YACC, YFLAGS, LEX, LFLAGS, LDFLAGS, and the .c, .y, and .l inference rules.
Implementations that do not support FORTRAN may omit FC, FFLAGS, and the .f inference
rules. Implementations may provide additional macros and rules.

SPECIAL TARGETS

XSI .SCCS_GET: sccs $(SCCSFLAGS) get $(SCCSGETFLAGS) $@

XSI .SUFFIXES: .o .c .y .l .a .sh .f .c˜ .y˜ .l˜ .sh˜ .f˜

MACROS

MAKE=make
AR=ar
ARFLAGS=−rv
YACC=yacc
YFLAGS=
LEX=lex
LFLAGS=
LDFLAGS=
CC=c99
CFLAGS=−O
FC=fort77
FFLAGS=−O 1

XSI GET=get
GFLAGS=
SCCSFLAGS=
SCCSGETFLAGS=−s

SINGLE SUFFIX RULES

.c:
$(CC) $(CFLAGS) $(LDFLAGS) −o $@ $<

.f:
$(FC) $(FFLAGS) $(LDFLAGS) −o $@ $<

.sh:
cp $< $@
chmod a+x $@

XSI .c˜:
$(GET) $(GFLAGS) −p $< > $*.c

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2919

95962

95963

95964

95965

95966

95967

95968

95969

95970

95971

95972

95973

95974

95975

95976

95977

95978

95979

95980

95981

95982

95983

95984

95985

95986

95987

95988

95989

95990

95991

95992

95993

95994

95995

95996

95997

95998

95999

96000

96001

96002

make Utilities

$(CC) $(CFLAGS) $(LDFLAGS) −o $@ $*.c

.f˜:
$(GET) $(GFLAGS) −p $< > $*.f
$(FC) $(FFLAGS) $(LDFLAGS) −o $@ $*.f

.sh˜:
$(GET) $(GFLAGS) −p $< > $*.sh
cp $*.sh $@
chmod a+x $@

DOUBLE SUFFIX RULES

.c.o:
$(CC) $(CFLAGS) −c $<

.f.o:
$(FC) $(FFLAGS) −c $<

.y.o:
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) −c y.tab.c
rm −f y.tab.c
mv y.tab.o $@

.l.o:
$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) −c lex.yy.c
rm −f lex.yy.c
mv lex.yy.o $@

.y.c:
$(YACC) $(YFLAGS) $<
mv y.tab.c $@

.l.c:
$(LEX) $(LFLAGS) $<
mv lex.yy.c $@

XSI .c˜.o:
$(GET) $(GFLAGS) −p $< > $*.c
$(CC) $(CFLAGS) −c $*.c

.f˜.o:
$(GET) $(GFLAGS) −p $< > $*.f
$(FC) $(FFLAGS) −c $*.f

.y˜.o:
$(GET) $(GFLAGS) −p $< > $*.y
$(YACC) $(YFLAGS) $*.y
$(CC) $(CFLAGS) −c y.tab.c
rm −f y.tab.c
mv y.tab.o $@

.l˜.o:
$(GET) $(GFLAGS) −p $< > $*.l
$(LEX) $(LFLAGS) $*.l

2920 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

96003

96004

96005

96006

96007

96008

96009

96010

96011

96012

96013

96014

96015

96016

96017

96018

96019

96020

96021

96022

96023

96024

96025

96026

96027

96028

96029

96030

96031

96032

96033

96034

96035

96036

96037

96038

96039

96040

96041

96042

96043

96044

96045

96046

Utilities make

$(CC) $(CFLAGS) −c lex.yy.c
rm −f lex.yy.c
mv lex.yy.o $@

.y˜.c:
$(GET) $(GFLAGS) −p $< > $*.y
$(YACC) $(YFLAGS) $*.y
mv y.tab.c $@

.l˜.c:
$(GET) $(GFLAGS) −p $< > $*.l
$(LEX) $(LFLAGS) $*.l
mv lex.yy.c $@

.c.a:
$(CC) −c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.o
rm −f $*.o

.f.a:
$(FC) −c $(FFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.o
rm −f $*.o

EXIT STATUS
When the −q option is specified, the make utility shall exit with one of the following values:

0 Successful completion.

1 The target was not up-to-date.

>1 An error occurred.

When the −q option is not specified, the make utility shall exit with one of the following values:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
If there is a source file (such as ./source.c) and there are two SCCS files corresponding to it
(./s.source.c and ./SCCS/s.source.c), on XSI-conformant systems make uses the SCCS file in the
current directory. However, users are advised to use the underlying SCCS utilities (admin, delta,
get, and so on) or the sccs utility for all source files in a given directory. If both forms are used for
a given source file, future developers are very likely to be confused.

It is incumbent upon portable makefiles to specify the .POSIX special target in order to
guarantee that they are not affected by local extensions.

The −k and −S options are both present so that the relationship between the command line, the
MAKEFLAGS variable, and the makefile can be controlled precisely. If the k flag is passed in
MAKEFLAGS and a command is of the form:

$(MAKE) −S foo

then the default behavior is restored for the child make.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2921

96047

96048

96049

96050

96051

96052

96053

96054

96055

96056

96057

96058

96059

96060

96061

96062

96063

96064

96065

96066

96067

96068

96069

96070

96071

96072

96073

96074

96075

96076

96077

96078

96079

96080

96081

96082

96083

96084

96085

96086

96087

96088

make Utilities

When the −n option is specified, it is always added to MAKEFLAGS. This allows a recursive
make −n target to be used to see all of the action that would be taken to update target.

Because of widespread historical practice, interpreting a <number-sign> (’#’) inside a variable
as the start of a comment has the unfortunate side-effect of making it impossible to place a
<number-sign> in a variable, thus forbidding something like:

CFLAGS = "−D COMMENT_CHAR=’#’"

Many historical make utilities stop chaining together inference rules when an intermediate target
is nonexistent. For example, it might be possible for a make to determine that both .y.c and .c.o
could be used to convert a .y to a .o. Instead, in this case, make requires the use of a .y.o rule.

The best way to provide portable makefiles is to include all of the rules needed in the makefile
itself. The rules provided use only features provided by other parts of this volume of
POSIX.1-2008. The default rules include rules for optional commands in this volume of
POSIX.1-2008. Only rules pertaining to commands that are provided are needed in an
implementation’s default set.

Macros used within other macros are evaluated when the new macro is used rather than when
the new macro is defined. Therefore:

MACRO = value1

NEW = $(MACRO)
MACRO = value2

target:
echo $(NEW)

would produce value2 and not value1 since NEW was not expanded until it was needed in the
echo command line.

Some historical applications have been known to intermix target_name and macro=name operands
on the command line, expecting that all of the macros are processed before any of the targets are
dealt with. Conforming applications do not do this, although some backwards-compatibility
support may be included in some implementations.

The following characters in filenames may give trouble: ’=’, ’:’, ’‘’, single-quote, and ’@’.
In include filenames, pattern matching characters and ’"’ should also be avoided, as they may
be treated as special by some implementations.

For inference rules, the description of $< and $? seem similar. However, an example shows the
minor difference. In a makefile containing:

foo.o: foo.h

if foo.h is newer than foo.o, yet foo.c is older than foo.o, the built-in rule to make foo.o from
foo.c is used, with $< equal to foo.c and $? equal to foo.h. If foo.c is also newer than foo.o, $< is
equal to foo.c and $? is equal to foo.h foo.c.

EXAMPLES

1. The following command:

make

makes the first target found in the makefile.

2. The following command:

make junk

2922 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

96089

96090

96091

96092

96093

96094

96095

96096

96097

96098

96099

96100

96101

96102

96103

96104

96105

96106

96107

96108

96109

96110

96111

96112

96113

96114

96115

96116

96117

96118

96119

96120

96121

96122

96123

96124

96125

96126

96127

96128

96129

96130

Utilities make

makes the target junk.

3. The following makefile says that pgm depends on two files, a.o and b.o, and that they in
turn depend on their corresponding source files (a.c and b.c), and a common file incl.h:

pgm: a.o b.o
c99 a.o b.o −o pgm

a.o: incl.h a.c
c99 −c a.c

b.o: incl.h b.c
c99 −c b.c

4. An example for making optimized .o files from .c files is:

.c.o:
c99 −c −O $*.c

or:

.c.o:
c99 −c −O $<

5. The most common use of the archive interface follows. Here, it is assumed that the source
files are all C-language source:

lib: lib(file1.o) lib(file2.o) lib(file3.o)
@echo lib is now up-to-date

The .c.a rule is used to make file1.o, file2.o, and file3.o and insert them into lib.

The treatment of escaped <newline> characters throughout the makefile is historical
practice. For example, the inference rule:

.c.o\
:

works, and the macro:

f= bar baz\
biz

a:
echo ==$f==

echoes "==bar baz biz==".

If $? were:

/usr/include/stdio.h /usr/include/unistd.h foo.h

then $(?D) would be:

/usr/include /usr/include .

and $(?F) would be:

stdio.h unistd.h foo.h

6. The contents of the built-in rules can be viewed by running:

make −p −f /dev/null 2>/dev/null

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2923

96131

96132

96133

96134

96135

96136

96137

96138

96139

96140

96141

96142

96143

96144

96145

96146

96147

96148

96149

96150

96151

96152

96153

96154

96155

96156

96157

96158

96159

96160

96161

96162

96163

96164

96165

96166

96167

96168

make Utilities

RATIONALE
The make utility described in this volume of POSIX.1-2008 is intended to provide the means for
changing portable source code into executables that can be run on an POSIX.1-2008-conforming
system. It reflects the most common features present in System V and BSD makes.

Historically, the make utility has been an especially fertile ground for vendor and research
organization-specific syntax modifications and extensions. Examples include:

• Syntax supporting parallel execution (such as from various multi-processor vendors, GNU,
and others)

• Additional ‘‘operators’’ separating targets and their prerequisites (System V, BSD, and
others)

• Specifying that command lines containing the strings "${MAKE}" and "$(MAKE)" are
executed when the −n option is specified (GNU and System V)

• Modifications of the meaning of internal macros when referencing libraries (BSD and
others)

• Using a single instance of the shell for all of the command lines of the target (BSD and
others)

• Allowing <space> characters as well as <tab> characters to delimit command lines (BSD)

• Adding C preprocessor-style ‘‘include’’ and ‘‘ifdef ’’ constructs (System V, GNU, BSD, and
others)

• Remote execution of command lines (Sprite and others)

• Specifying additional special targets (BSD, System V, and most others)

Additionally, many vendors and research organizations have rethought the basic concepts of
make, creating vastly extended, as well as completely new, syntaxes. Each of these versions of
make fulfills the needs of a different community of users; it is unreasonable for this volume of
POSIX.1-2008 to require behavior that would be incompatible (and probably inferior) to
historical practice for such a community.

In similar circumstances, when the industry has enough sufficiently incompatible formats as to
make them irreconcilable, this volume of POSIX.1-2008 has followed one or both of two courses
of action. Commands have been renamed (cksum, echo, and pax) and/or command line options
have been provided to select the desired behavior (grep, od, and pax).

Because the syntax specified for the make utility is, by and large, a subset of the syntaxes
accepted by almost all versions of make, it was decided that it would be counter-productive to
change the name. And since the makefile itself is a basic unit of portability, it would not be
completely effective to reserve a new option letter, such as make −P, to achieve the portable
behavior. Therefore, the special target .POSIX was added to the makefile, allowing users to
specify ‘‘standard’’ behavior. This special target does not preclude extensions in the make utility,
nor does it preclude such extensions being used by the makefile specifying the target; it does,
however, preclude any extensions from being applied that could alter the behavior of previously
valid syntax; such extensions must be controlled via command line options or new special
targets. It is incumbent upon portable makefiles to specify the .POSIX special target in order to
guarantee that they are not affected by local extensions.

The portable version of make described in this reference page is not intended to be the state-of-
the-art software generation tool and, as such, some newer and more leading-edge features have
not been included. An attempt has been made to describe the portable makefile in a manner that
does not preclude such extensions as long as they do not disturb the portable behavior described

2924 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

96169

96170

96171

96172

96173

96174

96175

96176

96177

96178

96179

96180

96181

96182

96183

96184

96185

96186

96187

96188

96189

96190

96191

96192

96193

96194

96195

96196

96197

96198

96199

96200

96201

96202

96203

96204

96205

96206

96207

96208

96209

96210

96211

96212

96213

Utilities make

here.

When the −n option is specified, it is always added to MAKEFLAGS. This allows a recursive
make −n target to be used to see all of the action that would be taken to update target.

The definition of MAKEFLAGS allows both the System V letter string and the BSD command
line formats. The two formats are sufficiently different to allow implementations to support both
without ambiguity.

Early proposals stated that an ‘‘unquoted’’ <number-sign> was treated as the start of a
comment. The make utility does not pay any attention to quotes. A <number-sign> starts a
comment regardless of its surroundings.

The text about ‘‘other implementation-defined pathnames may also be tried’’ in addition to
./makefile and ./Makefile is to allow such extensions as SCCS/s.Makefile and other variations.
It was made an implementation-defined requirement (as opposed to unspecified behavior) to
highlight surprising implementations that might select something unexpected like
/etc/Makefile. XSI-conformant systems also try ./s.makefile, SCCS/s.makefile, ./s.Makefile,
and SCCS/s.Makefile.

Early proposals contained the macro NPROC as a means of specifying that make should use n
processes to do the work required. While this feature is a valuable extension for many systems, it
is not common usage and could require other non-trivial extensions to makefile syntax. This
extension is not required by this volume of POSIX.1-2008, but could be provided as a compatible
extension. The macro PARALLEL is used by some historical systems with essentially the same
meaning (but without using a name that is a common system limit value). It is suggested that
implementors recognize the existing use of NPROC and/or PARALLEL as extensions to make.

The default rules are based on System V. The default CC= value is c99 instead of cc because this
volume of POSIX.1-2008 does not standardize the utility named cc. Thus, every conforming
application would be required to define CC=c99 to expect to run. There is no advantage
conferred by the hope that the makefile might hit the ‘‘preferred’’ compiler because this cannot
be guaranteed to work. Also, since the portable makescript can only use the c99 options, no
advantage is conferred in terms of what the script can do. It is a quality-of-implementation issue
as to whether c99 is as valuable as cc.

The −d option to make is frequently used to produce debugging information, but is too
implementation-defined to add to this volume of POSIX.1-2008.

The −p option is not passed in MAKEFLAGS on most historical implementations and to change
this would cause many implementations to break without sufficiently increased portability.

Commands that begin with a <plus-sign> (’+’) are executed even if the −n option is present.
Based on the GNU version of make, the behavior of −n when the <plus-sign> prefix is
encountered has been extended to apply to −q and −t as well. However, the System V
convention of forcing command execution with −n when the command line of a target contains
either of the strings "$(MAKE)" or "${MAKE}" has not been adopted. This functionality
appeared in early proposals, but the danger of this approach was pointed out with the following
example of a portion of a makefile:

subdir:
cd subdir; rm all_the_files; $(MAKE)

The loss of the System V behavior in this case is well-balanced by the safety afforded to other
makefiles that were not aware of this situation. In any event, the command line <plus-sign>
prefix can provide the desired functionality.

The double <colon> in the target rule format is supported in BSD systems to allow more than

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2925

96214

96215

96216

96217

96218

96219

96220

96221

96222

96223

96224

96225

96226

96227

96228

96229

96230

96231

96232

96233

96234

96235

96236

96237

96238

96239

96240

96241

96242

96243

96244

96245

96246

96247

96248

96249

96250

96251

96252

96253

96254

96255

96256

96257

96258

96259

make Utilities

one target line containing the same target name to have commands associated with it. Since this
is not functionality described in the SVID or XPG3 it has been allowed as an extension, but not
mandated.

The default rules are provided with text specifying that the built-in rules shall be the same as if
the listed set were used. The intent is that implementations should be able to use the rules
without change, but will be allowed to alter them in ways that do not affect the primary
behavior.

The best way to provide portable makefiles is to include all of the rules needed in the makefile
itself. The rules provided use only features provided by other portions of this volume of
POSIX.1-2008. The default rules include rules for optional commands in this volume of
POSIX.1-2008. Only rules pertaining to commands that are provided are needed in the default
set of an implementation.

One point of discussion was whether to drop the default rules list from this volume of
POSIX.1-2008. They provide convenience, but do not enhance portability of applications. The
prime benefit is in portability of users who wish to type make command and have the command
build from a command.c file.

The historical MAKESHELL feature was omitted. In some implementations it is used to let a user
override the shell to be used to run make commands. This was confusing; for a portable make, the
shell should be chosen by the makefile writer or specified on the make command line and not by
a user running make.

The make utilities in most historical implementations process the prerequisites of a target in left-
to-right order, and the makefile format requires this. It supports the standard idiom used in
many makefiles that produce yacc programs; for example:

foo: y.tab.o lex.o main.o
$(CC) $(CFLAGS) −o $@ t.tab.o lex.o main.o

In this example, if make chose any arbitrary order, the lex.o might not be made with the correct
y.tab.h. Although there may be better ways to express this relationship, it is widely used
historically. Implementations that desire to update prerequisites in parallel should require an
explicit extension to make or the makefile format to accomplish it, as described previously.

The algorithm for determining a new entry for target rules is partially unspecified. Some
historical makes allow blank, empty, or comment lines within the collection of commands
marked by leading <tab> characters. A conforming makefile must ensure that each command
starts with a <tab>, but implementations are free to ignore blank, empty, and comment lines
without triggering the start of a new entry.

The ASYNCHRONOUS EVENTS section includes having SIGTERM and SIGHUP, along with
the more traditional SIGINT and SIGQUIT, remove the current target unless directed not to do
so. SIGTERM and SIGHUP were added to parallel other utilities that have historically cleaned
up their work as a result of these signals. When make receives any signal other than SIGQUIT, it
is required to resend itself the signal it received so that it exits with a status that reflects the
signal. The results from SIGQUIT are partially unspecified because, on systems that create core
files upon receipt of SIGQUIT, the core from make would conflict with a core file from the
command that was running when the SIGQUIT arrived. The main concern was to prevent
damaged files from appearing up-to-date when make is rerun.

The .PRECIOUS special target was extended to affect all targets globally (by specifying no
prerequisites). The .IGNORE and .SILENT special targets were extended to allow prerequisites;
it was judged to be more useful in some cases to be able to turn off errors or echoing for a list of
targets than for the entire makefile. These extensions to make in System V were made to match

2926 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

96260

96261

96262

96263

96264

96265

96266

96267

96268

96269

96270

96271

96272

96273

96274

96275

96276

96277

96278

96279

96280

96281

96282

96283

96284

96285

96286

96287

96288

96289

96290

96291

96292

96293

96294

96295

96296

96297

96298

96299

96300

96301

96302

96303

96304

96305

96306

Utilities make

historical practice from the BSD make.

Macros are not exported to the environment of commands to be run. This was never the case in
any historical make and would have serious consequences. The environment is the same as the
environment to make except that MAKEFLAGS and macros defined on the make command line
are added.

Some implementations do not use system() for all command lines, as required by the portable
makefile format; as a performance enhancement, they select lines without shell metacharacters
for direct execution by execve(). There is no requirement that system() be used specifically, but
merely that the same results be achieved. The metacharacters typically used to bypass the direct
execve() execution have been any of:

= | ˆ () ; & < > * ? [] : $ ‘ ’ " \ \n

The default in some advanced versions of make is to group all the command lines for a target and
execute them using a single shell invocation; the System V method is to pass each line
individually to a separate shell. The single-shell method has the advantages in performance and
the lack of a requirement for many continued lines. However, converting to this newer method
has caused portability problems with many historical makefiles, so the behavior with the POSIX
makefile is specified to be the same as that of System V. It is suggested that the special target
.ONESHELL be used as an implementation extension to achieve the single-shell grouping for a
target or group of targets.

Novice users of make have had difficulty with the historical need to start commands with a
<tab>. Since it is often difficult to discern differences between <tab> and <space> characters on
terminals or printed listings, confusing bugs can arise. In early proposals, an attempt was made
to correct this problem by allowing leading <blank> characters instead of <tab> characters.
However, implementors reported many makefiles that failed in subtle ways following this
change, and it is difficult to implement a make that unambiguously can differentiate between
macro and command lines. There is extensive historical practice of allowing leading <space>
characters before macro definitions. Forcing macro lines into column 1 would be a significant
backwards-compatibility problem for some makefiles. Therefore, historical practice was
restored.

There is substantial variation in the handling of include lines by different implementations.
However, there is enough commonality for the standard to be able to specify a minimum set of
requirements that allow the feature to be used portably. Known variations have been explicitly
called out as unspecified behavior in the description.

The System V dynamic dependency feature was not included. It would support:

cat: $$@.c

that would expand to;

cat: cat.c

This feature exists only in the new version of System V make and, while useful, is not in wide
usage. This means that macros are expanded twice for prerequisites: once at makefile parse time
and once at target update time.

Consideration was given to adding metarules to the POSIX make. This would make %.o: %.c the
same as .c.o:. This is quite useful and available from some vendors, but it would cause too many
changes to this make to support. It would have introduced rule chaining and new substitution
rules. However, the rules for target names have been set to reserve the ’%’ and ’"’ characters.
These are traditionally used to implement metarules and quoting of target names, respectively.
Implementors are strongly encouraged to use these characters only for these purposes.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2927

96307

96308

96309

96310

96311

96312

96313

96314

96315

96316

96317

96318

96319

96320

96321

96322

96323

96324

96325

96326

96327

96328

96329

96330

96331

96332

96333

96334

96335

96336

96337

96338

96339

96340

96341

96342

96343

96344

96345

96346

96347

96348

96349

96350

96351

96352

make Utilities

A request was made to extend the suffix delimiter character from a <period> to any character.
The metarules feature in newer makes solves this problem in a more general way. This volume of
POSIX.1-2008 is staying with the more conservative historical definition.

The standard output format for the −p option is not described because it is primarily a
debugging option and because the format is not generally useful to programs. In historical
implementations the output is not suitable for use in generating makefiles. The −p format has
been variable across historical implementations. Therefore, the definition of −p was only to
provide a consistently named option for obtaining make script debugging information.

Some historical implementations have not cleared the suffix list with −r.

Implementations should be aware that some historical applications have intermixed target_name
and macro=value operands on the command line, expecting that all of the macros are processed
before any of the targets are dealt with. Conforming applications do not do this, but some
backwards-compatibility support may be warranted.

Empty inference rules are specified with a <semicolon> command rather than omitting all
commands, as described in an early proposal. The latter case has no traditional meaning and is
reserved for implementation extensions, such as in GNU make.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2297), ar , c99 , get , lex , sccs , sh , yacc

XBD Section 6.1 (on page 125), Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH exec , system()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the Software Development Utilities option.

The Open Group Corrigendum U029/1 is applied, correcting a typographical error in the
SPECIAL TARGETS section.

In the ENVIRONMENT VARIABLES section, the PROJECTDIR description is updated from
‘‘otherwise, the home directory of a user of that name is examined’’ to ‘‘otherwise, the value of
PROJECTDIR is treated as a user name and that user’s initial working directory is examined’’.

It is specified whether the command line is related to the makefile or to the make command, and
the macro processing rules are updated to align with the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

PASC Interpretation 1003.2 #193 is applied.

Issue 7
SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax Guidelines does not
apply.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Include lines in makefiles are introduced.

2928 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

96353

96354

96355

96356

96357

96358

96359

96360

96361

96362

96363

96364

96365

96366

96367

96368

96369

96370

96371

96372

96373

96374

96375

96376

96377

96378

96379

96380

96381

96382

96383

96384

96385

96386

96387

96388

96389

96390

96391

96392

96393

96394

Utilities make

Austin Group Interpretation 1003.1-2001 #131 is applied, changing the Makefile Execution
section.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2929

96395

96396

man Utilities

NAME
man — display system documentation

SYNOPSIS
man [−k] name...

DESCRIPTION
The man utility shall write information about each of the name operands. If name is the name of a
standard utility, man at a minimum shall write a message describing the syntax used by the
standard utility, its options, and operands. If more information is available, the man utility shall
provide it in an implementation-defined manner.

An implementation may provide information for values of name other than the standard utilities.
Standard utilities that are listed as optional and that are not supported by the implementation
either shall cause a brief message indicating that fact to be displayed or shall cause a full display
of information as described previously.

OPTIONS
The man utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−k Interpret name operands as keywords to be used in searching a utilities summary
database that contains a brief purpose entry for each standard utility and write lines
from the summary database that match any of the keywords. The keyword search shall
produce results that are the equivalent of the output of the following command:

grep −Ei ’
name

name

...
’ summary-database

This assumes that the summary-database is a text file with a single entry per line; this
organization is not required and the example using grep −Ei is merely illustrative of the
type of search intended. The purpose entry to be included in the database shall consist
of a terse description of the purpose of the utility.

OPERANDS
The following operand shall be supported:

name A keyword or the name of a standard utility. When −k is not specified and name
does not represent one of the standard utilities, the results are unspecified.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of man:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

2930 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

96397

96398

96399

96400

96401

96402

96403

96404

96405

96406

96407

96408

96409

96410

96411

96412

96413

96414

96415

96416

96417

96418

96419

96420

96421

96422

96423

96424

96425

96426

96427

96428

96429

96430

96431

96432

96433

96434

96435

96436

96437

96438

96439

96440

Utilities man

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and in the summary database). The value of LC_CTYPE need not affect
the format of the information written about the name operands.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PAGER Determine an output filtering command for writing the output to a terminal. Any
string acceptable as a command_string operand to the sh −c command shall be valid.
When standard output is a terminal device, the reference page output shall be
piped through the command. If the PAGER variable is null or not set, the command
shall be either more or another paginator utility documented in the system
documentation.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The man utility shall write text describing the syntax of the utility name, its options and its
operands, or, when −k is specified, lines from the summary database. The format of this text is
implementation-defined.

STDERR
The standard error shall be used for diagnostic messages, and may also be used for
informational messages of unspecified format.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
It is recognized that the man utility is only of minimal usefulness as specified. The opinion of the
standard developers was strongly divided as to how much or how little information man should
be required to provide. They considered, however, that the provision of some portable way of
accessing documentation would aid user portability. The arguments against a fuller specification
were:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2931

96441

96442

96443

96444

96445

96446

96447

96448

96449

96450

96451

96452

96453

96454

96455

96456

96457

96458

96459

96460

96461

96462

96463

96464

96465

96466

96467

96468

96469

96470

96471

96472

96473

96474

96475

96476

96477

96478

96479

96480

96481

96482

96483

96484

man Utilities

• Large quantities of documentation should not be required on a system that does not have
excess disk space.

• The current manual system does not present information in a manner that greatly aids user
portability.

• A ‘‘better help system’’ is currently an area in which vendors feel that they can add value
to their POSIX implementations.

The −f option was considered, but due to implementation differences, it was not included in this
volume of POSIX.1-2008.

The description was changed to be more specific about what has to be displayed for a utility. The
standard developers considered it insufficient to allow a display of only the synopsis without
giving a short description of what each option and operand does.

The ‘‘purpose’’ entry to be included in the database can be similar to the section title (less the
numeric prefix) from this volume of POSIX.1-2008 for each utility. These titles are similar to
those used in historical systems for this purpose.

See mailx for rationale concerning the default paginator.

The caveat in the LC_CTYPE description was added because it is not a requirement that an
implementation provide reference pages for all of its supported locales on each system;
changing LC_CTYPE does not necessarily translate the reference page into another language.
This is equivalent to the current state of LC_MESSAGES in POSIX.1-2008—locale-specific
messages are not yet a requirement.

The historical MANPATH variable is not included in POSIX because no attempt is made to
specify naming conventions for reference page files, nor even to mandate that they are files at
all. On some implementations they could be a true database, a hypertext file, or even fixed
strings within the man executable. The standard developers considered the portability of
reference pages to be outside their scope of work. However, users should be aware that
MANPATH is implemented on a number of historical systems and that it can be used to tailor
the search pattern for reference pages from the various categories (utilities, functions, file
formats, and so on) when the system administrator reveals the location and conventions for
reference pages on the system.

The keyword search can rely on at least the text of the section titles from these utility
descriptions, and the implementation may add more keywords. The term ‘‘section titles’’ refers
to the strings such as:

man — Display system documentation
ps — Report process status

FUTURE DIRECTIONS
None.

SEE ALSO
more

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

2932 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

96485

96486

96487

96488

96489

96490

96491

96492

96493

96494

96495

96496

96497

96498

96499

96500

96501

96502

96503

96504

96505

96506

96507

96508

96509

96510

96511

96512

96513

96514

96515

96516

96517

96518

96519

96520

96521

96522

96523

96524

96525

Utilities man

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #108 is applied, clarifying that informational messages
may appear on standard error.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2933

96526

96527

96528

96529

96530

mesg Utilities

NAME
mesg — permit or deny messages

SYNOPSIS
mesg [y|n]

DESCRIPTION
The mesg utility shall control whether other users are allowed to send messages via write, talk, or
other utilities to a terminal device. The terminal device affected shall be determined by searching
for the first terminal in the sequence of devices associated with standard input, standard output,
and standard error, respectively. With no arguments, mesg shall report the current state without
changing it. Processes with appropriate privileges may be able to send messages to the terminal
independent of the current state.

OPTIONS
None.

OPERANDS
The following operands shall be supported in the POSIX locale:

y Grant permission to other users to send messages to the terminal device.

n Deny permission to other users to send messages to the terminal device.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of mesg:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written (by mesg) to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If no operand is specified, mesg shall display the current terminal state in an unspecified format.

STDERR
The standard error shall be used only for diagnostic messages.

2934 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

96531

96532

96533

96534

96535

96536

96537

96538

96539

96540

96541

96542

96543

96544

96545

96546

96547

96548

96549

96550

96551

96552

96553

96554

96555

96556

96557

96558

96559

96560

96561

96562

96563

96564

96565

96566

96567

96568

96569

96570

96571

Utilities mesg

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Receiving messages is allowed.

1 Receiving messages is not allowed.

>1 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The mechanism by which the message status of the terminal is changed is unspecified.
Therefore, unspecified actions may cause the status of the terminal to change after mesg has
successfully completed. These actions may include, but are not limited to: another invocation of
the mesg utility, login procedures; invocation of the stty utility, invocation of the chmod utility or
chmod() function, and so on.

EXAMPLES
None.

RATIONALE
The terminal changed by mesg is that associated with the standard input, output, or error, rather
than the controlling terminal for the session. This is because users logged in more than once
should be able to change any of their login terminals without having to stop the job running in
those sessions. This is not a security problem involving the terminals of other users because
appropriate privileges would be required to affect the terminal of another user.

The method of checking each of the first three file descriptors in sequence until a terminal is
found was adopted from System V.

The file /dev/tty is not specified for the terminal device because it was thought to be too
restrictive. Typical environment changes for the n operand are that write permissions are
removed for others and group from the appropriate device. It was decided to leave the actual
description of what is done as unspecified because of potential differences between
implementations.

The format for standard output is unspecified because of differences between historical
implementations. This output is generally not useful to shell scripts (they can use the exit status),
so exact parsing of the output is unnecessary.

FUTURE DIRECTIONS
None.

SEE ALSO
talk , write

XBD Chapter 8 (on page 173)

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2935

96572

96573

96574

96575

96576

96577

96578

96579

96580

96581

96582

96583

96584

96585

96586

96587

96588

96589

96590

96591

96592

96593

96594

96595

96596

96597

96598

96599

96600

96601

96602

96603

96604

96605

96606

96607

96608

96609

96610

96611

mesg Utilities

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

Issue 7
The mesg utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

2936 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

96612

96613

96614

96615

96616

96617

96618

Utilities mkdir

NAME
mkdir — make directories

SYNOPSIS
mkdir [−p] [−m mode] dir...

DESCRIPTION
The mkdir utility shall create the directories specified by the operands, in the order specified.

For each dir operand, the mkdir utility shall perform actions equivalent to the mkdir() function
defined in the System Interfaces volume of POSIX.1-2008, called with the following arguments:

1. The dir operand is used as the path argument.

2. The value of the bitwise-inclusive OR of S_IRWXU, S_IRWXG, and S_IRWXO is used as
the mode argument. (If the −m option is specified, the value of the mkdir() mode argument
is unspecified, but the directory shall at no time have permissions less restrictive than the
−m mode option-argument.)

OPTIONS
The mkdir utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−m mode Set the file permission bits of the newly-created directory to the specified mode
value. The mode option-argument shall be the same as the mode operand defined
for the chmod utility. In the symbolic_mode strings, the op characters ’+’ and ’−’
shall be interpreted relative to an assumed initial mode of a=rwx; ’+’ shall add
permissions to the default mode, ’−’ shall delete permissions from the default
mode.

−p Create any missing intermediate pathname components.

For each dir operand that does not name an existing directory, effects equivalent to
those caused by the following command shall occur:

mkdir −p −m $(umask −S),u+wx $(dirname dir) &&
mkdir [−m mode] dir

where the −m mode option represents that option supplied to the original
invocation of mkdir, if any.

Each dir operand that names an existing directory shall be ignored without error.

OPERANDS
The following operand shall be supported:

dir A pathname of a directory to be created.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of mkdir:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2937

96619

96620

96621

96622

96623

96624

96625

96626

96627

96628

96629

96630

96631

96632

96633

96634

96635

96636

96637

96638

96639

96640

96641

96642

96643

96644

96645

96646

96647

96648

96649

96650

96651

96652

96653

96654

96655

96656

96657

96658

96659

96660

mkdir Utilities

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All the specified directories were created successfully or the −p option was specified and all
the specified directories now exist.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The default file mode for directories is a=rwx (777 on most systems) with selected permissions
removed in accordance with the file mode creation mask. For intermediate pathname
components created by mkdir, the mode is the default modified by u+wx so that the
subdirectories can always be created regardless of the file mode creation mask; if different
ultimate permissions are desired for the intermediate directories, they can be changed
afterwards with chmod.

Note that some of the requested directories may have been created even if an error occurs.

EXAMPLES
None.

RATIONALE
The System V −m option was included to control the file mode.

The System V −p option was included to create any needed intermediate directories and to
complement the functionality provided by rmdir for removing directories in the path prefix as
they become empty. Because no error is produced if any path component already exists, the −p
option is also useful to ensure that a particular directory exists.

The functionality of mkdir is described substantially through a reference to the mkdir() function

2938 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

96661

96662

96663

96664

96665

96666

96667

96668

96669

96670

96671

96672

96673

96674

96675

96676

96677

96678

96679

96680

96681

96682

96683

96684

96685

96686

96687

96688

96689

96690

96691

96692

96693

96694

96695

96696

96697

96698

96699

96700

96701

96702

96703

Utilities mkdir

in the System Interfaces volume of POSIX.1-2008. For example, by default, the mode of the
directory is affected by the file mode creation mask in accordance with the specified behavior of
the mkdir() function. In this way, there is less duplication of effort required for describing details
of the directory creation.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod , rm , rmdir , umask

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH mkdir()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 7
SD5-XCU-ERN-56 is applied, aligning the −m option with the IEEE P1003.2b draft standard to
clarify an ambiguity.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2939

96704

96705

96706

96707

96708

96709

96710

96711

96712

96713

96714

96715

96716

96717

96718

96719

96720

96721

mkfifo Utilities

NAME
mkfifo — make FIFO special files

SYNOPSIS
mkfifo [−m mode] file...

DESCRIPTION
The mkfifo utility shall create the FIFO special files specified by the operands, in the order
specified.

For each file operand, the mkfifo utility shall perform actions equivalent to the mkfifo() function
defined in the System Interfaces volume of POSIX.1-2008, called with the following arguments:

1. The file operand is used as the path argument.

2. The value of the bitwise-inclusive OR of S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP,
S_IROTH, and S_IWOTH is used as the mode argument. (If the −m option is specified, the
value of the mkfifo() mode argument is unspecified, but the FIFO shall at no time have
permissions less restrictive than the −m mode option-argument.)

OPTIONS
The mkfifo utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−m mode Set the file permission bits of the newly-created FIFO to the specified mode value.
The mode option-argument shall be the same as the mode operand defined for the
chmod utility. In the symbolic_mode strings, the op characters ’+’ and ’−’ shall be
interpreted relative to an assumed initial mode of a=rw.

OPERANDS
The following operand shall be supported:

file A pathname of the FIFO special file to be created.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of mkfifo:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

2940 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

96722

96723

96724

96725

96726

96727

96728

96729

96730

96731

96732

96733

96734

96735

96736

96737

96738

96739

96740

96741

96742

96743

96744

96745

96746

96747

96748

96749

96750

96751

96752

96753

96754

96755

96756

96757

96758

96759

96760

96761

96762

Utilities mkfifo

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All the specified FIFO special files were created successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
This utility was added to permit shell applications to create FIFO special files.

The −m option was added to control the file mode, for consistency with the similar functionality
provided by the mkdir utility.

Early proposals included a −p option similar to the mkdir −p option that created intermediate
directories leading up to the FIFO specified by the final component. This was removed because
it is not commonly needed and is not common practice with similar utilities.

The functionality of mkfifo is described substantially through a reference to the mkfifo() function
in the System Interfaces volume of POSIX.1-2008. For example, by default, the mode of the FIFO
file is affected by the file mode creation mask in accordance with the specified behavior of the
mkfifo() function. In this way, there is less duplication of effort required for describing details of
the file creation.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod , umask

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH mkfifo()

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2941

96763

96764

96765

96766

96767

96768

96769

96770

96771

96772

96773

96774

96775

96776

96777

96778

96779

96780

96781

96782

96783

96784

96785

96786

96787

96788

96789

96790

96791

96792

96793

96794

96795

96796

96797

96798

96799

96800

96801

mkfifo Utilities

CHANGE HISTORY
First released in Issue 3.

Issue 6
The −m option is aligned with the IEEE P1003.2b draft standard to clarify an ambiguity.

2942 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

96802

96803

96804

96805

Utilities more

NAME
more — display files on a page-by-page basis

SYNOPSIS
UP more [−ceisu] [−n number] [−p command] [−t tagstring] [file...]

DESCRIPTION
The more utility shall read files and either write them to the terminal on a page-by-page basis or
filter them to standard output. If standard output is not a terminal device, all input files shall be
copied to standard output in their entirety, without modification, except as specified for the −s
option. If standard output is a terminal device, the files shall be written a number of lines (one
screenful) at a time under the control of user commands. See the EXTENDED DESCRIPTION
section.

Certain block-mode terminals do not have all the capabilities necessary to support the complete
more definition; they are incapable of accepting commands that are not terminated with a
<newline>. Implementations that support such terminals shall provide an operating mode to
more in which all commands can be terminated with a <newline> on those terminals. This mode:

• Shall be documented in the system documentation

• Shall, at invocation, inform the user of the terminal deficiency that requires the <newline>
usage and provide instructions on how this warning can be suppressed in future
invocations

• Shall not be required for implementations supporting only fully capable terminals

• Shall not affect commands already requiring <newline> characters

• Shall not affect users on the capable terminals from using more as described in this volume
of POSIX.1-2008

OPTIONS
The more utility shall conform to XBD Section 12.2 (on page 215), except that ’+’ may be
recognized as an option delimiter as well as ’−’.

The following options shall be supported:

−c If a screen is to be written that has no lines in common with the current screen, or
more is writing its first screen, more shall not scroll the screen, but instead shall
redraw each line of the screen in turn, from the top of the screen to the bottom. In
addition, if more is writing its first screen, the screen shall be cleared. This option
may be silently ignored on devices with insufficient terminal capabilities.

−e By default, more shall exit immediately after writing the last line of the last file in
the argument list. If the −e option is specified:

1. If there is only a single file in the argument list and that file was completely
displayed on a single screen, more shall exit immediately after writing the
last line of that file.

2. Otherwise, more shall exit only after reaching end-of-file on the last file in
the argument list twice without an intervening operation. See the
EXTENDED DESCRIPTION section.

−i Perform pattern matching in searches without regard to case; see XBD Section 9.2
(on page 182).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2943

96806

96807

96808

96809

96810

96811

96812

96813

96814

96815

96816

96817

96818

96819

96820

96821

96822

96823

96824

96825

96826

96827

96828

96829

96830

96831

96832

96833

96834

96835

96836

96837

96838

96839

96840

96841

96842

96843

96844

96845

96846

96847

more Utilities

−n number Specify the number of lines per screenful. The number argument is a positive
decimal integer. The −n option shall override any values obtained from any other
source.

−p command Each time a screen from a new file is displayed or redisplayed (including as a
result of more commands; for example, :p), execute the more command(s) in the
command arguments in the order specified, as if entered by the user after the first
screen has been displayed. No intermediate results shall be displayed (that is, if the
command is a movement to a screen different from the normal first screen, only the
screen resulting from the command shall be displayed.) If any of the commands
fail for any reason, an informational message to this effect shall be written, and no
further commands specified using the −p option shall be executed for this file.

−s Behave as if consecutive empty lines were a single empty line.

−t tagstring Write the screenful of the file containing the tag named by the tagstring argument.
See the ctags utility. The tags feature represented by −t tagstring and the :t
command is optional. It shall be provided on any system that also provides a
conforming implementation of ctags; otherwise, the use of −t produces undefined
results.

The filename resulting from the −t option shall be logically added as a prefix to the
list of command line files, as if specified by the user. If the tag named by the
tagstring argument is not found, it shall be an error, and more shall take no further
action.

If the tag specifies a line number, the first line of the display shall contain the
beginning of that line. If the tag specifies a pattern, the first line of the display shall
contain the beginning of the matching text from the first line of the file that
contains that pattern. If the line does not exist in the file or matching text is not
found, an informational message to this effect shall be displayed, and more shall
display the default screen as if −t had not been specified.

If both the −t tagstring and −p command options are given, the −t tagstring shall be
processed first; that is, the file and starting line for the display shall be as specified
by −t, and then the −p more command shall be executed. If the line (matching text)
specified by the −t command does not exist (is not found), no −p more command
shall be executed for this file at any time.

−u Tr eat a <backspace> as a printable control character, displayed as an
implementation-defined character sequence (see the EXTENDED DESCRIPTION
section), suppressing backspacing and the special handling that produces
underlined or standout mode text on some terminal types. Also, do not ignore a
<carriage-return> at the end of a line.

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If no file operands are specified, the standard input
shall be used. If a file is ’−’, the standard input shall be read at that point in the
sequence.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is ’−’.

2944 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

96848

96849

96850

96851

96852

96853

96854

96855

96856

96857

96858

96859

96860

96861

96862

96863

96864

96865

96866

96867

96868

96869

96870

96871

96872

96873

96874

96875

96876

96877

96878

96879

96880

96881

96882

96883

96884

96885

96886

96887

96888

96889

96890

96891

Utilities more

INPUT FILES
The input files being examined shall be text files. If standard output is a terminal, standard error
shall be used to read commands from the user. If standard output is a terminal, standard error is
not readable, and command input is needed, more may attempt to obtain user commands from
the controlling terminal (for example, /dev/tty); otherwise, more shall terminate with an error
indicating that it was unable to read user commands. If standard output is not a terminal, no
error shall result if standard error cannot be opened for reading.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of more:

COLUMNS Override the system-selected horizontal display line size. See XBD Chapter 8 (on
page 173) for valid values and results when it is unset or null.

EDITOR Used by the v command to select an editor. See the EXTENDED DESCRIPTION
section.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the behavior of character classes within regular
expressions.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

LINES Override the system-selected vertical screen size, used as the number of lines in a
screenful. See XBD Chapter 8 (on page 173) for valid values and results when it is
unset or null. The −n option shall take precedence over the LINES variable for
determining the number of lines in a screenful.

MORE Determine a string containing options described in the OPTIONS section preceded
with <hyphen> characters and <blank>-separated as on the command line. Any
command line options shall be processed after those in the MORE variable, as if
the command line were:

more $MORE options operands

The MORE variable shall take precedence over the TERM and LINES variables for
determining the number of lines in a screenful.

TERM Determine the name of the terminal type. If this variable is unset or null, an
unspecified default terminal type is used.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2945

96892

96893

96894

96895

96896

96897

96898

96899

96900

96901

96902

96903

96904

96905

96906

96907

96908

96909

96910

96911

96912

96913

96914

96915

96916

96917

96918

96919

96920

96921

96922

96923

96924

96925

96926

96927

96928

96929

96930

96931

96932

96933

96934

more Utilities

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be used to write the contents of the input files.

STDERR
The standard error shall be used for diagnostic messages and user commands (see the INPUT
FILES section), and, if standard output is a terminal device, to write a prompting string. The
prompting string shall appear on the screen line below the last line of the file displayed in the
current screenful. The prompt shall contain the name of the file currently being examined and
shall contain an end-of-file indication and the name of the next file, if any, when prompting at
the end-of-file. If an error or informational message is displayed, it is unspecified whether it is
contained in the prompt. If it is not contained in the prompt, it shall be displayed and then the
user shall be prompted for a continuation character, at which point another message or the user
prompt may be displayed. The prompt is otherwise unspecified. It is unspecified whether
informational messages are written for other user commands.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The following section describes the behavior of more when the standard output is a terminal
device. If the standard output is not a terminal device, no options other than −s shall have any
effect, and all input files shall be copied to standard output otherwise unmodified, at which time
more shall exit without further action.

The number of lines available per screen shall be determined by the −n option, if present, or by
examining values in the environment (see the ENVIRONMENT VARIABLES section). If neither
method yields a number, an unspecified number of lines shall be used.

The maximum number of lines written shall be one less than this number, because the screen
line after the last line written shall be used to write a user prompt and user input. If the number
of lines in the screen is less than two, the results are undefined. It is unspecified whether user
input is permitted to be longer than the remainder of the single line where the prompt has been
written.

The number of columns available per line shall be determined by examining values in the
environment (see the ENVIRONMENT VARIABLES section), with a default value as described
in XBD Chapter 8 (on page 173).

Lines that are longer than the display shall be folded; the length at which folding occurs is
unspecified, but should be appropriate for the output device. Folding may occur between glyphs
of single characters that take up multiple display columns.

When standard output is a terminal and −u is not specified, more shall treat <backspace> and
<carriage-return> characters specially:

• A character, followed first by a sequence of n <backspace> characters (where n is the same
as the number of column positions that the character occupies), then by n <underscore>
characters (’_’), shall cause that character to be written as underlined text, if the terminal
type supports that. The n <underscore> characters, followed first by n <backspace>
characters, then any character with n column positions, shall also cause that character to be
written as underlined text, if the terminal type supports that.

2946 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

96935

96936

96937

96938

96939

96940

96941

96942

96943

96944

96945

96946

96947

96948

96949

96950

96951

96952

96953

96954

96955

96956

96957

96958

96959

96960

96961

96962

96963

96964

96965

96966

96967

96968

96969

96970

96971

96972

96973

96974

96975

96976

96977

96978

Utilities more

• A sequence of n <backspace> characters (where n is the same as the number of column
positions that the previous character occupies) that appears between two identical
printable characters shall cause the first of those two characters to be written as
emboldened text (that is, visually brighter, standout mode, or inverse-video mode), if the
terminal type supports that, and the second to be discarded. Immediately subsequent
occurrences of <backspace>/character pairs for that same character shall also be
discarded. (For example, the sequence "a\ba\ba\ba" is interpreted as a single
emboldened ’a’.)

• The more utility shall logically discard all other <backspace> characters from the line as
well as the character which precedes them, if any.

• A <carriage-return> at the end of a line shall be ignored, rather than being written as a
non-printable character, as described in the next paragraph.

It is implementation-defined how other non-printable characters are written. Implementations
should use the same format that they use for the ex print command; see the OPTIONS section
within the ed utility. It is unspecified whether a multi-column character shall be separated if it
crosses a display line boundary; it shall not be discarded. The behavior is unspecified if the
number of columns on the display is less than the number of columns any single character in the
line being displayed would occupy.

When each new file is displayed (or redisplayed), more shall write the first screen of the file.
Once the initial screen has been written, more shall prompt for a user command. If the execution
of the user command results in a screen that has lines in common with the current screen, and
the device has sufficient terminal capabilities, more shall scroll the screen; otherwise, it is
unspecified whether the screen is scrolled or redrawn.

For all files but the last (including standard input if no file was specified, and for the last file as
well, if the −e option was not specified), when more has written the last line in the file, more shall
prompt for a user command. This prompt shall contain the name of the next file as well as an
indication that more has reached end-of-file. If the user command is f, <control>-F, <space>, j,
<newline>, d, <control>-D, or s, more shall display the next file. Otherwise, if displaying the last
file, more shall exit. Otherwise, more shall execute the user command specified.

Several of the commands described in this section display a previous screen from the input
stream. In the case that text is being taken from a non-rewindable stream, such as a pipe, it is
implementation-defined how much backwards motion is supported. If a command cannot be
executed because of a limitation on backwards motion, an error message to this effect shall be
displayed, the current screen shall not change, and the user shall be prompted for another
command.

If a command cannot be performed because there are insufficient lines to display, more shall alert
the terminal. If a command cannot be performed because there are insufficient lines to display or
a / command fails: if the input is the standard input, the last screen in the file may be displayed;
otherwise, the current file and screen shall not change, and the user shall be prompted for
another command.

The interactive commands in the following sections shall be supported. Some commands can be
preceded by a decimal integer, called count in the following descriptions. If not specified with
the command, count shall default to 1. In the following descriptions, pattern is a basic regular
expression, as described in XBD Section 9.3 (on page 183). The term ‘‘examine’’ is historical
usage meaning ‘‘open the file for viewing’’; for example, more foo would be expressed as
examining file foo.

In the following descriptions, unless otherwise specified, line is a line in the more display, not a

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2947

96979

96980

96981

96982

96983

96984

96985

96986

96987

96988

96989

96990

96991

96992

96993

96994

96995

96996

96997

96998

96999

97000

97001

97002

97003

97004

97005

97006

97007

97008

97009

97010

97011

97012

97013

97014

97015

97016

97017

97018

97019

97020

97021

97022

97023

97024

97025

more Utilities

line from the file being examined.

In the following descriptions, the current position refers to two things:

1. The position of the current line on the screen

2. The line number (in the file) of the current line on the screen

Usually, the line on the screen corresponding to the current position is the third line on the
screen. If this is not possible (there are fewer than three lines to display or this is the first page of
the file, or it is the last page of the file), then the current position is either the first or last line on
the screen as described later.

Help

Synopsis: h

Write a summary of these commands and other implementation-defined commands. The
behavior shall be as if the more utility were executed with the −e option on a file that contained
the summary information. The user shall be prompted as described earlier in this section when
end-of-file is reached. If the user command is one of those specified to continue to the next file,
more shall return to the file and screen state from which the h command was executed.

Scroll Forward One Screenful

Synopsis: [count]f
[count]<control>-F

Scroll forward count lines, with a default of one screenful. If count is more than the screen size,
only the final screenful shall be written.

Scroll Backward One Screenful

Synopsis: [count]b
[count]<control>-B

Scroll backward count lines, with a default of one screenful (see the −n option). If count is more
than the screen size, only the final screenful shall be written.

Scroll Forward One Line

Synopsis: [count]<space>
[count]j
[count]<newline>

Scroll forward count lines. The default count for the <space> shall be one screenful; for j and
<newline>, one line. The entire count lines shall be written, even if count is more than the screen
size.

Scroll Backward One Line

Synopsis: [count]k

Scroll backward count lines. The entire count lines shall be written, even if count is more than the
screen size.

2948 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

97026

97027

97028

97029

97030

97031

97032

97033

97034

97035

97036

97037

97038

97039

97040

97041

97042

97043

97044

97045

97046

97047

97048

97049

97050

97051

97052

97053

97054

97055

97056

97057

97058

97059

97060

97061

Utilities more

Scroll Forward One Half Screenful

Synopsis: [count]d
[count]<control>-D

Scroll forward count lines, with a default of one half of the screen size. If count is specified, it
shall become the new default for subsequent d, <control>-D, and u commands.

Skip Forward One Line

Synopsis: [count]s

Display the screenful beginning with the line count lines after the last line on the current screen.
If count would cause the current position to be such that less than one screenful would be
written, the last screenful in the file shall be written.

Scroll Backward One Half Screenful

Synopsis: [count]u
[count]<control>-U

Scroll backward count lines, with a default of one half of the screen size. If count is specified, it
shall become the new default for subsequent d, <control>−D, u, and <control>−U commands.
The entire count lines shall be written, even if count is more than the screen size.

Go to Beginning of File

Synopsis: [count]g

Display the screenful beginning with line count.

Go to End-of-File

Synopsis: [count]G

If count is specified, display the screenful beginning with the line count. Otherwise, display the
last screenful of the file.

Refresh the Screen

Synopsis: r
<control>-L

Refresh the screen.

Discard and Refresh

Synopsis: R

Refresh the screen, discarding any buffered input. If the current file is non-seekable, buffered
input shall not be discarded and the R command shall be equivalent to the r command.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2949

97062

97063

97064

97065

97066

97067

97068

97069

97070

97071

97072

97073

97074

97075

97076

97077

97078

97079

97080

97081

97082

97083

97084

97085

97086

97087

97088

97089

97090

97091

97092

more Utilities

Mark Position

Synopsis: mletter

Mark the current position with the letter named by letter, where letter represents the name of one
of the lowercase letters of the portable character set. When a new file is examined, all marks may
be lost.

Return to Mark

Synopsis: ’letter

Return to the position that was previously marked with the letter named by letter, making that
line the current position.

Return to Previous Position

Synopsis: ’’

Return to the position from which the last large movement command was executed (where a
‘‘large movement’’ is defined as any movement of more than a screenful of lines). If no such
movements have been made, return to the beginning of the file.

Search Forward for Pattern

Synopsis: [count]/[!]pattern<newline>

Display the screenful beginning with the countth line containing the pattern. The search shall
start after the first line currently displayed. The null regular expression (’/’ followed by a
<newline>) shall repeat the search using the previous regular expression, with a default count. If
the character ’!’ is included, the matching lines shall be those that do not contain the pattern. If
no match is found for the pattern, a message to that effect shall be displayed.

Search Backward for Pattern

Synopsis: [count]?[!]pattern<newline>

Display the screenful beginning with the countth previous line containing the pattern. The search
shall start on the last line before the first line currently displayed. The null regular expression
(’?’ followed by a <newline>) shall repeat the search using the previous regular expression,
with a default count. If the character ’!’ is included, matching lines shall be those that do not
contain the pattern. If no match is found for the pattern, a message to that effect shall be
displayed.

Repeat Search

Synopsis: [count]n

Repeat the previous search for countth line containing the last pattern (or not containing the last
pattern, if the previous search was "/!" or "?!").

2950 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

97093

97094

97095

97096

97097

97098

97099

97100

97101

97102

97103

97104

97105

97106

97107

97108

97109

97110

97111

97112

97113

97114

97115

97116

97117

97118

97119

97120

97121

97122

97123

97124

97125

Utilities more

Repeat Search in Reverse

Synopsis: [count]N

Repeat the search in the opposite direction of the previous search for the countth line containing
the last pattern (or not containing the last pattern, if the previous search was "/!" or "?!").

Examine New File

Synopsis: :e [filename]<newline>

Examine a new file. If the filename argument is not specified, the current file (see the :n and :p
commands below) shall be re-examined. The filename shall be subjected to the process of shell
word expansions (see Section 2.6, on page 2305); if more than a single pathname results, the
effects are unspecified. If filename is a <number-sign> (’#’), the previously examined file shall
be re-examined. If filename is not accessible for any reason (including that it is a non-seekable
file), an error message to this effect shall be displayed and the current file and screen shall not
change.

Examine Next File

Synopsis: [count]:n

Examine the next file. If a number count is specified, the countth next file shall be examined. If
filename refers to a non-seekable file, the results are unspecified.

Examine Previous File

Synopsis: [count]:p

Examine the previous file. If a number count is specified, the countth previous file shall be
examined. If filename refers to a non-seekable file, the results are unspecified.

Go to Tag

Synopsis: :t tagstring<newline>

If the file containing the tag named by the tagstring argument is not the current file, examine the
file, as if the :e command was executed with that file as the argument. Otherwise, or in addition,
display the screenful beginning with the tag, as described for the −t option (see the OPTIONS
section). If the ctags utility is not supported by the system, the use of :t produces undefined
results.

Invoke Editor

Synopsis: v

Invoke an editor to edit the current file being examined. If standard input is being examined, the
results are unspecified. The name of the editor shall be taken from the environment variable
EDITOR, or shall default to vi. If the last pathname component in EDITOR is either vi or ex, the
editor shall be invoked with a −c linenumber command line argument, where linenumber is the
line number of the file line containing the display line currently displayed as the first line of the
screen. It is implementation-defined whether line-setting options are passed to editors other
than vi and ex.

When the editor exits, more shall resume with the same file and screen as when the editor was
invoked.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2951

97126

97127

97128

97129

97130

97131

97132

97133

97134

97135

97136

97137

97138

97139

97140

97141

97142

97143

97144

97145

97146

97147

97148

97149

97150

97151

97152

97153

97154

97155

97156

97157

97158

97159

97160

97161

97162

97163

97164

more Utilities

Display Position

Synopsis: =
<control>-G

Write a message for which the information references the first byte of the line after the last line of
the file on the screen. This message shall include the name of the file currently being examined,
its number relative to the total number of files there are to examine, the line number in the file,
the byte number and the total bytes in the file, and what percentage of the file precedes the
current position. If more is reading from standard input, or the file is shorter than a single screen,
the line number, the byte number, the total bytes, and the percentage need not be written.

Quit

Synopsis: q
:q
ZZ

Exit more.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If an error is encountered accessing a file when using the :n command, more shall attempt to
examine the next file in the argument list, but the final exit status shall be affected. If an error is
encountered accessing a file via the :p command, more shall attempt to examine the previous file
in the argument list, but the final exit status shall be affected. If an error is encountered accessing
a file via the :e command, more shall remain in the current file and the final exit status shall not
be affected.

APPLICATION USAGE
When the standard output is not a terminal, only the −s filter-modification option is effective.
This is based on historical practice. For example, a typical implementation of man pipes its
output through more −s to squeeze excess white space for terminal users. When man is piped to
lp, however, it is undesirable for this squeezing to happen.

EXAMPLES
The −p allows arbitrary commands to be executed at the start of each file. Examples are:

more −p G file1 file2
Examine each file starting with its last screenful.

more −p 100 file1 file2
Examine each file starting with line 100 in the current position (usually the third line, so line
98 would be the first line written).

more −p /100 file1 file2
Examine each file starting with the first line containing the string "100" in the current
position

2952 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

97165

97166

97167

97168

97169

97170

97171

97172

97173

97174

97175

97176

97177

97178

97179

97180

97181

97182

97183

97184

97185

97186

97187

97188

97189

97190

97191

97192

97193

97194

97195

97196

97197

97198

97199

97200

97201

97202

97203

97204

Utilities more

RATIONALE
The more utility, available in BSD and BSD-derived systems, was chosen as the prototype for the
POSIX file display program since it is more widely available than either the public-domain
program less or than pg, a pager provided in System V. The 4.4 BSD more is the model for the
features selected; it is almost fully upwards-compatible from the 4.3 BSD version in wide use
and has become more amenable for vi users. Several features originally derived from various file
editors, found in both less and pg, have been added to this volume of POSIX.1-2008 as they have
proved extremely popular with users.

There are inconsistencies between more and vi that result from historical practice. For example,
the single-character commands h, f, b, and <space> are screen movers in more, but cursor
movers in vi. These inconsistencies were maintained because the cursor movements are not
applicable to more and the powerful functionality achieved without the use of the control key
justifies the differences.

The tags interface has been included in a program that is not a text editor because it promotes
another degree of consistent operation with vi. It is conceivable that the paging environment of
more would be superior for browsing source code files in some circumstances.

The operating mode referred to for block-mode terminals effectively adds a <newline> to each
Synopsis line that currently has none. So, for example, d<newline> would page one screenful.
The mode could be triggered by a command line option, environment variable, or some other
method. The details are not imposed by this volume of POSIX.1-2008 because there are so few
systems known to support such terminals. Nevertheless, it was considered that all systems
should be able to support more given the exception cited for this small community of terminals
because, in comparison to vi, the cursor movements are few and the command set relatively
amenable to the optional <newline> characters.

Some versions of more provide a shell escaping mechanism similar to the ex ! command. The
standard developers did not consider that this was necessary in a paginator, particularly given
the wide acceptance of multiple window terminals and job control features. (They chose to
retain such features in the editors and mailx because the shell interaction also gives an
opportunity to modify the editing buffer, which is not applicable to more.)

The −p (position) option replaces the + command because of the Utility Syntax Guidelines. The
+command option is no longer specified by POSIX.1-2008 but may be present in some
implementations. In early proposals, it took a pattern argument, but historical less provided the
more general facility of a command. It would have been desirable to use the same −c as ex and vi,
but the letter was already in use.

The text stating ‘‘from a non-rewindable stream . . . implementations may limit the amount of
backwards motion supported’’ would allow an implementation that permitted no backwards
motion beyond text already on the screen. It was not possible to require a minimum amount of
backwards motion that would be effective for all conceivable device types. The implementation
should allow the user to back up as far as possible, within device and reasonable memory
allocation constraints.

Historically, non-printable characters were displayed using the ARPA standard mappings,
which are as follows:

1. Printable characters are left alone.

2. Control characters less than \177 are represented as followed by the character offset from
the ’@’ character in the ASCII map; for example, \007 is represented as ’G’.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2953

97205

97206

97207

97208

97209

97210

97211

97212

97213

97214

97215

97216

97217

97218

97219

97220

97221

97222

97223

97224

97225

97226

97227

97228

97229

97230

97231

97232

97233

97234

97235

97236

97237

97238

97239

97240

97241

97242

97243

97244

97245

97246

97247

97248

97249

more Utilities

3. \177 is represented as followed by ’?’.

The display of characters having their eighth bit set was less standard. Existing implementations
use hex (0x00), octal (\000), and a meta-bit display. (The latter displayed characters with their
eighth bit set as the two characters "M−", followed by the seven-bit display as described
previously.) The latter probably has the best claim to historical practice because it was used with
the −v option of 4 BSD and 4 BSD-derived versions of the cat utility since 1980.

No specific display format is required by POSIX.1-2008. Implementations are encouraged to
conform to historic practice in the absence of any strong reason to diverge.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2297), ctags , ed , ex , vi

XBD Chapter 8 (on page 173), Section 9.2 (on page 182), Section 9.3 (on page 183), Section 12.2
(on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The obsolescent SYNOPSIS is removed.

The utility has been extensively reworked for alignment with the IEEE P1003.2b draft standard:

• Changes have been made as a result of IEEE PASC Interpretations 1003.2 #37 and #109.

• The more utility should be able to handle underlined and emboldened displays of
characters that are wider than a single column position.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that ’+’ may be recognized
as an option delimiter in the OPTIONS section.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2954 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

97250

97251

97252

97253

97254

97255

97256

97257

97258

97259

97260

97261

97262

97263

97264

97265

97266

97267

97268

97269

97270

97271

97272

97273

97274

97275

97276

97277

97278

Utilities mv

NAME
mv — move files

SYNOPSIS
mv [−if] source_file target_file

mv [−if] source_file... target_dir

DESCRIPTION
In the first synopsis form, the mv utility shall move the file named by the source_file operand to
the destination specified by the target_file. This first synopsis form is assumed when the final
operand does not name an existing directory and is not a symbolic link referring to an existing
directory. In this case, if target_file ends with a trailing <slash> character, mv shall treat this as an
error and no source_file operands will be processed.

In the second synopsis form, mv shall move each file named by a source_file operand to a
destination file in the existing directory named by the target_dir operand, or referenced if
target_dir is a symbolic link referring to an existing directory. The destination path for each
source_file shall be the concatenation of the target directory, a single <slash> character if the
target did not end in a <slash>, and the last pathname component of the source_file. This second
form is assumed when the final operand names an existing directory.

If any operand specifies an existing file of a type not specified by the System Interfaces volume
of POSIX.1-2008, the behavior is implementation-defined.

For each source_file the following steps shall be taken:

1. If the destination path exists, the −f option is not specified, and either of the following
conditions is true:

a. The permissions of the destination path do not permit writing and the standard
input is a terminal.

b. The −i option is specified.

the mv utility shall write a prompt to standard error and read a line from standard input.
If the response is not affirmative, mv shall do nothing more with the current source_file
and go on to any remaining source_files.

2. If the source_file operand and destination path name the same existing file, then the
destination path shall not be removed, and one of the following shall occur:

a. No change is made to source_file, no error occurs, and no diagnostic is issued.

b. No change is made to source_file, a diagnostic is issued to standard error
identifying the two names, and the exit status is affected.

c. If the source_file operand and destination path name distinct directory entries, then
the source_file operand is removed, no error occurs, and no diagnostic is issued.

The mv utility shall do nothing more with the current source_file, and go on to any
remaining source_files.

3. The mv utility shall perform actions equivalent to the rename() function defined in the
System Interfaces volume of POSIX.1-2008, called with the following arguments:

a. The source_file operand is used as the old argument.

b. The destination path is used as the new argument.

If this succeeds, mv shall do nothing more with the current source_file and go on to any
remaining source_files. If this fails for any reasons other than those described for the errno

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2955

97279

97280

97281

97282

97283

97284

97285

97286

97287

97288

97289

97290

97291

97292

97293

97294

97295

97296

97297

97298

97299

97300

97301

97302

97303

97304

97305

97306

97307

97308

97309

97310

97311

97312

97313

97314

97315

97316

97317

97318

97319

97320

97321

mv Utilities

[EXDEV] in the System Interfaces volume of POSIX.1-2008, mv shall write a diagnostic
message to standard error, do nothing more with the current source_file, and go on to any
remaining source_files.

4. If the destination path exists, and it is a file of type directory and source_file is not a file of
type directory, or it is a file not of type directory and source_file is a file of type directory,
mv shall write a diagnostic message to standard error, do nothing more with the current
source_file, and go on to any remaining source_files. If the destination path exists and was
created by a previous step, it is unspecified whether this will treated as an error or the
destination path will be overwritten.

5. If the destination path exists, mv shall attempt to remove it. If this fails for any reason, mv
shall write a diagnostic message to standard error, do nothing more with the current
source_file, and go on to any remaining source_files.

6. The file hierarchy rooted in source_file shall be duplicated as a file hierarchy rooted in the
destination path. If source_file or any of the files below it in the hierarchy are symbolic
links, the links themselves shall be duplicated, including their contents, rather than any
files to which they refer. The following characteristics of each file in the file hierarchy
shall be duplicated:

• The time of last data modification and time of last access

• The user ID and group ID

• The file mode

If the user ID, group ID, or file mode of a regular file cannot be duplicated, the file mode
bits S_ISUID and S_ISGID shall not be duplicated.

When files are duplicated to another file system, the implementation may require that the
process invoking mv has read access to each file being duplicated.

If files being duplicated to another file system have hard links to other files, it is
unspecified whether the files copied to the new file system have the hard links preserved
or separate copies are created for the linked files.

If the duplication of the file hierarchy fails for any reason, mv shall write a diagnostic
message to standard error, do nothing more with the current source_file, and go on to any
remaining source_files.

If the duplication of the file characteristics fails for any reason, mv shall write a diagnostic
message to standard error, but this failure shall not cause mv to modify its exit status.

7. The file hierarchy rooted in source_file shall be removed. If this fails for any reason, mv
shall write a diagnostic message to the standard error, do nothing more with the current
source_file, and go on to any remaining source_files.

OPTIONS
The mv utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−f Do not prompt for confirmation if the destination path exists. Any previous
occurrence of the −i option is ignored.

−i Prompt for confirmation if the destination path exists. Any previous occurrence of
the −f option is ignored.

Specifying more than one of the −f or −i options shall not be considered an error. The last option

2956 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

97322

97323

97324

97325

97326

97327

97328

97329

97330

97331

97332

97333

97334

97335

97336

97337

97338

97339

97340

97341

97342

97343

97344

97345

97346

97347

97348

97349

97350

97351

97352

97353

97354

97355

97356

97357

97358

97359

97360

97361

97362

97363

97364

Utilities mv

specified shall determine the behavior of mv.

OPERANDS
The following operands shall be supported:

source_file A pathname of a file or directory to be moved.

target_file A new pathname for the file or directory being moved.

target_dir A pathname of an existing directory into which to move the input files.

STDIN
The standard input shall be used to read an input line in response to each prompt specified in
the STDERR section. Otherwise, the standard input shall not be used.

INPUT FILES
The input files specified by each source_file operand can be of any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of mv:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the extended regular expression defined for
the yesexpr locale keyword in the LC_MESSAGES category.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), the behavior of character classes used in the extended
regular expression defined for the yesexpr locale keyword in the LC_MESSAGES
category.

LC_MESSAGES
Determine the locale used to process affirmative responses, and the locale used to
affect the format and contents of diagnostic messages and prompts written to
standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
Prompts shall be written to the standard error under the conditions specified in the
DESCRIPTION section. The prompts shall contain the destination pathname, but their format is
otherwise unspecified. Otherwise, the standard error shall be used only for diagnostic
messages.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2957

97365

97366

97367

97368

97369

97370

97371

97372

97373

97374

97375

97376

97377

97378

97379

97380

97381

97382

97383

97384

97385

97386

97387

97388

97389

97390

97391

97392

97393

97394

97395

97396

97397

97398

97399

97400

97401

97402

97403

97404

97405

mv Utilities

OUTPUT FILES
The output files may be of any file type.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All input files were moved successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If the copying or removal of source_file is prematurely terminated by a signal or error, mv may
leave a partial copy of source_file at the source or destination. The mv utility shall not modify
both source_file and the destination path simultaneously; termination at any point shall leave
either source_file or the destination path complete.

APPLICATION USAGE
Some implementations mark for update the last file status change timestamp of renamed files
and some do not. Applications which make use of the last file status change timestamp may
behave differently with respect to renamed files unless they are designed to allow for either
behavior.

The specification ensures that mv a a will not alter the contents of file a, and allows the
implementation to issue an error that a file cannot be moved onto itself. Likewise, when a and b
are hard links to the same file, mv a b will not alter b, but if a diagnostic is not issued, then it is
unspecified whether a is left untouched (as it would be by the rename() function) or unlinked
(reducing the link count of b).

EXAMPLES
If the current directory contains only files a (of any type defined by the System Interfaces
volume of POSIX.1-2008), b (also of any type), and a directory c:

mv a b c
mv c d

results with the original files a and b residing in the directory d in the current directory.

RATIONALE
Early proposals diverged from the SVID and BSD historical practice in that they required that
when the destination path exists, the −f option is not specified, and input is not a terminal, mv
fails. This was done for compatibility with cp. The current text returns to historical practice. It
should be noted that this is consistent with the rename() function defined in the System
Interfaces volume of POSIX.1-2008, which does not require write permission on the target.

For absolute clarity, paragraph (1), describing the behavior of mv when prompting for
confirmation, should be interpreted in the following manner:

if (exists AND (NOT f_option) AND
((not_writable AND input_is_terminal) OR i_option))

The −i option exists on BSD systems, giving applications and users a way to avoid accidentally
unlinking files when moving others. When the standard input is not a terminal, the 4.3 BSD mv
deletes all existing destination paths without prompting, even when −i is specified; this is
inconsistent with the behavior of the 4.3 BSD cp utility, which always generates an error when
the file is unwritable and the standard input is not a terminal. The standard developers decided
that use of −i is a request for interaction, so when the destination path exists, the utility takes

2958 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

97406

97407

97408

97409

97410

97411

97412

97413

97414

97415

97416

97417

97418

97419

97420

97421

97422

97423

97424

97425

97426

97427

97428

97429

97430

97431

97432

97433

97434

97435

97436

97437

97438

97439

97440

97441

97442

97443

97444

97445

97446

97447

97448

97449

97450

Utilities mv

instructions from whatever responds to standard input.

The rename() function is able to move directories within the same file system. Some historical
versions of mv have been able to move directories, but not to a different file system. The
standard developers considered that this was an annoying inconsistency, so this volume of
POSIX.1-2008 requires directories to be able to be moved even across file systems. There is no −R
option to confirm that moving a directory is actually intended, since such an option was not
required for moving directories in historical practice. Requiring the application to specify it
sometimes, depending on the destination, seemed just as inconsistent. The semantics of the
rename() function were preserved as much as possible. For example, mv is not permitted to
‘‘rename’’ files to or from directories, even though they might be empty and removable.

Historic implementations of mv did not exit with a non-zero exit status if they were unable to
duplicate any file characteristics when moving a file across file systems, nor did they write a
diagnostic message for the user. The former behavior has been preserved to prevent scripts from
breaking; a diagnostic message is now required, however, so that users are alerted that the file
characteristics have changed.

The exact format of the interactive prompts is unspecified. Only the general nature of the
contents of prompts are specified because implementations may desire more descriptive
prompts than those used on historical implementations. Therefore, an application not using the
−f option or using the −i option relies on the system to provide the most suitable dialog directly
with the user, based on the behavior specified.

When mv is dealing with a single file system and source_file is a symbolic link, the link itself is
moved as a consequence of the dependence on the rename() functionality, per the
DESCRIPTION. Across file systems, this has to be made explicit.

FUTURE DIRECTIONS
None.

SEE ALSO
cp , ln

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH rename()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The mv utility is changed to describe processing of symbolic links as specified in the
IEEE P1003.2b draft standard.

The APPLICATION USAGE section is added.

Issue 7
Austin Group Interpretation 1003.1-2001 #016 is applied.

Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description of the
LC_MESSAGES environment variable.

Austin Group Interpretations 1003.1-2001 #164, #168, and #169 are applied.

SD5-XCU-ERN-13 is applied, making an editorial correction to the SYNOPSIS.

SD5-XCU-ERN-51 is applied to the DESCRIPTION, defining the behavior for when files are
being duplicated to another file system while having hard links.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2959

97451

97452

97453

97454

97455

97456

97457

97458

97459

97460

97461

97462

97463

97464

97465

97466

97467

97468

97469

97470

97471

97472

97473

97474

97475

97476

97477

97478

97479

97480

97481

97482

97483

97484

97485

97486

97487

97488

97489

97490

97491

97492

97493

mv Utilities

Changes are made related to support for finegrained timestamps.

2960 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

97494

Utilities newgrp

NAME
newgrp — change to a new group

SYNOPSIS
newgrp [−l] [group]

DESCRIPTION
The newgrp utility shall create a new shell execution environment with a new real and effective
group identification. Of the attributes listed in Section 2.12 (on page 2331), the new shell
execution environment shall retain the working directory, file creation mask, and exported
variables from the previous environment (that is, open files, traps, unexported variables, alias
definitions, shell functions, and set options may be lost). All other aspects of the process
environment that are preserved by the exec family of functions defined in the System Interfaces
volume of POSIX.1-2008 shall also be preserved by newgrp; whether other aspects are preserved
is unspecified.

A failure to assign the new group identifications (for example, for security or password-related
reasons) shall not prevent the new shell execution environment from being created.

The newgrp utility shall affect the supplemental groups for the process as follows:

• On systems where the effective group ID is normally in the supplementary group list (or
whenever the old effective group ID actually is in the supplementary group list):

— If the new effective group ID is also in the supplementary group list, newgrp shall
change the effective group ID.

— If the new effective group ID is not in the supplementary group list, newgrp shall add
the new effective group ID to the list, if there is room to add it.

• On systems where the effective group ID is not normally in the supplementary group list
(or whenever the old effective group ID is not in the supplementary group list):

— If the new effective group ID is in the supplementary group list, newgrp shall delete
it.

— If the old effective group ID is not in the supplementary list, newgrp shall add it if
there is room.

Note: The System Interfaces volume of POSIX.1-2008 does not specify whether the effective group ID
of a process is included in its supplementary group list.

With no operands, newgrp shall change the effective group back to the groups identified in the
user ’s user entry, and shall set the list of supplementary groups to that set in the user’s group
database entries.

If the first argument is ’−’, the results are unspecified.

If a password is required for the specified group, and the user is not listed as a member of that
group in the group database, the user shall be prompted to enter the correct password for that
group. If the user is listed as a member of that group, no password shall be requested. If no
password is required for the specified group, it is implementation-defined whether users not
listed as members of that group can change to that group. Whether or not a password is
required, implementation-defined system accounting or security mechanisms may impose
additional authorization restrictions that may cause newgrp to write a diagnostic message and
suppress the changing of the group identification.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2961

97495

97496

97497

97498

97499

97500

97501

97502

97503

97504

97505

97506

97507

97508

97509

97510

97511

97512

97513

97514

97515

97516

97517

97518

97519

97520

97521

97522

97523

97524

97525

97526

97527

97528

97529

97530

97531

97532

97533

97534

97535

97536

newgrp Utilities

OPTIONS
The newgrp utility shall conform to XBD Section 12.2 (on page 215), except for the unspecified
usage of ’−’.

The following option shall be supported:

−l (The letter ell.) Change the environment to what would be expected if the user
actually logged in again.

OPERANDS
The following operand shall be supported:

group A group name from the group database or a non-negative numeric group ID.
Specifies the group ID to which the real and effective group IDs shall be set. If
group is a non-negative numeric string and exists in the group database as a group
name (see getgrnam()), the numeric group ID associated with that group name
shall be used as the group ID.

STDIN
Not used.

INPUT FILES
The file /dev/tty shall be used to read a single line of text for password checking, when one is
required.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of newgrp:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used for diagnostic messages and a prompt string for a password, if
one is required. Diagnostic messages may be written in cases where the exit status is not
available. See the EXIT STATUS section.

2962 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

97537

97538

97539

97540

97541

97542

97543

97544

97545

97546

97547

97548

97549

97550

97551

97552

97553

97554

97555

97556

97557

97558

97559

97560

97561

97562

97563

97564

97565

97566

97567

97568

97569

97570

97571

97572

97573

97574

97575

97576

Utilities newgrp

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If newgrp succeeds in creating a new shell execution environment, whether or not the group
identification was changed successfully, the exit status shall be the exit status of the shell.
Otherwise, the following exit value shall be returned:

>0 An error occurred.

CONSEQUENCES OF ERRORS
The invoking shell may terminate.

APPLICATION USAGE
There is no convenient way to enter a password into the group database. Use of group
passwords is not encouraged, because by their very nature they encourage poor security
practices. Group passwords may disappear in the future.

A common implementation of newgrp is that the current shell uses exec to overlay itself with
newgrp, which in turn overlays itself with a new shell after changing group. On some
implementations, however, this may not occur and newgrp may be invoked as a subprocess.

The newgrp command is intended only for use from an interactive terminal. It does not offer a
useful interface for the support of applications.

The exit status of newgrp is generally inapplicable. If newgrp is used in a script, in most cases it
successfully invokes a new shell and the rest of the original shell script is bypassed when the
new shell exits. Used interactively, newgrp displays diagnostic messages to indicate problems.
But usage such as:

newgrp foo
echo $?

is not useful because the new shell might not have access to any status newgrp may have
generated (and most historical systems do not provide this status). A zero status echoed here
does not necessarily indicate that the user has changed to the new group successfully. Following
newgrp with the id command provides a portable means of determining whether the group
change was successful or not.

EXAMPLES
None.

RATIONALE
Most historical implementations use one of the exec functions to implement the behavior of
newgrp. Errors detected before the exec leave the environment unchanged, while errors detected
after the exec leave the user in a changed environment. While it would be useful to have newgrp
issue a diagnostic message to tell the user that the environment changed, it would be
inappropriate to require this change to some historical implementations.

The password mechanism is allowed in the group database, but how this would be
implemented is not specified.

The newgrp utility was retained in this volume of POSIX.1-2008, even given the existence of the
multiple group permissions feature in the System Interfaces volume of POSIX.1-2008, for several
reasons. First, in some implementations, the group ownership of a newly created file is
determined by the group of the directory in which the file is created, as allowed by the System

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2963

97577

97578

97579

97580

97581

97582

97583

97584

97585

97586

97587

97588

97589

97590

97591

97592

97593

97594

97595

97596

97597

97598

97599

97600

97601

97602

97603

97604

97605

97606

97607

97608

97609

97610

97611

97612

97613

97614

97615

97616

97617

97618

97619

97620

97621

newgrp Utilities

Interfaces volume of POSIX.1-2008; on other implementations, the group ownership of a newly
created file is determined by the effective group ID. On implementations of the latter type,
newgrp allows files to be created with a specific group ownership. Finally, many
implementations use the real group ID in accounting, and on such systems, newgrp allows the
accounting identity of the user to be changed.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2297), sh

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH exec , getgrnam()

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The obsolescent SYNOPSIS is removed.

The text describing supplemental groups is no longer conditional on {NGROUPS_MAX} being
greater than 1. This is because {NGROUPS_MAX} now has a minimum value of 8. This is a FIPS
requirement.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if the first
argument is ’−’.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The newgrp utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

2964 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

97622

97623

97624

97625

97626

97627

97628

97629

97630

97631

97632

97633

97634

97635

97636

97637

97638

97639

97640

97641

97642

97643

97644

97645

97646

Utilities nice

NAME
nice — invoke a utility with an altered nice value

SYNOPSIS
nice [−n increment] utility [argument...]

DESCRIPTION
The nice utility shall invoke a utility, requesting that it be run with a different nice value (see
XBD Section 3.239, on page 71). With no options, the executed utility shall be run with a nice
value that is some implementation-defined quantity greater than or equal to the nice value of the
current process. If the user lacks appropriate privileges to affect the nice value in the requested
manner, the nice utility shall not affect the nice value; in this case, a warning message may be
written to standard error, but this shall not prevent the invocation of utility or affect the exit
status.

OPTIONS
The nice utility shall conform to XBD Section 12.2 (on page 215).

The following option is supported:

−n increment A positive or negative decimal integer which shall have the same effect on the
execution of the utility as if the utility had called the nice() function with the
numeric value of the increment option-argument.

OPERANDS
The following operands shall be supported:

utility The name of a utility that is to be invoked. If the utility operand names any of the
special built-in utilities in Section 2.14 (on page 2334), the results are undefined.

argument Any string to be supplied as an argument when invoking the utility named by the
utility operand.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of nice:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2965

97647

97648

97649

97650

97651

97652

97653

97654

97655

97656

97657

97658

97659

97660

97661

97662

97663

97664

97665

97666

97667

97668

97669

97670

97671

97672

97673

97674

97675

97676

97677

97678

97679

97680

97681

97682

97683

97684

97685

97686

97687

97688

nice Utilities

PA TH Determine the search path used to locate the utility to be invoked. See XBD
Chapter 8 (on page 173).

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If utility is invoked, the exit status of nice shall be the exit status of utility; otherwise, the nice
utility shall exit with one of the following values:

1-125 An error occurred in the nice utility.

126 The utility specified by utility was found but could not be invoked.

127 The utility specified by utility could not be found.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The only guaranteed portable uses of this utility are:

nice utility
Run utility with the default higher or equal nice value.

nice −n <positive integer> utility
Run utility with a higher nice value.

On some implementations they have no discernible effect on the invoked utility and on some
others they are exactly equivalent.

Historical systems have frequently supported the <positive integer> up to 20. Since there is no
error penalty associated with guessing a number that is too high, users without access to the
system conformance document (to see what limits are actually in place) could use the historical 1
to 20 range or attempt to use very large numbers if the job should be truly low priority.

The nice value of a process can be displayed using the command:

ps −o nice

The command, env, nice, nohup, time, and xargs utilities have been specified to use exit code 127 if
an error occurs so that applications can distinguish ‘‘failure to find a utility’’ from ‘‘invoked
utility exited with an error indication’’. The value 127 was chosen because it is not commonly
used for other meanings; most utilities use small values for ‘‘normal error conditions’’ and the
values above 128 can be confused with termination due to receipt of a signal. The value 126 was
chosen in a similar manner to indicate that the utility could be found, but not invoked. Some
scripts produce meaningful error messages differentiating the 126 and 127 cases. The distinction
between exit codes 126 and 127 is based on KornShell practice that uses 127 when all attempts to
exec the utility fail with [ENOENT], and uses 126 when any attempt to exec the utility fails for

2966 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

97689

97690

97691

97692

97693

97694

97695

97696

97697

97698

97699

97700

97701

97702

97703

97704

97705

97706

97707

97708

97709

97710

97711

97712

97713

97714

97715

97716

97717

97718

97719

97720

97721

97722

97723

97724

97725

97726

97727

97728

97729

97730

97731

Utilities nice

any other reason.

EXAMPLES
None.

RATIONALE
The 4.3 BSD version of nice does not check whether increment is a valid decimal integer. The
command nice −x utility, for example, would be treated the same as the command nice − −1
utility. If the user does not have appropriate privileges, this results in a ‘‘permission denied’’
error. This is considered a bug.

When a user without appropriate privileges gives a negative increment, System V treats it like
the command nice −0 utility, while 4.3 BSD writes a ‘‘permission denied’’ message and does not
run the utility. The standard specifies the System V behavior together with an optional BSD-style
‘‘permission denied’’ message.

The C shell has a built-in version of nice that has a different interface from the one described in
this volume of POSIX.1-2008.

The term ‘‘utility’’ is used, rather than ‘‘command’’, to highlight the fact that shell compound
commands, pipelines, and so on, cannot be used. Special built-ins also cannot be used.
However, ‘‘utility’’ includes user application programs and shell scripts, not just utilities defined
in this volume of POSIX.1-2008.

Historical implementations of nice provide a nice value range of 40 or 41 discrete steps, with the
default nice value being the midpoint of that range. By default, they raise the nice value of the
executed utility by 10.

Some historical documentation states that the increment value must be within a fixed range. This
is misleading; the valid increment values on any invocation are determined by the current
process nice value, which is not always the default.

The definition of nice value is not intended to suggest that all processes in a system have
priorities that are comparable. Scheduling policy extensions such as the realtime priorities in the
System Interfaces volume of POSIX.1-2008 make the notion of a single underlying priority for all
scheduling policies problematic. Some implementations may implement the nice-related features
to affect all processes on the system, others to affect just the general time-sharing activities
implied by this volume of POSIX.1-2008, and others may have no effect at all. Because of the use
of ‘‘implementation-defined’’ in nice and renice, a wide range of implementation strategies are
possible.

Earlier versions of this standard allowed a −increment option. This form is no longer specified by
POSIX.1-2008 but may be present in some implementations.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2297), renice

XBD Section 3.239 (on page 71), Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH nice()

CHANGE HISTORY
First released in Issue 4.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2967

97732

97733

97734

97735

97736

97737

97738

97739

97740

97741

97742

97743

97744

97745

97746

97747

97748

97749

97750

97751

97752

97753

97754

97755

97756

97757

97758

97759

97760

97761

97762

97763

97764

97765

97766

97767

97768

97769

97770

97771

97772

97773

nice Utilities

Issue 6
This utility is marked as part of the User Portability Utilities option.

The obsolescent SYNOPSIS is removed.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/18 is applied, deleting a paragraph of
RATIONALE that referred to text no longer in the standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied.

SD5-XCU-ERN-32 and SD5-XCU-ERN-33 are applied, updating the DESCRIPTION,
APPLICATION USAGE, and RATIONALE sections.

The nice utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

2968 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

97774

97775

97776

97777

97778

97779

97780

97781

97782

97783

97784

Utilities nl

NAME
nl — line numbering filter

SYNOPSIS
XSI nl [−p] [−b type] [−d delim] [−f type] [−h type] [−i incr] [−l num]

[−n format] [−s sep] [−v startnum] [−w width] [file]

DESCRIPTION
The nl utility shall read lines from the named file or the standard input if no file is named and
shall reproduce the lines to standard output. Lines shall be numbered on the left. Additional
functionality may be provided in accordance with the command options in effect.

The nl utility views the text it reads in terms of logical pages. Line numbering shall be reset at
the start of each logical page. A logical page consists of a header, a body, and a footer section.
Empty sections are valid. Different line numbering options are independently available for
header, body, and footer (for example, no numbering of header and footer lines while
numbering blank lines only in the body).

The starts of logical page sections shall be signaled by input lines containing nothing but the
following delimiter characters:

Line Start of

\:\:\: Header
\:\: Body
\: Footer

Unless otherwise specified, nl shall assume the text being read is in a single logical page body.

OPTIONS
The nl utility shall conform to XBD Section 12.2 (on page 215). Only one file can be named.

The following options shall be supported:

−b type Specify which logical page body lines shall be numbered. Recognized types and
their meaning are:

a Number all lines.

t Number only non-empty lines.

n No line numbering.

pstring Number only lines that contain the basic regular expression specified in
string.

The default type for logical page body shall be t (text lines numbered).

−d delim Specify the delimiter characters that indicate the start of a logical page section.
These can be changed from the default characters "\:" to two user-specified
characters. If only one character is entered, the second character shall remain the
default character ’:’.

−f type Specify the same as b type except for footer. The default for logical page footer shall
be n (no lines numbered).

−h type Specify the same as b type except for header. The default type for logical page
header shall be n (no lines numbered).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2969

97785

97786

97787

97788

97789

97790

97791

97792

97793

97794

97795

97796

97797

97798

97799

97800

97801

97802

97803

97804

97805

97806

97807

97808

97809

97810

97811

97812

97813

97814

97815

97816

97817

97818

97819

97820

97821

97822

97823

97824

nl Utilities

−i incr Specify the increment value used to number logical page lines. The default shall be
1.

−l num Specify the number of blank lines to be considered as one. For example, −l 2 results
in only the second adjacent blank line being numbered (if the appropriate −h a,
−b a, or −f a option is set). The default shall be 1.

−n format Specify the line numbering format. Recognized values are: ln, left justified, leading
zeros suppressed; rn, right justified, leading zeros suppressed; rz, right justified,
leading zeros kept. The default format shall be rn (right justified).

−p Specify that numbering should not be restarted at logical page delimiters.

−s sep Specify the characters used in separating the line number and the corresponding
text line. The default sep shall be a <tab>.

−v startnum Specify the initial value used to number logical page lines. The default shall be 1.

−w width Specify the number of characters to be used for the line number. The default width
shall be 6.

OPERANDS
The following operand shall be supported:

file A pathname of a text file to be line-numbered.

STDIN
The standard input shall be used if no file operand is specified, and shall be used if the file
operand is ’−’ and the implementation treats the ’−’ as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
The input file shall be a text file.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of nl:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), the behavior of character classes within regular
expressions, and for deciding which characters are in character class graph (for the
−b t, −f t, and −h t options).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

2970 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

97825

97826

97827

97828

97829

97830

97831

97832

97833

97834

97835

97836

97837

97838

97839

97840

97841

97842

97843

97844

97845

97846

97847

97848

97849

97850

97851

97852

97853

97854

97855

97856

97857

97858

97859

97860

97861

97862

97863

97864

97865

Utilities nl

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be a text file in the following format:

"%s%s%s", <line number>, <separator>, <input line>

where <line number> is one of the following numeric formats:

%6d When the rn format is used (the default; see −n).

%06d When the rz format is used.

%−6d When the ln format is used.

<empty> When line numbers are suppressed for a portion of the page; the <separator> is also
suppressed.

In the preceding list, the number 6 is the default width; the −w option can change this value.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
In using the −d delim option, care should be taken to escape characters that have special meaning
to the command interpreter.

EXAMPLES
The command:

nl −v 10 −i 10 −d \!+ file1

numbers file1 starting at line number 10 with an increment of 10. The logical page delimiter is
"!+". Note that the ’!’ has to be escaped when using csh as a command interpreter because of
its history substitution syntax. For ksh and sh the escape is not necessary, but does not do any
harm.

RATIONALE
None.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2971

97866

97867

97868

97869

97870

97871

97872

97873

97874

97875

97876

97877

97878

97879

97880

97881

97882

97883

97884

97885

97886

97887

97888

97889

97890

97891

97892

97893

97894

97895

97896

97897

97898

97899

97900

97901

97902

nl Utilities

FUTURE DIRECTIONS
None.

SEE ALSO
pr

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The option [−f type] is added to the SYNOPSIS. The option descriptions are presented in
alphabetic order. The description of −bt is changed to ‘‘Number only non-empty lines’’.

Issue 6
The obsolescent behavior allowing the options to be intermingled with the optional file operand
is removed.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

2972 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

97903

97904

97905

97906

97907

97908

97909

97910

97911

97912

97913

97914

97915

97916

97917

97918

Utilities nm

NAME
nm — write the name list of an object file (DEVELOPMENT)

SYNOPSIS
SD nm [−APv] [−g|−u] [−t format] file...
XSI nm [−APv] [−efox] [−g|−u] [−t format] file...

DESCRIPTION
The nm utility shall display symbolic information appearing in the object file, executable file, or
object-file library named by file. If no symbolic information is available for a valid input file, the
nm utility shall report that fact, but not consider it an error condition.

XSI The default base used when numeric values are written is unspecified. On XSI-conformant
systems, it shall be decimal.

OPTIONS
The nm utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−A Write the full pathname or library name of an object on each line.

XSI −e Write only external (global) and static symbol information.

XSI −f Produce full output. Write redundant symbols (.text, .data, and .bss), normally
suppressed.

−g Write only external (global) symbol information.

XSI −o Write numeric values in octal (equivalent to −t o).

−P Write information in a portable output format, as specified in the STDOUT section.

−t format Write each numeric value in the specified format. The format shall be dependent
on the single character used as the format option-argument:

XSI d The offset is written in decimal (default).

o The offset is written in octal.

x The offset is written in hexadecimal.

−u Write only undefined symbols.

−v Sort output by value instead of alphabetically.

XSI −x Write numeric values in hexadecimal (equivalent to −t x).

OPERANDS
The following operand shall be supported:

file A pathname of an object file, executable file, or object-file library.

STDIN
See the INPUT FILES section.

INPUT FILES
The input file shall be an object file, an object-file library whose format is the same as those
produced by the ar utility for link editing, or an executable file. The nm utility may accept
additional implementation-defined object library formats for the input file.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2973

97919

97920

97921

97922

97923

97924

97925

97926

97927

97928

97929

97930

97931

97932

97933

97934

97935

97936

97937

97938

97939

97940

97941

97942

97943

97944

97945

97946

97947

97948

97949

97950

97951

97952

97953

97954

97955

97956

nm Utilities

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of nm:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for character collation information for the symbol-name and
symbol-value collation sequences.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If symbolic information is present in the input files, then for each file or for each member of an
archive, the nm utility shall write the following information to standard output. By default, the
format is unspecified, but the output shall be sorted alphabetically by symbol name:

• Library or object name, if −A is specified

• Symbol name

• Symbol type, which shall either be one of the following single characters or an
implementation-defined type represented by a single character:

A Global absolute symbol.

a Local absolute symbol.

B Global ‘‘bss’’ (that is, uninitialized data space) symbol.

b Local bss symbol.

D Global data symbol.

d Local data symbol.

T Global text symbol.

t Local text symbol.

U Undefined symbol.

• Value of the symbol

• The size associated with the symbol, if applicable

This information may be supplemented by additional information specific to the
implementation.

2974 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

97957

97958

97959

97960

97961

97962

97963

97964

97965

97966

97967

97968

97969

97970

97971

97972

97973

97974

97975

97976

97977

97978

97979

97980

97981

97982

97983

97984

97985

97986

97987

97988

97989

97990

97991

97992

97993

97994

97995

97996

Utilities nm

If the −P option is specified, the previous information shall be displayed using the following
portable format. The three versions differ depending on whether −t d, −t o, or −t x was specified,
respectively:

"%s%s %s %d %d\n", <library/object name>, <name>, <type>,
<value>, <size>

"%s%s %s %o %o\n", <library/object name>, <name>, <type>,
<value>, <size>

"%s%s %s %x %x\n", <library/object name>, <name>, <type>,
<value>, <size>

where <library/object name> shall be formatted as follows:

• If −A is not specified, <library/object name> shall be an empty string.

• If −A is specified and the corresponding file operand does not name a library:

"%s: ", <file>

• If −A is specified and the corresponding file operand names a library. In this case,
<object file> shall name the object file in the library containing the symbol being described:

"%s[%s]: ", <file>, <object file>

If −A is not specified, then if more than one file operand is specified or if only one file operand is
specified and it names a library, nm shall write a line identifying the object containing the
following symbols before the lines containing those symbols, in the form:

• If the corresponding file operand does not name a library:

"%s:\n", <file>

• If the corresponding file operand names a library; in this case, <object file> shall be the
name of the file in the library containing the following symbols:

"%s[%s]:\n", <file>, <object file>

If −P is specified, but −t is not, the format shall be as if −t x had been specified.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2975

97997

97998

97999

98000

98001

98002

98003

98004

98005

98006

98007

98008

98009

98010

98011

98012

98013

98014

98015

98016

98017

98018

98019

98020

98021

98022

98023

98024

98025

98026

98027

98028

98029

98030

98031

98032

98033

nm Utilities

APPLICATION USAGE
Mechanisms for dynamic linking make this utility less meaningful when applied to an
executable file because a dynamically linked executable may omit numerous library routines
that would be found in a statically linked executable.

EXAMPLES
None.

RATIONALE
Historical implementations of nm have used different bases for numeric output and supplied
different default types of symbols that were reported. The −t format option, similar to that used
in od and strings, can be used to specify the numeric base; −g and −u can be used to restrict the
amount of output or the types of symbols included in the output.

The compromise of using −t format versus using −d, −o, and other similar options was necessary
because of differences in the meaning of −o between implementations. The −o option from BSD
has been provided here as −A to avoid confusion with the −o from System V (which has been
provided here as −t and as −o on XSI-conformant systems).

The option list was significantly reduced from that provided by historical implementations.

The nm description is a subset of both the System V and BSD nm utilities with no specified
default output.

It was recognized that mechanisms for dynamic linking make this utility less meaningful when
applied to an executable file (because a dynamically linked executable file may omit numerous
library routines that would be found in a statically linked executable file), but the value of nm
during software development was judged to outweigh other limitations.

The default output format of nm is not specified because of differences in historical
implementations. The −P option was added to allow some type of portable output format. After
a comparison of the different formats used in SunOS, BSD, SVR3, and SVR4, it was decided to
create one that did not match the current format of any of these four systems. The format
devised is easy to parse by humans, easy to parse in shell scripts, and does not need to vary
depending on locale (because no English descriptions are included). All of the systems currently
have the information available to use this format.

The format given in nm STDOUT uses <space> characters between the fields, which may be any
number of <blank> characters required to align the columns. The single-character types were
selected to match historical practice, and the requirement that implementation additions also be
single characters made parsing the information easier for shell scripts.

FUTURE DIRECTIONS
None.

SEE ALSO
ar , c99

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as supported when both the User Portability Utilities option and the
Software Development Utilities option are supported.

2976 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

98034

98035

98036

98037

98038

98039

98040

98041

98042

98043

98044

98045

98046

98047

98048

98049

98050

98051

98052

98053

98054

98055

98056

98057

98058

98059

98060

98061

98062

98063

98064

98065

98066

98067

98068

98069

98070

98071

98072

98073

98074

98075

98076

Utilities nm

Issue 7
The nm utility is removed from the User Portability Utilities option. User Portability Utilities is
now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2977

98077

98078

98079

98080

nohup Utilities

NAME
nohup — invoke a utility immune to hangups

SYNOPSIS
nohup utility [argument...]

DESCRIPTION
The nohup utility shall invoke the utility named by the utility operand with arguments supplied
as the argument operands. At the time the named utility is invoked, the SIGHUP signal shall be
set to be ignored.

If standard input is associated with a terminal, the nohup utility may redirect standard input
from an unspecified file.

If the standard output is a terminal, all output written by the named utility to its standard output
shall be appended to the end of the file nohup.out in the current directory. If nohup.out cannot
be created or opened for appending, the output shall be appended to the end of the file
nohup.out in the directory specified by the HOME environment variable. If neither file can be
created or opened for appending, utility shall not be invoked. If a file is created, the file’s
permission bits shall be set to S_IRUSR | S_IWUSR.

If standard error is a terminal and standard output is open but is not a terminal, all output
written by the named utility to its standard error shall be redirected to the same open file
description as the standard output. If standard error is a terminal and standard output either is a
terminal or is closed, the same output shall instead be appended to the end of the nohup.out file
as described above.

OPTIONS
None.

OPERANDS
The following operands shall be supported:

utility The name of a utility that is to be invoked. If the utility operand names any of the
special built-in utilities in Section 2.14 (on page 2334), the results are undefined.

argument Any string to be supplied as an argument when invoking the utility named by the
utility operand.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of nohup:

HOME Determine the pathname of the user’s home directory: if the output file nohup.out
cannot be created in the current directory, the nohup utility shall use the directory
named by HOME to create the file.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

2978 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

98081

98082

98083

98084

98085

98086

98087

98088

98089

98090

98091

98092

98093

98094

98095

98096

98097

98098

98099

98100

98101

98102

98103

98104

98105

98106

98107

98108

98109

98110

98111

98112

98113

98114

98115

98116

98117

98118

98119

98120

98121

98122

98123

Utilities nohup

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PA TH Determine the search path that is used to locate the utility to be invoked. See XBD
Chapter 8 (on page 173).

ASYNCHRONOUS EVENTS
The nohup utility shall take the standard action for all signals except that SIGHUP shall be
ignored.

STDOUT
If the standard output is not a terminal, the standard output of nohup shall be the standard
output generated by the execution of the utility specified by the operands. Otherwise, nothing
shall be written to the standard output.

STDERR
If the standard output is a terminal, a message shall be written to the standard error, indicating
the name of the file to which the output is being appended. The name of the file shall be either
nohup.out or $HOME/nohup.out.

OUTPUT FILES
Output written by the named utility is appended to the file nohup.out (or $HOME/nohup.out),
if the conditions hold as described in the DESCRIPTION.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

126 The utility specified by utility was found but could not be invoked.

127 An error occurred in the nohup utility or the utility specified by utility could not be
found.

Otherwise, the exit status of nohup shall be that of the utility specified by the utility operand.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The command, env, nice, nohup, time, and xargs utilities have been specified to use exit code 127 if
an error occurs so that applications can distinguish ‘‘failure to find a utility’’ from ‘‘invoked
utility exited with an error indication’’. The value 127 was chosen because it is not commonly
used for other meanings; most utilities use small values for ‘‘normal error conditions’’ and the
values above 128 can be confused with termination due to receipt of a signal. The value 126 was
chosen in a similar manner to indicate that the utility could be found, but not invoked. Some
scripts produce meaningful error messages differentiating the 126 and 127 cases. The distinction
between exit codes 126 and 127 is based on KornShell practice that uses 127 when all attempts to
exec the utility fail with [ENOENT], and uses 126 when any attempt to exec the utility fails for
any other reason.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2979

98124

98125

98126

98127

98128

98129

98130

98131

98132

98133

98134

98135

98136

98137

98138

98139

98140

98141

98142

98143

98144

98145

98146

98147

98148

98149

98150

98151

98152

98153

98154

98155

98156

98157

98158

98159

98160

98161

98162

98163

98164

98165

98166

98167

nohup Utilities

EXAMPLES
It is frequently desirable to apply nohup to pipelines or lists of commands. This can be done by
placing pipelines and command lists in a single file; this file can then be invoked as a utility, and
the nohup applies to everything in the file.

Alternatively, the following command can be used to apply nohup to a complex command:

nohup sh −c ’complex-command-line’ </dev/null

RATIONALE
The 4.3 BSD version ignores SIGTERM and SIGHUP, and if ./nohup.out cannot be used, it fails
instead of trying to use $HOME/nohup.out.

The csh utility has a built-in version of nohup that acts differently from the nohup defined in this
volume of POSIX.1-2008.

The term utility is used, rather than command, to highlight the fact that shell compound
commands, pipelines, special built-ins, and so on, cannot be used directly. However, utility
includes user application programs and shell scripts, not just the standard utilities.

Historical versions of the nohup utility use default file creation semantics. Some more recent
versions use the permissions specified here as an added security precaution.

Some historical implementations ignore SIGQUIT in addition to SIGHUP; others ignore
SIGTERM. An early proposal allowed, but did not require, SIGQUIT to be ignored. Several
reviewers objected that nohup should only modify the handling of SIGHUP as required by this
volume of POSIX.1-2008.

Historical versions of nohup did not affect standard input, but that causes problems in the
common scenario where the user logs into a system, types the command:

nohup make &

at the prompt, and then logs out. If standard input is not affected by nohup, the login session
may not terminate for quite some time, since standard input remains open until make exits. To
avoid this problem, POSIX.1-2008 allows implementations to redirect standard input if it is a
terminal. Since the behavior is implementation-defined, portable applications that may run into
the problem should redirect standard input themselves. For example, instead of:

nohup make &

an application can invoke:

nohup make </dev/null &

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2297), sh

XBD Chapter 8 (on page 173)

XSH signal()

CHANGE HISTORY
First released in Issue 2.

2980 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

98168

98169

98170

98171

98172

98173

98174

98175

98176

98177

98178

98179

98180

98181

98182

98183

98184

98185

98186

98187

98188

98189

98190

98191

98192

98193

98194

98195

98196

98197

98198

98199

98200

98201

98202

98203

98204

98205

98206

Utilities nohup

Issue 7
Austin Group Interpretations 1003.1-2001 #104, #105, and #106 are applied.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2981

98207

98208

od Utilities

NAME
od — dump files in various formats

SYNOPSIS
od [−v] [−A address_base] [−j skip] [−N count] [−t type_string]...

[file...]

XSI od [−bcdosx] [file] [[+]offset[.][b]]

DESCRIPTION
The od utility shall write the contents of its input files to standard output in a user-specified
format.

OPTIONS
The od utility shall conform to XBD Section 12.2 (on page 215), except that the order of

XSI presentation of the −t options and the −bcdosx options is significant.

The following options shall be supported:

−A address_base
Specify the input offset base. See the EXTENDED DESCRIPTION section. The
application shall ensure that the address_base option-argument is a character. The
characters ’d’, ’o’, and ’x’ specify that the offset base shall be written in
decimal, octal, or hexadecimal, respectively. The character ’n’ specifies that the
offset shall not be written.

XSI −b Interpret bytes in octal. This shall be equivalent to −t o1.

XSI −c Interpret bytes as characters specified by the current setting of the LC_CTYPE
category. Certain non-graphic characters appear as C escapes: "NUL=\0",
"BS=\b", "FF=\f", "NL=\n", "CR=\r", "HT=\t"; others appear as 3-digit octal
numbers.

XSI −d Interpret words (two-byte units) in unsigned decimal. This shall be equivalent to
−t u2.

−j skip Jump over skip bytes from the beginning of the input. The od utility shall read or
seek past the first skip bytes in the concatenated input files. If the combined input is
not at least skip bytes long, the od utility shall write a diagnostic message to
standard error and exit with a non-zero exit status.

By default, the skip option-argument shall be interpreted as a decimal number.
With a leading 0x or 0X, the offset shall be interpreted as a hexadecimal number;
otherwise, with a leading ’0’, the offset shall be interpreted as an octal number.
Appending the character ’b’, ’k’, or ’m’ to offset shall cause it to be interpreted
as a multiple of 512, 1 024, or 1 048 576 bytes, respectively. If the skip number is
hexadecimal, any appended ’b’ shall be considered to be the final hexadecimal
digit.

−N count Format no more than count bytes of input. By default, count shall be interpreted as
a decimal number. With a leading 0x or 0X, count shall be interpreted as a
hexadecimal number; otherwise, with a leading ’0’, it shall be interpreted as an
octal number. If count bytes of input (after successfully skipping, if −j skip is
specified) are not available, it shall not be considered an error; the od utility shall
format the input that is available.

2982 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

98209

98210

98211

98212

98213

98214

98215

98216

98217

98218

98219

98220

98221

98222

98223

98224

98225

98226

98227

98228

98229

98230

98231

98232

98233

98234

98235

98236

98237

98238

98239

98240

98241

98242

98243

98244

98245

98246

98247

98248

98249

98250

98251

Utilities od

XSI −o Interpret words (two-byte units) in octal. This shall be equivalent to −t o2.

XSI −s Interpret words (two-byte units) in signed decimal. This shall be equivalent to
−t d2.

−t type_string
Specify one or more output types. See the EXTENDED DESCRIPTION section. The
application shall ensure that the type_string option-argument is a string specifying
the types to be used when writing the input data. The string shall consist of the
type specification characters a, c, d, f, o, u, and x, specifying named character,
character, signed decimal, floating point, octal, unsigned decimal, and
hexadecimal, respectively. The type specification characters d, f, o, u, and x can be
followed by an optional unsigned decimal integer that specifies the number of
bytes to be transformed by each instance of the output type. The type specification
character f can be followed by an optional F, D, or L indicating that the conversion
should be applied to an item of type float, double, or long double, respectively.
The type specification characters d, o, u, and x can be followed by an optional C, S,
I, or L indicating that the conversion should be applied to an item of type char,
short, int, or long, respectively. Multiple types can be concatenated within the
same type_string and multiple −t options can be specified. Output lines shall be
written for each type specified in the order in which the type specification
characters are specified.

−v Write all input data. Without the −v option, any number of groups of output lines,
which would be identical to the immediately preceding group of output lines
(except for the byte offsets), shall be replaced with a line containing only an
<asterisk> (’*’).

XSI −x Interpret words (two-byte units) in hexadecimal. This shall be equivalent to −t x2.

XSI Multiple types can be specified by using multiple −bcdostx options. Output lines are written for
each type specified in the order in which the types are specified.

OPERANDS
The following operands shall be supported:

file A pathname of a file to be read. If no file operands are specified, the standard input
shall be used.

If there are no more than two operands, none of the −A, −j, −N, −t, or −v options is
specified, and either of the following is true: the first character of the last operand
is a <plus-sign> (’+’), or there are two operands and the first character of the last

XSI operand is numeric; the last operand shall be interpreted as an offset operand on
XSI-conformant systems. Under these conditions, the results are unspecified on
systems that are not XSI-conformant systems.

XSI [+]offset[.][b] The offset operand specifies the offset in the file where dumping is to commence.
This operand is normally interpreted as octal bytes. If ’.’ is appended, the offset
shall be interpreted in decimal. If ’b’ is appended, the offset shall be interpreted
in units of 512 bytes.

STDIN
The standard input shall be used if no file operands are specified, and shall be used if a file
operand is ’−’ and the implementation treats the ’−’ as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2983

98252

98253

98254

98255

98256

98257

98258

98259

98260

98261

98262

98263

98264

98265

98266

98267

98268

98269

98270

98271

98272

98273

98274

98275

98276

98277

98278

98279

98280

98281

98282

98283

98284

98285

98286

98287

98288

98289

98290

98291

98292

98293

98294

98295

98296

od Utilities

INPUT FILES
The input files can be any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of od:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_NUMERIC
Determine the locale for selecting the radix character used when writing floating-
point formatted output.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the EXTENDED DESCRIPTION section.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The od utility shall copy sequentially each input file to standard output, transforming the input

XSI data according to the output types specified by the −t option or the −bcdosx options. If no
output type is specified, the default output shall be as if −t oS had been specified.

The number of bytes transformed by the output type specifier c may be variable depending on
the LC_CTYPE category.

The default number of bytes transformed by output type specifiers d, f, o, u, and x corresponds
to the various C-language types as follows. If the c99 compiler is present on the system, these
specifiers shall correspond to the sizes used by default in that compiler. Otherwise, these sizes
may vary among systems that conform to POSIX.1-2008.

• For the type specifier characters d, o, u, and x, the default number of bytes shall
correspond to the size of the underlying implementation’s basic integer type. For these
specifier characters, the implementation shall support values of the optional number of
bytes to be converted corresponding to the number of bytes in the C-language types char,
short, int, and long. These numbers can also be specified by an application as the
characters ’C’, ’S’, ’I’, and ’L’, respectively. The implementation shall also support
the values 1, 2, 4, and 8, even if it provides no C-Language types of those sizes. The

2984 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

98297

98298

98299

98300

98301

98302

98303

98304

98305

98306

98307

98308

98309

98310

98311

98312

98313

98314

98315

98316

98317

98318

98319

98320

98321

98322

98323

98324

98325

98326

98327

98328

98329

98330

98331

98332

98333

98334

98335

98336

98337

98338

98339

98340

Utilities od

implementation shall support the decimal value corresponding to the C-language type
long long. The byte order used when interpreting numeric values is implementation-
defined, but shall correspond to the order in which a constant of the corresponding type is
stored in memory on the system.

• For the type specifier character f, the default number of bytes shall correspond to the
number of bytes in the underlying implementation’s basic double precision floating-point
data type. The implementation shall support values of the optional number of bytes to be
converted corresponding to the number of bytes in the C-language types float, double,
and long double. These numbers can also be specified by an application as the characters
’F’, ’D’, and ’L’, respectively.

The type specifier character a specifies that bytes shall be interpreted as named characters from
the International Reference Version (IRV) of the ISO/IEC 646: 1991 standard. Only the least
significant seven bits of each byte shall be used for this type specification. Bytes with the values
listed in the following table shall be written using the corresponding names for those characters.

Table 4-13 Named Characters in od

Value Name Value Name Value Name Value Name

\000 nul \001 soh \002 stx \003 etx
\004 eot \005 enq \006 ack \007 bel
\010 bs \011 ht \012 lf or nl

* \013 vt
\014 ff \015 cr \016 so \017 si
\020 dle \021 dc1 \022 dc2 \023 dc3
\024 dc4 \025 nak \026 syn \027 etb
\030 can \031 em \032 sub \033 esc
\034 fs \035 gs \036 rs \037 us
\040 sp \177 del

Note: The "\012" value may be written either as lf or nl.

The type specifier character c specifies that bytes shall be interpreted as characters specified by
the current setting of the LC_CTYPE locale category. Characters listed in the table in XBD
Chapter 5 (on page 121) (’\\’, ’\a’, ’\b’, ’\f’, ’\n’, ’\r’, ’\t’, ’\v’) shall be written as
the corresponding escape sequences, except that <backslash> shall be written as a single
<backslash> and a NUL shall be written as ’\0’. Other non-printable characters shall be
written as one three-digit octal number for each byte in the character. Printable multi-byte
characters shall be written in the area corresponding to the first byte of the character; the two-
character sequence "**" shall be written in the area corresponding to each remaining byte in the
character, as an indication that the character is continued. When either the −j skip or −N count
option is specified along with the c type specifier, and this results in an attempt to start or finish
in the middle of a multi-byte character, the result is implementation-defined.

The input data shall be manipulated in blocks, where a block is defined as a multiple of the least
common multiple of the number of bytes transformed by the specified output types. If the least
common multiple is greater than 16, the results are unspecified. Each input block shall be
written as transformed by each output type, one per written line, in the order that the output
types were specified. If the input block size is larger than the number of bytes transformed by
the output type, the output type shall sequentially transform the parts of the input block, and
the output from each of the transformations shall be separated by one or more <blank>
characters.

If, as a result of the specification of the −N option or end-of-file being reached on the last input
file, input data only partially satisfies an output type, the input shall be extended sufficiently

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2985

98341

98342

98343

98344

98345

98346

98347

98348

98349

98350

98351

98352

98353

98354

98355

98356

98357

98358

98359

98360

98361

98362

98363

98364

98365

98366

98367

98368

98369

98370

98371

98372

98373

98374

98375

98376

98377

98378

98379

98380

98381

98382

98383

98384

98385

98386

98387

od Utilities

with null bytes to write the last byte of the input.

Unless −A n is specified, the first output line produced for each input block shall be preceded by
the input offset, cumulative across input files, of the next byte to be written. The format of the
input offset is unspecified; however, it shall not contain any <blank> characters, shall start at the
first character of the output line, and shall be followed by one or more <blank> characters. In
addition, the offset of the byte following the last byte written shall be written after all the input
data has been processed, but shall not be followed by any <blank> characters.

If no −A option is specified, the input offset base is unspecified.

EXIT STATUS
The following exit values shall be returned:

0 All input files were processed successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
XSI-conformant applications are warned not to use filenames starting with ’+’ or a first
operand starting with a numeric character so that the old functionality can be maintained by
implementations, unless they specify one of the −A, −j, or −N options. To guarantee that one of
these filenames is always interpreted as a filename, an application could always specify the
address base format with the −A option.

EXAMPLES
If a file containing 128 bytes with decimal values zero to 127, in increasing order, is supplied as
standard input to the command:

od −A d −t a

on an implementation using an input block size of 16 bytes, the standard output, independent of
the current locale setting, would be similar to:

0000000 nul soh stx etx eot enq ack bel bs ht nl vt ff cr so si
0000016 dle dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us
0000032 sp ! " # $ % & ’ () * + , − . /
0000048 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
0000064 @ A B C D E F G H I J K L M N O
0000080 P Q R S T U V W X Y Z [\] ˆ _
0000096 ‘ a b c d e f g h i j k l m n o
0000112 p q r s t u v w x y z { | } ˜ del
0000128

Note that this volume of POSIX.1-2008 allows nl or lf to be used as the name for the
ISO/IEC 646: 1991 standard IRV character with decimal value 10. The IRV names this character
lf (line feed), but traditional implementations have referred to this character as newline (nl) and
the POSIX locale character set symbolic name for the corresponding character is a <newline>.

The command:

od −A o −t o2x2x −N 18

on a system with 32-bit words and an implementation using an input block size of 16 bytes
could write 18 bytes in approximately the following format:

0000000 032056 031440 041123 042040 052516 044530 020043 031464

2986 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

98388

98389

98390

98391

98392

98393

98394

98395

98396

98397

98398

98399

98400

98401

98402

98403

98404

98405

98406

98407

98408

98409

98410

98411

98412

98413

98414

98415

98416

98417

98418

98419

98420

98421

98422

98423

98424

98425

98426

98427

98428

98429

98430

98431

Utilities od

342e 3320 4253 4420 554e 4958 2023 3334
342e3320 42534420 554e4958 20233334

0000020 032472
353a

353a0000
0000022

The command:

od −A d −t f −t o4 −t x4 −N 24 −j 0x15

on a system with 64-bit doubles (for example, IEEE Std 754-1985 double precision floating-point
format) would skip 21 bytes of input data and then write 24 bytes in approximately the
following format:

0000000 1.00000000000000e+00 1.57350000000000e+01
07774000000 00000000000 10013674121 35341217270

3ff00000 00000000 402f3851 eb851eb8
0000016 1.40668230000000e+02

10030312542 04370303230
40619562 23e18698

0000024

RATIONALE
The od utility went through several names in early proposals, including hd, xd, and most recently
hexdump. There were several objections to all of these based on the following reasons:

• The hd and xd names conflicted with historical utilities that behaved differently.

• The hexdump description was much more complex than needed for a simple dump utility.

• The od utility has been available on all historical implementations and there was no need to
create a new name for a utility so similar to the historical od utility.

The original reasons for not standardizing historical od were also fairly widespread. Those
reasons are given below along with rationale explaining why the standard developers believe
that this version does not suffer from the indicated problem:

• The BSD and System V versions of od have diverged, and the intersection of features
provided by both does not meet the needs of the user community. In fact, the System V
version only provides a mechanism for dumping octal bytes and shorts, signed and
unsigned decimal shorts, hexadecimal shorts, and ASCII characters. BSD added the ability
to dump floats, doubles, named ASCII characters, and octal, signed decimal, unsigned
decimal, and hexadecimal longs. The version presented here provides more normalized
forms for dumping bytes, shorts, ints, and longs in octal, signed decimal, unsigned
decimal, and hexadecimal; float, double, and long double; and named ASCII as well as
current locale characters.

• It would not be possible to come up with a compatible superset of the BSD and System V
flags that met the requirements of the standard developers. The historical default od output
is the specified default output of this utility. None of the option letters chosen for this
version of od conflict with any of the options to historical versions of od.

• On systems with different sizes for short, int, and long, there was no way to ask for dumps
of ints, even in the BSD version. Because of the way options are named, the name space
could not be extended to solve these problems. This is why the −t option was added (with
type specifiers more closely matched to the printf() formats used in the rest of this volume
of POSIX.1-2008) and the optional field sizes were added to the d, f, o, u, and x type

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2987

98432

98433

98434

98435

98436

98437

98438

98439

98440

98441

98442

98443

98444

98445

98446

98447

98448

98449

98450

98451

98452

98453

98454

98455

98456

98457

98458

98459

98460

98461

98462

98463

98464

98465

98466

98467

98468

98469

98470

98471

98472

98473

98474

98475

98476

98477

od Utilities

specifiers. It is also one of the reasons why the historical practice was not mandated as a
required obsolescent form of od. (Although the old versions of od are not listed as an
obsolescent form, implementations are urged to continue to recognize the older forms for
several more years.) The a, c, f, o, and x types match the meaning of the corresponding
format characters in the historical implementations of od except for the default sizes of the
fields converted. The d format is signed in this volume of POSIX.1-2008 to match the
printf() notation. (Historical versions of od used d as a synonym for u in this version. The
System V implementation uses s for signed decimal; BSD uses i for signed decimal and s
for null-terminated strings.) Other than d and u, all of the type specifiers match format
characters in the historical BSD version of od.

The sizes of the C-language types char, short, int, long, float, double, and long double are
used even though it is recognized that there may be zero or more than one compiler for the
C language on an implementation and that they may use different sizes for some of these
types. (For example, one compiler might use 2 bytes shorts, 2 bytes ints, and 4 bytes longs,
while another compiler (or an option to the same compiler) uses 2 bytes shorts, 4 bytes
ints, and 4 bytes longs.) Nonetheless, there has to be a basic size known by the
implementation for these types, corresponding to the values reported by invocations of the
getconf utility when called with system_var operands {UCHAR_MAX}, {USHORT_MAX},
{UINT_MAX}, and {ULONG_MAX} for the types char, short, int, and long, respectively.
There are similar constants required by the ISO C standard, but not required by the System
Interfaces volume of POSIX.1-2008 or this volume of POSIX.1-2008. They are
{FLT_MANT_DIG}, {DBL_MANT_DIG}, and {LDBL_MANT_DIG} for the types float,
double, and long double, respectively. If the optional c99 utility is provided by the
implementation and used as specified by this volume of POSIX.1-2008, these are the sizes
that would be provided. If an option is used that specifies different sizes for these types,
there is no guarantee that the od utility is able to interpret binary data output by such a
program correctly.

This volume of POSIX.1-2008 requires that the numeric values of these lengths be
recognized by the od utility and that symbolic forms also be recognized. Thus, a
conforming application can always look at an array of unsigned long data elements using
od −t uL.

• The method of specifying the format for the address field based on specifying a starting
offset in a file unnecessarily tied the two together. The −A option now specifies the address
base and the −S option specifies a starting offset.

• It would be difficult to break the dependence on US ASCII to achieve an internationalized
utility. It does not seem to be any harder for od to dump characters in the current locale
than it is for the ed or sed l commands. The c type specifier does this without difficulty and
is completely compatible with the historical implementations of the c format character
when the current locale uses a superset of the ISO/IEC 646: 1991 standard as a codeset. The
a type specifier (from the BSD a format character) was left as a portable means to dump
ASCII (or more correctly ISO/IEC 646: 1991 standard (IRV)) so that headers produced by
pax could be deciphered even on systems that do not use the ISO/IEC 646: 1991 standard
as a subset of their base codeset.

The use of "**" as an indication of continuation of a multi-byte character in c specifier output
was chosen based on seeing an implementation that uses this method. The continuation bytes
have to be marked in a way that is not ambiguous with another single-byte or multi-byte
character.

An early proposal used −S and −n, respectively, for the −j and −N options eventually selected.
These were changed to avoid conflicts with historical implementations.

2988 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

98478

98479

98480

98481

98482

98483

98484

98485

98486

98487

98488

98489

98490

98491

98492

98493

98494

98495

98496

98497

98498

98499

98500

98501

98502

98503

98504

98505

98506

98507

98508

98509

98510

98511

98512

98513

98514

98515

98516

98517

98518

98519

98520

98521

98522

98523

98524

98525

98526

Utilities od

The original standard specified −t o2 as the default when no output type was given. This was
changed to −t oS (the length of a short) to accommodate a supercomputer implementation that
historically used 64 bits as its default (and that defined shorts as 64 bits). This change should not
affect conforming applications. The requirement to support lengths of 1, 2, and 4 was added at
the same time to address an historical implementation that had no two-byte data types in its C
compiler.

The use of a basic integer data type is intended to allow the implementation to choose a word
size commonly used by applications on that architecture.

Earlier versions of this standard allowed for implementations with bytes other than eight bits,
but this has been modified in this version.

FUTURE DIRECTIONS
All option and operand interfaces marked XSI may be removed in a future version.

SEE ALSO
c99 , sed

XBD Chapter 5 (on page 121), Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
In the description of the −c option, the phrase ‘‘This is equivalent to −t c.’’ is deleted.

The FUTURE DIRECTIONS section is modified.

Issue 6
The od utility is changed to remove the assumption that short was a two-byte entity, as per the
revisions in the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/33 is applied, correcting the examples
which used an undefined −n option, which should have been −N.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/19 is applied, removing text describing
behavior on systems with bytes consisting of more than eight bits.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

SD5-XCU-ERN-37 is applied, updating the OPERANDS section.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2989

98527

98528

98529

98530

98531

98532

98533

98534

98535

98536

98537

98538

98539

98540

98541

98542

98543

98544

98545

98546

98547

98548

98549

98550

98551

98552

98553

98554

98555

98556

98557

98558

paste Utilities

NAME
paste — merge corresponding or subsequent lines of files

SYNOPSIS
paste [−s] [−d list] file...

DESCRIPTION
The paste utility shall concatenate the corresponding lines of the given input files, and write the
resulting lines to standard output.

The default operation of paste shall concatenate the corresponding lines of the input files. The
<newline> of every line except the line from the last input file shall be replaced with a <tab>.

If an end-of-file condition is detected on one or more input files, but not all input files, paste shall
behave as though empty lines were read from the files on which end-of-file was detected, unless
the −s option is specified.

OPTIONS
The paste utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−d list Unless a <backslash> character appears in list, each character in list is an element
specifying a delimiter character. If a <backslash> character appears in list, the
<backslash> character and one or more characters following it are an element
specifying a delimiter character as described below. These elements specify one or
more delimiters to use, instead of the default <tab>, to replace the <newline> of
the input lines. The elements in list shall be used circularly; that is, when the list is
exhausted the first element from the list is reused. When the −s option is specified:

• The last <newline> in a file shall not be modified.

• The delimiter shall be reset to the first element of list after each file operand is
processed.

When the −s option is not specified:

• The <newline> characters in the file specified by the last file operand shall
not be modified.

• The delimiter shall be reset to the first element of list each time a line is
processed from each file.

If a <backslash> character appears in list, it and the character following it shall be
used to represent the following delimiter characters:

\n <newline>.

\t <tab>.

\\ <backslash> character.

\0 Empty string (not a null character). If ’\0’ is immediately followed by the
character ’x’, the character ’X’, or any character defined by the LC_CTYPE
digit keyword (see XBD Chapter 7, on page 135), the results are unspecified.

If any other characters follow the <backslash>, the results are unspecified.

−s Concatenate all of the lines of each separate input file in command line order. The
<newline> of every line except the last line in each input file shall be replaced with
the <tab>, unless otherwise specified by the −d option.

2990 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

98559

98560

98561

98562

98563

98564

98565

98566

98567

98568

98569

98570

98571

98572

98573

98574

98575

98576

98577

98578

98579

98580

98581

98582

98583

98584

98585

98586

98587

98588

98589

98590

98591

98592

98593

98594

98595

98596

98597

98598

98599

98600

Utilities paste

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If ’−’ is specified for one or more of the files, the
standard input shall be used; the standard input shall be read one line at a time,
circularly, for each instance of ’−’. Implementations shall support pasting of at
least 12 file operands.

STDIN
The standard input shall be used only if one or more file operands is ’−’. See the INPUT FILES
section.

INPUT FILES
The input files shall be text files, except that line lengths shall be unlimited.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of paste:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Concatenated lines of input files shall be separated by the <tab> (or other characters under the
control of the −d option) and terminated by a <newline>.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2991

98601

98602

98603

98604

98605

98606

98607

98608

98609

98610

98611

98612

98613

98614

98615

98616

98617

98618

98619

98620

98621

98622

98623

98624

98625

98626

98627

98628

98629

98630

98631

98632

98633

98634

98635

98636

98637

98638

98639

98640

paste Utilities

CONSEQUENCES OF ERRORS
If one or more input files cannot be opened when the −s option is not specified, a diagnostic
message shall be written to standard error, but no output is written to standard output. If the −s
option is specified, the paste utility shall provide the default behavior described in Section 1.4 (on
page 2288).

APPLICATION USAGE
When the escape sequences of the list option-argument are used in a shell script, they must be
quoted; otherwise, the shell treats the <backslash> as a special character.

Conforming applications should only use the specific <backslash>-escaped delimiters presented
in this volume of POSIX.1-2008. Historical implementations treat ’\x’, where ’x’ is not in this
list, as ’x’, but future implementations are free to expand this list to recognize other common
escapes similar to those accepted by printf and other standard utilities.

Most of the standard utilities work on text files. The cut utility can be used to turn files with
arbitrary line lengths into a set of text files containing the same data. The paste utility can be used
to create (or recreate) files with arbitrary line lengths. For example, if file contains long lines:

cut −b 1−500 −n file > file1
cut −b 501− −n file > file2

creates file1 (a text file) with lines no longer than 500 bytes (plus the <newline>) and file2 that
contains the remainder of the data from file. Note that file2 is not a text file if there are lines in
file that are longer than 500 + {LINE_MAX} bytes. The original file can be recreated from file1
and file2 using the command:

paste −d "\0" file1 file2 > file

The commands:

paste −d "\0" ...
paste −d "" ...

are not necessarily equivalent; the latter is not specified by this volume of POSIX.1-2008 and
may result in an error. The construct ’\0’ is used to mean ‘‘no separator’’ because historical
versions of paste did not follow the syntax guidelines, and the command:

paste −d"" ...

could not be handled properly by getopt().

EXAMPLES

1. Write out a directory in four columns:

ls | paste − − − −

2. Combine pairs of lines from a file into single lines:

paste −s −d "\t\n" file

RATIONALE
None.

FUTURE DIRECTIONS
None.

2992 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

98641

98642

98643

98644

98645

98646

98647

98648

98649

98650

98651

98652

98653

98654

98655

98656

98657

98658

98659

98660

98661

98662

98663

98664

98665

98666

98667

98668

98669

98670

98671

98672

98673

98674

98675

98676

98677

98678

98679

Utilities paste

SEE ALSO
Section 1.4 (on page 2288), cut , grep , pr

XBD Chapter 7 (on page 135), Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2993

98680

98681

98682

98683

98684

98685

98686

98687

98688

patch Utilities

NAME
patch — apply changes to files

SYNOPSIS
patch [−blNR] [−c|−e|−n|−u] [−d dir] [−D define] [−i patchfile]

[−o outfile] [−p num] [−r rejectfile] [file]

DESCRIPTION
The patch utility shall read a source (patch) file containing any of four forms of difference (diff)
listings produced by the diff utility (normal, copied context, unified context, or in the style of ed)
and apply those differences to a file. By default, patch shall read from the standard input.

The patch utility shall attempt to determine the type of the diff listing, unless overruled by a −c,
−e, −n, or −u option.

If the patch file contains more than one patch, patch shall attempt to apply each of them as if they
came from separate patch files. (In this case, the application shall ensure that the name of the
patch file is determinable for each diff listing.)

OPTIONS
The patch utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−b Save a copy of the original contents of each modified file, before the differences are
applied, in a file of the same name with the suffix .orig appended to it. If the file
already exists, it shall be overwritten; if multiple patches are applied to the same
file, the .orig file shall be written only for the first patch. When the −o outfile option
is also specified, file.orig shall not be created but, if outfile already exists, outfile.orig
shall be created.

−c Interpret the patch file as a copied context difference (the output of the utility diff
when the −c or −C options are specified).

−d dir Change the current directory to dir before processing as described in the
EXTENDED DESCRIPTION section.

−D define Mark changes with one of the following C preprocessor constructs:

#ifdef define
...
#endif

#ifndef define
...
#endif

optionally combined with the C preprocessor construct #else. If the patched file is
processed with the C preprocessor, where the macro define is defined, the output
shall contain the changes from the patch file; otherwise, the output shall not
contain the patches specified in the patch file.

−e Interpret the patch file as an ed script, rather than a diff script.

−i patchfile Read the patch information from the file named by the pathname patchfile, rather
than the standard input.

−l (The letter ell.) Cause any sequence of <blank> characters in the difference script to
match any sequence of <blank> characters in the input file. Other characters shall
be matched exactly.

2994 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

98689

98690

98691

98692

98693

98694

98695

98696

98697

98698

98699

98700

98701

98702

98703

98704

98705

98706

98707

98708

98709

98710

98711

98712

98713

98714

98715

98716

98717

98718

98719

98720

98721

98722

98723

98724

98725

98726

98727

98728

98729

98730

98731

98732

Utilities patch

−n Interpret the script as a normal difference.

−N Ignore patches where the differences have already been applied to the file; by
default, already-applied patches shall be rejected.

−o outfile Instead of modifying the files (specified by the file operand or the difference
listings) directly, write a copy of the file referenced by each patch, with the
appropriate differences applied, to outfile. Multiple patches for a single file shall be
applied to the intermediate versions of the file created by any previous patches,
and shall result in multiple, concatenated versions of the file being written to
outfile.

−p num For all pathnames in the patch file that indicate the names of files to be patched,
delete num pathname components from the beginning of each pathname. If the
pathname in the patch file is absolute, any leading <slash> characters shall be
considered the first component (that is, −p 1 shall remove the leading <slash>
characters). Specifying −p 0 shall cause the full pathname to be used. If −p is not
specified, only the basename (the final pathname component) shall be used.

−R Reverse the sense of the patch script; that is, assume that the difference script was
created from the new version to the old version. The −R option cannot be used
with ed scripts. The patch utility shall attempt to reverse each portion of the script
before applying it. Rejected differences shall be saved in swapped format. If this
option is not specified, and until a portion of the patch file is successfully applied,
patch attempts to apply each portion in its reversed sense as well as in its normal
sense. If the attempt is successful, the user shall be prompted to determine whether
the −R option should be set.

−r rejectfile Override the default reject filename. In the default case, the reject file shall have the
same name as the output file, with the suffix .rej appended to it; see Patch
Application (on page 2997).

−u Interpret the patch file as a unified context difference (the output of the diff utility
when the −u or −U options are specified).

OPERANDS
The following operand shall be supported:

file A pathname of a file to patch.

STDIN
See the INPUT FILES section.

INPUT FILES
Input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of patch:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the extended regular expression defined for

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2995

98733

98734

98735

98736

98737

98738

98739

98740

98741

98742

98743

98744

98745

98746

98747

98748

98749

98750

98751

98752

98753

98754

98755

98756

98757

98758

98759

98760

98761

98762

98763

98764

98765

98766

98767

98768

98769

98770

98771

98772

98773

98774

98775

98776

98777

patch Utilities

the yesexpr locale keyword in the LC_MESSAGES category.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), and the behavior of character classes used in the
extended regular expression defined for the yesexpr locale keyword in the
LC_MESSAGES category.

LC_MESSAGES
Determine the locale used to process affirmative responses, and the locale used to
affect the format and contents of diagnostic messages and prompts written to
standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

LC_TIME Determine the locale for recognizing the format of file timestamps written by the
diff utility in a context-difference input file.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used for diagnostic and informational messages.

OUTPUT FILES
The output of the patch utility, the save files (.orig suffixes), and the reject files (.rej suffixes) shall
be text files.

EXTENDED DESCRIPTION
A patch file may contain patching instructions for more than one file; filenames shall be
determined as specified in Filename Determination (on page 2997). When the −b option is
specified, for each patched file, the original shall be saved in a file of the same name with the
suffix .orig appended to it.

For each patched file, a reject file may also be created as noted in Patch Application (on page
2997). In the absence of a −r option, the name of this file shall be formed by appending the suffix
.rej to the original filename.

Patch File Format

The patch file shall contain zero or more lines of header information followed by one or more
patches. Each patch shall contain zero or more lines of filename identification in the format
produced by the −c, −C, −u, or −U options of the diff utility, and one or more sets of diff output,
which are customarily called hunks.

The patch utility shall recognize the following expression in the header information:

Index: pathname
The file to be patched is named pathname.

If all lines (including headers) within a patch begin with the same leading sequence of <blank>
characters, the patch utility shall remove this sequence before proceeding. Within each patch, if
the type of difference is common context, the patch utility shall recognize the following
expressions:

2996 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

98778

98779

98780

98781

98782

98783

98784

98785

98786

98787

98788

98789

98790

98791

98792

98793

98794

98795

98796

98797

98798

98799

98800

98801

98802

98803

98804

98805

98806

98807

98808

98809

98810

98811

98812

98813

98814

98815

98816

98817

98818

98819

Utilities patch

*** filename timestamp
The patches arose from filename.

− − − filename timestamp
The patches should be applied to filename.

If the type of difference is unified context, the patch utility shall recognize the following
expressions:

− − − filename timestamp
The patches arose from filename.

+ + + filename timestamp
The patches should be applied to filename.

Each hunk within a patch shall be the diff output to change a line range within the original file.
The line numbers for successive hunks within a patch shall occur in ascending order.

Filename Determination

If no file operand is specified, patch shall perform the following steps to determine the filename
to use:

1. If the type of diff is context, the patch utility shall delete pathname components (as
specified by the −p option) from the filename on the line beginning with "***" (if copied
context) or "− − −" (if unified context), then test for the existence of this file relative to the
current directory (or the directory specified with the −d option). If the file exists, the patch
utility shall use this filename.

2. If the type of diff is context, the patch utility shall delete the pathname components (as
specified by the −p option) from the filename on the line beginning with "− − −" (if copied
context) or "+ + +" (if unified context), then test for the existence of this file relative to the
current directory (or the directory specified with the −d option). If the file exists, the patch
utility shall use this filename.

3. If the header information contains a line beginning with the string Index:, the patch utility
shall delete pathname components (as specified by the −p option) from this line, then test
for the existence of this file relative to the current directory (or the directory specified
with the −d option). If the file exists, the patch utility shall use this filename.

XSI 4. If an SCCS directory exists in the current directory, patch shall attempt to perform a get −e
SCCS/s.filename command to retrieve an editable version of the file. If the file exists, the
patch utility shall use this filename.

5. The patch utility shall write a prompt to standard output and request a filename
interactively from the controlling terminal (for example, /dev/tty).

Patch Application

If the −c, −e, −n, or −u option is present, the patch utility shall interpret information within each
hunk as a copied context difference, an ed difference, a normal difference, or a unified context
difference, respectively. In the absence of any of these options, the patch utility shall determine
the type of difference based on the format of information within the hunk.

For each hunk, the patch utility shall begin to search for the place to apply the patch at the line
number at the beginning of the hunk, plus or minus any offset used in applying the previous
hunk. If lines matching the hunk context are not found, patch shall scan both forwards and
backwards at least 1 000 bytes for a set of lines that match the hunk context.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2997

98820

98821

98822

98823

98824

98825

98826

98827

98828

98829

98830

98831

98832

98833

98834

98835

98836

98837

98838

98839

98840

98841

98842

98843

98844

98845

98846

98847

98848

98849

98850

98851

98852

98853

98854

98855

98856

98857

98858

98859

98860

98861

98862

patch Utilities

If no such place is found and it is a context difference, then another scan shall take place,
ignoring the first and last line of context. If that fails, the first two and last two lines of context
shall be ignored and another scan shall be made. Implementations may search more extensively
for installation locations.

If no location can be found, the patch utility shall append the hunk to the reject file. A rejected
hunk that is a copied context difference, an ed difference, or a normal difference shall be written
in copied-context-difference format regardless of the format of the patch file. It is
implementation-defined whether a rejected hunk that is a unified context difference is written in
copied-context-difference format or in unified-context-difference format. If the input was a
normal or ed-style difference, the reject file may contain differences with zero lines of context.
The line numbers on the hunks in the reject file may be different from the line numbers in the
patch file since they shall reflect the approximate locations for the failed hunks in the new file
rather than the old one.

If the type of patch is an ed diff, the implementation may accomplish the patching by invoking
the ed utility.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

1 One or more lines were written to a reject file.

>1 An error occurred.

CONSEQUENCES OF ERRORS
Patches that cannot be correctly placed in the file shall be written to a reject file.

APPLICATION USAGE
The −R option does not work with ed scripts because there is too little information to reconstruct
the reverse operation.

The −p option makes it possible to customize a patch file to local user directory structures
without manually editing the patch file. For example, if the filename in the patch file was:

/curds/whey/src/blurfl/blurfl.c

Setting −p 0 gives the entire pathname unmodified; −p 1 gives:

curds/whey/src/blurfl/blurfl.c

without the leading <slash>, −p 4 gives:

blurfl/blurfl.c

and not specifying −p at all gives:

blurfl.c .

EXAMPLES
None.

RATIONALE
Some of the functionality in historical patch implementations was not specified. The following
documents those features present in historical implementations that have not been specified.

A deleted piece of functionality was the ’+’ pseudo-option allowing an additional set of options
and a patch file operand to be given. This was seen as being insufficiently useful to standardize.

In historical implementations, if the string "Prereq:" appeared in the header, the patch utility

2998 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

98863

98864

98865

98866

98867

98868

98869

98870

98871

98872

98873

98874

98875

98876

98877

98878

98879

98880

98881

98882

98883

98884

98885

98886

98887

98888

98889

98890

98891

98892

98893

98894

98895

98896

98897

98898

98899

98900

98901

98902

98903

98904

Utilities patch

would search for the corresponding version information (the string specified in the header,
delimited by <blank> characters or the beginning or end of a line or the file) anywhere in the
original file. This was deleted as too simplistic and insufficiently trustworthy a mechanism to
standardize. For example, if:

Prereq: 1.2

were in the header, the presence of a delimited 1.2 anywhere in the file would satisfy the
prerequisite.

The following options were dropped from historical implementations of patch as insufficiently
useful to standardize:

−b The −b option historically provided a method for changing the name extension of
the backup file from the default .orig. This option has been modified and retained
in this volume of POSIX.1-2008.

−F The −F option specified the number of lines of a context diff to ignore when
searching for a place to install a patch.

−f The −f option historically caused patch not to request additional information from
the user.

−r The −r option historically provided a method of overriding the extension of the
reject file from the default .rej.

−s The −s option historically caused patch to work silently unless an error occurred.

−x The −x option historically set internal debugging flags.

In some file system implementations, the saving of a .orig file may produce unwanted results. In
the case of 12, 13, or 14-character filenames (on file systems supporting 14-character maximum
filenames), the .orig file overwrites the new file. The reject file may also exceed this filename
limit. It was suggested, due to some historical practice, that a <tilde> (’˜’) suffix be used
instead of .orig and some other character instead of the .rej suffix. This was rejected because it is
not obvious to the user which file is which. The suffixes .orig and .rej are clearer and more
understandable.

The −b option has the opposite sense in some historical implementations—do not save the .orig
file. The default case here is not to save the files, making patch behave more consistently with the
other standard utilities.

The −w option in early proposals was changed to −l to match historical practice.

The −N option was included because without it, a non-interactive application cannot reject
previously applied patches. For example, if a user is piping the output of diff into the patch
utility, and the user only wants to patch a file to a newer version non-interactively, the −N option
is required.

Changes to the −l option description were proposed to allow matching across <newline>
characters in addition to just <blank> characters. Since this is not historical practice, and since
some ambiguities could result, it is suggested that future developments in this area utilize
another option letter, such as −L.

The −u option of GNU patch has been added, along with support for unified context formats.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 2999

98905

98906

98907

98908

98909

98910

98911

98912

98913

98914

98915

98916

98917

98918

98919

98920

98921

98922

98923

98924

98925

98926

98927

98928

98929

98930

98931

98932

98933

98934

98935

98936

98937

98938

98939

98940

98941

98942

98943

98944

patch Utilities

FUTURE DIRECTIONS
None.

SEE ALSO
diff , ed

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The description of the −D option and the steps in Filename Determination (on page 2997) are
changed to match historical practice as defined in the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/34 is applied, clarifying the way that the
patch utility performs ifdef selection for the −D option.

Issue 7
The patch utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-103 and SD5-XCU-ERN-120 are applied, adding the −u option.

Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description of the
LC_MESSAGES and LC_CTYPE environment variables and adding the LC_COLLATE
environment variable.

3000 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

98945

98946

98947

98948

98949

98950

98951

98952

98953

98954

98955

98956

98957

98958

98959

98960

98961

98962

98963

98964

98965

98966

98967

98968

Utilities pathchk

NAME
pathchk — check pathnames

SYNOPSIS
pathchk [−p] [−P] pathname...

DESCRIPTION
The pathchk utility shall check that one or more pathnames are valid (that is, they could be used
to access or create a file without causing syntax errors) and portable (that is, no filename
truncation results). More extensive portability checks are provided by the −p and −P options.

By default, the pathchk utility shall check each component of each pathname operand based on the
underlying file system. A diagnostic shall be written for each pathname operand that:

• Is longer than {PATH_MAX} bytes (see Pathname Variable Values in XBD Chapter 13 (on
page 219), <limits.h>)

• Contains any component longer than {NAME_MAX} bytes in its containing directory

• Contains any component in a directory that is not searchable

• Contains any character in any component that is not valid in its containing directory

The format of the diagnostic message is not specified, but shall indicate the error detected and
the corresponding pathname operand.

It shall not be considered an error if one or more components of a pathname operand do not exist
as long as a file matching the pathname specified by the missing components could be created
that does not violate any of the checks specified above.

OPTIONS
The pathchk utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−p Instead of performing checks based on the underlying file system, write a
diagnostic for each pathname operand that:

• Is longer than {_POSIX_PATH_MAX} bytes (see Minimum Values in XBD
Chapter 13 (on page 219), <limits.h>)

• Contains any component longer than {_POSIX_NAME_MAX} bytes

• Contains any character in any component that is not in the portable filename
character set

−P Write a diagnostic for each pathname operand that:

• Contains a component whose first character is the <hyphen> character

• Is empty

OPERANDS
The following operand shall be supported:

pathname A pathname to be checked.

STDIN
Not used.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3001

98969

98970

98971

98972

98973

98974

98975

98976

98977

98978

98979

98980

98981

98982

98983

98984

98985

98986

98987

98988

98989

98990

98991

98992

98993

98994

98995

98996

98997

98998

98999

99000

99001

99002

99003

99004

99005

99006

pathchk Utilities

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of pathchk:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All pathname operands passed all of the checks.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The test utility can be used to determine whether a given pathname names an existing file; it
does not, however, give any indication of whether or not any component of the pathname was
truncated in a directory where the _POSIX_NO_TRUNC feature is not in effect. The pathchk
utility does not check for file existence; it performs checks to determine whether a pathname
does exist or could be created with no pathname component truncation.

The noclobber option in the shell (see the set special built-in) can be used to atomically create a
file. As with all file creation semantics in the System Interfaces volume of POSIX.1-2008, it
guarantees atomic creation, but still depends on applications to agree on conventions and
cooperate on the use of files after they have been created.

To verify that a pathname meets the requirements of filename portability, applications should

3002 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

99007

99008

99009

99010

99011

99012

99013

99014

99015

99016

99017

99018

99019

99020

99021

99022

99023

99024

99025

99026

99027

99028

99029

99030

99031

99032

99033

99034

99035

99036

99037

99038

99039

99040

99041

99042

99043

99044

99045

99046

99047

99048

99049

Utilities pathchk

use both the −p and −P options together.

EXAMPLES
To verify that all pathnames in an imported data interchange archive are legitimate and
unambiguous on the current system:

This example assumes that no pathnames in the archive
contain <newline> characters.
pax −f archive | sed −e ’s/[ˆ[:alnum:]]/\\&/g’ | xargs pathchk − −
if [$? −eq 0]
then

pax −r −f archive
else

echo Investigate problems before importing files.
exit 1

fi

To verify that all files in the current directory hierarchy could be moved to any system
conforming to the System Interfaces volume of POSIX.1-2008 that also supports the pax utility:

find . −exec pathchk −p −P {} +
if [$? −eq 0]
then

pax −w −f ../archive .
else

echo Portable archive cannot be created.
exit 1

fi

To verify that a user-supplied pathname names a readable file and that the application can create
a file extending the given path without truncation and without overwriting any existing file:

case $− in
C) reset="";;
*) reset="set +C"

set −C;;
esac
test −r "$path" && pathchk "$path.out" &&

rm "$path.out" > "$path.out"
if [$? −ne 0]; then

printf "%s: %s not found or %s.out fails \
creation checks.\n" $0 "$path" "$path"

$reset # Reset the noclobber option in case a trap
on EXIT depends on it.

exit 1
fi
$reset
PROCESSING < "$path" > "$path.out"

The following assumptions are made in this example:

1. PROCESSING represents the code that is used by the application to use $path once it is
verified that $path.out works as intended.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3003

99050

99051

99052

99053

99054

99055

99056

99057

99058

99059

99060

99061

99062

99063

99064

99065

99066

99067

99068

99069

99070

99071

99072

99073

99074

99075

99076

99077

99078

99079

99080

99081

99082

99083

99084

99085

99086

99087

99088

99089

99090

99091

99092

99093

99094

pathchk Utilities

2. The state of the noclobber option is unknown when this code is invoked and should be set
on exit to the state it was in when this code was invoked. (The reset variable is used in
this example to restore the initial state.)

3. Note the usage of:

rm "$path.out" > "$path.out"

a. The pathchk command has already verified, at this point, that $path.out is not
truncated.

b. With the noclobber option set, the shell verifies that $path.out does not already exist
before invoking rm.

c. If the shell succeeded in creating $path.out, rm removes it so that the application
can create the file again in the PROCESSING step.

d. If the PROCESSING step wants the file to exist already when it is invoked, the:

rm "$path.out" > "$path.out"

should be replaced with:

> "$path.out"

which verifies that the file did not already exist, but leaves $path.out in place for
use by PROCESSING.

RATIONALE
The pathchk utility was new for the ISO POSIX-2: 1993 standard. It, along with the set
−C(noclobber) option added to the shell, replaces the mktemp, validfnam, and create utilities that
appeared in early proposals. All of these utilities were attempts to solve several common
problems:

• Verify the validity (for several different definitions of ‘‘valid’’) of a pathname supplied by a
user, generated by an application, or imported from an external source.

• Atomically create a file.

• Perform various string handling functions to generate a temporary filename.

The create utility, included in an early proposal, provided checking and atomic creation in a
single invocation of the utility; these are orthogonal issues and need not be grouped into a single
utility. Note that the noclobber option also provides a way of creating a lock for process
synchronization; since it provides an atomic create, there is no race between a test for existence
and the following creation if it did not exist.

Having a function like tmpnam() in the ISO C standard is important in many high-level
languages. The shell programming language, however, has built-in string manipulation
facilities, making it very easy to construct temporary filenames. The names needed obviously
depend on the application, but are frequently of a form similar to:

$TMPDIR/application_abbreviation$$.suffix

In cases where there is likely to be contention for a given suffix, a simple shell for or while loop
can be used with the shell noclobber option to create a file without risk of collisions, as long as
applications trying to use the same filename name space are cooperating on the use of files after
they have been created.

For historical purposes, −p does not check for the use of the <hyphen> character as the first
character in a component of the pathname, or for an empty pathname operand.

3004 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

99095

99096

99097

99098

99099

99100

99101

99102

99103

99104

99105

99106

99107

99108

99109

99110

99111

99112

99113

99114

99115

99116

99117

99118

99119

99120

99121

99122

99123

99124

99125

99126

99127

99128

99129

99130

99131

99132

99133

99134

99135

99136

Utilities pathchk

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 (on page 2312), set (on page 2357), test

XBD Chapter 8 (on page 173), Section 12.2 (on page 215), <limits.h>

CHANGE HISTORY
First released in Issue 4.

Issue 7
Austin Group Interpretations 1003.1-2001 #039, #040, and #094 are applied.

SD5-XCU-ERN-121 is applied, updating the EXAMPLES section.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3005

99137

99138

99139

99140

99141

99142

99143

99144

99145

99146

pax Utilities

NAME
pax — portable archive interchange

SYNOPSIS
pax [−dv] [−c|−n] [−H|−L] [−o options] [−f archive] [−s replstr]...

[pattern...]

pax −r[−c|−n] [−dikuv] [−H|−L] [−f archive] [−o options]... [−p string]...
[−s replstr]... [pattern...]

pax −w [−dituvX] [−H|−L] [−b blocksize] [[−a] [−f archive]] [−o options]...
[−s replstr]... [−x format] [file...]

pax −r −w [−diklntuvX] [−H|−L] [−o options]... [−p string]...
[−s replstr]... [file...] directory

DESCRIPTION
The pax utility shall read, write, and write lists of the members of archive files and copy
directory hierarchies. A variety of archive formats shall be supported; see the −x format option.

The action to be taken depends on the presence of the −r and −w options. The four combinations
of −r and −w are referred to as the four modes of operation: list, read, write, and copy modes,
corresponding respectively to the four forms shown in the SYNOPSIS section.

list In list mode (when neither −r nor −w are specified), pax shall write the names of
the members of the archive file read from the standard input, with pathnames
matching the specified patterns, to standard output. If a named file is of type
directory, the file hierarchy rooted at that file shall be listed as well.

read In read mode (when −r is specified, but −w is not), pax shall extract the members of
the archive file read from the standard input, with pathnames matching the
specified patterns. If an extracted file is of type directory, the file hierarchy rooted
at that file shall be extracted as well. The extracted files shall be created performing
pathname resolution with the directory in which pax was invoked as the current
working directory.

If an attempt is made to extract a directory when the directory already exists, this
shall not be considered an error. If an attempt is made to extract a FIFO when the
FIFO already exists, this shall not be considered an error.

The ownership, access, and modification times, and file mode of the restored files
are discussed under the −p option.

write In write mode (when −w is specified, but −r is not), pax shall write the contents of
the file operands to the standard output in an archive format. If no file operands are
specified, a list of files to copy, one per line, shall be read from the standard input
and each entry in this list shall be processed as if it had been a file operand on the
command line. A file of type directory shall include all of the files in the file
hierarchy rooted at the file.

copy In copy mode (when both −r and −w are specified), pax shall copy the file operands
to the destination directory.

If no file operands are specified, a list of files to copy, one per line, shall be read
from the standard input. A file of type directory shall include all of the files in the
file hierarchy rooted at the file.

The effect of the copy shall be as if the copied files were written to a pax format
archive file and then subsequently extracted, except that there may be hard links

3006 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

99147

99148

99149

99150

99151

99152

99153

99154

99155

99156

99157

99158

99159

99160

99161

99162

99163

99164

99165

99166

99167

99168

99169

99170

99171

99172

99173

99174

99175

99176

99177

99178

99179

99180

99181

99182

99183

99184

99185

99186

99187

99188

99189

99190

99191

Utilities pax

between the original and the copied files. If the destination directory is a
subdirectory of one of the files to be copied, the results are unspecified. If the
destination directory is a file of a type not defined by the System Interfaces volume
of POSIX.1-2008, the results are implementation-defined; otherwise, it shall be an
error for the file named by the directory operand not to exist, not be writable by the
user, or not be a file of type directory.

In read or copy modes, if intermediate directories are necessary to extract an archive member,
pax shall perform actions equivalent to the mkdir() function defined in the System Interfaces
volume of POSIX.1-2008, called with the following arguments:

• The intermediate directory used as the path argument

• The value of the bitwise-inclusive OR of S_IRWXU, S_IRWXG, and S_IRWXO as the mode
argument

If any specified pattern or file operands are not matched by at least one file or archive member,
pax shall write a diagnostic message to standard error for each one that did not match and exit
with a non-zero exit status.

The archive formats described in the EXTENDED DESCRIPTION section shall be automatically
detected on input. The default output archive format shall be implementation-defined.

A single archive can span multiple files. The pax utility shall determine, in an implementation-
defined manner, what file to read or write as the next file.

If the selected archive format supports the specification of linked files, it shall be an error if these
files cannot be linked when the archive is extracted. For archive formats that do not store file
contents with each name that causes a hard link, if the file that contains the data is not extracted
during this pax session, either the data shall be restored from the original file, or a diagnostic
message shall be displayed with the name of a file that can be used to extract the data. In
traversing directories, pax shall detect infinite loops; that is, entering a previously visited
directory that is an ancestor of the last file visited. When it detects an infinite loop, pax shall
write a diagnostic message to standard error and shall terminate.

OPTIONS
The pax utility shall conform to XBD Section 12.2 (on page 215), except that the order of
presentation of the −o, −p, and −s options is significant.

The following options shall be supported:

−r Read an archive file from standard input.

−w Write files to the standard output in the specified archive format.

−a Append files to the end of the archive. It is implementation-defined which devices
on the system support appending. Additional file formats unspecified by this
volume of POSIX.1-2008 may impose restrictions on appending.

−b blocksize Block the output at a positive decimal integer number of bytes per write to the
archive file. Devices and archive formats may impose restrictions on blocking.
Blocking shall be automatically determined on input. Conforming applications
shall not specify a blocksize value larger than 32 256. Default blocking when
creating archives depends on the archive format. (See the −x option below.)

−c Match all file or archive members except those specified by the pattern or file
operands.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3007

99192

99193

99194

99195

99196

99197

99198

99199

99200

99201

99202

99203

99204

99205

99206

99207

99208

99209

99210

99211

99212

99213

99214

99215

99216

99217

99218

99219

99220

99221

99222

99223

99224

99225

99226

99227

99228

99229

99230

99231

99232

99233

99234

pax Utilities

−d Cause files of type directory being copied or archived or archive members of type
directory being extracted or listed to match only the file or archive member itself
and not the file hierarchy rooted at the file.

−f archive Specify the pathname of the input or output archive, overriding the default
standard input (in list or read modes) or standard output (write mode).

−H If a symbolic link referencing a file of type directory is specified on the command
line, pax shall archive the file hierarchy rooted in the file referenced by the link,
using the name of the link as the root of the file hierarchy. Otherwise, if a symbolic
link referencing a file of any other file type which pax can normally archive is
specified on the command line, then pax shall archive the file referenced by the
link, using the name of the link. The default behavior, when neither −H or −L are
specified, shall be to archive the symbolic link itself.

−i Interactively rename files or archive members. For each archive member matching
a pattern operand or file matching a file operand, a prompt shall be written to the
file /dev/tty. The prompt shall contain the name of the file or archive member, but
the format is otherwise unspecified. A line shall then be read from /dev/tty. If this
line is blank, the file or archive member shall be skipped. If this line consists of a
single period, the file or archive member shall be processed with no modification
to its name. Otherwise, its name shall be replaced with the contents of the line. The
pax utility shall immediately exit with a non-zero exit status if end-of-file is
encountered when reading a response or if /dev/tty cannot be opened for reading
and writing.

The results of extracting a hard link to a file that has been renamed during
extraction are unspecified.

−k Prevent the overwriting of existing files.

−l (The letter ell.) In copy mode, hard links shall be made between the source and
destination file hierarchies whenever possible. If specified in conjunction with −H
or −L, when a symbolic link is encountered, the hard link created in the destination
file hierarchy shall be to the file referenced by the symbolic link. If specified when
neither −H nor −L is specified, when a symbolic link is encountered, the
implementation shall create a hard link to the symbolic link in the source file
hierarchy or copy the symbolic link to the destination.

−L If a symbolic link referencing a file of type directory is specified on the command
line or encountered during the traversal of a file hierarchy, pax shall archive the file
hierarchy rooted in the file referenced by the link, using the name of the link as the
root of the file hierarchy. Otherwise, if a symbolic link referencing a file of any
other file type which pax can normally archive is specified on the command line or
encountered during the traversal of a file hierarchy, pax shall archive the file
referenced by the link, using the name of the link. The default behavior, when
neither −H or −L are specified, shall be to archive the symbolic link itself.

−n Select the first archive member that matches each pattern operand. No more than
one archive member shall be matched for each pattern (although members of type
directory shall still match the file hierarchy rooted at that file).

−o options Provide information to the implementation to modify the algorithm for extracting
or writing files. The value of options shall consist of one or more
<comma>-separated keywords of the form:

keyword[[:]=value][,keyword[[:]=value], ...]

3008 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

99235

99236

99237

99238

99239

99240

99241

99242

99243

99244

99245

99246

99247

99248

99249

99250

99251

99252

99253

99254

99255

99256

99257

99258

99259

99260

99261

99262

99263

99264

99265

99266

99267

99268

99269

99270

99271

99272

99273

99274

99275

99276

99277

99278

99279

99280

99281

Utilities pax

Some keywords apply only to certain file formats, as indicated with each
description. Use of keywords that are inapplicable to the file format being
processed produces undefined results.

Keywords in the options argument shall be a string that would be a valid portable
filename as described in XBD Section 3.276 (on page 77).

Note: Keywords are not expected to be filenames, merely to follow the same character
composition rules as portable filenames.

Keywords can be preceded with white space. The value field shall consist of zero or
more characters; within value, the application shall precede any literal <comma>
with a <backslash>, which shall be ignored, but preserves the <comma> as part of
value. A <comma> as the final character, or a <comma> followed solely by white
space as the final characters, in options shall be ignored. Multiple −o options can be
specified; if keywords given to these multiple −o options conflict, the keywords
and values appearing later in command line sequence shall take precedence and
the earlier shall be silently ignored. The following keyword values of options shall
be supported for the file formats as indicated:

delete=pattern
(Applicable only to the −x pax format.) When used in write or copy mode, pax
shall omit from extended header records that it produces any keywords
matching the string pattern. When used in read or list mode, pax shall ignore
any keywords matching the string pattern in the extended header records. In
both cases, matching shall be performed using the pattern matching notation
described in Section 2.13.1 (on page 2332) and Section 2.13.2 (on page 2332).
For example:

−o delete=security.*

would suppress security-related information. See pax Extended Header (on
page 3019) for extended header record keyword usage.

When multiple −odelete=pattern options are specified, the patterns shall be
additive; all keywords matching the specified string patterns shall be omitted
from extended header records that pax produces.

exthdr.name=string
(Applicable only to the −x pax format.) This keyword allows user control over
the name that is written into the ustar header blocks for the extended header
produced under the circumstances described in pax Header Block (on page
3019). The name shall be the contents of string, after the following character
substitutions have been made:

string
Includes: Replaced by:

%d The directory name of the file, equivalent to the result of the
dirname utility on the translated pathname.

%f The filename of the file, equivalent to the result of the
basename utility on the translated pathname.

%p The process ID of the pax process.
%% A ’%’ character.

Any other ’%’ characters in string produce undefined results.

If no −o exthdr.name=string is specified, pax shall use the following default

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3009

99282

99283

99284

99285

99286

99287

99288

99289

99290

99291

99292

99293

99294

99295

99296

99297

99298

99299

99300

99301

99302

99303

99304

99305

99306

99307

99308

99309

99310

99311

99312

99313

99314

99315

99316

99317

99318

99319

99320

99321

99322

99323

99324

99325

99326

99327

pax Utilities

value:

%d/PaxHeaders.%p/%f

globexthdr.name=string
(Applicable only to the −x pax format.) When used in write or copy mode
with the appropriate options, pax shall create global extended header records
with ustar header blocks that will be treated as regular files by previous
versions of pax. This keyword allows user control over the name that is
written into the ustar header blocks for global extended header records. The
name shall be the contents of string, after the following character substitutions
have been made:

string
Includes: Replaced by:

%n An integer that represents the sequence number of the global
extended header record in the archive, starting at 1.

%p The process ID of the pax process.
%% A ’%’ character.

Any other ’%’ characters in string produce undefined results.

If no −o globexthdr.name=string is specified, pax shall use the following
default value:

$TMPDIR/GlobalHead.%p.%n

where $TMPDIR represents the value of the TMPDIR environment variable. If
TMPDIR is not set, pax shall use /tmp.

invalid=action
(Applicable only to the −x pax format.) This keyword allows user control over
the action pax takes upon encountering values in an extended header record
that, in read or copy mode, are invalid in the destination hierarchy or, in list
mode, cannot be written in the codeset and current locale of the
implementation. The following are invalid values that shall be recognized by
pax:

— In read or copy mode, a filename or link name that contains character
encodings invalid in the destination hierarchy. (For example, the name
may contain embedded NULs.)

— In read or copy mode, a filename or link name that is longer than the
maximum allowed in the destination hierarchy (for either a pathname
component or the entire pathname).

— In list mode, any character string value (filename, link name, user name,
and so on) that cannot be written in the codeset and current locale of the
implementation.

The following mutually-exclusive values of the action argument are supported:

binary In write mode, pax shall generate a hdrcharset=BINARY
extended header record for each file with a filename, link name,
group name, owner name, or any other field in an extended
header record that cannot be translated to the UTF-8 codeset,
allowing the archive to contain the files with unencoded
extended header record values. In read or copy mode, pax shall

3010 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

99328

99329

99330

99331

99332

99333

99334

99335

99336

99337

99338

99339

99340

99341

99342

99343

99344

99345

99346

99347

99348

99349

99350

99351

99352

99353

99354

99355

99356

99357

99358

99359

99360

99361

99362

99363

99364

99365

99366

99367

99368

99369

99370

99371

99372

Utilities pax

use the values specified in the header without translation,
regardless of whether this may overwrite an existing file with a
valid name. In list mode, pax shall behave identically to the
bypass action.

bypass In read or copy mode, pax shall bypass the file, causing no
change to the destination hierarchy. In list mode, pax shall write
all requested valid values for the file, but its method for writing
invalid values is unspecified.

rename In read or copy mode, pax shall act as if the −i option were in
effect for each file with invalid filename or link name values,
allowing the user to provide a replacement name interactively.
In list mode, pax shall behave identically to the bypass action.

UTF-8 When used in read, copy, or list mode and a filename, link
name, owner name, or any other field in an extended header
record cannot be translated from the pax UTF-8 codeset format
to the codeset and current locale of the implementation, pax shall
use the actual UTF-8 encoding for the name. If a hdrcharset
extended header record is in effect for this file, the character set
specified by that record shall be used instead of UTF-8. If a
hdrcharset=BINARY extended header record is in effect for this
file, no translation shall be performed.

write In read or copy mode, pax shall write the file, translating the
name, regardless of whether this may overwrite an existing file
with a valid name. In list mode, pax shall behave identically to
the bypass action.

If no −o invalid=option is specified, pax shall act as if −oinvalid=bypass were
specified. Any overwriting of existing files that may be allowed by the
−oinvalid= actions shall be subject to permission (−p) and modification time
(−u) restrictions, and shall be suppressed if the −k option is also specified.

linkdata
(Applicable only to the −x pax format.) In write mode, pax shall write the
contents of a file to the archive even when that file is merely a hard link to a
file whose contents have already been written to the archive.

listopt=format
This keyword specifies the output format of the table of contents produced
when the −v option is specified in list mode. See List Mode Format
Specifications (on page 3014). To avoid ambiguity, the listopt=format shall be
the only or final keyword=value pair in a −o option-argument; all characters
in the remainder of the option-argument shall be considered part of the format
string. When multiple −olistopt=format options are specified, the format
strings shall be considered a single, concatenated string, evaluated in
command line order.

times
(Applicable only to the −x pax format.) When used in write or copy mode, pax
shall include atime and mtime extended header records for each file. See pax
Extended Header File Times (on page 3023).

In addition to these keywords, if the −x pax format is specified, any of the

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3011

99373

99374

99375

99376

99377

99378

99379

99380

99381

99382

99383

99384

99385

99386

99387

99388

99389

99390

99391

99392

99393

99394

99395

99396

99397

99398

99399

99400

99401

99402

99403

99404

99405

99406

99407

99408

99409

99410

99411

99412

99413

99414

99415

99416

99417

99418

99419

pax Utilities

keywords and values defined in pax Extended Header (on page 3019), including
implementation extensions, can be used in −o option-arguments, in either of two
modes:

keyword=value
When used in write or copy mode, these keyword/value pairs shall be
included at the beginning of the archive as typeflag g global extended header
records. When used in read or list mode, these keyword/value pairs shall act
as if they had been at the beginning of the archive as typeflag g global
extended header records.

keyword:=value
When used in write or copy mode, these keyword/value pairs shall be
included as records at the beginning of a typeflag x extended header for each
file. (This shall be equivalent to the <equals-sign> form except that it creates
no typeflag g global extended header records.) When used in read or list
mode, these keyword/value pairs shall act as if they were included as records
at the end of each extended header; thus, they shall override any global or file-
specific extended header record keywords of the same names. For example, in
the command:

pax −r −o "
gname:=mygroup,
" <archive

the group name will be forced to a new value for all files read from the
archive.

The precedence of −o keywords over various fields in the archive is described in
pax Extended Header Keyword Precedence (on page 3022).

−p string Specify one or more file characteristic options (privileges). The string option-
argument shall be a string specifying file characteristics to be retained or discarded
on extraction. The string shall consist of the specification characters a, e, m, o, and
p. Other implementation-defined characters can be included. Multiple
characteristics can be concatenated within the same string and multiple −p options
can be specified. The meaning of the specification characters are as follows:

a Do not preserve file access times.

e Preserve the user ID, group ID, file mode bits (see XBD Section 3.169, on page
60), access time, modification time, and any other implementation-defined file
characteristics.

m Do not preserve file modification times.

o Preserve the user ID and group ID.

p Preserve the file mode bits. Other implementation-defined file mode attributes
may be preserved.

In the preceding list, ‘‘preserve’’ indicates that an attribute stored in the archive
shall be given to the extracted file, subject to the permissions of the invoking
process. The access and modification times of the file shall be preserved unless
otherwise specified with the −p option or not stored in the archive. All attributes
that are not preserved shall be determined as part of the normal file creation action
(see Section 1.1.1.4, on page 2280).

3012 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

99420

99421

99422

99423

99424

99425

99426

99427

99428

99429

99430

99431

99432

99433

99434

99435

99436

99437

99438

99439

99440

99441

99442

99443

99444

99445

99446

99447

99448

99449

99450

99451

99452

99453

99454

99455

99456

99457

99458

99459

99460

99461

99462

99463

99464

Utilities pax

If neither the e nor the o specification character is specified, or the user ID and
group ID are not preserved for any reason, pax shall not set the S_ISUID and
S_ISGID bits of the file mode.

If the preservation of any of these items fails for any reason, pax shall write a
diagnostic message to standard error. Failure to preserve these items shall affect
the final exit status, but shall not cause the extracted file to be deleted.

If file characteristic letters in any of the string option-arguments are duplicated or
conflict with each other, the ones given last shall take precedence. For example, if
−p eme is specified, file modification times are preserved.

−s replstr Modify file or archive member names named by pattern or file operands according
to the substitution expression replstr, using the syntax of the ed utility. The concepts
of ‘‘address’’ and ‘‘line’’ are meaningless in the context of the pax utility, and shall
not be supplied. The format shall be:

−s /old/new/[gp]

where as in ed, old is a basic regular expression and new can contain an
<ampersand>, ’\n’ (where n is a digit) back-references, or subexpression
matching. The old string shall also be permitted to contain <newline> characters.

Any non-null character can be used as a delimiter (’/’ shown here). Multiple −s
expressions can be specified; the expressions shall be applied in the order
specified, terminating with the first successful substitution. The optional trailing
’g’ is as defined in the ed utility. The optional trailing ’p’ shall cause successful
substitutions to be written to standard error. File or archive member names that
substitute to the empty string shall be ignored when reading and writing archives.

−t When reading files from the file system, and if the user has the permissions
required by utime() to do so, set the access time of each file read to the access time
that it had before being read by pax.

−u Ignore files that are older (having a less recent file modification time) than a pre-
existing file or archive member with the same name. In read mode, an archive
member with the same name as a file in the file system shall be extracted if the
archive member is newer than the file. In write mode, an archive file member with
the same name as a file in the file system shall be superseded if the file is newer
than the archive member. If −a is also specified, this is accomplished by appending
to the archive; otherwise, it is unspecified whether this is accomplished by actual
replacement in the archive or by appending to the archive. In copy mode, the file
in the destination hierarchy shall be replaced by the file in the source hierarchy or
by a link to the file in the source hierarchy if the file in the source hierarchy is
newer.

−v In list mode, produce a verbose table of contents (see the STDOUT section).
Otherwise, write archive member pathnames to standard error (see the STDERR
section).

−x format Specify the output archive format. The pax utility shall support the following
formats:

cpio The cpio interchange format; see the EXTENDED DESCRIPTION
section. The default blocksize for this format for character special
archive files shall be 5 120. Implementations shall support all
blocksize values less than or equal to 32 256 that are multiples of 512.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3013

99465

99466

99467

99468

99469

99470

99471

99472

99473

99474

99475

99476

99477

99478

99479

99480

99481

99482

99483

99484

99485

99486

99487

99488

99489

99490

99491

99492

99493

99494

99495

99496

99497

99498

99499

99500

99501

99502

99503

99504

99505

99506

99507

99508

99509

99510

pax Utilities

pax The pax interchange format; see the EXTENDED DESCRIPTION
section. The default blocksize for this format for character special
archive files shall be 5 120. Implementations shall support all
blocksize values less than or equal to 32 256 that are multiples of 512.

ustar The tar interchange format; see the EXTENDED DESCRIPTION
section. The default blocksize for this format for character special
archive files shall be 10 240. Implementations shall support all
blocksize values less than or equal to 32 256 that are multiples of 512.

Implementation-defined formats shall specify a default block size as well as any
other block sizes supported for character special archive files.

Any attempt to append to an archive file in a format different from the existing
archive format shall cause pax to exit immediately with a non-zero exit status.

−X When traversing the file hierarchy specified by a pathname, pax shall not descend
into directories that have a different device ID (st_dev; see the System Interfaces
volume of POSIX.1-2008, stat()).

Specifying more than one of the mutually-exclusive options −H and −L shall not be considered
an error and the last option specified shall determine the behavior of the utility.

The options that operate on the names of files or archive members (−c, −i, −n, −s, −u, and −v)
shall interact as follows. In read mode, the archive members shall be selected based on the user-
specified pattern operands as modified by the −c, −n, and −u options. Then, any −s and −i
options shall modify, in that order, the names of the selected files. The −v option shall write
names resulting from these modifications.

In write mode, the files shall be selected based on the user-specified pathnames as modified by
the −n and −u options. Then, any −s and −i options shall modify, in that order, the names of
these selected files. The −v option shall write names resulting from these modifications.

If both the −u and −n options are specified, pax shall not consider a file selected unless it is
newer than the file to which it is compared.

List Mode Format Specifications

In list mode with the −o listopt=format option, the format argument shall be applied for each
selected file. The pax utility shall append a <newline> to the listopt output for each selected file.
The format argument shall be used as the format string described in XBD Chapter 5 (on page 121),
with the exceptions 1. through 5. defined in the EXTENDED DESCRIPTION section of printf,
plus the following exceptions:

6. The sequence (keyword) can occur before a format conversion specifier. The conversion
argument is defined by the value of keyword. The implementation shall support the
following keywords:

— Any of the Field Name entries in Table 4-14 (on page 3024) and Table 4-16 (on page
3027). The implementation may support the cpio keywords without the leading c_ in
addition to the form required by Table 4-16 (on page 3027).

— Any keyword defined for the extended header in pax Extended Header (on page
3019).

— Any keyword provided as an implementation-defined extension within the extended
header defined in pax Extended Header (on page 3019).

For example, the sequence "%(charset)s" is the string value of the name of the character

3014 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

99511

99512

99513

99514

99515

99516

99517

99518

99519

99520

99521

99522

99523

99524

99525

99526

99527

99528

99529

99530

99531

99532

99533

99534

99535

99536

99537

99538

99539

99540

99541

99542

99543

99544

99545

99546

99547

99548

99549

99550

99551

99552

99553

99554

Utilities pax

set in the extended header.

The result of the keyword conversion argument shall be the value from the applicable
header field or extended header, without any trailing NULs.

All keyword values used as conversion arguments shall be translated from the UTF-8
encoding (or alternative encoding specified by any hdrcharset extended header record) to
the character set appropriate for the local file system, user database, and so on, as
applicable.

7. An additional conversion specifier character, T, shall be used to specify time formats. The T
conversion specifier character can be preceded by the sequence (keyword=subformat), where
subformat is a date format as defined by date operands. The default keyword shall be mtime
and the default subformat shall be:

%b %e %H:%M %Y

8. An additional conversion specifier character, M, shall be used to specify the file mode string
as defined in ls Standard Output. If (keyword) is omitted, the mode keyword shall be used.
For example, %.1M writes the single character corresponding to the <entry type> field of the
ls −l command.

9. An additional conversion specifier character, D, shall be used to specify the device for block
or special files, if applicable, in an implementation-defined format. If not applicable, and
(keyword) is specified, then this conversion shall be equivalent to %(keyword)u. If not
applicable, and (keyword) is omitted, then this conversion shall be equivalent to <space>.

10. An additional conversion specifier character, F, shall be used to specify a pathname. The F
conversion character can be preceded by a sequence of <comma>-separated keywords:

(keyword[,keyword] ...)

The values for all the keywords that are non-null shall be concatenated together, each
separated by a ’/’. The default shall be (path) if the keyword path is defined; otherwise,
the default shall be (prefix,name).

11. An additional conversion specifier character, L, shall be used to specify a symbolic link
expansion. If the current file is a symbolic link, then %L shall expand to:

"%s −> %s", <value of keyword>, <contents of link>

Otherwise, the %L conversion specification shall be the equivalent of %F.

OPERANDS
The following operands shall be supported:

directory The destination directory pathname for copy mode.

file A pathname of a file to be copied or archived.

pattern A pattern matching one or more pathnames of archive members. A pattern must
be given in the name-generating notation of the pattern matching notation in
Section 2.13 (on page 2332), including the filename expansion rules in Section
2.13.3 (on page 2333). The default, if no pattern is specified, is to select all members
in the archive.

STDIN
In write mode, the standard input shall be used only if no file operands are specified. It shall be a
text file containing a list of pathnames, one per line, without leading or trailing <blank>
characters.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3015

99555

99556

99557

99558

99559

99560

99561

99562

99563

99564

99565

99566

99567

99568

99569

99570

99571

99572

99573

99574

99575

99576

99577

99578

99579

99580

99581

99582

99583

99584

99585

99586

99587

99588

99589

99590

99591

99592

99593

99594

99595

99596

99597

pax Utilities

In list and read modes, if −f is not specified, the standard input shall be an archive file.

Otherwise, the standard input shall not be used.

INPUT FILES
The input file named by the archive option-argument, or standard input when the archive is read
from there, shall be a file formatted according to one of the specifications in the EXTENDED
DESCRIPTION section or some other implementation-defined format.

The file /dev/tty shall be used to write prompts and read responses.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of pax:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the pattern matching expressions for the
pattern operand, the basic regular expression for the −s option, and the extended
regular expression defined for the yesexpr locale keyword in the LC_MESSAGES
category.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), the behavior of character classes used in the extended
regular expression defined for the yesexpr locale keyword in the LC_MESSAGES
category, and pattern matching.

LC_MESSAGES
Determine the locale used to process affirmative responses, and the locale used to
affect the format and contents of diagnostic messages and prompts written to
standard error.

LC_TIME Determine the format and contents of date and time strings when the −v option is
specified.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TMPDIR Determine the pathname that provides part of the default global extended header
record file, as described for the −o globexthdr= keyword in the OPTIONS section.

TZ Determine the timezone used to calculate date and time strings when the −v option
is specified. If TZ is unset or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
In write mode, if −f is not specified, the standard output shall be the archive formatted
according to one of the specifications in the EXTENDED DESCRIPTION section, or some other
implementation-defined format (see −x format).

In list mode, when the −olistopt=format has been specified, the selected archive members shall
be written to standard output using the format described under List Mode Format Specifications

3016 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

99598

99599

99600

99601

99602

99603

99604

99605

99606

99607

99608

99609

99610

99611

99612

99613

99614

99615

99616

99617

99618

99619

99620

99621

99622

99623

99624

99625

99626

99627

99628

99629

99630

99631

99632

99633

99634

99635

99636

99637

99638

99639

99640

99641

Utilities pax

(on page 3014). In list mode without the −olistopt=format option, the table of contents of the
selected archive members shall be written to standard output using the following format:

"%s\n", <pathname>

If the −v option is specified in list mode, the table of contents of the selected archive members
shall be written to standard output using the following formats.

For pathnames representing hard links to previous members of the archive:

"%s∆==∆%s\n", <ls −l listing>, <linkname>

For all other pathnames:

"%s\n", <ls −l listing>

where <ls −l listing> shall be the format specified by the ls utility with the −l option. When
writing pathnames in this format, it is unspecified what is written for fields for which the
underlying archive format does not have the correct information, although the correct number of
<blank>-separated fields shall be written.

In list mode, standard output shall not be buffered more than a line at a time.

STDERR
If −v is specified in read, write, or copy modes, pax shall write the pathnames it processes to the
standard error output using the following format:

"%s\n", <pathname>

These pathnames shall be written as soon as processing is begun on the file or archive member,
and shall be flushed to standard error. The trailing <newline>, which shall not be buffered, is
written when the file has been read or written.

If the −s option is specified, and the replacement string has a trailing ’p’, substitutions shall be
written to standard error in the following format:

"%s∆>>∆%s\n", <original pathname>, <new pathname>

In all operating modes of pax, optional messages of unspecified format concerning the input
archive format and volume number, the number of files, blocks, volumes, and media parts as
well as other diagnostic messages may be written to standard error.

In all formats, for both standard output and standard error, it is unspecified how non-printable
characters in pathnames or link names are written.

When using the −xpax archive format, if a filename, link name, group name, owner name, or any
other field in an extended header record cannot be translated between the codeset in use for that
extended header record and the character set of the current locale, pax shall write a diagnostic
message to standard error, shall process the file as described for the −o invalid= option, and then
shall continue processing with the next file.

OUTPUT FILES
In read mode, the extracted output files shall be of the archived file type. In copy mode, the
copied output files shall be the type of the file being copied. In either mode, existing files in the
destination hierarchy shall be overwritten only when all permission (−p), modification time (−u),
and invalid-value (−oinvalid=) tests allow it.

In write mode, the output file named by the −f option-argument shall be a file formatted
according to one of the specifications in the EXTENDED DESCRIPTION section, or some other
implementation-defined format.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3017

99642

99643

99644

99645

99646

99647

99648

99649

99650

99651

99652

99653

99654

99655

99656

99657

99658

99659

99660

99661

99662

99663

99664

99665

99666

99667

99668

99669

99670

99671

99672

99673

99674

99675

99676

99677

99678

99679

99680

99681

99682

99683

pax Utilities

EXTENDED DESCRIPTION

pax Interchange Format

A pax archive tape or file produced in the −xpax format shall contain a series of blocks. The
physical layout of the archive shall be identical to the ustar format described in ustar
Interchange Format (on page 3023). Each file archived shall be represented by the following
sequence:

• An optional header block with extended header records. This header block is of the form
described in pax Header Block (on page 3019), with a typeflag value of x or g. The
extended header records, described in pax Extended Header (on page 3019), shall be
included as the data for this header block.

• A header block that describes the file. Any fields in the preceding optional extended
header shall override the associated fields in this header block for this file.

• Zero or more blocks that contain the contents of the file.

At the end of the archive file there shall be two 512-byte blocks filled with binary zeros,
interpreted as an end-of-archive indicator.

A schematic of an example archive with global extended header records and two actual files is
shown in Figure 4-1. In the example, the second file in the archive has no extended header
preceding it, presumably because it has no need for extended attributes.

ustar Header [typeflag=g]

Global Extended Header Data

ustar Header [typeflag=x]

Extended Header Data

ustar Header [typeflag=0]

Data for File 1

ustar Header [typeflag=0]

Data for File 2

Block of binary zeros

Block of binary zeros

Global Extended Header

File 1: Extended Header is
included

File 2: No Extended Header is
included

End of Archive Indicator

}

}
}
}

Figure 4-1 pax Format Archive Example

3018 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

99684

99685

99686

99687

99688

99689

99690

99691

99692

99693

99694

99695

99696

99697

99698

99699

99700

99701

99702

Utilities pax

pax Header Block

The pax header block shall be identical to the ustar header block described in ustar Interchange
Format (on page 3023), except that two additional typeflag values are defined:

x Represents extended header records for the following file in the archive (which shall have
its own ustar header block). The format of these extended header records shall be as
described in pax Extended Header.

g Represents global extended header records for the following files in the archive. The format
of these extended header records shall be as described in pax Extended Header. Each value
shall affect all subsequent files that do not override that value in their own extended header
record and until another global extended header record is reached that provides another
value for the same field. The typeflag g global headers should not be used with interchange
media that could suffer partial data loss in transporting the archive.

For both of these types, the size field shall be the size of the extended header records in octets.
The other fields in the header block are not meaningful to this version of the pax utility.
However, if this archive is read by a pax utility conforming to the ISO POSIX-2: 1993 standard,
the header block fields are used to create a regular file that contains the extended header records
as data. Therefore, header block field values should be selected to provide reasonable file access
to this regular file.

A further difference from the ustar header block is that data blocks for files of typeflag 1 (the digit
one) (hard link) may be included, which means that the size field may be greater than zero.
Archives created by pax −o linkdata shall include these data blocks with the hard links.

pax Extended Header

A pax extended header contains values that are inappropriate for the ustar header block because
of limitations in that format: fields requiring a character encoding other than that described in
the ISO/IEC 646: 1991 standard, fields representing file attributes not described in the ustar
header, and fields whose format or length do not fit the requirements of the ustar header. The
values in an extended header add attributes to the following file (or files; see the description of
the typeflag g header block) or override values in the following header block(s), as indicated in
the following list of keywords.

An extended header shall consist of one or more records, each constructed as follows:

"%d %s=%s\n", <length>, <keyword>, <value>

The extended header records shall be encoded according to the ISO/IEC 10646-1: 2000 standard
UTF-8 encoding. The <length> field, <blank>, <equals-sign>, and <newline> shown shall be
limited to the portable character set, as encoded in UTF-8. The <keyword> fields can be any
UTF-8 characters. The <length> field shall be the decimal length of the extended header record
in octets, including the trailing <newline>. If there is a hdrcharset extended header in effect for
a file, the value field for any gname, linkpath, path, and uname extended header records shall be
encoded using the character set specified by the hdrcharset extended header record; otherwise,
the value field shall be encoded using UTF-8. The value field for all other keywords specified by
POSIX.1-2008 shall be encoded using UTF-8.

The <keyword> field shall be one of the entries from the following list or a keyword provided as
an implementation extension. Keywords consisting entirely of lowercase letters, digits, and
periods are reserved for future standardization. A keyword shall not include an <equals-sign>.
(In the following list, the notations ‘‘file(s)’’ or ‘‘block(s)’’ is used to acknowledge that a keyword
affects the following single file after a typeflag x extended header, but possibly multiple files after
typeflag g. Any requirements in the list for pax to include a record when in write or copy mode

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3019

99703

99704

99705

99706

99707

99708

99709

99710

99711

99712

99713

99714

99715

99716

99717

99718

99719

99720

99721

99722

99723

99724

99725

99726

99727

99728

99729

99730

99731

99732

99733

99734

99735

99736

99737

99738

99739

99740

99741

99742

99743

99744

99745

99746

99747

99748

pax Utilities

shall apply only when such a record has not already been provided through the use of the −o
option. When used in copy mode, pax shall behave as if an archive had been created with
applicable extended header records and then extracted.)

atime The file access time for the following file(s), equivalent to the value of the st_atime
member of the stat structure for a file, as described by the stat() function. The
access time shall be restored if the process has appropriate privileges required to
do so. The format of the <value> shall be as described in pax Extended Header File
Times (on page 3023).

charset The name of the character set used to encode the data in the following file(s). The
entries in the following table are defined to refer to known standards; additional
names may be agreed on between the originator and recipient.

<value> Formal Standard

ISO-IR∆646∆1990 ISO/IEC 646: 1990
ISO-IR∆8859∆1∆1998 ISO/IEC 8859-1: 1998
ISO-IR∆8859∆2∆1999 ISO/IEC 8859-2: 1999
ISO-IR∆8859∆3∆1999 ISO/IEC 8859-3: 1999
ISO-IR∆8859∆4∆1998 ISO/IEC 8859-4: 1998
ISO-IR∆8859∆5∆1999 ISO/IEC 8859-5: 1999
ISO-IR∆8859∆6∆1999 ISO/IEC 8859-6: 1999
ISO-IR∆8859∆7∆1987 ISO/IEC 8859-7: 1987
ISO-IR∆8859∆8∆1999 ISO/IEC 8859-8: 1999
ISO-IR∆8859∆9∆1999 ISO/IEC 8859-9: 1999
ISO-IR∆8859∆10∆1998 ISO/IEC 8859-10: 1998
ISO-IR∆8859∆13∆1998 ISO/IEC 8859-13: 1998
ISO-IR∆8859∆14∆1998 ISO/IEC 8859-14: 1998
ISO-IR∆8859∆15∆1999 ISO/IEC 8859-15: 1999
ISO-IR∆10646∆2000 ISO/IEC 10646: 2000
ISO-IR∆10646∆2000∆UTF-8 ISO/IEC 10646, UTF-8 encoding
BINARY None.

The encoding is included in an extended header for information only; when pax is
used as described in POSIX.1-2008, it shall not translate the file data into any other
encoding. The BINARY entry indicates unencoded binary data.

When used in write or copy mode, it is implementation-defined whether pax
includes a charset extended header record for a file.

comment A series of characters used as a comment. All characters in the <value> field shall
be ignored by pax.

gid The group ID of the group that owns the file, expressed as a decimal number using
digits from the ISO/IEC 646: 1991 standard. This record shall override the gid field
in the following header block(s). When used in write or copy mode, pax shall
include a gid extended header record for each file whose group ID is greater than
2 097 151 (octal 7 777 777).

gname The group of the file(s), formatted as a group name in the group database. This
record shall override the gid and gname fields in the following header block(s), and
any gid extended header record. When used in read, copy, or list mode, pax shall
translate the name from the encoding in the header record to the character set
appropriate for the group database on the receiving system. If any of the characters
cannot be translated, and if neither the −oinvalid=UTF-8 option nor the

3020 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

99749

99750

99751

99752

99753

99754

99755

99756

99757

99758

99759

99760

99761

99762

99763

99764

99765

99766

99767

99768

99769

99770

99771

99772

99773

99774

99775

99776

99777

99778

99779

99780

99781

99782

99783

99784

99785

99786

99787

99788

99789

99790

99791

99792

99793

99794

99795

Utilities pax

−oinvalid=binary option is specified, the results are implementation-defined.
When used in write or copy mode, pax shall include a gname extended header
record for each file whose group name cannot be represented entirely with the
letters and digits of the portable character set.

hdrcharset The name of the character set used to encode the value field of the gname,
linkpath, path, and uname pax extended header records. The entries in the
following table are defined to refer to known standards; additional names may be
agreed between the originator and the recipient.

<value> Formal Standard

ISO-IR∆10646∆2000∆UTF-8 ISO/IEC 10646, UTF-8 encoding
BINARY None.

If no hdrcharset extended header record is specified, the default character set used
to encode all values in extended header records shall be the ISO/IEC 10646-1: 2000
standard UTF-8 encoding.

The BINARY entry indicates that all values recorded in extended headers for
affected files are unencoded binary data from the underlying system.

linkpath The pathname of a link being created to another file, of any type, previously
archived. This record shall override the linkname field in the following ustar header
block(s). The following ustar header block shall determine the type of link created.
If typeflag of the following header block is 1, it shall be a hard link. If typeflag is 2, it
shall be a symbolic link and the linkpath value shall be the contents of the
symbolic link. The pax utility shall translate the name of the link (contents of the
symbolic link) from the encoding in the header to the character set appropriate for
the local file system. When used in write or copy mode, pax shall include a
linkpath extended header record for each link whose pathname cannot be
represented entirely with the members of the portable character set other than
NUL.

mtime The file modification time of the following file(s), equivalent to the value of the
st_mtime member of the stat structure for a file, as described in the stat() function.
This record shall override the mtime field in the following header block(s). The
modification time shall be restored if the process has appropriate privileges
required to do so. The format of the <value> shall be as described in pax Extended
Header File Times (on page 3023).

path The pathname of the following file(s). This record shall override the name and
prefix fields in the following header block(s). The pax utility shall translate the
pathname of the file from the encoding in the header to the character set
appropriate for the local file system.

When used in write or copy mode, pax shall include a path extended header record
for each file whose pathname cannot be represented entirely with the members of
the portable character set other than NUL.

realtime.any The keywords prefixed by ‘‘realtime.’’ are reserved for future standardization.

security.any The keywords prefixed by ‘‘security.’’ are reserved for future standardization.

size The size of the file in octets, expressed as a decimal number using digits from the
ISO/IEC 646: 1991 standard. This record shall override the size field in the
following header block(s). When used in write or copy mode, pax shall include a
size extended header record for each file with a size value greater than 8 589 934 591

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3021

99796

99797

99798

99799

99800

99801

99802

99803

99804

99805

99806

99807

99808

99809

99810

99811

99812

99813

99814

99815

99816

99817

99818

99819

99820

99821

99822

99823

99824

99825

99826

99827

99828

99829

99830

99831

99832

99833

99834

99835

99836

99837

99838

99839

99840

99841

pax Utilities

(octal 77 777 777 777).

uid The user ID of the file owner, expressed as a decimal number using digits from the
ISO/IEC 646: 1991 standard. This record shall override the uid field in the
following header block(s). When used in write or copy mode, pax shall include a
uid extended header record for each file whose owner ID is greater than 2 097 151
(octal 7 777 777).

uname The owner of the following file(s), formatted as a user name in the user database.
This record shall override the uid and uname fields in the following header block(s),
and any uid extended header record. When used in read, copy, or list mode, pax
shall translate the name from the encoding in the header record to the character set
appropriate for the user database on the receiving system. If any of the characters
cannot be translated, and if neither the −oinvalid=UTF-8 option nor the
−oinvalid=binary option is specified, the results are implementation-defined.
When used in write or copy mode, pax shall include a uname extended header
record for each file whose user name cannot be represented entirely with the letters
and digits of the portable character set.

If the <value> field is zero length, it shall delete any header block field, previously entered
extended header value, or global extended header value of the same name.

If a keyword in an extended header record (or in a −o option-argument) overrides or deletes a
corresponding field in the ustar header block, pax shall ignore the contents of that header block
field.

Unlike the ustar header block fields, NULs shall not delimit <value>s; all characters within the
<value> field shall be considered data for the field. None of the length limitations of the ustar
header block fields in Table 4-14 (on page 3024) shall apply to the extended header records.

pax Extended Header Keyword Precedence

This section describes the precedence in which the various header records and fields and
command line options are selected to apply to a file in the archive. When pax is used in read or
list modes, it shall determine a file attribute in the following sequence:

1. If −odelete=keyword-prefix is used, the affected attributes shall be determined from step
7., if applicable, or ignored otherwise.

2. If −okeyword:= is used, the affected attributes shall be ignored.

3. If −okeyword:=value is used, the affected attribute shall be assigned the value.

4. If there is a typeflag x extended header record, the affected attribute shall be assigned the
<value>. When extended header records conflict, the last one given in the header shall
take precedence.

5. If −okeyword=value is used, the affected attribute shall be assigned the value.

6. If there is a typeflag g global extended header record, the affected attribute shall be
assigned the <value>. When global extended header records conflict, the last one given in
the global header shall take precedence.

7. Otherwise, the attribute shall be determined from the ustar header block.

3022 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

99842

99843

99844

99845

99846

99847

99848

99849

99850

99851

99852

99853

99854

99855

99856

99857

99858

99859

99860

99861

99862

99863

99864

99865

99866

99867

99868

99869

99870

99871

99872

99873

99874

99875

99876

99877

99878

99879

99880

99881

Utilities pax

pax Extended Header File Times

The pax utility shall write an mtime record for each file in write or copy modes if the file’s
modification time cannot be represented exactly in the ustar header logical record described in
ustar Interchange Format. This can occur if the time is out of ustar range, or if the file system of
the underlying implementation supports non-integer time granularities and the time is not an
integer. All of these time records shall be formatted as a decimal representation of the time in
seconds since the Epoch. If a <period> (’.’) decimal point character is present, the digits to the
right of the point shall represent the units of a subsecond timing granularity, where the first digit
is tenths of a second and each subsequent digit is a tenth of the previous digit. In read or copy
mode, the pax utility shall truncate the time of a file to the greatest value that is not greater than
the input header file time. In write or copy mode, the pax utility shall output a time exactly if it
can be represented exactly as a decimal number, and otherwise shall generate only enough digits
so that the same time shall be recovered if the file is extracted on a system whose underlying
implementation supports the same time granularity.

ustar Interchange Format

A ustar archive tape or file shall contain a series of logical records. Each logical record shall be a
fixed-size logical record of 512 octets (see below). Although this format may be thought of as
being stored on 9-track industry-standard 12.7 mm (0.5 in) magnetic tape, other types of
transportable media are not excluded. Each file archived shall be represented by a header logical
record that describes the file, followed by zero or more logical records that give the contents of
the file. At the end of the archive file there shall be two 512-octet logical records filled with
binary zeros, interpreted as an end-of-archive indicator.

The logical records may be grouped for physical I/O operations, as described under the
−bblocksize and −x ustar options. Each group of logical records may be written with a single
operation equivalent to the write() function. On magnetic tape, the result of this write shall be a
single tape physical block. The last physical block shall always be the full size, so logical records
after the two zero logical records may contain undefined data.

The header logical record shall be structured as shown in the following table. All lengths and
offsets are in decimal.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3023

99882

99883

99884

99885

99886

99887

99888

99889

99890

99891

99892

99893

99894

99895

99896

99897

99898

99899

99900

99901

99902

99903

99904

99905

99906

99907

99908

99909

99910

pax Utilities

Table 4-14 ustar Header Block

Field Name Octet Offset Length (in Octets)

name 0 100
mode 100 8
uid 108 8
gid 116 8
size 124 12
mtime 136 12
chksum 148 8
typeflag 156 1
linkname 157 100
magic 257 6
version 263 2
uname 265 32
gname 297 32
devmajor 329 8
devminor 337 8
prefix 345 155

All characters in the header logical record shall be represented in the coded character set of the
ISO/IEC 646: 1991 standard. For maximum portability between implementations, names should
be selected from characters represented by the portable filename character set as octets with the
most significant bit zero. If an implementation supports the use of characters outside of <slash>
and the portable filename character set in names for files, users, and groups, one or more
implementation-defined encodings of these characters shall be provided for interchange
purposes.

However, the pax utility shall never create filenames on the local system that cannot be accessed
via the procedures described in POSIX.1-2008. If a filename is found on the medium that would
create an invalid filename, it is implementation-defined whether the data from the file is stored
on the file hierarchy and under what name it is stored. The pax utility may choose to ignore these
files as long as it produces an error indicating that the file is being ignored.

Each field within the header logical record is contiguous; that is, there is no padding used. Each
character on the archive medium shall be stored contiguously.

The fields magic, uname, and gname are character strings each terminated by a NUL character.
The fields name, linkname, and prefix are NUL-terminated character strings except when all
characters in the array contain non-NUL characters including the last character. The version field
is two octets containing the characters "00" (zero-zero). The typeflag contains a single character.
All other fields are leading zero-filled octal numbers using digits from the ISO/IEC 646: 1991
standard IRV. Each numeric field is terminated by one or more <space> or NUL characters.

The name and the prefix fields shall produce the pathname of the file. A new pathname shall be
formed, if prefix is not an empty string (its first character is not NUL), by concatenating prefix (up
to the first NUL character), a <slash> character, and name; otherwise, name is used alone. In
either case, name is terminated at the first NUL character. If prefix begins with a NUL character, it
shall be ignored. In this manner, pathnames of at most 256 characters can be supported. If a
pathname does not fit in the space provided, pax shall notify the user of the error, and shall not
store any part of the file—header or data—on the medium.

The linkname field, described below, shall not use the prefix to produce a pathname. As such, a
linkname is limited to 100 characters. If the name does not fit in the space provided, pax shall

3024 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

99911

99912

99913

99914

99915

99916

99917

99918

99919

99920

99921

99922

99923

99924

99925

99926

99927

99928

99929

99930

99931

99932

99933

99934

99935

99936

99937

99938

99939

99940

99941

99942

99943

99944

99945

99946

99947

99948

99949

99950

99951

99952

99953

99954

99955

99956

99957

Utilities pax

notify the user of the error, and shall not attempt to store the link on the medium.

The mode field provides 12 bits encoded in the ISO/IEC 646: 1991 standard octal digit
representation. The encoded bits shall represent the following values:

Table 4-15 ustar mode Field

Bit Value POSIX.1-2008 Bit Description

04 000 S_ISUID Set UID on execution.
02 000 S_ISGID Set GID on execution.
01 000 <reserved> Reserved for future standardization.
00 400 S_IRUSR Read permission for file owner class.
00 200 S_IWUSR Write permission for file owner class.
00 100 S_IXUSR Execute/search permission for file owner class.
00 040 S_IRGRP Read permission for file group class.
00 020 S_IWGRP Write permission for file group class.
00 010 S_IXGRP Execute/search permission for file group class.
00 004 S_IROTH Read permission for file other class.
00 002 S_IWOTH Write permission for file other class.
00 001 S_IXOTH Execute/search permission for file other class.

When appropriate privileges are required to set one of these mode bits, and the user restoring
the files from the archive does not have appropriate privileges, the mode bits for which the user
does not have appropriate privileges shall be ignored. Some of the mode bits in the archive
format are not mentioned elsewhere in this volume of POSIX.1-2008. If the implementation does
not support those bits, they may be ignored.

The uid and gid fields are the user and group ID of the owner and group of the file, respectively.

The size field is the size of the file in octets. If the typeflag field is set to specify a file to be of type
1 (a link) or 2 (a symbolic link), the size field shall be specified as zero. If the typeflag field is set to
specify a file of type 5 (directory), the size field shall be interpreted as described under the
definition of that record type. No data logical records are stored for types 1, 2, or 5. If the typeflag
field is set to 3 (character special file), 4 (block special file), or 6 (FIFO), the meaning of the size
field is unspecified by this volume of POSIX.1-2008, and no data logical records shall be stored
on the medium. Additionally, for type 6, the size field shall be ignored when reading. If the
typeflag field is set to any other value, the number of logical records written following the header
shall be (size+511)/512, ignoring any fraction in the result of the division.

The mtime field shall be the modification time of the file at the time it was archived. It is the
ISO/IEC 646: 1991 standard representation of the octal value of the modification time obtained
from the stat() function.

The chksum field shall be the ISO/IEC 646: 1991 standard IRV representation of the octal value of
the simple sum of all octets in the header logical record. Each octet in the header shall be treated
as an unsigned value. These values shall be added to an unsigned integer, initialized to zero, the
precision of which is not less than 17 bits. When calculating the checksum, the chksum field is
treated as if it were all <space> characters.

The typeflag field specifies the type of file archived. If a particular implementation does not
recognize the type, or the user does not have appropriate privileges to create that type, the file
shall be extracted as if it were a regular file if the file type is defined to have a meaning for the
size field that could cause data logical records to be written on the medium (see the previous
description for size). If conversion to a regular file occurs, the pax utility shall produce an error
indicating that the conversion took place. All of the typeflag fields shall be coded in the

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3025

99958

99959

99960

99961

99962

99963

99964

99965

99966

99967

99968

99969

99970

99971

99972

99973

99974

99975

99976

99977

99978

99979

99980

99981

99982

99983

99984

99985

99986

99987

99988

99989

99990

99991

99992

99993

99994

99995

99996

99997

99998

99999

100000

100001

100002

100003

pax Utilities

ISO/IEC 646: 1991 standard IRV:

0 Represents a regular file. For backwards-compatibility, a typeflag value of binary zero
(’\0’) should be recognized as meaning a regular file when extracting files from the
archive. Archives written with this version of the archive file format create regular files
with a typeflag value of the ISO/IEC 646: 1991 standard IRV ’0’.

1 Represents a file linked to another file, of any type, previously archived. Such files are
identified by having the same device and file serial numbers, and pathnames that refer
to different directory entries. All such files shall be archived as linked files. The linked-
to name is specified in the linkname field with a NUL-character terminator if it is less
than 100 octets in length.

2 Represents a symbolic link. The contents of the symbolic link shall be stored in the
linkname field.

3,4 Represent character special files and block special files respectively. In this case the
devmajor and devminor fields shall contain information defining the device, the format
of which is unspecified by this volume of POSIX.1-2008. Implementations may map the
device specifications to their own local specification or may ignore the entry.

5 Specifies a directory or subdirectory. On systems where disk allocation is performed on
a directory basis, the size field shall contain the maximum number of octets (which may
be rounded to the nearest disk block allocation unit) that the directory may hold. A size
field of zero indicates no such limiting. Systems that do not support limiting in this
manner should ignore the size field.

6 Specifies a FIFO special file. Note that the archiving of a FIFO file archives the existence
of this file and not its contents.

7 Reserved to represent a file to which an implementation has associated some high-
performance attribute. Implementations without such extensions should treat this file
as a regular file (type 0).

A-Z The letters ’A’ to ’Z’, inclusive, are reserved for custom implementations. All other
values are reserved for future versions of this standard.

It is unspecified whether files with pathnames that refer to the same directory entry are archived
as linked files or as separate files. If they are archived as linked files, this means that attempting
to extract both pathnames from the resulting archive will always cause an error (unless the −u
option is used) because the link cannot be created.

It is unspecified whether files with the same device and file serial numbers being appended to
an archive are treated as linked files to members that were in the archive before the append.

Attempts to archive a socket using ustar interchange format shall produce a diagnostic message.
Handling of other file types is implementation-defined.

The magic field is the specification that this archive was output in this archive format. If this field
contains ustar (the five characters from the ISO/IEC 646: 1991 standard IRV shown followed by
NUL), the uname and gname fields shall contain the ISO/IEC 646: 1991 standard IRV
representation of the owner and group of the file, respectively (truncated to fit, if necessary).
When the file is restored by a privileged, protection-preserving version of the utility, the user
and group databases shall be scanned for these names. If found, the user and group IDs
contained within these files shall be used rather than the values contained within the uid and gid
fields.

3026 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

100004

100005

100006

100007

100008

100009

100010

100011

100012

100013

100014

100015

100016

100017

100018

100019

100020

100021

100022

100023

100024

100025

100026

100027

100028

100029

100030

100031

100032

100033

100034

100035

100036

100037

100038

100039

100040

100041

100042

100043

100044

100045

100046

100047

Utilities pax

cpio Interchange Format

The octet-oriented cpio archive format shall be a series of entries, each comprising a header that
describes the file, the name of the file, and then the contents of the file.

An archive may be recorded as a series of fixed-size blocks of octets. This blocking shall be used
only to make physical I/O more efficient. The last group of blocks shall always be at the full
size.

For the octet-oriented cpio archive format, the individual entry information shall be in the order
indicated and described by the following table; see also the <cpio.h> header.

Table 4-16 Octet-Oriented cpio Archive Entry

Header Field Name Length (in Octets) Interpreted as

c_magic 6 Octal number
c_dev 6 Octal number
c_ino 6 Octal number
c_mode 6 Octal number
c_uid 6 Octal number
c_gid 6 Octal number
c_nlink 6 Octal number
c_rdev 6 Octal number
c_mtime 11 Octal number
c_namesize 6 Octal number
c_filesize 11 Octal number

Filename Field Name Length Interpreted as

c_name c_namesize Pathname string

File Data Field Name Length Interpreted as

c_filedata c_filesize Data

cpio Header

For each file in the archive, a header as defined previously shall be written. The information in
the header fields is written as streams of the ISO/IEC 646: 1991 standard characters interpreted
as octal numbers. The octal numbers shall be extended to the necessary length by appending the
ISO/IEC 646: 1991 standard IRV zeros at the most-significant-digit end of the number; the result
is written to the most-significant digit of the stream of octets first. The fields shall be interpreted
as follows:

c_magic Identify the archive as being a transportable archive by containing the identifying
value "070707".

c_dev, c_ino Contains values that uniquely identify the file within the archive (that is, no files
contain the same pair of c_dev and c_ino values unless they are links to the same
file). The values shall be determined in an unspecified manner.

c_mode Contains the file type and access permissions as defined in the following table.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3027

100048

100049

100050

100051

100052

100053

100054

100055

100056

100057

100058

100059

100060

100061

100062

100063

100064

100065

100066

100067

100068

100069

100070

100071

100072

100073

100074

100075

100076

100077

100078

100079

100080

100081

100082

100083

100084

100085

pax Utilities

Table 4-17 Values for cpio c_mode Field

File Permissions Name Value Indicates

C_IRUSR 000 400 Read by owner
C_IWUSR 000 200 Write by owner
C_IXUSR 000 100 Execute by owner
C_IRGRP 000 040 Read by group
C_IWGRP 000 020 Write by group
C_IXGRP 000 010 Execute by group
C_IROTH 000 004 Read by others
C_IWOTH 000 002 Write by others
C_IXOTH 000 001 Execute by others
C_ISUID 004 000 Set uid
C_ISGID 002 000 Set gid
C_ISVTX 001 000 Reserved

File Type Name Value Indicates

C_ISDIR 040 000 Directory
C_ISFIFO 010 000 FIFO
C_ISREG 0100 000 Regular file
C_ISLNK 0120 000 Symbolic link

C_ISBLK 060 000 Block special file
C_ISCHR 020 000 Character special file
C_ISSOCK 0140 000 Socket

C_ISCTG 0110 000 Reserved

Directories, FIFOs, symbolic links, and regular files shall be supported on a system
conforming to this volume of POSIX.1-2008; additional values defined previously
are reserved for compatibility with existing systems. Additional file types may be
supported; however, such files should not be written to archives intended to be
transported to other systems.

c_uid Contains the user ID of the owner.

c_gid Contains the group ID of the group.

c_nlink Contains a number greater than or equal to the number of links in the archive
referencing the file. If the −a option is used to append to a cpio archive, then the pax
utility need not account for the files in the existing part of the archive when
calculating the c_nlink values for the appended part of the archive, and need not
alter the c_nlink values in the existing part of the archive if additional files with the
same c_dev and c_ino values are appended to the archive.

c_rdev Contains implementation-defined information for character or block special files.

c_mtime Contains the latest time of modification of the file at the time the archive was
created.

c_namesize Contains the length of the pathname, including the terminating NUL character.

c_filesize Contains the length in octets of the data section following the header structure.

3028 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

100086

100087

100088

100089

100090

100091

100092

100093

100094

100095

100096

100097

100098

100099

100100

100101

100102

100103

100104

100105

100106

100107

100108

100109

100110

100111

100112

100113

100114

100115

100116

100117

100118

100119

100120

100121

100122

100123

100124

100125

100126

Utilities pax

cpio Filename

The c_name field shall contain the pathname of the file. The length of this field in octets is the
value of c_namesize.

If a filename is found on the medium that would create an invalid pathname, it is
implementation-defined whether the data from the file is stored on the file hierarchy and under
what name it is stored.

All characters shall be represented in the ISO/IEC 646: 1991 standard IRV. For maximum
portability between implementations, names should be selected from characters represented by
the portable filename character set as octets with the most significant bit zero. If an
implementation supports the use of characters outside the portable filename character set in
names for files, users, and groups, one or more implementation-defined encodings of these
characters shall be provided for interchange purposes. However, the pax utility shall never create
filenames on the local system that cannot be accessed via the procedures described previously in
this volume of POSIX.1-2008. If a filename is found on the medium that would create an invalid
filename, it is implementation-defined whether the data from the file is stored on the local file
system and under what name it is stored. The pax utility may choose to ignore these files as long
as it produces an error indicating that the file is being ignored.

cpio File Data

Following c_name, there shall be c_filesize octets of data. Interpretation of such data occurs in a
manner dependent on the file. For regular files, the data shall consist of the contents of the file.
For symbolic links, the data shall consist of the contents of the symbolic link. If c_filesize is zero,
no data shall be contained in c_filedata.

When restoring from an archive:

• If the user does not have appropriate privileges to create a file of the specified type, pax
shall ignore the entry and write an error message to standard error.

• Only regular files and symbolic links have data to be restored. Presuming a regular file
meets any selection criteria that might be imposed on the format-reading utility by the
user, such data shall be restored.

• If a user does not have appropriate privileges to set a particular mode flag, the flag shall be
ignored. Some of the mode flags in the archive format are not mentioned elsewhere in this
volume of POSIX.1-2008. If the implementation does not support those flags, they may be
ignored.

cpio Special Entries

FIFO special files, directories, and the trailer shall be recorded with c_filesize equal to zero.
Symbolic links shall be recorded with c_filesize equal to the length of the contents of the symbolic
link. For other special files, c_filesize is unspecified by this volume of POSIX.1-2008. The header
for the next file entry in the archive shall be written directly after the last octet of the file entry
preceding it. A header denoting the filename TRAILER!!! shall indicate the end of the archive;
the contents of octets in the last block of the archive following such a header are undefined.

EXIT STATUS
The following exit values shall be returned:

0 All files were processed successfully.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3029

100127

100128

100129

100130

100131

100132

100133

100134

100135

100136

100137

100138

100139

100140

100141

100142

100143

100144

100145

100146

100147

100148

100149

100150

100151

100152

100153

100154

100155

100156

100157

100158

100159

100160

100161

100162

100163

100164

100165

100166

100167

100168

pax Utilities

>0 An error occurred.

CONSEQUENCES OF ERRORS
If pax cannot create a file or a link when reading an archive or cannot find a file when writing an
archive, or cannot preserve the user ID, group ID, or file mode when the −p option is specified, a
diagnostic message shall be written to standard error and a non-zero exit status shall be
returned, but processing shall continue. In the case where pax cannot create a link to a file, pax
shall not, by default, create a second copy of the file.

If the extraction of a file from an archive is prematurely terminated by a signal or error, pax may
have only partially extracted the file or (if the −n option was not specified) may have extracted a
file of the same name as that specified by the user, but which is not the file the user wanted.
Additionally, the file modes of extracted directories may have additional bits from the S_IRWXU
mask set as well as incorrect modification and access times.

APPLICATION USAGE
Caution is advised when using the −a option to append to a cpio format archive. If any of the
files being appended happen to be given the same c_dev and c_ino values as a file in the existing
part of the archive, then they may be treated as links to that file on extraction. Thus, it is risky to
use −a with cpio format except when it is done on the same system that the original archive was
created on, and with the same pax utility, and in the knowledge that there has been little or no
file system activity since the original archive was created that could lead to any of the files
appended being given the same c_dev and c_ino values as an unrelated file in the existing part of
the archive. Also, when (intentionally) appending additional links to a file in the existing part of
the archive, the c_nlink values in the modified archive can be smaller than the number of links to
the file in the archive, which may mean that the links are not preserved on extraction.

The −p (privileges) option was invented to reconcile differences between historical tar and cpio
implementations. In particular, the two utilities use −m in diametrically opposed ways. The −p
option also provides a consistent means of extending the ways in which future file attributes can
be addressed, such as for enhanced security systems or high-performance files. Although it may
seem complex, there are really two modes that are most commonly used:

−p e ‘‘Preserve everything’’. This would be used by the historical superuser, someone with
all appropriate privileges, to preserve all aspects of the files as they are recorded in the
archive. The e flag is the sum of o and p, and other implementation-defined attributes.

−p p ‘‘Preserve’’ the file mode bits. This would be used by the user with regular privileges
who wished to preserve aspects of the file other than the ownership. The file times are
preserved by default, but two other flags are offered to disable these and use the time
of extraction.

The one pathname per line format of standard input precludes pathnames containing <newline>
characters. Although such pathnames violate the portable filename guidelines, they may exist
and their presence may inhibit usage of pax within shell scripts. This problem is inherited from
historical archive programs. The problem can be avoided by listing filename arguments on the
command line instead of on standard input.

It is almost certain that appropriate privileges are required for pax to accomplish parts of this
volume of POSIX.1-2008. Specifically, creating files of type block special or character special,
restoring file access times unless the files are owned by the user (the −t option), or preserving file
owner, group, and mode (the −p option) all probably require appropriate privileges.

In read mode, implementations are permitted to overwrite files when the archive has multiple
members with the same name. This may fail if permissions on the first version of the file do not
permit it to be overwritten.

3030 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

100169

100170

100171

100172

100173

100174

100175

100176

100177

100178

100179

100180

100181

100182

100183

100184

100185

100186

100187

100188

100189

100190

100191

100192

100193

100194

100195

100196

100197

100198

100199

100200

100201

100202

100203

100204

100205

100206

100207

100208

100209

100210

100211

100212

100213

100214

100215

Utilities pax

The cpio and ustar formats can only support files up to 8 589 934 592 bytes (8 ∗ 2ˆ30) in size.

When archives containing binary header information are listed , the filenames printed may
cause strange behavior on some terminals.

EXAMPLES
The following command:

pax −w −f /dev/rmt/1m .

copies the contents of the current directory to tape drive 1, medium density (assuming historical
System V device naming procedures—the historical BSD device name would be /dev/rmt9).

The following commands:

mkdir newdir

pax −rw olddir newdir

copy the olddir directory hierarchy to newdir.

pax −r −s ’,ˆ//*usr//*,,’ −f a.pax

reads the archive a.pax, with all files rooted in /usr in the archive extracted relative to the current
directory.

Using the option:

−o listopt="%M %(atime)T %(size)D %(name)s"

overrides the default output description in Standard Output and instead writes:

−rw−rw− − − Jan 12 15:53 2003 1492 /usr/foo/bar

Using the options:

−o listopt=’%L\t%(size)D\n%.7’ \
−o listopt=’(name)s\n%(atime)T\n%T’

overrides the default output description in Standard Output and instead writes:

/usr/foo/bar −> /tmp 1492
/usr/fo
Jan 12 15:53 1991
Jan 31 15:53 2003

RATIONALE
The pax utility was new for the ISO POSIX-2: 1993 standard. It represents a peaceful compromise
between advocates of the historical tar and cpio utilities.

A fundamental difference between cpio and tar was in the way directories were treated. The cpio
utility did not treat directories differently from other files, and to select a directory and its
contents required that each file in the hierarchy be explicitly specified. For tar, a directory
matched every file in the file hierarchy it rooted.

The pax utility offers both interfaces; by default, directories map into the file hierarchy they root.
The −d option causes pax to skip any file not explicitly referenced, as cpio historically did. The tar
−style behavior was chosen as the default because it was believed that this was the more
common usage and because tar is the more commonly available interface, as it was historically
provided on both System V and BSD implementations.

The data interchange format specification in this volume of POSIX.1-2008 requires that processes
with ‘‘appropriate privileges’’ shall always restore the ownership and permissions of extracted

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3031

100216

100217

100218

100219

100220

100221

100222

100223

100224

100225

100226

100227

100228

100229

100230

100231

100232

100233

100234

100235

100236

100237

100238

100239

100240

100241

100242

100243

100244

100245

100246

100247

100248

100249

100250

100251

100252

100253

100254

100255

100256

pax Utilities

files exactly as archived. If viewed from the historic equivalence between superuser and
‘‘appropriate privileges’’, there are two problems with this requirement. First, users running as
superusers may unknowingly set dangerous permissions on extracted files. Second, it is
needlessly limiting, in that superusers cannot extract files and own them as superuser unless the
archive was created by the superuser. (It should be noted that restoration of ownerships and
permissions for the superuser, by default, is historical practice in cpio, but not in tar.) In order to
avoid these two problems, the pax specification has an additional ‘‘privilege’’ mechanism, the −p
option. Only a pax invocation with the privileges needed, and which has the −p option set using
the e specification character, has appropriate privileges to restore full ownership and permission
information.

Note also that this volume of POSIX.1-2008 requires that the file ownership and access
permissions shall be set, on extraction, in the same fashion as the creat() function when provided
with the mode stored in the archive. This means that the file creation mask of the user is applied
to the file permissions.

Users should note that directories may be created by pax while extracting files with permissions
that are different from those that existed at the time the archive was created. When extracting
sensitive information into a directory hierarchy that no longer exists, users are encouraged to set
their file creation mask appropriately to protect these files during extraction.

The table of contents output is written to standard output to facilitate pipeline processing.

An early proposal had hard links displaying for all pathnames. This was removed because it
complicates the output of the case where −v is not specified and does not match historical cpio
usage. The hard-link information is available in the −v display.

The description of the −l option allows implementations to make hard links to symbolic links.
POSIX.1-2008 does not specify any way to create a hard link to a symbolic link, but many
implementations provide this capability as an extension. If there are hard links to symbolic links
when an archive is created, the implementation is required to archive the hard link in the archive
(unless −H or −L is specified). When in read mode and in copy mode, implementations
supporting hard links to symbolic links should use them when appropriate.

The archive formats inherited from the POSIX.1-1990 standard have certain restrictions that have
been brought along from historical usage. For example, there are restrictions on the length of
pathnames stored in the archive. When pax is used in copy(−rw) mode (copying directory
hierarchies), the ability to use extensions from the −xpax format overcomes these restrictions.

The default blocksize value of 5 120 bytes for cpio was selected because it is one of the standard
block-size values for cpio, set when the −B option is specified. (The other default block-size value
for cpio is 512 bytes, and this was considered to be too small.) The default block value of 10 240
bytes for tar was selected because that is the standard block-size value for BSD tar. The
maximum block size of 32 256 bytes (215−512 bytes) is the largest multiple of 512 bytes that fits
into a signed 16-bit tape controller transfer register. There are known limitations in some
historical systems that would prevent larger blocks from being accepted. Historical values were
chosen to improve compatibility with historical scripts using dd or similar utilities to manipulate
archives. Also, default block sizes for any file type other than character special file has been
deleted from this volume of POSIX.1-2008 as unimportant and not likely to affect the structure of
the resulting archive.

Implementations are permitted to modify the block-size value based on the archive format or the
device to which the archive is being written. This is to provide implementations with the
opportunity to take advantage of special types of devices, and it should not be used without a
great deal of consideration as it almost certainly decreases archive portability.

3032 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

100257

100258

100259

100260

100261

100262

100263

100264

100265

100266

100267

100268

100269

100270

100271

100272

100273

100274

100275

100276

100277

100278

100279

100280

100281

100282

100283

100284

100285

100286

100287

100288

100289

100290

100291

100292

100293

100294

100295

100296

100297

100298

100299

100300

100301

100302

100303

Utilities pax

The intended use of the −n option was to permit extraction of one or more files from the archive
without processing the entire archive. This was viewed by the standard developers as offering
significant performance advantages over historical implementations. The −n option in early
proposals had three effects; the first was to cause special characters in patterns to not be treated
specially. The second was to cause only the first file that matched a pattern to be extracted. The
third was to cause pax to write a diagnostic message to standard error when no file was found
matching a specified pattern. Only the second behavior is retained by this volume of
POSIX.1-2008, for many reasons. First, it is in general not acceptable for a single option to have
multiple effects. Second, the ability to make pattern matching characters act as normal characters
is useful for parts of pax other than file extraction. Third, a finer degree of control over the
special characters is useful because users may wish to normalize only a single special character
in a single filename. Fourth, given a more general escape mechanism, the previous behavior of
the −n option can be easily obtained using the −s option or a sed script. Finally, writing a
diagnostic message when a pattern specified by the user is unmatched by any file is useful
behavior in all cases.

In this version, the −n was removed from the copy mode synopsis of pax; it is inapplicable
because there are no pattern operands specified in this mode.

There is another method than pax for copying subtrees in POSIX.1-2008 described as part of the
cp utility. Both methods are historical practice: cp provides a simpler, more intuitive interface,
while pax offers a finer granularity of control. Each provides additional functionality to the
other; in particular, pax maintains the hard-link structure of the hierarchy while cp does not. It is
the intention of the standard developers that the results be similar (using appropriate option
combinations in both utilities). The results are not required to be identical; there seemed
insufficient gain to applications to balance the difficulty of implementations having to guarantee
that the results would be exactly identical.

A single archive may span more than one file. It is suggested that implementations provide
informative messages to the user on standard error whenever the archive file is changed.

The −d option (do not create intermediate directories not listed in the archive) found in early
proposals was originally provided as a complement to the historic −d option of cpio. It has been
deleted.

The −s option in early proposals specified a subset of the substitution command from the ed
utility. As there was no reason for only a subset to be supported, the −s option is now compatible
with the current ed specification. Since the delimiter can be any non-null character, the following
usage with single <space> characters is valid:

pax −s " foo bar " ...

The −t description is worded so as to note that this may cause the access time update caused by
some other activity (which occurs while the file is being read) to be overwritten.

The default behavior of pax with regard to file modification times is the same as historical
implementations of tar. It is not the historical behavior of cpio.

Because the −i option uses /dev/tty, utilities without a controlling terminal are not able to use
this option.

The −y option, found in early proposals, has been deleted because a line containing a single
<period> for the −i option has equivalent functionality. The special lines for the −i option (a
single <period> and the empty line) are historical practice in cpio.

In early drafts, a −echarmap option was included to increase portability of files between systems
using different coded character sets. This option was omitted because it was apparent that

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3033

100304

100305

100306

100307

100308

100309

100310

100311

100312

100313

100314

100315

100316

100317

100318

100319

100320

100321

100322

100323

100324

100325

100326

100327

100328

100329

100330

100331

100332

100333

100334

100335

100336

100337

100338

100339

100340

100341

100342

100343

100344

100345

100346

100347

100348

100349

pax Utilities

consensus could not be formed for it. In this version, the use of UTF-8 should be an adequate
substitute.

The ISO POSIX-2: 1993 standard and ISO POSIX-1 standard requirements for pax, however,
made it very difficult to create a single archive containing files created using extended characters
provided by different locales. This version adds the hdrcharset keyword to make it possible to
archive files in these cases without dropping files due to translation errors.

Translating filenames and other attributes from a locale’s encoding to UTF-8 and then back again
can lose information, as the resulting filename might not be byte-for-byte equivalent to the
original. To avoid this problem, users can specify the −o hdrcharset=binary option, which will
cause the resulting archive to use binary format for all names and attributes. Such archives are
not portable among hosts that use different native encodings (e.g., EBCDIC versus ASCII-based
encodings), but they will allow interchange among the vast majority of POSIX file systems in
practical use. Also, the −o hdrcharset=binary option will cause pax in copy mode to behave
more like other standard utilities such as cp.

If the values specified by the −o exthdr.name=value, −o globexthdr.name=value, or by
$TMPDIR (if −o globexthdr.name is not specified) require a character encoding other than that
described in the ISO/IEC 646: 1991 standard, a path extended header record will have to be
created for the file. If a hdrcharset extended header record is active for such headers, it will
determine the codeset used for the value field in these extended path header records. These path
extended header records always need to be created when writing an archive even if
hdrcharset=binary has been specified and would contain the same (binary) data that appears in
the ustar header record prefix and name fields. (In other words, an extended header path record
is always required to be generated if the prefix or name fields contain non-ASCII characters even
when hdrcharset=binary is also in effect for that file.)

The −k option was added to address international concerns about the dangers involved in the
character set transformations of −e (if the target character set were different from the source, the
filenames might be transformed into names matching existing files) and also was made more
general to protect files transferred between file systems with different {NAME_MAX} values
(truncating a filename on a smaller system might also inadvertently overwrite existing files). As
stated, it prevents any overwriting, even if the target file is older than the source. This version
adds more granularity of options to solve this problem by introducing the −oinvalid=option—
specifically the UTF-8 and binary actions. (Note that an existing file is still subject to overwriting
in this case. The −k option closes that loophole.)

Some of the file characteristics referenced in this volume of POSIX.1-2008 might not be
supported by some archive formats. For example, neither the tar nor cpio formats contain the
file access time. For this reason, the e specification character has been provided, intended to
cause all file characteristics specified in the archive to be retained.

It is required that extracted directories, by default, have their access and modification times and
permissions set to the values specified in the archive. This has obvious problems in that the
directories are almost certainly modified after being extracted and that directory permissions
may not permit file creation. One possible solution is to create directories with the mode
specified in the archive, as modified by the umask of the user, with sufficient permissions to
allow file creation. After all files have been extracted, pax would then reset the access and
modification times and permissions as necessary.

The list-mode formatting description borrows heavily from the one defined by the printf utility.
However, since there is no separate operand list to get conversion arguments, the format was
extended to allow specifying the name of the conversion argument as part of the conversion
specification.

3034 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

100350

100351

100352

100353

100354

100355

100356

100357

100358

100359

100360

100361

100362

100363

100364

100365

100366

100367

100368

100369

100370

100371

100372

100373

100374

100375

100376

100377

100378

100379

100380

100381

100382

100383

100384

100385

100386

100387

100388

100389

100390

100391

100392

100393

100394

100395

100396

100397

Utilities pax

The T conversion specifier allows time fields to be displayed in any of the date formats. Unlike
the ls utility, pax does not adjust the format when the date is less than six months in the past.
This makes parsing the output more predictable.

The D conversion specifier handles the ability to display the major/minor or file size, as with ls,
by using %−8(size)D.

The L conversion specifier handles the ls display for symbolic links.

Conversion specifiers were added to generate existing known types used for ls.

pax Interchange Format

The new POSIX data interchange format was developed primarily to satisfy international
concerns that the ustar and cpio formats did not provide for file, user, and group names encoded
in characters outside a subset of the ISO/IEC 646: 1991 standard. The standard developers
realized that this new POSIX data interchange format should be very extensible because there
were other requirements they foresaw in the near future:

• Support international character encodings and locale information

• Support security information (ACLs, and so on)

• Support future file types, such as realtime or contiguous files

• Include data areas for implementation use

• Support systems with words larger than 32 bits and timers with subsecond granularity

The following were not goals for this format because these are better handled by separate
utilities or are inappropriate for a portable format:

• Encryption

• Compression

• Data translation between locales and codesets

• inode storage

The format chosen to support the goals is an extension of the ustar format. Of the two formats
previously available, only the ustar format was selected for extensions because:

• It was easier to extend in an upwards-compatible way. It offered version flags and header
block type fields with room for future standardization. The cpio format, while possessing a
more flexible file naming methodology, could not be extended without breaking some
theoretical implementation or using a dummy filename that could be a legitimate filename.

• Industry experience since the original ‘‘tar wars’’ fought in developing the ISO POSIX-1
standard has clearly been in favor of the ustar format, which is generally the default
output format selected for pax implementations on new systems.

The new format was designed with one additional goal in mind: reasonable behavior when an
older tar or pax utility happened to read an archive. Since the POSIX.1-1990 standard mandated
that a ‘‘format-reading utility’’ had to treat unrecognized typeflag values as regular files, this
allowed the format to include all the extended information in a pseudo-regular file that
preceded each real file. An option is given that allows the archive creator to set up reasonable
names for these files on the older systems. Also, the normative text suggests that reasonable file
access values be used for this ustar header block. Making these header files inaccessible for
convenient reading and deleting would not be reasonable. File permissions of 600 or 700 are
suggested.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3035

100398

100399

100400

100401

100402

100403

100404

100405

100406

100407

100408

100409

100410

100411

100412

100413

100414

100415

100416

100417

100418

100419

100420

100421

100422

100423

100424

100425

100426

100427

100428

100429

100430

100431

100432

100433

100434

100435

100436

100437

100438

100439

pax Utilities

The ustar typeflag field was used to accommodate the additional functionality of the new format
rather than magic or version because the POSIX.1-1990 standard (and, by reference, the previous
version of pax), mandated the behavior of the format-reading utility when it encountered an
unknown typeflag, but was silent about the other two fields.

Early proposals for the first version of this standard contained a proposed archive format that
was based on compatibility with the standard for tape files (ISO 1001, similar to the format used
historically on many mainframes and minicomputers). This format was overly complex and
required considerable overhead in volume and header records. Furthermore, the standard
developers felt that it would not be acceptable to the community of POSIX developers, so it was
later changed to be a format more closely related to historical practice on POSIX systems.

The prefix and name split of pathnames in ustar was replaced by the single path extended
header record for simplicity.

The concept of a global extended header (typeflagg) was controversial. If this were applied to an
archive being recorded on magnetic tape, a few unreadable blocks at the beginning of the tape
could be a serious problem; a utility attempting to extract as many files as possible from a
damaged archive could lose a large percentage of file header information in this case. However,
if the archive were on a reliable medium, such as a CD-ROM, the global extended header offers
considerable potential size reductions by eliminating redundant information. Thus, the text
warns against using the global method for unreliable media and provides a method for
implanting global information in the extended header for each file, rather than in the typeflag g
records.

No facility for data translation or filtering on a per-file basis is included because the standard
developers could not invent an interface that would allow this in an efficient manner. If a filter,
such as encryption or compression, is to be applied to all the files, it is more efficient to apply the
filter to the entire archive as a single file. The standard developers considered interfaces that
would invoke a shell script for each file going into or out of the archive, but the system overhead
in this approach was considered to be too high.

One such approach would be to have filter= records that give a pathname for an executable.
When the program is invoked, the file and archive would be open for standard input/output
and all the header fields would be available as environment variables or command-line
arguments. The standard developers did discuss such schemes, but they were omitted from
POSIX.1-2008 due to concerns about excessive overhead. Also, the program itself would need to
be in the archive if it were to be used portably.

There is currently no portable means of identifying the character set(s) used for a file in the file
system. Therefore, pax has not been given a mechanism to generate charset records
automatically. The only portable means of doing this is for the user to write the archive using the
−ocharset=string command line option. This assumes that all of the files in the archive use the
same encoding. The ‘‘implementation-defined’’ text is included to allow for a system that can
identify the encodings used for each of its files.

The table of standards that accompanies the charset record description is acknowledged to be
very limited. Only a limited number of character set standards is reasonable for maximal
interchange. Any character set is, of course, possible by prior agreement. It was suggested that
EBCDIC be listed, but it was omitted because it is not defined by a formal standard. Formal
standards, and then only those with reasonably large followings, can be included here, simply as
a matter of practicality. The <value>s represent names of officially registered character sets in the
format required by the ISO 2375: 1985 standard.

The normal <comma> or <blank>-separated list rules are not followed in the case of keyword
options to allow ease of argument parsing for getopts.

3036 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

100440

100441

100442

100443

100444

100445

100446

100447

100448

100449

100450

100451

100452

100453

100454

100455

100456

100457

100458

100459

100460

100461

100462

100463

100464

100465

100466

100467

100468

100469

100470

100471

100472

100473

100474

100475

100476

100477

100478

100479

100480

100481

100482

100483

100484

100485

100486

100487

Utilities pax

Further information on character encodings is in pax Archive Character Set Encoding/Decoding
(on page 3038).

The standard developers have reserved keyword name space for vendor extensions. It is
suggested that the format to be used is:

VENDOR.keyword

where VENDOR is the name of the vendor or organization in all uppercase letters. It is further
suggested that the keyword following the <period> be named differently than any of the
standard keywords so that it could be used for future standardization, if appropriate, by
omitting the VENDOR prefix.

The <length> field in the extended header record was included to make it simpler to step
through the records, even if a record contains an unknown format (to a particular pax) with
complex interactions of special characters. It also provides a minor integrity checkpoint within
the records to aid a program attempting to recover files from a damaged archive.

There are no extended header versions of the devmajor and devminor fields because the
unspecified format ustar header field should be sufficient. If they are not, vendor-specific
extended keywords (such as VENDOR.devmajor) should be used.

Device and i-number labeling of files was not adopted from cpio; files are interchanged strictly
on a symbolic name basis, as in ustar.

Just as with the ustar format descriptions, the new format makes no special arrangements for
multi-volume archives. Each of the pax archive types is assumed to be inside a single POSIX file
and splitting that file over multiple volumes (diskettes, tape cartridges, and so on), processing
their labels, and mounting each in the proper sequence are considered to be implementation
details that cannot be described portably.

The pax format is intended for interchange, not only for backup on a single (family of) systems.
It is not as densely packed as might be possible for backup:

• It contains information as coded characters that could be coded in binary.

• It identifies extended records with name fields that could be omitted in favor of a fixed-
field layout.

• It translates names into a portable character set and identifies locale-related information,
both of which are probably unnecessary for backup.

The requirements on restoring from an archive are slightly different from the historical wording,
allowing for non-monolithic privilege to bring forward as much as possible. In particular,
attributes such as ‘‘high performance file’’ might be broadly but not universally granted while
set-user-ID or chown() might be much more restricted. There is no implication in POSIX.1-2008
that the security information be honored after it is restored to the file hierarchy, in spite of what
might be improperly inferred by the silence on that topic. That is a topic for another standard.

Links are recorded in the fashion described here because a link can be to any file type. It is
desirable in general to be able to restore part of an archive selectively and restore all of those files
completely. If the data is not associated with each link, it is not possible to do this. However, the
data associated with a file can be large, and when selective restoration is not needed, this can be
a significant burden. The archive is structured so that files that have no associated data can
always be restored by the name of any link name of any link, and the user may choose whether
data is recorded with each instance of a file that contains data. The format permits mixing of
both types of links in a single archive; this can be done for special needs, and pax is expected to
interpret such archives on input properly, despite the fact that there is no pax option that would

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3037

100488

100489

100490

100491

100492

100493

100494

100495

100496

100497

100498

100499

100500

100501

100502

100503

100504

100505

100506

100507

100508

100509

100510

100511

100512

100513

100514

100515

100516

100517

100518

100519

100520

100521

100522

100523

100524

100525

100526

100527

100528

100529

100530

100531

100532

pax Utilities

force this mixed case on output. (When −o linkdata is used, the output must contain the
duplicate data, but the implementation is free to include it or omit it when −o linkdata is not
used.)

The time values are included as extended header records for those implementations needing
more than the eleven octal digits allowed by the ustar format. Portable file timestamps cannot be
negative. If pax encounters a file with a negative timestamp in copy or write mode, it can reject
the file, substitute a non-negative timestamp, or generate a non-portable timestamp with a
leading ’−’. Even though some implementations can support finer file-time granularities than
seconds, the normative text requires support only for seconds since the Epoch because the
ISO POSIX-1 standard states them that way. The ustar format includes only mtime; the new
format adds atime and ctime for symmetry. The atime access time restored to the file system will
be affected by the −p a and −p e options. The ctime creation time (actually inode modification
time) is described with appropriate privileges so that it can be ignored when writing to the file
system. POSIX does not provide a portable means to change file creation time. Nothing is
intended to prevent a non-portable implementation of pax from restoring the value.

The gid, size, and uid extended header records were included to allow expansion beyond the
sizes specified in the regular tar header. New file system architectures are emerging that will
exhaust the 12-digit size field. There are probably not many systems requiring more than 8 digits
for user and group IDs, but the extended header values were included for completeness,
allowing overrides for all of the decimal values in the tar header.

The standard developers intended to describe the effective results of pax with regard to file
ownerships and permissions; implementations are not restricted in timing or sequencing the
restoration of such, provided the results are as specified.

Much of the text describing the extended headers refers to use in ‘‘write or copy modes’’. The
copy mode references are due to the normative text: ‘‘The effect of the copy shall be as if the
copied files were written to an archive file and then subsequently extracted . . .’’. There is
certainly no way to test whether pax is actually generating the extended headers in copy mode,
but the effects must be as if it had.

pax Archive Character Set Encoding/Decoding

There is a need to exchange archives of files between systems of different native codesets.
Filenames, group names, and user names must be preserved to the fullest extent possible when
an archive is read on the receiving platform. Translation of the contents of files is not within the
scope of the pax utility.

There will also be the need to represent characters that are not available on the receiving
platform. These unsupported characters cannot be automatically folded to the local set of
characters due to the chance of collisions. This could result in overwriting previous extracted
files from the archive or pre-existing files on the system.

For these reasons, the codeset used to represent characters within the extended header records of
the pax archive must be sufficiently rich to handle all commonly used character sets. The fields
requiring translation include, at a minimum, filenames, user names, group names, and link
pathnames. Implementations may wish to have localized extended keywords that use non-
portable characters.

The standard developers considered the following options:

• The archive creator specifies the well-defined name of the source codeset. The receiver
must then recognize the codeset name and perform the appropriate translations to the
destination codeset.

3038 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

100533

100534

100535

100536

100537

100538

100539

100540

100541

100542

100543

100544

100545

100546

100547

100548

100549

100550

100551

100552

100553

100554

100555

100556

100557

100558

100559

100560

100561

100562

100563

100564

100565

100566

100567

100568

100569

100570

100571

100572

100573

100574

100575

100576

100577

100578

Utilities pax

• The archive creator includes within the archive the character mapping table for the source
codeset used to encode extended header records. The receiver must then read the
character mapping table and perform the appropriate translations to the destination
codeset.

• The archive creator translates the extended header records in the source codeset into a
canonical form. The receiver must then perform the appropriate translations to the
destination codeset.

The approach that incorporates the name of the source codeset poses the problem of codeset
name registration, and makes the archive useless to pax archive decoders that do not recognize
that codeset.

Because parts of an archive may be corrupted, the standard developers felt that including the
character map of the source codeset was too fragile. The loss of this one key component could
result in making the entire archive useless. (The difference between this and the global extended
header decision was that the latter has a workaround—duplicating extended header records on
unreliable media—but this would be too burdensome for large character set maps.)

Both of the above approaches also put an undue burden on the pax archive receiver to handle the
cross-product of all source and destination codesets.

To simplify the translation from the source codeset to the canonical form and from the canonical
form to the destination codeset, the standard developers decided that the internal representation
should be a stateless encoding. A stateless encoding is one where each codepoint has the same
meaning, without regard to the decoder being in a specific state. An example of a stateful
encoding would be the Japanese Shift-JIS; an example of a stateless encoding would be the
ISO/IEC 646: 1991 standard (equivalent to 7-bit ASCII).

For these reasons, the standard developers decided to adopt a canonical format for the
representation of file information strings. The obvious, well-endorsed candidate is the
ISO/IEC 10646-1: 2000 standard (based in part on Unicode), which can be used to represent the
characters of virtually all standardized character sets. The standard developers initially agreed
upon using UCS2 (16-bit Unicode) as the internal representation. This repertoire of characters
provides a sufficiently rich set to represent all commonly-used codesets.

However, the standard developers found that the 16-bit Unicode representation had some
problems. It forced the issue of standardizing byte ordering. The 2-byte length of each character
made the extended header records twice as long for the case of strings coded entirely from
historical 7-bit ASCII. For these reasons, the standard developers chose the UTF-8 defined in the
ISO/IEC 10646-1: 2000 standard. This multi-byte representation encodes UCS2 or UCS4
characters reliably and deterministically, eliminating the need for a canonical byte ordering. In
addition, NUL octets and other characters possibly confusing to POSIX file systems do not
appear, except to represent themselves. It was realized that certain national codesets take up
more space after the encoding, due to their placement within the UCS range; it was felt that the
usefulness of the encoding of the names outweighs the disadvantage of size increase for file,
user, and group names.

The encoding of UTF-8 is as follows:

UCS4 Hex Encoding UTF-8 Binary Encoding

00000000-0000007F 0xxxxxxx
00000080-000007FF 110xxxxx 10xxxxxx
00000800-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
00010000-001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
00200000-03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3039

100579

100580

100581

100582

100583

100584

100585

100586

100587

100588

100589

100590

100591

100592

100593

100594

100595

100596

100597

100598

100599

100600

100601

100602

100603

100604

100605

100606

100607

100608

100609

100610

100611

100612

100613

100614

100615

100616

100617

100618

100619

100620

100621

100622

100623

100624

100625

pax Utilities

04000000-7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

where each ’x’ represents a bit value from the character being translated.

ustar Interchange Format

The description of the ustar format reflects numerous enhancements over pre-1988 versions of
the historical tar utility. The goal of these changes was not only to provide the functional
enhancements desired, but also to retain compatibility between new and old versions. This
compatibility has been retained. Archives written using the old archive format are compatible
with the new format.

Implementors should be aware that the previous file format did not include a mechanism to
archive directory type files. For this reason, the convention of using a filename ending with
<slash> was adopted to specify a directory on the archive.

The total size of the name and prefix fields have been set to meet the minimum requirements for
{PATH_MAX}. If a pathname will fit within the name field, it is recommended that the pathname
be stored there without the use of the prefix field. Although the name field is known to be too
small to contain {PATH_MAX} characters, the value was not changed in this version of the
archive file format to retain backwards-compatibility, and instead the prefix was introduced.
Also, because of the earlier version of the format, there is no way to remove the restriction on the
linkname field being limited in size to just that of the name field.

The size field is required to be meaningful in all implementation extensions, although it could be
zero. This is required so that the data blocks can always be properly counted.

It is suggested that if device special files need to be represented that cannot be represented in the
standard format, that one of the extension types (A-Z) be used, and that the additional
information for the special file be represented as data and be reflected in the size field.

Attempting to restore a special file type, where it is converted to ordinary data and conflicts with
an existing filename, need not be specially detected by the utility. If run as an ordinary user, pax
should not be able to overwrite the entries in, for example, /dev in any case (whether the file is
converted to another type or not). If run as a privileged user, it should be able to do so, and it
would be considered a bug if it did not. The same is true of ordinary data files and similarly
named special files; it is impossible to anticipate the needs of the user (who could really intend
to overwrite the file), so the behavior should be predictable (and thus regular) and rely on the
protection system as required.

The value 7 in the typeflag field is intended to define how contiguous files can be stored in a
ustar archive. POSIX.1-2008 does not require the contiguous file extension, but does define a
standard way of archiving such files so that all conforming systems can interpret these file types
in a meaningful and consistent manner. On a system that does not support extended file types,
the pax utility should do the best it can with the file and go on to the next.

The file protection modes are those conventionally used by the ls utility. This is extended beyond
the usage in the ISO POSIX-2 standard to support the ‘‘shared text’’ or ‘‘sticky’’ bit. It is intended
that the conformance document should not document anything beyond the existence of and
support of such a mode. Further extensions are expected to these bits, particularly with
overloading the set-user-ID and set-group-ID flags.

3040 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

100626

100627

100628

100629

100630

100631

100632

100633

100634

100635

100636

100637

100638

100639

100640

100641

100642

100643

100644

100645

100646

100647

100648

100649

100650

100651

100652

100653

100654

100655

100656

100657

100658

100659

100660

100661

100662

100663

100664

100665

100666

Utilities pax

cpio Interchange Format

The reference to appropriate privileges in the cpio format refers to an error on standard output;
the ustar format does not make comparable statements.

The model for this format was the historical System V cpio−c data interchange format. This
model documents the portable version of the cpio format and not the binary version. It has the
flexibility to transfer data of any type described within POSIX.1-2008, yet is extensible to transfer
data types specific to extensions beyond POSIX.1-2008 (for example, contiguous files). Because it
describes existing practice, there is no question of maintaining upwards-compatibility.

cpio Header

There has been some concern that the size of the c_ino field of the header is too small to handle
those systems that have very large inode numbers. However, the c_ino field in the header is used
strictly as a hard-link resolution mechanism for archives. It is not necessarily the same value as
the inode number of the file in the location from which that file is extracted.

The name c_magic is based on historical usage.

cpio Filename

For most historical implementations of the cpio utility, {PA TH_MAX} octets can be used to
describe the pathname without the addition of any other header fields (the NUL character
would be included in this count). {PATH_MAX} is the minimum value for pathname size,
documented as 256 bytes. However, an implementation may use c_namesize to determine the
exact length of the pathname. With the current description of the <cpio.h> header, this
pathname size can be as large as a number that is described in six octal digits.

Two values are documented under the c_mode field values to provide for extensibility for known
file types:

0110 000 Reserved for contiguous files. The implementation may treat the rest of the
information for this archive like a regular file. If this file type is undefined, the
implementation may create the file as a regular file.

This provides for extensibility of the cpio format while allowing for the ability to read old
archives. Files of an unknown type may be read as ‘‘regular files’’ on some implementations. On
a system that does not support extended file types, the pax utility should do the best it can with
the file and go on to the next.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2297), cp , ed , getopts , ls , printf

XBD Section 3.169 (on page 60), Chapter 5 (on page 121), Chapter 8 (on page 173), Section 12.2
(on page 215), <cpio.h>

XSH chown(), creat(), fstatat(), mkdir(), mkfifo(), utime(), write()

CHANGE HISTORY
First released in Issue 4.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3041

100667

100668

100669

100670

100671

100672

100673

100674

100675

100676

100677

100678

100679

100680

100681

100682

100683

100684

100685

100686

100687

100688

100689

100690

100691

100692

100693

100694

100695

100696

100697

100698

100699

100700

100701

100702

100703

100704

100705

pax Utilities

Issue 5
A note is added to the APPLICATION USAGE indicating that the cpio and tar formats can only
support files up to 8 gigabytes in size.

Issue 6
The pax utility is aligned with the IEEE P1003.2b draft standard:

• Support has been added for symbolic links in the options and interchange formats.

• A new format has been devised, based on extensions to ustar.

• References to the ‘‘extended’’ tar and cpio formats derived from the POSIX.1-1990
standard have been changed to remove the ‘‘extended’’ adjective because this could cause
confusion with the extended tar header added in this version. (All references to tar are
actually to ustar.)

The TZ entry is added to the ENVIRONMENT VARIABLES section.

IEEE PASC Interpretation 1003.2 #168 is applied, clarifying that mkdir() and mkfifo() calls can
ignore an [EEXIST] error when extracting an archive.

IEEE PASC Interpretation 1003.2 #180 is applied, clarifying how extracted files are created when
in read mode.

IEEE PASC Interpretation 1003.2 #181 is applied, clarifying the description of the −t option.

IEEE PASC Interpretation 1003.2 #195 is applied.

IEEE PASC Interpretation 1003.2 #206 is applied, clarifying the handling of links for the −H, −L,
and −l options.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/35 is applied, adding the process ID of
the pax process into certain fields. This change provides a method for the implementation to
ensure that different instances of pax extracting a file named /a/b/foo will not collide when
processing the extended header information associated with foo.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/36 is applied, changing −x B to −x pax in
the OPTIONS section.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/20 is applied, updating the SYNOPSIS to
be consistent with the normative text.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/21 is applied, updating the
DESCRIPTION to describe the behavior when files to be linked are symbolic links and the
system is not capable of making hard links to symbolic links.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/22 is applied, updating the OPTIONS
section to describe the behavior for how multiple −odelete=pattern options are to be handled.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/23 is applied, updating the write option
within the OPTIONS section.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/24 is applied, adding a paragraph into
the OPTIONS section that states that specifying more than one of the mutually-exclusive options
(−H and −L) is not considered an error and that the last option specified will determine the
behavior of the utility.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/25 is applied, removing the ctime
paragraph within the EXTENDED DESCRIPTION. There is a contradiction in the definition of
the ctime keyword for the pax extended header, in that the st_ctime member of the stat structure
does not refer to a file creation time. No field in the standard stat structure from <sys/stat.h>

3042 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

100706

100707

100708

100709

100710

100711

100712

100713

100714

100715

100716

100717

100718

100719

100720

100721

100722

100723

100724

100725

100726

100727

100728

100729

100730

100731

100732

100733

100734

100735

100736

100737

100738

100739

100740

100741

100742

100743

100744

100745

100746

100747

100748

Utilities pax

includes a file creation time.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/26 is applied, making it clear that typeflag
1 (ustar Interchange Format) applies not only to files that are hard-linked, but also to files that
are aliased via symbolic links.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/27 is applied, clarifying the cpio c_nlink
field.

Issue 7
Austin Group Interpretations 1003.1-2001 #011, #036, #086, and #109 are applied.

Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description of the
LC_MESSAGES environment variable.

SD5-XCU-ERN-2 is applied, making −c and −n mutually-exclusive in the SYNOPSIS.

SD5-XCU-ERN-3 is applied, revising the default behavior of −H and −L.

SD5-XCU-ERN-5, SD5-XCU-ERN-6, SD5-XCU-ERN-7, SD5-XCU-ERN-60 are applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The pax utility is no longer allowed to create separate identical symbolic links when extracting
linked symbolic links from an archive.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3043

100749

100750

100751

100752

100753

100754

100755

100756

100757

100758

100759

100760

100761

100762

100763

100764

pr Utilities

NAME
pr — print files

SYNOPSIS
pr [+page] [−column] [−adFmrt] [−e[char][gap]] [−h header] [−i[char][gap]]

XSI [−l lines] [−n[char][width]] [−o offset] [−s[char]] [−w width] [−fp]
[file...]

DESCRIPTION
The pr utility is a printing and pagination filter. If multiple input files are specified, each shall be
read, formatted, and written to standard output. By default, the input shall be separated into
66-line pages, each with:

• A 5-line header that includes the page number, date, time, and the pathname of the file

• A 5-line trailer consisting of blank lines

If standard output is associated with a terminal, diagnostic messages shall be deferred until the
pr utility has completed processing.

When options specifying multi-column output are specified, output text columns shall be of
equal width; input lines that do not fit into a text column shall be truncated. By default, text
columns shall be separated with at least one <blank>.

OPTIONS
The pr utility shall conform to XBD Section 12.2 (on page 215), except that: the page option has a
’+’ delimiter; page and column can be multi-digit numbers; some of the option-arguments are
optional; and some of the option-arguments cannot be specified as separate arguments from the
preceding option letter. In particular, the −s option does not allow the option letter to be
separated from its argument, and the options −e, −i, and −n require that both arguments, if
present, not be separated from the option letter.

The following options shall be supported. In the following option descriptions, column, lines,
offset, page, and width are positive decimal integers; gap is a non-negative decimal integer.

+page Begin output at page number page of the formatted input.

−column Produce multi-column output that is arranged in column columns (the default shall
be 1) and is written down each column in the order in which the text is received
from the input file. This option should not be used with −m. The options −e and −i
shall be assumed for multiple text-column output. Whether or not text columns are
produced with identical vertical lengths is unspecified, but a text column shall
never exceed the length of the page (see the −l option). When used with −t, use the
minimum number of lines to write the output.

−a Modify the effect of the −column option so that the columns are filled across the
page in a round-robin order (for example, when column is 2, the first input line
heads column 1, the second heads column 2, the third is the second line in column
1, and so on).

−d Produce output that is double-spaced; append an extra <newline> following every
<newline> found in the input.

−e[char][gap]
Expand each input <tab> to the next greater column position specified by the
formula n*gap+1, where n is an integer > 0. If gap is zero or is omitted, it shall
default to 8. All <tab> characters in the input shall be expanded into the
appropriate number of <space> characters. If any non-digit character, char, is
specified, it shall be used as the input <tab>. If the first character of the −e option-

3044 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

100765

100766

100767

100768

100769

100770

100771

100772

100773

100774

100775

100776

100777

100778

100779

100780

100781

100782

100783

100784

100785

100786

100787

100788

100789

100790

100791

100792

100793

100794

100795

100796

100797

100798

100799

100800

100801

100802

100803

100804

100805

100806

100807

100808

100809

100810

Utilities pr

argument is a digit, the entire option-argument shall be assumed to be gap.

XSI −f Use a <form-feed> for new pages, instead of the default behavior that uses a
sequence of <newline> characters. Pause before beginning the first page if the
standard output is associated with a terminal.

−F Use a <form-feed> for new pages, instead of the default behavior that uses a
sequence of <newline> characters.

−h header Use the string header to replace the contents of the file operand in the page header.

−i[char][gap] In output, replace <space> characters with <tab> characters wherever one or more
adjacent <space> characters reach column positions gap+1, 2* gap+1, 3* gap+1, and
so on. If gap is zero or is omitted, default tab settings at every eighth column
position shall be assumed. If any non-digit character, char, is specified, it shall be
used as the output <tab>. If the first character of the −i option-argument is a digit,
the entire option-argument shall be assumed to be gap.

−l lines Override the 66-line default and reset the page length to lines. If lines is not greater
than the sum of both the header and trailer depths (in lines), the pr utility shall
suppress both the header and trailer, as if the −t option were in effect.

−m Merge files. Standard output shall be formatted so the pr utility writes one line
from each file specified by a file operand, side by side into text columns of equal
fixed widths, in terms of the number of column positions. Implementations shall
support merging of at least nine file operands.

−n[char][width]
Provide width-digit line numbering (default for width shall be 5). The number shall
occupy the first width column positions of each text column of default output or
each line of −m output. If char (any non-digit character) is given, it shall be
appended to the line number to separate it from whatever follows (default for char
is a <tab>).

−o offset Each line of output shall be preceded by offset <space> characters. If the −o option
is not specified, the default offset shall be zero. The space taken is in addition to the
output line width (see the −w option below).

−p Pause before beginning each page if the standard output is directed to a terminal
(pr shall write an <alert> to standard error and wait for a <carriage-return> to be
read on /dev/tty).

−r Write no diagnostic reports on failure to open files.

−s[char] Separate text columns by the single character char instead of by the appropriate
number of <space> characters (default for char shall be <tab>).

−t Write neither the five-line identifying header nor the five-line trailer usually
supplied for each page. Quit writing after the last line of each file without spacing
to the end of the page.

−w width Set the width of the line to width column positions for multiple text-column output
only. If the −w option is not specified and the −s option is not specified, the default
width shall be 72. If the −w option is not specified and the −s option is specified,
the default width shall be 512.

For single column output, input lines shall not be truncated.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3045

100811

100812

100813

100814

100815

100816

100817

100818

100819

100820

100821

100822

100823

100824

100825

100826

100827

100828

100829

100830

100831

100832

100833

100834

100835

100836

100837

100838

100839

100840

100841

100842

100843

100844

100845

100846

100847

100848

100849

100850

100851

100852

100853

pr Utilities

OPERANDS
The following operand shall be supported:

file A pathname of a file to be written. If no file operands are specified, or if a file
operand is ’−’, the standard input shall be used.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is ’−’.
See the INPUT FILES section.

INPUT FILES
The input files shall be text files.

The file /dev/tty shall be used to read responses required by the −p option.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of pr:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and which characters are defined as printable (character
class print). Non-printable characters are still written to standard output, but are
not counted for the purpose for column-width and line-length calculations.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_TIME Determine the format of the date and time for use in writing header lines.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TZ Determine the timezone used to calculate date and time strings written in header
lines. If TZ is unset or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
If pr receives an interrupt while writing to a terminal, it shall flush all accumulated error
messages to the screen before terminating.

STDOUT
The pr utility output shall be a paginated version of the original file (or files). This pagination
shall be accomplished using either <form-feed> characters or a sequence of <newline>

XSI characters, as controlled by the −F or −f option. Page headers shall be generated unless the −t
option is specified. The page headers shall be of the form:

"\n\n%s %s Page %d\n\n\n", <output of date>, <file>, <page number>

In the POSIX locale, the <output of date> field, representing the date and time of last modification
of the input file (or the current date and time if the input file is standard input), shall be
equivalent to the output of the following command as it would appear if executed at the given
time:

date "+%b %e %H:%M %Y"

3046 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

100854

100855

100856

100857

100858

100859

100860

100861

100862

100863

100864

100865

100866

100867

100868

100869

100870

100871

100872

100873

100874

100875

100876

100877

100878

100879

100880

100881

100882

100883

100884

100885

100886

100887

100888

100889

100890

100891

100892

100893

100894

100895

100896

Utilities pr

without the trailing <newline>, if the page being written is from standard input. If the page
being written is not from standard input, in the POSIX locale, the same format shall be used, but
the time used shall be the modification time of the file corresponding to file instead of the current
time. When the LC_TIME locale category is not set to the POSIX locale, a different format and
order of presentation of this field may be used.

If the standard input is used instead of a file operand, the <file> field shall be replaced by a null
string.

If the −h option is specified, the <file> field shall be replaced by the header argument.

STDERR
The standard error shall be used for diagnostic messages and for alerting the terminal when −p
is specified.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
A conforming application must protect its first operand, if it starts with a <plus-sign>, by
preceding it with the "− −" argument that denotes the end of the options. For example, pr+x
could be interpreted as an invalid page number or a file operand.

EXAMPLES

1. Print a numbered list of all files in the current directory:

ls −a | pr −n −h "Files in $(pwd)."

2. Print file1 and file2 as a double-spaced, three-column listing headed by ‘‘file list’’:

pr −3d −h "file list" file1 file2

3. Write file1 on file2, expanding tabs to columns 10, 19, 28, . . .:

pr −e9 −t <file1 >file2

RATIONALE
This utility is one of those that does not follow the Utility Syntax Guidelines because of its
historical origins. The standard developers could have added new options that obeyed the
guidelines (and marked the old options obsolescent) or devised an entirely new utility; there are
examples of both actions in this volume of POSIX.1-2008. Because of its widespread use by
historical applications, the standard developers decided to exempt this version of pr from many
of the guidelines.

Implementations are required to accept option-arguments to the −h, −l, −o, and −w options
whether presented as part of the same argument or as a separate argument to pr, as suggested by
the Utility Syntax Guidelines. The −n and −s options, however, are specified as in historical

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3047

100897

100898

100899

100900

100901

100902

100903

100904

100905

100906

100907

100908

100909

100910

100911

100912

100913

100914

100915

100916

100917

100918

100919

100920

100921

100922

100923

100924

100925

100926

100927

100928

100929

100930

100931

100932

100933

100934

100935

100936

100937

100938

pr Utilities

practice because they are frequently specified without their optional arguments. If a <blank>
were allowed before the option-argument in these cases, a file operand could mistakenly be
interpreted as an option-argument in historical applications.

The text about the minimum number of lines in multi-column output was included to ensure
that a best effort is made in balancing the length of the columns. There are known historical
implementations in which, for example, 60-line files are listed by pr −2 as one column of 56 lines
and a second of 4. Although this is not a problem when a full page with headers and trailers is
produced, it would be relatively useless when used with −t.

Historical implementations of the pr utility have differed in the action taken for the −f option.
BSD uses it as described here for the −F option; System V uses it to change trailing <newline>
characters on each page to a <form-feed> and, if standard output is a TTY device, sends an
<alert> to standard error and reads a line from /dev/tty before the first page. There were strong
arguments from both sides of this issue concerning historical practice and as a result the −F
option was added. XSI-conformant systems support the System V historical actions for the −f
option.

The <output of date> field in the −l format is specified only for the POSIX locale. As noted, the
format can be different in other locales. No mechanism for defining this is present in this volume
of POSIX.1-2008, as the appropriate vehicle is a message catalog; that is, the format should be
specified as a ‘‘message’’.

FUTURE DIRECTIONS
None.

SEE ALSO
expand , lp

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The −p option is added.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
PASC Interpretation 1003.2-92 #151 (SD5-XCU-ERN-44) is applied.

Austin Group Interpretation 1003.1-2001 #093 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3048 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

100939

100940

100941

100942

100943

100944

100945

100946

100947

100948

100949

100950

100951

100952

100953

100954

100955

100956

100957

100958

100959

100960

100961

100962

100963

100964

100965

100966

100967

100968

100969

100970

100971

100972

100973

Utilities printf

NAME
printf — write formatted output

SYNOPSIS
printf format [argument...]

DESCRIPTION
The printf utility shall write formatted operands to the standard output. The argument operands
shall be formatted under control of the format operand.

OPTIONS
None.

OPERANDS
The following operands shall be supported:

format A string describing the format to use to write the remaining operands. See the
EXTENDED DESCRIPTION section.

argument The strings to be written to standard output, under the control of format. See the
EXTENDED DESCRIPTION section.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of printf:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_NUMERIC
Determine the locale for numeric formatting. It shall affect the format of numbers
written using the e, E, f, g, and G conversion specifier characters (if supported).

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the EXTENDED DESCRIPTION section.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3049

100974

100975

100976

100977

100978

100979

100980

100981

100982

100983

100984

100985

100986

100987

100988

100989

100990

100991

100992

100993

100994

100995

100996

100997

100998

100999

101000

101001

101002

101003

101004

101005

101006

101007

101008

101009

101010

101011

101012

101013

printf Utilities

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The format operand shall be used as the format string described in XBD Chapter 5 (on page 121)
with the following exceptions:

1. A <space> in the format string, in any context other than a flag of a conversion
specification, shall be treated as an ordinary character that is copied to the output.

2. A ’∆’ character in the format string shall be treated as a ’∆’ character, not as a <space>.

3. In addition to the escape sequences shown in XBD Chapter 5 (on page 121) (’\\’, ’\a’,
’\b’, ’\f’, ’\n’, ’\r’, ’\t’, ’\v’), "\ddd", where ddd is a one, two, or three-digit
octal number, shall be written as a byte with the numeric value specified by the octal
number.

4. The implementation shall not precede or follow output from the d or u conversion
specifiers with <blank> characters not specified by the format operand.

5. The implementation shall not precede output from the o conversion specifier with zeros
not specified by the format operand.

6. The a, A, e, E, f, F, g, and G conversion specifiers need not be supported.

7. An additional conversion specifier character, b, shall be supported as follows. The
argument shall be taken to be a string that may contain <backslash>-escape sequences.
The following <backslash>-escape sequences shall be supported:

— The escape sequences listed in XBD Chapter 5 (on page 121) (’\\’, ’\a’, ’\b’,
’\f’, ’\n’, ’\r’, ’\t’, ’\v’), which shall be converted to the characters they
represent

— "\0ddd", where ddd is a zero, one, two, or three-digit octal number that shall be
converted to a byte with the numeric value specified by the octal number

— ’\c’, which shall not be written and shall cause printf to ignore any remaining
characters in the string operand containing it, any remaining string operands, and
any additional characters in the format operand

The interpretation of a <backslash> followed by any other sequence of characters is
unspecified.

Bytes from the converted string shall be written until the end of the string or the number
of bytes indicated by the precision specification is reached. If the precision is omitted, it
shall be taken to be infinite, so all bytes up to the end of the converted string shall be
written.

8. For each conversion specification that consumes an argument, the next argument operand
shall be evaluated and converted to the appropriate type for the conversion as specified
below.

9. The format operand shall be reused as often as necessary to satisfy the argument
operands. Any extra c or s conversion specifiers shall be evaluated as if a null string
argument were supplied; other extra conversion specifications shall be evaluated as if a
zero argument were supplied. If the format operand contains no conversion specifications
and argument operands are present, the results are unspecified.

3050 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

101014

101015

101016

101017

101018

101019

101020

101021

101022

101023

101024

101025

101026

101027

101028

101029

101030

101031

101032

101033

101034

101035

101036

101037

101038

101039

101040

101041

101042

101043

101044

101045

101046

101047

101048

101049

101050

101051

101052

101053

101054

101055

101056

101057

Utilities printf

10. If a character sequence in the format operand begins with a ’%’ character, but does not
form a valid conversion specification, the behavior is unspecified.

11. The argument to the c conversion specifier can be a string containing zero or more bytes.
If it contains one or more bytes, the first byte shall be written and any additional bytes
shall be ignored. If the argument is an empty string, it is unspecified whether nothing is
written or a null byte is written.

The argument operands shall be treated as strings if the corresponding conversion specifier is b,
c, or s, and shall be evaluated as if by the strtod() function if the corresponding conversion
specifier is a, A, e, E, f, F, g, or G. Otherwise, they shall be evaluated as unsuffixed C integer
constants, as described by the ISO C standard, with the following extensions:

• A leading <plus-sign> or minus-sign shall be allowed.

• If the leading character is a single-quote or double-quote, the value shall be the numeric
value in the underlying codeset of the character following the single-quote or double-
quote.

• Suffixed integer constants may be allowed.

If an argument operand cannot be completely converted into an internal value appropriate to
the corresponding conversion specification, a diagnostic message shall be written to standard
error and the utility shall not exit with a zero exit status, but shall continue processing any
remaining operands and shall write the value accumulated at the time the error was detected to
standard output.

It is not considered an error if an argument operand is not completely used for a c or s
conversion.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The floating-point formatting conversion specifications of printf() are not required because all
arithmetic in the shell is integer arithmetic. The awk utility performs floating-point calculations
and provides its own printf function. The bc utility can perform arbitrary-precision floating-
point arithmetic, but does not provide extensive formatting capabilities. (This printf utility
cannot really be used to format bc output; it does not support arbitrary precision.)
Implementations are encouraged to support the floating-point conversions as an extension.

Note that this printf utility, like the printf() function defined in the System Interfaces volume of
POSIX.1-2008 on which it is based, makes no special provision for dealing with multi-byte
characters when using the %c conversion specification or when a precision is specified in a %b or
%s conversion specification. Applications should be extremely cautious using either of these
features when there are multi-byte characters in the character set.

No provision is made in this volume of POSIX.1-2008 which allows field widths and precisions
to be specified as ’*’ since the ’*’ can be replaced directly in the format operand using shell
variable substitution. Implementations can also provide this feature as an extension if they so
choose.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3051

101058

101059

101060

101061

101062

101063

101064

101065

101066

101067

101068

101069

101070

101071

101072

101073

101074

101075

101076

101077

101078

101079

101080

101081

101082

101083

101084

101085

101086

101087

101088

101089

101090

101091

101092

101093

101094

101095

101096

101097

101098

101099

101100

101101

printf Utilities

Hexadecimal character constants as defined in the ISO C standard are not recognized in the
format operand because there is no consistent way to detect the end of the constant. Octal
character constants are limited to, at most, three octal digits, but hexadecimal character constants
are only terminated by a non-hex-digit character. In the ISO C standard, the "##" concatenation
operator can be used to terminate a constant and follow it with a hexadecimal character to be
written. In the shell, concatenation occurs before the printf utility has a chance to parse the end
of the hexadecimal constant.

The %b conversion specification is not part of the ISO C standard; it has been added here as a
portable way to process <backslash>-escapes expanded in string operands as provided by the
echo utility. See also the APPLICATION USAGE section of echo (on page 2615) for ways to use
printf as a replacement for all of the traditional versions of the echo utility.

If an argument cannot be parsed correctly for the corresponding conversion specification, the
printf utility is required to report an error. Thus, overflow and extraneous characters at the end
of an argument being used for a numeric conversion shall be reported as errors.

EXAMPLES
To alert the user and then print and read a series of prompts:

printf "\aPlease fill in the following: \nName: "
read name
printf "Phone number: "
read phone

To read out a list of right and wrong answers from a file, calculate the percentage correctly, and
print them out. The numbers are right-justified and separated by a single <tab>. The percentage
is written to one decimal place of accuracy:

while read right wrong ; do
percent=$(echo "scale=1;($right*100)/($right+$wrong)" | bc)
printf "%2d right\t%2d wrong\t(%s%%)\n" \

$right $wrong $percent
done < database_file

The command:

printf "%5d%4d\n" 1 21 321 4321 54321

produces:

1 21
3214321

54321 0

Note that the format operand is used three times to print all of the given strings and that a ’0’
was supplied by printf to satisfy the last %4d conversion specification.

The printf utility is required to notify the user when conversion errors are detected while
producing numeric output; thus, the following results would be expected on an implementation
with 32-bit twos-complement integers when %d is specified as the format operand:

3052 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

101102

101103

101104

101105

101106

101107

101108

101109

101110

101111

101112

101113

101114

101115

101116

101117

101118

101119

101120

101121

101122

101123

101124

101125

101126

101127

101128

101129

101130

101131

101132

101133

101134

101135

101136

101137

101138

101139

101140

Utilities printf

Standard
Argument Output Diagnostic Output

5a 5 printf: "5a" not completely converted

9999999999 2147483647 printf: "9999999999" arithmetic overflow

−9999999999 −2147483648 printf: "−9999999999" arithmetic overflow
ABC 0 printf: "ABC" expected numeric value

The diagnostic message format is not specified, but these examples convey the type of
information that should be reported. Note that the value shown on standard output is what
would be expected as the return value from the strtol() function as defined in the System
Interfaces volume of POSIX.1-2008. A similar correspondence exists between %u and strtoul()
and %e, %f, and %g (if the implementation supports floating-point conversions) and strtod().

In a locale using the ISO/IEC 646: 1991 standard as the underlying codeset, the command:

printf "%d\n" 3 +3 −3 \’3 \"+3 "’−3"

produces:

3 Numeric value of constant 3

3 Numeric value of constant 3

−3 Numeric value of constant −3

51 Numeric value of the character ’3’ in the ISO/IEC 646: 1991 standard codeset

43 Numeric value of the character ’+’ in the ISO/IEC 646: 1991 standard codeset

45 Numeric value of the character ’−’ in the ISO/IEC 646: 1991 standard codeset

Note that in a locale with multi-byte characters, the value of a character is intended to be the
value of the equivalent of the wchar_t representation of the character as described in the System
Interfaces volume of POSIX.1-2008.

RATIONALE
The printf utility was added to provide functionality that has historically been provided by echo.
However, due to irreconcilable differences in the various versions of echo extant, the version has
few special features, leaving those to this new printf utility, which is based on one in the Ninth
Edition system.

The EXTENDED DESCRIPTION section almost exactly matches the printf() function in the
ISO C standard, although it is described in terms of the file format notation in XBD Chapter 5
(on page 121).

Earlier versions of this standard specified that arguments for all conversions other than b, c, and
s were evaluated in the same way (as C constants, but with stated exceptions). For
implementations supporting the floating-point conversions it was not clear whether integer
conversions need only accept integer constants and floating-point conversions need only accept
floating-point constants, or whether both types of conversions should accept both types of
constants. Also by not distinguishing between them, the requirement relating to a leading
single-quote or double-quote applied to floating-point conversions even though this provided
no useful functionality to applications that was not already available through the integer
conversions. The current standard clarifies the situation by specifying that the arguments for
floating-point conversions are evaluated as if by strtod(), and the arguments for integer
conversions are evaluated as C integer constants, with the special treatment of leading single-
quote and double-quote applying only to integer conversions.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3053

101141

101142

101143

101144

101145

101146

101147

101148

101149

101150

101151

101152

101153

101154

101155

101156

101157

101158

101159

101160

101161

101162

101163

101164

101165

101166

101167

101168

101169

101170

101171

101172

101173

101174

101175

101176

101177

101178

101179

101180

101181

101182

101183

printf Utilities

FUTURE DIRECTIONS
None.

SEE ALSO
awk , bc , echo

XBD Chapter 5 (on page 121), Chapter 8 (on page 173)

XSH fprintf(), strtod()

CHANGE HISTORY
First released in Issue 4.

Issue 7
Austin Group Interpretations 1003.1-2001 #175 and #177 are applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3054 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

101184

101185

101186

101187

101188

101189

101190

101191

101192

101193

101194

Utilities prs

NAME
prs — print an SCCS file (DEVELOPMENT)

SYNOPSIS
XSI prs [−a] [−d dataspec] [−r[SID]] file...

prs [−e|−l] −c cutoff [−d dataspec] file...

prs [−e|−l] −r[SID] [−d dataspec] file...

DESCRIPTION
The prs utility shall write to standard output parts or all of an SCCS file in a user-supplied
format.

OPTIONS
The prs utility shall conform to XBD Section 12.2 (on page 215), except that the −r option has an
optional option-argument. This optional option-argument cannot be presented as a separate
argument. The following options shall be supported:

−d dataspec Specify the output data specification. The dataspec shall be a string consisting of
SCCS file data keywords (see Data Keywords, on page 3056) interspersed with
optional user-supplied text.

−r[SID] Specify the SCCS identification string (SID) of a delta for which information is
desired. If no SID option-argument is specified, the SID of the most recently
created delta shall be assumed.

−e Request information for all deltas created earlier than and including the delta
designated via the −r option or the date-time given by the −c option.

−l Request information for all deltas created later than and including the delta
designated via the −r option or the date-time given by the −c option.

−c cutoff Indicate the cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]]]]]

For the YY component, values in the range [69,99] shall refer to years 1969 to 1999
inclusive, and values in the range [00,68] shall refer to years 2000 to 2068 inclusive.

Note: It is expected that in a future version of this standard the default century inferred
from a 2-digit year will change. (This would apply to all commands accepting a
2-digit year as input.)

No changes (deltas) to the SCCS file that were created after the specified cutoff
date-time shall be included in the output. Units omitted from the date-time default
to their maximum possible values; for example, −c 7502 is equivalent to
−c 750228235959.

−a Request writing of information for both removed—that is, delta type=R (see
rmdel)—and existing—that is, delta type=D,—deltas. If the −a option is not
specified, information for existing deltas only shall be provided.

OPERANDS
The following operand shall be supported:

file A pathname of an existing SCCS file or a directory. If file is a directory, the prs
utility shall behave as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the pathname does not begin
with s.) and unreadable files shall be silently ignored.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3055

101195

101196

101197

101198

101199

101200

101201

101202

101203

101204

101205

101206

101207

101208

101209

101210

101211

101212

101213

101214

101215

101216

101217

101218

101219

101220

101221

101222

101223

101224

101225

101226

101227

101228

101229

101230

101231

101232

101233

101234

101235

101236

101237

prs Utilities

If exactly one file operand appears, and it is ’−’, the standard input shall be read;
each line of the standard input shall be taken to be the name of an SCCS file to be
processed. Non-SCCS files and unreadable files shall be silently ignored.

STDIN
The standard input shall be a text file used only when the file operand is specified as ’−’. Each
line of the text file shall be interpreted as an SCCS pathname.

INPUT FILES
Any SCCS files displayed are files of an unspecified format.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of prs:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be a text file whose format is dependent on the data keywords
specified with the −d option.

Data Keywords

Data keywords specify which parts of an SCCS file shall be retrieved and output. All parts of an
SCCS file have an associated data keyword. A data keyword may appear in a dataspec multiple
times.

The information written by prs shall consist of:

1. The user-supplied text

2. Appropriate values (extracted from the SCCS file) substituted for the recognized data
keywords in the order of appearance in the dataspec

The format of a data keyword value shall either be simple (’S’), in which keyword substitution
is direct, or multi-line (’M’).

User-supplied text shall be any text other than recognized data keywords. A <tab> shall be
specified by ’\t’ and <newline> by ’\n’. When the −r option is not specified, the default
dataspec shall be:

:PN::\n\n

and the following dataspec shall be used for each selected delta:

3056 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

101238

101239

101240

101241

101242

101243

101244

101245

101246

101247

101248

101249

101250

101251

101252

101253

101254

101255

101256

101257

101258

101259

101260

101261

101262

101263

101264

101265

101266

101267

101268

101269

101270

101271

101272

101273

101274

101275

101276

101277

101278

101279

Utilities prs

:Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:

SCCS File Data Keywords

Keyword Data Item File Section Value Format

:Dt: Delta information Delta Table See below* S
:DL: Delta line statistics " :Li:/:Ld:/:Lu: S
:Li: Lines inserted by Delta " nnnnn*** S
:Ld: Lines deleted by Delta " nnnnn*** S
:Lu: Lines unchanged by Delta " nnnnn*** S
:DT: Delta type " D or R S
:I: SCCS ID string (SID) " See below** S
:R: Release number " nnnn S
:L: Level number " nnnn S
:B: Branch number " nnnn S
:S: Sequence number " nnnn S
:D: Date delta created " :Dy:/:Dm:/:Dd: S
:Dy: Year delta created " nn S
:Dm: Month delta created " nn S
:Dd: Day delta created " nn S
:T: Time delta created " :Th:::Tm:::Ts: S
:Th: Hour delta created " nn S
:Tm: Minutes delta created " nn S
:Ts: Seconds delta created " nn S
:P: Programmer who created Delta " logname S
:DS: Delta sequence number " nnnn S
:DP: Predecessor Delta sequence " nnnn S

number
:DI: Sequence number of deltas " :Dn:/:Dx:/:Dg: S

included, excluded, or ignored
:Dn: Deltas included (sequence #) " :DS: :DS: . . . S
:Dx: Deltas excluded (sequence #) " :DS: :DS: . . . S
:Dg: Deltas ignored (sequence #) " :DS: :DS: . . . S
:MR: MR numbers for delta " text M
:C: Comments for delta " text M
:UN: User names User Names text M
:FL: Flag list Flags text M
:Y: Module type flag " text S
:MF: MR validation flag " yes or no S
:MP: MR validation program name " text S
:KF: Keyword error, warning flag " yes or no S
:KV: Keyword validation string " text S
:BF: Branch flag " yes or no S
:J: Joint edit flag " yes or no S
:LK: Locked releases " :R: . . . S
:Q: User-defined keyword " text S
:M: Module name " text S
:FB: Floor boundary " :R: S
:CB: Ceiling boundary " :R: S
:Ds: Default SID " :I: S
:ND: Null delta flag " yes or no S

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3057

101280

101281

101282

101283

101284

101285

101286

101287

101288

101289

101290

101291

101292

101293

101294

101295

101296

101297

101298

101299

101300

101301

101302

101303

101304

101305

101306

101307

101308

101309

101310

101311

101312

101313

101314

101315

101316

101317

101318

101319

101320

101321

101322

101323

101324

101325

101326

101327

101328

prs Utilities

SCCS File Data Keywords

Keyword Data Item File Section Value Format

:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body " text M
:W: A form of what string N/A :Z::M:\t:I: S
:A: A form of what string N/A :Z::Y: :M: :I::Z: S
:Z: what string delimiter N/A @(#) S
:F: SCCS filename N/A text S
:PN: SCCS file pathname N/A text S

* :Dt:=:DT: :I: :D: :T: :P: :DS: :DP:

** :R:.:L:.:B:.:S: if the delta is a branch delta (:BF:= =yes)
:R:.:L: if the delta is not a branch delta (:BF:= =no)

*** The line statistics are capped at 99 999. For example, if 100 000 lines were unchanged in a
certain revision, :Lu: shall produce the value 99 999.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES

1. The following example:

prs −d "User Names for :F: are:\n:UN:" s.file

might write to standard output:

User Names for s.file are:
xyz
131
abc

2. The following example:

prs −d "Delta for pgm :M:: :I: − :D: By :P:" −r s.file

might write to standard output:

Delta for pgm main.c: 3.7 − 77/12/01 By cas

3058 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

101329

101330

101331

101332

101333

101334

101335

101336

101337

101338

101339

101340

101341

101342

101343

101344

101345

101346

101347

101348

101349

101350

101351

101352

101353

101354

101355

101356

101357

101358

101359

101360

101361

101362

101363

101364

101365

101366

101367

101368

101369

Utilities prs

3. As a special case:

prs s.file

might write to standard output:

s.file:
<blank line>
D 1.1 77/12/01 00:00:00 cas 1 000000/00000/00000
MRs:
bl78−12345
bl79−54321
COMMENTS:
this is the comment line for s.file initial delta
<blank line>

for each delta table entry of the D type. The only option allowed to be used with this
special case is the −a option.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
admin , delta , get , what

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The phrase ‘‘in which keyword substitution is followed by a <newline>’’ is deleted from the end
of the second paragraph of Data Keywords (on page 3056).

The interpretation of the YY component of the −c cutoff argument is noted.

Issue 6
The normative text is reworded to emphasize the term ‘‘shall’’ for implementation requirements.

The Open Group Base Resolution bwg2001-007 is applied, updating the table in STDOUT with a
note that line statistics are capped at 99 999 for the :Li:, :Ld:, :Lu:, and :DL: keywords.

The Open Group Interpretation PIN4C.00009 is applied.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3059

101370

101371

101372

101373

101374

101375

101376

101377

101378

101379

101380

101381

101382

101383

101384

101385

101386

101387

101388

101389

101390

101391

101392

101393

101394

101395

101396

101397

101398

101399

101400

101401

101402

101403

ps Utilities

NAME
ps — report process status

SYNOPSIS
XSI ps [−aA] [−defl] [−g grouplist] [−G grouplist]

[−n namelist] [−o format]... [−p proclist] [−t termlist]

[−u userlist] [−U userlist]

DESCRIPTION
The ps utility shall write information about processes, subject to having appropriate privileges to
obtain information about those processes.

By default, ps shall select all processes with the same effective user ID as the current user and the
same controlling terminal as the invoker.

OPTIONS
The ps utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a Write information for all processes associated with terminals. Implementations
may omit session leaders from this list.

−A Write information for all processes.

XSI −d Write information for all processes, except session leaders.

XSI −e Write information for all processes. (Equivalent to −A.)

XSI −f Generate a full listing. (See the STDOUT section for the contents of a full listing.)

XSI −g grouplist Write information for processes whose session leaders are given in grouplist. The
application shall ensure that the grouplist is a single argument in the form of a
<blank> or <comma>-separated list.

−G grouplist Write information for processes whose real group ID numbers are given in
grouplist. The application shall ensure that the grouplist is a single argument in the
form of a <blank> or <comma>-separated list.

XSI −l Generate a long listing. (See STDOUT for the contents of a long listing.)

XSI −n namelist Specify the name of an alternative system namelist file in place of the default. The
name of the default file and the format of a namelist file are unspecified.

−o format Write information according to the format specification given in format. This is
fully described in the STDOUT section. Multiple −o options can be specified; the
format specification shall be interpreted as the <space>-separated concatenation of
all the format option-arguments.

−p proclist Write information for processes whose process ID numbers are given in proclist.
The application shall ensure that the proclist is a single argument in the form of a
<blank> or <comma>-separated list.

−t termlist Write information for processes associated with terminals given in termlist. The
application shall ensure that the termlist is a single argument in the form of a
<blank> or <comma>-separated list. Terminal identifiers shall be given in an

XSI implementation-defined format. On XSI-conformant systems, they shall be given
in one of two forms: the device’s filename (for example, tty04) or, if the device’s
filename starts with tty, just the identifier following the characters tty (for example,
"04").

3060 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

101404

101405

101406

101407

101408

101409

101410

101411

101412

101413

101414

101415

101416

101417

101418

101419

101420

101421

101422

101423

101424

101425

101426

101427

101428

101429

101430

101431

101432

101433

101434

101435

101436

101437

101438

101439

101440

101441

101442

101443

101444

101445

101446

Utilities ps

XSI −u userlist Write information for processes whose user ID numbers or login names are given
in userlist. The application shall ensure that the userlist is a single argument in the
form of a <blank> or <comma>-separated list. In the listing, the numerical user ID
shall be written unless the −f option is used, in which case the login name shall be
written.

−U userlist Write information for processes whose real user ID numbers or login names are
given in userlist. The application shall ensure that the userlist is a single argument
in the form of a <blank> or <comma>-separated list.

XSI With the exception of −f, −l, −n namelist, and −o format, all of the options shown are used to
select processes. If any are specified, the default list shall be ignored and ps shall select the
processes represented by the inclusive OR of all the selection-criteria options.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ps:

COLUMNS Override the system-selected horizontal display line size, used to determine the
number of text columns to display. See XBD Chapter 8 (on page 173) for valid
values and results when it is unset or null.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

LC_TIME Determine the format and contents of the date and time strings displayed.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TZ Determine the timezone used to calculate date and time strings displayed. If TZ is
unset or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3061

101447

101448

101449

101450

101451

101452

101453

101454

101455

101456

101457

101458

101459

101460

101461

101462

101463

101464

101465

101466

101467

101468

101469

101470

101471

101472

101473

101474

101475

101476

101477

101478

101479

101480

101481

101482

101483

101484

101485

101486

ps Utilities

STDOUT
When the −o option is not specified, the standard output format is unspecified.

XSI On XSI-conformant systems, the output format shall be as follows. The column headings and
descriptions of the columns in a ps listing are given below. The precise meanings of these fields
are implementation-defined. The letters ’f’ and ’l’ (below) indicate the option (full or long)
that shall cause the corresponding heading to appear; all means that the heading always
appears. Note that these two options determine only what information is provided for a process;
they do not determine which processes are listed.

F (l) Flags (octal and additive) associated with the process.
S (l) The state of the process.
UID (f,l) The user ID number of the process owner; the login name is printed

under the −f option.
PID (all) The process ID of the process; it is possible to kill a process if this

datum is known.
PPID (f,l) The process ID of the parent process.
C (f,l) Processor utilization for scheduling.
PRI (l) The priority of the process; higher numbers mean lower priority.
NI (l) Nice value; used in priority computation.
ADDR (l) The address of the process.
SZ (l) The size in blocks of the core image of the process.
WCHAN (l) The event for which the process is waiting or sleeping; if blank, the

process is running.
STIME (f) Starting time of the process.
TTY (all) The controlling terminal for the process.
TIME (all) The cumulative execution time for the process.
CMD (all) The command name; the full command name and its arguments are

written under the −f option.

A process that has exited and has a parent, but has not yet been waited for by the parent, shall be
marked defunct.

Under the option −f, ps tries to determine the command name and arguments given when the
process was created by examining memory or the swap area. Failing this, the command name, as
it would appear without the option −f, is written in square brackets.

The −o option allows the output format to be specified under user control.

The application shall ensure that the format specification is a list of names presented as a single
argument, <blank> or <comma>-separated. Each variable has a default header. The default
header can be overridden by appending an <equals-sign> and the new text of the header. The
rest of the characters in the argument shall be used as the header text. The fields specified shall
be written in the order specified on the command line, and should be arranged in columns in the
output. The field widths shall be selected by the system to be at least as wide as the header text
(default or overridden value). If the header text is null, such as −o user=, the field width shall be
at least as wide as the default header text. If all header text fields are null, no header line shall
be written.

The following names are recognized in the POSIX locale:

ruser The real user ID of the process. This shall be the textual user ID, if it can be obtained
and the field width permits, or a decimal representation otherwise.

3062 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

101487

101488

101489

101490

101491

101492

101493

101494

101495

101496

101497

101498

101499

101500

101501

101502

101503

101504

101505

101506

101507

101508

101509

101510

101511

101512

101513

101514

101515

101516

101517

101518

101519

101520

101521

101522

101523

101524

101525

101526

101527

101528

101529

101530

101531

Utilities ps

user The effective user ID of the process. This shall be the textual user ID, if it can be
obtained and the field width permits, or a decimal representation otherwise.

rgroup The real group ID of the process. This shall be the textual group ID, if it can be obtained
and the field width permits, or a decimal representation otherwise.

group The effective group ID of the process. This shall be the textual group ID, if it can be
obtained and the field width permits, or a decimal representation otherwise.

pid The decimal value of the process ID.

ppid The decimal value of the parent process ID.

pgid The decimal value of the process group ID.

pcpu The ratio of CPU time used recently to CPU time available in the same period,
expressed as a percentage. The meaning of ‘‘recently’’ in this context is unspecified. The
CPU time available is determined in an unspecified manner.

vsz The size of the process in (virtual) memory in 1 024 byte units as a decimal integer.

nice The decimal value of the nice value of the process; see nice.

etime In the POSIX locale, the elapsed time since the process was started, in the form:

[[dd−]hh:]mm:ss

where dd shall represent the number of days, hh the number of hours, mm the number
of minutes, and ss the number of seconds. The dd field shall be a decimal integer. The
hh, mm, and ss fields shall be two-digit decimal integers padded on the left with zeros.

time In the POSIX locale, the cumulative CPU time of the process in the form:

[dd−]hh:mm:ss

The dd, hh, mm, and ss fields shall be as described in the etime specifier.

tty The name of the controlling terminal of the process (if any) in the same format used by
the who utility.

comm The name of the command being executed (argv[0] value) as a string.

args The command with all its arguments as a string. The implementation may truncate this
value to the field width; it is implementation-defined whether any further truncation
occurs. It is unspecified whether the string represented is a version of the argument list
as it was passed to the command when it started, or is a version of the arguments as
they may have been modified by the application. Applications cannot depend on being
able to modify their argument list and having that modification be reflected in the
output of ps.

Any field need not be meaningful in all implementations. In such a case a <hyphen> (’−’)
should be output in place of the field value.

Only comm and args shall be allowed to contain <blank> characters; all others shall not. Any
implementation-defined variables shall be specified in the system documentation along with the
default header and indicating whether the field may contain <blank> characters.

The following table specifies the default header to be used in the POSIX locale corresponding to
each format specifier.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3063

101532

101533

101534

101535

101536

101537

101538

101539

101540

101541

101542

101543

101544

101545

101546

101547

101548

101549

101550

101551

101552

101553

101554

101555

101556

101557

101558

101559

101560

101561

101562

101563

101564

101565

101566

101567

101568

101569

101570

ps Utilities

Table 4-18 Variable Names and Default Headers in ps

Format Specifier Default Header Format Specifier Default Header

args COMMAND ppid PPID
comm COMMAND rgroup RGROUP
etime ELAPSED ruser RUSER
group GROUP time TIME
nice NI tty TT
pcpu %CPU user USER
pgid PGID vsz VSZ
pid PID

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Things can change while ps is running; the snapshot it gives is only true for an instant, and
might not be accurate by the time it is displayed.

The args format specifier is allowed to produce a truncated version of the command arguments.
In some implementations, this information is no longer available when the ps utility is executed.

If the field width is too narrow to display a textual ID, the system may use a numeric version.
Normally, the system would be expected to choose large enough field widths, but if a large
number of fields were selected to write, it might squeeze fields to their minimum sizes to fit on
one line. One way to ensure adequate width for the textual IDs is to override the default header
for a field to make it larger than most or all user or group names.

There is no special quoting mechanism for header text. The header text is the rest of the
argument. If multiple header changes are needed, multiple −o options can be used, such as:

ps −o "user=User Name" −o pid=Process\ ID

On some implementations, especially multi-level secure systems, ps may be severely restricted
and produce information only about child processes owned by the user.

EXAMPLES
The command:

ps −o user,pid,ppid=MOM −o args

writes at least the following in the POSIX locale:

USER PID MOM COMMAND

3064 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

101571

101572

101573

101574

101575

101576

101577

101578

101579

101580

101581

101582

101583

101584

101585

101586

101587

101588

101589

101590

101591

101592

101593

101594

101595

101596

101597

101598

101599

101600

101601

101602

101603

101604

101605

101606

101607

101608

101609

101610

101611

101612

Utilities ps

helene 34 12 ps −o uid,pid,ppid=MOM −o args

The contents of the COMMAND field need not be the same in all implementations, due to
possible truncation.

RATIONALE
There is very little commonality between BSD and System V implementations of ps. Many
options conflict or have subtly different usages. The standard developers attempted to select a
set of options for the base standard that were useful on a wide range of systems and selected
options that either can be implemented on both BSD and System V-based systems without
breaking the current implementations or where the options are sufficiently similar that any
changes would not be unduly problematic for users or implementors.

It is recognized that on some implementations, especially multi-level secure systems, ps may be
nearly useless. The default output has therefore been chosen such that it does not break
historical implementations and also is likely to provide at least some useful information on most
systems.

The major change is the addition of the format specification capability. The motivation for this
invention is to provide a mechanism for users to access a wider range of system information, if
the system permits it, in a portable manner. The fields chosen to appear in this volume of
POSIX.1-2008 were arrived at after considering what concepts were likely to be both reasonably
useful to the ‘‘average’’ user and had a reasonable chance of being implemented on a wide range
of systems. Again it is recognized that not all systems are able to provide all the information
and, conversely, some may wish to provide more. It is hoped that the approach adopted will be
sufficiently flexible and extensible to accommodate most systems. Implementations may be
expected to introduce new format specifiers.

The default output should consist of a short listing containing the process ID, terminal name,
cumulative execution time, and command name of each process.

The preference of the standard developers would have been to make the format specification an
operand of the ps command. Unfortunately, BSD usage precluded this.

At one time a format was included to display the environment array of the process. This was
deleted because there is no portable way to display it.

The −A option is equivalent to the BSD −g and the SVID −e. Because the two systems differed, a
mnemonic compromise was selected.

The −a option is described with some optional behavior because the SVID omits session leaders,
but BSD does not.

In an early proposal, format specifiers appeared for priority and start time. The former was not
defined adequately in this volume of POSIX.1-2008 and was removed in deference to the defined
nice value; the latter because elapsed time was considered to be more useful.

In a new BSD version of ps, a −O option can be used to write all of the default information,
followed by additional format specifiers. This was not adopted because the default output is
implementation-defined. Nevertheless, this is a useful option that should be reserved for that
purpose. In the −o option for the POSIX Shell and Utilities ps, the format is the concatenation of
each −o. Therefore, the user can have an alias or function that defines the beginning of their
desired format and add more fields to the end of the output in certain cases where that would be
useful.

The format of the terminal name is unspecified, but the descriptions of ps, talk, who, and write
require that they all use the same format.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3065

101613

101614

101615

101616

101617

101618

101619

101620

101621

101622

101623

101624

101625

101626

101627

101628

101629

101630

101631

101632

101633

101634

101635

101636

101637

101638

101639

101640

101641

101642

101643

101644

101645

101646

101647

101648

101649

101650

101651

101652

101653

101654

101655

101656

101657

ps Utilities

The pcpu field indicates that the CPU time available is determined in an unspecified manner.
This is because it is difficult to express an algorithm that is useful across all possible machine
architectures. Historical counterparts to this value have attempted to show percentage of use in
the recent past, such as the preceding minute. Frequently, these values for all processes did not
add up to 100%. Implementations are encouraged to provide data in this field to users that will
help them identify processes currently affecting the performance of the system.

FUTURE DIRECTIONS
None.

SEE ALSO
kill , nice , renice

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

The TZ entry is added to the ENVIRONMENT VARIABLES section.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-148 is applied, updating the OPTIONS section.

3066 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

101658

101659

101660

101661

101662

101663

101664

101665

101666

101667

101668

101669

101670

101671

101672

101673

101674

101675

101676

101677

Utilities pwd

NAME
pwd — return working directory name

SYNOPSIS
pwd [−L|−P]

DESCRIPTION
The pwd utility shall write to standard output an absolute pathname of the current working
directory, which does not contain the filenames dot or dot-dot.

OPTIONS
The pwd utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported by the implementation:

−L If the PWD environment variable contains an absolute pathname of the current
directory that does not contain the filenames dot or dot-dot, pwd shall write this
pathname to standard output. Otherwise, if the PWD environment variable
contains a pathname of the current directory that is longer than {PATH_MAX}
bytes including the terminating null, and the pathname does not contain any
components that are dot or dot-dot, it is unspecified whether pwd writes this
pathname to standard output or behaves as if the −P option had been specified.
Otherwise, the −L option shall behave as the −P option.

−P The pathname written to standard output shall not contain any components that
refer to files of type symbolic link. If there are multiple pathnames that the pwd
utility could write to standard output, one beginning with a single <slash>
character and one or more beginning with two <slash> characters, then it shall
write the pathname beginning with a single <slash> character. The pathname shall
not contain any unnecessary <slash> characters after the leading one or two
<slash> characters.

If both −L and −P are specified, the last one shall apply. If neither −L nor −P is specified, the pwd
utility shall behave as if −L had been specified.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of pwd:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3067

101678

101679

101680

101681

101682

101683

101684

101685

101686

101687

101688

101689

101690

101691

101692

101693

101694

101695

101696

101697

101698

101699

101700

101701

101702

101703

101704

101705

101706

101707

101708

101709

101710

101711

101712

101713

101714

101715

101716

101717

101718

101719

101720

pwd Utilities

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PWD An absolute pathname of the current working directory. If an application sets or
unsets the value of PWD, the behavior of pwd is unspecified.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The pwd utility output is an absolute pathname of the current working directory:

"%s\n", <directory pathname>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If an error is detected, output shall not be written to standard output, a diagnostic message shall
be written to standard error, and the exit status is not zero.

APPLICATION USAGE
If the pathname obtained from pwd is longer than {PATH_MAX} bytes, it could produce an error
if passed to cd. Therefore, in order to return to that directory it may be necessary to break the
pathname into sections shorter than {PATH_MAX} and call cd on each section in turn (the first
section being an absolute pathname and subsequent sections being relative pathnames).

EXAMPLES
None.

RATIONALE
Some implementations have historically provided pwd as a shell special built-in command.

In most utilities, if an error occurs, partial output may be written to standard output. This does
not happen in historical implementations of pwd. Because pwd is frequently used in historical
shell scripts without checking the exit status, it is important that the historical behavior is
required here; therefore, the CONSEQUENCES OF ERRORS section specifically disallows any
partial output being written to standard output.

An earlier version of this standard stated that the PWD environment variable was affected when
the −P option was in effect. This was incorrect; conforming implementations do not do this.

FUTURE DIRECTIONS
None.

3068 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

101721

101722

101723

101724

101725

101726

101727

101728

101729

101730

101731

101732

101733

101734

101735

101736

101737

101738

101739

101740

101741

101742

101743

101744

101745

101746

101747

101748

101749

101750

101751

101752

101753

101754

101755

101756

101757

101758

101759

Utilities pwd

SEE ALSO
cd

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH getcwd()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The −P and −L options are added to describe actions relating to symbolic links as specified in the
IEEE P1003.2b draft standard.

Issue 7
Austin Group Interpretation 1003.1-2001 #097 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Changes to the pwd utility and PWD environment variable have been made to match the
changes to the getcwd() function made for Austin Group Interpretation 1003.1-2001 #140.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3069

101760

101761

101762

101763

101764

101765

101766

101767

101768

101769

101770

101771

101772

101773

qalter Utilities

NAME
qalter — alter batch job

SYNOPSIS
OB BE qalter [−a date_time] [−A account_string] [−c interval] [−e path_name]

[−h hold_list] [−j join_list] [−k keep_list] [−l resource_list]

[−m mail_options] [−M mail_list] [−N name] [−o path_name]

[−p priority] [−r y|n] [−S path_name_list] [−u user_list]

job_identifier...

DESCRIPTION
The attributes of a batch job are altered by a request to the batch server that manages the batch
job. The qalter utility is a user-accessible batch client that requests the alteration of the attributes
of one or more batch jobs.

The qalter utility shall alter the attributes of those batch jobs, and only those batch jobs, for which
a batch job_identifier is presented to the utility.

The qalter utility shall alter the attributes of batch jobs in the order in which the batch
job_identifiers are presented to the utility.

If the qalter utility fails to process a batch job_identifier successfully, the utility shall proceed to
process the remaining batch job_identifiers, if any.

For each batch job_identifier for which the qalter utility succeeds, each attribute of the identified
batch job shall be altered as indicated by all the options presented to the utility.

For each identified batch job for which the qalter utility fails, the utility shall not alter any
attribute of the batch job.

For each batch job that the qalter utility processes, the utility shall not modify any attribute other
than those required by the options and option-arguments presented to the utility.

The qalter utility shall alter batch jobs by sending a Modify Job Request to the batch server that
manages each batch job. At the time the qalter utility exits, it shall have modified the batch job
corresponding to each successfully processed batch job_identifier. An attempt to alter the
attributes of a batch job in the RUNNING state is implementation-defined.

OPTIONS
The qalter utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported by the implementation:

−a date_time Redefine the time at which the batch job becomes eligible for execution.

The date_time argument shall be in the same form and represent the same time as
for the touch utility. The time so represented shall be set into the Execution_Time
attribute of the batch job. If the time specified is earlier than the current time, the
−a option shall have no effect.

−A account_string
Redefine the account to which the resource consumption of the batch job should be
charged.

The syntax of the account_string option-argument is unspecified.

The qalter utility shall set the Account_Name attribute of the batch job to the value
of the account_string option-argument.

3070 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

101774

101775

101776

101777

101778

101779

101780

101781

101782

101783

101784

101785

101786

101787

101788

101789

101790

101791

101792

101793

101794

101795

101796

101797

101798

101799

101800

101801

101802

101803

101804

101805

101806

101807

101808

101809

101810

101811

101812

101813

101814

101815

Utilities qalter

−c interval Redefine whether the batch job should be checkpointed, and if so, how often.

The qalter utility shall accept a value for the interval option-argument that is one of
the following:

n No checkpointing is to be performed on the batch job
(NO_CHECKPOINT).

s Checkpointing is to be performed only when the batch server is shut
down (CHECKPOINT_AT_SHUTDOWN).

c Automatic periodic checkpointing is to be performed at the
Minimum_Cpu_Interval attribute of the batch queue, in units of CPU
minutes (CHECKPOINT_AT_MIN_CPU_INTERVAL).

c=minutes Automatic periodic checkpointing is to be performed every minutes
of CPU time, or every Minimum_Cpu_Interval minutes, whichever is
greater. The minutes argument shall conform to the syntax for
unsigned integers and shall be greater than zero.

An implementation may define other checkpoint intervals. The conformance
document for an implementation shall describe any alternative checkpoint
intervals, how they are specified, their internal behavior, and how they affect the
behavior of the utility.

The qalter utility shall set the Checkpoint attribute of the batch job to the value of the
interval option-argument.

−e path_name
Redefine the path to be used for the standard error stream of the batch job.

The qalter utility shall accept a path_name option-argument that conforms to the
syntax of the path_name element defined in the System Interfaces volume of
POSIX.1-2008, which can be preceded by a host name element of the form
hostname:.

If the path_name option-argument constitutes an absolute pathname, the qalter
utility shall set the Error_Path attribute of the batch job to the value of the
path_name option-argument, including the host name element, if present.

If the path_name option-argument constitutes a relative pathname and no host
name element is specified, the qalter utility shall set the Error_Path attribute of the
batch job to the value of the absolute pathname derived by expanding the
path_name option-argument relative to the current directory of the process that
executes the qalter utility.

If the path_name option-argument constitutes a relative pathname and a host name
element is specified, the qalter utility shall set the Error_Path attribute of the batch
job to the value of the option-argument without expansion.

If the path_name option-argument does not include a host name element, the qalter
utility shall prefix the pathname in the Error_Path attribute with hostname:, where
hostname is the name of the host upon which the qalter utility is being executed.

−h hold_list Redefine the types of holds, if any, on the batch job. The qalter −h option shall
accept a value for the hold_list option-argument that is a string of alphanumeric
characters in the portable character set.

The qalter utility shall accept a value for the hold_list option-argument that is a

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3071

101816

101817

101818

101819

101820

101821

101822

101823

101824

101825

101826

101827

101828

101829

101830

101831

101832

101833

101834

101835

101836

101837

101838

101839

101840

101841

101842

101843

101844

101845

101846

101847

101848

101849

101850

101851

101852

101853

101854

101855

101856

101857

101858

101859

qalter Utilities

string of one or more of the characters ’u’, ’s’, or ’o’, or the single character
’n’. For each unique character in the hold_list option-argument, the qalter utility
shall add a value to the Hold_Types attribute of the batch job as follows, each
representing a different hold type:

u USER

s SYSTEM

o OPERATOR

If any of these characters are duplicated in the hold_list option-argument, the
duplicates shall be ignored. An existing Hold_Types attribute can be cleared by the
hold type:

n NO_HOLD

The qalter utility shall consider it an error if any hold type other than ’n’ is
combined with hold type ’n’. Strictly conforming applications shall not repeat
any of the characters ’u’, ’s’, ’o’, or ’n’ within the hold_list option-argument.
The qalter utility shall permit the repetition of characters, but shall not assign
additional meaning to the repeated characters. An implementation may define
other hold types. The conformance document for an implementation shall describe
any additional hold types, how they are specified, their internal behavior, and how
they affect the behavior of the utility.

−j join_list Redefine which streams of the batch job are to be merged. The qalter −j option shall
accept a value for the join_list option-argument that is a string of alphanumeric
characters in the portable character set.

The qalter utility shall accept a join_list option-argument that consists of one or
more of the characters ’e’ and ’o’, or the single character ’n’.

All of the other batch job output streams specified shall be merged into the output
stream represented by the character listed first in the join_list option-argument.

For each unique character in the join_list option-argument, the qalter utility shall
add a value to the Join_Path attribute of the batch job as follows, each representing
a different batch job stream to join:

e The standard error of the batch job (JOIN_STD_ERROR).

o The standard output of the batch job (JOIN_STD_OUTPUT).

An existing Join_Path attribute can be cleared by the join type:

n NO_JOIN

If ’n’ is specified, then no files are joined. The qalter utility shall consider it an
error if any join type other than ’n’ is combined with join type ’n’.

Strictly conforming applications shall not repeat any of the characters ’e’, ’o’, or
’n’ within the join_list option-argument. The qalter utility shall permit the
repetition of characters, but shall not assign additional meaning to the repeated
characters.

An implementation may define other join types. The conformance document for an
implementation shall describe any additional batch job streams, how they are
specified, their internal behavior, and how they affect the behavior of the utility.

3072 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

101860

101861

101862

101863

101864

101865

101866

101867

101868

101869

101870

101871

101872

101873

101874

101875

101876

101877

101878

101879

101880

101881

101882

101883

101884

101885

101886

101887

101888

101889

101890

101891

101892

101893

101894

101895

101896

101897

101898

101899

101900

101901

Utilities qalter

−k keep_list Redefine which output of the batch job to retain on the execution host.

The qalter −k option shall accept a value for the keep_list option-argument that is a
string of alphanumeric characters in the portable character set.

The qalter utility shall accept a keep_list option-argument that consists of one or
more of the characters ’e’ and ’o’, or the single character ’n’.

For each unique character in the keep_list option-argument, the qalter utility shall
add a value to the Keep_Files attribute of the batch job as follows, each representing
a different batch job stream to keep:

e The standard error of the batch job (KEEP_STD_ERROR).

o The standard output of the batch job (KEEP_STD_OUTPUT).

If both ’e’ and ’o’ are specified, then both files are retained. An existing
Keep_Files attribute can be cleared by the keep type:

n NO_KEEP

If ’n’ is specified, then no files are retained. The qalter utility shall consider it an
error if any keep type other than ’n’ is combined with keep type ’n’.

Strictly conforming applications shall not repeat any of the characters ’e’, ’o’, or
’n’ within the keep_list option-argument. The qalter utility shall permit the
repetition of characters, but shall not assign additional meaning to the repeated
characters. An implementation may define other keep types. The conformance
document for an implementation shall describe any additional keep types, how
they are specified, their internal behavior, and how they affect the behavior of the
utility.

−l resource_list
Redefine the resources that are allowed or required by the batch job.

The qalter utility shall accept a resource_list option-argument that conforms to the
following syntax:

resource=value[,,resource=value,,...]

The qalter utility shall set one entry in the value of the Resource_List attribute of the
batch job for each resource listed in the resource_list option-argument.

Because the list of supported resource names might vary by batch server, the qalter
utility shall rely on the batch server to validate the resource names and associated
values. See Section 3.3.3 (on page 2399) for a means of removing keyword=value
(and value@keyword) pairs and other general rules for list-oriented batch job
attributes.

−m mail_options
Redefine the points in the execution of the batch job at which the batch server is to
send mail about a change in the state of the batch job.

The qalter −m option shall accept a value for the mail_options option-argument that
is a string of alphanumeric characters in the portable character set.

The qalter utility shall accept a value for the mail_options option-argument that is a
string of one or more of the characters ’e’, ’b’, and ’a’, or the single character
’n’. For each unique character in the mail_options option-argument, the qalter
utility shall add a value to the Mail_Users attribute of the batch job as follows, each

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3073

101902

101903

101904

101905

101906

101907

101908

101909

101910

101911

101912

101913

101914

101915

101916

101917

101918

101919

101920

101921

101922

101923

101924

101925

101926

101927

101928

101929

101930

101931

101932

101933

101934

101935

101936

101937

101938

101939

101940

101941

101942

101943

101944

qalter Utilities

representing a different time during the life of a batch job at which to send mail:

e MAIL_AT_EXIT

b MAIL_AT_BEGINNING

a MAIL_AT_ABORT

If any of these characters are duplicated in the mail_options option-argument, the
duplicates shall be ignored.

An existing Mail_Points attribute can be cleared by the mail type:

n NO_MAIL

If ’n’ is specified, then mail is not sent. The qalter utility shall consider it an error
if any mail type other than ’n’ is combined with mail type ’n’. Strictly
conforming applications shall not repeat any of the characters ’e’, ’b’, ’a’, or
’n’ within the mail_options option-argument. The qalter utility shall permit the
repetition of characters but shall not assign additional meaning to the repeated
characters.

An implementation may define other mail types. The conformance document for
an implementation shall describe any additional mail types, how they are
specified, their internal behavior, and how they affect the behavior of the utility.

−M mail_list Redefine the list of users to which the batch server that executes the batch job is to
send mail, if the batch server sends mail about the batch job.

The syntax of the mail_list option-argument is unspecified. If the implementation
of the qalter utility uses a name service to locate users, the utility shall accept the
syntax used by the name service.

If the implementation of the qalter utility does not use a name service to locate
users, the implementation shall accept the following syntax for user names:

mail_address[,,mail_address,,...]

The interpretation of mail_address is implementation-defined.

The qalter utility shall set the Mail_Users attribute of the batch job to the value of
the mail_list option-argument.

−N name Redefine the name of the batch job.

The qalter −N option shall accept a value for the name option-argument that is a
string of up to 15 alphanumeric characters in the portable character set where the
first character is alphabetic.

The syntax of the name option-argument is unspecified.

The qalter utility shall set the Job_Name attribute of the batch job to the value of the
name option-argument.

−o path_name
Redefine the path for the standard output of the batch job.

The qalter utility shall accept a path_name option-argument that conforms to the
syntax of the path_name element defined in the System Interfaces volume of
POSIX.1-2008, which can be preceded by a host name element of the form
hostname:.

3074 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

101945

101946

101947

101948

101949

101950

101951

101952

101953

101954

101955

101956

101957

101958

101959

101960

101961

101962

101963

101964

101965

101966

101967

101968

101969

101970

101971

101972

101973

101974

101975

101976

101977

101978

101979

101980

101981

101982

101983

101984

101985

Utilities qalter

If the path_name option-argument constitutes an absolute pathname, the qalter
utility shall set the Output_Path attribute of the batch job to the value of the
path_name option-argument.

If the path_name option-argument constitutes a relative pathname and no host
name element is specified, the qalter utility shall set the Output_Path attribute of the
batch job to the absolute pathname derived by expanding the path_name option-
argument relative to the current directory of the process that executes the qalter
utility.

If the path_name option-argument constitutes a relative pathname and a host name
element is specified, the qalter utility shall set the Output_Path attribute of the batch
job to the value of the path_name option-argument without any expansion of the
pathname.

If the path_name option-argument does not include a host name element, the qalter
utility shall prefix the pathname in the Output_Path attribute with hostname:, where
hostname is the name of the host upon which the qalter utility is being executed.

−p priority Redefine the priority of the batch job.

The qalter utility shall accept a value for the priority option-argument that
conforms to the syntax for signed decimal integers, and which is not less than
−1 024 and not greater than 1 023.

The qalter utility shall set the Priority attribute of the batch job to the value of the
priority option-argument.

−r y|n Redefine whether the batch job is rerunnable.

If the value of the option-argument is ’y’, the qalter utility shall set the Rerunable
attribute of the batch job to TRUE.

If the value of the option-argument is ’n’, the qalter utility shall set the Rerunable
attribute of the batch job to FALSE.

The qalter utility shall consider it an error if any character other than ’y’ or ’n’ is
specified in the option-argument.

−S path_name_list
Redefine the shell that interprets the script at the destination system.

The qalter utility shall accept a path_name_list option-argument that conforms to the
following syntax:

pathname[@host][,pathname[@host],...]

The qalter utility shall accept only one pathname that is missing a corresponding
host name. The qalter utility shall allow only one pathname per named host.

The qalter utility shall add a value to the Shell_Path_List attribute of the batch job
for each entry in the path_name_list option-argument. See Section 3.3.3 (on page
2399) for a means of removing keyword=value (and value@keyword) pairs and other
general rules for list-oriented batch job attributes.

−u user_list Redefine the user name under which the batch job is to run at the destination
system.

The qalter utility shall accept a user_list option-argument that conforms to the
following syntax:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3075

101986

101987

101988

101989

101990

101991

101992

101993

101994

101995

101996

101997

101998

101999

102000

102001

102002

102003

102004

102005

102006

102007

102008

102009

102010

102011

102012

102013

102014

102015

102016

102017

102018

102019

102020

102021

102022

102023

102024

102025

102026

102027

102028

qalter Utilities

username[@host][,,username[@host],,...]

The qalter utility shall accept only one user name that is missing a corresponding
host name. The qalter utility shall accept only one user name per named host.

The qalter utility shall add a value to the User_List attribute of the batch job for each
entry in the user_list option-argument. See Section 3.3.3 (on page 2399) for a means
of removing keyword=value (and value@keyword) pairs and other general rules for
list-oriented batch job attributes.

OPERANDS
The qalter utility shall accept one or more operands that conform to the syntax for a batch
job_identifier (see Section 3.3.1, on page 2397).

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of qalter:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LOGNAME Determine the login name of the user.

TZ Determine the timezone used to interpret the date-time option-argument. If TZ is
unset or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
None.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

3076 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

102029

102030

102031

102032

102033

102034

102035

102036

102037

102038

102039

102040

102041

102042

102043

102044

102045

102046

102047

102048

102049

102050

102051

102052

102053

102054

102055

102056

102057

102058

102059

102060

102061

102062

102063

102064

102065

102066

102067

102068

Utilities qalter

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
In addition to the default behavior, the qalter utility shall not be required to write a diagnostic
message to standard error when the error reply received from a batch server indicates that the
batch job_identifier does not exist on the server. Whether or not the qalter utility attempts to locate
the batch job on other batch servers is implementation-defined.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The qalter utility allows users to change the attributes of a batch job.

As a means of altering a queued job, the qalter utility is superior to deleting and requeuing the
batch job insofar as an altered job retains its place in the queue with some traditional selection
algorithms. In addition, the qalter utility is both shorter and simpler than a sequence of qdel and
qsub utilities.

The result of an attempt on the part of a user to alter a batch job in a RUNNING state is
implementation-defined because a batch job in the RUNNING state will already have opened its
output files and otherwise performed any actions indicated by the options in effect at the time
the batch job began execution.

The options processed by the qalter utility are identical to those of the qsub utility, with a few
exceptions: −V, −v, and −q. The −V and −v are inappropriate for the qalter utility, since they
capture potentially transient environment information from the submitting process. The −q
option would specify a new queue, which would largely negate the previously stated advantage
of using qalter; furthermore, the qmove utility provides a superior means of moving jobs.

Each of the following paragraphs provides the rationale for a qalter option.

Additional rationale concerning these options can be found in the rationale for the qsub utility.

The −a option allows users to alter the date and time at which a batch job becomes eligible to
run.

The −A option allows users to change the account that will be charged for the resources
consumed by the batch job. Support for the −A option is mandatory for conforming
implementations of qalter, even though support of accounting is optional for servers. Whether or
not to support accounting is left to the implementor of the server, but mandatory support of the
−A option assures users of a consistent interface and allows them to control accounting on
servers that support accounting.

The −c option allows users to alter the checkpointing interval of a batch job. A checkpointing
system, which is not defined by POSIX.1-2008, allows recovery of a batch job at the most recent
checkpoint in the event of a crash. Checkpointing is typically used for jobs that consume
expensive computing time or must meet a critical schedule. Users should be allowed to make
the tradeoff between the overhead of checkpointing and the risk to the timely completion of the
batch job; therefore, this volume of POSIX.1-2008 provides the checkpointing interval option.
Support for checkpointing is optional for servers.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3077

102069

102070

102071

102072

102073

102074

102075

102076

102077

102078

102079

102080

102081

102082

102083

102084

102085

102086

102087

102088

102089

102090

102091

102092

102093

102094

102095

102096

102097

102098

102099

102100

102101

102102

102103

102104

102105

102106

102107

102108

102109

102110

102111

102112

102113

qalter Utilities

The −e option allows users to alter the name and location of the standard error stream written by
a batch job. However, the path of the standard error stream is meaningless if the value of the
Join_Path attribute of the batch job is TRUE.

The −h option allows users to set the hold type in the Hold_Types attribute of a batch job. The
qhold and qrls utilities add or remove hold types to the Hold_Types attribute, respectively. The −h
option has been modified to allow for implementation-defined hold types.

The −j option allows users to alter the decision to join (merge) the standard error stream of the
batch job with the standard output stream of the batch job.

The −l option allows users to change the resource limits imposed on a batch job.

The −m option allows users to modify the list of points in the life of a batch job at which the
designated users will receive mail notification.

The −M option allows users to alter the list of users who will receive notification about events in
the life of a batch job.

The −N option allows users to change the name of a batch job.

The −o option allows users to alter the name and path to which the standard output stream of
the batch job will be written.

The −P option allows users to modify the priority of a batch job. Support for priority is optional
for batch servers.

The −r option allows users to alter the rerunability status of a batch job.

The −S option allows users to change the name and location of the shell image that will be
invoked to interpret the script of the batch job. This option has been modified to allow a list of
shell name and locations associated with different hosts.

The −u option allows users to change the user identifier under which the batch job will execute.

The job_identifier operand syntax is provided so that the user can differentiate between the
originating and destination (or executing) batch server. These may or may not be the same. The
.server_name portion identifies the originating batch server, while the @server portion identifies
the destination batch server.

Historically, the qalter utility has been a component of the Network Queuing System (NQS), the
existing practice from which this utility has been derived.

FUTURE DIRECTIONS
The qalter utility may be removed in a future version.

SEE ALSO
Chapter 3 (on page 2375), qdel , qhold , qmove , qrls , qsub , touch

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
Derived from IEEE Std 1003.2d-1994.

Issue 6
The TZ entry is added to the ENVIRONMENT VARIABLES section.

IEEE PASC Interpretation 1003.2 #182 is applied, clarifying the description of the −a option.

3078 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

102114

102115

102116

102117

102118

102119

102120

102121

102122

102123

102124

102125

102126

102127

102128

102129

102130

102131

102132

102133

102134

102135

102136

102137

102138

102139

102140

102141

102142

102143

102144

102145

102146

102147

102148

102149

102150

102151

102152

Utilities qalter

Issue 7
The qalter utility is marked obsolescent.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3079

102153

102154

102155

qdel Utilities

NAME
qdel — delete batch jobs

SYNOPSIS
OB BE qdel job_identifier...

DESCRIPTION
A batch job is deleted by sending a request to the batch server that manages the batch job. A
batch job that has been deleted is no longer subject to management by batch services.

The qdel utility is a user-accessible client of batch services that requests the deletion of one or
more batch jobs.

The qdel utility shall request a batch server to delete those batch jobs for which a batch
job_identifier is presented to the utility.

The qdel utility shall delete batch jobs in the order in which their batch job_identifiers are
presented to the utility.

If the qdel utility fails to process any batch job_identifier successfully, the utility shall proceed to
process the remaining batch job_identifiers, if any.

The qdel utility shall delete each batch job by sending a Delete Job Request to the batch server that
manages the batch job.

The qdel utility shall not exit until the batch job corresponding to each successfully processed
batch job_identifier has been deleted.

OPTIONS
None.

OPERANDS
The qdel utility shall accept one or more operands that conform to the syntax for a batch
job_identifier (see Section 3.3.1, on page 2397).

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of qdel:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

3080 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

102156

102157

102158

102159

102160

102161

102162

102163

102164

102165

102166

102167

102168

102169

102170

102171

102172

102173

102174

102175

102176

102177

102178

102179

102180

102181

102182

102183

102184

102185

102186

102187

102188

102189

102190

102191

102192

102193

102194

102195

102196

Utilities qdel

LOGNAME Determine the login name of the user.

ASYNCHRONOUS EVENTS
Default.

STDOUT
An implementation of the qdel utility may write informative messages to standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
In addition to the default behavior, the qdel utility shall not be required to write a diagnostic
message to standard error when the error reply received from a batch server indicates that the
batch job_identifier does not exist on the server. Whether or not the qdel utility waits to output the
diagnostic message while attempting to locate the job on other servers is implementation-
defined.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The qdel utility allows users and administrators to delete jobs.

The qdel utility provides functionality that is not otherwise available. For example, the kill utility
of the operating system does not suffice. First, to use the kill utility, the user might have to log in
on a remote node, because the kill utility does not operate across the network. Second, unlike
qdel, kill cannot remove jobs from queues. Lastly, the arguments of the qdel utility are job
identifiers rather than process identifiers, and so this utility can be passed the output of the
qselect utility, thus providing users with a means of deleting a list of jobs.

Because a set of jobs can be selected using the qselect utility, the qdel utility has not been
complicated with options that provide for selection of jobs. Instead, the batch jobs to be deleted
are identified individually by their job identifiers.

Historically, the qdel utility has been a component of NQS, the existing practice on which it is
based. However, the qdel utility defined in this volume of POSIX.1-2008 does not provide an
option for specifying a signal number to send to the batch job prior to the killing of the process;
that capability has been subsumed by the qsig utility.

A discussion was held about the delays of networking and the possibility that the batch server
may never respond, due to a down router, down batch server, or other network mishap. The
DESCRIPTION records this under the words ‘‘fails to process any job identifier’’. In the broad
sense, the network problem is also an error, which causes the failure to process the batch job

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3081

102197

102198

102199

102200

102201

102202

102203

102204

102205

102206

102207

102208

102209

102210

102211

102212

102213

102214

102215

102216

102217

102218

102219

102220

102221

102222

102223

102224

102225

102226

102227

102228

102229

102230

102231

102232

102233

102234

102235

102236

102237

102238

102239

102240

qdel Utilities

identifier.

FUTURE DIRECTIONS
The qdel utility may be removed in a future version.

SEE ALSO
Chapter 3 (on page 2375), kill , qselect , qsig

XBD Chapter 8 (on page 173)

CHANGE HISTORY
Derived from IEEE Std 1003.2d-1994.

Issue 6
The LC_TIME and TZ entries are removed from the ENVIRONMENT VARIABLES section.

Issue 7
The qdel utility is marked obsolescent.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3082 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

102241

102242

102243

102244

102245

102246

102247

102248

102249

102250

102251

102252

102253

Utilities qhold

NAME
qhold — hold batch jobs

SYNOPSIS
OB BE qhold [−h hold_list] job_identifier...

DESCRIPTION
A hold is placed on a batch job by a request to the batch server that manages the batch job. A
batch job that has one or more holds is not eligible for execution. The qhold utility is a user-
accessible client of batch services that requests one or more types of hold to be placed on one or
more batch jobs.

The qhold utility shall place holds on those batch jobs for which a batch job_identifier is presented
to the utility.

The qhold utility shall place holds on batch jobs in the order in which their batch job_identifiers
are presented to the utility. If the qhold utility fails to process any batch job_identifier successfully,
the utility shall proceed to process the remaining batch job_identifiers, if any.

The qhold utility shall place holds on each batch job by sending a Hold Job Request to the batch
server that manages the batch job.

The qhold utility shall not exit until holds have been placed on the batch job corresponding to
each successfully processed batch job_identifier.

OPTIONS
The qhold utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported by the implementation:

−h hold_list Define the types of holds to be placed on the batch job.

The qhold −h option shall accept a value for the hold_list option-argument that is a
string of alphanumeric characters in the portable character set (see XBD Section
6.1, on page 125).

The qhold utility shall accept a value for the hold_list option-argument that is a
string of one or more of the characters ’u’, ’s’, or ’o’, or the single character
’n’.

For each unique character in the hold_list option-argument, the qhold utility shall
add a value to the Hold_Types attribute of the batch job as follows, each
representing a different hold type:

u USER

s SYSTEM

o OPERATOR

If any of these characters are duplicated in the hold_list option-argument, the
duplicates shall be ignored.

An existing Hold_Types attribute can be cleared by the following hold type:

n NO_HOLD

The qhold utility shall consider it an error if any hold type other than ’n’ is
combined with hold type ’n’.

Strictly conforming applications shall not repeat any of the characters ’u’, ’s’,

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3083

102254

102255

102256

102257

102258

102259

102260

102261

102262

102263

102264

102265

102266

102267

102268

102269

102270

102271

102272

102273

102274

102275

102276

102277

102278

102279

102280

102281

102282

102283

102284

102285

102286

102287

102288

102289

102290

102291

102292

102293

102294

qhold Utilities

’o’, or ’n’ within the hold_list option-argument. The qhold utility shall permit the
repetition of characters, but shall not assign additional meaning to the repeated
characters.

An implementation may define other hold types. The conformance document for
an implementation shall describe any additional hold types, how they are
specified, their internal behavior, and how they affect the behavior of the utility.

If the −h option is not presented to the qhold utility, the implementation shall set
the Hold_Types attribute to USER.

OPERANDS
The qhold utility shall accept one or more operands that conform to the syntax for a batch
job_identifier (see Section 3.3.1, on page 2397).

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of qhold:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LOGNAME Determine the login name of the user.

ASYNCHRONOUS EVENTS
Default.

STDOUT
None.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS

3084 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

102295

102296

102297

102298

102299

102300

102301

102302

102303

102304

102305

102306

102307

102308

102309

102310

102311

102312

102313

102314

102315

102316

102317

102318

102319

102320

102321

102322

102323

102324

102325

102326

102327

102328

102329

102330

102331

102332

102333

102334

Utilities qhold

The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
In addition to the default behavior, the qhold utility shall not be required to write a diagnostic
message to standard error when the error reply received from a batch server indicates that the
batch job_identifier does not exist on the server. Whether or not the qhold utility waits to output
the diagnostic message while attempting to locate the job on other servers is implementation-
defined.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The qhold utility allows users to place a hold on one or more jobs. A hold makes a batch job
ineligible for execution.

The qhold utility has options that allow the user to specify the type of hold. Should the user wish
to place a hold on a set of jobs that meet a selection criteria, such a list of jobs can be acquired
using the qselect utility.

The −h option allows the user to specify the type of hold that is to be placed on the job. This
option allows for USER, SYSTEM, OPERATOR, and implementation-defined hold types. The
USER and OPERATOR holds are distinct. The batch server that manages the batch job will verify
that the user is authorized to set the specified hold for the batch job.

Mail is not required on hold because the administrator has the tools and libraries to build this
option if he or she wishes.

Historically, the qhold utility has been a part of some existing batch systems, although it has not
traditionally been a part of the NQS.

FUTURE DIRECTIONS
The qhold utility may be removed in a future version.

SEE ALSO
Chapter 3 (on page 2375), qselect

XBD Section 6.1 (on page 125), Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
Derived from IEEE Std 1003.2d-1994.

Issue 6
The LC_TIME and TZ entries are removed from the ENVIRONMENT VARIABLES section.

Issue 7
The qhold utility is marked obsolescent.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3085

102335

102336

102337

102338

102339

102340

102341

102342

102343

102344

102345

102346

102347

102348

102349

102350

102351

102352

102353

102354

102355

102356

102357

102358

102359

102360

102361

102362

102363

102364

102365

102366

102367

102368

102369

102370

102371

102372

102373

qmove Utilities

NAME
qmove — move batch jobs

SYNOPSIS
OB BE qmove destination job_identifier...

DESCRIPTION
To move a batch job is to remove the batch job from the batch queue in which it resides and
instantiate the batch job in another batch queue. A batch job is moved by a request to the batch
server that manages the batch job. The qmove utility is a user-accessible batch client that requests
the movement of one or more batch jobs.

The qmove utility shall move those batch jobs, and only those batch jobs, for which a batch
job_identifier is presented to the utility.

The qmove utility shall move batch jobs in the order in which the corresponding batch
job_identifiers are presented to the utility.

If the qmove utility fails to process a batch job_identifier successfully, the utility shall proceed to
process the remaining batch job_identifiers, if any.

The qmove utility shall move batch jobs by sending a Move Job Request to the batch server that
manages each batch job. The qmove utility shall not exit before the batch jobs corresponding to all
successfully processed batch job_identifiers have been moved.

OPTIONS
None.

OPERANDS
The qmove utility shall accept one operand that conforms to the syntax for a destination (see
Section 3.3.2, on page 2398).

The qmove utility shall accept one or more operands that conform to the syntax for a batch
job_identifier (see Section 3.3.1, on page 2397).

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of qmove:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

3086 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

102374

102375

102376

102377

102378

102379

102380

102381

102382

102383

102384

102385

102386

102387

102388

102389

102390

102391

102392

102393

102394

102395

102396

102397

102398

102399

102400

102401

102402

102403

102404

102405

102406

102407

102408

102409

102410

102411

102412

102413

102414

102415

Utilities qmove

LOGNAME Determine the login name of the user.

ASYNCHRONOUS EVENTS
Default.

STDOUT
None.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
In addition to the default behavior, the qmove utility shall not be required to write a diagnostic
message to standard error when the error reply received from a batch server indicates that the
batch job_identifier does not exist on the server. Whether or not the qmove utility waits to output
the diagnostic message while attempting to locate the job on other servers is implementation-
defined.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The qmove utility allows users to move jobs between queues.

The alternative to using the qmove utility—deleting the batch job and requeuing it—entails
considerably more typing.

Since the means of selecting jobs based on attributes has been encapsulated in the qselect utility,
the only option of the qmove utility concerns authorization. The −u option provides the user with
the convenience of changing the user identifier under which the batch job will execute.
Minimalism and consistency have taken precedence over convenience; the −u option has been
deleted because the equivalent capability exists with the −u option of the qalter utility.

FUTURE DIRECTIONS
The qmove utility may be removed in a future version.

SEE ALSO
Chapter 3 (on page 2375), qalter , qselect

XBD Chapter 8 (on page 173)

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3087

102416

102417

102418

102419

102420

102421

102422

102423

102424

102425

102426

102427

102428

102429

102430

102431

102432

102433

102434

102435

102436

102437

102438

102439

102440

102441

102442

102443

102444

102445

102446

102447

102448

102449

102450

102451

102452

102453

102454

qmove Utilities

CHANGE HISTORY
Derived from IEEE Std 1003.2d-1994.

Issue 6
The LC_TIME and TZ entries are removed from the ENVIRONMENT VARIABLES section.

Issue 7
The qmove utility is marked obsolescent.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3088 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

102455

102456

102457

102458

102459

102460

102461

Utilities qmsg

NAME
qmsg — send message to batch jobs

SYNOPSIS
OB BE qmsg [−EO] message_string job_identifier...

DESCRIPTION
To send a message to a batch job is to request that a server write a message string into one or
more output files of the batch job. A message is sent to a batch job by a request to the batch
server that manages the batch job. The qmsg utility is a user-accessible batch client that requests
the sending of messages to one or more batch jobs.

The qmsg utility shall write messages into the files of batch jobs by sending a Job Message Request
to the batch server that manages the batch job. The qmsg utility shall not directly write the
message into the files of the batch job.

The qmsg utility shall send a Job Message Request for those batch jobs, and only those batch jobs,
for which a batch job_identifier is presented to the utility.

The qmsg utility shall send Job Message Requests for batch jobs in the order in which their batch
job_identifiers are presented to the utility.

If the qmsg utility fails to process any batch job_identifier successfully, the utility shall proceed to
process the remaining batch job_identifiers, if any.

The qmsg utility shall not exit before a Job Message Request has been sent to the server that
manages the batch job that corresponds to each successfully processed batch job_identifier.

OPTIONS
The qmsg utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported by the implementation:

−E Specify that the message is written to the standard error of each batch job.

The qmsg utility shall write the message into the standard error of the batch job.

−O Specify that the message is written to the standard output of each batch job.

The qmsg utility shall write the message into the standard output of the batch job.

If neither the −O nor the −E option is presented to the qmsg utility, the utility shall write the
message into an implementation-defined file. The conformance document for the
implementation shall describe the name and location of the implementation-defined file. If both
the −O and the −E options are presented to the qmsg utility, then the utility shall write the
messages to both standard output and standard error.

OPERANDS
The qmsg utility shall accept a minimum of two operands, message_string and one or more batch
job_identifiers.

The message_string operand shall be the string to be written to one or more output files of the
batch job followed by a <newline>. If the string contains <blank> characters, then the
application shall ensure that the string is quoted. The message_string shall be encoded in the
portable character set (see XBD Section 6.1, on page 125).

All remaining operands are batch job_identifiers that conform to the syntax for a batch
job_identifier (see Section 3.3.1, on page 2397).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3089

102462

102463

102464

102465

102466

102467

102468

102469

102470

102471

102472

102473

102474

102475

102476

102477

102478

102479

102480

102481

102482

102483

102484

102485

102486

102487

102488

102489

102490

102491

102492

102493

102494

102495

102496

102497

102498

102499

102500

102501

102502

qmsg Utilities

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of qmsg:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LOGNAME Determine the login name of the user.

ASYNCHRONOUS EVENTS
Default.

STDOUT
None.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
In addition to the default behavior, the qmsg utility shall not be required to write a diagnostic
message to standard error when the error reply received from a batch server indicates that the
batch job_identifier does not exist on the server. Whether or not the qmsg utility waits to output
the diagnostic message while attempting to locate the job on other servers is implementation-
defined.

3090 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

102503

102504

102505

102506

102507

102508

102509

102510

102511

102512

102513

102514

102515

102516

102517

102518

102519

102520

102521

102522

102523

102524

102525

102526

102527

102528

102529

102530

102531

102532

102533

102534

102535

102536

102537

102538

102539

102540

Utilities qmsg

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The qmsg utility allows users to write messages into the output files of running jobs. Users,
including operators and administrators, have a number of occasions when they want to place
messages in the output files of a batch job. For example, if a disk that is being used by a batch job
is showing errors, the operator might note this in the standard error stream of the batch job.

The options of the qmsg utility provide users with the means of placing the message in the
output stream of their choice. The default output stream for the message—if the user does not
designate an output stream—is implementation-defined, since many implementations will
provide, as an extension to this volume of POSIX.1-2008, a log file that shows the history of
utility execution.

If users wish to send a message to a set of jobs that meet a selection criteria, the qselect utility can
be used to acquire the appropriate list of job identifiers.

The −E option allows users to place the message in the standard error stream of the batch job.

The −O option allows users to place the message in the standard output stream of the batch job.

Historically, the qmsg utility is an existing practice in the offerings of one or more implementors
of an NQS-derived batch system. The utility has been found to be useful enough that it deserves
to be included in this volume of POSIX.1-2008.

FUTURE DIRECTIONS
The qmsg utility may be removed in a future version.

SEE ALSO
Chapter 3 (on page 2375), qselect

XBD Section 6.1 (on page 125), Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
Derived from IEEE Std 1003.2d-1994.

Issue 6
The LC_TIME and TZ entries are removed from the ENVIRONMENT VARIABLES section.

Issue 7
The qmsg utility is marked obsolescent.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3091

102541

102542

102543

102544

102545

102546

102547

102548

102549

102550

102551

102552

102553

102554

102555

102556

102557

102558

102559

102560

102561

102562

102563

102564

102565

102566

102567

102568

102569

102570

102571

102572

102573

qrerun Utilities

NAME
qrerun — rerun batch jobs

SYNOPSIS
OB BE qrerun job_identifier...

DESCRIPTION
To rerun a batch job is to terminate the session leader of the batch job, delete any associated
checkpoint files, and return the batch job to the batch queued state. A batch job is rerun by a
request to the batch server that manages the batch job. The qrerun utility is a user-accessible
batch client that requests the rerunning of one or more batch jobs.

The qrerun utility shall rerun those batch jobs for which a batch job_identifier is presented to the
utility.

The qrerun utility shall rerun batch jobs in the order in which their batch job_identifiers are
presented to the utility.

If the qrerun utility fails to process any batch job_identifier successfully, the utility shall proceed to
process the remaining batch job_identifiers, if any.

The qrerun utility shall rerun batch jobs by sending a Rerun Job Request to the batch server that
manages each batch job.

For each successfully processed batch job_identifier, the qrerun utility shall have rerun the
corresponding batch job at the time the utility exits.

OPTIONS
None.

OPERANDS
The qrerun utility shall accept one or more operands that conform to the syntax for a batch
job_identifier (see Section 3.3.1, on page 2397).

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of qrerun:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

3092 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

102574

102575

102576

102577

102578

102579

102580

102581

102582

102583

102584

102585

102586

102587

102588

102589

102590

102591

102592

102593

102594

102595

102596

102597

102598

102599

102600

102601

102602

102603

102604

102605

102606

102607

102608

102609

102610

102611

102612

102613

102614

Utilities qrerun

LOGNAME Determine the login name of the user.

ASYNCHRONOUS EVENTS
Default.

STDOUT
None.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
In addition to the default behavior, the qrerun utility shall not be required to write a diagnostic
message to standard error when the error reply received from a batch server indicates that the
batch job_identifier does not exist on the server. Whether or not the qrerun utility waits to output
the diagnostic message while attempting to locate the job on other servers is implementation-
defined.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The qrerun utility allows users to cause jobs in the running state to exit and rerun.

The qrerun utility is a new utility, vis-a-vis existing practice, that has been defined in this volume
of POSIX.1-2008 to correct user-perceived deficiencies in the existing practice.

FUTURE DIRECTIONS
The qrerun utility may be removed in a future version.

SEE ALSO
Chapter 3 (on page 2375)

XBD Chapter 8 (on page 173)

CHANGE HISTORY
Derived from IEEE Std 1003.2d-1994.

Issue 6
The LC_TIME and TZ entries are removed from the ENVIRONMENT VARIABLES section.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3093

102615

102616

102617

102618

102619

102620

102621

102622

102623

102624

102625

102626

102627

102628

102629

102630

102631

102632

102633

102634

102635

102636

102637

102638

102639

102640

102641

102642

102643

102644

102645

102646

102647

102648

102649

102650

102651

102652

qrerun Utilities

Issue 7
The qrerun utility is marked obsolescent.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3094 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

102653

102654

102655

Utilities qrls

NAME
qrls — release batch jobs

SYNOPSIS
OB BE qrls [−h hold_list] job_identifier...

DESCRIPTION
A batch job might have one or more holds, which prevent the batch job from executing. A batch
job from which all the holds have been removed becomes eligible for execution and is said to
have been released. A batch job hold is removed by sending a request to the batch server that
manages the batch job. The qrls utility is a user-accessible client of batch services that requests
holds be removed from one or more batch jobs.

The qrls utility shall remove one or more holds from those batch jobs for which a batch
job_identifier is presented to the utility.

The qrls utility shall remove holds from batch jobs in the order in which their batch job_identifiers
are presented to the utility.

If the qrls utility fails to process a batch job_identifier successfully, the utility shall proceed to
process the remaining batch job_identifiers, if any.

The qrls utility shall remove holds on each batch job by sending a Release Job Request to the batch
server that manages the batch job.

The qrls utility shall not exit until the holds have been removed from the batch job
corresponding to each successfully processed batch job_identifier.

OPTIONS
The qrls utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported by the implementation:

−h hold_list Define the types of holds to be removed from the batch job.

The qrls −h option shall accept a value for the hold_list option-argument that is a
string of alphanumeric characters in the portable character set (see XBD Section
6.1, on page 125).

The qrls utility shall accept a value for the hold_list option-argument that is a string
of one or more of the characters ’u’, ’s’, or ’o’, or the single character ’n’.

For each unique character in the hold_list option-argument, the qrls utility shall add
a value to the Hold_Types attribute of the batch job as follows, each representing a
different hold type:

u USER

s SYSTEM

o OPERATOR

If any of these characters are duplicated in the hold_list option-argument, the
duplicates shall be ignored.

An existing Hold_Types attribute can be cleared by the following hold type:

n NO_HOLD

The qrls utility shall consider it an error if any hold type other than ’n’ is
combined with hold type ’n’.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3095

102656

102657

102658

102659

102660

102661

102662

102663

102664

102665

102666

102667

102668

102669

102670

102671

102672

102673

102674

102675

102676

102677

102678

102679

102680

102681

102682

102683

102684

102685

102686

102687

102688

102689

102690

102691

102692

102693

102694

102695

102696

qrls Utilities

Strictly conforming applications shall not repeat any of the characters ’u’, ’s’,
’o’, or ’n’ within the hold_list option-argument. The qrls utility shall permit the
repetition of characters, but shall not assign additional meaning to the repeated
characters.

An implementation may define other hold types. The conformance document for
an implementation shall describe any additional hold types, how they are
specified, their internal behavior, and how they affect the behavior of the utility.

If the −h option is not presented to the qrls utility, the implementation shall remove
the USER hold in the Hold_Types attribute.

OPERANDS
The qrls utility shall accept one or more operands that conform to the syntax for a batch
job_identifier (see Section 3.3.1, on page 2397).

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of qrls:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LOGNAME Determine the login name of the user.

ASYNCHRONOUS EVENTS
Default.

STDOUT
None.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

3096 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

102697

102698

102699

102700

102701

102702

102703

102704

102705

102706

102707

102708

102709

102710

102711

102712

102713

102714

102715

102716

102717

102718

102719

102720

102721

102722

102723

102724

102725

102726

102727

102728

102729

102730

102731

102732

102733

102734

102735

102736

Utilities qrls

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
In addition to the default behavior, the qrls utility shall not be required to write a diagnostic
message to standard error when the error reply received from a batch server indicates that the
batch job_identifier does not exist on the server. Whether or not the qrls utility waits to output the
diagnostic message while attempting to locate the job on other servers is implementation-
defined.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The qrls utility allows users, operators, and administrators to remove holds from jobs.

The qrls utility does not support any job selection options or wildcard arguments. Users may
acquire a list of jobs selected by attributes using the qselect utility. For example, a user could
select all of their held jobs.

The −h option allows the user to specify the type of hold that is to be removed. This option
allows for USER, SYSTEM, OPERATOR, and implementation-defined hold types. The batch
server that manages the batch job will verify whether the user is authorized to remove the
specified hold for the batch job. If more than one type of hold has been placed on the batch job, a
user may wish to remove only some of them.

Mail is not required on release because the administrator has the tools and libraries to build this
option if required.

The qrls utility is a new utility vis-a-vis existing practice; it has been defined in this volume of
POSIX.1-2008 as the natural complement to the qhold utility.

FUTURE DIRECTIONS
The qrls utility may be removed in a future version.

SEE ALSO
Chapter 3 (on page 2375), qhold , qselect

XBD Section 6.1 (on page 125), Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
Derived from IEEE Std 1003.2d-1994.

Issue 6
The LC_TIME and TZ entries are removed from the ENVIRONMENT VARIABLES section.

Issue 7
The qrls utility is marked obsolescent.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3097

102737

102738

102739

102740

102741

102742

102743

102744

102745

102746

102747

102748

102749

102750

102751

102752

102753

102754

102755

102756

102757

102758

102759

102760

102761

102762

102763

102764

102765

102766

102767

102768

102769

102770

102771

102772

102773

102774

102775

102776

qselect Utilities

NAME
qselect — select batch jobs

SYNOPSIS
OB BE qselect [−a [op]date_time] [−A account_string] [−c [op]interval]

[−h hold_list] [−l resource_list] [−N name] [−p [op]priority]

[−q destination] [−r y|n] [−s states] [−u user_list]

DESCRIPTION
To select a set of batch jobs is to return the batch job_identifiers for each batch job that meets a list
of selection criteria. A set of batch jobs is selected by a request to a batch server. The qselect utility
is a user-accessible batch client that requests the selection of batch jobs.

Upon successful completion, the qselect utility shall have returned a list of zero or more batch
job_identifiers that meet the criteria specified by the options and option-arguments presented to
the utility.

The qselect utility shall select batch jobs by sending a Select Jobs Request to a batch server. The
qselect utility shall not exit until the server replies to each request generated.

For each option presented to the qselect utility, the utility shall restrict the set of selected batch
jobs as described in the OPTIONS section.

The qselect utility shall not restrict selection of batch jobs except by authorization and as required
by the options presented to the utility.

When an option is specified with a mandatory or optional op component to the option-
argument, then op shall specify a relation between the value of a certain batch job attribute and
the value component of the option-argument. If an op is allowable on an option, then the
description of the option letter indicates the op as either mandatory or optional. Acceptable
strings for the op component, and the relation the string indicates, are shown in the following
list:

.eq. The value represented by the attribute of the batch job is equal to the value represented
by the option-argument.

.ge. The value represented by the attribute of the batch job is greater than or equal to the
value represented by the option-argument.

.gt. The value represented by the attribute of the batch job is greater than the value
represented by the option-argument.

.lt. The value represented by the attribute of the batch job is less than the value represented
by the option-argument.

.le. The value represented by the attribute of the batch job is less than or equal to the value
represented by the option-argument.

.ne. The value represented by the attribute of the batch job is not equal to the value
represented by the option-argument.

OPTIONS
The qselect utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported by the implementation:

−a [op]date_time
Restrict selection to a specific time, or a range of times.

The qselect utility shall select only batch jobs for which the value of the

3098 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

102777

102778

102779

102780

102781

102782

102783

102784

102785

102786

102787

102788

102789

102790

102791

102792

102793

102794

102795

102796

102797

102798

102799

102800

102801

102802

102803

102804

102805

102806

102807

102808

102809

102810

102811

102812

102813

102814

102815

102816

102817

102818

102819

Utilities qselect

Execution_Time attribute is related to the Epoch equivalent of the local time
expressed by the value of the date_time component of the option-argument in the
manner indicated by the value of the op component of the option-argument.

The qselect utility shall accept a date_time component of the option-argument that
conforms to the syntax of the time operand of the touch utility.

If the op component of the option-argument is not presented to the qselect utility,
the utility shall select batch jobs for which the Execution_Time attribute is equal to
the date_time component of the option-argument.

When comparing times, the qselect utility shall use the following definitions for the
op component of the option-argument:

.eq. The time represented by value of the Execution_Time attribute of the batch
job is equal to the time represented by the date_time component of the
option-argument.

.ge. The time represented by value of the Execution_Time attribute of the batch
job is after or equal to the time represented by the date_time component of
the option-argument.

.gt. The time represented by value of the Execution_Time attribute of the batch
job is after the time represented by the date_time component of the option-
argument.

.lt. The time represented by value of the Execution_Time attribute of the batch
job is before the time represented by the date_time component of the
option-argument.

.le. The time represented by value of the Execution_Time attribute of the batch
job is before or equal to the time represented by the date_time component
of the option-argument.

.ne. The time represented by value of the Execution_Time attribute of the batch
job is not equal to the time represented by the date_time component of the
option-argument.

The qselect utility shall accept the defined character strings for the op component of
the option-argument.

−A account_string
Restrict selection to the batch jobs charging a specified account.

The qselect utility shall select only batch jobs for which the value of the
Account_Name attribute of the batch job matches the value of the account_string
option-argument.

The syntax of the account_string option-argument is unspecified.

−c [op]interval
Restrict selection to batch jobs within a range of checkpoint intervals.

The qselect utility shall select only batch jobs for which the value of the Checkpoint
attribute relates to the value of the interval component of the option-argument in
the manner indicated by the value of the op component of the option-argument.

If the op component of the option-argument is omitted, the qselect utility shall select
batch jobs for which the value of the Checkpoint attribute is equal to the value of the
interval component of the option-argument.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3099

102820

102821

102822

102823

102824

102825

102826

102827

102828

102829

102830

102831

102832

102833

102834

102835

102836

102837

102838

102839

102840

102841

102842

102843

102844

102845

102846

102847

102848

102849

102850

102851

102852

102853

102854

102855

102856

102857

102858

102859

102860

102861

102862

102863

qselect Utilities

When comparing checkpoint intervals, the qselect utility shall use the following
definitions for the op component of the option-argument:

.eq. The value of the Checkpoint attribute of the batch job equals the value of
the interval component of the option-argument.

.ge. The value of the Checkpoint attribute of the batch job is greater than or
equal to the value of the interval component option-argument.

.gt. The value of the Checkpoint attribute of the batch job is greater than the
value of the interval component option-argument.

.lt. The value of the Checkpoint attribute of the batch job is less than the value
of the interval component option-argument.

.le. The value of the Checkpoint attribute of the batch job is less than or equal
to the value of the interval component option-argument.

.ne. The value of the Checkpoint attribute of the batch job does not equal the
value of the interval component option-argument.

The qselect utility shall accept the defined character strings for the op component of
the option-argument.

The ordering relationship for the values of the interval option-argument is defined
to be:

‘n’ .gt. ‘s’ .gt. ‘c=minutes’ .ge. ‘c’

When comparing Checkpoint attributes with an interval having the value of the
single character ’u’, only equality or inequality are valid comparisons.

−h hold_list Restrict selection to batch jobs that have a specific type of hold.

The qselect utility shall select only batch jobs for which the value of the Hold_Types
attribute matches the value of the hold_list option-argument.

The qselect −h option shall accept a value for the hold_list option-argument that is a
string of alphanumeric characters in the portable character set (see XBD Section
6.1, on page 125).

The qselect utility shall accept a value for the hold_list option-argument that is a
string of one or more of the characters ’u’, ’s’, or ’o’, or the single character
’n’.

Each unique character in the hold_list option-argument of the qselect utility is
defined as follows, each representing a different hold type:

u USER

s SYSTEM

o OPERATOR

If any of these characters are duplicated in the hold_list option-argument, the
duplicates shall be ignored.

The qselect utility shall consider it an error if any hold type other than ’n’ is
combined with hold type ’n’.

Strictly conforming applications shall not repeat any of the characters ’u’, ’s’,
’o’, or ’n’ within the hold_list option-argument. The qselect utility shall permit

3100 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

102864

102865

102866

102867

102868

102869

102870

102871

102872

102873

102874

102875

102876

102877

102878

102879

102880

102881

102882

102883

102884

102885

102886

102887

102888

102889

102890

102891

102892

102893

102894

102895

102896

102897

102898

102899

102900

102901

102902

102903

102904

Utilities qselect

the repetition of characters, but shall not assign additional meaning to the repeated
characters.

An implementation may define other hold types. The conformance document for
an implementation shall describe any additional hold types, how they are
specified, their internal behavior, and how they affect the behavior of the utility.

−l resource_list
Restrict selection to batch jobs with specified resource limits and attributes.

The qselect utility shall accept a resource_list option-argument with the following
syntax:

resource_name op value [,,resource_name op value,, ...]

When comparing resource values, the qselect utility shall use the following
definitions for the op component of the option-argument:

.eq. The value of the resource of the same name in the Resource_List attribute
of the batch job equals the value of the value component of the option-
argument.

.ge. The value of the resource of the same name in the Resource_List attribute
of the batch job is greater than or equal to the value of the value
component of the option-argument.

.gt. The value of the resource of the same name in the Resource_List attribute
of the batch job is greater than the value of the value component of the
option-argument.

.lt. The value of the resource of the same name in the Resource_List attribute
of the batch job is less than the value of the value component of the
option-argument.

.ne. The value of the resource of the same name in the Resource_List attribute
of the batch job does not equal the value of the value component of the
option-argument.

.le. The value of the resource of the same name in the Resource_List attribute
of the batch job is less than or equal to the value of the value component of
the option-argument.

When comparing the limit of a Resource_List attribute with the value component of
the option-argument, if the limit, the value, or both are non-numeric, only equality
or inequality are valid comparisons.

The qselect utility shall select only batch jobs for which the values of the
resource_names listed in the resource_list option-argument match the corresponding
limits of the Resource_List attribute of the batch job.

Limits of resource_names present in the Resource_List attribute of the batch job that
have no corresponding values in the resource_list option-argument shall not be
considered when selecting batch jobs.

−N name Restrict selection to batch jobs with a specified name.

The qselect utility shall select only batch jobs for which the value of the Job_Name
attribute matches the value of the name option-argument. The string specified in
the name option-argument shall be passed, uninterpreted, to the server. This allows
an implementation to match ‘‘wildcard’’ patterns against batch job names.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3101

102905

102906

102907

102908

102909

102910

102911

102912

102913

102914

102915

102916

102917

102918

102919

102920

102921

102922

102923

102924

102925

102926

102927

102928

102929

102930

102931

102932

102933

102934

102935

102936

102937

102938

102939

102940

102941

102942

102943

102944

102945

102946

102947

102948

qselect Utilities

An implementation shall describe in the conformance document the format it
supports for matching against the Job_Name attribute.

−p [op]priority
Restrict selection to batch jobs of the specified priority or range of priorities.

The qselect utility shall select only batch jobs for which the value of the Priority
attribute of the batch job relates to the value of the priority component of the
option-argument in the manner indicated by the value of the op component of the
option-argument.

If the op component of the option-argument is omitted, the qselect utility shall select
batch jobs for which the value of the Priority attribute of the batch job is equal to
the value of the priority component of the option-argument.

When comparing priority values, the qselect utility shall use the following
definitions for the op component of the option-argument:

.eq. The value of the Priority attribute of the batch job equals the value of the
priority component of the option-argument.

.ge. The value of the Priority attribute of the batch job is greater than or equal
to the value of the priority component option-argument.

.gt. The value of the Priority attribute of the batch job is greater than the value
of the priority component option-argument.

.lt. The value of the Priority attribute of the batch job is less than the value of
the priority component option-argument.

.lt. The value of the Priority attribute of the batch job is less than or equal to
the value of the priority component option-argument.

.ne. The value of the Priority attribute of the batch job does not equal the value
of the priority component option-argument.

−q destination
Restrict selection to the specified batch queue or server, or both.

The qselect utility shall select only batch jobs that are located at the destination
indicated by the value of the destination option-argument.

The destination defines a batch queue, a server, or a batch queue at a server.

The qselect utility shall accept an option-argument for the −q option that conforms
to the syntax for a destination. If the −q option is not presented to the qselect utility,
the utility shall select batch jobs from all batch queues at the default batch server.

If the option-argument describes only a batch queue, the qselect utility shall select
only batch jobs from the batch queue of the specified name at the default batch
server. The means by which qselect determines the default server is
implementation-defined.

If the option-argument describes only a batch server, the qselect utility shall select
batch jobs from all the batch queues at that batch server.

If the option-argument describes both a batch queue and a batch server, the qselect
utility shall select only batch jobs from the specified batch queue at the specified
server.

3102 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

102949

102950

102951

102952

102953

102954

102955

102956

102957

102958

102959

102960

102961

102962

102963

102964

102965

102966

102967

102968

102969

102970

102971

102972

102973

102974

102975

102976

102977

102978

102979

102980

102981

102982

102983

102984

102985

102986

102987

102988

102989

102990

Utilities qselect

−r y|n Restrict selection to batch jobs with the specified rerunability status.

The qselect utility shall select only batch jobs for which the value of the Rerunable
attribute of the batch job matches the value of the option-argument.

The qselect utility shall accept a value for the option-argument that consists of
either the single character ’y’ or the single character ’n’. The character ’y’
represents the value TRUE, and the character ’n’ represents the value FALSE.

−s states Restrict selection to batch jobs in the specified states.

The qselect utility shall accept an option-argument that consists of any combination
of the characters ’e’, ’q’, ’r’, ’w’, ’h’, and ’t’.

Conforming applications shall not repeat any character in the option-argument.
The qselect utility shall permit the repetition of characters in the option-argument,
but shall not assign additional meaning to repeated characters.

The qselect utility shall interpret the characters in the states option-argument as
follows:

e Represents the EXITING state.

q Represents the QUEUED state.

r Represents the RUNNING state.

t Represents the TRANSITING state.

h Represents the HELD state.

w Represents the WAITING state.

For each character in the states option-argument, the qselect utility shall select batch
jobs in the corresponding state.

−u user_list Restrict selection to batch jobs owned by the specified user names.

The qselect utility shall select only the batch jobs of those users specified in the
user_list option-argument.

The qselect utility shall accept a user_list option-argument that conforms to the
following syntax:

username[@host][,,username[@host],, ...]

The qselect utility shall accept only one user name that is missing a corresponding
host name. The qselect utility shall accept only one user name per named host.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of qselect:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3103

102991

102992

102993

102994

102995

102996

102997

102998

102999

103000

103001

103002

103003

103004

103005

103006

103007

103008

103009

103010

103011

103012

103013

103014

103015

103016

103017

103018

103019

103020

103021

103022

103023

103024

103025

103026

103027

103028

qselect Utilities

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LOGNAME Determine the login name of the user.

TZ Determine the timezone used to interpret the date-time option-argument. If TZ is
unset or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The qselect utility shall write zero or more batch job_identifiers to standard output.

The qselect utility shall separate the batch job_identifiers written to standard output by white
space.

The qselect utility shall write batch job_identifiers in the following format:

sequence_number.server_name@server

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

3104 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

103029

103030

103031

103032

103033

103034

103035

103036

103037

103038

103039

103040

103041

103042

103043

103044

103045

103046

103047

103048

103049

103050

103051

103052

103053

103054

103055

103056

103057

103058

103059

103060

103061

103062

Utilities qselect

APPLICATION USAGE
None.

EXAMPLES
The following example shows how a user might use the qselect utility in conjunction with the
qdel utility to delete all of his or her jobs in the queued state without affecting any jobs that are
already running:

qdel $(qselect −s q)

or:

qselect −s q || xargs qdel

RATIONALE
The qselect utility allows users to acquire a list of job identifiers that match user-specified
selection criteria. The list of identifiers returned by the qselect utility conforms to the syntax of
the batch job identifier list processed by a utility such as qmove, qdel, and qrls. The qselect utility
is thus a powerful tool for causing another batch system utility to act upon a set of jobs that
match a list of selection criteria.

The options of the qselect utility let the user apply a number of useful filters for selecting jobs.
Each option further restricts the selection of jobs. Many of the selection options allow the
specification of a relational operator. The FORTRAN-like syntax of the operator—that is,
".lt."—was chosen rather than the C-like "<=" meta-characters.

The −a option allows users to restrict the selected jobs to those that have been submitted (or
altered) to wait until a particular time. The time period is determined by the argument of this
option, which includes both a time and an operator—it is thus possible to select jobs waiting
until a specific time, jobs waiting until after a certain time, or those waiting for a time before the
specified time.

The −A option allows users to restrict the selected jobs to those that have been submitted (or
altered) to charge a particular account.

The −c option allows users to restrict the selected jobs to those whose checkpointing interval
falls within the specified range.

The −l option allows users to select those jobs whose resource limits fall within the range
indicated by the value of the option. For example, a user could select those jobs for which the
CPU time limit is greater than two hours.

The −N option allows users to select jobs by job name. For instance, all the parts of a task that
have been divided in parallel jobs might be given the same name, and thus manipulated as a
group by means of this option.

The −q option allows users to select jobs in a specified queue.

The −r option allows users to select only those jobs with a specified rerun criteria. For instance, a
user might select only those jobs that can be rerun for use with the qrerun utility.

The −s option allows users to select only those jobs that are in a certain state.

The −u option allows users to select jobs that have been submitted to execute under a particular
account.

The selection criteria provided by the options of the qselect utility allow users to select jobs based
on all the appropriate attributes that can be assigned to jobs by the qsub utility.

Historically, the qselect utility has not been a part of existing practice; it is an improvement that

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3105

103063

103064

103065

103066

103067

103068

103069

103070

103071

103072

103073

103074

103075

103076

103077

103078

103079

103080

103081

103082

103083

103084

103085

103086

103087

103088

103089

103090

103091

103092

103093

103094

103095

103096

103097

103098

103099

103100

103101

103102

103103

103104

103105

qselect Utilities

has been introduced in this volume of POSIX.1-2008.

FUTURE DIRECTIONS
The qselect utility may be removed in a future version.

SEE ALSO
Chapter 3 (on page 2375), qdel , qrerun , qrls , qselect , qsub , touch

XBD Section 6.1 (on page 125), Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
Derived from IEEE Std 1003.2d-1994.

Issue 7
The qselect utility is marked obsolescent.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3106 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

103106

103107

103108

103109

103110

103111

103112

103113

103114

103115

103116

Utilities qsig

NAME
qsig — signal batch jobs

SYNOPSIS
OB BE qsig [−s signal] job_identifier...

DESCRIPTION
To signal a batch job is to send a signal to the session leader of the batch job. A batch job is
signaled by sending a request to the batch server that manages the batch job. The qsig utility is a
user-accessible batch client that requests the signaling of a batch job.

The qsig utility shall signal those batch jobs for which a batch job_identifier is presented to the
utility. The qsig utility shall not signal any batch jobs whose batch job_identifiers are not
presented to the utility.

The qsig utility shall signal batch jobs in the order in which the corresponding batch
job_identifiers are presented to the utility. If the qsig utility fails to process a batch job_identifier
successfully, the utility shall proceed to process the remaining batch job_identifiers, if any.

The qsig utility shall signal batch jobs by sending a Signal Job Request to the batch server that
manages the batch job.

For each successfully processed batch job_identifier, the qsig utility shall have received a
completion reply to each Signal Job Request sent to a batch server at the time the utility exits.

OPTIONS
The qsig utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported by the implementation:

−s signal Define the signal to be sent to the batch job.

The qsig utility shall accept a signal option-argument that is either a symbolic signal
name or an unsigned integer signal number (see the POSIX.1-1990 standard,
Section 3.3.1.1). The qsig utility shall accept signal names for which the SIG prefix
has been omitted.

If the signal option-argument is a signal name, the qsig utility shall send that name.

If the signal option-argument is a number, the qsig utility shall send the signal
value represented by the number.

If the −s option is not presented to the qsig utility, the utility shall send the signal
SIGTERM to each signaled batch job.

OPERANDS
The qsig utility shall accept one or more operands that conform to the syntax for a batch
job_identifier (see Section 3.3.1, on page 2397).

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of qsig:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3107

103117

103118

103119

103120

103121

103122

103123

103124

103125

103126

103127

103128

103129

103130

103131

103132

103133

103134

103135

103136

103137

103138

103139

103140

103141

103142

103143

103144

103145

103146

103147

103148

103149

103150

103151

103152

103153

103154

103155

103156

qsig Utilities

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LOGNAME Determine the login name of the user.

ASYNCHRONOUS EVENTS
Default.

STDOUT
An implementation of the qsig utility may write informative messages to standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
In addition to the default behavior, the qsig utility shall not be required to write a diagnostic
message to standard error when the error reply received from a batch server indicates that the
batch job_identifier does not exist on the server. Whether or not the qsig utility waits to output the
diagnostic message while attempting to locate the batch job on other servers is implementation-
defined.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The qsig utility allows users to signal batch jobs.

A user may be unable to signal a batch job with the kill utility of the operating system for a
number of reasons. First, the process ID of the batch job may be unknown to the user. Second,
the processes of the batch job may be on a remote node. However, by virtue of communication
between batch nodes, the qsig utility can arrange for the signaling of a process.

Because a batch job that is not running cannot be signaled, and because the signal may not

3108 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

103157

103158

103159

103160

103161

103162

103163

103164

103165

103166

103167

103168

103169

103170

103171

103172

103173

103174

103175

103176

103177

103178

103179

103180

103181

103182

103183

103184

103185

103186

103187

103188

103189

103190

103191

103192

103193

103194

103195

103196

103197

103198

103199

Utilities qsig

terminate the batch job, the qsig utility is not a substitute for the qdel utility.

The options of the qsig utility allow the user to specify the signal that is to be sent to the batch
job.

The −s option allows users to specify a signal by name or by number, and thus override the
default signal. The POSIX.1-1990 standard defines signals by both name and number.

The qsig utility is a new utility, vis-a-vis existing practice; it has been defined in this volume of
POSIX.1-2008 in response to user-perceived shortcomings in existing practice.

FUTURE DIRECTIONS
The qsig utility may be removed in a future version.

SEE ALSO
Chapter 3 (on page 2375), kill , qdel

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
Derived from IEEE Std 1003.2d-1994.

Issue 6
The LC_TIME and TZ entries are removed from the ENVIRONMENT VARIABLES section.

Issue 7
The qsig utility is marked obsolescent.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3109

103200

103201

103202

103203

103204

103205

103206

103207

103208

103209

103210

103211

103212

103213

103214

103215

103216

103217

103218

qstat Utilities

NAME
qstat — show status of batch jobs

SYNOPSIS
OB BE qstat [−f] job_identifier...

qstat −Q [−f] destination...

qstat −B [−f] server_name...

DESCRIPTION
The status of a batch job, batch queue, or batch server is obtained by a request to the server. The
qstat utility is a user-accessible batch client that requests the status of one or more batch jobs,
batch queues, or servers, and writes the status information to standard output.

For each successfully processed batch job_identifier, the qstat utility shall display information
about the corresponding batch job.

For each successfully processed destination, the qstat utility shall display information about the
corresponding batch queue.

For each successfully processed server name, the qstat utility shall display information about the
corresponding server.

The qstat utility shall acquire batch job status information by sending a Job Status Request to a
batch server. The qstat utility shall acquire batch queue status information by sending a Queue
Status Request to a batch server. The qstat utility shall acquire server status information by
sending a Server Status Request to a batch server.

OPTIONS
The qstat utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported by the implementation:

−f Specify that a full display is produced.

The minimum contents of a full display are specified in the STDOUT section.

Additional contents and format of a full display are implementation-defined.

−Q Specify that the operand is a destination.

The qstat utility shall display information about each batch queue at each
destination identified as an operand.

−B Specify that the operand is a server name.

The qstat utility shall display information about each server identified as an
operand.

OPERANDS
If the −Q option is presented to the qstat utility, the utility shall accept one or more operands that
conform to the syntax for a destination (see Section 3.3.2, on page 2398).

If the −B option is presented to the qstat utility, the utility shall accept one or more server_name
operands.

If neither the −B nor the −Q option is presented to the qstat utility, the utility shall accept one or
more operands that conform to the syntax for a batch job_identifier (see Section 3.3.1, on page
2397).

3110 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

103219

103220

103221

103222

103223

103224

103225

103226

103227

103228

103229

103230

103231

103232

103233

103234

103235

103236

103237

103238

103239

103240

103241

103242

103243

103244

103245

103246

103247

103248

103249

103250

103251

103252

103253

103254

103255

103256

103257

103258

Utilities qstat

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of qstat:

HOME Determine the pathname of the user’s home directory.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_NUMERIC
Determine the locale for selecting the radix character used when writing floating-
point formatted output.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If an operand presented to the qstat utility is a batch job_identifier and the −f option is not
specified, the qstat utility shall display the following items on a single line, in the stated order,
with white space between each item, for each successfully processed operand:

• The batch job_identifier

• The batch job name

• The Job_Owner attribute

• The CPU time used by the batch job

• The batch job state

• The batch job location

If an operand presented to the qstat utility is a batch job_identifier and the −f option is specified,
the qstat utility shall display the following items for each success fully processed operand:

• The batch job_identifier

• The batch job name

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3111

103259

103260

103261

103262

103263

103264

103265

103266

103267

103268

103269

103270

103271

103272

103273

103274

103275

103276

103277

103278

103279

103280

103281

103282

103283

103284

103285

103286

103287

103288

103289

103290

103291

103292

103293

103294

103295

103296

103297

103298

qstat Utilities

• The Job_Owner attribute

• The execution user ID

• The CPU time used by the batch job

• The batch job state

• The batch job location

• Additional implementation-defined information, if any, about the batch job or batch queue

If an operand presented to the qstat utility is a destination, the −Q option is specified, and the −f
option is not specified, the qstat utility shall display the following items on a single line, in the
stated order, with white space between each item, for each successfully processed operand:

• The batch queue name

• The maximum number of batch jobs that shall be run in the batch queue concurrently

• The total number of batch jobs in the batch queue

• The status of the batch queue

• For each state, the number of batch jobs in that state in the batch queue and the name of
the state

• The type of batch queue (execution or routing)

If the operands presented to the qstat utility are destinations, the −Q option is specified, and the
−f option is specified, the qstat utility shall display the following items for each successfully
processed operand:

• The batch queue name

• The maximum number of batch jobs that shall be run in the batch queue concurrently

• The total number of batch jobs in the batch queue

• The status of the batch queue

• For each state, the number of batch jobs in that state in the batch queue and the name of
the state

• The type of batch queue (execution or routing)

• Additional implementation-defined information, if any, about the batch queue

If the operands presented to the qstat utility are batch server names, the −B option is specified,
and the −f option is not specified, the qstat utility shall display the following items on a single
line, in the stated order, with white space between each item, for each successfully processed
operand:

• The batch server name

• The maximum number of batch jobs that shall be run in the batch queue concurrently

• The total number of batch jobs managed by the batch server

• The status of the batch server

• For each state, the number of batch jobs in that state and the name of the state

If the operands presented to the qstat utility are server names, the −B option is specified, and the
−f option is specified, the qstat utility shall display the following items for each successfully

3112 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

103299

103300

103301

103302

103303

103304

103305

103306

103307

103308

103309

103310

103311

103312

103313

103314

103315

103316

103317

103318

103319

103320

103321

103322

103323

103324

103325

103326

103327

103328

103329

103330

103331

103332

103333

103334

103335

103336

Utilities qstat

processed operand:

• The server name

• The maximum number of batch jobs that shall be run in the batch queue concurrently

• The total number of batch jobs managed by the server

• The status of the server

• For each state, the number of batch jobs in that state and the name of the state

• Additional implementation-defined information, if any, about the server

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
In addition to the default behavior, the qstat utility shall not be required to write a diagnostic
message to standard error when the error reply received from a batch server indicates that the
batch job_identifier does not exist on the server. Whether or not the qstat utility waits to output
the diagnostic message while attempting to locate the batch job on other servers is
implementation-defined.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The qstat utility allows users to display the status of jobs and list the batch jobs in queues.

The operands of the qstat utility may be either job identifiers, queues (specified as destination
identifiers), or batch server names. The −Q and −B options, or absence thereof, indicate the
nature of the operands.

The other options of the qstat utility allow the user to control the amount of information
displayed and the format in which it is displayed. Should a user wish to display the status of a
set of jobs that match a selection criteria, the qselect utility may be used to acquire such a list.

The −f option allows users to request a ‘‘full’’ display in an implementation-defined format.

Historically, the qstat utility has been a part of the NQS and its derivatives, the existing practice
on which it is based.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3113

103337

103338

103339

103340

103341

103342

103343

103344

103345

103346

103347

103348

103349

103350

103351

103352

103353

103354

103355

103356

103357

103358

103359

103360

103361

103362

103363

103364

103365

103366

103367

103368

103369

103370

103371

103372

103373

103374

qstat Utilities

FUTURE DIRECTIONS
The qstat utility may be removed in a future version.

SEE ALSO
Chapter 3 (on page 2375), qselect

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
Derived from IEEE Std 1003.2d-1994.

Issue 6
IEEE PASC Interpretation 1003.2 #191 is applied, removing the following ENVIRONMENT
VARIABLES listed as affecting qstat: COLUMNS, LINES, LOGNAME, TERM, and TZ.

The LC_TIME entry is also removed from the ENVIRONMENT VARIABLES section.

Issue 7
The qstat utility is marked obsolescent.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3114 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

103375

103376

103377

103378

103379

103380

103381

103382

103383

103384

103385

103386

103387

103388

Utilities qsub

NAME
qsub — submit a script

SYNOPSIS
OB BE qsub [−a date_time] [−A account_string] [−c interval]

[−C directive_prefix] [−e path_name] [−h] [−j join_list]

[−k keep_list] [−m mail_options] [−M mail_list] [−N name]

[−o path_name] [−p priority] [−q destination] [−r y|n]
[−S path_name_list] [−u user_list] [−v variable_list] [−V]
[−z] [script]

DESCRIPTION
To submit a script is to create a batch job that executes the script. A script is submitted by a
request to a batch server. The qsub utility is a user-accessible batch client that submits a script.

Upon successful completion, the qsub utility shall have created a batch job that will execute the
submitted script.

The qsub utility shall submit a script by sending a Queue Job Request to a batch server.

The qsub utility shall place the value of the following environment variables in the Variable_List
attribute of the batch job: HOME, LANG, LOGNAME, PA TH, MAIL, SHELL, and TZ. The name
of the environment variable shall be the current name prefixed with the string PBS_O_.

Note: If the current value of the HOME variable in the environment space of the qsub utility is
/aa/bb/cc, then qsub shall place PBS_O_HOME=/aa/bb/cc in the Variable_List attribute of the
batch job.

In addition to the variables described above, the qsub utility shall add the following variables
with the indicated values to the variable list:

PBS_O_WORKDIR The absolute path of the current working directory of the qsub utility
process.

PBS_O_HOST The name of the host on which the qsub utility is running.

OPTIONS
The qsub utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported by the implementation:

−a date_time Define the time at which a batch job becomes eligible for execution.

The qsub utility shall accept an option-argument that conforms to the syntax of the
time operand of the touch utility.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3115

103389

103390

103391

103392

103393

103394

103395

103396

103397

103398

103399

103400

103401

103402

103403

103404

103405

103406

103407

103408

103409

103410

103411

103412

103413

103414

103415

103416

103417

103418

103419

103420

qsub Utilities

Table 4-19 Environment Variable Values (Utilities)

Variable Name Value at qsub Time

PBS_O_HOME HOME
PBS_O_HOST Client host name
PBS_O_LANG LANG
PBS_O_LOGNAME LOGNAME
PBS_O_PATH PATH
PBS_O_MAIL MAIL
PBS_O_SHELL SHELL
PBS_O_TZ TZ
PBS_O_WORKDIR Current working directory

Note: The server that initiates execution of the batch job will add other variables to the
batch job’s environment; see Section 3.2.2.1 (on page 2381).

The qsub utility shall set the Execution_Time attribute of the batch job to the number
of seconds since the Epoch that is equivalent to the local time expressed by the
value of the date_time option-argument. The Epoch is defined in XBD Section 3.150
(on page 57).

If the −a option is not presented to the qsub utility, the utility shall set the
Execution_Time attribute of the batch job to a time (number of seconds since the
Epoch) that is earlier than the time at which the utility exits.

−A account_string
Define the account to which the resource consumption of the batch job should be
charged.

The syntax of the account_string option-argument is unspecified.

The qsub utility shall set the Account_Name attribute of the batch job to the value of
the account_string option-argument.

If the −A option is not presented to the qsub utility, the utility shall omit the
Account_Name attribute from the attributes of the batch job.

−c interval Define whether the batch job should be checkpointed, and if so, how often.

The qsub utility shall accept a value for the interval option-argument that is one of
the following:

n No checkpointing shall be performed on the batch job
(NO_CHECKPOINT).

s Checkpointing shall be performed only when the batch server is shut
down (CHECKPOINT_AT_SHUTDOWN).

c Automatic periodic checkpointing shall be performed at the
Minimum_Cpu_Interval attribute of the batch queue, in units of CPU
minutes (CHECKPOINT_AT_MIN_CPU_INTERVAL).

c=minutes Automatic periodic checkpointing shall be performed every minutes
of CPU time, or every Minimum_Cpu_Interval minutes, whichever is
greater. The minutes argument shall conform to the syntax for
unsigned integers and shall be greater than zero.

The qsub utility shall set the Checkpoint attribute of the batch job to the value of the

3116 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

103421

103422

103423

103424

103425

103426

103427

103428

103429

103430

103431

103432

103433

103434

103435

103436

103437

103438

103439

103440

103441

103442

103443

103444

103445

103446

103447

103448

103449

103450

103451

103452

103453

103454

103455

103456

103457

103458

103459

103460

103461

103462

103463

Utilities qsub

interval option-argument.

If the −c option is not presented to the qsub utility, the utility shall set the Checkpoint
attribute of the batch job to the single character ’u’
(CHECKPOINT_UNSPECIFIED).

−C directive_prefix
Define the prefix that declares a directive to the qsub utility within the script.

The directive_prefix is not a batch job attribute; it affects the behavior of the qsub
utility.

If the −C option is presented to the qsub utility, and the value of the directive_prefix
option-argument is the null string, the utility shall not scan the script file for
directives. If the −C option is not presented to the qsub utility, then the value of the
PBS_DPREFIX environment variable is used. If the environment variable is not
defined, then #PBS encoded in the portable character set is the default.

−e path_name
Define the path to be used for the standard error stream of the batch job.

The qsub utility shall accept a path_name option-argument which can be preceded
by a host name element of the form hostname:.

If the path_name option-argument constitutes an absolute pathname, the qsub utility
shall set the Error_Path attribute of the batch job to the value of the path_name
option-argument.

If the path_name option-argument constitutes a relative pathname and no host
name element is specified, the qsub utility shall set the Error_Path attribute of the
batch job to the value of the absolute pathname derived by expanding the
path_name option-argument relative to the current directory of the process
executing qsub.

If the path_name option-argument constitutes a relative pathname and a host name
element is specified, the qsub utility shall set the Error_Path attribute of the batch
job to the value of the path_name option-argument without expansion. The host
name element shall be included.

If the path_name option-argument does not include a host name element, the qsub
utility shall prefix the pathname with hostname:, where hostname is the name of the
host upon which the qsub utility is being executed.

If the −e option is not presented to the qsub utility, the utility shall set the
Error_Path attribute of the batch job to the host name and path of the current
directory of the submitting process and the default filename.

The default filename for standard error has the following format:

job_name.esequence_number

−h Specify that a USER hold is applied to the batch job.

The qsub utility shall set the value of the Hold_Types attribute of the batch job to the
value USER.

If the −h option is not presented to the qsub utility, the utility shall set the
Hold_Types attribute of the batch job to the value NO_HOLD.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3117

103464

103465

103466

103467

103468

103469

103470

103471

103472

103473

103474

103475

103476

103477

103478

103479

103480

103481

103482

103483

103484

103485

103486

103487

103488

103489

103490

103491

103492

103493

103494

103495

103496

103497

103498

103499

103500

103501

103502

103503

103504

103505

qsub Utilities

−j join_list Define which streams of the batch job are to be merged. The qsub −j option shall
accept a value for the join_list option-argument that is a string of alphanumeric
characters in the portable character set (see XBD Section 6.1, on page 125).

The qsub utility shall accept a join_list option-argument that consists of one or more
of the characters ’e’ and ’o’, or the single character ’n’.

All of the other batch job output streams specified will be merged into the output
stream represented by the character listed first in the join_list option-argument.

For each unique character in the join_list option-argument, the qsub utility shall
add a value to the Join_Path attribute of the batch job as follows, each representing
a different batch job stream to join:

e The standard error of the batch job (JOIN_STD_ERROR).

o The standard output of the batch job (JOIN_STD_OUTPUT).

An existing Join_Path attribute can be cleared by the following join type:

n NO_JOIN

If ’n’ is specified, then no files are joined. The qsub utility shall consider it an error
if any join type other than ’n’ is combined with join type ’n’.

Strictly conforming applications shall not repeat any of the characters ’e’, ’o’, or
’n’ within the join_list option-argument. The qsub utility shall permit the
repetition of characters, but shall not assign additional meaning to the repeated
characters.

An implementation may define other join types. The conformance document for an
implementation shall describe any additional batch job streams, how they are
specified, their internal behavior, and how they affect the behavior of the utility.

If the −j option is not presented to the qsub utility, the utility shall set the value of
the Join_Path attribute of the batch job to NO_JOIN.

−k keep_list Define which output of the batch job to retain on the execution host.

The qsub −k option shall accept a value for the keep_list option-argument that is a
string of alphanumeric characters in the portable character set (see XBD Section
6.1, on page 125).

The qsub utility shall accept a keep_list option-argument that consists of one or
more of the characters ’e’ and ’o’, or the single character ’n’.

For each unique character in the keep_list option-argument, the qsub utility shall
add a value to the Keep_Files attribute of the batch job as follows, each representing
a different batch job stream to keep:

e The standard error of the batch job (KEEP_STD_ERROR).

o The standard output of the batch job (KEEP_STD_OUTPUT).

If both ’e’ and ’o’ are specified, then both files are retained. An existing
Keep_Files attribute can be cleared by the following keep type:

n NO_KEEP

If ’n’ is specified, then no files are retained. The qsub utility shall consider it an
error if any keep type other than ’n’ is combined with keep type ’n’.

3118 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

103506

103507

103508

103509

103510

103511

103512

103513

103514

103515

103516

103517

103518

103519

103520

103521

103522

103523

103524

103525

103526

103527

103528

103529

103530

103531

103532

103533

103534

103535

103536

103537

103538

103539

103540

103541

103542

103543

103544

103545

103546

Utilities qsub

Strictly conforming applications shall not repeat any of the characters ’e’, ’o’, or
’n’ within the keep_list option-argument. The qsub utility shall permit the
repetition of characters, but shall not assign additional meaning to the repeated
characters.

An implementation may define other keep types. The conformance document for
an implementation shall describe any additional keep types, how they are
specified, their internal behavior, and how they affect the behavior of the utility. If
the −k option is not presented to the qsub utility, the utility shall set the Keep_Files
attribute of the batch job to the value NO_KEEP.

−m mail_options
Define the points in the execution of the batch job at which the batch server that
manages the batch job shall send mail about a change in the state of the batch job.

The qsub −m option shall accept a value for the mail_options option-argument that
is a string of alphanumeric characters in the portable character set (see XBD Section
6.1, on page 125).

The qsub utility shall accept a value for the mail_options option-argument that is a
string of one or more of the characters ’e’, ’b’, and ’a’, or the single character
’n’.

For each unique character in the mail_options option-argument, the qsub utility shall
add a value to the Mail_Users attribute of the batch job as follows, each
representing a different time during the life of a batch job at which to send mail:

e MAIL_AT_EXIT

b MAIL_AT_BEGINNING

a MAIL_AT_ABORT

If any of these characters are duplicated in the mail_options option-argument, the
duplicates shall be ignored.

An existing Mail_Points attribute can be cleared by the following mail type:

n NO_MAIL

If ’n’ is specified, then mail is not sent. The qsub utility shall consider it an error if
any mail type other than ’n’ is combined with mail type ’n’.

Strictly conforming applications shall not repeat any of the characters ’e’, ’b’,
’a’, or ’n’ within the mail_options option-argument.

The qsub utility shall permit the repetition of characters, but shall not assign
additional meaning to the repeated characters. An implementation may define
other mail types. The conformance document for an implementation shall describe
any additional mail types, how they are specified, their internal behavior, and how
they affect the behavior of the utility.

If the −m option is not presented to the qsub utility, the utility shall set the
Mail_Points attribute to the value MAIL_AT_ABORT.

−M mail_list Define the list of users to which a batch server that executes the batch job shall
send mail, if the server sends mail about the batch job.

The syntax of the mail_list option-argument is unspecified.

If the implementation of the qsub utility uses a name service to locate users, the

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3119

103547

103548

103549

103550

103551

103552

103553

103554

103555

103556

103557

103558

103559

103560

103561

103562

103563

103564

103565

103566

103567

103568

103569

103570

103571

103572

103573

103574

103575

103576

103577

103578

103579

103580

103581

103582

103583

103584

103585

103586

103587

103588

103589

qsub Utilities

utility should accept the syntax used by the name service.

If the implementation of the qsub utility does not use a name service to locate users,
the implementation should accept the following syntax for user names:

mail_address[,,mail_address,, ...]

The interpretation of mail_address is implementation-defined.

The qsub utility shall set the Mail_Users attribute of the batch job to the value of the
mail_list option-argument.

If the −M option is not presented to the qsub utility, the utility shall place only the
user name and host name for the current process in the Mail_Users attribute of the
batch job.

−N name Define the name of the batch job.

The qsub −N option shall accept a value for the name option-argument that is a
string of up to 15 alphanumeric characters in the portable character set (see XBD
Section 6.1, on page 125) where the first character is alphabetic.

The qsub utility shall set the value of the Job_Name attribute of the batch job to the
value of the name option-argument.

If the −N option is not presented to the qsub utility, the utility shall set the Job_Name
attribute of the batch job to the name of the script argument from which the
directory specification if any, has been removed.

If the −N option is not presented to the qsub utility, and the script is read from
standard input, the utility shall set the Job_Name attribute of the batch job to the
value STDIN.

−o path_name
Define the path for the standard output of the batch job.

The qsub utility shall accept a path_name option-argument that conforms to the
syntax of the path_name element defined in the System Interfaces volume of
POSIX.1-2008, which can be preceded by a host name element of the form
hostname:.

If the path_name option-argument constitutes an absolute pathname, the qsub utility
shall set the Output_Path attribute of the batch job to the value of the path_name
option-argument without expansion.

If the path_name option-argument constitutes a relative pathname and no host
name element is specified, the qsub utility shall set the Output_Path attribute of the
batch job to the pathname derived by expanding the value of the path_name option-
argument relative to the current directory of the process executing the qsub.

If the path_name option-argument constitutes a relative pathname and a host name
element is specified, the qsub utility shall set the Output_Path attribute of the batch
job to the value of the path_name option-argument without expansion.

If the path_name option-argument does not specify a host name element, the qsub
utility shall prefix the pathname with hostname:, where hostname is the name of the
host upon which the qsub utility is executing.

If the −o option is not presented to the qsub utility, the utility shall set the
Output_Path attribute of the batch job to the host name and path of the current

3120 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

103590

103591

103592

103593

103594

103595

103596

103597

103598

103599

103600

103601

103602

103603

103604

103605

103606

103607

103608

103609

103610

103611

103612

103613

103614

103615

103616

103617

103618

103619

103620

103621

103622

103623

103624

103625

103626

103627

103628

103629

103630

103631

103632

Utilities qsub

directory of the submitting process and the default filename.

The default filename for standard output has the following format:

job_name.osequence_number

−p priority Define the priority the batch job should have relative to other batch jobs owned by
the batch server.

The qsub utility shall set the Priority attribute of the batch job to the value of the
priority option-argument.

If the −p option is not presented to the qsub utility, the value of the Priority attribute
is implementation-defined.

The qsub utility shall accept a value for the priority option-argument that conforms
to the syntax for signed decimal integers, and which is not less than −1 024 and not
greater than 1 023.

−q destination
Define the destination of the batch job.

The destination is not a batch job attribute; it determines the batch server, and
possibly the batch queue, to which the qsub utility batch queues the batch job.

The qsub utility shall submit the script to the batch server named by the destination
option-argument or the server that owns the batch queue named in the destination
option-argument.

The qsub utility shall accept an option-argument for the −q option that conforms to
the syntax for a destination (see Section 3.3.2, on page 2398).

If the −q option is not presented to the qsub utility, the qsub utility shall submit the
batch job to the default destination. The mechanism for determining the default
destination is implementation-defined.

−r y|n Define whether the batch job is rerunnable.

If the value of the option-argument is y, the qsub utility shall set the Rerunable
attribute of the batch job to TRUE.

If the value of the option-argument is n, the qsub utility shall set the Rerunable
attribute of the batch job to FALSE.

If the −r option is not presented to the qsub utility, the utility shall set the Rerunable
attribute of the batch job to TRUE.

−S path_name_list
Define the pathname to the shell under which the batch job is to execute.

The qsub utility shall accept a path_name_list option-argument that conforms to the
following syntax:

pathname[@host][,,pathname[@host],, ...]

The qsub utility shall allow only one pathname for a given host name. The qsub
utility shall allow only one pathname that is missing a corresponding host name.

The qsub utility shall add a value to the Shell_Path_List attribute of the batch job for
each entry in the path_name_list option-argument.

If the −S option is not presented to the qsub utility, the utility shall set the

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3121

103633

103634

103635

103636

103637

103638

103639

103640

103641

103642

103643

103644

103645

103646

103647

103648

103649

103650

103651

103652

103653

103654

103655

103656

103657

103658

103659

103660

103661

103662

103663

103664

103665

103666

103667

103668

103669

103670

103671

103672

103673

qsub Utilities

Shell_Path_List attribute of the batch job to the null string.

The conformance document for an implementation shall describe the mechanism
used to set the default shell and determine the current value of the default shell.
An implementation shall provide a means for the installation to set the default
shell to the login shell of the user under which the batch job is to execute. See
Section 3.3.3 (on page 2399) for a means of removing keyword=value (and
value@keyword) pairs and other general rules for list-oriented batch job attributes.

−u user_list Define the user name under which the batch job is to execute.

The qsub utility shall accept a user_list option-argument that conforms to the
following syntax:

username[@host][,,username[@host],, ...]

The qsub utility shall accept only one user name that is missing a corresponding
host name. The qsub utility shall accept only one user name per named host.

The qsub utility shall add a value to the User_List attribute of the batch job for each
entry in the user_list option-argument.

If the −u option is not presented to the qsub utility, the utility shall set the User_List
attribute of the batch job to the user name from which the utility is executing. See
Section 3.3.3 (on page 2399) for a means of removing keyword=value (and
value@keyword) pairs and other general rules for list-oriented batch job attributes.

−v variable_list
Add to the list of variables that are exported to the session leader of the batch job.

A variable_list is a set of strings of either the form <variable> or <variable=value>,
delimited by <comma> characters.

If the −v option is presented to the qsub utility, the utility shall also add, to the
environment Variable_List attribute of the batch job, every variable named in the
environment variable_list option-argument and, optionally, values of specified
variables.

If a value is not provided on the command line, the qsub utility shall set the value
of each variable in the environment Variable_List attribute of the batch job to the
value of the corresponding environment variable for the process in which the
utility is executing; see Table 4-19 (on page 3116).

A conforming application shall not repeat a variable in the environment
variable_list option-argument.

The qsub utility shall not repeat a variable in the environment Variable_List attribute
of the batch job. See Section 3.3.3 (on page 2399) for a means of removing
keyword=value (and value@keyword) pairs and other general rules for list-oriented
batch job attributes.

−V Specify that all of the environment variables of the process are exported to the
context of the batch job.

The qsub utility shall place every environment variable in the process in which the
utility is executing in the list and shall set the value of each variable in the attribute
to the value of that variable in the process.

3122 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

103674

103675

103676

103677

103678

103679

103680

103681

103682

103683

103684

103685

103686

103687

103688

103689

103690

103691

103692

103693

103694

103695

103696

103697

103698

103699

103700

103701

103702

103703

103704

103705

103706

103707

103708

103709

103710

103711

103712

103713

103714

103715

Utilities qsub

−z Specify that the utility does not write the batch job_identifier of the created batch job
to standard output.

If the −z option is presented to the qsub utility, the utility shall not write the batch
job_identifier of the created batch job to standard output.

If the −z option is not presented to the qsub utility, the utility shall write the
identifier of the created batch job to standard output.

OPERANDS
The qsub utility shall accept a script operand that indicates the path to the script of the batch job.

If the script operand is not presented to the qsub utility, or if the operand is the single-character
string ’−’, the utility shall read the script from standard input.

If the script represents a partial path, the qsub utility shall expand the path relative to the current
directory of the process executing the utility.

STDIN
The qsub utility reads the script of the batch job from standard input if the script operand is
omitted or is the single character ’−’.

INPUT FILES
In addition to binding the file indicated by the script operand to the batch job, the qsub utility
reads the script file and acts on directives in the script.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of qsub:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) the precedence of internationalization variables
used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LOGNAME Determine the login name of the user.

PBS_DPREFIX
Determine the default prefix for directives within the script.

SHELL Determine the pathname of the preferred command language interpreter of the
user.

TZ Determine the timezone used to interpret the date-time option-argument. If TZ is
unset or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Once created, a batch job exists until it exits, aborts, or is deleted.

After a batch job is created by the qsub utility, batch servers might route, execute, modify, or
delete the batch job.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3123

103716

103717

103718

103719

103720

103721

103722

103723

103724

103725

103726

103727

103728

103729

103730

103731

103732

103733

103734

103735

103736

103737

103738

103739

103740

103741

103742

103743

103744

103745

103746

103747

103748

103749

103750

103751

103752

103753

103754

103755

103756

103757

qsub Utilities

STDOUT
The qsub utility writes the batch job_identifier assigned to the batch job to standard output, unless
the −z option is specified.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION

Script Preservation

The qsub utility shall make the script available to the server executing the batch job in such a
way that the server executes the script as it exists at the time of submission.

The qsub utility can send a copy of the script to the server with the Queue Job Request or store a
temporary copy of the script in a location specified to the server.

Option Specification

A script can contain directives to the qsub utility.

The qsub utility shall scan the lines of the script for directives, skipping blank lines, until the first
line that begins with a string other than the directive string; if directives occur on subsequent
lines, the utility shall ignore those directives.

Lines are separated by a <newline>. If the first line of the script begins with "#!" or a <colon>
(’:’), then it is skipped. The qsub utility shall process a line in the script as a directive if and
only if the string of characters from the first non-white-space character on the line until the first
<space> or <tab> on the line match the directive prefix. If a line in the script contains a directive
and the final characters of the line are <backslash> and <newline>, then the next line shall be
interpreted as a continuation of that directive.

The qsub utility shall process the options and option-arguments contained on the directive prefix
line using the same syntax as if the options were input on the qsub utility.

The qsub utility shall continue to process a directive prefix line until after a <newline> is
encountered. An implementation may ignore lines which, according to the syntax of the shell
that will interpret the script, are comments. An implementation shall describe in the
conformance document the format of any shell comments that it will recognize.

If an option is present in both a directive and the arguments to the qsub utility, the utility shall
ignore the option and the corresponding option-argument, if any, in the directive.

If an option that is present in the directive is not present in the arguments to the qsub utility, the
utility shall process the option and the option-argument, if any.

In order of preference, the qsub utility shall select the directive prefix from one of the following
sources:

• If the −C option is presented to the utility, the value of the directive_prefix option-argument

• If the environment variable PBS_DPREFIX is defined, the value of that variable

• The four-character string "#PBS" encoded in the portable character set

If the −C option is present in the script file it shall be ignored.

3124 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

103758

103759

103760

103761

103762

103763

103764

103765

103766

103767

103768

103769

103770

103771

103772

103773

103774

103775

103776

103777

103778

103779

103780

103781

103782

103783

103784

103785

103786

103787

103788

103789

103790

103791

103792

103793

103794

103795

103796

103797

Utilities qsub

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
The qsub utility allows users to create a batch job that will process the script specified as the
operand of the utility.

The options of the qsub utility allow users to control many aspects of the queuing and execution
of a batch job.

The −a option allows users to designate the time after which the batch job will become eligible to
run. By specifying an execution time, users can take advantage of resources at off-peak hours,
synchronize jobs with chronologically predictable events, and perhaps take advantage of off-
peak pricing of computing time. For these reasons and others, a timing option is existing
practice on the part of almost every batch system, including NQS.

The −A option allows users to specify the account that will be charged for the batch job. Support
for account is not mandatory for conforming batch servers.

The −C option allows users to prescribe the prefix for directives within the script file. The default
prefix "#PBS" may be inappropriate if the script will be interpreted with an alternate shell, as
specified by the −S option.

The −c option allows users to establish the checkpointing interval for their jobs. A checkpointing
system, which is not defined by this volume of POSIX.1-2008, allows recovery of a batch job at
the most recent checkpoint in the event of a crash. Checkpointing is typically used for jobs that
consume expensive computing time or must meet a critical schedule. Users should be allowed to
make the tradeoff between the overhead of checkpointing and the risk to the timely completion
of the batch job; therefore, this volume of POSIX.1-2008 provides the checkpointing interval
option. Support for checkpointing is optional for batch servers.

The −e option allows users to redirect the standard error streams of their jobs to a non-default
path. For example, if the submitted script generally produces a great deal of useless error
output, a user might redirect the standard error output to the null device. Or, if the file system
holding the default location (the home directory of the user) has too little free space, the user
might redirect the standard error stream to a file in another file system.

The −h option allows users to create a batch job that is held until explicitly released. The ability
to create a held job is useful when some external event must complete before the batch job can
execute. For example, the user might submit a held job and release it when the system load has
dropped.

The −j option allows users to merge the standard error of a batch job into its standard output
stream, which has the advantage of showing the sequential relationship between output and
error messages.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3125

103798

103799

103800

103801

103802

103803

103804

103805

103806

103807

103808

103809

103810

103811

103812

103813

103814

103815

103816

103817

103818

103819

103820

103821

103822

103823

103824

103825

103826

103827

103828

103829

103830

103831

103832

103833

103834

103835

103836

103837

103838

103839

103840

103841

qsub Utilities

The −m option allows users to designate those points in the execution of a batch job at which
mail will be sent to the submitting user, or to the account(s) indicated by the −M option. By
requesting mail notification at points of interest in the life of a job, the submitting user, or other
designated users, can track the progress of a batch job.

The −N option allows users to associate a name with the batch job. The job name in no way
affects the processing of the batch job, but rather serves as a mnemonic handle for users. For
example, the batch job name can help the user distinguish between multiple jobs listed by the
qstat utility.

The −o option allows users to redirect the standard output stream. A user might, for example,
wish to redirect to the null device the standard output stream of a job that produces copious yet
superfluous output.

The −P option allows users to designate the relative priority of a batch job for selection from a
queue.

The −q option allows users to specify an initial queue for the batch job. If the user specifies a
routing queue, the batch server routes the batch job to another queue for execution or further
routing. If the user specifies a non-routing queue, the batch server of the queue eventually
executes the batch job.

The −r option allows users to control whether the submitted job will be rerun if the controlling
batch node fails during execution of the batch job. The −r option likewise allows users to
indicate whether or not the batch job is eligible to be rerun by the qrerun utility. Some jobs cannot
be correctly rerun because of changes they make in the state of databases or other aspects of
their environment. This volume of POSIX.1-2008 specifies that the default, if the −r option is not
presented to the utility, will be that the batch job cannot be rerun, since the result of rerunning a
non-rerunnable job might be catastrophic.

The −S option allows users to specify the program (usually a shell) that will be invoked to
process the script of the batch job. This option has been modified to allow a list of shell names
and locations associated with different hosts.

The −u option is useful when the submitting user is authorized to use more than one account on
a given host, in which case the −u option allows the user to select from among those accounts.
The option-argument is a list of user-host pairs, so that the submitting user can provide different
user identifiers for different nodes in the event the batch job is routed. The −u option provides a
lot of flexibility to accommodate sites with complex account structures. Users that have the same
user identifier on all the hosts they are authorized to use will not need to use the −u option.

The −V option allows users to export all their current environment variables, as of the time the
batch job is submitted, to the context of the processes of the batch job.

The −v option allows users to export specific environment variables from their current process to
the processes of the batch job.

The −z option allows users to suppress the writing of the batch job identifier to standard output.
The −z option is an existing NQS practice that has been standardized.

Historically, the qsub utility has served the batch job-submission function in the NQS system, the
existing practice on which it is based. Some changes and additions have been made to the qsub
utility in this volume of POSIX.1-2008, vis-a-vis NQS, as a result of the growing pool of
experience with distributed batch systems.

The set of features of the qsub utility as defined in this volume of POSIX.1-2008 appears to
incorporate all the common existing practice on potentially conforming platforms.

3126 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

103842

103843

103844

103845

103846

103847

103848

103849

103850

103851

103852

103853

103854

103855

103856

103857

103858

103859

103860

103861

103862

103863

103864

103865

103866

103867

103868

103869

103870

103871

103872

103873

103874

103875

103876

103877

103878

103879

103880

103881

103882

103883

103884

103885

103886

Utilities qsub

FUTURE DIRECTIONS
The qsub utility may be removed in a future version.

SEE ALSO
Chapter 3 (on page 2375), qrerun , qstat , touch

XBD Section 3.150 (on page 57), Section 6.1 (on page 125), Chapter 8 (on page 173), Section 12.2
(on page 215)

CHANGE HISTORY
Derived from IEEE Std 1003.2d-1994.

Issue 6
The −l option has been removed as there is no portable description of the resources that are
allowed or required by the batch job.

Issue 7
The qsub utility is marked obsolescent.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3127

103887

103888

103889

103890

103891

103892

103893

103894

103895

103896

103897

103898

103899

103900

read Utilities

NAME
read — read a line from standard input

SYNOPSIS
read [−r] var...

DESCRIPTION
The read utility shall read a single line from standard input.

By default, unless the −r option is specified, <backslash> shall act as an escape character. An
unescaped <backslash> shall preserve the literal value of the following character, with the
exception of a <newline>. If a <newline> follows the <backslash>, the read utility shall interpret
this as line continuation. The <backslash> and <newline> shall be removed before splitting the
input into fields. All other unescaped <backslash> characters shall be removed after splitting the
input into fields.

If standard input is a terminal device and the invoking shell is interactive, read shall prompt for a
continuation line when it reads an input line ending with a <backslash> <newline>, unless the
−r option is specified.

The terminating <newline> (if any) shall be removed from the input and the results shall be split
into fields as in the shell for the results of parameter expansion (see Section 2.6.5, on page 2311);
the first field shall be assigned to the first variable var, the second field to the second variable
var, and so on. If there are fewer fields than there are var operands, the remaining vars shall be
set to empty strings. If there are fewer vars than fields, the last var shall be set to a value
comprising the following elements:

• The field that corresponds to the last var in the normal assignment sequence described
above

• The delimiter(s) that follow the field corresponding to the last var

• The remaining fields and their delimiters, with trailing IFS white space ignored

The setting of variables specified by the var operands shall affect the current shell execution
environment; see Section 2.12 (on page 2331). If it is called in a subshell or separate utility
execution environment, such as one of the following:

(read foo)
nohup read ...
find . −exec read ... \;

it shall not affect the shell variables in the caller’s environment.

OPTIONS
The read utility shall conform to XBD Section 12.2 (on page 215).

The following option is supported:

−r Do not treat a <backslash> character in any special way. Consider each
<backslash> to be part of the input line.

OPERANDS
The following operand shall be supported:

var The name of an existing or nonexisting shell variable.

3128 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

103901

103902

103903

103904

103905

103906

103907

103908

103909

103910

103911

103912

103913

103914

103915

103916

103917

103918

103919

103920

103921

103922

103923

103924

103925

103926

103927

103928

103929

103930

103931

103932

103933

103934

103935

103936

103937

103938

103939

103940

Utilities read

STDIN
The standard input shall be a text file.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of read:

IFS Determine the internal field separators used to delimit fields; see Section 2.5.3 (on
page 2302).

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PS2 Provide the prompt string that an interactive shell shall write to standard error
when a line ending with a <backslash> <newline> is read and the −r option was
not specified.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used for diagnostic messages and prompts for continued input.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 End-of-file was detected or an error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3129

103941

103942

103943

103944

103945

103946

103947

103948

103949

103950

103951

103952

103953

103954

103955

103956

103957

103958

103959

103960

103961

103962

103963

103964

103965

103966

103967

103968

103969

103970

103971

103972

103973

103974

103975

103976

103977

103978

103979

read Utilities

APPLICATION USAGE
The −r option is included to enable read to subsume the purpose of the line utility, which is not
included in POSIX.1-2008.

EXAMPLES
The following command:

while read −r xx yy
do

printf "%s %s\n" "$yy" "$xx"
done < input_file

prints a file with the first field of each line moved to the end of the line.

RATIONALE
The read utility historically has been a shell built-in. It was separated off into its own utility to
take advantage of the richer description of functionality introduced by this volume of
POSIX.1-2008.

Since read affects the current shell execution environment, it is generally provided as a shell
regular built-in. If it is called in a subshell or separate utility execution environment, such as one
of the following:

(read foo)
nohup read ...
find . −exec read ... \;

it does not affect the shell variables in the environment of the caller.

Although the standard input is required to be a text file, and therefore will always end with a
<newline> (unless it is an empty file), the processing of continuation lines when the −r option is
not used can result in the input not ending with a <newline>. This occurs if the last line of the
input file ends with a <backslash> <newline>. It is for this reason that ‘‘if any’’ is used in ‘‘The
terminating <newline> (if any) shall be removed from the input’’ in the description. It is not a
relaxation of the requirement for standard input to be a text file.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2297)

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 7
Austin Group Interpretation 1003.1-2001 #194 is applied, clarifying the handling of the
<backslash> escape character.

SD5-XCU-ERN-126 is applied, clarifying that input lines end with a <newline>.

The description of here-documents is removed from the read reference page.

3130 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

103980

103981

103982

103983

103984

103985

103986

103987

103988

103989

103990

103991

103992

103993

103994

103995

103996

103997

103998

103999

104000

104001

104002

104003

104004

104005

104006

104007

104008

104009

104010

104011

104012

104013

104014

104015

104016

104017

104018

Utilities renice

NAME
renice — set nice values of running processes

SYNOPSIS
renice [−g|−p|−u] −n increment ID...

DESCRIPTION
The renice utility shall request that the nice values (see XBD Section 3.239, on page 71) of one or
more running processes be changed. By default, the applicable processes are specified by their
process IDs. When a process group is specified (see −g), the request shall apply to all processes
in the process group.

The nice value shall be bounded in an implementation-defined manner. If the requested
increment would raise or lower the nice value of the executed utility beyond implementation-
defined limits, then the limit whose value was exceeded shall be used.

When a user is reniced, the request applies to all processes whose saved set-user-ID matches the
user ID corresponding to the user.

Regardless of which options are supplied or any other factor, renice shall not alter the nice values
of any process unless the user requesting such a change has appropriate privileges to do so for
the specified process. If the user lacks appropriate privileges to perform the requested action, the
utility shall return an error status.

The saved set-user-ID of the user’s process shall be checked instead of its effective user ID when
renice attempts to determine the user ID of the process in order to determine whether the user
has appropriate privileges.

OPTIONS
The renice utility shall conform to XBD Section 12.2 (on page 215), except for Guideline 9.

The following options shall be supported:

−g Interpret the following operands as unsigned decimal integer process group IDs.

−n increment Specify how the nice value of the specified process or processes is to be adjusted.
The increment option-argument is a positive or negative decimal integer that shall
be used to modify the nice value of the specified process or processes.

Positive increment values shall cause a lower nice value. Negative increment values
may require appropriate privileges and shall cause a higher nice value.

−p Interpret the following operands as unsigned decimal integer process IDs. The −p
option is the default if no options are specified.

−u Interpret the following operands as users. If a user exists with a user name equal to
the operand, then the user ID of that user is used in further processing. Otherwise,
if the operand represents an unsigned decimal integer, it shall be used as the
numeric user ID of the user.

OPERANDS
The following operands shall be supported:

ID A process ID, process group ID, or user name/user ID, depending on the option
selected.

STDIN
Not used.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3131

104019

104020

104021

104022

104023

104024

104025

104026

104027

104028

104029

104030

104031

104032

104033

104034

104035

104036

104037

104038

104039

104040

104041

104042

104043

104044

104045

104046

104047

104048

104049

104050

104051

104052

104053

104054

104055

104056

104057

104058

104059

104060

renice Utilities

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of renice:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES

1. Adjust the nice value so that process IDs 987 and 32 would have a lower nice value:

renice −n 5 −p 987 32

2. Adjust the nice value so that group IDs 324 and 76 would have a higher nice value, if the
user has appropriate privileges to do so:

renice −n −4 −g 324 76

3132 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

104061

104062

104063

104064

104065

104066

104067

104068

104069

104070

104071

104072

104073

104074

104075

104076

104077

104078

104079

104080

104081

104082

104083

104084

104085

104086

104087

104088

104089

104090

104091

104092

104093

104094

104095

104096

104097

104098

104099

104100

Utilities renice

3. Adjust the nice value so that numeric user ID 8 and user sas would have a lower nice
value:

renice −n 4 −u 8 sas

Useful nice value increments on historical systems include 19 or 20 (the affected processes run
only when nothing else in the system attempts to run) and any negative number (to make
processes run faster).

RATIONALE
The gid, pid, and user specifications do not fit either the definition of operand or option-
argument. However, for clarity, they have been included in the OPTIONS section, rather than
the OPERANDS section.

The definition of nice value is not intended to suggest that all processes in a system have
priorities that are comparable. Scheduling policy extensions such as the realtime priorities in the
System Interfaces volume of POSIX.1-2008 make the notion of a single underlying priority for all
scheduling policies problematic. Some implementations may implement the nice-related features
to affect all processes on the system, others to affect just the general time-sharing activities
implied by this volume of POSIX.1-2008, and others may have no effect at all. Because of the use
of ‘‘implementation-defined’’ in nice and renice, a wide range of implementation strategies are
possible.

Originally, this utility was written in the historical manner, using the term ‘‘nice value’’. This
was always a point of concern with users because it was never intuitively obvious what this
meant. With a newer version of renice, which used the term ‘‘system scheduling priority’’, it was
hoped that novice users could better understand what this utility was meant to do. Also, it
would be easier to document what the utility was meant to do. Unfortunately, the addition of
the POSIX realtime scheduling capabilities introduced the concepts of process and thread
scheduling priorities that were totally unaffected by the nice/renice utilities or the
nice()/setpriority() functions. Continuing to use the term ‘‘system scheduling priority’’ would
have incorrectly suggested that these utilities and functions were indeed affecting these realtime
priorities. It was decided to revert to the historical term ‘‘nice value’’ to reference this unrelated
process attribute.

Although this utility has use by system administrators (and in fact appears in the system
administration portion of the BSD documentation), the standard developers considered that it
was very useful for individual end users to control their own processes.

Earlier versions of this standard allowed the following forms in the SYNOPSIS:

renice nice_value[−p] pid...[−g gid...][−p pid...][−u user...]
renice nice_value −g gid...[−g gid...]−p pid...][−u user...]
renice nice_value −u user...[−g gid...]−p pid...][−u user...]

These forms are no longer specified by POSIX.1-2008 but may be present in some
implementations.

FUTURE DIRECTIONS
None.

SEE ALSO
nice

XBD Section 3.239 (on page 71), Chapter 8 (on page 173), Section 12.2 (on page 215)

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3133

104101

104102

104103

104104

104105

104106

104107

104108

104109

104110

104111

104112

104113

104114

104115

104116

104117

104118

104119

104120

104121

104122

104123

104124

104125

104126

104127

104128

104129

104130

104131

104132

104133

104134

104135

104136

104137

104138

104139

104140

104141

104142

104143

renice Utilities

CHANGE HISTORY
First released in Issue 4.

Issue 5
In the SYNOPSIS, an ellipsis is added to the −u option in all three obsolescent forms.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The APPLICATION USAGE section is added.

The obsolescent forms of the SYNOPSIS are removed.

Text previously conditional on POSIX_SAVED_IDS is mandatory in this version. This is a FIPS
requirement.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that Guideline 9 of the Utility
Syntax Guidelines does not apply.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The renice utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

3134 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

104144

104145

104146

104147

104148

104149

104150

104151

104152

104153

104154

104155

104156

104157

104158

104159

Utilities rm

NAME
rm — remove directory entries

SYNOPSIS
rm [−fiRr] file...

DESCRIPTION
The rm utility shall remove the directory entry specified by each file argument.

If either of the files dot or dot-dot are specified as the basename portion of an operand (that is,
the final pathname component) or if an operand resolves to the root directory, rm shall write a
diagnostic message to standard error and do nothing more with such operands.

For each file the following steps shall be taken:

1. If the file does not exist:

a. If the −f option is not specified, rm shall write a diagnostic message to standard
error.

b. Go on to any remaining files.

2. If file is of type directory, the following steps shall be taken:

a. If neither the −R option nor the −r option is specified, rm shall write a diagnostic
message to standard error, do nothing more with file, and go on to any remaining
files.

b. If the −f option is not specified, and either the permissions of file do not permit
writing and the standard input is a terminal or the −i option is specified, rm shall
write a prompt to standard error and read a line from the standard input. If the
response is not affirmative, rm shall do nothing more with the current file and go
on to any remaining files.

c. For each entry contained in file, other than dot or dot-dot, the four steps listed here
(1 to 4) shall be taken with the entry as if it were a file operand. The rm utility shall
not traverse directories by following symbolic links into other parts of the
hierarchy, but shall remove the links themselves.

d. If the −i option is specified, rm shall write a prompt to standard error and read a
line from the standard input. If the response is not affirmative, rm shall do nothing
more with the current file, and go on to any remaining files.

3. If file is not of type directory, the −f option is not specified, and either the permissions of
file do not permit writing and the standard input is a terminal or the −i option is specified,
rm shall write a prompt to the standard error and read a line from the standard input. If
the response is not affirmative, rm shall do nothing more with the current file and go on
to any remaining files.

4. If the current file is a directory, rm shall perform actions equivalent to the rmdir() function
defined in the System Interfaces volume of POSIX.1-2008 called with a pathname of the
current file used as the path argument. If the current file is not a directory, rm shall
perform actions equivalent to the unlink() function defined in the System Interfaces
volume of POSIX.1-2008 called with a pathname of the current file used as the path
argument.

If this fails for any reason, rm shall write a diagnostic message to standard error, do
nothing more with the current file, and go on to any remaining files.

The rm utility shall be able to descend to arbitrary depths in a file hierarchy, and shall not fail

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3135

104160

104161

104162

104163

104164

104165

104166

104167

104168

104169

104170

104171

104172

104173

104174

104175

104176

104177

104178

104179

104180

104181

104182

104183

104184

104185

104186

104187

104188

104189

104190

104191

104192

104193

104194

104195

104196

104197

104198

104199

104200

104201

104202

104203

rm Utilities

due to path length limitations (unless an operand specified by the user exceeds system
limitations).

OPTIONS
The rm utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−f Do not prompt for confirmation. Do not write diagnostic messages or modify the
exit status in the case of nonexistent operands. Any previous occurrences of the −i
option shall be ignored.

−i Prompt for confirmation as described previously. Any previous occurrences of the
−f option shall be ignored.

−R Remove file hierarchies. See the DESCRIPTION.

−r Equivalent to −R.

OPERANDS
The following operand shall be supported:

file A pathname of a directory entry to be removed.

STDIN
The standard input shall be used to read an input line in response to each prompt specified in
the STDOUT section. Otherwise, the standard input shall not be used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of rm:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the extended regular expression defined for
the yesexpr locale keyword in the LC_MESSAGES category.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments) and the behavior of character classes within regular expressions used
in the extended regular expression defined for the yesexpr locale keyword in the
LC_MESSAGES category.

LC_MESSAGES
Determine the locale used to process affirmative responses, and the locale used to
affect the format and contents of diagnostic messages and prompts written to
standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

3136 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

104204

104205

104206

104207

104208

104209

104210

104211

104212

104213

104214

104215

104216

104217

104218

104219

104220

104221

104222

104223

104224

104225

104226

104227

104228

104229

104230

104231

104232

104233

104234

104235

104236

104237

104238

104239

104240

104241

104242

104243

104244

Utilities rm

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
Prompts shall be written to standard error under the conditions specified in the DESCRIPTION
and OPTIONS sections. The prompts shall contain the file pathname, but their format is
otherwise unspecified. The standard error also shall be used for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Each directory entry was successfully removed, unless its removal was canceled by a non-
affirmative response to a prompt for confirmation.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The rm utility is forbidden to remove the names dot and dot-dot in order to avoid the
consequences of inadvertently doing something like:

rm −r .*

Some implementations do not permit the removal of the last link to an executable binary file that
is being executed; see the [EBUSY] error in the unlink() function defined in the System Interfaces
volume of POSIX.1-2008. Thus, the rm utility can fail to remove such files.

The −i option causes rm to prompt and read the standard input even if the standard input is not
a terminal, but in the absence of −i the mode prompting is not done when the standard input is
not a terminal.

EXAMPLES

1. The following command:

rm a.out core

removes the directory entries: a.out and core.

2. The following command:

rm −Rf junk

removes the directory junk and all its contents, without prompting.

RATIONALE
For absolute clarity, paragraphs (2b) and (3) in the DESCRIPTION of rm describing the behavior
when prompting for confirmation, should be interpreted in the following manner:

if ((NOT f_option) AND
((not_writable AND input_is_terminal) OR i_option))

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3137

104245

104246

104247

104248

104249

104250

104251

104252

104253

104254

104255

104256

104257

104258

104259

104260

104261

104262

104263

104264

104265

104266

104267

104268

104269

104270

104271

104272

104273

104274

104275

104276

104277

104278

104279

104280

104281

104282

104283

104284

104285

rm Utilities

The exact format of the interactive prompts is unspecified. Only the general nature of the
contents of prompts are specified because implementations may desire more descriptive
prompts than those used on historical implementations. Therefore, an application not using the
−f option, or using the −i option, relies on the system to provide the most suitable dialog directly
with the user, based on the behavior specified.

The −r option is historical practice on all known systems. The synonym −R option is provided
for consistency with the other utilities in this volume of POSIX.1-2008 that provide options
requesting recursive descent through the file hierarchy.

The behavior of the −f option in historical versions of rm is inconsistent. In general, along with
‘‘forcing’’ the unlink without prompting for permission, it always causes diagnostic messages to
be suppressed and the exit status to be unmodified for nonexistent operands and files that
cannot be unlinked. In some versions, however, the −f option suppresses usage messages and
system errors as well. Suppressing such messages is not a service to either shell scripts or users.

It is less clear that error messages regarding files that cannot be unlinked (removed) should be
suppressed. Although this is historical practice, this volume of POSIX.1-2008 does not permit the
−f option to suppress such messages.

When given the −r and −i options, historical versions of rm prompt the user twice for each
directory, once before removing its contents and once before actually attempting to delete the
directory entry that names it. This allows the user to ‘‘prune’’ the file hierarchy walk. Historical
versions of rm were inconsistent in that some did not do the former prompt for directories
named on the command line and others had obscure prompting behavior when the −i option
was specified and the permissions of the file did not permit writing. The POSIX Shell and
Utilities rm differs little from historic practice, but does require that prompts be consistent.
Historical versions of rm were also inconsistent in that prompts were done to both standard
output and standard error. This volume of POSIX.1-2008 requires that prompts be done to
standard error, for consistency with cp and mv, and to allow historical extensions to rm that
provide an option to list deleted files on standard output.

The rm utility is required to descend to arbitrary depths so that any file hierarchy may be
deleted. This means, for example, that the rm utility cannot run out of file descriptors during its
descent (that is, if the number of file descriptors is limited, rm cannot be implemented in the
historical fashion where one file descriptor is used per directory level). Also, rm is not permitted
to fail because of path length restrictions, unless an operand specified by the user is longer than
{PATH_MAX}.

The rm utility removes symbolic links themselves, not the files they refer to, as a consequence of
the dependence on the unlink() functionality, per the DESCRIPTION. When removing
hierarchies with −r or −R, the prohibition on following symbolic links has to be made explicit.

FUTURE DIRECTIONS
None.

SEE ALSO
rmdir

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH remove(), rmdir(), unlink()

CHANGE HISTORY
First released in Issue 2.

3138 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

104286

104287

104288

104289

104290

104291

104292

104293

104294

104295

104296

104297

104298

104299

104300

104301

104302

104303

104304

104305

104306

104307

104308

104309

104310

104311

104312

104313

104314

104315

104316

104317

104318

104319

104320

104321

104322

104323

104324

104325

104326

104327

104328

104329

Utilities rm

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
Text is added to clarify actions relating to symbolic links as specified in the IEEE P1003.2b draft
standard.

Issue 7
Austin Group Interpretations 1003.1-2001 #019 and #091 are applied.

Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description of the
LC_MESSAGES environment variable.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3139

104330

104331

104332

104333

104334

104335

104336

104337

104338

rmdel Utilities

NAME
rmdel — remove a delta from an SCCS file (DEVELOPMENT)

SYNOPSIS
XSI rmdel −r SID file...

DESCRIPTION
The rmdel utility shall remove the delta specified by the SID from each named SCCS file. The
delta to be removed shall be the most recent delta in its branch in the delta chain of each named
SCCS file. In addition, the application shall ensure that the SID specified is not that of a version
being edited for the purpose of making a delta; that is, if a p-file (see get) exists for the named
SCCS file, the SID specified shall not appear in any entry of the p-file.

Removal of a delta shall be restricted to:

1. The user who made the delta

2. The owner of the SCCS file

3. The owner of the directory containing the SCCS file

OPTIONS
The rmdel utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−r SID Specify the SCCS identification string (SID) of the delta to be deleted.

OPERANDS
The following operand shall be supported:

file A pathname of an existing SCCS file or a directory. If file is a directory, the rmdel
utility shall behave as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the pathname does not begin
with s.) and unreadable files shall be silently ignored.

If exactly one file operand appears, and it is ’−’, the standard input shall be read;
each line of the standard input is taken to be the name of an SCCS file to be
processed. Non-SCCS files and unreadable files shall be silently ignored.

STDIN
The standard input shall be a text file used only when the file operand is specified as ’−’. Each
line of the text file shall be interpreted as an SCCS pathname.

INPUT FILES
The SCCS files shall be files of unspecified format.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of rmdel:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

3140 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

104339

104340

104341

104342

104343

104344

104345

104346

104347

104348

104349

104350

104351

104352

104353

104354

104355

104356

104357

104358

104359

104360

104361

104362

104363

104364

104365

104366

104367

104368

104369

104370

104371

104372

104373

104374

104375

104376

104377

104378

104379

104380

Utilities rmdel

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The SCCS files shall be files of unspecified format. During processing of a file, a temporary x-file,
as described in admin , may be created and deleted; a locking z-file, as described in get , may be
created and deleted.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
admin , delta , get , prs

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3141

104381

104382

104383

104384

104385

104386

104387

104388

104389

104390

104391

104392

104393

104394

104395

104396

104397

104398

104399

104400

104401

104402

104403

104404

104405

104406

104407

104408

104409

104410

104411

104412

104413

104414

104415

104416

104417

rmdir Utilities

NAME
rmdir — remove directories

SYNOPSIS
rmdir [−p] dir...

DESCRIPTION
The rmdir utility shall remove the directory entry specified by each dir operand.

For each dir operand, the rmdir utility shall perform actions equivalent to the rmdir() function
called with the dir operand as its only argument.

Directories shall be processed in the order specified. If a directory and a subdirectory of that
directory are specified in a single invocation of the rmdir utility, the application shall specify the
subdirectory before the parent directory so that the parent directory will be empty when the
rmdir utility tries to remove it.

OPTIONS
The rmdir utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−p Remove all directories in a pathname. For each dir operand:

1. The directory entry it names shall be removed.

2. If the dir operand includes more than one pathname component, effects
equivalent to the following command shall occur:

rmdir −p $(dirname dir)

OPERANDS
The following operand shall be supported:

dir A pathname of an empty directory to be removed.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of rmdir:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

3142 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

104418

104419

104420

104421

104422

104423

104424

104425

104426

104427

104428

104429

104430

104431

104432

104433

104434

104435

104436

104437

104438

104439

104440

104441

104442

104443

104444

104445

104446

104447

104448

104449

104450

104451

104452

104453

104454

104455

104456

104457

Utilities rmdir

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Each directory entry specified by a dir operand was removed successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The definition of an empty directory is one that contains, at most, directory entries for dot and
dot-dot.

EXAMPLES
If a directory a in the current directory is empty except it contains a directory b and a/b is empty
except it contains a directory c:

rmdir −p a/b/c

removes all three directories.

RATIONALE
On historical System V systems, the −p option also caused a message to be written to the
standard output. The message indicated whether the whole path was removed or whether part
of the path remained for some reason. The STDERR section requires this diagnostic when the
entire path specified by a dir operand is not removed, but does not allow the status message
reporting success to be written as a diagnostic.

The rmdir utility on System V also included a −s option that suppressed the informational
message output by the −p option. This option has been omitted because the informational
message is not specified by this volume of POSIX.1-2008.

FUTURE DIRECTIONS
None.

SEE ALSO
rm

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH remove(), rmdir(), unlink()

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3143

104458

104459

104460

104461

104462

104463

104464

104465

104466

104467

104468

104469

104470

104471

104472

104473

104474

104475

104476

104477

104478

104479

104480

104481

104482

104483

104484

104485

104486

104487

104488

104489

104490

104491

104492

104493

104494

104495

104496

104497

rmdir Utilities

CHANGE HISTORY
First released in Issue 2.

Issue 6
The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

3144 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

104498

104499

104500

104501

Utilities sact

NAME
sact — print current SCCS file-editing activity (DEVELOPMENT)

SYNOPSIS
XSI sact file...

DESCRIPTION
The sact utility shall inform the user of any impending deltas to a named SCCS file by writing a
list to standard output. This situation occurs when get −e has been executed previously without
a subsequent execution of delta, unget, or sccs unedit.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

file A pathname of an existing SCCS file or a directory. If file is a directory, the sact
utility shall behave as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the pathname does not begin
with s.) and unreadable files shall be silently ignored.

If exactly one file operand appears, and it is ’−’, the standard input shall be read;
each line of the standard input shall be taken to be the name of an SCCS file to be
processed. Non-SCCS files and unreadable files shall be silently ignored.

STDIN
The standard input shall be a text file used only when the file operand is specified as ’−’. Each
line of the text file shall be interpreted as an SCCS pathname.

INPUT FILES
Any SCCS files interrogated are files of an unspecified format.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of sact:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3145

104502

104503

104504

104505

104506

104507

104508

104509

104510

104511

104512

104513

104514

104515

104516

104517

104518

104519

104520

104521

104522

104523

104524

104525

104526

104527

104528

104529

104530

104531

104532

104533

104534

104535

104536

104537

104538

104539

104540

104541

sact Utilities

STDOUT
The output for each named file shall consist of a line in the following format:

"%s∆%s∆%s∆%s∆%s\n", <SID>, <new SID>, <login>, <date>, <time>

<SID> Specifies the SID of a delta that currently exists in the SCCS file to which changes
are made to make the new delta.

<new SID> Specifies the SID for the new delta to be created.

<login> Contains the login name of the user who makes the delta (that is, who executed a
get for editing).

<date> Contains the date that get −e was executed, in the format used by the prs :D: data
keyword.

<time> Contains the time that get −e was executed, in the format used by the prs :T: data
keyword.

If there is more than one named file or if a directory or standard input is named, each pathname
shall be written before each of the preceding lines:

"\n%s:\n", <pathname>

STDERR
The standard error shall be used only for optional informative messages concerning SCCS files
with no impending deltas, and for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
delta , get , sccs , unget

XBD Chapter 8 (on page 173)

3146 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

104542

104543

104544

104545

104546

104547

104548

104549

104550

104551

104552

104553

104554

104555

104556

104557

104558

104559

104560

104561

104562

104563

104564

104565

104566

104567

104568

104569

104570

104571

104572

104573

104574

104575

104576

104577

104578

104579

104580

Utilities sact

CHANGE HISTORY
First released in Issue 2.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3147

104581

104582

sccs Utilities

NAME
sccs — front end for the SCCS subsystem (DEVELOPMENT)

SYNOPSIS
XSI sccs [−r] [−d path] [−p path] command [options...] [operands...]

DESCRIPTION
The sccs utility is a front end to the SCCS programs. It also includes the capability to run set-
user-id to another user to provide additional protection.

The sccs utility shall invoke the specified command with the specified options and operands. By
default, each of the operands shall be modified by prefixing it with the string "SCCS/s.".

The command can be the name of one of the SCCS utilities in this volume of POSIX.1-2008 (admin,
delta, get, prs, rmdel, sact, unget, val, or what) or one of the pseudo-utilities listed in the
EXTENDED DESCRIPTION section.

OPTIONS
The sccs utility shall conform to XBD Section 12.2 (on page 215), except that options operands are
actually options to be passed to the utility named by command. When the portion of the
command:

command [options ...] [operands ...]

is considered, all of the pseudo-utilities used as command shall support the Utility Syntax
Guidelines. Any of the other SCCS utilities that can be invoked in this manner support the
Guidelines to the extent indicated by their individual OPTIONS sections.

The following options shall be supported preceding the command operand:

−d path A pathname of a directory to be used as a root directory for the SCCS files. The
default shall be the current directory. The −d option shall take precedence over the
PROJECTDIR variable. See −p.

−p path A pathname of a directory in which the SCCS files are located. The default shall be
the SCCS directory.

The −p option differs from the −d option in that the −d option-argument shall be
prefixed to the entire pathname and the −p option-argument shall be inserted
before the final component of the pathname. For example:

sccs −d /x −p y get a/b

converts to:

get /x/a/y/s.b

This allows the creation of aliases such as:

alias syssccs="sccs −d /usr/src"

which is used as:

syssccs get cmd/who.c

−r Invoke command with the real user ID of the process, not any effective user ID that
the sccs utility is set to. Certain commands (admin, check, clean, diffs, info, rmdel,
and tell) cannot be run set-user-ID by all users, since this would allow anyone to
change the authorizations. These commands are always run as the real user.

3148 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

104583

104584

104585

104586

104587

104588

104589

104590

104591

104592

104593

104594

104595

104596

104597

104598

104599

104600

104601

104602

104603

104604

104605

104606

104607

104608

104609

104610

104611

104612

104613

104614

104615

104616

104617

104618

104619

104620

104621

104622

Utilities sccs

OPERANDS
The following operands shall be supported:

command An SCCS utility name or the name of one of the pseudo-utilities listed in the
EXTENDED DESCRIPTION section.

options An option or option-argument to be passed to command.

operands An operand to be passed to command.

STDIN
See the utility description for the specified command.

INPUT FILES
See the utility description for the specified command.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of sccs:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PROJECTDIR
Provide a default value for the −d path option. If the value of PROJECTDIR begins
with a <slash>, it shall be considered an absolute pathname; otherwise, the value
of PROJECTDIR is treated as a user name and that user’s initial working directory
shall be examined for a subdirectory src or source. If such a directory is found, it
shall be used. Otherwise, the value shall be used as a relative pathname.

Additional environment variable effects may be found in the utility description for the specified
command.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the utility description for the specified command.

STDERR
See the utility description for the specified command.

OUTPUT FILES
See the utility description for the specified command.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3149

104623

104624

104625

104626

104627

104628

104629

104630

104631

104632

104633

104634

104635

104636

104637

104638

104639

104640

104641

104642

104643

104644

104645

104646

104647

104648

104649

104650

104651

104652

104653

104654

104655

104656

104657

104658

104659

104660

104661

104662

sccs Utilities

EXTENDED DESCRIPTION
The following pseudo-utilities shall be supported as command operands. All options referred to
in the following list are values given in the options operands following command.

check Equivalent to info, except that nothing shall be printed if nothing is being edited, and a
non-zero exit status shall be returned if anything is being edited. The intent is to have
this included in an ‘‘install’’ entry in a makefile to ensure that everything is included
into the SCCS file before a version is installed.

clean Remove everything from the current directory that can be recreated from SCCS files,
but do not remove any files being edited. If the −b option is given, branches shall be
ignored in the determination of whether they are being edited; this is dangerous if
branches are kept in the same directory.

create Create an SCCS file, taking the initial contents from the file of the same name. Any
options to admin are accepted. If the creation is successful, the original files shall be
renamed by prefixing the basenames with a comma. These renamed files should be
removed after it has been verified that the SCCS files have been created successfully.

delget Perform a delta on the named files and then get new versions. The new versions shall
have ID keywords expanded and shall not be editable. Any −m, −p, −r, −s, and −y
options shall be passed to delta, and any −b, −c, −e, −i, −k, −l, −s, and −x options shall be
passed to get.

deledit Equivalent to delget, except that the get phase shall include the −e option. This option is
useful for making a checkpoint of the current editing phase. The same options shall be
passed to delta as described above, and all the options listed for get above except −e
shall be passed to edit.

diffs Write a difference listing between the current version of the files checked out for editing
and the versions in SCCS format. Any −r, −c, −i, −x, and −t options shall be passed to
get; any −l, −s, −e, −f, −h, and −b options shall be passed to diff. A −C option shall be
passed to diff as −c.

edit Equivalent to get −e.

fix Remove the named delta, but leave a copy of the delta with the changes that were in it.
It is useful for fixing small compiler bugs, and so on. The application shall ensure that it
is followed by a −r SID option. Since fix does not leave audit trails, it should be used
carefully.

info Write a listing of all files being edited. If the −b option is given, branches (that is, SIDs
with two or fewer components) shall be ignored. If a −u user option is given, then only
files being edited by the named user shall be listed. A −U option shall be equivalent to
−u<current user>.

print Write out verbose information about the named files, equivalent to sccs prs.

tell Write a <newline>-separated list of the files being edited to standard output. Takes the
−b, −u, and −U options like info and check.

unedit This is the opposite of an edit or a get −e. It should be used with caution, since any
changes made since the get are lost.

3150 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

104663

104664

104665

104666

104667

104668

104669

104670

104671

104672

104673

104674

104675

104676

104677

104678

104679

104680

104681

104682

104683

104684

104685

104686

104687

104688

104689

104690

104691

104692

104693

104694

104695

104696

104697

104698

104699

104700

104701

104702

104703

Utilities sccs

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Many of the SCCS utilities take directory names as operands as well as specific filenames. The
pseudo-utilities supported by sccs are not described as having this capability, but are not
prohibited from doing so.

EXAMPLES

1. To get a file for editing, edit it and produce a new delta:

sccs get −e file.c
ex file.c
sccs delta file.c

2. To get a file from another directory:

sccs −p /usr/src/sccs/s. get cc.c

or:

sccs get /usr/src/sccs/s.cc.c

3. To make a delta of a large number of files in the current directory:

sccs delta *.c

4. To get a list of files being edited that are not on branches:

sccs info −b

5. To delta everything being edited by the current user:

sccs delta $(sccs tell −U)

6. In a makefile, to get source files from an SCCS file if it does not already exist:

SRCS = <list of source files>
$(SRCS):

sccs get $(REL) $@

RATIONALE
sccs and its associated utilities are part of the XSI Development Utilities option within the XSI
option.

SCCS is an abbreviation for Source Code Control System. It is a maintenance and enhancement
tracking tool. When a file is put under SCCS, the source code control system maintains the file
and, when changes are made, identifies and stores them in the file with the original source code
and/or documentation. As other changes are made, they too are identified and retained in the
file.

Retrieval of the original and any set of changes is possible. Any version of the file as it develops
can be reconstructed for inspection or additional modification. History data can be stored with
each version, documenting why the changes were made, who made them, and when they were
made.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3151

104704

104705

104706

104707

104708

104709

104710

104711

104712

104713

104714

104715

104716

104717

104718

104719

104720

104721

104722

104723

104724

104725

104726

104727

104728

104729

104730

104731

104732

104733

104734

104735

104736

104737

104738

104739

104740

104741

104742

104743

104744

sccs Utilities

FUTURE DIRECTIONS
None.

SEE ALSO
admin , delta , get , make , prs , rmdel , sact , unget , val , what

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
In the ENVIRONMENT VARIABLES section, the PROJECTDIR description is updated from
‘‘otherwise, the home directory of a user of that name is examined’’ to ‘‘otherwise, the value of
PROJECTDIR is treated as a user name and that user’s initial working directory is examined’’.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3152 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

104745

104746

104747

104748

104749

104750

104751

104752

104753

104754

104755

104756

104757

104758

Utilities sed

NAME
sed — stream editor

SYNOPSIS
sed [−n] script [file...]

sed [−n] −e script [−e script]... [−f script_file]... [file...]

sed [−n] [−e script]... −f script_file [−f script_file]... [file...]

DESCRIPTION
The sed utility is a stream editor that shall read one or more text files, make editing changes
according to a script of editing commands, and write the results to standard output. The script
shall be obtained from either the script operand string or a combination of the option-arguments
from the −e script and −f script_file options.

OPTIONS
The sed utility shall conform to XBD Section 12.2 (on page 215), except that the order of
presentation of the −e and −f options is significant.

The following options shall be supported:

−e script Add the editing commands specified by the script option-argument to the end of
the script of editing commands. The script option-argument shall have the same
properties as the script operand, described in the OPERANDS section.

−f script_file Add the editing commands in the file script_file to the end of the script.

−n Suppress the default output (in which each line, after it is examined for editing, is
written to standard output). Only lines explicitly selected for output are written.

Multiple −e and −f options may be specified. All commands shall be added to the script in the
order specified, regardless of their origin.

OPERANDS
The following operands shall be supported:

file A pathname of a file whose contents are read and edited. If multiple file operands
are specified, the named files shall be read in the order specified and the
concatenation shall be edited. If no file operands are specified, the standard input
shall be used.

script A string to be used as the script of editing commands. The application shall not
present a script that violates the restrictions of a text file except that the final
character need not be a <newline>.

STDIN
The standard input shall be used if no file operands are specified, and shall be used if a file
operand is ’−’ and the implementation treats the ’−’ as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
The input files shall be text files. The script_files named by the −f option shall consist of editing
commands.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of sed:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3153

104759

104760

104761

104762

104763

104764

104765

104766

104767

104768

104769

104770

104771

104772

104773

104774

104775

104776

104777

104778

104779

104780

104781

104782

104783

104784

104785

104786

104787

104788

104789

104790

104791

104792

104793

104794

104795

104796

104797

104798

104799

104800

104801

104802

sed Utilities

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within regular expressions.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), and the behavior of character classes within regular
expressions.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The input files shall be written to standard output, with the editing commands specified in the
script applied. If the −n option is specified, only those input lines selected by the script shall be
written to standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The output files shall be text files whose formats are dependent on the editing commands given.

EXTENDED DESCRIPTION
The script shall consist of editing commands of the following form:

[address[,address]]function

where function represents a single-character command verb from the list in Editing Commands
in sed (on page 3155), followed by any applicable arguments.

The command can be preceded by <blank> characters and/or <semicolon> characters. The
function can be preceded by <blank> characters. These optional characters shall have no effect.

In default operation, sed cyclically shall append a line of input, less its terminating <newline>,
into the pattern space. Normally the pattern space will be empty, unless a D command
terminated the last cycle. The sed utility shall then apply in sequence all commands whose
addresses select that pattern space, and at the end of the script copy the pattern space to
standard output (except when −n is specified) and delete the pattern space. Whenever the
pattern space is written to standard output or a named file, sed shall immediately follow it with a
<newline>.

Some of the editing commands use a hold space to save all or part of the pattern space for
subsequent retrieval. The pattern and hold spaces shall each be able to hold at least 8 192 bytes.

3154 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

104803

104804

104805

104806

104807

104808

104809

104810

104811

104812

104813

104814

104815

104816

104817

104818

104819

104820

104821

104822

104823

104824

104825

104826

104827

104828

104829

104830

104831

104832

104833

104834

104835

104836

104837

104838

104839

104840

104841

Utilities sed

Addresses in sed

An address is either a decimal number that counts input lines cumulatively across files, a ’$’
character that addresses the last line of input, or a context address (which consists of a BRE, as
described in Regular Expressions in sed, preceded and followed by a delimiter, usually a
<slash>).

An editing command with no addresses shall select every pattern space.

An editing command with one address shall select each pattern space that matches the address.

An editing command with two addresses shall select the inclusive range from the first pattern
space that matches the first address through the next pattern space that matches the second. (If
the second address is a number less than or equal to the line number first selected, only one line
shall be selected.) Starting at the first line following the selected range, sed shall look again for
the first address. Thereafter, the process shall be repeated. Omitting either or both of the address
components in the following form produces undefined results:

[address[,address]]

Regular Expressions in sed

The sed utility shall support the BREs described in XBD Section 9.3 (on page 183), with the
following additions:

• In a context address, the construction "\cBREc", where c is any character other than
<backslash> or <newline>, shall be identical to "/BRE/". If the character designated by c
appears following a <backslash>, then it shall be considered to be that literal character,
which shall not terminate the BRE. For example, in the context address "\xabc\xdefx",
the second x stands for itself, so that the BRE is "abcxdef".

• The escape sequence ’\n’ shall match a <newline> embedded in the pattern space. A
literal <newline> shall not be used in the BRE of a context address or in the substitute
function.

• If an RE is empty (that is, no pattern is specified) sed shall behave as if the last RE used in
the last command applied (either as an address or as part of a substitute command) was
specified.

Editing Commands in sed

In the following list of editing commands, the maximum number of permissible addresses for
each function is indicated by [0addr], [1addr], or [2addr], representing zero, one, or two
addresses.

The argument text shall consist of one or more lines. Each embedded <newline> in the text shall
be preceded by a <backslash>. Other <backslash> characters in text shall be removed, and the
following character shall be treated literally.

The r and w command verbs, and the w flag to the s command, take an rfile (or wfile) parameter,
separated from the command verb letter or flag by one or more <blank> characters;
implementations may allow zero separation as an extension.

The argument rfile or the argument wfile shall terminate the editing command. Each wfile shall be
created before processing begins. Implementations shall support at least ten wfile arguments in
the script; the actual number (greater than or equal to 10) that is supported by the
implementation is unspecified. The use of the wfile parameter shall cause that file to be initially
created, if it does not exist, or shall replace the contents of an existing file.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3155

104842

104843

104844

104845

104846

104847

104848

104849

104850

104851

104852

104853

104854

104855

104856

104857

104858

104859

104860

104861

104862

104863

104864

104865

104866

104867

104868

104869

104870

104871

104872

104873

104874

104875

104876

104877

104878

104879

104880

104881

104882

104883

104884

sed Utilities

The b, r, s, t, w, y, and : command verbs shall accept additional arguments. The following
synopses indicate which arguments shall be separated from the command verbs by a single
<space>.

The a and r commands schedule text for later output. The text specified for the a command, and
the contents of the file specified for the r command, shall be written to standard output just
before the next attempt to fetch a line of input when executing the N or n commands, or when
reaching the end of the script. If written when reaching the end of the script, and the −n option
was not specified, the text shall be written after copying the pattern space to standard output.
The contents of the file specified for the r command shall be as of the time the output is written,
not the time the r command is applied. The text shall be output in the order in which the a and r
commands were applied to the input.

Command verbs other than {, a, b, c, i, r, t, w, :, and # can be followed by a <semicolon>,
optional <blank> characters, and another command verb. However, when the s command verb
is used with the w flag, following it with another command in this manner produces undefined
results.

A function can be preceded by one or more ’!’ characters, in which case the function shall be
applied if the addresses do not select the pattern space. Zero or more <blank> characters shall be
accepted before the first ’!’ character. It is unspecified whether <blank> characters can follow a
’!’ character, and conforming applications shall not follow a ’!’ character with <blank>
characters.

[2addr] {function
function
. . .
} Execute a list of sed functions only when the pattern space is selected. The list of sed

functions shall be surrounded by braces and separated by <newline> characters,
and conform to the following rules. The braces can be preceded or followed by
<blank> characters. The functions can be preceded by <blank> characters, but shall
not be followed by <blank> characters. The <right-brace> shall be preceded by a
<newline> and can be preceded or followed by <blank> characters.

[1addr]a\
text Write text to standard output as described previously.

[2addr]b [label]
Branch to the : function bearing the label. If label is not specified, branch to the end
of the script. The implementation shall support labels recognized as unique up to at
least 8 characters; the actual length (greater than or equal to 8) that shall be
supported by the implementation is unspecified. It is unspecified whether
exceeding a label length causes an error or a silent truncation.

[2addr]c\
text Delete the pattern space. With a 0 or 1 address or at the end of a 2-address range,

place text on the output and start the next cycle.

[2addr]d Delete the pattern space and start the next cycle.

[2addr]D Delete the initial segment of the pattern space through the first <newline> and
start the next cycle.

[2addr]g Replace the contents of the pattern space by the contents of the hold space.

3156 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

104885

104886

104887

104888

104889

104890

104891

104892

104893

104894

104895

104896

104897

104898

104899

104900

104901

104902

104903

104904

104905

104906

104907

104908

104909

104910

104911

104912

104913

104914

104915

104916

104917

104918

104919

104920

104921

104922

104923

104924

104925

104926

104927

104928

Utilities sed

[2addr]G Append to the pattern space a <newline> followed by the contents of the hold
space.

[2addr]h Replace the contents of the hold space with the contents of the pattern space.

[2addr]H Append to the hold space a <newline> followed by the contents of the pattern
space.

[1addr]i\
text Write text to standard output.

[2addr]l (The letter ell.) Write the pattern space to standard output in a visually
unambiguous form. The characters listed in XBD Table 5-1 (on page 121) (’\\’,
’\a’, ’\b’, ’\f’, ’\r’, ’\t’, ’\v’) shall be written as the corresponding
escape sequence; the ’\n’ in that table is not applicable. Non-printable characters
not in that table shall be written as one three-digit octal number (with a preceding
<backslash>) for each byte in the character (most significant byte first).

Long lines shall be folded, with the point of folding indicated by writing a
<backslash> followed by a <newline>; the length at which folding occurs is
unspecified, but should be appropriate for the output device. The end of each line
shall be marked with a ’$’.

[2addr]n Write the pattern space to standard output if the default output has not been
suppressed, and replace the pattern space with the next line of input, less its
terminating <newline>.

If no next line of input is available, the n command verb shall branch to the end of
the script and quit without starting a new cycle.

[2addr]N Append the next line of input, less its terminating <newline>, to the pattern space,
using an embedded <newline> to separate the appended material from the
original material. Note that the current line number changes.

If no next line of input is available, the N command verb shall branch to the end of
the script and quit without starting a new cycle or copying the pattern space to
standard output.

[2addr]p Write the pattern space to standard output.

[2addr]P Write the pattern space, up to the first <newline>, to standard output.

[1addr]q Branch to the end of the script and quit without starting a new cycle.

[1addr]r rfile Copy the contents of rfile to standard output as described previously. If rfile does
not exist or cannot be read, it shall be treated as if it were an empty file, causing no
error condition.

[2addr]s/BRE/replacement/flags
Substitute the replacement string for instances of the BRE in the pattern space. Any
character other than <backslash> or <newline> can be used instead of a <slash> to
delimit the BRE and the replacement. Within the BRE and the replacement, the
BRE delimiter itself can be used as a literal character if it is preceded by a
<backslash>.

The replacement string shall be scanned from beginning to end. An <ampersand>
(’&’) appearing in the replacement shall be replaced by the string matching the
BRE. The special meaning of ’&’ in this context can be suppressed by preceding it
by a <backslash>. The characters "\n", where n is a digit, shall be replaced by the

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3157

104929

104930

104931

104932

104933

104934

104935

104936

104937

104938

104939

104940

104941

104942

104943

104944

104945

104946

104947

104948

104949

104950

104951

104952

104953

104954

104955

104956

104957

104958

104959

104960

104961

104962

104963

104964

104965

104966

104967

104968

104969

104970

104971

104972

sed Utilities

text matched by the corresponding back-reference expression. If the corresponding
back-reference expression does not match, then the characters "\n" shall be
replaced by the empty string. The special meaning of "\n" where n is a digit in
this context, can be suppressed by preceding it by a <backslash>. For each other
<backslash> encountered, the following character shall lose its special meaning (if
any). The meaning of a <backslash> immediately followed by any character other
than ’&’, <backslash>, a digit, or the delimiter character used for this command, is
unspecified.

A line can be split by substituting a <newline> into it. The application shall escape
the <newline> in the replacement by preceding it by a <backslash>. A substitution
shall be considered to have been performed even if the replacement string is
identical to the string that it replaces. Any <backslash> used to alter the default
meaning of a subsequent character shall be discarded from the BRE or the
replacement before evaluating the BRE or using the replacement.

The value of flags shall be zero or more of:

n Substitute for the nth occurrence only of the BRE found within the
pattern space.

g Globally substitute for all non-overlapping instances of the BRE
rather than just the first one. If both g and n are specified, the results
are unspecified.

p Write the pattern space to standard output if a replacement was
made.

w wfile Write. Append the pattern space to wfile if a replacement was made.
A conforming application shall precede the wfile argument with one
or more <blank> characters. If the w flag is not the last flag value
given in a concatenation of multiple flag values, the results are
undefined.

[2addr]t [label]
Test. Branch to the : command verb bearing the label if any substitutions have been
made since the most recent reading of an input line or execution of a t. If label is
not specified, branch to the end of the script.

[2addr]w wfile
Append (write) the pattern space to wfile.

[2addr]x Exchange the contents of the pattern and hold spaces.

[2addr]y/string1/string2/
Replace all occurrences of characters in string1 with the corresponding characters
in string2. If a <backslash> followed by an ’n’ appear in string1 or string2, the two
characters shall be handled as a single <newline>. If the number of characters in
string1 and string2 are not equal, or if any of the characters in string1 appear more
than once, the results are undefined. Any character other than <backslash> or
<newline> can be used instead of <slash> to delimit the strings. If the delimiter is
not ’n’, within string1 and string2, the delimiter itself can be used as a literal
character if it is preceded by a <backslash>. If a <backslash> character is
immediately followed by a <backslash> character in string1 or string2, the two
<backslash> characters shall be counted as a single literal <backslash> character.
The meaning of a <backslash> followed by any character that is not ’n’, a
<backslash>, or the delimiter character is undefined.

3158 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

104973

104974

104975

104976

104977

104978

104979

104980

104981

104982

104983

104984

104985

104986

104987

104988

104989

104990

104991

104992

104993

104994

104995

104996

104997

104998

104999

105000

105001

105002

105003

105004

105005

105006

105007

105008

105009

105010

105011

105012

105013

105014

105015

105016

105017

105018

105019

Utilities sed

[0addr]:label Do nothing. This command bears a label to which the b and t commands branch.

[1addr]= Write the following to standard output:

"%d\n", <current line number>

[0addr] Ignore this empty command.

[0addr]# Ignore the ’#’ and the remainder of the line (treat them as a comment), with the
single exception that if the first two characters in the script are "#n", the default
output shall be suppressed; this shall be the equivalent of specifying −n on the
command line.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Regular expressions match entire strings, not just individual lines, but a <newline> is matched
by ’\n’ in a sed RE; a <newline> is not allowed by the general definition of regular expression
in POSIX.1-2008. Also note that ’\n’ cannot be used to match a <newline> at the end of an
arbitrary input line; <newline> characters appear in the pattern space as a result of the N editing
command.

EXAMPLES
This sed script simulates the BSD cat −s command, squeezing excess empty lines from standard
input.

sed −n ’
Write non-empty lines.
/./ {

p
d
}

Write a single empty line, then look for more empty lines.
/ˆ$/ p
Get next line, discard the held <newline> (empty line),
and look for more empty lines.
:Empty
/ˆ$/ {

N
s/.//
b Empty
}

Write the non-empty line before going back to search
for the first in a set of empty lines.

p
’

The following sed command is a much simpler method of squeezing empty lines, although it is
not quite the same as cat −s since it removes any initial empty lines:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3159

105020

105021

105022

105023

105024

105025

105026

105027

105028

105029

105030

105031

105032

105033

105034

105035

105036

105037

105038

105039

105040

105041

105042

105043

105044

105045

105046

105047

105048

105049

105050

105051

105052

105053

105054

105055

105056

105057

105058

105059

105060

105061

105062

105063

105064

sed Utilities

sed −n ’/./,/ˆ$/p’

RATIONALE
This volume of POSIX.1-2008 requires implementations to support at least ten distinct wfiles,
matching historical practice on many implementations. Implementations are encouraged to
support more, but conforming applications should not exceed this limit.

The exit status codes specified here are different from those in System V. System V returns 2 for
garbled sed commands, but returns zero with its usage message or if the input file could not be
opened. The standard developers considered this to be a bug.

The manner in which the l command writes non-printable characters was changed to avoid the
historical backspace-overstrike method, and other requirements to achieve unambiguous output
were added. See the RATIONALE for ed for details of the format chosen, which is the same as
that chosen for sed.

This volume of POSIX.1-2008 requires implementations to provide pattern and hold spaces of at
least 8 192 bytes, larger than the 4 000 bytes spaces used by some historical implementations, but
less than the 20 480 bytes limit used in an early proposal. Implementations are encouraged to
allocate dynamically larger pattern and hold spaces as needed.

The requirements for acceptance of <blank> and <space> characters in command lines has been
made more explicit than in early proposals to describe clearly the historical practice and to
remove confusion about the phrase ‘‘protect initial blanks [sic] and tabs from the stripping that is
done on every script line’’ that appears in much of the historical documentation of the sed utility
description of text. (Not all implementations are known to have stripped <blank> characters
from text lines, although they all have allowed leading <blank> characters preceding the address
on a command line.)

The treatment of ’#’ comments differs from the SVID which only allows a comment as the first
line of the script, but matches BSD-derived implementations. The comment character is treated
as a command, and it has the same properties in terms of being accepted with leading <blank>
characters; the BSD implementation has historically supported this.

Early proposals required that a script_file have at least one non-comment line. Some historical
implementations have behaved in unexpected ways if this were not the case. The standard
developers considered that this was incorrect behavior and that application developers should
not have to avoid this feature. A correct implementation of this volume of POSIX.1-2008 shall
permit script_files that consist only of comment lines.

Early proposals indicated that if −e and −f options were intermixed, all −e options were
processed before any −f options. This has been changed to process them in the order presented
because it matches historical practice and is more intuitive.

The treatment of the p flag to the s command differs between System V and BSD-based systems
when the default output is suppressed. In the two examples:

echo a | sed ’s/a/A/p’
echo a | sed −n ’s/a/A/p’

this volume of POSIX.1-2008, BSD, System V documentation, and the SVID indicate that the first
example should write two lines with A, whereas the second should write one. Some System V
systems write the A only once in both examples because the p flag is ignored if the −n option is
not specified.

This is a case of a diametrical difference between systems that could not be reconciled through
the compromise of declaring the behavior to be unspecified. The SVID/BSD/System V
documentation behavior was adopted for this volume of POSIX.1-2008 because:

3160 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

105065

105066

105067

105068

105069

105070

105071

105072

105073

105074

105075

105076

105077

105078

105079

105080

105081

105082

105083

105084

105085

105086

105087

105088

105089

105090

105091

105092

105093

105094

105095

105096

105097

105098

105099

105100

105101

105102

105103

105104

105105

105106

105107

105108

105109

105110

Utilities sed

• No known documentation for any historic system describes the interaction between the p
flag and the −n option.

• The selected behavior is more correct as there is no technical justification for any
interaction between the p flag and the −n option. A relationship between −n and the p flag
might imply that they are only used together, but this ignores valid scripts that interrupt
the cyclical nature of the processing through the use of the D, d, q, or branching
commands. Such scripts rely on the p suffix to write the pattern space because they do not
make use of the default output at the ‘‘bottom’’ of the script.

• Because the −n option makes the p flag unnecessary, any interaction would only be useful
if sed scripts were written to run both with and without the −n option. This is believed to
be unlikely. It is even more unlikely that programmers have coded the p flag expecting it to
be unnecessary. Because the interaction was not documented, the likelihood of a
programmer discovering the interaction and depending on it is further decreased.

• Finally, scripts that break under the specified behavior produce too much output instead of
too little, which is easier to diagnose and correct.

The form of the substitute command that uses the n suffix was limited to the first 512 matches in
an early proposal. This limit has been removed because there is no reason an editor processing
lines of {LINE_MAX} length should have this restriction. The command s/a/A/2047 should be
able to substitute the 2 047th occurrence of a on a line.

The b, t, and : commands are documented to ignore leading white space, but no mention is
made of trailing white space. Historical implementations of sed assigned different locations to
the labels ’x’ and "x ". This is not useful, and leads to subtle programming errors, but it is
historical practice, and changing it could theoretically break working scripts. Implementors are
encouraged to provide warning messages about labels that are never used or jumps to labels
that do not exist.

Historically, the sed ! and } editing commands did not permit multiple commands on a single
line using a <semicolon> as a command delimiter. Implementations are permitted, but not
required, to support this extension.

Earlier versions of this standard allowed for implementations with bytes other than eight bits,
but this has been modified in this version.

FUTURE DIRECTIONS
None.

SEE ALSO
awk , ed , grep

XBD Table 5-1 (on page 121), Chapter 8 (on page 173), Section 9.3 (on page 183), Section 12.2 (on
page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3161

105111

105112

105113

105114

105115

105116

105117

105118

105119

105120

105121

105122

105123

105124

105125

105126

105127

105128

105129

105130

105131

105132

105133

105134

105135

105136

105137

105138

105139

105140

105141

105142

105143

105144

105145

105146

105147

105148

105149

105150

105151

105152

105153

sed Utilities

• Implementations are required to support at least ten wfile arguments in an editing
command.

The EXTENDED DESCRIPTION is changed to align with the IEEE P1003.2b draft standard.

IEEE PASC Interpretation 1003.2 #190 is applied.

IEEE PASC Interpretation 1003.2 #203 is applied, clarifying the meaning of the
<backslash>-escape sequences in a replacement string for a BRE.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/28 is applied, removing text describing
behavior on systems with bytes consisting of more than eight bits.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/29 is applied, making an editorial
correction within the Editing Commands in sed section.

Issue 7
Austin Group Interpretations 1003.1-2001 #006, #036, and #092 are applied.

SD5-XCU-ERN-97 and SD5-XCU-ERN-123 are applied, updating the SYNOPSIS.

A second example is added.

3162 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

105154

105155

105156

105157

105158

105159

105160

105161

105162

105163

105164

105165

105166

105167

Utilities sh

NAME
sh — shell, the standard command language interpreter

SYNOPSIS
sh [−abCefhimnuvx] [−o option]... [+abCefhimnuvx] [+o option]...

[command_file [argument...]]

sh −c [−abCefhimnuvx] [−o option]... [+abCefhimnuvx] [+o option]...
command_string [command_name [argument...]]

sh −s [−abCefhimnuvx] [−o option]... [+abCefhimnuvx] [+o option]...
[argument...]

DESCRIPTION
The sh utility is a command language interpreter that shall execute commands read from a
command line string, the standard input, or a specified file. The application shall ensure that the
commands to be executed are expressed in the language described in Chapter 2 (on page 2297).

Pathname expansion shall not fail due to the size of a file.

Shell input and output redirections have an implementation-defined offset maximum that is
established in the open file description.

OPTIONS
The sh utility shall conform to XBD Section 12.2 (on page 215), with an extension for support of a
leading <plus-sign> (’+’) as noted below.

The −a, −b, −C, −e, −f, −m, −n, −o option, −u, −v, and −x options are described as part of the set
utility in Section 2.14 (on page 2334). The option letters derived from the set special built-in shall
also be accepted with a leading <plus-sign> (’+’) instead of a leading <hyphen> (meaning the
reverse case of the option as described in this volume of POSIX.1-2008).

The following additional options shall be supported:

−c Read commands from the command_string operand. Set the value of special
parameter 0 (see Section 2.5.2, on page 2302) from the value of the command_name
operand and the positional parameters ($1, $2, and so on) in sequence from the
remaining argument operands. No commands shall be read from the standard
input.

−i Specify that the shell is interactive; see below. An implementation may treat
specifying the −i option as an error if the real user ID of the calling process does
not equal the effective user ID or if the real group ID does not equal the effective
group ID.

−s Read commands from the standard input.

If there are no operands and the −c option is not specified, the −s option shall be assumed.

If the −i option is present, or if there are no operands and the shell’s standard input and
standard error are attached to a terminal, the shell is considered to be interactive.

OPERANDS
The following operands shall be supported:

− A single <hyphen> shall be treated as the first operand and then ignored. If both
’−’ and "− −" are given as arguments, or if other operands precede the single
<hyphen>, the results are undefined.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3163

105168

105169

105170

105171

105172

105173

105174

105175

105176

105177

105178

105179

105180

105181

105182

105183

105184

105185

105186

105187

105188

105189

105190

105191

105192

105193

105194

105195

105196

105197

105198

105199

105200

105201

105202

105203

105204

105205

105206

105207

105208

105209

sh Utilities

argument The positional parameters ($1, $2, and so on) shall be set to arguments, if any.

command_file The pathname of a file containing commands. If the pathname contains one or
more <slash> characters, the implementation attempts to read that file; the file
need not be executable. If the pathname does not contain a <slash> character:

• The implementation shall attempt to read that file from the current working
directory; the file need not be executable.

• If the file is not in the current working directory, the implementation may
perform a search for an executable file using the value of PA TH, as described
in Section 2.9.1.1 (on page 2317).

Special parameter 0 (see Section 2.5.2, on page 2302) shall be set to the value of
command_file. If sh is called using a synopsis form that omits command_file, special
parameter 0 shall be set to the value of the first argument passed to sh from its
parent (for example, argv[0] for a C program), which is normally a pathname used
to execute the sh utility.

command_name
A string assigned to special parameter 0 when executing the commands in
command_string. If command_name is not specified, special parameter 0 shall be set
to the value of the first argument passed to sh from its parent (for example, argv[0]
for a C program), which is normally a pathname used to execute the sh utility.

command_string
A string that shall be interpreted by the shell as one or more commands, as if the
string were the argument to the system() function defined in the System Interfaces
volume of POSIX.1-2008. If the command_string operand is an empty string, sh shall
exit with a zero exit status.

STDIN
The standard input shall be used only if one of the following is true:

• The −s option is specified.

• The −c option is not specified and no operands are specified.

• The script executes one or more commands that require input from standard input (such as
a read command that does not redirect its input).

See the INPUT FILES section.

When the shell is using standard input and it invokes a command that also uses standard input,
the shell shall ensure that the standard input file pointer points directly after the command it has
read when the command begins execution. It shall not read ahead in such a manner that any
characters intended to be read by the invoked command are consumed by the shell (whether
interpreted by the shell or not) or that characters that are not read by the invoked command are
not seen by the shell. When the command expecting to read standard input is started
asynchronously by an interactive shell, it is unspecified whether characters are read by the
command or interpreted by the shell.

If the standard input to sh is a FIFO or terminal device and is set to non-blocking reads, then sh
shall enable blocking reads on standard input. This shall remain in effect when the command
completes.

3164 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

105210

105211

105212

105213

105214

105215

105216

105217

105218

105219

105220

105221

105222

105223

105224

105225

105226

105227

105228

105229

105230

105231

105232

105233

105234

105235

105236

105237

105238

105239

105240

105241

105242

105243

105244

105245

105246

105247

105248

105249

105250

105251

Utilities sh

INPUT FILES
The input file shall be a text file, except that line lengths shall be unlimited. If the input file is
empty or consists solely of blank lines or comments, or both, sh shall exit with a zero exit status.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of sh:

ENV This variable, when and only when an interactive shell is invoked, shall be
subjected to parameter expansion (see Section 2.6.2, on page 2306) by the shell, and
the resulting value shall be used as a pathname of a file containing shell
commands to execute in the current environment. The file need not be executable.
If the expanded value of ENV is not an absolute pathname, the results are
unspecified. ENV shall be ignored if the real and effective user IDs or real and
effective group IDs of the process are different.

UP FCEDIT This variable, when expanded by the shell, shall determine the default value for
the −e editor option’s editor option-argument. If FCEDIT is null or unset, ed shall be
used as the editor.

UP HISTFILE Determine a pathname naming a command history file. If the HISTFILE variable is
not set, the shell may attempt to access or create a file .sh_history in the directory
referred to by the HOME environment variable. If the shell cannot obtain both read
and write access to, or create, the history file, it shall use an unspecified
mechanism that allows the history to operate properly. (References to history
‘‘file’’ in this section shall be understood to mean this unspecified mechanism in
such cases.) An implementation may choose to access this variable only when
initializing the history file; this initialization shall occur when fc or sh first attempt
to retrieve entries from, or add entries to, the file, as the result of commands issued
by the user, the file named by the ENV variable, or implementation-defined system
start-up files. Implementations may choose to disable the history list mechanism
for users with appropriate privileges who do not set HISTFILE; the specific
circumstances under which this occurs are implementation-defined. If more than
one instance of the shell is using the same history file, it is unspecified how
updates to the history file from those shells interact. As entries are deleted from the
history file, they shall be deleted oldest first. It is unspecified when history file
entries are physically removed from the history file.

HISTSIZE Determine a decimal number representing the limit to the number of previous
commands that are accessible. If this variable is unset, an unspecified default
greater than or equal to 128 shall be used. The maximum number of commands in
the history list is unspecified, but shall be at least 128. An implementation may
choose to access this variable only when initializing the history file, as described
under HISTFILE. Therefore, it is unspecified whether changes made to HISTSIZE
after the history file has been initialized are effective.

UP HOME Determine the pathname of the user’s home directory. The contents of HOME are
used in tilde expansion as described in Section 2.6.1 (on page 2305).

IFS A string treated as a list of characters that is used for field splitting and to split
lines into fields with the read command.

If IFS is not set, it shall behave as normal for an unset variable, except that field
splitting by the shell and line splitting by the read command shall be performed as
if the value of IFS is <space><tab><newline>; see Section 2.6.5 (on page 2311).

Implementations may ignore the value of IFS in the environment, or the absence of

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3165

105252

105253

105254

105255

105256

105257

105258

105259

105260

105261

105262

105263

105264

105265

105266

105267

105268

105269

105270

105271

105272

105273

105274

105275

105276

105277

105278

105279

105280

105281

105282

105283

105284

105285

105286

105287

105288

105289

105290

105291

105292

105293

105294

105295

105296

105297

105298

sh Utilities

IFS from the environment, at the time the shell is invoked, in which case the shell
shall set IFS to <space><tab><newline> when it is invoked.

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the behavior of range expressions, equivalence classes, and multi-
character collating elements within pattern matching.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), which characters are defined as letters (character class
alpha), and the behavior of character classes within pattern matching.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

UP MAIL Determine a pathname of the user’s mailbox file for purposes of incoming mail
notification. If this variable is set, the shell shall inform the user if the file named
by the variable is created or if its modification time has changed. Informing the
user shall be accomplished by writing a string of unspecified format to standard
error prior to the writing of the next primary prompt string. Such check shall be
performed only after the completion of the interval defined by the MAILCHECK
variable after the last such check. The user shall be informed only if MAIL is set
and MAILPATH is not set.

UP MAILCHECK
Establish a decimal integer value that specifies how often (in seconds) the shell
shall check for the arrival of mail in the files specified by the MAILPATH or MAIL
variables. The default value shall be 600 seconds. If set to zero, the shell shall check
before issuing each primary prompt.

UP MAILPATH Provide a list of pathnames and optional messages separated by <colon>
characters. If this variable is set, the shell shall inform the user if any of the files
named by the variable are created or if any of their modification times change. (See
the preceding entry for MAIL for descriptions of mail arrival and user informing.)
Each pathname can be followed by ’%’ and a string that shall be subjected to
parameter expansion and written to standard error when the modification time
changes. If a ’%’ character in the pathname is preceded by a <backslash>, it shall
be treated as a literal ’%’ in the pathname. The default message is unspecified.

The MAILPATH environment variable takes precedence over the MAIL variable.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PA TH Establish a string formatted as described in XBD Chapter 8 (on page 173), used to
effect command interpretation; see Section 2.9.1.1 (on page 2317).

PWD This variable shall represent an absolute pathname of the current working
directory. Assignments to this variable may be ignored.

3166 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

105299

105300

105301

105302

105303

105304

105305

105306

105307

105308

105309

105310

105311

105312

105313

105314

105315

105316

105317

105318

105319

105320

105321

105322

105323

105324

105325

105326

105327

105328

105329

105330

105331

105332

105333

105334

105335

105336

105337

105338

105339

105340

105341

105342

Utilities sh

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the STDERR section.

STDERR
Except as otherwise stated (by the descriptions of any invoked utilities or in interactive mode),
standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
UP See Chapter 2. The functionality described in the rest of the EXTENDED DESCRIPTION section

shall be provided on implementations that support the User Portability Utilities option (and the
rest of this section is not further shaded for this option).

Command History List

When the sh utility is being used interactively, it shall maintain a list of commands previously
entered from the terminal in the file named by the HISTFILE environment variable. The type,
size, and internal format of this file are unspecified. Multiple sh processes can share access to the
file for a user, if file access permissions allow this; see the description of the HISTFILE
environment variable.

Command Line Editing

When sh is being used interactively from a terminal, the current command and the command
history (see fc) can be edited using vi-mode command line editing. This mode uses commands,
described below, similar to a subset of those described in the vi utility. Implementations may
offer other command line editing modes corresponding to other editing utilities.

The command set −o vi shall enable vi-mode editing and place sh into vi insert mode (see
Command Line Editing (vi-mode)). This command also shall disable any other editing mode
that the implementation may provide. The command set +o vi disables vi-mode editing.

Certain block-mode terminals may be unable to support shell command line editing. If a
terminal is unable to provide either edit mode, it need not be possible to set −o vi when using the
shell on this terminal.

In the following sections, the characters erase, interrupt, kill, and end-of-file are those set by the
stty utility.

Command Line Editing (vi-mode)

In vi editing mode, there shall be a distinguished line, the edit line. All the editing operations
which modify a line affect the edit line. The edit line is always the newest line in the command
history buffer.

With vi-mode enabled, sh can be switched between insert mode and command mode.

When in insert mode, an entered character shall be inserted into the command line, except as
noted in vi Line Editing Insert Mode (on page 3168). Upon entering sh and after termination of
the previous command, sh shall be in insert mode.

Typing an escape character shall switch sh into command mode (see vi Line Editing Command
Mode, on page 3168). In command mode, an entered character shall either invoke a defined

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3167

105343

105344

105345

105346

105347

105348

105349

105350

105351

105352

105353

105354

105355

105356

105357

105358

105359

105360

105361

105362

105363

105364

105365

105366

105367

105368

105369

105370

105371

105372

105373

105374

105375

105376

105377

105378

105379

105380

105381

105382

105383

105384

sh Utilities

operation, be used as part of a multi-character operation, or be treated as an error. A character
that is not recognized as part of an editing command shall terminate any specific editing
command and shall alert the terminal. Typing the interrupt character in command mode shall
cause sh to terminate command line editing on the current command line, reissue the prompt on
the next line of the terminal, and reset the command history (see fc) so that the most recently
executed command is the previous command (that is, the command that was being edited when
it was interrupted is not reentered into the history).

In the following sections, the phrase ‘‘move the cursor to the beginning of the word’’ shall mean
‘‘move the cursor to the first character of the current word’’ and the phrase ‘‘move the cursor to
the end of the word’’ shall mean ‘‘move the cursor to the last character of the current word’’. The
phrase ‘‘beginning of the command line’’ indicates the point between the end of the prompt
string issued by the shell (or the beginning of the terminal line, if there is no prompt string) and
the first character of the command text.

vi Line Editing Insert Mode

While in insert mode, any character typed shall be inserted in the current command line, unless
it is from the following set.

<newline> Execute the current command line. If the current command line is not empty, this
line shall be entered into the command history (see fc).

erase Delete the character previous to the current cursor position and move the current
cursor position back one character. In insert mode, characters shall be erased from
both the screen and the buffer when backspacing.

interrupt Terminate command line editing with the same effects as described for
interrupting command mode; see Command Line Editing (vi-mode) (on page
3167).

kill Clear all the characters from the input line.

<control>-V Insert the next character input, even if the character is otherwise a special insert
mode character.

<control>-W Delete the characters from the one preceding the cursor to the preceding word
boundary. The word boundary in this case is the closer to the cursor of either the
beginning of the line or a character that is in neither the blank nor punct character
classification of the current locale.

end-of-file Interpreted as the end of input in sh. This interpretation shall occur only at the
beginning of an input line. If end-of-file is entered other than at the beginning of the
line, the results are unspecified.

<ESC> Place sh into command mode.

vi Line Editing Command Mode

In command mode for the command line editing feature, decimal digits not beginning with 0
that precede a command letter shall be remembered. Some commands use these decimal digits
as a count number that affects the operation.

The term motion command represents one of the commands:

<space> 0 b F l W ˆ $; E f T w | , B e h t

If the current line is not the edit line, any command that modifies the current line shall cause the
content of the current line to replace the content of the edit line, and the current line shall

3168 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

105385

105386

105387

105388

105389

105390

105391

105392

105393

105394

105395

105396

105397

105398

105399

105400

105401

105402

105403

105404

105405

105406

105407

105408

105409

105410

105411

105412

105413

105414

105415

105416

105417

105418

105419

105420

105421

105422

105423

105424

105425

105426

105427

Utilities sh

become the edit line. This replacement cannot be undone (see the u and U commands below).
The modification requested shall then be performed to the edit line. When the current line is the
edit line, the modification shall be done directly to the edit line.

Any command that is preceded by count shall take a count (the numeric value of any preceding
decimal digits). Unless otherwise noted, this count shall cause the specified operation to repeat
by the number of times specified by the count. Also unless otherwise noted, a count that is out
of range is considered an error condition and shall alert the terminal, but neither the cursor
position, nor the command line, shall change.

The terms word and bigword are used as defined in the vi description. The term save buffer
corresponds to the term unnamed buffer in vi.

The following commands shall be recognized in command mode:

<newline> Execute the current command line. If the current command line is not empty, this
line shall be entered into the command history (see fc).

<control>-L Redraw the current command line. Position the cursor at the same location on the
redrawn line.

Insert the character ’#’ at the beginning of the current command line and treat the
resulting edit line as a comment. This line shall be entered into the command
history; see fc .

= Display the possible shell word expansions (see Section 2.6, on page 2305) of the
bigword at the current command line position.

Note: This does not modify the content of the current line, and therefore does not cause
the current line to become the edit line.

These expansions shall be displayed on subsequent terminal lines. If the bigword
contains none of the characters ’?’, ’*’, or ’[’, an <asterisk> (’*’) shall be
implicitly assumed at the end. If any directories are matched, these expansions
shall have a ’/’ character appended. After the expansion, the line shall be
redrawn, the cursor repositioned at the current cursor position, and sh shall be
placed in command mode.

\ Perform pathname expansion (see Section 2.6.6, on page 2311) on the current
bigword, up to the largest set of characters that can be matched uniquely. If the
bigword contains none of the characters ’?’, ’*’, or ’[’, an <asterisk> (’*’)
shall be implicitly assumed at the end. This maximal expansion then shall replace
the original bigword in the command line, and the cursor shall be placed after this
expansion. If the resulting bigword completely and uniquely matches a directory, a
’/’ character shall be inserted directly after the bigword. If some other file is
completely matched, a single <space> shall be inserted after the bigword. After
this operation, sh shall be placed in insert mode.

* Perform pathname expansion on the current bigword and insert all expansions
into the command to replace the current bigword, with each expansion separated
by a single <space>. If at the end of the line, the current cursor position shall be
moved to the first column position following the expansions and sh shall be placed
in insert mode. Otherwise, the current cursor position shall be the last column
position of the first character after the expansions and sh shall be placed in insert
mode. If the current bigword contains none of the characters ’?’, ’*’, or ’[’,
before the operation, an <asterisk> (’*’) shall be implicitly assumed at the end.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3169

105428

105429

105430

105431

105432

105433

105434

105435

105436

105437

105438

105439

105440

105441

105442

105443

105444

105445

105446

105447

105448

105449

105450

105451

105452

105453

105454

105455

105456

105457

105458

105459

105460

105461

105462

105463

105464

105465

105466

105467

105468

105469

105470

105471

105472

sh Utilities

@letter Insert the value of the alias named _letter. The symbol letter represents a single
alphabetic character from the portable character set; implementations may support
additional characters as an extension. If the alias _letter contains other editing
commands, these commands shall be performed as part of the insertion. If no alias
_letter is enabled, this command shall have no effect.

[count]˜ Convert, if the current character is a lowercase letter, to the equivalent uppercase
letter and vice versa, as prescribed by the current locale. The current cursor position
then shall be advanced by one character. If the cursor was positioned on the last
character of the line, the case conversion shall occur, but the cursor shall not
advance. If the ’˜’ command is preceded by a count, that number of characters
shall be converted, and the cursor shall be advanced to the character position after
the last character converted. If the count is larger than the number of characters
after the cursor, this shall not be considered an error; the cursor shall advance to
the last character on the line.

[count]. Repeat the most recent non-motion command, even if it was executed on an earlier
command line. If the previous command was preceded by a count, and no count is
given on the ’.’ command, the count from the previous command shall be
included as part of the repeated command. If the ’.’ command is preceded by a
count, this shall override any count argument to the previous command. The count
specified in the ’.’ command shall become the count for subsequent ’.’
commands issued without a count.

[number]v Invoke the vi editor to edit the current command line in a temporary file. When the
editor exits, the commands in the temporary file shall be executed and placed in
the command history. If a number is included, it specifies the command number in
the command history to be edited, rather than the current command line.

[count]l (ell)
[count]<space>

Move the current cursor position to the next character position. If the cursor was
positioned on the last character of the line, the terminal shall be alerted and the
cursor shall not be advanced. If the count is larger than the number of characters
after the cursor, this shall not be considered an error; the cursor shall advance to
the last character on the line.

[count]h Move the current cursor position to the countth (default 1) previous character
position. If the cursor was positioned on the first character of the line, the terminal
shall be alerted and the cursor shall not be moved. If the count is larger than the
number of characters before the cursor, this shall not be considered an error; the
cursor shall move to the first character on the line.

[count]w Move to the start of the next word. If the cursor was positioned on the last
character of the line, the terminal shall be alerted and the cursor shall not be
advanced. If the count is larger than the number of words after the cursor, this shall
not be considered an error; the cursor shall advance to the last character on the
line.

[count]W Move to the start of the next bigword. If the cursor was positioned on the last
character of the line, the terminal shall be alerted and the cursor shall not be
advanced. If the count is larger than the number of bigwords after the cursor, this
shall not be considered an error; the cursor shall advance to the last character on
the line.

3170 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

105473

105474

105475

105476

105477

105478

105479

105480

105481

105482

105483

105484

105485

105486

105487

105488

105489

105490

105491

105492

105493

105494

105495

105496

105497

105498

105499

105500

105501

105502

105503

105504

105505

105506

105507

105508

105509

105510

105511

105512

105513

105514

105515

105516

105517

105518

105519

Utilities sh

[count]e Move to the end of the current word. If at the end of a word, move to the end of
the next word. If the cursor was positioned on the last character of the line, the
terminal shall be alerted and the cursor shall not be advanced. If the count is larger
than the number of words after the cursor, this shall not be considered an error; the
cursor shall advance to the last character on the line.

[count]E Move to the end of the current bigword. If at the end of a bigword, move to the
end of the next bigword. If the cursor was positioned on the last character of the
line, the terminal shall be alerted and the cursor shall not be advanced. If the count
is larger than the number of bigwords after the cursor, this shall not be considered
an error; the cursor shall advance to the last character on the line.

[count]b Move to the beginning of the current word. If at the beginning of a word, move to
the beginning of the previous word. If the cursor was positioned on the first
character of the line, the terminal shall be alerted and the cursor shall not be
moved. If the count is larger than the number of words preceding the cursor, this
shall not be considered an error; the cursor shall return to the first character on the
line.

[count]B Move to the beginning of the current bigword. If at the beginning of a bigword,
move to the beginning of the previous bigword. If the cursor was positioned on the
first character of the line, the terminal shall be alerted and the cursor shall not be
moved. If the count is larger than the number of bigwords preceding the cursor,
this shall not be considered an error; the cursor shall return to the first character on
the line.

ˆ Move the current cursor position to the first character on the input line that is not a
<blank>.

$ Move to the last character position on the current command line.

0 (Zero.) Move to the first character position on the current command line.

[count] | Move to the countth character position on the current command line. If no number
is specified, move to the first position. The first character position shall be
numbered 1. If the count is larger than the number of characters on the line, this
shall not be considered an error; the cursor shall be placed on the last character on
the line.

[count]fc Move to the first occurrence of the character ’c’ that occurs after the current
cursor position. If the cursor was positioned on the last character of the line, the
terminal shall be alerted and the cursor shall not be advanced. If the character ’c’
does not occur in the line after the current cursor position, the terminal shall be
alerted and the cursor shall not be moved.

[count]Fc Move to the first occurrence of the character ’c’ that occurs before the current
cursor position. If the cursor was positioned on the first character of the line, the
terminal shall be alerted and the cursor shall not be moved. If the character ’c’
does not occur in the line before the current cursor position, the terminal shall be
alerted and the cursor shall not be moved.

[count]tc Move to the character before the first occurrence of the character ’c’ that occurs
after the current cursor position. If the cursor was positioned on the last character
of the line, the terminal shall be alerted and the cursor shall not be advanced. If the
character ’c’ does not occur in the line after the current cursor position, the
terminal shall be alerted and the cursor shall not be moved.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3171

105520

105521

105522

105523

105524

105525

105526

105527

105528

105529

105530

105531

105532

105533

105534

105535

105536

105537

105538

105539

105540

105541

105542

105543

105544

105545

105546

105547

105548

105549

105550

105551

105552

105553

105554

105555

105556

105557

105558

105559

105560

105561

105562

105563

105564

105565

sh Utilities

[count]Tc Move to the character after the first occurrence of the character ’c’ that occurs
before the current cursor position. If the cursor was positioned on the first
character of the line, the terminal shall be alerted and the cursor shall not be
moved. If the character ’c’ does not occur in the line before the current cursor
position, the terminal shall be alerted and the cursor shall not be moved.

[count]; Repeat the most recent f, F, t, or T command. Any number argument on that
previous command shall be ignored. Errors are those described for the repeated
command.

[count], Repeat the most recent f, F, t, or T command. Any number argument on that
previous command shall be ignored. However, reverse the direction of that
command.

a Enter insert mode after the current cursor position. Characters that are entered
shall be inserted before the next character.

A Enter insert mode after the end of the current command line.

i Enter insert mode at the current cursor position. Characters that are entered shall
be inserted before the current character.

I Enter insert mode at the beginning of the current command line.

R Enter insert mode, replacing characters from the command line beginning at the
current cursor position.

[count]cmotion
Delete the characters between the current cursor position and the cursor position
that would result from the specified motion command. Then enter insert mode
before the first character following any deleted characters. If count is specified, it
shall be applied to the motion command. A count shall be ignored for the following
motion commands:

0 ˆ $ c

If the motion command is the character ’c’, the current command line shall be
cleared and insert mode shall be entered. If the motion command would move the
current cursor position toward the beginning of the command line, the character
under the current cursor position shall not be deleted. If the motion command
would move the current cursor position toward the end of the command line, the
character under the current cursor position shall be deleted. If the count is larger
than the number of characters between the current cursor position and the end of
the command line toward which the motion command would move the cursor, this
shall not be considered an error; all of the remaining characters in the
aforementioned range shall be deleted and insert mode shall be entered. If the
motion command is invalid, the terminal shall be alerted, the cursor shall not be
moved, and no text shall be deleted.

C Delete from the current character to the end of the line and enter insert mode at the
new end-of-line.

S Clear the entire edit line and enter insert mode.

[count]rc Replace the current character with the character ’c’. With a number count,
replace the current and the following count−1 characters. After this command, the
current cursor position shall be on the last character that was changed. If the count
is larger than the number of characters after the cursor, this shall not be considered

3172 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

105566

105567

105568

105569

105570

105571

105572

105573

105574

105575

105576

105577

105578

105579

105580

105581

105582

105583

105584

105585

105586

105587

105588

105589

105590

105591

105592

105593

105594

105595

105596

105597

105598

105599

105600

105601

105602

105603

105604

105605

105606

105607

105608

105609

105610

Utilities sh

an error; all of the remaining characters shall be changed.

[count]_ Append a <space> after the current character position and then append the last
bigword in the previous input line after the <space>. Then enter insert mode after
the last character just appended. With a number count, append the countth bigword
in the previous line.

[count]x Delete the character at the current cursor position and place the deleted characters
in the save buffer. If the cursor was positioned on the last character of the line, the
character shall be deleted and the cursor position shall be moved to the previous
character (the new last character). If the count is larger than the number of
characters after the cursor, this shall not be considered an error; all the characters
from the cursor to the end of the line shall be deleted.

[count]X Delete the character before the current cursor position and place the deleted
characters in the save buffer. The character under the current cursor position shall
not change. If the cursor was positioned on the first character of the line, the
terminal shall be alerted, and the X command shall have no effect. If the line
contained a single character, the X command shall have no effect. If the line
contained no characters, the terminal shall be alerted and the cursor shall not be
moved. If the count is larger than the number of characters before the cursor, this
shall not be considered an error; all the characters from before the cursor to the
beginning of the line shall be deleted.

[count]dmotion
Delete the characters between the current cursor position and the character
position that would result from the motion command. A number count repeats the
motion command count times. If the motion command would move toward the
beginning of the command line, the character under the current cursor position
shall not be deleted. If the motion command is d, the entire current command line
shall be cleared. If the count is larger than the number of characters between the
current cursor position and the end of the command line toward which the motion
command would move the cursor, this shall not be considered an error; all of the
remaining characters in the aforementioned range shall be deleted. The deleted
characters shall be placed in the save buffer.

D Delete all characters from the current cursor position to the end of the line. The
deleted characters shall be placed in the save buffer.

[count]ymotion
Yank (that is, copy) the characters from the current cursor position to the position
resulting from the motion command into the save buffer. A number count shall be
applied to the motion command. If the motion command would move toward the
beginning of the command line, the character under the current cursor position
shall not be included in the set of yanked characters. If the motion command is y,
the entire current command line shall be yanked into the save buffer. The current
cursor position shall be unchanged. If the count is larger than the number of
characters between the current cursor position and the end of the command line
toward which the motion command would move the cursor, this shall not be
considered an error; all of the remaining characters in the aforementioned range
shall be yanked.

Y Yank the characters from the current cursor position to the end of the line into the
save buffer. The current character position shall be unchanged.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3173

105611

105612

105613

105614

105615

105616

105617

105618

105619

105620

105621

105622

105623

105624

105625

105626

105627

105628

105629

105630

105631

105632

105633

105634

105635

105636

105637

105638

105639

105640

105641

105642

105643

105644

105645

105646

105647

105648

105649

105650

105651

105652

105653

105654

105655

105656

105657

sh Utilities

[count]p Put a copy of the current contents of the save buffer after the current cursor
position. The current cursor position shall be advanced to the last character put
from the save buffer. A count shall indicate how many copies of the save buffer
shall be put.

[count]P Put a copy of the current contents of the save buffer before the current cursor
position. The current cursor position shall be moved to the last character put from
the save buffer. A count shall indicate how many copies of the save buffer shall be
put.

u Undo the last command that changed the edit line. This operation shall not undo
the copy of any command line to the edit line.

U Undo all changes made to the edit line. This operation shall not undo the copy of
any command line to the edit line.

[count]k
[count]− Set the current command line to be the countth previous command line in the shell

command history. If count is not specified, it shall default to 1. The cursor shall be
positioned on the first character of the new command. If a k or − command would
retreat past the maximum number of commands in effect for this shell (affected by
the HISTSIZE environment variable), the terminal shall be alerted, and the
command shall have no effect.

[count]j
[count]+ Set the current command line to be the countth next command line in the shell

command history. If count is not specified, it shall default to 1. The cursor shall be
positioned on the first character of the new command. If a j or + command
advances past the edit line, the current command line shall be restored to the edit
line and the terminal shall be alerted.

[number]G Set the current command line to be the oldest command line stored in the shell
command history. With a number number, set the current command line to be the
command line number in the history. If command line number does not exist, the
terminal shall be alerted and the command line shall not be changed.

/pattern<newline>
Move backwards through the command history, searching for the specified
pattern, beginning with the previous command line. Patterns use the pattern
matching notation described in Section 2.13 (on page 2332), except that the ’ˆ’
character shall have special meaning when it appears as the first character of
pattern. In this case, the ’ˆ’ is discarded and the characters after the ’ˆ’ shall be
matched only at the beginning of a line. Commands in the command history shall
be treated as strings, not as filenames. If the pattern is not found, the current
command line shall be unchanged and the terminal is alerted. If it is found in a
previous line, the current command line shall be set to that line and the cursor
shall be set to the first character of the new command line.

If pattern is empty, the last non-empty pattern provided to / or ? shall be used. If
there is no previous non-empty pattern, the terminal shall be alerted and the
current command line shall remain unchanged.

?pattern<newline>
Move forwards through the command history, searching for the specified pattern,
beginning with the next command line. Patterns use the pattern matching notation
described in Section 2.13 (on page 2332), except that the ’ˆ’ character shall have

3174 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

105658

105659

105660

105661

105662

105663

105664

105665

105666

105667

105668

105669

105670

105671

105672

105673

105674

105675

105676

105677

105678

105679

105680

105681

105682

105683

105684

105685

105686

105687

105688

105689

105690

105691

105692

105693

105694

105695

105696

105697

105698

105699

105700

105701

105702

105703

105704

Utilities sh

special meaning when it appears as the first character of pattern. In this case, the
’ˆ’ is discarded and the characters after the ’ˆ’ shall be matched only at the
beginning of a line. Commands in the command history shall be treated as strings,
not as filenames. If the pattern is not found, the current command line shall be
unchanged and the terminal alerted. If it is found in a following line, the current
command line shall be set to that line and the cursor shall be set to the fist
character of the new command line.

If pattern is empty, the last non-empty pattern provided to / or ? shall be used. If
there is no previous non-empty pattern, the terminal shall be alerted and the
current command line shall remain unchanged.

n Repeat the most recent / or ? command. If there is no previous / or ?, the terminal
shall be alerted and the current command line shall remain unchanged.

N Repeat the most recent / or ? command, reversing the direction of the search. If
there is no previous / or ?, the terminal shall be alerted and the current command
line shall remain unchanged.

EXIT STATUS
The following exit values shall be returned:

0 The script to be executed consisted solely of zero or more blank lines or comments, or
both.

1-125 A non-interactive shell detected a syntax, redirection, or variable assignment error.

127 A specified command_file could not be found by a non-interactive shell.

Otherwise, the shell shall return the exit status of the last command it invoked or attempted to
invoke (see also the exit utility in Section 2.14, on page 2334).

CONSEQUENCES OF ERRORS
See Section 2.8.1 (on page 2315).

APPLICATION USAGE
Standard input and standard error are the files that determine whether a shell is interactive
when −i is not specified. For example:

sh > file

and:

sh 2> file

create interactive and non-interactive shells, respectively. Although both accept terminal input,
the results of error conditions are different, as described in Section 2.8.1 (on page 2315); in the
second example a redirection error encountered by a special built-in utility aborts the shell.

A conforming application must protect its first operand, if it starts with a <plus-sign>, by
preceding it with the "− −" argument that denotes the end of the options.

Applications should note that the standard PA TH to the shell cannot be assumed to be either
/bin/sh or /usr/bin/sh, and should be determined by interrogation of the PA TH returned by
getconf PATH, ensuring that the returned pathname is an absolute pathname and not a shell
built-in.

For example, to determine the location of the standard sh utility:

command −v sh

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3175

105705

105706

105707

105708

105709

105710

105711

105712

105713

105714

105715

105716

105717

105718

105719

105720

105721

105722

105723

105724

105725

105726

105727

105728

105729

105730

105731

105732

105733

105734

105735

105736

105737

105738

105739

105740

105741

105742

105743

105744

105745

105746

sh Utilities

On some implementations this might return:

/usr/xpg4/bin/sh

Furthermore, on systems that support executable scripts (the "#!" construct), it is
recommended that applications using executable scripts install them using getconf PATH to
determine the shell pathname and update the "#!" script appropriately as it is being installed
(for example, with sed). For example:

#
Installation time script to install correct POSIX shell pathname
#
Get list of paths to check
#
Sifs=$IFS
Sifs_set=${IFS+y}
IFS=:
set − − $(getconf PATH)
if ["$Sifs_set" = y]
then

IFS=$Sifs
else

unset IFS
fi
#
Check each path for ’sh’
#
for i
do

if [−x "${i}"/sh]
then

Pshell=${i}/sh
fi

done
#
This is the list of scripts to update. They should be of the
form ’${name}.source’ and will be transformed to ’${name}’.
Each script should begin:
#
#!INSTALLSHELLPATH
#
scripts="a b c"
#
Transform each script
#
for i in ${scripts}
do

sed −e "s|INSTALLSHELLPATH|${Pshell}|" < ${i}.source > ${i}
done

3176 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

105747

105748

105749

105750

105751

105752

105753

105754

105755

105756

105757

105758

105759

105760

105761

105762

105763

105764

105765

105766

105767

105768

105769

105770

105771

105772

105773

105774

105775

105776

105777

105778

105779

105780

105781

105782

105783

105784

105785

105786

105787

105788

105789

105790

105791

105792

Utilities sh

EXAMPLES

1. Execute a shell command from a string:

sh −c "cat myfile"

2. Execute a shell script from a file in the current directory:

sh my_shell_cmds

RATIONALE
The sh utility and the set special built-in utility share a common set of options.

The name IFS was originally an abbreviation of ‘‘Input Field Separators’’; however, this name is
misleading as the IFS characters are actually used as field terminators. The KornShell ignores the
contents of IFS upon entry to the script. A conforming application cannot rely on importing IFS.
One justification for this, beyond security considerations, is to assist possible future shell
compilers. Allowing IFS to be imported from the environment prevents many optimizations that
might otherwise be performed via dataflow analysis of the script itself.

The text in the STDIN section about non-blocking reads concerns an instance of sh that has been
invoked, probably by a C-language program, with standard input that has been opened using
the O_NONBLOCK flag; see open() in the System Interfaces volume of POSIX.1-2008. If the shell
did not reset this flag, it would immediately terminate because no input data would be available
yet and that would be considered the same as end-of-file.

The options associated with a restricted shell (command name rsh and the −r option) were
excluded because the standard developers considered that the implied level of security could
not be achieved and they did not want to raise false expectations.

On systems that support set-user-ID scripts, a historical trapdoor has been to link a script to the
name −i. When it is called by a sequence such as:

sh −

or by:

#! usr/bin/sh −

the historical systems have assumed that no option letters follow. Thus, this volume of
POSIX.1-2008 allows the single <hyphen> to mark the end of the options, in addition to the use
of the regular "− −" argument, because it was considered that the older practice was so
pervasive. An alternative approach is taken by the KornShell, where real and effective
user/group IDs must match for an interactive shell; this behavior is specifically allowed by this
volume of POSIX.1-2008.

Note: There are other problems with set-user-ID scripts that the two approaches described here do not
resolve.

The initialization process for the history file can be dependent on the system start-up files, in
that they may contain commands that effectively preempt the user’s settings of HISTFILE and
HISTSIZE. For example, function definition commands are recorded in the history file, unless
the set −o nolog option is set. If the system administrator includes function definitions in some
system start-up file called before the ENV file, the history file is initialized before the user gets a
chance to influence its characteristics. In some historical shells, the history file is initialized just
after the ENV file has been processed. Therefore, it is implementation-defined whether changes
made to HISTFILE after the history file has been initialized are effective.

The default messages for the various MAIL-related messages are unspecified because they vary
across implementations. Typical messages are:

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3177

105793

105794

105795

105796

105797

105798

105799

105800

105801

105802

105803

105804

105805

105806

105807

105808

105809

105810

105811

105812

105813

105814

105815

105816

105817

105818

105819

105820

105821

105822

105823

105824

105825

105826

105827

105828

105829

105830

105831

105832

105833

105834

105835

105836

sh Utilities

"you have mail\n"

or:

"you have new mail\n"

It is important that the descriptions of command line editing refer to the same shell as that in
POSIX.1-2008 so that interactive users can also be application programmers without having to
deal with programmatic differences in their two environments. It is also essential that the utility
name sh be specified because this explicit utility name is too firmly rooted in historical practice
of application programs for it to change.

Consideration was given to mandating a diagnostic message when attempting to set vi-mode on
terminals that do not support command line editing. However, it is not historical practice for the
shell to be cognizant of all terminal types and thus be able to detect inappropriate terminals in
all cases. Implementations are encouraged to supply diagnostics in this case whenever possible,
rather than leaving the user in a state where editing commands work incorrectly.

In early proposals, the KornShell-derived emacs mode of command line editing was included,
even though the emacs editor itself was not. The community of emacs proponents was adamant
that the full emacs editor not be standardized because they were concerned that an attempt to
standardize this very powerful environment would encourage vendors to ship strictly
conforming versions lacking the extensibility required by the community. The author of the
original emacs program also expressed his desire to omit the program. Furthermore, there were a
number of historical systems that did not include emacs, or included it without supporting it, but
there were very few that did not include and support vi. The shell emacs command line editing
mode was finally omitted because it became apparent that the KornShell version and the editor
being distributed with the GNU system had diverged in some respects. The author of emacs
requested that the POSIX emacs mode either be deleted or have a significant number of
unspecified conditions. Although the KornShell author agreed to consider changes to bring the
shell into alignment, the standard developers decided to defer specification at that time. At the
time, it was assumed that convergence on an acceptable definition would occur for a subsequent
draft, but that has not happened, and there appears to be no impetus to do so. In any case,
implementations are free to offer additional command line editing modes based on the exact
models of editors their users are most comfortable with.

Early proposals had the following list entry in vi Line Editing Insert Mode (on page 3168):

\ If followed by the erase or kill character, that character shall be inserted into the input line.
Otherwise, the <backslash> itself shall be inserted into the input line.

However, this is not actually a feature of sh command line editing insert mode, but one of some
historical terminal line drivers. Some conforming implementations continue to do this when the
stty iexten flag is set.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2297), cd , echo , exit , fc , pwd , invalid, set , stty , test , umask , vi

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH dup(), exec , exit(), fork(), open(), pipe(), signal(), system(), ulimit(), umask(), wait()

3178 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

105837

105838

105839

105840

105841

105842

105843

105844

105845

105846

105847

105848

105849

105850

105851

105852

105853

105854

105855

105856

105857

105858

105859

105860

105861

105862

105863

105864

105865

105866

105867

105868

105869

105870

105871

105872

105873

105874

105875

105876

105877

105878

Utilities sh

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Text is added to the DESCRIPTION for the Large File Summit proposal.

Issue 6
The Open Group Corrigendum U029/2 is applied, correcting the second SYNOPSIS.

The Open Group Corrigendum U027/3 is applied, correcting a typographical error.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The option letters derived from the set special built-in are also accepted with a leading
<plus-sign> (’+’).

• Large file extensions are added:

— Pathname expansion does not fail due to the size of a file.

— Shell input and output redirections have an implementation-defined offset maximum
that is established in the open file description.

In the ENVIRONMENT VARIABLES section, the text ‘‘user ’s home directory’’ is updated to
‘‘directory referred to by the HOME environment variable’’.

Descriptions for the ENV and PWD environment variables are included to align with the
IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #098 is applied, changing the definition of IFS.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Changes to the pwd utility and PWD environment variable have been made to match the
changes to the getcwd() function made for Austin Group Interpretation 1003.1-2001 #140.

Minor editorial changes are made to the User Portability Utilities option shading. No normative
changes are implied.

Minor changes are made to the install script example in the APPLICATION USAGE section.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3179

105879

105880

105881

105882

105883

105884

105885

105886

105887

105888

105889

105890

105891

105892

105893

105894

105895

105896

105897

105898

105899

105900

105901

105902

105903

105904

105905

105906

105907

sleep Utilities

NAME
sleep — suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
The sleep utility shall suspend execution for at least the integral number of seconds specified by
the time operand.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

time A non-negative decimal integer specifying the number of seconds for which to
suspend execution.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of sleep:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
If the sleep utility receives a SIGALRM signal, one of the following actions shall be taken:

1. Terminate normally with a zero exit status.

2. Effectively ignore the signal.

3. Provide the default behavior for signals described in the ASYNCHRONOUS EVENTS
section of Section 1.4 (on page 2288). This could include terminating with a non-zero exit
status.

The sleep utility shall take the standard action for all other signals.

3180 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

105908

105909

105910

105911

105912

105913

105914

105915

105916

105917

105918

105919

105920

105921

105922

105923

105924

105925

105926

105927

105928

105929

105930

105931

105932

105933

105934

105935

105936

105937

105938

105939

105940

105941

105942

105943

105944

105945

105946

Utilities sleep

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The execution was successfully suspended for at least time seconds, or a SIGALRM signal
was received. See the ASYNCHRONOUS EVENTS section.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
The sleep utility can be used to execute a command after a certain amount of time, as in:

(sleep 105; command) &

or to execute a command every so often, as in:

while true
do

command

sleep 37
done

RATIONALE
The exit status is allowed to be zero when sleep is interrupted by the SIGALRM signal because
most implementations of this utility rely on the arrival of that signal to notify them that the
requested finishing time has been successfully attained. Such implementations thus do not
distinguish this situation from the successful completion case. Other implementations are
allowed to catch the signal and go back to sleep until the requested time expires or to provide
the normal signal termination procedures.

As with all other utilities that take integral operands and do not specify subranges of allowed
values, sleep is required by this volume of POSIX.1-2008 to deal with time requests of up to
2 147 483 647 seconds. This may mean that some implementations have to make multiple calls to
the delay mechanism of the underlying operating system if its argument range is less than this.

FUTURE DIRECTIONS
None.

SEE ALSO
wait

XBD Chapter 8 (on page 173)

XSH alarm(), sleep()

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3181

105947

105948

105949

105950

105951

105952

105953

105954

105955

105956

105957

105958

105959

105960

105961

105962

105963

105964

105965

105966

105967

105968

105969

105970

105971

105972

105973

105974

105975

105976

105977

105978

105979

105980

105981

105982

105983

105984

105985

105986

105987

105988

105989

sleep Utilities

CHANGE HISTORY
First released in Issue 2.

3182 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

105990

105991

Utilities sort

NAME
sort — sort, merge, or sequence check text files

SYNOPSIS
sort [−m] [−o output] [−bdfinru] [−t char] [−k keydef]... [file...]

sort [−c|−C] [−bdfinru] [−t char] [−k keydef] [file]

DESCRIPTION
The sort utility shall perform one of the following functions:

1. Sort lines of all the named files together and write the result to the specified output.

2. Merge lines of all the named (presorted) files together and write the result to the specified
output.

3. Check that a single input file is correctly presorted.

Comparisons shall be based on one or more sort keys extracted from each line of input (or, if no
sort keys are specified, the entire line up to, but not including, the terminating <newline>), and
shall be performed using the collating sequence of the current locale.

OPTIONS
The sort utility shall conform to XBD Section 12.2 (on page 215), except for Guideline 9, and the
−k keydef option should follow the −b, −d, −f, −i, −n, and −r options. In addition, ’+’ may be
recognized as an option delimiter as well as ’−’.

The following options shall be supported:

−c Check that the single input file is ordered as specified by the arguments and the
collating sequence of the current locale. Output shall not be sent to standard
output. The exit code shall indicate whether or not disorder was detected or an
error occurred. If disorder (or, with −u, a duplicate key) is detected, a warning
message shall be sent to standard error indicating where the disorder or duplicate
key was found.

−C Same as −c, except that a warning message shall not be sent to standard error if
disorder or, with −u, a duplicate key is detected.

−m Merge only; the input file shall be assumed to be already sorted.

−o output Specify the name of an output file to be used instead of the standard output. This
file can be the same as one of the input files.

−u Unique: suppress all but one in each set of lines having equal keys. If used with
the −c option, check that there are no lines with duplicate keys, in addition to
checking that the input file is sorted.

The following options shall override the default ordering rules. When ordering options appear
independent of any key field specifications, the requested field ordering rules shall be applied
globally to all sort keys. When attached to a specific key (see −k), the specified ordering options
shall override all global ordering options for that key.

−d Specify that only <blank> characters and alphanumeric characters, according to
the current setting of LC_CTYPE, shall be significant in comparisons. The behavior
is undefined for a sort key to which −i or −n also applies.

−f Consider all lowercase characters that have uppercase equivalents, according to
the current setting of LC_CTYPE, to be the uppercase equivalent for the purposes
of comparison.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3183

105992

105993

105994

105995

105996

105997

105998

105999

106000

106001

106002

106003

106004

106005

106006

106007

106008

106009

106010

106011

106012

106013

106014

106015

106016

106017

106018

106019

106020

106021

106022

106023

106024

106025

106026

106027

106028

106029

106030

106031

106032

106033

106034

sort Utilities

−i Ignore all characters that are non-printable, according to the current setting of
LC_CTYPE. The behavior is undefined for a sort key for which −n also applies.

−n Restrict the sort key to an initial numeric string, consisting of optional <blank>
characters, optional minus-sign, and zero or more digits with an optional radix
character and thousands separators (as defined in the current locale), which shall
be sorted by arithmetic value. An empty digit string shall be treated as zero.
Leading zeros and signs on zeros shall not affect ordering.

−r Reverse the sense of comparisons.

The treatment of field separators can be altered using the options:

−b Ignore leading <blank> characters when determining the starting and ending
positions of a restricted sort key. If the −b option is specified before the first −k
option, it shall be applied to all −k options. Otherwise, the −b option can be
attached independently to each −k field_start or field_end option-argument (see
below).

−t char Use char as the field separator character; char shall not be considered to be part of a
field (although it can be included in a sort key). Each occurrence of char shall be
significant (for example, <char><char> delimits an empty field). If −t is not
specified, <blank> characters shall be used as default field separators; each
maximal non-empty sequence of <blank> characters that follows a non-<blank>
shall be a field separator.

Sort keys can be specified using the options:

−k keydef The keydef argument is a restricted sort key field definition. The format of this
definition is:

field_start[type][,field_end[type]]

where field_start and field_end define a key field restricted to a portion of the line
(see the EXTENDED DESCRIPTION section), and type is a modifier from the list of
characters ’b’, ’d’, ’f’, ’i’, ’n’, ’r’. The ’b’ modifier shall behave like the
−b option, but shall apply only to the field_start or field_end to which it is attached.
The other modifiers shall behave like the corresponding options, but shall apply
only to the key field to which they are attached; they shall have this effect if
specified with field_start, field_end, or both. If any modifier is attached to a
field_start or to a field_end, no option shall apply to either. Implementations shall
support at least nine occurrences of the −k option, which shall be significant in
command line order. If no −k option is specified, a default sort key of the entire
line shall be used.

When there are multiple key fields, later keys shall be compared only after all
earlier keys compare equal. Except when the −u option is specified, lines that
otherwise compare equal shall be ordered as if none of the options −d, −f, −i, −n, or
−k were present (but with −r still in effect, if it was specified) and with all bytes in
the lines significant to the comparison. The order in which lines that still compare
equal are written is unspecified.

OPERANDS
The following operand shall be supported:

file A pathname of a file to be sorted, merged, or checked. If no file operands are
specified, or if a file operand is ’−’, the standard input shall be used.

3184 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

106035

106036

106037

106038

106039

106040

106041

106042

106043

106044

106045

106046

106047

106048

106049

106050

106051

106052

106053

106054

106055

106056

106057

106058

106059

106060

106061

106062

106063

106064

106065

106066

106067

106068

106069

106070

106071

106072

106073

106074

106075

106076

106077

106078

106079

Utilities sort

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is ’−’.
See the INPUT FILES section.

INPUT FILES
The input files shall be text files, except that the sort utility shall add a <newline> to the end of a
file ending with an incomplete last line.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of sort:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for ordering rules.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the behavior of character classification for the −b,
−d, −f, −i, and −n options.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_NUMERIC
Determine the locale for the definition of the radix character and thousands
separator for the −n option.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Unless the −o or −c options are in effect, the standard output shall contain the sorted input.

STDERR
The standard error shall be used for diagnostic messages. When −c is specified, if disorder is
detected (or if −u is also specified and a duplicate key is detected), a message shall be written to
the standard error which identifies the input line at which disorder (or a duplicate key) was
detected. A warning message about correcting an incomplete last line of an input file may be
generated, but need not affect the final exit status.

OUTPUT FILES
If the −o option is in effect, the sorted input shall be written to the file output.

EXTENDED DESCRIPTION
The notation:

−k field_start[type][,field_end[type]]

shall define a key field that begins at field_start and ends at field_end inclusive, unless field_start
falls beyond the end of the line or after field_end, in which case the key field is empty. A missing
field_end shall mean the last character of the line.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3185

106080

106081

106082

106083

106084

106085

106086

106087

106088

106089

106090

106091

106092

106093

106094

106095

106096

106097

106098

106099

106100

106101

106102

106103

106104

106105

106106

106107

106108

106109

106110

106111

106112

106113

106114

106115

106116

106117

106118

106119

106120

106121

106122

106123

sort Utilities

A field comprises a maximal sequence of non-separating characters and, in the absence of option
−t, any preceding field separator.

The field_start portion of the keydef option-argument shall have the form:

field_number[.first_character]

Fields and characters within fields shall be numbered starting with 1. The field_number and
first_character pieces, interpreted as positive decimal integers, shall specify the first character to
be used as part of a sort key. If .first_character is omitted, it shall refer to the first character of the
field.

The field_end portion of the keydef option-argument shall have the form:

field_number[.last_character]

The field_number shall be as described above for field_start. The last_character piece, interpreted
as a non-negative decimal integer, shall specify the last character to be used as part of the sort
key. If last_character evaluates to zero or .last_character is omitted, it shall refer to the last
character of the field specified by field_number.

If the −b option or b type modifier is in effect, characters within a field shall be counted from the
first non-<blank> in the field. (This shall apply separately to first_character and last_character.)

EXIT STATUS
The following exit values shall be returned:

0 All input files were output successfully, or −c was specified and the input file was correctly
sorted.

1 Under the −c option, the file was not ordered as specified, or if the −c and −u options were
both specified, two input lines were found with equal keys.

>1 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The default value for −t, <blank>, has different properties from, for example, −t"<space>". If a
line contains:

<space><space>foo

the following treatment would occur with default separation as opposed to specifically selecting
a <space>:

Field Default −t "<space>"

1 <space><space>foo empty
2 empty empty
3 empty foo

The leading field separator itself is included in a field when −t is not used. For example, this
command returns an exit status of zero, meaning the input was already sorted:

sort −c −k 2 <<eof
y<tab>b
x<space>a
eof

(assuming that a <tab> precedes the <space> in the current collating sequence). The field

3186 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

106124

106125

106126

106127

106128

106129

106130

106131

106132

106133

106134

106135

106136

106137

106138

106139

106140

106141

106142

106143

106144

106145

106146

106147

106148

106149

106150

106151

106152

106153

106154

106155

106156

106157

106158

106159

106160

106161

106162

106163

106164

106165

Utilities sort

separator is not included in a field when it is explicitly set via −t. This is historical practice and
allows usage such as:

sort −t "|" −k 2n <<eof
Atlanta|425022|Georgia
Birmingham|284413|Alabama
Columbia|100385|South Carolina
eof

where the second field can be correctly sorted numerically without regard to the non-numeric
field separator.

The wording in the OPTIONS section clarifies that the −b, −d, −f, −i, −n, and −r options have to
come before the first sort key specified if they are intended to apply to all specified keys. The
way it is described in this volume of POSIX.1-2008 matches historical practice, not historical
documentation. The results are unspecified if these options are specified after a −k option.

The −f option might not work as expected in locales where there is not a one-to-one mapping
between an uppercase and a lowercase letter.

EXAMPLES

1. The following command sorts the contents of infile with the second field as the sort key:

sort −k 2,2 infile

2. The following command sorts, in reverse order, the contents of infile1 and infile2,
placing the output in outfile and using the second character of the second field as the sort
key (assuming that the first character of the second field is the field separator):

sort −r −o outfile −k 2.2,2.2 infile1 infile2

3. The following command sorts the contents of infile1 and infile2 using the second
non-<blank> of the second field as the sort key:

sort −k 2.2b,2.2b infile1 infile2

4. The following command prints the System V password file (user database) sorted by the
numeric user ID (the third <colon>-separated field):

sort −t : −k 3,3n /etc/passwd

5. The following command prints the lines of the already sorted file infile, suppressing all
but one occurrence of lines having the same third field:

sort −um −k 3.1,3.0 infile

RATIONALE
Examples in some historical documentation state that options −um with one input file keep the
first in each set of lines with equal keys. This behavior was deemed to be an implementation
artifact and was not standardized.

The −z option was omitted; it is not standard practice on most systems and is inconsistent with
using sort to sort several files individually and then merge them together. The text concerning −z
in historical documentation appeared to require implementations to determine the proper buffer
length during the sort phase of operation, but not during the merge.

The −y option was omitted because of non-portability. The −M option, present in System V, was
omitted because of non-portability in international usage.

An undocumented −T option exists in some implementations. It is used to specify a directory for

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3187

106166

106167

106168

106169

106170

106171

106172

106173

106174

106175

106176

106177

106178

106179

106180

106181

106182

106183

106184

106185

106186

106187

106188

106189

106190

106191

106192

106193

106194

106195

106196

106197

106198

106199

106200

106201

106202

106203

106204

106205

106206

106207

sort Utilities

intermediate files. Implementations are encouraged to support the use of the TMPDIR
environment variable instead of adding an option to support this functionality.

The −k option was added to satisfy two objections. First, the zero-based counting used by sort is
not consistent with other utility conventions. Second, it did not meet syntax guideline
requirements.

Historical documentation indicates that ‘‘setting −n implies −b’’. The description of −n already
states that optional leading <blank>s are tolerated in doing the comparison. If −b is enabled,
rather than implied, by −n, this has unusual side-effects. When a character offset is used in a
column of numbers (for example, to sort modulo 100), that offset is measured relative to the
most significant digit, not to the column. Based upon a recommendation from the author of the
original sort utility, the −b implication has been omitted from this volume of POSIX.1-2008, and
an application wishing to achieve the previously mentioned side-effects has to code the −b flag
explicitly.

Earlier versions of this standard allowed the −o option to appear after operands. Historical
practice allowed all options to be interspersed with operands. This version of the standard
allows implementations to accept options after operands but conforming applications should
not use this form.

Earlier versions of this standard also allowed the −number and +number options. These options
are no longer specified by POSIX.1-2008 but may be present in some implementations.

Historical implementations produced a message on standard error when −c was specified and
disorder was detected, and when −c and −u were specified and a duplicate key was detected. An
earlier version of this standard contained wording that did not make it clear that this message
was allowed and some implementations removed this message to be sure that they conformed
to the standard’s requirements. Confronted with this difference in behavior, interactive users
that wanted to be sure that they got visual feedback instead of just exit code 1 could have used a
command like:

sort −c file || echo disorder

whether or not the sort utility provided a message in this case. But, it was not easy for a user to
find where the disorder or duplicate key occurred on implementations that do not produce a
message, especially when some parts of the input line were not part of the key and when one or
more of the −b, −d, −f, −i, −n, or −r options or keydef type modifiers were in use. POSIX.1-2008
requires a message to be produced in this case. POSIX.1-2008 also contains the −C option giving
users the ability to choose either behavior.

When a disorder or duplicate is found when the −c option is specified, some implementations
print a message containing the first line that is out of order or contains a duplicate key; others
print a message specifying the line number of the offending line. This standard allows either
type of message.

FUTURE DIRECTIONS
None.

SEE ALSO
comm , join , uniq

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH toupper()

3188 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

106208

106209

106210

106211

106212

106213

106214

106215

106216

106217

106218

106219

106220

106221

106222

106223

106224

106225

106226

106227

106228

106229

106230

106231

106232

106233

106234

106235

106236

106237

106238

106239

106240

106241

106242

106243

106244

106245

106246

106247

106248

106249

106250

Utilities sort

CHANGE HISTORY
First released in Issue 2.

Issue 6
IEEE PASC Interpretation 1003.2 #174 is applied, updating the DESCRIPTION of comparisons.

IEEE PASC Interpretation 1003.2 #168 is applied.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that Guideline 9 of the Utility
Syntax Guidelines does not apply and noting that ’+’ may be recognized as an option delimiter.

Austin Group Interpretation 1003.1-2001 #120 is applied, clarifying the use of the −c option and
introducing the −C option.

XCU-ERN-81 is applied, modifying the description of the −i option.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3189

106251

106252

106253

106254

106255

106256

106257

106258

106259

106260

106261

106262

split Utilities

NAME
split — split files into pieces

SYNOPSIS
split [−l line_count] [−a suffix_length] [file[name]]

split −b n[k|m] [−a suffix_length] [file[name]]

DESCRIPTION
The split utility shall read an input file and write one or more output files. The default size of
each output file shall be 1 000 lines. The size of the output files can be modified by specification
of the −b or −l options. Each output file shall be created with a unique suffix. The suffix shall
consist of exactly suffix_length lowercase letters from the POSIX locale. The letters of the suffix
shall be used as if they were a base-26 digit system, with the first suffix to be created consisting
of all ’a’ characters, the second with a ’b’ replacing the last ’a’, and so on, until a name of all
’z’ characters is created. By default, the names of the output files shall be ’x’, followed by a
two-character suffix from the character set as described above, starting with "aa", "ab", "ac",
and so on, and continuing until the suffix "zz", for a maximum of 676 files.

If the number of files required exceeds the maximum allowed by the suffix length provided,
such that the last allowable file would be larger than the requested size, the split utility shall fail
after creating the last file with a valid suffix; split shall not delete the files it created with valid
suffixes. If the file limit is not exceeded, the last file created shall contain the remainder of the
input file, and may be smaller than the requested size.

OPTIONS
The split utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a suffix_length
Use suffix_length letters to form the suffix portion of the filenames of the split file. If
−a is not specified, the default suffix length shall be two. If the sum of the name
operand and the suffix_length option-argument would create a filename exceeding
{NAME_MAX} bytes, an error shall result; split shall exit with a diagnostic message
and no files shall be created.

−b n Split a file into pieces n bytes in size.

−b nk Split a file into pieces n*1 024 bytes in size.

−b nm Split a file into pieces n*1 048 576 bytes in size.

−l line_count Specify the number of lines in each resulting file piece. The line_count argument is
an unsigned decimal integer. The default is 1 000. If the input does not end with a
<newline>, the partial line shall be included in the last output file.

OPERANDS
The following operands shall be supported:

file The pathname of the ordinary file to be split. If no input file is given or file is ’−’,
the standard input shall be used.

name The prefix to be used for each of the files resulting from the split operation. If no
name argument is given, ’x’ shall be used as the prefix of the output files. The
combined length of the basename of prefix and suffix_length cannot exceed
{NAME_MAX} bytes. See the OPTIONS section.

3190 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

106263

106264

106265

106266

106267

106268

106269

106270

106271

106272

106273

106274

106275

106276

106277

106278

106279

106280

106281

106282

106283

106284

106285

106286

106287

106288

106289

106290

106291

106292

106293

106294

106295

106296

106297

106298

106299

106300

106301

106302

106303

106304

106305

Utilities split

STDIN
See the INPUT FILES section.

INPUT FILES
Any file can be used as input.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of split:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The output files contain portions of the original input file; otherwise, unchanged.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3191

106306

106307

106308

106309

106310

106311

106312

106313

106314

106315

106316

106317

106318

106319

106320

106321

106322

106323

106324

106325

106326

106327

106328

106329

106330

106331

106332

106333

106334

106335

106336

106337

106338

106339

split Utilities

APPLICATION USAGE
None.

EXAMPLES
In the following examples foo is a text file that contains 5 000 lines.

1. Create five files, xaa, xab, xac, xad, and xae:

split foo

2. Create five files, but the suffixed portion of the created files consists of three letters, xaaa,
xaab, xaac, xaad, and xaae:

split −a 3 foo

3. Create three files with four-letter suffixes and a supplied prefix, bar_aaaa, bar_aaab, and
bar_aaac:

split −a 4 −l 2000 foo bar_

4. Create as many files as are necessary to contain at most 20*1 024 bytes, each with the
default prefix of x and a five-letter suffix:

split −a 5 −b 20k foo

RATIONALE
The −b option was added to provide a mechanism for splitting files other than by lines. While
most uses of the −b option are for transmitting files over networks, some believed it would have
additional uses.

The −a option was added to overcome the limitation of being able to create only 676 files.

Consideration was given to deleting this utility, using the rationale that the functionality
provided by this utility is available via the csplit utility (see csplit). Upon reconsideration of the
purpose of the User Portability Utilities option, it was decided to retain both this utility and the
csplit utility because users use both utilities and have historical expectations of their behavior.
Furthermore, the splitting on byte boundaries in split cannot be duplicated with the historical
csplit.

The text ‘‘split shall not delete the files it created with valid suffixes’’ would normally be
assumed, but since the related utility, csplit, does delete files under some circumstances, the
historical behavior of split is made explicit to avoid misinterpretation.

Earlier versions of this standard allowed a −line_count option. This form is no longer specified by
POSIX.1-2008 but may be present in some implementations.

FUTURE DIRECTIONS
None.

SEE ALSO
csplit

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The APPLICATION USAGE section is added.

3192 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

106340

106341

106342

106343

106344

106345

106346

106347

106348

106349

106350

106351

106352

106353

106354

106355

106356

106357

106358

106359

106360

106361

106362

106363

106364

106365

106366

106367

106368

106369

106370

106371

106372

106373

106374

106375

106376

106377

106378

106379

106380

Utilities split

The obsolescent SYNOPSIS is removed.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied.

The split utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3193

106381

106382

106383

106384

106385

106386

strings Utilities

NAME
strings — find printable strings in files

SYNOPSIS
strings [−a] [−t format] [−n number] [file...]

DESCRIPTION
The strings utility shall look for printable strings in regular files and shall write those strings to
standard output. A printable string is any sequence of four (by default) or more printable
characters terminated by a <newline> or NUL character. Additional implementation-defined
strings may be written; see localedef.

If the first argument is ’−’, the results are unspecified.

OPTIONS
The strings utility shall conform to XBD Section 12.2 (on page 215), except for the unspecified
usage of ’−’.

The following options shall be supported:

−a Scan files in their entirety. If −a is not specified, it is implementation-defined what
portion of each file is scanned for strings.

−n number Specify the minimum string length, where the number argument is a positive
decimal integer. The default shall be 4.

−t format Write each string preceded by its byte offset from the start of the file. The format
shall be dependent on the single character used as the format option-argument:

d The offset shall be written in decimal.

o The offset shall be written in octal.

x The offset shall be written in hexadecimal.

OPERANDS
The following operand shall be supported:

file A pathname of a regular file to be used as input. If no file operand is specified, the
strings utility shall read from the standard input.

STDIN
See the INPUT FILES section.

INPUT FILES
The input files named by the utility arguments or the standard input shall be regular files of any
format.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of strings:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and to identify printable strings.

3194 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

106387

106388

106389

106390

106391

106392

106393

106394

106395

106396

106397

106398

106399

106400

106401

106402

106403

106404

106405

106406

106407

106408

106409

106410

106411

106412

106413

106414

106415

106416

106417

106418

106419

106420

106421

106422

106423

106424

106425

106426

106427

106428

Utilities strings

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Strings found shall be written to the standard output, one per line.

When the −t option is not specified, the format of the output shall be:

"%s", <string>

With the −t o option, the format of the output shall be:

"%o %s", <byte offset>, <string>

With the −t x option, the format of the output shall be:

"%x %s", <byte offset>, <string>

With the −t d option, the format of the output shall be:

"%d %s", <byte offset>, <string>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
By default the data area (as opposed to the text, ‘‘bss’’, or header areas) of a binary executable
file is scanned. Implementations document which areas are scanned.

Some historical implementations do not require NUL or <newline> terminators for strings to
permit those languages that do not use NUL as a string terminator to have their strings written.

EXAMPLES
None.

RATIONALE
Apart from rationalizing the option syntax and slight difficulties with object and executable
binary files, strings is specified to match historical practice closely. The −a and −n options were
introduced to replace the non-conforming − and −number options. These options are no longer
specified by POSIX.1-2008 but may be present in some implementations.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3195

106429

106430

106431

106432

106433

106434

106435

106436

106437

106438

106439

106440

106441

106442

106443

106444

106445

106446

106447

106448

106449

106450

106451

106452

106453

106454

106455

106456

106457

106458

106459

106460

106461

106462

106463

106464

106465

106466

106467

106468

strings Utilities

The −o option historically means different things on different implementations. Some use it to
mean ‘‘offset in decimal’’, while others use it as ‘‘offset in octal’’. Instead of trying to decide which
way would be least objectionable, the −t option was added. It was originally named −O to mean
‘‘offset’’, but was changed to −t to be consistent with od.

The ISO C standard function isprint() is restricted to a domain of unsigned char. This volume of
POSIX.1-2008 requires implementations to write strings as defined by the current locale.

FUTURE DIRECTIONS
None.

SEE ALSO
localedef , nm

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The obsolescent SYNOPSIS is removed.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if the first
argument is ’−’.

The strings utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3196 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

106469

106470

106471

106472

106473

106474

106475

106476

106477

106478

106479

106480

106481

106482

106483

106484

106485

106486

106487

106488

106489

106490

106491

Utilities strip

NAME
strip — remove unnecessary information from strippable files (DEVELOPMENT)

SYNOPSIS
SD strip file...

DESCRIPTION
XSI A strippable file is defined as a relocatable, object, or executable file. On XSI-conformant

systems, a strippable file can also be an archive of object or relocatable files.

The strip utility shall remove from strippable files named by the file operands any information
the implementor deems unnecessary for execution of those files. The nature of that information
is unspecified. The effect of strip on object and executable files shall be similar to the use of the

XSI −s option to c99 or fort77. The effect of strip on an archive of object files shall be similar to the
use of the −s option to c99 or fort77 for each object file in the archive.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

file A pathname referring to a strippable file.

STDIN
Not used.

INPUT FILES
The input files shall be in the form of strippable files successfully produced by any compiler

XSI defined by this volume of POSIX.1-2008 or produced by creating or updating an archive of such
files using the ar utility.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of strip:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3197

106492

106493

106494

106495

106496

106497

106498

106499

106500

106501

106502

106503

106504

106505

106506

106507

106508

106509

106510

106511

106512

106513

106514

106515

106516

106517

106518

106519

106520

106521

106522

106523

106524

106525

106526

106527

106528

106529

106530

106531

106532

strip Utilities

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The strip utility shall produce strippable files of unspecified format.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
Historically, this utility has been used to remove the symbol table from a strippable file. It was
included since it is known that the amount of symbolic information can amount to several
megabytes; the ability to remove it in a portable manner was deemed important, especially for
smaller systems.

The behavior of strip on object and executable files is said to be the same as the −s option to a
compiler. While the end result is essentially the same, it is not required to be identical.

XSI-conformant systems support use of strip on archive files containing object files or relocatable
files.

FUTURE DIRECTIONS
None.

SEE ALSO
ar , c99 , fort77

XBD Chapter 8 (on page 173)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the Software Development Utilities option.

Issue 7
Austin Group Interpretation 1003.1-2001 #103 is applied.

3198 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

106533

106534

106535

106536

106537

106538

106539

106540

106541

106542

106543

106544

106545

106546

106547

106548

106549

106550

106551

106552

106553

106554

106555

106556

106557

106558

106559

106560

106561

106562

106563

106564

106565

106566

106567

106568

Utilities stty

NAME
stty — set the options for a terminal

SYNOPSIS
stty [−a|−g]

stty operand...

DESCRIPTION
The stty utility shall set or report on terminal I/O characteristics for the device that is its
standard input. Without options or operands specified, it shall report the settings of certain
characteristics, usually those that differ from implementation-defined defaults. Otherwise, it
shall modify the terminal state according to the specified operands. Detailed information about
the modes listed in the first five groups below are described in XBD Chapter 11 (on page 199).
Operands in the Combination Modes group (see Combination Modes, on page 3204) are
implemented using operands in the previous groups. Some combinations of operands are
mutually-exclusive on some terminal types; the results of using such combinations are
unspecified.

Typical implementations of this utility require a communications line configured to use the
termios interface defined in the System Interfaces volume of POSIX.1-2008. On systems where
none of these lines are available, and on lines not currently configured to support the termios
interface, some of the operands need not affect terminal characteristics.

OPTIONS
The stty utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a Write to standard output all the current settings for the terminal.

−g Write to standard output all the current settings in an unspecified form that can be
used as arguments to another invocation of the stty utility on the same system. The
form used shall not contain any characters that would require quoting to avoid
word expansion by the shell; see Section 2.6 (on page 2305).

OPERANDS
The following operands shall be supported to set the terminal characteristics.

Control Modes

parenb (−parenb) Enable (disable) parity generation and detection. This shall have the effect of
setting (not setting) PARENB in the termios c_cflag field, as defined in XBD
Chapter 11 (on page 199).

parodd (−parodd)
Select odd (even) parity. This shall have the effect of setting (not setting)
PARODD in the termios c_cflag field, as defined in XBD Chapter 11 (on page
199).

cs5 cs6 cs7 cs8 Select character size, if possible. This shall have the effect of setting CS5, CS6,
CS7, and CS8, respectively, in the termios c_cflag field, as defined in XBD
Chapter 11 (on page 199).

number Set terminal baud rate to the number given, if possible. If the baud rate is set
to zero, the modem control lines shall no longer be asserted. This shall have
the effect of setting the input and output termios baud rate values as defined
in XBD Chapter 11 (on page 199).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3199

106569

106570

106571

106572

106573

106574

106575

106576

106577

106578

106579

106580

106581

106582

106583

106584

106585

106586

106587

106588

106589

106590

106591

106592

106593

106594

106595

106596

106597

106598

106599

106600

106601

106602

106603

106604

106605

106606

106607

106608

106609

106610

106611

106612

stty Utilities

ispeed number Set terminal input baud rate to the number given, if possible. If the input baud
rate is set to zero, the input baud rate shall be specified by the value of the
output baud rate. This shall have the effect of setting the input termios baud
rate values as defined in XBD Chapter 11 (on page 199).

ospeed number Set terminal output baud rate to the number given, if possible. If the output
baud rate is set to zero, the modem control lines shall no longer be asserted.
This shall have the effect of setting the output termios baud rate values as
defined in XBD Chapter 11 (on page 199).

hupcl (−hupcl) Stop asserting modem control lines (do not stop asserting modem control
lines) on last close. This shall have the effect of setting (not setting) HUPCL in
the termios c_cflag field, as defined in XBD Chapter 11 (on page 199).

hup (−hup) Equivalent to hupcl(−hupcl).

cstopb (−cstopb) Use two (one) stop bits per character. This shall have the effect of setting (not
setting) CSTOPB in the termios c_cflag field, as defined in XBD Chapter 11 (on
page 199).

cread (−cread) Enable (disable) the receiver. This shall have the effect of setting (not setting)
CREAD in the termios c_cflag field, as defined in XBD Chapter 11 (on page
199).

clocal (−clocal) Assume a line without (with) modem control. This shall have the effect of
setting (not setting) CLOCAL in the termios c_cflag field, as defined in XBD
Chapter 11 (on page 199).

It is unspecified whether stty shall report an error if an attempt to set a Control Mode fails.

Input Modes

ignbrk (−ignbrk) Ignore (do not ignore) break on input. This shall have the effect of setting (not
setting) IGNBRK in the termios c_iflag field, as defined in XBD Chapter 11 (on
page 199).

brkint (−brkint) Signal (do not signal) INTR on break. This shall have the effect of setting (not
setting) BRKINT in the termios c_iflag field, as defined in XBD Chapter 11 (on
page 199).

ignpar (−ignpar) Ignore (do not ignore) bytes with parity errors. This shall have the effect of
setting (not setting) IGNPAR in the termios c_iflag field, as defined in XBD
Chapter 11 (on page 199).

parmrk (−parmrk)
Mark (do not mark) parity errors. This shall have the effect of setting (not
setting) PARMRK in the termios c_iflag field, as defined in XBD Chapter 11 (on
page 199).

inpck (−inpck) Enable (disable) input parity checking. This shall have the effect of setting (not
setting) INPCK in the termios c_iflag field, as defined in XBD Chapter 11 (on
page 199).

istrip (−istrip) Strip (do not strip) input characters to seven bits. This shall have the effect of
setting (not setting) ISTRIP in the termios c_iflag field, as defined in XBD
Chapter 11 (on page 199).

3200 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

106613

106614

106615

106616

106617

106618

106619

106620

106621

106622

106623

106624

106625

106626

106627

106628

106629

106630

106631

106632

106633

106634

106635

106636

106637

106638

106639

106640

106641

106642

106643

106644

106645

106646

106647

106648

106649

106650

106651

106652

106653

106654

Utilities stty

inlcr (−inlcr) Map (do not map) NL to CR on input. This shall have the effect of setting (not
setting) INLCR in the termios c_iflag field, as defined in XBD Chapter 11 (on
page 199).

igncr (−igncr) Ignore (do not ignore) CR on input. This shall have the effect of setting (not
setting) IGNCR in the termios c_iflag field, as defined in XBD Chapter 11 (on
page 199).

icrnl (−icrnl) Map (do not map) CR to NL on input. This shall have the effect of setting (not
setting) ICRNL in the termios c_iflag field, as defined in XBD Chapter 11 (on
page 199).

ixon (−ixon) Enable (disable) START/STOP output control. Output from the system is
stopped when the system receives STOP and started when the system receives
START. This shall have the effect of setting (not setting) IXON in the termios
c_iflag field, as defined in XBD Chapter 11 (on page 199).

ixany (−ixany) Allow any character to restart output. This shall have the effect of setting (not
setting) IXANY in the termios c_iflag field, as defined in XBD Chapter 11 (on
page 199).

ixoff (−ixoff) Request that the system send (not send) STOP characters when the input
queue is nearly full and START characters to resume data transmission. This
shall have the effect of setting (not setting) IXOFF in the termios c_iflag field,
as defined in XBD Chapter 11 (on page 199).

Output Modes

opost (−opost) Post-process output (do not post-process output; ignore all other output
modes). This shall have the effect of setting (not setting) OPOST in the termios
c_oflag field, as defined in XBD Chapter 11 (on page 199).

XSI ocrnl (−ocrnl) Map (do not map) CR to NL on output This shall have the effect of setting (not
setting) OCRNL in the termios c_oflag field, as defined in XBD Chapter 11 (on
page 199).

XSI onocr (−onocr) Do not (do) output CR at column zero. This shall have the effect of setting (not
setting) ONOCR in the termios c_oflag field, as defined in XBD Chapter 11 (on
page 199).

XSI onlret (−onlret) The terminal newline key performs (does not perform) the CR function. This
shall have the effect of setting (not setting) ONLRET in the termios c_oflag
field, as defined in XBD Chapter 11 (on page 199).

XSI ofill (−ofill) Use fill characters (use timing) for delays. This shall have the effect of setting
(not setting) OFILL in the termios c_oflag field, as defined in XBD Chapter 11
(on page 199).

XSI ofdel (−ofdel) Fill characters are DELs (NULs). This shall have the effect of setting (not
setting) OFDEL in the termios c_oflag field, as defined in XBD Chapter 11 (on
page 199).

XSI cr0 cr1 cr2 cr3 Select the style of delay for CRs. This shall have the effect of setting CRDLY to
CR0, CR1, CR2, or CR3, respectively, in the termios c_oflag field, as defined in
XBD Chapter 11 (on page 199).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3201

106655

106656

106657

106658

106659

106660

106661

106662

106663

106664

106665

106666

106667

106668

106669

106670

106671

106672

106673

106674

106675

106676

106677

106678

106679

106680

106681

106682

106683

106684

106685

106686

106687

106688

106689

106690

106691

106692

106693

106694

106695

106696

stty Utilities

XSI nl0 nl1 Select the style of delay for NL. This shall have the effect of setting NLDLY to
NL0 or NL1, respectively, in the termios c_oflag field, as defined in XBD
Chapter 11 (on page 199).

XSI tab0 tab1 tab2 tab3
Select the style of delay for horizontal tabs. This shall have the effect of setting
TABDLY to TAB0, TAB1, TAB2, or TAB3, respectively, in the termios c_oflag
field, as defined in XBD Chapter 11 (on page 199). Note that TAB3 has the
effect of expanding <tab> characters to <space> characters.

XSI tabs (−tabs) Synonym for tab0 (tab3).

XSI bs0 bs1 Select the style of delay for <backspace> characters. This shall have the effect
of setting BSDLY to BS0 or BS1, respectively, in the termios c_oflag field, as
defined in XBD Chapter 11 (on page 199).

XSI ff0 ff1 Select the style of delay for <form-feed> characters. This shall have the effect
of setting FFDLY to FF0 or FF1, respectively, in the termios c_oflag field, as
defined in XBD Chapter 11 (on page 199).

XSI vt0 vt1 Select the style of delay for <vertical-tab> characters. This shall have the effect
of setting VTDLY to VT0 or VT1, respectively, in the termios c_oflag field, as
defined in XBD Chapter 11 (on page 199).

Local Modes

isig (−isig) Enable (disable) the checking of characters against the special control
characters INTR, QUIT, and SUSP. This shall have the effect of setting (not
setting) ISIG in the termios c_lflag field, as defined in XBD Chapter 11 (on
page 199).

icanon (−icanon) Enable (disable) canonical input (ERASE and KILL processing). This shall
have the effect of setting (not setting) ICANON in the termios c_lflag field, as
defined in XBD Chapter 11 (on page 199).

iexten (−iexten) Enable (disable) any implementation-defined special control characters not
currently controlled by icanon, isig, ixon, or ixoff. This shall have the effect of
setting (not setting) IEXTEN in the termios c_lflag field, as defined in XBD
Chapter 11 (on page 199).

echo (−echo) Echo back (do not echo back) every character typed. This shall have the effect
of setting (not setting) ECHO in the termios c_lflag field, as defined in XBD
Chapter 11 (on page 199).

echoe (−echoe) The ERASE character visually erases (does not erase) the last character in the
current line from the display, if possible. This shall have the effect of setting
(not setting) ECHOE in the termios c_lflag field, as defined in XBD Chapter 11
(on page 199).

echok (−echok) Echo (do not echo) NL after KILL character. This shall have the effect of setting
(not setting) ECHOK in the termios c_lflag field, as defined in XBD Chapter 11
(on page 199).

echonl (−echonl) Echo (do not echo) NL, even if echo is disabled. This shall have the effect of
setting (not setting) ECHONL in the termios c_lflag field, as defined in XBD
Chapter 11 (on page 199).

3202 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

106697

106698

106699

106700

106701

106702

106703

106704

106705

106706

106707

106708

106709

106710

106711

106712

106713

106714

106715

106716

106717

106718

106719

106720

106721

106722

106723

106724

106725

106726

106727

106728

106729

106730

106731

106732

106733

106734

106735

106736

106737

106738

106739

Utilities stty

noflsh (−noflsh) Disable (enable) flush after INTR, QUIT, SUSP. This shall have the effect of
setting (not setting) NOFLSH in the termios c_lflag field, as defined in XBD
Chapter 11 (on page 199).

tostop (−tostop) Send SIGTTOU for background output. This shall have the effect of setting
(not setting) TOSTOP in the termios c_lflag field, as defined in XBD Chapter 11
(on page 199).

Special Control Character Assignments

<control>-character string
Set <control>-character to string. If <control>-character is one of the character sequences in the
first column of the following table, the corresponding XBD Chapter 11 (on page 199) control
character from the second column shall be recognized. This has the effect of setting the
corresponding element of the termios c_cc array (see XBD Chapter 13 (on page 219),
<termios.h>).

Table 4-20 Control Character Names in stty

Control Character c_cc Subscript Description

eof VEOF EOF character
eol VEOL EOL character
erase VERASE ERASE character
intr VINTR INTR character
kill VKILL KILL character
quit VQUIT QUIT character
susp VSUSP SUSP character
start VSTART START character
stop VSTOP STOP character

If string is a single character, the control character shall be set to that character. If string is the
two-character sequence "ˆ−" or the string undef , the control character shall be set to
_POSIX_VDISABLE , if it is in effect for the device; if _POSIX_VDISABLE is not in effect for
the device, it shall be treated as an error. In the POSIX locale, if string is a two-character
sequence beginning with <circumflex> (’ˆ’), and the second character is one of those listed
in the "ˆc" column of the following table, the control character shall be set to the
corresponding character value in the Value column of the table.

Table 4-21 Circumflex Control Characters in stty

ˆc Value ˆc Value ˆc Value

a, A <SOH> l, L <FF> w, W <ETB>
b, B <STX> m, M <CR> x, X <CAN>
c, C <ETX> n, N <SO> y, Y
d, D <EOT> o, O <SI> z, Z <SUB>
e, E <ENQ> p, P <DLE> [<ESC>
f, F <ACK> q, Q <DC1> \ <FS>
g, G <BEL> r, R <DC2>] <GS>
h, H <BS> s, S <DC3> ˆ <RS>
i, I <HT> t, T <DC4> _ <US>
j, J <LF> u, U <NAK> ?
k, K <VT> v, V <SYN>

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3203

106740

106741

106742

106743

106744

106745

106746

106747

106748

106749

106750

106751

106752

106753

106754

106755

106756

106757

106758

106759

106760

106761

106762

106763

106764

106765

106766

106767

106768

106769

106770

106771

106772

106773

106774

106775

106776

106777

106778

106779

106780

106781

106782

106783

stty Utilities

min number
Set the value of MIN to number. MIN is used in non-canonical mode input processing
(icanon).

time number
Set the value of TIME to number. TIME is used in non-canonical mode input processing
(icanon).

Combination Modes

saved settings
Set the current terminal characteristics to the saved settings produced by the −g option.

evenp or parity
Enable parenb and cs7; disable parodd.

oddp
Enable parenb, cs7, and parodd.

−parity, −evenp, or −oddp
Disable parenb, and set cs8.

XSI raw (−raw or cooked)
Enable (disable) raw input and output. Raw mode shall be equivalent to setting:

stty cs8 erase ˆ− kill ˆ− intr ˆ− \
quit ˆ− eof ˆ− eol ˆ− −post −inpck

nl (−nl)
Disable (enable) icrnl. In addition, −nl unsets inlcr and igncr.

ek Reset ERASE and KILL characters back to system defaults.

sane
Reset all modes to some reasonable, unspecified, values.

STDIN
Although no input is read from standard input, standard input shall be used to get the current
terminal I/O characteristics and to set new terminal I/O characteristics.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of stty:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE This variable determines the locale for the interpretation of sequences of bytes of
text data as characters (for example, single-byte as opposed to multi-byte
characters in arguments) and which characters are in the class print.

3204 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

106784

106785

106786

106787

106788

106789

106790

106791

106792

106793

106794

106795

106796

106797

106798

106799

106800

106801

106802

106803

106804

106805

106806

106807

106808

106809

106810

106811

106812

106813

106814

106815

106816

106817

106818

106819

106820

106821

106822

Utilities stty

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If operands are specified, no output shall be produced.

If the −g option is specified, stty shall write to standard output the current settings in a form that
can be used as arguments to another instance of stty on the same system.

If the −a option is specified, all of the information as described in the OPERANDS section shall
be written to standard output. Unless otherwise specified, this information shall be written as
<space>-separated tokens in an unspecified format, on one or more lines, with an unspecified
number of tokens per line. Additional information may be written.

If no options or operands are specified, an unspecified subset of the information written for the
−a option shall be written.

If speed information is written as part of the default output, or if the −a option is specified and if
the terminal input speed and output speed are the same, the speed information shall be written
as follows:

"speed %d baud;", <speed>

Otherwise, speeds shall be written as:

"ispeed %d baud; ospeed %d baud;", <ispeed>, <ospeed>

In locales other than the POSIX locale, the word baud may be changed to something more
appropriate in those locales.

If control characters are written as part of the default output, or if the −a option is specified,
control characters shall be written as:

"%s = %s;", <control-character name>, <value>

where <value> is either the character, or some visual representation of the character if it is non-
printable, or the string undef if the character is disabled.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The terminal options were read or set successfully.

>0 An error occurred.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3205

106823

106824

106825

106826

106827

106828

106829

106830

106831

106832

106833

106834

106835

106836

106837

106838

106839

106840

106841

106842

106843

106844

106845

106846

106847

106848

106849

106850

106851

106852

106853

106854

106855

106856

106857

106858

106859

106860

106861

stty Utilities

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The −g flag is designed to facilitate the saving and restoring of terminal state from the shell level.
For example, a program may:

saveterm="$(stty −g)" # save terminal state
stty (new settings) # set new state
... # ...
stty $saveterm # restore terminal state

Since the format is unspecified, the saved value is not portable across systems.

Since the −a format is so loosely specified, scripts that save and restore terminal settings should
use the −g option.

EXAMPLES
None.

RATIONALE
The original stty description was taken directly from System V and reflected the System V
terminal driver termio. It has been modified to correspond to the terminal driver termios.

Output modes are specified only for XSI-conformant systems. All implementations are expected
to provide stty operands corresponding to all of the output modes they support.

The stty utility is primarily used to tailor the user interface of the terminal, such as selecting the
preferred ERASE and KILL characters. As an application programming utility, stty can be used
within shell scripts to alter the terminal settings for the duration of the script.

The termios section states that individual disabling of control characters is possible through the
option _POSIX_VDISABLE. If enabled, two conventions currently exist for specifying this:
System V uses "ˆ−", and BSD uses undef . Both are accepted by stty in this volume of
POSIX.1-2008. The other BSD convention of using the letter ’u’ was rejected because it conflicts
with the actual letter ’u’, which is an acceptable value for a control character.

Early proposals did not specify the mapping of "ˆc" to control characters because the control
characters were not specified in the POSIX locale character set description file requirements. The
control character set is now specified in XBD Chapter 3 (on page 33), so the historical mapping is
specified. Note that although the mapping corresponds to control-character key assignments on
many terminals that use the ISO/IEC 646: 1991 standard (or ASCII) character encodings, the
mapping specified here is to the control characters, not their keyboard encodings.

Since termios supports separate speeds for input and output, two new options were added to
specify each distinctly.

Some historical implementations use standard input to get and set terminal characteristics;
others use standard output. Since input from a login TTY is usually restricted to the owner while
output to a TTY is frequently open to anyone, using standard input provides fewer chances of
accidentally (or maliciously) altering the terminal settings of other users. Using standard input
also allows stty −a and stty −g output to be redirected for later use. Therefore, usage of standard
input is required by this volume of POSIX.1-2008.

FUTURE DIRECTIONS
None.

3206 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

106862

106863

106864

106865

106866

106867

106868

106869

106870

106871

106872

106873

106874

106875

106876

106877

106878

106879

106880

106881

106882

106883

106884

106885

106886

106887

106888

106889

106890

106891

106892

106893

106894

106895

106896

106897

106898

106899

106900

106901

106902

106903

106904

Utilities stty

SEE ALSO
Chapter 2 (on page 2297)

XBD Chapter 8 (on page 173), Chapter 11 (on page 199), Section 12.2 (on page 215), <termios.h>

CHANGE HISTORY
First released in Issue 2.

Issue 5
The description of tabs is clarified.

The FUTURE DIRECTIONS section is added.

Issue 6
The LEGACY items iuclc(−iuclc), xcase, olcuc(−olcuc), lcase(−lcase), and LCASE(−LCASE) are
removed.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/37 is applied, applying IEEE PASC
Interpretation 1003.2 #133, fixing an error in the OPERANDS section for the Combination Modes
nl(−nl).

Issue 7
Austin Group Interpretation 1003.1-2001 #144 is applied, moving functionality relating to the
IXANY symbol from the XSI option to the Base.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3207

106905

106906

106907

106908

106909

106910

106911

106912

106913

106914

106915

106916

106917

106918

106919

106920

106921

106922

tabs Utilities

NAME
tabs — set terminal tabs

SYNOPSIS
XSI tabs [−n|−a|−a2|−c|−c2|−c3|−f|−p|−s|−u] [−T type]

tabs [−T type] n[[sep[+]n]...]

DESCRIPTION
The tabs utility shall display a series of characters that first clears the hardware terminal tab

XSI settings and then initializes the tab stops at the specified positions and optionally adjusts the
margin.

The phrase ‘‘tab-stop position N’’ shall be taken to mean that, from the start of a line of output,
tabbing to position N shall cause the next character output to be in the (N+1)th column position
on that line. The maximum number of tab stops allowed is terminal-dependent.

It need not be possible to implement tabs on certain terminals. If the terminal type obtained from
the TERM environment variable or −T option represents such a terminal, an appropriate
diagnostic message shall be written to standard error and tabs shall exit with a status greater
than zero.

OPTIONS
XSI The tabs utility shall conform to XBD Section 12.2 (on page 215), except for various extensions:

the options −a2, −c2, and −c3 are multi-character.

The following options shall be supported:

−n Specify repetitive tab stops separated by a uniform number of column positions, n,
where n is a single-digit decimal number. The default usage of tabs with no
arguments shall be equivalent to tabs −8. When −0 is used, the tab stops shall be
cleared and no new ones set.

XSI −a 1,10,16,36,72
Assembler, applicable to some mainframes.

XSI −a2 1,10,16,40,72
Assembler, applicable to some mainframes.

XSI −c 1,8,12,16,20,55
COBOL, normal format.

XSI −c2 1,6,10,14,49
COBOL, compact format (columns 1 to 6 omitted).

XSI −c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1 to 6 omitted), with more tabs than −c2.

XSI −f 1,7,11,15,19,23
FORTRAN

XSI −p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PL/1

XSI −s 1,10,55
SNOBOL

XSI −u 1,12,20,44
Assembler, applicable to some mainframes.

3208 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

106923

106924

106925

106926

106927

106928

106929

106930

106931

106932

106933

106934

106935

106936

106937

106938

106939

106940

106941

106942

106943

106944

106945

106946

106947

106948

106949

106950

106951

106952

106953

106954

106955

106956

106957

106958

106959

106960

106961

106962

106963

106964

Utilities tabs

−T type Indicate the type of terminal. If this option is not supplied and the TERM variable
is unset or null, an unspecified default terminal type shall be used. The setting of
type shall take precedence over the value in TERM.

OPERANDS
The following operand shall be supported:

n[[sep[+]n]...] A single command line argument that consists of one or more tab-stop values (n)
separated by a separator character (sep) which is either a <comma> or a <blank>
character. The application shall ensure that the tab-stop values are positive decimal
integers in strictly ascending order. If any tab-stop value (except the first one) is
preceded by a <plus-sign>, it is taken as an increment to be added to the previous
value. For example, the tab lists 1,10,20,30 and "1 10 +10 +10" are considered
to be identical.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of tabs:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TERM Determine the terminal type. If this variable is unset or null, and if the −T option is
not specified, an unspecified default terminal type shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If standard output is a terminal, the appropriate sequence to clear and set the tab stops may be
written to standard output in an unspecified format. If standard output is not a terminal,
undefined results occur.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3209

106965

106966

106967

106968

106969

106970

106971

106972

106973

106974

106975

106976

106977

106978

106979

106980

106981

106982

106983

106984

106985

106986

106987

106988

106989

106990

106991

106992

106993

106994

106995

106996

106997

106998

106999

107000

107001

107002

107003

107004

107005

107006

tabs Utilities

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility makes use of the terminal’s hardware tabs and the stty tabs option.

This utility is not recommended for application use.

Some integrated display units might not have escape sequences to set tab stops, but may be set
by internal system calls. On these terminals, tabs works if standard output is directed to the
terminal; if output is directed to another file, however, tabs fails.

EXAMPLES
None.

RATIONALE
Consideration was given to having the tput utility handle all of the functions described in tabs.
However, the separate tabs utility was retained because it seems more intuitive to use a
command named tabs than tput with a new option. The tput utility does not support setting or
clearing tabs, and no known historical version of tabs supports the capability of setting arbitrary
tab stops.

The System V tabs interface is very complex; the version in this volume of POSIX.1-2008 has a
reduced feature list, but many of the features omitted were restored as part of the XSI option
even though the supported languages and coding styles are primarily historical.

There was considerable sentiment for specifying only a means of resetting the tabs back to a
known state—presumably the ‘‘standard’’ of tabs every eight positions. The following features
were omitted:

• Setting tab stops via the first line in a file, using − −file. Since even the SVID has no
complete explanation of this feature, it is doubtful that it is in widespread use.

In an early proposal, a −t tablist option was added for consistency with expand; this was later
removed when inconsistencies with the historical list of tabs were identified.

Consideration was given to adding a −p option that would output the current tab settings so
that they could be saved and then later restored. This was not accepted because querying the tab
stops of the terminal is not a capability in historical terminfo or termcap facilities and might not be
supported on a wide range of terminals.

FUTURE DIRECTIONS
None.

SEE ALSO
expand , stty , tput , unexpand

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

3210 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

107007

107008

107009

107010

107011

107012

107013

107014

107015

107016

107017

107018

107019

107020

107021

107022

107023

107024

107025

107026

107027

107028

107029

107030

107031

107032

107033

107034

107035

107036

107037

107038

107039

107040

107041

107042

107043

107044

107045

107046

107047

Utilities tabs

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The tabs utility is removed from the User Portability Utilities option. User Portability Utilities is
now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

The SYNOPSIS and OPERANDS sections are updated.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3211

107048

107049

107050

107051

107052

107053

107054

107055

107056

107057

tail Utilities

NAME
tail — copy the last part of a file

SYNOPSIS
tail [−f] [−c number|−n number] [file]

DESCRIPTION
The tail utility shall copy its input file to the standard output beginning at a designated place.

Copying shall begin at the point in the file indicated by the −c number or −n number options. The
option-argument number shall be counted in units of lines or bytes, according to the options −n
and −c. Both line and byte counts start from 1.

Tails relative to the end of the file may be saved in an internal buffer, and thus may be limited in
length. Such a buffer, if any, shall be no smaller than {LINE_MAX}*10 bytes.

OPTIONS
The tail utility shall conform to XBD Section 12.2 (on page 215), except that ’+’ may be
recognized as an option delimiter as well as ’−’.

The following options shall be supported:

−c number The application shall ensure that the number option-argument is a decimal integer,
optionally including a sign. The sign shall affect the location in the file, measured
in bytes, to begin the copying:

Sign Copying Starts

+ Relative to the beginning of the file.
− Relative to the end of the file.

none Relative to the end of the file.

The application shall ensure that if the sign of the number option-argument is ’+’,
the number option-argument is a non-zero decimal integer.

The origin for counting shall be 1; that is, −c +1 represents the first byte of the file,
−c −1 the last.

−f If the input file is a regular file or if the file operand specifies a FIFO, do not
terminate after the last line of the input file has been copied, but read and copy
further bytes from the input file when they become available. If no file operand is
specified and standard input is a pipe or FIFO, the −f option shall be ignored. If the
input file is not a FIFO, pipe, or regular file, it is unspecified whether or not the −f
option shall be ignored.

−n number This option shall be equivalent to −c number, except the starting location in the file
shall be measured in lines instead of bytes. The origin for counting shall be 1; that
is, −n +1 represents the first line of the file, −n −1 the last.

If neither −c nor −n is specified, −n 10 shall be assumed.

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If no file operand is specified, the standard input shall
be used.

3212 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

107058

107059

107060

107061

107062

107063

107064

107065

107066

107067

107068

107069

107070

107071

107072

107073

107074

107075

107076

107077

107078

107079

107080

107081

107082

107083

107084

107085

107086

107087

107088

107089

107090

107091

107092

107093

107094

107095

107096

107097

Utilities tail

STDIN
The standard input shall be used if no file operand is specified, and shall be used if the file
operand is ’−’ and the implementation treats the ’−’ as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
If the −c option is specified, the input file can contain arbitrary data; otherwise, the input file
shall be a text file.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of tail:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The designated portion of the input file shall be written to standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3213

107098

107099

107100

107101

107102

107103

107104

107105

107106

107107

107108

107109

107110

107111

107112

107113

107114

107115

107116

107117

107118

107119

107120

107121

107122

107123

107124

107125

107126

107127

107128

107129

107130

107131

107132

107133

107134

tail Utilities

APPLICATION USAGE
The −c option should be used with caution when the input is a text file containing multi-byte
characters; it may produce output that does not start on a character boundary.

Although the input file to tail can be any type, the results might not be what would be expected
on some character special device files or on file types not described by the System Interfaces
volume of POSIX.1-2008. Since this volume of POSIX.1-2008 does not specify the block size used
when doing input, tail need not read all of the data from devices that only perform block
transfers.

EXAMPLES
The −f option can be used to monitor the growth of a file that is being written by some other
process. For example, the command:

tail −f fred

prints the last ten lines of the file fred, followed by any lines that are appended to fred between
the time tail is initiated and killed. As another example, the command:

tail −f −c 15 fred

prints the last 15 bytes of the file fred, followed by any bytes that are appended to fred between
the time tail is initiated and killed.

RATIONALE
This version of tail was created to allow conformance to the Utility Syntax Guidelines. The
historical −b option was omitted because of the general non-portability of block-sized units of
text. The −c option historically meant ‘‘characters’’, but this volume of POSIX.1-2008 indicates
that it means ‘‘bytes’’. This was selected to allow reasonable implementations when multi-byte
characters are possible; it was not named −b to avoid confusion with the historical −b.

The origin of counting both lines and bytes is 1, matching all widespread historical
implementations. Hence tail −n +0 is not conforming usage because it attempts to output line
zero; but note that tail −n 0 does conform, and outputs nothing.

Earlier versions of this standard allowed the following forms in the SYNOPSIS:

tail −[number][b|c|l][f] [file]

tail +[number][b|c|l][f] [file]

These forms are no longer specified by POSIX.1-2008, but may be present in some
implementations.

The restriction on the internal buffer is a compromise between the historical System V
implementation of 4 096 bytes and the BSD 32 768 bytes.

The −f option has been implemented as a loop that sleeps for 1 second and copies any bytes that
are available. This is sufficient, but if more efficient methods of determining when new data are
available are developed, implementations are encouraged to use them.

Historical documentation indicates that tail ignores the −f option if the input file is a pipe (pipe
and FIFO on systems that support FIFOs). On BSD-based systems, this has been true; on System
V-based systems, this was true when input was taken from standard input, but it did not ignore
the −f flag if a FIFO was named as the file operand. Since the −f option is not useful on pipes and
all historical implementations ignore −f if no file operand is specified and standard input is a
pipe, this volume of POSIX.1-2008 requires this behavior. However, since the −f option is useful
on a FIFO, this volume of POSIX.1-2008 also requires that if a FIFO is named, the −f option shall
not be ignored. Earlier versions of this standard did not state any requirement for the case where
no file operand is specified and standard input is a FIFO. The standard has been updated to

3214 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

107135

107136

107137

107138

107139

107140

107141

107142

107143

107144

107145

107146

107147

107148

107149

107150

107151

107152

107153

107154

107155

107156

107157

107158

107159

107160

107161

107162

107163

107164

107165

107166

107167

107168

107169

107170

107171

107172

107173

107174

107175

107176

107177

107178

107179

Utilities tail

reflect current practice which is to treat this case the same as a pipe on standard input. Although
historical behavior does not ignore the −f option for other file types, this is unspecified so that
implementations are allowed to ignore the −f option if it is known that the file cannot be
extended.

FUTURE DIRECTIONS
None.

SEE ALSO
head

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The obsolescent SYNOPSIS lines and associated text are removed.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that ’+’ may be recognized
as an option delimiter in the OPTIONS section.

Austin Group Interpretation 1003.1-2001 #092 is applied.

Austin Group Interpretation 1003.1-2001 #100 is applied, adding the requirement on applications
that if the sign of the option-argument number is ’+’, the number option-argument is a non-zero
decimal integer.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-114 is applied, updating the OPTIONS section (the −f option).

SD5-XCU-ERN-149 is applied.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3215

107180

107181

107182

107183

107184

107185

107186

107187

107188

107189

107190

107191

107192

107193

107194

107195

107196

107197

107198

107199

107200

107201

107202

107203

talk Utilities

NAME
talk — talk to another user

SYNOPSIS
UP talk address [terminal]

DESCRIPTION
The talk utility is a two-way, screen-oriented communication program.

When first invoked, talk shall send a message similar to:

Message from <unspecified string>
talk: connection requested by your_address

talk: respond with: talk your_address

to the specified address. At this point, the recipient of the message can reply by typing:

talk your_address

Once communication is established, the two parties can type simultaneously, with their output
displayed in separate regions of the screen. Characters shall be processed as follows:

• Typing the <alert> character shall alert the recipient’s terminal.

• Typing <control>-L shall cause the sender’s screen regions to be refreshed.

• Typing the erase and kill characters shall affect the sender’s terminal in the manner
described by the termios interface in XBD Chapter 11 (on page 199).

• Typing the interrupt or end-of-file characters shall terminate the local talk utility. Once the
talk session has been terminated on one side, the other side of the talk session shall be
notified that the talk session has been terminated and shall be able to do nothing except
exit.

• Typing characters from LC_CTYPE classifications print or space shall cause those
characters to be sent to the recipient’s terminal.

• When and only when the stty iexten local mode is enabled, the existence and processing of
additional special control characters and multi-byte or single-byte functions shall be
implementation-defined.

• Typing other non-printable characters shall cause implementation-defined sequences of
printable characters to be sent to the recipient’s terminal.

Permission to be a recipient of a talk message can be denied or granted by use of the mesg utility.
However, a user ’s privilege may further constrain the domain of accessibility of other users’
terminals. The talk utility shall fail when the user lacks appropriate privileges to perform the
requested action.

Certain block-mode terminals do not have all the capabilities necessary to support the
simultaneous exchange of messages required for talk. When this type of exchange cannot be
supported on such terminals, the implementation may support an exchange with reduced levels
of simultaneous interaction or it may report an error describing the terminal-related deficiency.

OPTIONS
None.

3216 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

107204

107205

107206

107207

107208

107209

107210

107211

107212

107213

107214

107215

107216

107217

107218

107219

107220

107221

107222

107223

107224

107225

107226

107227

107228

107229

107230

107231

107232

107233

107234

107235

107236

107237

107238

107239

107240

107241

107242

Utilities talk

OPERANDS
The following operands shall be supported:

address The recipient of the talk session. One form of address is the <user name>, as returned
by the who utility. Other address formats and how they are handled are
unspecified.

terminal If the recipient is logged in more than once, the terminal argument can be used to
indicate the appropriate terminal name. If terminal is not specified, the talk message
shall be displayed on one or more accessible terminals in use by the recipient. The
format of terminal shall be the same as that returned by the who utility.

STDIN
Characters read from standard input shall be copied to the recipient’s terminal in an unspecified
manner. If standard input is not a terminal, talk shall write a diagnostic message and exit with a
non-zero status.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of talk:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files). If the recipient’s locale does not use an LC_CTYPE
equivalent to the sender’s, the results are undefined.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TERM Determine the name of the invoker’s terminal type. If this variable is unset or null,
an unspecified default terminal type shall be used.

ASYNCHRONOUS EVENTS
When the talk utility receives a SIGINT signal, the utility shall terminate and exit with a zero
status. It shall take the standard action for all other signals.

STDOUT
If standard output is a terminal, characters copied from the recipient’s standard input may be
written to standard output. Standard output also may be used for diagnostic messages. If
standard output is not a terminal, talk shall exit with a non-zero status.

STDERR
None.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3217

107243

107244

107245

107246

107247

107248

107249

107250

107251

107252

107253

107254

107255

107256

107257

107258

107259

107260

107261

107262

107263

107264

107265

107266

107267

107268

107269

107270

107271

107272

107273

107274

107275

107276

107277

107278

107279

107280

107281

107282

107283

107284

talk Utilities

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred or talk was invoked on a terminal incapable of supporting it.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Because the handling of non-printable, non-<space> characters is tied to the stty description of
iexten, implementation extensions within the terminal driver can be accessed. For example,
some implementations provide line editing functions with certain control character sequences.

EXAMPLES
None.

RATIONALE
The write utility was included in this volume of POSIX.1-2008 since it can be implemented on all
terminal types. The talk utility, which cannot be implemented on certain terminals, was
considered to be a ‘‘better ’’ communications interface. Both of these programs are in widespread
use on historical implementations. Therefore, both utilities have been specified.

All references to networking abilities (talking to a user on another system) were removed as
being outside the scope of this volume of POSIX.1-2008.

Historical BSD and System V versions of talk terminate both of the conversations when either
user breaks out of the session. This can lead to adverse consequences if a user unwittingly
continues to enter text that is interpreted by the shell when the other terminates the session.
Therefore, the version of talk specified by this volume of POSIX.1-2008 requires both users to
terminate their end of the session explicitly.

Only messages sent to the terminal of the invoking user can be internationalized in any way:

• The original ‘‘Message from <unspecified string> . . .’’ message sent to the terminal of the
recipient cannot be internationalized because the environment of the recipient is as yet
inaccessible to the talk utility. The environment of the invoking party is irrelevant.

• Subsequent communication between the two parties cannot be internationalized because
the two parties may specify different languages in their environment (and non-portable
characters cannot be mapped from one language to another).

• Neither party can be required to communicate in a language other than C and/or the one
specified by their environment because unavailable terminal hardware support (for
example, fonts) may be required.

The text in the STDOUT section reflects the usage of the verb ‘‘display’’ in this section; some talk
implementations actually use standard output to write to the terminal, but this volume of
POSIX.1-2008 does not require that to be the case.

The format of the terminal name is unspecified, but the descriptions of ps, talk, who, and write
require that they all use or accept the same format.

3218 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

107285

107286

107287

107288

107289

107290

107291

107292

107293

107294

107295

107296

107297

107298

107299

107300

107301

107302

107303

107304

107305

107306

107307

107308

107309

107310

107311

107312

107313

107314

107315

107316

107317

107318

107319

107320

107321

107322

107323

107324

107325

107326

107327

Utilities talk

The handling of non-printable characters is partially implementation-defined because the details
of mapping them to printable sequences is not needed by the user. Historical implementations,
for security reasons, disallow the transmission of non-printable characters that may send
commands to the other terminal.

FUTURE DIRECTIONS
None.

SEE ALSO
mesg , stty , who , write

XBD Chapter 8 (on page 173), Chapter 11 (on page 199)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3219

107328

107329

107330

107331

107332

107333

107334

107335

107336

107337

107338

107339

107340

tee Utilities

NAME
tee — duplicate standard input

SYNOPSIS
tee [−ai] [file...]

DESCRIPTION
The tee utility shall copy standard input to standard output, making a copy in zero or more files.
The tee utility shall not buffer output.

If the −a option is not specified, output files shall be written (see Section 1.1.1.4 (on page 2280).

OPTIONS
The tee utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a Append the output to the files.

−i Ignore the SIGINT signal.

OPERANDS
The following operands shall be supported:

file A pathname of an output file. If a file operand is ’−’, it shall refer to a file named
−; implementations shall not treat it as meaning standard output. Processing of at
least 13 file operands shall be supported.

STDIN
The standard input can be of any type.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of tee:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default, except that if the −i option was specified, SIGINT shall be ignored.

STDOUT
The standard output shall be a copy of the standard input.

3220 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

107341

107342

107343

107344

107345

107346

107347

107348

107349

107350

107351

107352

107353

107354

107355

107356

107357

107358

107359

107360

107361

107362

107363

107364

107365

107366

107367

107368

107369

107370

107371

107372

107373

107374

107375

107376

107377

107378

107379

107380

Utilities tee

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
If any file operands are specified, the standard input shall be copied to each named file.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The standard input was successfully copied to all output files.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If a write to any successfully opened file operand fails, writes to other successfully opened file
operands and standard output shall continue, but the exit status shall be non-zero. Otherwise,
the default actions specified in Section 1.4 (on page 2288) apply.

APPLICATION USAGE
The tee utility is usually used in a pipeline, to make a copy of the output of some utility.

The file operand is technically optional, but tee is no more useful than cat when none is specified.

EXAMPLES
Save an unsorted intermediate form of the data in a pipeline:

... | tee unsorted | sort > sorted

RATIONALE
The buffering requirement means that tee is not allowed to use ISO C standard fully buffered or
line-buffered writes. It does not mean that tee has to do 1-byte reads followed by 1-byte writes.

It should be noted that early versions of BSD ignore any invalid options and accept a single ’−’
as an alternative to −i. They also print a message if unable to open a file:

"tee: cannot access %s\n", <pathname>

Historical implementations ignore write errors. This is explicitly not permitted by this volume of
POSIX.1-2008.

Some historical implementations use O_APPEND when providing append mode; others use the
lseek() function to seek to the end-of-file after opening the file without O_APPEND. This volume
of POSIX.1-2008 requires functionality equivalent to using O_APPEND; see Section 1.1.1.4 (on
page 2280).

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 1 (on page 2279), cat

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH lseek()

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3221

107381

107382

107383

107384

107385

107386

107387

107388

107389

107390

107391

107392

107393

107394

107395

107396

107397

107398

107399

107400

107401

107402

107403

107404

107405

107406

107407

107408

107409

107410

107411

107412

107413

107414

107415

107416

107417

107418

tee Utilities

CHANGE HISTORY
First released in Issue 2.

Issue 6
IEEE PASC Interpretation 1003.2 #168 is applied.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3222 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

107419

107420

107421

107422

107423

107424

107425

Utilities test

NAME
test — evaluate expression

SYNOPSIS
test [expression]

[[expression]]

DESCRIPTION
The test utility shall evaluate the expression and indicate the result of the evaluation by its exit
status. An exit status of zero indicates that the expression evaluated as true and an exit status of
1 indicates that the expression evaluated as false.

In the second form of the utility, which uses "[]" rather than test, the application shall ensure
that the square brackets are separate arguments.

OPTIONS
The test utility shall not recognize the "− −" argument in the manner specified by Guideline 10 in
XBD Section 12.2 (on page 215).

No options shall be supported.

OPERANDS
The application shall ensure that all operators and elements of primaries are presented as
separate arguments to the test utility.

The following primaries can be used to construct expression:

−b pathname Tr ue if pathname resolves to en existing directory entry for a block special file. False
if pathname cannot be resolved, or if pathname resolves to an existing directory entry
for a file that is not a block special file.

−c pathname Tr ue if pathname resolves to an existing directory entry for a character special file.
False if pathname cannot be resolved, or if pathname resolves to an existing directory
entry for a file that is not a character special file.

−d pathname Tr ue if pathname resolves to an existing directory entry for a directory. False if
pathname cannot be resolved, or if pathname resolves to an existing directory entry
for a file that is not a directory.

−e pathname Tr ue if pathname resolves to an existing directory entry. False if pathname cannot be
resolved.

−f pathname Tr ue if pathname resolves to an existing directory entry for a regular file. False if
pathname cannot be resolved, or if pathname resolves to an existing directory entry
for a file that is not a regular file.

−g pathname Tr ue if pathname resolves to an existing directory entry for a file that has its set-
group-ID flag set. False if pathname cannot be resolved, or if pathname resolves to an
existing directory entry for a file that does not have its set-group-ID flag set.

−h pathname Tr ue if pathname resolves to an existing directory entry for a symbolic link. False if
pathname cannot be resolved, or if pathname resolves to an existing directory entry
for a file that is not a symbolic link. If the final component of pathname is a
symbolic link, that symbolic link is not followed.

−L pathname Tr ue if pathname resolves to an existing directory entry for a symbolic link. False if
pathname cannot be resolved, or if pathname resolves to an existing directory entry
for a file that is not a symbolic link. If the final component of pathname is a
symbolic link, that symbolic link is not followed.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3223

107426

107427

107428

107429

107430

107431

107432

107433

107434

107435

107436

107437

107438

107439

107440

107441

107442

107443

107444

107445

107446

107447

107448

107449

107450

107451

107452

107453

107454

107455

107456

107457

107458

107459

107460

107461

107462

107463

107464

107465

107466

107467

107468

107469

test Utilities

−n string Tr ue if the length of string is non-zero; otherwise, false.

−p pathname Tr ue if pathname resolves to an existing directory entry for a FIFO. False if pathname
cannot be resolved, or if pathname resolves to an existing directory entry for a file
that is not a FIFO.

−r pathname Tr ue if pathname resolves to an existing directory entry for a file for which
permission to read from the file will be granted, as defined in Section 1.1.1.4 (on
page 2280). False if pathname cannot be resolved, or if pathname resolves to an
existing directory entry for a file for which permission to read from the file will not
be granted.

−S pathname Tr ue if pathname resolves to an existing directory entry for a socket. False if
pathname cannot be resolved, or if pathname resolves to an existing directory entry
for a file that is not a socket.

−s pathname Tr ue if pathname resolves to an existing directory entry for a file that has a size
greater than zero. False if pathname cannot be resolved, or if pathname resolves to an
existing directory entry for a file that does not have a size greater than zero.

−t file_descriptor
Tr ue if file descriptor number file_descriptor is open and is associated with a
terminal. False if file_descriptor is not a valid file descriptor number, or if file
descriptor number file_descriptor is not open, or if it is open but is not associated
with a terminal.

−u pathname Tr ue if pathname resolves to an existing directory entry for a file that has its set-
user-ID flag set. False if pathname cannot be resolved, or if pathname resolves to an
existing directory entry for a file that does not have its set-user-ID flag set.

−w pathname Tr ue if pathname resolves to an existing directory entry for a file for which
permission to write to the file will be granted, as defined in Section 1.1.1.4 (on page
2280). False if pathname cannot be resolved, or if pathname resolves to an existing
directory entry for a file for which permission to write to the file will not be
granted.

−x pathname Tr ue if pathname resolves to an existing directory entry for a file for which
permission to execute the file (or search it, if it is a directory) will be granted, as
defined in Section 1.1.1.4 (on page 2280). False if pathname cannot be resolved, or if
pathname resolves to an existing directory entry for a file for which permission to
execute (or search) the file will not be granted.

−z string Tr ue if the length of string string is zero; otherwise, false.

string Tr ue if the string string is not the null string; otherwise, false.

s1 = s2 Tr ue if the strings s1 and s2 are identical; otherwise, false.

s1 != s2 Tr ue if the strings s1 and s2 are not identical; otherwise, false.

n1 −eq n2 Tr ue if the integers n1 and n2 are algebraically equal; otherwise, false.

n1 −ne n2 Tr ue if the integers n1 and n2 are not algebraically equal; otherwise, false.

n1 −gt n2 Tr ue if the integer n1 is algebraically greater than the integer n2; otherwise, false.

n1 −ge n2 Tr ue if the integer n1 is algebraically greater than or equal to the integer n2;
otherwise, false.

3224 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

107470

107471

107472

107473

107474

107475

107476

107477

107478

107479

107480

107481

107482

107483

107484

107485

107486

107487

107488

107489

107490

107491

107492

107493

107494

107495

107496

107497

107498

107499

107500

107501

107502

107503

107504

107505

107506

107507

107508

107509

107510

107511

Utilities test

n1 −lt n2 Tr ue if the integer n1 is algebraically less than the integer n2; otherwise, false.

n1 −le n2 Tr ue if the integer n1 is algebraically less than or equal to the integer n2; otherwise,
false.

OB XSI expression1 −a expression2
Tr ue if both expression1 and expression2 are true; otherwise, false. The −a binary
primary is left associative. It has a higher precedence than −o.

OB XSI expression1 −o expression2
Tr ue if either expression1 or expression2 is true; otherwise, false. The −o binary
primary is left associative.

With the exception of the −h pathname and −L pathname primaries, if a pathname argument is a
symbolic link, test shall evaluate the expression by resolving the symbolic link and using the file
referenced by the link.

These primaries can be combined with the following operators:

! expression Tr ue if expression is false. False if expression is true.

OB XSI (expression) Tr ue if expression is true. False if expression is false. The parentheses can be used to
alter the normal precedence and associativity.

The primaries with two elements of the form:

−primary_operator primary_operand

are known as unary primaries. The primaries with three elements in either of the two forms:

primary_operand −primary_operator primary_operand

primary_operand primary_operator primary_operand

are known as binary primaries. Additional implementation-defined operators and
primary_operators may be provided by implementations. They shall be of the form −operator
where the first character of operator is not a digit.

The algorithm for determining the precedence of the operators and the return value that shall be
generated is based on the number of arguments presented to test. (However, when using the
"[...]" form, the <right-square-bracket> final argument shall not be counted in this
algorithm.)

In the following list, $1, $2, $3, and $4 represent the arguments presented to test:

0 arguments: Exit false (1).

1 argument: Exit true (0) if $1 is not null; otherwise, exit false.

2 arguments: • If $1 is ’!’, exit true if $2 is null, false if $2 is not null.

• If $1 is a unary primary, exit true if the unary test is true, false if the
unary test is false.

• Otherwise, produce unspecified results.

3 arguments: • If $2 is a binary primary, perform the binary test of $1 and $3.

• If $1 is ’!’, negate the two-argument test of $2 and $3.

OB XSI • If $1 is ’(’ and $3 is ’)’, perform the unary test of $2. On systems that
do not support the XSI option, the results are unspecified if $1 is ’(’
and $3 is ’)’.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3225

107512

107513

107514

107515

107516

107517

107518

107519

107520

107521

107522

107523

107524

107525

107526

107527

107528

107529

107530

107531

107532

107533

107534

107535

107536

107537

107538

107539

107540

107541

107542

107543

107544

107545

107546

107547

107548

107549

107550

107551

test Utilities

• Otherwise, produce unspecified results.

4 arguments: • If $1 is ’!’, negate the three-argument test of $2, $3, and $4.

OB XSI • If $1 is ’(’ and $4 is ’)’, perform the two-argument test of $2 and $3.
On systems that do not support the XSI option, the results are
unspecified if $1 is ’(’ and $4 is ’)’.

• Otherwise, the results are unspecified.

>4 arguments: The results are unspecified.

OB XSI On XSI-conformant systems, combinations of primaries and operators shall be
evaluated using the precedence and associativity rules described previously.
In addition, the string comparison binary primaries ’=’ and "!=" shall have
a higher precedence than any unary primary.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of test:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

3226 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

107552

107553

107554

107555

107556

107557

107558

107559

107560

107561

107562

107563

107564

107565

107566

107567

107568

107569

107570

107571

107572

107573

107574

107575

107576

107577

107578

107579

107580

107581

107582

107583

107584

107585

107586

107587

107588

107589

107590

Utilities test

EXIT STATUS
The following exit values shall be returned:

0 expression evaluated to true.

1 expression evaluated to false or expression was missing.

>1 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The XSI extensions specifying the −a and −o binary primaries and the ’(’ and ’)’ operators
have been marked obsolescent. (Many expressions using them are ambiguously defined by the
grammar depending on the specific expressions being evaluated.) Scripts using these
expressions should be converted to the forms given below. Even though many implementations
will continue to support these obsolescent forms, scripts should be extremely careful when
dealing with user-supplied input that could be confused with these and other primaries and
operators. Unless the application developer knows all the cases that produce input to the script,
invocations like:

test "$1" −a "$2"

should be written as:

test "$1" && test "$2"

to avoid problems if a user supplied values such as $1 set to ’!’ and $2 set to the null string.
That is, in cases where maximal portability is of concern, replace:

test expr1 −a expr2

with:

test expr1 && test expr2

and replace:

test expr1 −o expr2

with:

test expr1 || test expr2

but note that, in test, −a has higher precedence than −o while "&&" and "||" have equal
precedence in the shell.

Parentheses or braces can be used in the shell command language to effect grouping.

Parentheses must be escaped when using sh; for example:

test \(expr1 −a expr2 \) −o expr3

This command is not always portable even on XSI-conformant systems depending on the
expressions specified by expr1, expr2, and expr3. The following form can be used instead:

(test expr1 && test expr2) || test expr3

The two commands:

test "$1"
test ! "$1"

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3227

107591

107592

107593

107594

107595

107596

107597

107598

107599

107600

107601

107602

107603

107604

107605

107606

107607

107608

107609

107610

107611

107612

107613

107614

107615

107616

107617

107618

107619

107620

107621

107622

107623

107624

107625

107626

107627

107628

107629

test Utilities

could not be used reliably on some historical systems. Unexpected results would occur if such a
string expression were used and $1 expanded to ’!’, ’(’, or a known unary primary. Better
constructs are:

test −n "$1"
test −z "$1"

respectively.

Historical systems have also been unreliable given the common construct:

test "$response" = "expected string"

One of the following is a more reliable form:

test "X$response" = "Xexpected string"
test "expected string" = "$response"

Note that the second form assumes that expected string could not be confused with any unary
primary. If expected string starts with ’−’, ’(’, ’!’, or even ’=’, the first form should be used
instead. Using the preceding rules without the XSI marked extensions, any of the three
comparison forms is reliable, given any input. (However, note that the strings are quoted in all
cases.)

Because the string comparison binary primaries, ’=’ and "!=", have a higher precedence than
any unary primary in the greater than 4 argument case, unexpected results can occur if
arguments are not properly prepared. For example, in:

test −d $1 −o −d $2

If $1 evaluates to a possible directory name of ’=’, the first three arguments are considered a
string comparison, which shall cause a syntax error when the second −d is encountered. One of
the following forms prevents this; the second is preferred:

test \(−d "$1" \) −o \(−d "$2" \)
test −d "$1" || test −d "$2"

Also in the greater than 4 argument case:

test "$1" = "bat" −a "$2" = "ball"

syntax errors occur if $1 evaluates to ’(’ or ’!’. One of the following forms prevents this; the
third is preferred:

test "X$1" = "Xbat" −a "X$2" = "Xball"
test "$1" = "bat" && test "$2" = "ball"
test "X$1" = "Xbat" && test "X$2" = "Xball"

EXAMPLES

1. Exit if there are not two or three arguments (two variations):

if [$# −ne 2] && [$# −ne 3]; then exit 1; fi
if [$# −lt 2] || [$# −gt 3]; then exit 1; fi

2. Perform a mkdir if a directory does not exist:

test ! −d tempdir && mkdir tempdir

3. Wait for a file to become non-readable:

while test −r thefile
do

3228 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

107630

107631

107632

107633

107634

107635

107636

107637

107638

107639

107640

107641

107642

107643

107644

107645

107646

107647

107648

107649

107650

107651

107652

107653

107654

107655

107656

107657

107658

107659

107660

107661

107662

107663

107664

107665

107666

107667

107668

107669

107670

Utilities test

sleep 30
done
echo ’"thefile" is no longer readable’

4. Perform a command if the argument is one of three strings (two variations):

if ["$1" = "pear"] || ["$1" = "grape"] || ["$1" = "apple"]
then

command

fi

case "$1" in
pear|grape|apple) command ;;

esac

RATIONALE
The KornShell-derived conditional command (double bracket [[]]) was removed from the shell
command language description in an early proposal. Objections were raised that the real
problem is misuse of the test command ([), and putting it into the shell is the wrong way to fix
the problem. Instead, proper documentation and a new shell reserved word (!) are sufficient.

Tests that require multiple test operations can be done at the shell level using individual
invocations of the test command and shell logicals, rather than using the error-prone −o flag of
test.

XSI-conformant systems support more than four arguments.

XSI-conformant systems support the combining of primaries with the following constructs:

expression1 −a expression2
Tr ue if both expression1 and expression2 are true.

expression1 −o expression2
Tr ue if at least one of expression1 and expression2 are true.

(expression)
Tr ue if expression is true.

In evaluating these more complex combined expressions, the following precedence rules are
used:

• The unary primaries have higher precedence than the algebraic binary primaries.

• The unary primaries have lower precedence than the string binary primaries.

• The unary and binary primaries have higher precedence than the unary string primary.

• The ! operator has higher precedence than the −a operator, and the −a operator has higher
precedence than the −o operator.

• The −a and −o operators are left associative.

• The parentheses can be used to alter the normal precedence and associativity.

The BSD and System V versions of −f are not the same. The BSD definition was:

−f file Tr ue if file exists and is not a directory.

The SVID version (true if the file exists and is a regular file) was chosen for this volume of
POSIX.1-2008 because its use is consistent with the −b, −c, −d, and −p operands (file exists and is
a specific file type).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3229

107671

107672

107673

107674

107675

107676

107677

107678

107679

107680

107681

107682

107683

107684

107685

107686

107687

107688

107689

107690

107691

107692

107693

107694

107695

107696

107697

107698

107699

107700

107701

107702

107703

107704

107705

107706

107707

107708

107709

107710

107711

test Utilities

The −e primary, possessing similar functionality to that provided by the C shell, was added
because it provides the only way for a shell script to find out if a file exists without trying to
open the file. Since implementations are allowed to add additional file types, a portable script
cannot use:

test −b foo −o −c foo −o −d foo −o −f foo −o −p foo

to find out if foo is an existing file. On historical BSD systems, the existence of a file could be
determined by:

test −f foo −o −d foo

but there was no easy way to determine that an existing file was a regular file. An early proposal
used the KornShell −a primary (with the same meaning), but this was changed to −e because
there were concerns about the high probability of humans confusing the −a primary with the −a
binary operator.

The following options were not included in this volume of POSIX.1-2008, although they are
provided by some implementations. These operands should not be used by new
implementations for other purposes:

−k file Tr ue if file exists and its sticky bit is set.

−C file Tr ue if file is a contiguous file.

−V file Tr ue if file is a version file.

The following option was not included because it was undocumented in most implementations,
has been removed from some implementations (including System V), and the functionality is
provided by the shell (see Section 2.6.2 (on page 2306).

−l string The length of the string string.

The −b, −c, −g, −p, −u, and −x operands are derived from the SVID; historical BSD does not
provide them. The −k operand is derived from System V; historical BSD does not provide it.

On historical BSD systems, test −w directory always returned false because test tried to open the
directory for writing, which always fails.

Some additional primaries newly invented or from the KornShell appeared in an early proposal
as part of the conditional command ([[]]): s1 > s2, s1 < s2, str = pattern, str != pattern, f1 −nt f2, f1
−ot f2, and f1 −ef f2. They were not carried forward into the test utility when the conditional
command was removed from the shell because they have not been included in the test utility
built into historical implementations of the sh utility.

The −t file_descriptor primary is shown with a mandatory argument because the grammar is
ambiguous if it can be omitted. Historical implementations have allowed it to be omitted,
providing a default of 1.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 1.1.1.4 (on page 2280), find

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

3230 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

107712

107713

107714

107715

107716

107717

107718

107719

107720

107721

107722

107723

107724

107725

107726

107727

107728

107729

107730

107731

107732

107733

107734

107735

107736

107737

107738

107739

107740

107741

107742

107743

107744

107745

107746

107747

107748

107749

107750

Utilities test

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
The −h operand is added for symbolic links, and access permission requirements are clarified for
the −r, −w, and −x operands to align with the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

The −L and −S operands are added for symbolic links and sockets.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/38 is applied, adding XSI margin
marking and shading to a line in the OPERANDS section referring to the use of parentheses as
arguments to the test utility.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/30 is applied, rewording the existence
primaries for the test utility.

Issue 7
Austin Group Interpretation 1003.1-2001 #107 is applied.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3231

107751

107752

107753

107754

107755

107756

107757

107758

107759

107760

107761

107762

107763

107764

107765

107766

time Utilities

NAME
time — time a simple command

SYNOPSIS
time [−p] utility [argument...]

DESCRIPTION
The time utility shall invoke the utility named by the utility operand with arguments supplied as
the argument operands and write a message to standard error that lists timing statistics for the
utility. The message shall include the following information:

• The elapsed (real) time between invocation of utility and its termination.

• The User CPU time, equivalent to the sum of the tms_utime and tms_cutime fields returned
by the times() function defined in the System Interfaces volume of POSIX.1-2008 for the
process in which utility is executed.

• The System CPU time, equivalent to the sum of the tms_stime and tms_cstime fields
returned by the times() function for the process in which utility is executed.

The precision of the timing shall be no less than the granularity defined for the size of the clock
tick unit on the system, but the results shall be reported in terms of standard time units (for
example, 0.02 seconds, 00:00:00.02, 1m33.75s, 365.21 seconds), not numbers of clock ticks.

When time is used as part of a pipeline, the times reported are unspecified, except when it is the
sole command within a grouping command (see Section 2.9.4.1, on page 2321) in that pipeline.
For example, the commands on the left are unspecified; those on the right report on utilities a
and c, respectively:

time a | b | c { time a; } | b | c
a | b | time c a | b | (time c)

OPTIONS
The time utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−p Write the timing output to standard error in the format shown in the STDERR
section.

OPERANDS
The following operands shall be supported:

utility The name of a utility that is to be invoked. If the utility operand names any of the
special built-in utilities in Section 2.14 (on page 2334), the results are undefined.

argument Any string to be supplied as an argument when invoking the utility named by the
utility operand.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of time:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

3232 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

107767

107768

107769

107770

107771

107772

107773

107774

107775

107776

107777

107778

107779

107780

107781

107782

107783

107784

107785

107786

107787

107788

107789

107790

107791

107792

107793

107794

107795

107796

107797

107798

107799

107800

107801

107802

107803

107804

107805

107806

107807

107808

107809

Utilities time

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic and informative messages written to standard error.

LC_NUMERIC
Determine the locale for numeric formatting.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PA TH Determine the search path that shall be used to locate the utility to be invoked; see
XBD Chapter 8 (on page 173).

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used to write the timing statistics. If −p is specified, the following
format shall be used in the POSIX locale:

"real %f\nuser %f\nsys %f\n", <real seconds>, <user seconds>,
<system seconds>

where each floating-point number shall be expressed in seconds. The precision used may be less
than the default six digits of %f, but shall be sufficiently precise to accommodate the size of the
clock tick on the system (for example, if there were 60 clock ticks per second, at least two digits
shall follow the radix character). The number of digits following the radix character shall be no
less than one, even if this always results in a trailing zero. The implementation may append
white space and additional information following the format shown here.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If the utility utility is invoked, the exit status of time shall be the exit status of utility; otherwise,
the time utility shall exit with one of the following values:

1-125 An error occurred in the time utility.

126 The utility specified by utility was found but could not be invoked.

127 The utility specified by utility could not be found.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3233

107810

107811

107812

107813

107814

107815

107816

107817

107818

107819

107820

107821

107822

107823

107824

107825

107826

107827

107828

107829

107830

107831

107832

107833

107834

107835

107836

107837

107838

107839

107840

107841

107842

107843

107844

107845

107846

107847

107848

107849

time Utilities

APPLICATION USAGE
The command, env, nice, nohup, time, and xargs utilities have been specified to use exit code 127 if
an error occurs so that applications can distinguish ‘‘failure to find a utility’’ from ‘‘invoked
utility exited with an error indication’’. The value 127 was chosen because it is not commonly
used for other meanings; most utilities use small values for ‘‘normal error conditions’’ and the
values above 128 can be confused with termination due to receipt of a signal. The value 126 was
chosen in a similar manner to indicate that the utility could be found, but not invoked. Some
scripts produce meaningful error messages differentiating the 126 and 127 cases. The distinction
between exit codes 126 and 127 is based on KornShell practice that uses 127 when all attempts to
exec the utility fail with [ENOENT], and uses 126 when any attempt to exec the utility fails for
any other reason.

EXAMPLES
It is frequently desirable to apply time to pipelines or lists of commands. This can be done by
placing pipelines and command lists in a single file; this file can then be invoked as a utility, and
the time applies to everything in the file.

Alternatively, the following command can be used to apply time to a complex command:

time sh −c ’complex-command-line’

RATIONALE
When the time utility was originally proposed to be included in the ISO POSIX-2: 1993 standard,
questions were raised about its suitability for inclusion on the grounds that it was not useful for
conforming applications, specifically:

• The underlying CPU definitions from the System Interfaces volume of POSIX.1-2008 are
vague, so the numeric output could not be compared accurately between systems or even
between invocations.

• The creation of portable benchmark programs was outside the scope this volume of
POSIX.1-2008.

However, time does fit in the scope of user portability. Human judgement can be applied to the
analysis of the output, and it could be very useful in hands-on debugging of applications or in
providing subjective measures of system performance. Hence it has been included in this
volume of POSIX.1-2008.

The default output format has been left unspecified because historical implementations differ
greatly in their style of depicting this numeric output. The −p option was invented to provide
scripts with a common means of obtaining this information.

In the KornShell, time is a shell reserved word that can be used to time an entire pipeline, rather
than just a simple command. The POSIX definition has been worded to allow this
implementation. Consideration was given to invalidating this approach because of the historical
model from the C shell and System V shell. However, since the System V time utility historically
has not produced accurate results in pipeline timing (because the constituent processes are not
all owned by the same parent process, as allowed by POSIX), it did not seem worthwhile to
break historical KornShell usage.

The term utility is used, rather than command, to highlight the fact that shell compound
commands, pipelines, special built-ins, and so on, cannot be used directly. However, utility
includes user application programs and shell scripts, not just the standard utilities.

3234 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

107850

107851

107852

107853

107854

107855

107856

107857

107858

107859

107860

107861

107862

107863

107864

107865

107866

107867

107868

107869

107870

107871

107872

107873

107874

107875

107876

107877

107878

107879

107880

107881

107882

107883

107884

107885

107886

107887

107888

107889

107890

107891

107892

Utilities time

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2297), sh

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH times()

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

Issue 7
The time utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-115 is applied, updating the example in the DESCRIPTION.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3235

107893

107894

107895

107896

107897

107898

107899

107900

107901

107902

107903

107904

107905

107906

touch Utilities

NAME
touch — change file access and modification times

SYNOPSIS
touch [−acm] [−r ref_file|−t time|−d date_time] file...

DESCRIPTION
The touch utility shall change the last data modification timestamps, the last data access
timestamps, or both.

The time used can be specified by the −t time option-argument, the corresponding time fields of
the file referenced by the −r ref_file option-argument, or the −d date_time option-argument, as
specified in the following sections. If none of these are specified, touch shall use the current time.

For each file operand, touch shall perform actions equivalent to the following functions defined
in the System Interfaces volume of POSIX.1-2008:

1. If file does not exist:

a. The creat() function is called with the following arguments:

— The file operand is used as the path argument.

— The value of the bitwise-inclusive OR of S_IRUSR, S_IWUSR, S_IRGRP,
S_IWGRP, S_IROTH, and S_IWOTH is used as the mode argument.

b. The futimens() function is called with the following arguments:

— The file descriptor opened in step 1a.

— The access time and the modification time, set as described in the OPTIONS
section, are used as the first and second elements of the times array argument,
respectively.

2. If file exists, the utimensat() function is called with the following arguments:

a. The AT_FDCWD special value is used as the fd argument.

b. The file operand is used as the path argument.

c. The access time and the modification time, set as described in the OPTIONS
section, are used as the first and second elements of the times array argument,
respectively.

d. The flag argument is set to zero.

OPTIONS
The touch utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a Change the access time of file. Do not change the modification time unless −m is
also specified.

−c Do not create a specified file if it does not exist. Do not write any diagnostic
messages concerning this condition.

−d date_time Use the specified date_time instead of the current time. The option-argument shall
be a string of the form:

YYYY−MM−DDThh:mm:SS[.frac][tz]

or:

3236 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

107907

107908

107909

107910

107911

107912

107913

107914

107915

107916

107917

107918

107919

107920

107921

107922

107923

107924

107925

107926

107927

107928

107929

107930

107931

107932

107933

107934

107935

107936

107937

107938

107939

107940

107941

107942

107943

107944

107945

107946

Utilities touch

YYYY−MM−DDThh:mm:SS[,frac][tz]

where:

• YYYY are at least four decimal digits giving the year.

• MM, DD, hh, mm, and SS are as with −t time.

• T is the time designator, and can be replaced by a single <space>.

• [.frac] and [,frac] are either empty, or a <period> (’.’) or a <comma>
(’,’) respectively, followed by one or more decimal digits, specifying a
fractional second.

• [tz] is either empty, signifying local time, or the letter ’Z’, signifying UTC.
If [tz] is empty, the resulting time shall be affected by the value of the TZ
environment variable.

If the resulting time precedes the Epoch, the behavior is implementation-defined. If
the time cannot be represented as the file’s timestamp, touch shall exit immediately
with an error status.

−m Change the modification time of file. Do not change the access time unless −a is
also specified.

−r ref_file Use the corresponding time of the file named by the pathname ref_file instead of
the current time.

−t time Use the specified time instead of the current time. The option-argument shall be a
decimal number of the form:

[[CC]YY]MMDDhhmm[.SS]

where each two digits represents the following:

MM The month of the year [01,12].

DD The day of the month [01,31].

hh The hour of the day [00,23].

mm The minute of the hour [00,59].

CC The first two digits of the year (the century).

YY The second two digits of the year.

SS The second of the minute [00,60].

Both CC and YY shall be optional. If neither is given, the current year shall be
assumed. If YY is specified, but CC is not, CC shall be derived as follows:

If YY is: CC becomes:

[69,99] 19
[00,68] 20

Note: It is expected that in a future version of this standard the default century inferred
from a 2-digit year will change. (This would apply to all commands accepting a
2-digit year as input.)

The resulting time shall be affected by the value of the TZ environment variable. If
the resulting time value precedes the Epoch, the behavior is implementation-
defined. If the time is out of range for the file’s timestamp, touch shall exit

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3237

107947

107948

107949

107950

107951

107952

107953

107954

107955

107956

107957

107958

107959

107960

107961

107962

107963

107964

107965

107966

107967

107968

107969

107970

107971

107972

107973

107974

107975

107976

107977

107978

107979

107980

107981

107982

107983

107984

107985

107986

touch Utilities

immediately with an error status. The range of valid times past the Epoch is
implementation-defined, but it shall extend to at least the time 0 hours, 0 minutes,
0 seconds, January 1, 2038, Coordinated Universal Time. Some implementations
may not be able to represent dates beyond January 18, 2038, because they use
signed int as a time holder.

The range for SS is [00,60] rather than [00,59] because of leap seconds. If SS is 60,
and the resulting time, as affected by the TZ environment variable, does not refer
to a leap second, the resulting time shall be one second after a time where SS is 59.
If SS is not given a value, it is assumed to be zero.

If neither the −a nor −m options were specified, touch shall behave as if both the −a and −m
options were specified.

OPERANDS
The following operands shall be supported:

file A pathname of a file whose times shall be modified.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of touch:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TZ Determine the timezone to be used for interpreting the time option-argument. If TZ
is unset or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

3238 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

107987

107988

107989

107990

107991

107992

107993

107994

107995

107996

107997

107998

107999

108000

108001

108002

108003

108004

108005

108006

108007

108008

108009

108010

108011

108012

108013

108014

108015

108016

108017

108018

108019

108020

108021

108022

108023

108024

108025

108026

Utilities touch

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The utility executed successfully and all requested changes were made.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The interpretation of time is taken to be seconds since the Epoch (see XBD Section 4.15, on page
113). It should be noted that implementations conforming to the System Interfaces volume of
POSIX.1-2008 do not take leap seconds into account when computing seconds since the Epoch.
When SS=60 is used, the resulting time always refers to 1 plus seconds since the Epoch for a time
when SS=59.

Although the −t time option-argument specifies values in 1969, the access time and modification
time fields are defined in terms of seconds since the Epoch (00:00:00 on 1 January 1970 UTC).
Therefore, depending on the value of TZ when touch is run, there is never more than a few valid
hours in 1969 and there need not be any valid times in 1969.

One ambiguous situation occurs if −t time is not specified, −r ref_file is not specified, and the first
operand is an eight or ten-digit decimal number. A portable script can avoid this problem by
using:

touch − − file

or:

touch ./file

in this case.

If the T time designator is replaced by a <space> for the −d date_time option-argument, the
<space> must be quoted to prevent the shell from splitting the argument.

EXAMPLES
Create or update a file called dwc; the resulting file has both the last data modification and last
data access timestamps set to November 12, 2007 at 10:15:30 local time:

touch −d 2007-11-12T10:15:30 dwc

Create or update a file called nick; the resulting file has both the last data modification and last
data access timestamps set to November 12, 2007 at 10:15:30 UTC:

touch −d 2007-11-12T10:15:30Z nick

Create or update a file called gwc; the resulting file has both the last data modification and last
data access timestamps set to November 12, 2007 at 10:15:30 local time with a fractional second
timestamp of .002 seconds:

touch −d 2007-11-12T10:15:30,002 gwc

Create or update a file called ajosey; the resulting file has both the last data modification and
last data access timestamps set to November 12, 2007 at 10:15:30 UTC with a fractional second

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3239

108027

108028

108029

108030

108031

108032

108033

108034

108035

108036

108037

108038

108039

108040

108041

108042

108043

108044

108045

108046

108047

108048

108049

108050

108051

108052

108053

108054

108055

108056

108057

108058

108059

108060

108061

108062

108063

108064

108065

108066

108067

108068

touch Utilities

timestamp of .002 seconds:

touch −d "2007-11-12 10:15:30.002Z" ajosey

Create or update a file called cathy; the resulting file has both the last data modification and last
data access timestamps set to November 12, 2007 at 10:15:00 local time:

touch −t 200711121015 cathy

Create or update a file called drepper; the resulting file has both the last data modification and
last data access timestamps set to November 12, 2007 at 10:15:30 local time:

touch −t 200711121015.30 drepper

Create or update a file called ebb9; the resulting file has both the last data modification and last
data access timestamps set to November 12, 2007 at 10:15:30 local time:

touch −t 0711121015.30 ebb9

Create or update a file called eggert; the resulting file has the last data access timestamp set to
the corresponding time of the file named mark instead of the current time. If the file exists, the
last data modification time is not changed:

touch −a −r mark eggert

RATIONALE
The functionality of touch is described almost entirely through references to functions in the
System Interfaces volume of POSIX.1-2008. In this way, there is no duplication of effort required
for describing such side-effects as the relationship of user IDs to the user database, permissions,
and so on.

There are some significant differences between the touch utility in this volume of POSIX.1-2008
and those in System V and BSD systems. They are upwards-compatible for historical
applications from both implementations:

1. In System V, an ambiguity exists when a pathname that is a decimal number leads the
operands; it is treated as a time value. In BSD, no time value is allowed; files may only be
touched to the current time. The −t time construct solves these problems for future
conforming applications (note that the −t option is not historical practice).

2. The inclusion of the century digits, CC, is also new. Note that a ten-digit time value is
treated as if YY, and not CC, were specified. The caveat about the range of dates
following the Epoch was included as recognition that some implementations are not able
to represent dates beyond 18 January 2038 because they use signed int as a time holder.

The −r option was added because several comments requested this capability. This option was
named −f in an early proposal, but was changed because the −f option is used in the BSD
version of touch with a different meaning.

At least one historical implementation of touch incremented the exit code if −c was specified and
the file did not exist. This volume of POSIX.1-2008 requires exit status zero if no errors occur.

In previous version of the standard, if at least two operands are specified, and the first operand
is an eight or ten-digit decimal integer, the first operand was assumed to be a date_time operand.
This usage was removed in this version of the standard since it had been marked obsolescent
previously.

The −d date_time format is an ISO 8601: 2004 standard complete representation of date and time
extended format with an optional decimal point or <comma> followed by a string of digits
following the seconds portion to specify fractions of a second. It is not necessary to recognize

3240 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

108069

108070

108071

108072

108073

108074

108075

108076

108077

108078

108079

108080

108081

108082

108083

108084

108085

108086

108087

108088

108089

108090

108091

108092

108093

108094

108095

108096

108097

108098

108099

108100

108101

108102

108103

108104

108105

108106

108107

108108

108109

108110

108111

Utilities touch

"[+/-]hh:mm" and "[+/-]hh" to specify timezones other than local time and UTC. The T
time designator in the ISO 8601: 2004 standard extended format may be replaced by <space>.

FUTURE DIRECTIONS
None.

SEE ALSO
date

XBD Section 4.15 (on page 113), Chapter 8 (on page 173), Section 12.2 (on page 215), <sys/stat.h>

XSH creat(), futimens(), time(), utime()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The obsolescent date_time operand is removed.

The Open Group Corrigendum U027/1 is applied. This extends the range of valid time past the
Epoch to at least the time 0 hours, 0 minutes, 0 seconds, January 1, 2038, Coordinated Universal
Time. This is a new requirement on POSIX implementations.

The range for seconds is changed from [00,61] to [00,60] to align with the ISO/IEC 9899: 1999
standard, and to allow for positive leap seconds.

Issue 7
Austin Group Interpretation 1003.1-2001 #118 is applied.

Austin Group Interpretation 1003.1-2001 #193 is applied, adding support for subsecond
timestamps.

SD5-XCU-ERN-45 is applied, adding a new paragraph to the RATIONALE.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-110 is applied, updating the OPTIONS section.

Changes are made related to support for finegrained timestamps.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3241

108112

108113

108114

108115

108116

108117

108118

108119

108120

108121

108122

108123

108124

108125

108126

108127

108128

108129

108130

108131

108132

108133

108134

108135

108136

tput Utilities

NAME
tput — change terminal characteristics

SYNOPSIS
tput [−T type] operand...

DESCRIPTION
The tput utility shall display terminal-dependent information. The manner in which this
information is retrieved is unspecified. The information displayed shall clear the terminal
screen, initialize the user’s terminal, or reset the user’s terminal, depending on the operand
given. The exact consequences of displaying this information are unspecified.

OPTIONS
The tput utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−T type Indicate the type of terminal. If this option is not supplied and the TERM variable
is unset or null, an unspecified default terminal type shall be used. The setting of
type shall take precedence over the value in TERM.

OPERANDS
The following strings shall be supported as operands by the implementation in the POSIX locale:

clear Display the clear-screen sequence.

init Display the sequence that initializes the user’s terminal in an implementation-
defined manner.

reset Display the sequence that resets the user’s terminal in an implementation-defined
manner.

If a terminal does not support any of the operations described by these operands, this shall not
be considered an error condition.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of tput:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

3242 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

108137

108138

108139

108140

108141

108142

108143

108144

108145

108146

108147

108148

108149

108150

108151

108152

108153

108154

108155

108156

108157

108158

108159

108160

108161

108162

108163

108164

108165

108166

108167

108168

108169

108170

108171

108172

108173

108174

108175

108176

108177

Utilities tput

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TERM Determine the terminal type. If this variable is unset or null, and if the −T option is
not specified, an unspecified default terminal type shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If standard output is a terminal device, it may be used for writing the appropriate sequence to
clear the screen or reset or initialize the terminal. If standard output is not a terminal device,
undefined results occur.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The requested string was written successfully.

1 Unspecified.

2 Usage error.

3 No information is available about the specified terminal type.

4 The specified operand is invalid.

>4 An error occurred.

CONSEQUENCES OF ERRORS
If one of the operands is not available for the terminal, tput continues processing the remaining
operands.

APPLICATION USAGE
The difference between resetting and initializing a terminal is left unspecified, as they vary
greatly based on hardware types. In general, resetting is a more severe action.

Some terminals use control characters to perform the stated functions, and on such terminals it
might make sense to use tput to store the initialization strings in a file or environment variable
for later use. However, because other terminals might rely on system calls to do this work, the
standard output cannot be used in a portable manner, such as the following non-portable
constructs:

ClearVar=‘tput clear‘
tput reset | mailx −s "Wake Up" ddg

EXAMPLES

1. Initialize the terminal according to the type of terminal in the environmental variable
TERM. This command can be included in a .profile file.

tput init

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3243

108178

108179

108180

108181

108182

108183

108184

108185

108186

108187

108188

108189

108190

108191

108192

108193

108194

108195

108196

108197

108198

108199

108200

108201

108202

108203

108204

108205

108206

108207

108208

108209

108210

108211

108212

108213

108214

108215

108216

108217

tput Utilities

2. Reset a 450 terminal.

tput −T 450 reset

RATIONALE
The list of operands was reduced to a minimum for the following reasons:

• The only features chosen were those that were likely to be used by human users interacting
with a terminal.

• Specifying the full terminfo set was not considered desirable, but the standard developers
did not want to select among operands.

• This volume of POSIX.1-2008 does not attempt to provide applications with sophisticated
terminal handling capabilities, as that falls outside of its assigned scope and intersects with
the responsibilities of other standards bodies.

The difference between resetting and initializing a terminal is left unspecified as this varies
greatly based on hardware types. In general, resetting is a more severe action.

The exit status of 1 is historically reserved for finding out if a Boolean operand is not set.
Although the operands were reduced to a minimum, the exit status of 1 should still be reserved
for the Boolean operands, for those sites that wish to support them.

FUTURE DIRECTIONS
None.

SEE ALSO
stty , tabs

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

Issue 7
The tput utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

3244 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

108218

108219

108220

108221

108222

108223

108224

108225

108226

108227

108228

108229

108230

108231

108232

108233

108234

108235

108236

108237

108238

108239

108240

108241

108242

108243

108244

108245

Utilities tr

NAME
tr — translate characters

SYNOPSIS
tr [−c|−C] [−s] string1 string2

tr −s [−c|−C] string1

tr −d [−c|−C] string1

tr −ds [−c|−C] string1 string2

DESCRIPTION
The tr utility shall copy the standard input to the standard output with substitution or deletion
of selected characters. The options specified and the string1 and string2 operands shall control
translations that occur while copying characters and single-character collating elements.

OPTIONS
The tr utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−c Complement the set of values specified by string1. See the EXTENDED
DESCRIPTION section.

−C Complement the set of characters specified by string1. See the EXTENDED
DESCRIPTION section.

−d Delete all occurrences of input characters that are specified by string1.

−s Replace instances of repeated characters with a single character, as described in the
EXTENDED DESCRIPTION section.

OPERANDS
The following operands shall be supported:

string1, string2
Translation control strings. Each string shall represent a set of characters to be
converted into an array of characters used for the translation. For a detailed
description of how the strings are interpreted, see the EXTENDED DESCRIPTION
section.

STDIN
The standard input can be any type of file.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of tr:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of range expressions and equivalence classes.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3245

108246

108247

108248

108249

108250

108251

108252

108253

108254

108255

108256

108257

108258

108259

108260

108261

108262

108263

108264

108265

108266

108267

108268

108269

108270

108271

108272

108273

108274

108275

108276

108277

108278

108279

108280

108281

108282

108283

108284

108285

108286

tr Utilities

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments) and the behavior of character classes.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The tr output shall be identical to the input, with the exception of the specified transformations.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The operands string1 and string2 (if specified) define two arrays of characters. The constructs in
the following list can be used to specify characters or single-character collating elements. If any
of the constructs result in multi-character collating elements, tr shall exclude, without a
diagnostic, those multi-character elements from the resulting array.

character Any character not described by one of the conventions below shall represent itself.

\octal Octal sequences can be used to represent characters with specific coded values. An
octal sequence shall consist of a <backslash> followed by the longest sequence of
one, two, or three-octal-digit characters (01234567). The sequence shall cause the
value whose encoding is represented by the one, two, or three-digit octal integer to
be placed into the array. Multi-byte characters require multiple, concatenated
escape sequences of this type, including the leading <backslash> for each byte.

\character The <backslash>-escape sequences in XBD Table 5-1 (on page 121) (’\\’, ’\a’,
’\b’, ’\f’, ’\n’, ’\r’, ’\t’, ’\v’) shall be supported. The results of using any
other character, other than an octal digit, following the <backslash> are
unspecified. Also, if there is no character following the <backslash>, the results are
unspecified.

c−c In the POSIX locale, this construct shall represent the range of collating elements
between the range endpoints (as long as neither endpoint is an octal sequence of
the form \octal), inclusive, as defined by the collation sequence. The characters or
collating elements in the range shall be placed in the array in ascending collation
sequence. If the second endpoint precedes the starting endpoint in the collation
sequence, it is unspecified whether the range of collating elements is empty, or this
construct is treated as invalid. In locales other than the POSIX locale, this construct
has unspecified behavior.

If either or both of the range endpoints are octal sequences of the form \octal, this
shall represent the range of specific coded values between the two range
endpoints, inclusive.

3246 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

108287

108288

108289

108290

108291

108292

108293

108294

108295

108296

108297

108298

108299

108300

108301

108302

108303

108304

108305

108306

108307

108308

108309

108310

108311

108312

108313

108314

108315

108316

108317

108318

108319

108320

108321

108322

108323

108324

108325

108326

108327

108328

108329

Utilities tr

[:class:] Represents all characters belonging to the defined character class, as defined by the
current setting of the LC_CTYPE locale category. The following character class
names shall be accepted when specified in string1:

alnum blank digit lower punct upper
alpha cntrl graph print space xdigit

XSI In addition, character class expressions of the form [:name:] shall be recognized in
those locales where the name keyword has been given a charclass definition in the
LC_CTYPE category.

When both the −d and −s options are specified, any of the character class names
shall be accepted in string2. Otherwise, only character class names lower or upper
are valid in string2 and then only if the corresponding character class (upper and
lower, respectively) is specified in the same relative position in string1. Such a
specification shall be interpreted as a request for case conversion. When [:lower:]
appears in string1 and [:upper:] appears in string2, the arrays shall contain the
characters from the toupper mapping in the LC_CTYPE category of the current
locale. When [:upper:] appears in string1 and [:lower:] appears in string2, the arrays
shall contain the characters from the tolower mapping in the LC_CTYPE category
of the current locale. The first character from each mapping pair shall be in the
array for string1 and the second character from each mapping pair shall be in the
array for string2 in the same relative position.

Except for case conversion, the characters specified by a character class expression
shall be placed in the array in an unspecified order.

If the name specified for class does not define a valid character class in the current
locale, the behavior is undefined.

[=equiv=] Represents all characters or collating elements belonging to the same equivalence
class as equiv, as defined by the current setting of the LC_COLLATE locale category.
An equivalence class expression shall be allowed only in string1, or in string2 when
it is being used by the combined −d and −s options. The characters belonging to
the equivalence class shall be placed in the array in an unspecified order.

[x*n] Represents n repeated occurrences of the character x. Because this expression is
used to map multiple characters to one, it is only valid when it occurs in string2. If
n is omitted or is zero, it shall be interpreted as large enough to extend the
string2-based sequence to the length of the string1-based sequence. If n has a
leading zero, it shall be interpreted as an octal value. Otherwise, it shall be
interpreted as a decimal value.

When the −d option is not specified:

• Each input character found in the array specified by string1 shall be replaced by the
character in the same relative position in the array specified by string2. When the array
specified by string2 is shorter that the one specified by string1, the results are unspecified.

• If the −C option is specified, the complements of the characters specified by string1 (the set
of all characters in the current character set, as defined by the current setting of LC_CTYPE,
except for those actually specified in the string1 operand) shall be placed in the array in
ascending collation sequence, as defined by the current setting of LC_COLLATE.

• If the −c option is specified, the complement of the values specified by string1 shall be
placed in the array in ascending order by binary value.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3247

108330

108331

108332

108333

108334

108335

108336

108337

108338

108339

108340

108341

108342

108343

108344

108345

108346

108347

108348

108349

108350

108351

108352

108353

108354

108355

108356

108357

108358

108359

108360

108361

108362

108363

108364

108365

108366

108367

108368

108369

108370

108371

108372

108373

108374

tr Utilities

• Because the order in which characters specified by character class expressions or
equivalence class expressions is undefined, such expressions should only be used if the
intent is to map several characters into one. An exception is case conversion, as described
previously.

When the −d option is specified:

• Input characters found in the array specified by string1 shall be deleted.

• When the −C option is specified with −d, all characters except those specified by string1
shall be deleted. The contents of string2 are ignored, unless the −s option is also specified.

• When the −c option is specified with −d, all values except those specified by string1 shall
be deleted. The contents of string2 shall be ignored, unless the −s option is also specified.

• The same string cannot be used for both the −d and the −s option; when both options are
specified, both string1 (used for deletion) and string2 (used for squeezing) shall be
required.

When the −s option is specified, after any deletions or translations have taken place, repeated
sequences of the same character shall be replaced by one occurrence of the same character, if the
character is found in the array specified by the last operand. If the last operand contains a
character class, such as the following example:

tr −s ’[:space:]’

the last operand’s array shall contain all of the characters in that character class. However, in a
case conversion, as described previously, such as:

tr −s ’[:upper:]’ ’[:lower:]’

the last operand’s array shall contain only those characters defined as the second characters in
each of the toupper or tolower character pairs, as appropriate.

An empty string used for string1 or string2 produces undefined results.

EXIT STATUS
The following exit values shall be returned:

0 All input was processed successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
If necessary, string1 and string2 can be quoted to avoid pattern matching by the shell.

If an ordinary digit (representing itself) is to follow an octal sequence, the octal sequence must
use the full three digits to avoid ambiguity.

When string2 is shorter than string1, a difference results between historical System V and BSD
systems. A BSD system pads string2 with the last character found in string2. Thus, it is possible
to do the following:

tr 0123456789 d

which would translate all digits to the letter ’d’. Since this area is specifically unspecified in
this volume of POSIX.1-2008, both the BSD and System V behaviors are allowed, but a
conforming application cannot rely on the BSD behavior. It would have to code the example in
the following way:

3248 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

108375

108376

108377

108378

108379

108380

108381

108382

108383

108384

108385

108386

108387

108388

108389

108390

108391

108392

108393

108394

108395

108396

108397

108398

108399

108400

108401

108402

108403

108404

108405

108406

108407

108408

108409

108410

108411

108412

108413

108414

108415

108416

Utilities tr

tr 0123456789 ’[d*]’

It should be noted that, despite similarities in appearance, the string operands used by tr are not
regular expressions.

Unlike some historical implementations, this definition of the tr utility correctly processes NUL
characters in its input stream. NUL characters can be stripped by using:

tr −d ’\000’

EXAMPLES

1. The following example creates a list of all words in file1 one per line in file2, where a
word is taken to be a maximal string of letters.

tr −cs "[:alpha:]" "[\n*]" <file1 >file2

2. The next example translates all lowercase characters in file1 to uppercase and writes the
results to standard output.

tr "[:lower:]" "[:upper:]" <file1

3. This example uses an equivalence class to identify accented variants of the base character
’e’ in file1, which are stripped of diacritical marks and written to file2.

tr "[=e=]" "[e*]" <file1 >file2

RATIONALE
In some early proposals, an explicit option −n was added to disable the historical behavior of
stripping NUL characters from the input. It was considered that automatically stripping NUL
characters from the input was not correct functionality. However, the removal of −n in a later
proposal does not remove the requirement that tr correctly process NUL characters in its input
stream. NUL characters can be stripped by using tr −d ’\000’.

Historical implementations of tr differ widely in syntax and behavior. For example, the BSD
version has not needed the bracket characters for the repetition sequence. The tr utility syntax is
based more closely on the System V and XPG3 model while attempting to accommodate
historical BSD implementations. In the case of the short string2 padding, the decision was to
unspecify the behavior and preserve System V and XPG3 scripts, which might find difficulty
with the BSD method. The assumption was made that BSD users of tr have to make
accommodations to meet the syntax defined here. Since it is possible to use the repetition
sequence to duplicate the desired behavior, whereas there is no simple way to achieve the
System V method, this was the correct, if not desirable, approach.

The use of octal values to specify control characters, while having historical precedents, is not
portable. The introduction of escape sequences for control characters should provide the
necessary portability. It is recognized that this may cause some historical scripts to break.

An early proposal included support for multi-character collating elements. It was pointed out
that, while tr does employ some syntactical elements from REs, the aim of tr is quite different;
ranges, for example, do not have a similar meaning (‘‘any of the chars in the range matches’’,
versus ‘‘translate each character in the range to the output counterpart’’). As a result, the
previously included support for multi-character collating elements has been removed. What
remains are ranges in current collation order (to support, for example, accented characters),
character classes, and equivalence classes.

In XPG3 the [:class:] and [=equiv=] conventions are shown with double brackets, as in RE syntax.
However, tr does not implement RE principles; it just borrows part of the syntax. Consequently,
[:class:] and [=equiv=] should be regarded as syntactical elements on a par with [x*n], which is

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3249

108417

108418

108419

108420

108421

108422

108423

108424

108425

108426

108427

108428

108429

108430

108431

108432

108433

108434

108435

108436

108437

108438

108439

108440

108441

108442

108443

108444

108445

108446

108447

108448

108449

108450

108451

108452

108453

108454

108455

108456

108457

108458

108459

108460

tr Utilities

not an RE bracket expression.

The standard developers will consider changes to tr that allow it to translate characters between
different character encodings, or they will consider providing a new utility to accomplish this.

On historical System V systems, a range expression requires enclosing square-brackets, such as:

tr ’[a-z]’ ’[A-Z]’

However, BSD-based systems did not require the brackets, and this convention is used here to
avoid breaking large numbers of BSD scripts:

tr a-z A-Z

The preceding System V script will continue to work because the brackets, treated as regular
characters, are translated to themselves. However, any System V script that relied on "a-z"
representing the three characters ’a’, ’−’, and ’z’ have to be rewritten as "az−".

The ISO POSIX-2: 1993 standard had a −c option that behaved similarly to the −C option, but did
not supply functionality equivalent to the −c option specified in POSIX.1-2008. This meant that
historical practice of being able to specify tr −cd\000−\177 (which would delete all bytes with
the top bit set) would have no effect because, in the C locale, bytes with the values octal 200 to
octal 377 are not characters.

The earlier version also said that octal sequences referred to collating elements and could be
placed adjacent to each other to specify multi-byte characters. However, it was noted that this
caused ambiguities because tr would not be able to tell whether adjacent octal sequences were
intending to specify multi-byte characters or multiple single byte characters. POSIX.1-2008
specifies that octal sequences always refer to single byte binary values when used to specify an
endpoint of a range of collating elements.

Earlier versions of this standard allowed for implementations with bytes other than eight bits,
but this has been modified in this version.

FUTURE DIRECTIONS
None.

SEE ALSO
sed

XBD Table 5-1 (on page 121), Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The −C operand is added, and the description of the −c operand is changed to align with the
IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/31 is applied, removing text describing
behavior on systems with bytes consisting of more than eight bits.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/32 is applied, updating an example in the
EXAMPLES section to avoid using unspecified behavior.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/33 is applied, making a correction to the
RATIONALE.

3250 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

108461

108462

108463

108464

108465

108466

108467

108468

108469

108470

108471

108472

108473

108474

108475

108476

108477

108478

108479

108480

108481

108482

108483

108484

108485

108486

108487

108488

108489

108490

108491

108492

108493

108494

108495

108496

108497

108498

108499

108500

108501

Utilities tr

Issue 7
SD5-XCU-ERN-30 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Austin Group Interpretation 1003.1-2001 #132 is applied, adding rationale to the \character
construct.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3251

108502

108503

108504

108505

108506

true Utilities

NAME
true — return true value

SYNOPSIS
true

DESCRIPTION
The true utility shall return with exit code zero.

OPTIONS
None.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
Not used.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
Zero.

CONSEQUENCES OF ERRORS
None.

APPLICATION USAGE
This utility is typically used in shell scripts, as shown in the EXAMPLES section. The special
built-in utility : is sometimes more efficient than true.

EXAMPLES
This command is executed forever:

while true
do

command
done

3252 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

108507

108508

108509

108510

108511

108512

108513

108514

108515

108516

108517

108518

108519

108520

108521

108522

108523

108524

108525

108526

108527

108528

108529

108530

108531

108532

108533

108534

108535

108536

108537

108538

108539

108540

108541

108542

108543

108544

108545

Utilities true

RATIONALE
The true utility has been retained in this volume of POSIX.1-2008, even though the shell special
built-in : provides similar functionality, because true is widely used in historical scripts and is
less cryptic to novice script readers.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.9 (on page 2316), false

CHANGE HISTORY
First released in Issue 2.

Issue 6
IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/39 is applied, replacing the terms ‘‘None’’
and ‘‘Default’’ from the STDERR and EXIT STATUS sections, respectively, with terms as defined
in Section 1.4 (on page 2288).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3253

108546

108547

108548

108549

108550

108551

108552

108553

108554

108555

108556

108557

108558

108559

tsort Utilities

NAME
tsort — topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
The tsort utility shall write to standard output a totally ordered list of items consistent with a
partial ordering of items contained in the input.

The application shall ensure that the input consists of pairs of items (non-empty strings)
separated by <blank> characters. Pairs of different items indicate ordering. Pairs of identical
items indicate presence, but not ordering.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

file A pathname of a text file to order. If no file operand is given, the standard input
shall be used.

STDIN
The standard input shall be used if no file operand is specified, and shall be used if the file
operand is ’−’ and the implementation treats the ’−’ as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
The input file shall be a text file.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of tsort:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be a text file consisting of the order list produced from the partially
ordered input.

3254 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

108560

108561

108562

108563

108564

108565

108566

108567

108568

108569

108570

108571

108572

108573

108574

108575

108576

108577

108578

108579

108580

108581

108582

108583

108584

108585

108586

108587

108588

108589

108590

108591

108592

108593

108594

108595

108596

108597

108598

108599

108600

Utilities tsort

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The LC_COLLATE variable need not affect the actions of tsort. The output ordering is not
lexicographic, but depends on the pairs of items given as input.

EXAMPLES
The command:

tsort <<EOF
a b c c d e
g g
f g e f
h h
EOF

produces the output:

a

b

c

d

e

f

g

h

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Chapter 8 (on page 173)

CHANGE HISTORY
First released in Issue 2.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3255

108601

108602

108603

108604

108605

108606

108607

108608

108609

108610

108611

108612

108613

108614

108615

108616

108617

108618

108619

108620

108621

108622

108623

108624

108625

108626

108627

108628

108629

108630

108631

108632

108633

108634

108635

108636

108637

108638

108639

108640

tsort Utilities

Issue 6
The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

The tsort utility is moved from the XSI option to the Base.

3256 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

108641

108642

108643

108644

108645

Utilities tty

NAME
tty — return user’s terminal name

SYNOPSIS
tty

DESCRIPTION
The tty utility shall write to the standard output the name of the terminal that is open as
standard input. The name that is used shall be equivalent to the string that would be returned by
the ttyname() function defined in the System Interfaces volume of POSIX.1-2008.

OPTIONS
The tty utility shall conform to XBD Section 12.2 (on page 215).

OPERANDS
None.

STDIN
While no input is read from standard input, standard input shall be examined to determine
whether or not it is a terminal, and, if so, to determine the name of the terminal.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of tty:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If standard input is a terminal device, a pathname of the terminal as specified by the ttyname()
function defined in the System Interfaces volume of POSIX.1-2008 shall be written in the
following format:

"%s\n", <terminal name>

Otherwise, a message shall be written indicating that standard input is not connected to a
terminal. In the POSIX locale, the tty utility shall use the format:

"not a tty\n"

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3257

108646

108647

108648

108649

108650

108651

108652

108653

108654

108655

108656

108657

108658

108659

108660

108661

108662

108663

108664

108665

108666

108667

108668

108669

108670

108671

108672

108673

108674

108675

108676

108677

108678

108679

108680

108681

108682

108683

108684

108685

108686

108687

tty Utilities

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Standard input is a terminal.

1 Standard input is not a terminal.

>1 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility checks the status of the file open as standard input against that of an
implementation-defined set of files. It is possible that no match can be found, or that the match
found need not be the same file as that which was opened for standard input (although they are
the same device).

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH isatty(), ttyname()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The SYNOPSIS is changed to indicate two forms of the command, with the second form marked
as obsolete. This is a clarification and does not change the functionality published in previous
issues.

Issue 6
The obsolescent −s option is removed.

3258 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

108688

108689

108690

108691

108692

108693

108694

108695

108696

108697

108698

108699

108700

108701

108702

108703

108704

108705

108706

108707

108708

108709

108710

108711

108712

108713

108714

108715

108716

108717

108718

108719

108720

108721

108722

Utilities type

NAME
type — write a description of command type

SYNOPSIS
XSI type name...

DESCRIPTION
The type utility shall indicate how each argument would be interpreted if used as a command
name.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

name A name to be interpreted.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of type:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PA TH Determine the location of name, as described in XBD Chapter 8 (on page 173).

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output of type contains information about each operand in an unspecified format.
The information provided typically identifies the operand as a shell built-in, function, alias, or
keyword, and where applicable, may display the operand’s pathname.

STDERR
The standard error shall be used only for diagnostic messages.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3259

108723

108724

108725

108726

108727

108728

108729

108730

108731

108732

108733

108734

108735

108736

108737

108738

108739

108740

108741

108742

108743

108744

108745

108746

108747

108748

108749

108750

108751

108752

108753

108754

108755

108756

108757

108758

108759

108760

108761

type Utilities

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Since type must be aware of the contents of the current shell execution environment (such as the
lists of commands, functions, and built-ins processed by hash), it is always provided as a shell
regular built-in. If it is called in a separate utility execution environment, such as one of the
following:

nohup type writer
find . −type f | xargs type

it might not produce accurate results.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
command , hash

XBD Chapter 8 (on page 173)

CHANGE HISTORY
First released in Issue 2.

3260 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

108762

108763

108764

108765

108766

108767

108768

108769

108770

108771

108772

108773

108774

108775

108776

108777

108778

108779

108780

108781

108782

108783

108784

108785

108786

108787

108788

108789

108790

Utilities ulimit

NAME
ulimit — set or report file size limit

SYNOPSIS
XSI ulimit [−f] [blocks]

DESCRIPTION
The ulimit utility shall set or report the file-size writing limit imposed on files written by the
shell and its child processes (files of any size may be read). Only a process with appropriate
privileges can increase the limit.

OPTIONS
The ulimit utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−f Set (or report, if no blocks operand is present), the file size limit in blocks. The −f
option shall also be the default case.

OPERANDS
The following operand shall be supported:

blocks The number of 512-byte blocks to use as the new file size limit.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of ulimit:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be used when no blocks operand is present. If the current number of
blocks is limited, the number of blocks in the current limit shall be written in the following
format:

"%d\n", <number of 512-byte blocks>

If there is no current limit on the number of blocks, in the POSIX locale the following format

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3261

108791

108792

108793

108794

108795

108796

108797

108798

108799

108800

108801

108802

108803

108804

108805

108806

108807

108808

108809

108810

108811

108812

108813

108814

108815

108816

108817

108818

108819

108820

108821

108822

108823

108824

108825

108826

108827

108828

108829

108830

108831

108832

ulimit Utilities

shall be used:

"unlimited\n"

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 A request for a higher limit was rejected or an error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Since ulimit affects the current shell execution environment, it is always provided as a shell
regular built-in. If it is called in a separate utility execution environment, such as one of the
following:

nohup ulimit −f 10000
env ulimit 10000

it does not affect the file size limit of the caller’s environment.

Once a limit has been decreased by a process, it cannot be increased (unless appropriate
privileges are involved), even back to the original system limit.

EXAMPLES
Set the file size limit to 51 200 bytes:

ulimit −f 100

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH ulimit()

CHANGE HISTORY
First released in Issue 2.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3262 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

108833

108834

108835

108836

108837

108838

108839

108840

108841

108842

108843

108844

108845

108846

108847

108848

108849

108850

108851

108852

108853

108854

108855

108856

108857

108858

108859

108860

108861

108862

108863

108864

108865

108866

108867

108868

108869

Utilities umask

NAME
umask — get or set the file mode creation mask

SYNOPSIS
umask [−S] [mask]

DESCRIPTION
The umask utility shall set the file mode creation mask of the current shell execution environment
(see Section 2.12, on page 2331) to the value specified by the mask operand. This mask shall affect
the initial value of the file permission bits of subsequently created files. If umask is called in a
subshell or separate utility execution environment, such as one of the following:

(umask 002)
nohup umask ...
find . −exec umask ... \;

it shall not affect the file mode creation mask of the caller’s environment.

If the mask operand is not specified, the umask utility shall write to standard output the value of
the file mode creation mask of the invoking process.

OPTIONS
The umask utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−S Produce symbolic output.

The default output style is unspecified, but shall be recognized on a subsequent invocation of
umask on the same system as a mask operand to restore the previous file mode creation mask.

OPERANDS
The following operand shall be supported:

mask A string specifying the new file mode creation mask. The string is treated in the
same way as the mode operand described in the EXTENDED DESCRIPTION
section for chmod.

For a symbolic_mode value, the new value of the file mode creation mask shall be
the logical complement of the file permission bits portion of the file mode specified
by the symbolic_mode string.

In a symbolic_mode value, the permissions op characters ’+’ and ’−’ shall be
interpreted relative to the current file mode creation mask; ’+’ shall cause the bits
for the indicated permissions to be cleared in the mask; ’−’ shall cause the bits for
the indicated permissions to be set in the mask.

The interpretation of mode values that specify file mode bits other than the file
permission bits is unspecified.

In the octal integer form of mode, the specified bits are set in the file mode creation
mask.

The file mode creation mask shall be set to the resulting numeric value.

The default output of a prior invocation of umask on the same system with no
operand also shall be recognized as a mask operand.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3263

108870

108871

108872

108873

108874

108875

108876

108877

108878

108879

108880

108881

108882

108883

108884

108885

108886

108887

108888

108889

108890

108891

108892

108893

108894

108895

108896

108897

108898

108899

108900

108901

108902

108903

108904

108905

108906

108907

108908

108909

umask Utilities

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of umask:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When the mask operand is not specified, the umask utility shall write a message to standard
output that can later be used as a umask mask operand.

If −S is specified, the message shall be in the following format:

"u=%s,g=%s,o=%s\n", <owner permissions>, <group permissions>,
<other permissions>

where the three values shall be combinations of letters from the set {r, w, x}; the presence of a
letter shall indicate that the corresponding bit is clear in the file mode creation mask.

If a mask operand is specified, there shall be no output written to standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The file mode creation mask was successfully changed, or no mask operand was supplied.

>0 An error occurred.

3264 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

108910

108911

108912

108913

108914

108915

108916

108917

108918

108919

108920

108921

108922

108923

108924

108925

108926

108927

108928

108929

108930

108931

108932

108933

108934

108935

108936

108937

108938

108939

108940

108941

108942

108943

108944

108945

108946

108947

108948

Utilities umask

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Since umask affects the current shell execution environment, it is generally provided as a shell
regular built-in.

In contrast to the negative permission logic provided by the file mode creation mask and the
octal number form of the mask argument, the symbolic form of the mask argument specifies those
permissions that are left alone.

EXAMPLES
Either of the commands:

umask a=rx,ug+w

umask 002

sets the mode mask so that subsequently created files have their S_IWOTH bit cleared.

After setting the mode mask with either of the above commands, the umask command can be
used to write out the current value of the mode mask:

$ umask
0002

(The output format is unspecified, but historical implementations use the octal integer mode
format.)

$ umask −S
u=rwx,g=rwx,o=rx

Either of these outputs can be used as the mask operand to a subsequent invocation of the umask
utility.

Assuming the mode mask is set as above, the command:

umask g−w

sets the mode mask so that subsequently created files have their S_IWGRP and S_IWOTH bits
cleared.

The command:

umask − − −w

sets the mode mask so that subsequently created files have all their write bits cleared. Note that
mask operands −r, −w, −x or anything beginning with a <hyphen>, must be preceded by "− −" to
keep it from being interpreted as an option.

RATIONALE
Since umask affects the current shell execution environment, it is generally provided as a shell
regular built-in. If it is called in a subshell or separate utility execution environment, such as one
of the following:

(umask 002)
nohup umask ...
find . −exec umask ... \;

it does not affect the file mode creation mask of the environment of the caller.

The description of the historical utility was modified to allow it to use the symbolic modes of

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3265

108949

108950

108951

108952

108953

108954

108955

108956

108957

108958

108959

108960

108961

108962

108963

108964

108965

108966

108967

108968

108969

108970

108971

108972

108973

108974

108975

108976

108977

108978

108979

108980

108981

108982

108983

108984

108985

108986

108987

108988

108989

umask Utilities

chmod. The −s option used in early proposals was changed to −S because −s could be confused
with a symbolic_mode form of mask referring to the S_ISUID and S_ISGID bits.

The default output style is unspecified to permit implementors to provide migration to the new
symbolic style at the time most appropriate to their users. A −o flag to force octal mode output
was omitted because the octal mode may not be sufficient to specify all of the information that
may be present in the file mode creation mask when more secure file access permission checks
are implemented.

It has been suggested that trusted systems developers might appreciate ameliorating the
requirement that the mode mask ‘‘affects’’ the file access permissions, since it seems access
control lists might replace the mode mask to some degree. The wording has been changed to say
that it affects the file permission bits, and it leaves the details of the behavior of how they affect
the file access permissions to the description in the System Interfaces volume of POSIX.1-2008.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2297), chmod

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH umask()

CHANGE HISTORY
First released in Issue 2.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The octal mode is supported.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/34 is applied, making a correction to the
RATIONALE.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3266 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

108990

108991

108992

108993

108994

108995

108996

108997

108998

108999

109000

109001

109002

109003

109004

109005

109006

109007

109008

109009

109010

109011

109012

109013

109014

109015

109016

109017

Utilities unalias

NAME
unalias — remove alias definitions

SYNOPSIS
unalias alias-name...

unalias −a

DESCRIPTION
The unalias utility shall remove the definition for each alias name specified. See Section 2.3.1 (on
page 2300). The aliases shall be removed from the current shell execution environment; see
Section 2.12 (on page 2331).

OPTIONS
The unalias utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−a Remove all alias definitions from the current shell execution environment.

OPERANDS
The following operand shall be supported:

alias-name The name of an alias to be removed.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of unalias:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3267

109018

109019

109020

109021

109022

109023

109024

109025

109026

109027

109028

109029

109030

109031

109032

109033

109034

109035

109036

109037

109038

109039

109040

109041

109042

109043

109044

109045

109046

109047

109048

109049

109050

109051

109052

109053

109054

109055

109056

109057

unalias Utilities

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 One of the alias-name operands specified did not represent a valid alias definition, or an
error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Since unalias affects the current shell execution environment, it is generally provided as a shell
regular built-in.

EXAMPLES
None.

RATIONALE
The unalias description is based on that from historical KornShell implementations. Known
differences exist between that and the C shell. The KornShell version was adopted to be
consistent with all the other KornShell features in this volume of POSIX.1-2008, such as
command line editing.

The −a option is the equivalent of the unalias * form of the C shell and is provided to address
security concerns about unknown aliases entering the environment of a user (or application)
through the allowable implementation-defined predefined alias route or as a result of an ENV
file. (Although unalias could be used to simplify the ‘‘secure’’ shell script shown in the command
rationale, it does not obviate the need to quote all command names. An initial call to unalias −a
would have to be quoted in case there was an alias for unalias.)

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2297), alias

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

Issue 7
The unalias utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

3268 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

109058

109059

109060

109061

109062

109063

109064

109065

109066

109067

109068

109069

109070

109071

109072

109073

109074

109075

109076

109077

109078

109079

109080

109081

109082

109083

109084

109085

109086

109087

109088

109089

109090

109091

109092

109093

109094

109095

109096

Utilities uname

NAME
uname — return system name

SYNOPSIS
uname [−amnrsv]

DESCRIPTION
By default, the uname utility shall write the operating system name to standard output. When
options are specified, symbols representing one or more system characteristics shall be written to
the standard output. The format and contents of the symbols are implementation-defined. On
systems conforming to the System Interfaces volume of POSIX.1-2008, the symbols written shall
be those supported by the uname() function as defined in the System Interfaces volume of
POSIX.1-2008.

OPTIONS
The uname utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a Behave as though all of the options −mnrsv were specified.

−m Write the name of the hardware type on which the system is running to standard
output.

−n Write the name of this node within an implementation-defined communications
network.

−r Write the current release level of the operating system implementation.

−s Write the name of the implementation of the operating system.

−v Write the current version level of this release of the operating system
implementation.

If no options are specified, the uname utility shall write the operating system name, as if the −s
option had been specified.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of uname:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3269

109097

109098

109099

109100

109101

109102

109103

109104

109105

109106

109107

109108

109109

109110

109111

109112

109113

109114

109115

109116

109117

109118

109119

109120

109121

109122

109123

109124

109125

109126

109127

109128

109129

109130

109131

109132

109133

109134

109135

109136

109137

uname Utilities

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
By default, the output shall be a single line of the following form:

"%s\n", <sysname>

If the −a option is specified, the output shall be a single line of the following form:

"%s %s %s %s %s\n", <sysname>, <nodename>, <release>,
<version>, <machine>

Additional implementation-defined symbols may be written; all such symbols shall be written at
the end of the line of output before the <newline>.

If options are specified to select different combinations of the symbols, only those symbols shall
be written, in the order shown above for the −a option. If a symbol is not selected for writing, its
corresponding trailing <blank> characters also shall not be written.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The requested information was successfully written.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Note that any of the symbols could include embedded <space> characters, which may affect
parsing algorithms if multiple options are selected for output.

The node name is typically a name that the system uses to identify itself for inter-system
communication addressing.

EXAMPLES
The following command:

uname −sr

writes the operating system name and release level, separated by one or more <blank>
characters.

3270 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

109138

109139

109140

109141

109142

109143

109144

109145

109146

109147

109148

109149

109150

109151

109152

109153

109154

109155

109156

109157

109158

109159

109160

109161

109162

109163

109164

109165

109166

109167

109168

109169

109170

109171

109172

109173

109174

109175

109176

Utilities uname

RATIONALE
It was suggested that this utility cannot be used portably since the format of the symbols is
implementation-defined. The POSIX.1 working group could not achieve consensus on defining
these formats in the underlying uname() function, and there was no expectation that this volume
of POSIX.1-2008 would be any more successful. Some applications may still find this historical
utility of value. For example, the symbols could be used for system log entries or for comparison
with operator or user input.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH uname()

CHANGE HISTORY
First released in Issue 2.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3271

109177

109178

109179

109180

109181

109182

109183

109184

109185

109186

109187

109188

109189

109190

uncompress Utilities

NAME
uncompress — expand compressed data

SYNOPSIS
XSI uncompress [−cfv] [file...]

DESCRIPTION
The uncompress utility shall restore files to their original state after they have been compressed
using the compress utility. If no files are specified, the standard input shall be uncompressed to
the standard output. If the invoking process has appropriate privileges, the ownership, modes,
access time, and modification time of the original file shall be preserved.

This utility shall support the uncompressing of any files produced by the compress utility on the
same implementation. For files produced by compress on other systems, uncompress supports 9 to
14-bit compression (see compress , −b); it is implementation-defined whether values of −b greater
than 14 are supported.

OPTIONS
The uncompress utility shall conform to XBD Section 12.2 (on page 215), except that Guideline 1
does apply since the utility name has ten letters.

The following options shall be supported:

−c Write to standard output; no files are changed.

−f Do not prompt for overwriting files. Except when run in the background, if −f is
not given the user shall be prompted as to whether an existing file should be
overwritten. If the standard input is not a terminal and −f is not given, uncompress
shall write a diagnostic message to standard error and exit with a status greater
than zero.

−v Write messages to standard error concerning the expansion of each file.

OPERANDS
The following operand shall be supported:

file A pathname of a file. If file already has the .Z suffix specified, it shall be used as the
input file and the output file shall be named file with the .Z suffix removed.
Otherwise, file shall be used as the name of the output file and file with the .Z
suffix appended shall be used as the input file.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is ’−’.

INPUT FILES
Input files shall be in the format produced by the compress utility.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of uncompress:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

3272 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

109191

109192

109193

109194

109195

109196

109197

109198

109199

109200

109201

109202

109203

109204

109205

109206

109207

109208

109209

109210

109211

109212

109213

109214

109215

109216

109217

109218

109219

109220

109221

109222

109223

109224

109225

109226

109227

109228

109229

109230

109231

Utilities uncompress

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When there are no file operands or the −c option is specified, the uncompressed output is written
to standard output.

STDERR
Prompts shall be written to the standard error output under the conditions specified in the
DESCRIPTION and OPTIONS sections. The prompts shall contain the file pathname, but their
format is otherwise unspecified. Otherwise, the standard error output shall be used only for
diagnostic messages.

OUTPUT FILES
Output files are the same as the respective input files to compress.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
The input file remains unmodified.

APPLICATION USAGE
The limit of 14 on the compress −b bits argument is to achieve portability to all systems (within
the restrictions imposed by the lack of an explicit published file format). Some implementations
based on 16-bit architectures cannot support 15 or 16-bit uncompression.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
compress , zcat

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3273

109232

109233

109234

109235

109236

109237

109238

109239

109240

109241

109242

109243

109244

109245

109246

109247

109248

109249

109250

109251

109252

109253

109254

109255

109256

109257

109258

109259

109260

109261

109262

109263

109264

109265

109266

109267

109268

109269

109270

109271

uncompress Utilities

CHANGE HISTORY
First released in Issue 4.

Issue 6
The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
SD5-XCU-ERN-26 is applied, clarifying that this utility is allowed to break the Utility Syntax
Guidelines by having ten letters in its name.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3274 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

109272

109273

109274

109275

109276

109277

109278

109279

Utilities unexpand

NAME
unexpand — convert spaces to tabs

SYNOPSIS
unexpand [−a|−t tablist] [file...]

DESCRIPTION
The unexpand utility shall copy files or standard input to standard output, converting <blank>
characters at the beginning of each line into the maximum number of <tab> characters followed
by the minimum number of <space> characters needed to fill the same column positions
originally filled by the translated <blank> characters. By default, tabstops shall be set at every
eighth column position. Each <backspace> shall be copied to the output, and shall cause the
column position count for tab calculations to be decremented; the count shall never be
decremented to a value less than one.

OPTIONS
The unexpand utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−a In addition to translating <blank> characters at the beginning of each line,
translate all sequences of two or more <blank> characters immediately preceding a
tab stop to the maximum number of <tab> characters followed by the minimum
number of <space> characters needed to fill the same column positions originally
filled by the translated <blank> characters.

−t tablist Specify the tab stops. The application shall ensure that the tablist option-argument
is a single argument consisting of a single positive decimal integer or multiple
positive decimal integers, separated by <blank> or <comma> characters, in
ascending order. If a single number is given, tabs shall be set tablist column
positions apart instead of the default 8. If multiple numbers are given, the tabs
shall be set at those specific column positions.

The application shall ensure that each tab-stop position N is an integer value
greater than zero, and the list shall be in strictly ascending order. This is taken to
mean that, from the start of a line of output, tabbing to position N shall cause the
next character output to be in the (N+1)th column position on that line. When the
−t option is not specified, the default shall be the equivalent of specifying −t 8
(except for the interaction with −a, described below).

No <space>-to-<tab> conversions shall occur for characters at positions beyond
the last of those specified in a multiple tab-stop list.

When −t is specified, the presence or absence of the −a option shall be ignored;
conversion shall not be limited to the processing of leading <blank> characters.

OPERANDS
The following operand shall be supported:

file A pathname of a text file to be used as input.

STDIN
See the INPUT FILES section.

INPUT FILES
The input files shall be text files.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3275

109280

109281

109282

109283

109284

109285

109286

109287

109288

109289

109290

109291

109292

109293

109294

109295

109296

109297

109298

109299

109300

109301

109302

109303

109304

109305

109306

109307

109308

109309

109310

109311

109312

109313

109314

109315

109316

109317

109318

109319

109320

109321

109322

unexpand Utilities

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of unexpand:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files), the processing of <tab> and <space> characters, and
for the determination of the width in column positions each character would
occupy on an output device.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be equivalent to the input files with the specified <space>-to-<tab>
conversions.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
One non-intuitive aspect of unexpand is its restriction to leading <space> characters when neither
−a nor −t is specified. Users who always want to convert all <space> characters in a file can
easily alias unexpand to use the −a or −t 8 option.

EXAMPLES
None.

RATIONALE
On several occasions, consideration was given to adding a −t option to the unexpand utility to
complement the −t in expand (see expand). The historical intent of unexpand was to translate
multiple <blank> characters into tab stops, where tab stops were a multiple of eight column

3276 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

109323

109324

109325

109326

109327

109328

109329

109330

109331

109332

109333

109334

109335

109336

109337

109338

109339

109340

109341

109342

109343

109344

109345

109346

109347

109348

109349

109350

109351

109352

109353

109354

109355

109356

109357

109358

109359

109360

109361

109362

109363

109364

109365

Utilities unexpand

positions on most UNIX systems. An early proposal omitted −t because it seemed outside the
scope of the User Portability Utilities option; it was not described in any of the base documents.
However, hard-coding tab stops every eight columns was not suitable for the international
community and broke historical precedents for some vendors in the FORTRAN community, so
−t was restored in conjunction with the list of valid extension categories considered by the
standard developers. Thus, unexpand is now the logical converse of expand.

FUTURE DIRECTIONS
None.

SEE ALSO
expand , tabs

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The definition of the LC_CTYPE environment variable is changed to align with the
IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The unexpand utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3277

109366

109367

109368

109369

109370

109371

109372

109373

109374

109375

109376

109377

109378

109379

109380

109381

109382

109383

109384

109385

109386

109387

unget Utilities

NAME
unget — undo a previous get of an SCCS file (DEVELOPMENT)

SYNOPSIS
XSI unget [−ns] [−r SID] file...

DESCRIPTION
The unget utility shall reverse the effect of a get −e done prior to creating the intended new delta.

OPTIONS
The unget utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−r SID Uniquely identify which delta is no longer intended. (This would have been
specified by get as the new delta.) The use of this option is necessary only if two or
more outstanding get commands for editing on the same SCCS file were done by
the same person (login name).

−s Suppress the writing to standard output of the intended delta’s SID.

−n Retain the file that was obtained by get, which would normally be removed from
the current directory.

OPERANDS
The following operands shall be supported:

file A pathname of an existing SCCS file or a directory. If file is a directory, the unget
utility shall behave as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the pathname does not begin
with s.) and unreadable files shall be silently ignored.

If exactly one file operand appears, and it is ’−’, the standard input shall be read;
each line of the standard input shall be taken to be the name of an SCCS file to be
processed. Non-SCCS files and unreadable files shall be silently ignored.

STDIN
The standard input shall be a text file used only when the file operand is specified as ’−’. Each
line of the text file shall be interpreted as an SCCS pathname.

INPUT FILES
Any SCCS files processed shall be files of an unspecified format.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of unget:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

3278 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

109388

109389

109390

109391

109392

109393

109394

109395

109396

109397

109398

109399

109400

109401

109402

109403

109404

109405

109406

109407

109408

109409

109410

109411

109412

109413

109414

109415

109416

109417

109418

109419

109420

109421

109422

109423

109424

109425

109426

109427

109428

109429

109430

Utilities unget

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall consist of a line for each file, in the following format:

"%s\n", <SID removed from file>

If there is more than one named file or if a directory or standard input is named, each pathname
shall be written before each of the preceding lines:

"\n%s:\n", <pathname>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
Any SCCS files updated shall be files of an unspecified format. During processing of a file, a
locking z-file, as described in get, and a q-file (a working copy of the p-file), may be created and
deleted. The p-file and g-file, as described in get, shall be deleted.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
delta , get , sact

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3279

109431

109432

109433

109434

109435

109436

109437

109438

109439

109440

109441

109442

109443

109444

109445

109446

109447

109448

109449

109450

109451

109452

109453

109454

109455

109456

109457

109458

109459

109460

109461

109462

109463

109464

109465

109466

109467

109468

unget Utilities

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3280 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

109469

109470

Utilities uniq

NAME
uniq — report or filter out repeated lines in a file

SYNOPSIS
uniq [−c|−d|−u] [−f fields] [−s char] [input_file [output_file]]

DESCRIPTION
The uniq utility shall read an input file comparing adjacent lines, and write one copy of each
input line on the output. The second and succeeding copies of repeated adjacent input lines shall
not be written. The trailing <newline> of each line in the input shall be ignored when doing
comparisons.

Repeated lines in the input shall not be detected if they are not adjacent.

OPTIONS
The uniq utility shall conform to XBD Section 12.2 (on page 215), except that ’+’ may be
recognized as an option delimiter as well as ’−’.

The following options shall be supported:

−c Precede each output line with a count of the number of times the line occurred in
the input.

−d Suppress the writing of lines that are not repeated in the input.

−f fields Ignore the first fields fields on each input line when doing comparisons, where
fields is a positive decimal integer. A field is the maximal string matched by the
basic regular expression:

[[:blank:]]*[ˆ[:blank:]]*

If the fields option-argument specifies more fields than appear on an input line, a
null string shall be used for comparison.

−s chars Ignore the first chars characters when doing comparisons, where chars shall be a
positive decimal integer. If specified in conjunction with the −f option, the first
chars characters after the first fields fields shall be ignored. If the chars option-
argument specifies more characters than remain on an input line, a null string shall
be used for comparison.

−u Suppress the writing of lines that are repeated in the input.

OPERANDS
The following operands shall be supported:

input_file A pathname of the input file. If the input_file operand is not specified, or if the
input_file is ’−’, the standard input shall be used.

output_file A pathname of the output file. If the output_file operand is not specified, the
standard output shall be used. The results are unspecified if the file named by
output_file is the file named by input_file.

STDIN
The standard input shall be used only if no input_file operand is specified or if input_file is ’−’.
See the INPUT FILES section.

INPUT FILES
The input file shall be a text file.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3281

109471

109472

109473

109474

109475

109476

109477

109478

109479

109480

109481

109482

109483

109484

109485

109486

109487

109488

109489

109490

109491

109492

109493

109494

109495

109496

109497

109498

109499

109500

109501

109502

109503

109504

109505

109506

109507

109508

109509

109510

109511

uniq Utilities

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of uniq:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for ordering rules.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and which characters constitute a <blank> in the
current locale.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall be used if no output_file operand is specified, and shall be used if the
output_file operand is ’−’ and the implementation treats the ’−’ as meaning standard output.
Otherwise, the standard output shall not be used. See the OUTPUT FILES section.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
If the −c option is specified, the output file shall be empty or each line shall be of the form:

"%d %s", <number of duplicates>, <line>

otherwise, the output file shall be empty or each line shall be of the form:

"%s", <line>

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 The utility executed successfully.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

3282 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

109512

109513

109514

109515

109516

109517

109518

109519

109520

109521

109522

109523

109524

109525

109526

109527

109528

109529

109530

109531

109532

109533

109534

109535

109536

109537

109538

109539

109540

109541

109542

109543

109544

109545

109546

109547

109548

109549

Utilities uniq

APPLICATION USAGE
The sort utility can be used to cause repeated lines to be adjacent in the input file.

EXAMPLES
The following input file data (but flushed left) was used for a test series on uniq:

#01 foo0 bar0 foo1 bar1
#02 bar0 foo1 bar1 foo1
#03 foo0 bar0 foo1 bar1
#04
#05 foo0 bar0 foo1 bar1
#06 foo0 bar0 foo1 bar1
#07 bar0 foo1 bar1 foo0

What follows is a series of test invocations of the uniq utility that use a mixture of uniq options
against the input file data. These tests verify the meaning of adjacent. The uniq utility views the
input data as a sequence of strings delimited by ’\n’. Accordingly, for the fieldsth member of
the sequence, uniq interprets unique or repeated adjacent lines strictly relative to the fields+1th
member.

1. This first example tests the line counting option, comparing each line of the input file data
starting from the second field:

uniq −c −f 1 uniq_0I.t
1 #01 foo0 bar0 foo1 bar1
1 #02 bar0 foo1 bar1 foo1
1 #03 foo0 bar0 foo1 bar1
1 #04
2 #05 foo0 bar0 foo1 bar1
1 #07 bar0 foo1 bar1 foo0

The number ’2’, prefixing the fifth line of output, signifies that the uniq utility detected a
pair of repeated lines. Given the input data, this can only be true when uniq is run using
the −f 1 option (which shall cause uniq to ignore the first field on each input line).

2. The second example tests the option to suppress unique lines, comparing each line of the
input file data starting from the second field:

uniq −d −f 1 uniq_0I.t
#05 foo0 bar0 foo1 bar1

3. This test suppresses repeated lines, comparing each line of the input file data starting
from the second field:

uniq −u −f 1 uniq_0I.t
#01 foo0 bar0 foo1 bar1
#02 bar0 foo1 bar1 foo1
#03 foo0 bar0 foo1 bar1
#04
#07 bar0 foo1 bar1 foo0

4. This suppresses unique lines, comparing each line of the input file data starting from the
third character:

uniq −d −s 2 uniq_0I.t

In the last example, the uniq utility found no input matching the above criteria.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3283

109550

109551

109552

109553

109554

109555

109556

109557

109558

109559

109560

109561

109562

109563

109564

109565

109566

109567

109568

109569

109570

109571

109572

109573

109574

109575

109576

109577

109578

109579

109580

109581

109582

109583

109584

109585

109586

109587

109588

109589

109590

109591

109592

109593

uniq Utilities

RATIONALE
Some historical implementations have limited lines to be 1 080 bytes in length, which does not
meet the implied {LINE_MAX} limit.

Earlier versions of this standard allowed the −number and +number options. These options are no
longer specified by POSIX.1-2008 but may be present in some implementations.

FUTURE DIRECTIONS
None.

SEE ALSO
comm , sort

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The obsolescent SYNOPSIS and associated text are removed.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/40 is applied, adding LC_COLLATE to the
ENVIRONMENT VARIABLES section, and changing ‘‘the application shall ensure that’’ in the
OUTPUT FILES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that ’+’ may be recognized
as an option delimiter in the OPTIONS section.

Austin Group Interpretation 1003.1-2001 #092 is applied.

Austin Group Interpretation 1003.1-2001 #133 is applied, clarifying the behavior of the trailing
<newline>.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-141 is applied, updating the EXAMPLES section.

3284 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

109594

109595

109596

109597

109598

109599

109600

109601

109602

109603

109604

109605

109606

109607

109608

109609

109610

109611

109612

109613

109614

109615

109616

109617

109618

109619

Utilities unlink

NAME
unlink — call the unlink() function

SYNOPSIS
XSI unlink file

DESCRIPTION
The unlink utility shall perform the function call:

unlink(file);

A user may need appropriate privileges to invoke the unlink utility.

OPTIONS
None.

OPERANDS
The following operands shall be supported:

file The pathname of an existing file.

STDIN
Not used.

INPUT FILES
Not used.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of unlink:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
None.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3285

109620

109621

109622

109623

109624

109625

109626

109627

109628

109629

109630

109631

109632

109633

109634

109635

109636

109637

109638

109639

109640

109641

109642

109643

109644

109645

109646

109647

109648

109649

109650

109651

109652

109653

109654

109655

109656

109657

109658

unlink Utilities

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
link , rm

XBD Chapter 8 (on page 173)

XSH unlink()

CHANGE HISTORY
First released in Issue 5.

3286 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

109659

109660

109661

109662

109663

109664

109665

109666

109667

109668

109669

109670

109671

109672

109673

109674

109675

109676

109677

109678

109679

109680

Utilities uucp

NAME
uucp — system-to-system copy

SYNOPSIS
UU uucp [−cCdfjmr] [−n user] source-file... destination-file

DESCRIPTION
The uucp utility shall copy files named by the source-file argument to the destination-file argument.
The files named can be on local or remote systems.

The uucp utility cannot guarantee support for all character encodings in all circumstances. For
example, transmission data may be restricted to 7 bits by the underlying network, 8-bit data and
filenames need not be portable to non-internationalized systems, and so on. Under these
circumstances, it is recommended that only characters defined in the ISO/IEC 646: 1991
standard International Reference Version (equivalent to ASCII) 7-bit range of characters be used,
and that only characters defined in the portable filename character set be used for naming files.
The protocol for transfer of files is unspecified by POSIX.1-2008.

Typical implementations of this utility require a communications line configured to use XBD
Chapter 11 (on page 199), but other communications means may be used. On systems where
there are no available communications means (either temporarily or permanently), this utility
shall write an error message describing the problem and exit with a non-zero exit status.

OPTIONS
The uucp utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−c Do not copy local file to the spool directory for transfer to the remote machine
(default).

−C Force the copy of local files to the spool directory for transfer.

−d Make all necessary directories for the file copy (default).

−f Do not make intermediate directories for the file copy.

−j Write the job identification string to standard output. This job identification can be
used by uustat to obtain the status or terminate a job.

−m Send mail to the requester when the copy is completed.

−n user Notify user on the remote system that a file was sent.

−r Do not start the file transfer; just queue the job.

OPERANDS
The following operands shall be supported:

destination-file, source-file
A pathname of a file to be copied to, or from, respectively. Either name can be a
pathname on the local machine, or can have the form:

system-name!pathname

where system-name is taken from a list of system names that uucp knows about.
The destination system-name can also be a list of names such as:

system-name!system-name!...!system-name!pathname

in which case, an attempt is made to send the file via the specified route to the

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3287

109681

109682

109683

109684

109685

109686

109687

109688

109689

109690

109691

109692

109693

109694

109695

109696

109697

109698

109699

109700

109701

109702

109703

109704

109705

109706

109707

109708

109709

109710

109711

109712

109713

109714

109715

109716

109717

109718

109719

109720

109721

uucp Utilities

destination. Care should be taken to ensure that intermediate nodes in the route
are willing to forward information.

The shell pattern matching notation characters ’?’, ’*’, and "[...]" appearing
in pathname shall be expanded on the appropriate system.

Pathnames can be one of:

1. An absolute pathname.

2. A pathname preceded by ˜user where user is a login name on the specified
system and is replaced by that user’s login directory. Note that if an invalid
login is specified, the default is to the public directory (called PUBDIR; the
actual location of PUBDIR is implementation-defined).

3. A pathname preceded by ˜/destination where destination is appended to
PUBDIR.

Note: This destination is treated as a filename unless more than one file is being
transferred by this request or the destination is already a directory. To
ensure that it is a directory, follow the destination with a ’/’. For
example, ˜/dan/ as the destination makes the directory PUBDIR/dan if it
does not exist and puts the requested files in that directory.

4. Anything else shall be prefixed by the current directory.

If the result is an erroneous pathname for the remote system, the copy shall fail. If
the destination-file is a directory, the last part of the source-file name shall be used.

The read, write, and execute permissions given by uucp are implementation-
defined.

STDIN
Not used.

INPUT FILES
The files to be copied are regular files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of uucp:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements within bracketed filename patterns.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the behavior of character classes within bracketed
filename patterns (for example, "’[[:lower:]]*’").

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error, and informative messages written
to standard output.

3288 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

109722

109723

109724

109725

109726

109727

109728

109729

109730

109731

109732

109733

109734

109735

109736

109737

109738

109739

109740

109741

109742

109743

109744

109745

109746

109747

109748

109749

109750

109751

109752

109753

109754

109755

109756

109757

109758

109759

109760

109761

109762

109763

109764

109765

Utilities uucp

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The output files (which may be on other systems) are copies of the input files.

If −m is used, mail files are modified.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is part of the UUCP Utilities option and need not be supported by all
implementations.

The domain of remotely accessible files can (and for obvious security reasons usually should) be
severely restricted.

Note that the ’!’ character in addresses has to be escaped when using csh as a command
interpreter because of its history substitution syntax. For ksh and sh the escape is not necessary,
but may be used.

As noted above, shell metacharacters appearing in pathnames are expanded on the appropriate
system. On an internationalized system, this is done under the control of local settings of
LC_COLLATE and LC_CTYPE. Thus, care should be taken when using bracketed filename
patterns, as collation and typing rules may vary from one system to another. Also be aware that
certain types of expression (that is, equivalence classes, character classes, and collating symbols)
need not be supported on non-internationalized systems.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mailx , uuencode , uustat , uux

XBD Chapter 8 (on page 173), Chapter 11 (on page 199), Section 12.2 (on page 215)

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3289

109766

109767

109768

109769

109770

109771

109772

109773

109774

109775

109776

109777

109778

109779

109780

109781

109782

109783

109784

109785

109786

109787

109788

109789

109790

109791

109792

109793

109794

109795

109796

109797

109798

109799

109800

109801

109802

109803

109804

109805

109806

uucp Utilities

CHANGE HISTORY
First released in Issue 2.

Issue 6
The LC_TIME and TZ entries are removed from the ENVIRONMENT VARIABLES section.

The UN margin codes and associated shading are removed from the −C, −f, −j, −n, and −r
options in response to The Open Group Base Resolution bwg2001-003.

Issue 7
SD5-XCU-ERN-46 is applied, moving this utility to the UUCP Utilities Option Group.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3290 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

109807

109808

109809

109810

109811

109812

109813

109814

109815

Utilities uudecode

NAME
uudecode — decode a binary file

SYNOPSIS
uudecode [−o outfile] [file]

DESCRIPTION
The uudecode utility shall read a file, or standard input if no file is specified, that includes data
created by the uuencode utility. The uudecode utility shall scan the input file, searching for data
compatible with one of the formats specified in uuencode, and attempt to create or overwrite the
file described by the data (or overridden by the −o option). The pathname shall be contained in
the data or specified by the −o option. The file access permission bits and contents for the file to
be produced shall be contained in that data. The mode bits of the created file (other than
standard output) shall be set from the file access permission bits contained in the data; that is,
other attributes of the mode, including the file mode creation mask (see umask), shall not affect
the file being produced. If either of the op characters ’+’ and ’−’ (see chmod) are specified in
symbolic mode, the initial mode on which those operations are based is unspecified.

If the pathname of the file to be produced exists, and the user does not have write permission on
that file, uudecode shall terminate with an error. If the pathname of the file to be produced exists,
and the user has write permission on that file, the existing file shall be overwritten.

If the input data was produced by uuencode on a system with a different number of bits per byte
than on the target system, the results of uudecode are unspecified.

OPTIONS
The uudecode utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported by the implementation:

−o outfile A pathname of a file that shall be used instead of any pathname contained in the
input data. Specifying an outfile option-argument of /dev/stdout shall indicate
standard output.

OPERANDS
The following operand shall be supported:

file The pathname of a file containing the output of uuencode.

STDIN
See the INPUT FILES section.

INPUT FILES
The input files shall be files containing the output of uuencode.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of uudecode:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3291

109816

109817

109818

109819

109820

109821

109822

109823

109824

109825

109826

109827

109828

109829

109830

109831

109832

109833

109834

109835

109836

109837

109838

109839

109840

109841

109842

109843

109844

109845

109846

109847

109848

109849

109850

109851

109852

109853

109854

109855

109856

109857

109858

uudecode Utilities

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If the file data header encoded by uuencode is − or /dev/stdout, or the −o /dev/stdout option
overrides the file data, the standard output shall be in the same format as the file originally
encoded by uuencode. Otherwise, the standard output shall not be used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The output file shall be in the same format as the file originally encoded by uuencode.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The user who is invoking uudecode must have write permission on any file being created.

The output of uuencode is essentially an encoded bit stream that is not cognizant of byte
boundaries. It is possible that a 9-bit byte target machine can process input from an 8-bit source,
if it is aware of the requirement, but the reverse is unlikely to be satisfying. Of course, the only
data that is meaningful for such a transfer between architectures is generally character data.

EXAMPLES
None.

RATIONALE
Input files are not necessarily text files, as stated by an early proposal. Although the uuencode
output is a text file, that output could have been wrapped within another file or mail message
that is not a text file.

The −o option is not historical practice, but was added at the request of WG15 so that the user
could override the target pathname without having to edit the input data itself.

In early drafts, the [−o outfile] option-argument allowed the use of − to mean standard output.
The symbol − has only been used previously in POSIX.1-2008 as a standard input indicator. The
standard developers did not wish to overload the meaning of − in this manner. The /dev/stdout
concept exists on most modern systems. The /dev/stdout syntax does not refer to a new special
file. It is just a magic cookie to specify standard output.

3292 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

109859

109860

109861

109862

109863

109864

109865

109866

109867

109868

109869

109870

109871

109872

109873

109874

109875

109876

109877

109878

109879

109880

109881

109882

109883

109884

109885

109886

109887

109888

109889

109890

109891

109892

109893

109894

109895

109896

109897

109898

109899

Utilities uudecode

FUTURE DIRECTIONS
None.

SEE ALSO
chmod , umask , uuencode

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The −o outfile option is added, as specified in the IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/35 is applied, clarifying in the
DESCRIPTION that the initial mode used if either of the op characters is ’+’ or ’−’ is
unspecified.

Issue 7
The uudecode utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3293

109900

109901

109902

109903

109904

109905

109906

109907

109908

109909

109910

109911

109912

109913

109914

109915

109916

109917

uuencode Utilities

NAME
uuencode — encode a binary file

SYNOPSIS
uuencode [−m] [file] decode_pathname

DESCRIPTION
The uuencode utility shall write an encoded version of the named input file, or standard input if
no file is specified, to standard output. The output shall be encoded using one of the algorithms
described in the STDOUT section and shall include the file access permission bits (in chmod octal
or symbolic notation) of the input file and the decode_pathname, for re-creation of the file on
another system that conforms to this volume of POSIX.1-2008.

OPTIONS
The uuencode utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported by the implementation:

−m Encode the output using the MIME Base64 algorithm described in STDOUT. If −m
is not specified, the historical algorithm described in STDOUT shall be used.

OPERANDS
The following operands shall be supported:

decode_pathname
The pathname of the file into which the uudecode utility shall place the decoded
file. Specifying a decode_pathname operand of /dev/stdout shall indicate that
uudecode is to use standard output. If there are characters in decode_pathname that
are not in the portable filename character set the results are unspecified.

file A pathname of the file to be encoded.

STDIN
See the INPUT FILES section.

INPUT FILES
Input files can be files of any type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of uuencode:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

3294 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

109918

109919

109920

109921

109922

109923

109924

109925

109926

109927

109928

109929

109930

109931

109932

109933

109934

109935

109936

109937

109938

109939

109940

109941

109942

109943

109944

109945

109946

109947

109948

109949

109950

109951

109952

109953

109954

109955

109956

109957

109958

Utilities uuencode

ASYNCHRONOUS EVENTS
Default.

STDOUT

uuencode Base64 Algorithm

The standard output shall be a text file (encoded in the character set of the current locale) that
begins with the line:

"begin-base64∆%s∆%s\n", <mode>, <decode_pathname>

and ends with the line:

"====\n"

In both cases, the lines shall have no preceding or trailing <blank> characters.

The encoding process represents 24-bit groups of input bits as output strings of four encoded
characters. Proceeding from left to right, a 24-bit input group shall be formed by concatenating
three 8-bit input groups. Each 24-bit input group then shall be treated as four concatenated 6-bit
groups, each of which shall be translated into a single digit in the Base64 alphabet. When
encoding a bit stream via the Base64 encoding, the bit stream shall be presumed to be ordered
with the most-significant bit first. That is, the first bit in the stream shall be the high-order bit in
the first byte, and the eighth bit shall be the low-order bit in the first byte, and so on. Each 6-bit
group is used as an index into an array of 64 printable characters, as shown in Table 4-22.

Table 4-22 uuencode Base64 Values

Value Encoding Value Encoding Value Encoding Value Encoding

0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 l 54 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8

10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v
14 O 31 f 48 w (pad) =
15 P 32 g 49 x
16 Q 33 h 50 y

The character referenced by the index shall be placed in the output string.

The output stream (encoded bytes) shall be represented in lines of no more than 76 characters
each. All line breaks or other characters not found in the table shall be ignored by decoding
software (see uudecode).

Special processing shall be performed if fewer than 24 bits are available at the end of a message
or encapsulated part of a message. A full encoding quantum shall always be completed at the

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3295

109959

109960

109961

109962

109963

109964

109965

109966

109967

109968

109969

109970

109971

109972

109973

109974

109975

109976

109977

109978

109979

109980

109981

109982

109983

109984

109985

109986

109987

109988

109989

109990

109991

109992

109993

109994

109995

109996

109997

109998

109999

110000

110001

uuencode Utilities

end of a message. When fewer than 24 input bits are available in an input group, zero bits shall
be added (on the right) to form an integral number of 6-bit groups. Output character positions
that are not required to represent actual input data shall be set to the character ’=’. Since all
Base64 input is an integral number of octets, only the following cases can arise:

1. The final quantum of encoding input is an integral multiple of 24 bits; here, the final unit
of encoded output shall be an integral multiple of 4 characters with no ’=’ padding.

2. The final quantum of encoding input is exactly 16 bits; here, the final unit of encoded
output shall be three characters followed by one ’=’ padding character.

3. The final quantum of encoding input is exactly 8 bits; here, the final unit of encoded
output shall be two characters followed by two ’=’ padding characters.

A terminating "====" evaluates to nothing and denotes the end of the encoded data.

uuencode Historical Algorithm

The standard output shall be a text file (encoded in the character set of the current locale) that
begins with the line:

"begin∆%s∆%s\n" <mode>, <decode_pathname>

and ends with the line:

"end\n"

In both cases, the lines shall have no preceding or trailing <blank> characters.

The algorithm that shall be used for lines in between begin and end takes three octets as input
and writes four characters of output by splitting the input at six-bit intervals into four octets,
containing data in the lower six bits only. These octets shall be converted to characters by adding
a value of 0x20 to each octet, so that each octet is in the range [0x20,0x5f], and then it shall be
assumed to represent a printable character in the ISO/IEC 646: 1991 standard encoded character
set. It then shall be translated into the corresponding character codes for the codeset in use in the
current locale. (For example, the octet 0x41, representing ’A’, would be translated to ’A’ in the
current codeset, such as 0xc1 if it were EBCDIC.)

Where the bits of two octets are combined, the least significant bits of the first octet shall be
shifted left and combined with the most significant bits of the second octet shifted right. Thus
the three octets A, B, C shall be converted into the four octets:

0x20 + ((A >> 2) & 0x3F)
0x20 + (((A << 4) | ((B >> 4) & 0xF)) & 0x3F)
0x20 + (((B << 2) | ((C >> 6) & 0x3)) & 0x3F)
0x20 + ((C) & 0x3F)

These octets then shall be translated into the local character set.

Each encoded line contains a length character, equal to the number of characters to be decoded
plus 0x20 translated to the local character set as described above, followed by the encoded
characters. The maximum number of octets to be encoded on each line shall be 45.

STDERR
The standard error shall be used only for diagnostic messages.

3296 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

110002

110003

110004

110005

110006

110007

110008

110009

110010

110011

110012

110013

110014

110015

110016

110017

110018

110019

110020

110021

110022

110023

110024

110025

110026

110027

110028

110029

110030

110031

110032

110033

110034

110035

110036

110037

110038

110039

110040

Utilities uuencode

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The file is expanded by 35 percent (each three octets become four, plus control information)
causing it to take longer to transmit.

Since this utility is intended to create files to be used for data interchange between systems with
possibly different codesets, and to represent binary data as a text file, the ISO/IEC 646: 1991
standard was chosen for a midpoint in the algorithm as a known reference point. The output
from uuencode is a text file on the local system. If the output were in the ISO/IEC 646: 1991
standard codeset, it might not be a text file (at least because the <newline> characters might not
match), and the goal of creating a text file would be defeated. If this text file was then carried to
another machine with the same codeset, it would be perfectly compatible with that system’s
uudecode. If it was transmitted over a mail system or sent to a machine with a different codeset,
it is assumed that, as for every other text file, some translation mechanism would convert it (by
the time it reached a user on the other system) into an appropriate codeset. This translation only
makes sense from the local codeset, not if the file has been put into a ISO/IEC 646: 1991 standard
representation first. Similarly, files processed by uuencode can be placed in pax archives,
intermixed with other text files in the same codeset.

EXAMPLES
None.

RATIONALE
A new algorithm was added at the request of the international community to parallel work in
RFC 2045 (MIME). As with the historical uuencode format, the Base64 Content-Transfer-Encoding
is designed to represent arbitrary sequences of octets in a form that is not humanly readable. A
65-character subset of the ISO/IEC 646: 1991 standard is used, enabling 6 bits to be represented
per printable character. (The extra 65th character, ’=’, is used to signify a special processing
function.)

This subset has the important property that it is represented identically in all versions of the
ISO/IEC 646: 1991 standard, including US ASCII, and all characters in the subset are also
represented identically in all versions of EBCDIC. The historical uuencode algorithm does not
share this property, which is the reason that a second algorithm was added to the ISO POSIX-2
standard.

The string "====" was used for the termination instead of the end used in the original format
because the latter is a string that could be valid encoded input.

In an early draft, the −m option was named −b (for Base64), but it was renamed to reflect its
relationship to the RFC 2045. A −u was also present to invoke the default algorithm, but since
this was not historical practice, it was omitted as being unnecessary.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3297

110041

110042

110043

110044

110045

110046

110047

110048

110049

110050

110051

110052

110053

110054

110055

110056

110057

110058

110059

110060

110061

110062

110063

110064

110065

110066

110067

110068

110069

110070

110071

110072

110073

110074

110075

110076

110077

110078

110079

110080

110081

110082

110083

110084

110085

uuencode Utilities

See the RATIONALE section in uudecode for the derivation of the /dev/stdout symbol.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod , mailx , uudecode

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 4.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The Base64 algorithm and the ability to output to /dev/stdout are added as specified in the
IEEE P1003.2b draft standard.

Issue 7
The uuencode utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3298 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

110086

110087

110088

110089

110090

110091

110092

110093

110094

110095

110096

110097

110098

110099

110100

110101

Utilities uustat

NAME
uustat — uucp status enquiry and job control

SYNOPSIS
UU uustat [−q|−k jobid|−r jobid]

uustat [−s system] [−u user]

DESCRIPTION
The uustat utility shall display the status of, or cancel, previously specified uucp requests, or
provide general status on uucp connections to other systems.

When no options are given, uustat shall write to standard output the status of all uucp requests
issued by the current user.

Typical implementations of this utility require a communications line configured to use XBD
Chapter 11 (on page 199), but other communications means may be used. On systems where
there are no available communications means (either temporarily or permanently), this utility
shall write an error message describing the problem and exit with a non-zero exit status.

OPTIONS
The uustat utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−q Write the jobs queued for each machine.

−k jobid Kill the uucp request whose job identification is jobid. The application shall ensure
that the killed uucp request belongs to the person invoking uustat unless that user
has appropriate privileges.

−r jobid Rejuvenate jobid. The files associated with jobid are touched so that their
modification time is set to the current time. This prevents the cleanup program
from deleting the job until the jobs modification time reaches the limit imposed by
the program.

−s system Write the status of all uucp requests for remote system system.

−u user Write the status of all uucp requests issued by user.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of uustat:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3299

110102

110103

110104

110105

110106

110107

110108

110109

110110

110111

110112

110113

110114

110115

110116

110117

110118

110119

110120

110121

110122

110123

110124

110125

110126

110127

110128

110129

110130

110131

110132

110133

110134

110135

110136

110137

110138

110139

110140

110141

uustat Utilities

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error, and informative messages written
to standard output.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall consist of information about each job selected, in an unspecified
format. The information shall include at least the job ID, the user ID or name, and the remote
system name.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is part of the UUCP Utilities option and need not be supported by all
implementations.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
uucp

XBD Chapter 8 (on page 173), Chapter 11 (on page 199), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

3300 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

110142

110143

110144

110145

110146

110147

110148

110149

110150

110151

110152

110153

110154

110155

110156

110157

110158

110159

110160

110161

110162

110163

110164

110165

110166

110167

110168

110169

110170

110171

110172

110173

110174

110175

110176

110177

110178

110179

110180

110181

Utilities uustat

Issue 6
The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

The LC_TIME and TZ entries are removed from the ENVIRONMENT VARIABLES section.

The UN margin code and associated shading are removed from the −q option in response to The
Open Group Base Resolution bwg2001-003.

Issue 7
SD5-XCU-ERN-46 is applied, moving this utility to the UUCP Utilities Option Group.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3301

110182

110183

110184

110185

110186

110187

110188

110189

uux Utilities

NAME
uux — remote command execution

SYNOPSIS
UU uux [−jnp] command−string

DESCRIPTION
The uux utility shall gather zero or more files from various systems, execute a shell pipeline (see
Section 2.9, on page 2316) on a specified system, and then send the standard output of the
command to a file on a specified system. Only the first command of a pipeline can have a system-
name! prefix. All other commands in the pipeline shall be executed on the system of the first
command.

The following restrictions are applicable to the shell pipeline processed by uux:

• In gathering files from different systems, pathname expansion shall not be performed by
uux. Thus, a request such as:

uux "c99 remsys!˜/*.c"

would attempt to copy the file named literally *.c to the local system.

• The redirection operators ">>", "<<", ">|", and ">&" shall not be accepted. Any use of
these redirection operators shall cause this utility to write an error message describing the
problem and exit with a non-zero exit status.

• The reserved word ! cannot be used at the head of the pipeline to modify the exit status.
(See the command-string operand description below.)

• Alias substitution shall not be performed.

A filename can be specified as for uucp; it can be an absolute pathname, a pathname preceded by
˜name (which is replaced by the corresponding login directory), a pathname specified as ˜/dest
(dest is prefixed by the public directory called PUBDIR; the actual location of PUBDIR is
implementation-defined), or a simple filename (which is prefixed by uux with the current
directory). See uucp for the details.

The execution of commands on remote systems shall take place in an execution directory known
to the uucp system. All files required for the execution shall be put into this directory unless they
already reside on that machine. Therefore, the application shall ensure that non-local filenames
(without path or machine reference) are unique within the uux request.

The uux utility shall attempt to get all files to the execution system. For files that are output files,
the application shall ensure that the filename is escaped using parentheses.

The remote system shall notify the user by mail if the requested command on the remote system
was disallowed or the files were not accessible. This notification can be turned off by the −n
option.

Typical implementations of this utility require a communications line configured to use XBD
Chapter 11 (on page 199), but other communications means may be used. On systems where
there are no available communications means (either temporarily or permanently), this utility
shall write an error message describing the problem and exit with a non-zero exit status.

The uux utility cannot guarantee support for all character encodings in all circumstances. For
example, transmission data may be restricted to 7 bits by the underlying network, 8-bit data and
filenames need not be portable to non-internationalized systems, and so on. Under these
circumstances, it is recommended that only characters defined in the ISO/IEC 646: 1991
standard International Reference Version (equivalent to ASCII) 7-bit range of characters be used

3302 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

110190

110191

110192

110193

110194

110195

110196

110197

110198

110199

110200

110201

110202

110203

110204

110205

110206

110207

110208

110209

110210

110211

110212

110213

110214

110215

110216

110217

110218

110219

110220

110221

110222

110223

110224

110225

110226

110227

110228

110229

110230

110231

110232

110233

Utilities uux

and that only characters defined in the portable filename character set be used for naming files.

OPTIONS
The uux utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−j Write the job identification string to standard output. This job identification can be
used by uustat to obtain the status or terminate a job.

−n Do not notify the user if the command fails.

−p Make the standard input to uux the standard input to the command-string.

OPERANDS
The following operand shall be supported:

command-string
A string made up of one or more arguments that are similar to normal command
arguments, except that the command and any filenames can be prefixed by system-
name!. A null system-name shall be interpreted as the local system.

STDIN
The standard input shall not be used unless the ’−’ or −p option is specified; in those cases, the
standard input shall be made the standard input of the command-string.

INPUT FILES
Input files shall be selected according to the contents of command-string.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of uux:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall not be used unless the −j option is specified; in that case, the job
identification string shall be written to standard output in the following format:

"%s\n", <jobid>

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3303

110234

110235

110236

110237

110238

110239

110240

110241

110242

110243

110244

110245

110246

110247

110248

110249

110250

110251

110252

110253

110254

110255

110256

110257

110258

110259

110260

110261

110262

110263

110264

110265

110266

110267

110268

110269

110270

110271

110272

uux Utilities

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
Output files shall be created or written, or both, according to the contents of command-string.

If −n is not used, mail files shall be modified following any command or file-access failures on
the remote system.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is part of the UUCP Utilities option and need not be supported by all
implementations.

Note that, for security reasons, many installations limit the list of commands executable on
behalf of an incoming request from uux. Many sites permit little more than the receipt of mail
via uux.

Any characters special to the command interpreter should be quoted either by quoting the entire
command-string or quoting the special characters as individual arguments.

As noted in uucp, shell pattern matching notation characters appearing in pathnames are
expanded on the appropriate local system. This is done under the control of local settings of
LC_COLLATE and LC_CTYPE. Thus, care should be taken when using bracketed filename
patterns, as collation and typing rules may vary from one system to another. Also be aware that
certain types of expression (that is, equivalence classes, character classes, and collating symbols)
need not be supported on non-internationalized systems.

EXAMPLES

1. The following command gets file1 from system a and file2 from system b, executes diff on
the local system, and puts the results in file.diff in the local PUBDIR directory. (PUBDIR
is the uucp public directory on the local system.)

uux "!diff a!/usr/file1 b!/a4/file2 >!˜/file.diff"

2. The following command fails because uux places all files copied to a system in the same
working directory. Although the files xyz are from two different systems, their filenames
are the same and conflict.

uux "!diff a!/usr1/xyz b!/usr2/xyz >!˜/xyz.diff"

3. The following command succeeds (assuming diff is permitted on system a) because the
file local to system a is not copied to the working directory, and hence does not conflict
with the file from system c.

uux "a!diff a!/usr/xyz c!/usr/xyz >!˜/xyz.diff"

3304 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

110273

110274

110275

110276

110277

110278

110279

110280

110281

110282

110283

110284

110285

110286

110287

110288

110289

110290

110291

110292

110293

110294

110295

110296

110297

110298

110299

110300

110301

110302

110303

110304

110305

110306

110307

110308

110309

110310

110311

110312

110313

Utilities uux

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2297), uucp , uuencode , uustat

XBD Chapter 8 (on page 173), Chapter 11 (on page 199), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The obsolescent SYNOPSIS is removed.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

The UN margin code and associated shading are removed from the −j option in response to The
Open Group Base Resolution bwg2001-003.

Issue 7
SD5-XCU-ERN-46 is applied, moving this utility to the UUCP Utilities Option Group.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3305

110314

110315

110316

110317

110318

110319

110320

110321

110322

110323

110324

110325

110326

110327

110328

110329

val Utilities

NAME
val — validate SCCS files (DEVELOPMENT)

SYNOPSIS
XSI val −

val [−s] [−m name] [−r SID] [−y type] file...

DESCRIPTION
The val utility shall determine whether the specified file is an SCCS file meeting the
characteristics specified by the options.

OPTIONS
The val utility shall conform to XBD Section 12.2 (on page 215), except that the usage of the ’−’
operand is not strictly as intended by the guidelines (that is, reading options and operands from
standard input).

The following options shall be supported:

−m name Specify a name, which is compared with the SCCS %M% keyword in file; see get .

−r SID Specify a SID (SCCS Identification String), an SCCS delta number. A check shall be
made to determine whether the SID is ambiguous (for example, −r 1 is ambiguous
because it physically does not exist but implies 1.1, 1.2, and so on, which may exist)
or invalid (for example, −r 1.0 or −r 1.1.0 are invalid because neither case can exist
as a valid delta number). If the SID is valid and not ambiguous, a check shall be
made to determine whether it actually exists.

−s Silence the diagnostic message normally written to standard output for any error
that is detected while processing each named file on a given command line.

−y type Specify a type, which shall be compared with the SCCS %Y% keyword in file; see
get .

OPERANDS
The following operands shall be supported:

file A pathname of an existing SCCS file. If exactly one file operand appears, and it is
’−’, the standard input shall be read: each line shall be independently processed
as if it were a command line argument list. (However, the line is not subjected to
any of the shell word expansions, such as parameter expansion or quote removal.)

STDIN
The standard input shall be a text file used only when the file operand is specified as ’−’.

INPUT FILES
Any SCCS files processed shall be files of an unspecified format.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of val:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

3306 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

110330

110331

110332

110333

110334

110335

110336

110337

110338

110339

110340

110341

110342

110343

110344

110345

110346

110347

110348

110349

110350

110351

110352

110353

110354

110355

110356

110357

110358

110359

110360

110361

110362

110363

110364

110365

110366

110367

110368

110369

110370

Utilities val

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error, and informative messages written
to standard output.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall consist of informative messages about either:

1. Each file processed

2. Each command line read from standard input

If the standard input is not used, for each file operand yielding a discrepancy, the output line
shall have the following format:

"%s: %s\n", <pathname>, <unspecified string>

If standard input is used, a line of input shall be written before each of the preceding lines for
files containing discrepancies:

"%s:\n", <input line>

STDERR
Not used.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The 8-bit code returned by val shall be a disjunction of the possible errors; that is, it can be
interpreted as a bit string where set bits are interpreted as follows:

0x80 = Missing file argument.
0x40 = Unknown or duplicate option.
0x20 = Corrupted SCCS file.
0x10 = Cannot open file or file not SCCS.
0x08 = SID is invalid or ambiguous.
0x04 = SID does not exist.
0x02 = %Y%, −y mismatch.
0x01 = %M%, −m mismatch.

Note that val can process two or more files on a given command line and can process multiple
command lines (when reading the standard input). In these cases an aggregate code shall be
returned: a logical OR of the codes generated for each command line and file processed.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3307

110371

110372

110373

110374

110375

110376

110377

110378

110379

110380

110381

110382

110383

110384

110385

110386

110387

110388

110389

110390

110391

110392

110393

110394

110395

110396

110397

110398

110399

110400

110401

110402

110403

110404

110405

110406

110407

110408

110409

110410

val Utilities

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Since the val exit status sets the 0x80 bit, shell applications checking "$?" cannot tell if it
terminated due to a missing file argument or receipt of a signal.

EXAMPLES
In a directory with three SCCS files—s.x (of t type ‘‘text’’), s.y, and s.z (a corrupted file)—the
following command could produce the output shown:

val − <<EOF
−y source s.x
−m y s.y
s.z
EOF

−y source s.x

s.x: %Y%, −y mismatch
s.z

s.z: corrupted SCCS file

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
admin , delta , get , prs

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
The Open Group Corrigendum U025/4 is applied, correcting a typographical error in the EXIT
STATUS.

Issue 7
SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3308 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

110411

110412

110413

110414

110415

110416

110417

110418

110419

110420

110421

110422

110423

110424

110425

110426

110427

110428

110429

110430

110431

110432

110433

110434

110435

110436

110437

110438

110439

110440

110441

Utilities vi

NAME
vi — screen-oriented (visual) display editor

SYNOPSIS
UP vi [−rR] [−c command] [−t tagstring] [−w size] [file...]

DESCRIPTION
This utility shall be provided on systems that both support the User Portability Utilities option
and define the POSIX2_CHAR_TERM symbol. On other systems it is optional.

The vi (visual) utility is a screen-oriented text editor. Only the open and visual modes of the
editor are described in POSIX.1-2008; see the line editor ex for additional editing capabilities
used in vi. The user can switch back and forth between vi and ex and execute ex commands from
within vi.

This reference page uses the term edit buffer to describe the current working text. No specific
implementation is implied by this term. All editing changes are performed on the edit buffer,
and no changes to it shall affect any file until an editor command writes the file.

When using vi, the terminal screen acts as a window into the editing buffer. Changes made to
the editing buffer shall be reflected in the screen display; the position of the cursor on the screen
shall indicate the position within the editing buffer.

Certain terminals do not have all the capabilities necessary to support the complete vi definition.
When these commands cannot be supported on such terminals, this condition shall not produce
an error message such as ‘‘not an editor command’’ or report a syntax error. The implementation
may either accept the commands and produce results on the screen that are the result of an
unsuccessful attempt to meet the requirements of this volume of POSIX.1-2008 or report an error
describing the terminal-related deficiency.

OPTIONS
The vi utility shall conform to XBD Section 12.2 (on page 215), except that ’+’ may be
recognized as an option delimiter as well as ’−’.

The following options shall be supported:

−c command See the ex command description of the −c option.

−r See the ex command description of the −r option.

−R See the ex command description of the −R option.

−t tagstring See the ex command description of the −t option.

−w size See the ex command description of the −w option.

OPERANDS
See the OPERANDS section of the ex command for a description of the operands supported by
the vi command.

STDIN
If standard input is not a terminal device, the results are undefined. The standard input consists
of a series of commands and input text, as described in the EXTENDED DESCRIPTION section.

If a read from the standard input returns an error, or if the editor detects an end-of-file condition
from the standard input, it shall be equivalent to a SIGHUP asynchronous event.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3309

110442

110443

110444

110445

110446

110447

110448

110449

110450

110451

110452

110453

110454

110455

110456

110457

110458

110459

110460

110461

110462

110463

110464

110465

110466

110467

110468

110469

110470

110471

110472

110473

110474

110475

110476

110477

110478

110479

110480

110481

vi Utilities

INPUT FILES
See the INPUT FILES section of the ex command for a description of the input files supported by
the vi command.

ENVIRONMENT VARIABLES
See the ENVIRONMENT VARIABLES section of the ex command for the environment variables
that affect the execution of the vi command.

ASYNCHRONOUS EVENTS
See the ASYNCHRONOUS EVENTS section of the ex for the asynchronous events that affect the
execution of the vi command.

STDOUT
If standard output is not a terminal device, undefined results occur.

Standard output may be used for writing prompts to the user, for informational messages, and
for writing lines from the file.

STDERR
If standard output is not a terminal device, undefined results occur.

The standard error shall be used only for diagnostic messages.

OUTPUT FILES
See the OUTPUT FILES section of the ex command for a description of the output files
supported by the vi command.

EXTENDED DESCRIPTION
If the terminal does not have the capabilities necessary to support an unspecified portion of the
vi definition, implementations shall start initially in ex mode or open mode. Otherwise, after
initialization, vi shall be in command mode; text input mode can be entered by one of several
commands used to insert or change text. In text input mode, <ESC> can be used to return to
command mode; other uses of <ESC> are described later in this section; see Terminate
Command or Input Mode (on page 3319).

Initialization in ex and vi

See Initialization in ex and vi (on page 2642) for a description of ex and vi initialization for the vi
utility.

Command Descriptions in vi

The following symbols are used in this reference page to represent arguments to commands.

buffer See the description of buffer in the EXTENDED DESCRIPTION section of the ex utility;
see Command Descriptions in ex (on page 2651).

In open and visual mode, when a command synopsis shows both [buffer] and [count]
preceding the command name, they can be specified in either order.

count A positive integer used as an optional argument to most commands, either to give a
repeat count or as a size. This argument is optional and shall default to 1 unless
otherwise specified.

The Synopsis lines for the vi commands <control>-G, <control>-L, <control>-R,
<control>-], %, &, ˆ, D, m, M, Q, u, U, and ZZ do not have count as an optional
argument. Regardless, it shall not be an error to specify a count to these commands, and
any specified count shall be ignored.

3310 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

110482

110483

110484

110485

110486

110487

110488

110489

110490

110491

110492

110493

110494

110495

110496

110497

110498

110499

110500

110501

110502

110503

110504

110505

110506

110507

110508

110509

110510

110511

110512

110513

110514

110515

110516

110517

110518

110519

110520

110521

110522

110523

Utilities vi

motion An optional trailing argument used by the !, <, >, c, d, and y commands, which is used
to indicate the region of text that shall be affected by the command. The motion can be
either one of the command characters repeated or one of several other vi commands
(listed in the following table). Each of the applicable commands specifies the region of
text matched by repeating the command; each command that can be used as a motion
command specifies the region of text it affects.

Commands that take motion arguments operate on either lines or characters, depending
on the circumstances. When operating on lines, all lines that fall partially or wholly
within the text region specified for the command shall be affected. When operating on
characters, only the exact characters in the specified text region shall be affected. Each
motion command specifies this individually.

When commands that may be motion commands are not used as motion commands,
they shall set the current position to the current line and column as specified.

The following commands shall be valid cursor motion commands:

<apostrophe> (- j H
<carriage-return>) $ k L
<comma> [[% l M
<control>-H]] _ n N
<control>-N { ; t T
<control>-P } ? w W
<grave-accent> ˆ b B
<newline> + e E
<space> | f F
<zero> / h G

Any count that is specified to a command that has an associated motion command shall
be applied to the motion command. If a count is applied to both the command and its
associated motion command, the effect shall be multiplicative.

The following symbols are used in this section to specify locations in the edit buffer:

current character
The character that is currently indicated by the cursor.

end of a line
The point located between the last non-<newline> (if any) and the terminating
<newline> of a line. For an empty line, this location coincides with the beginning of the
line.

end of the edit buffer
The location corresponding to the end of the last line in the edit buffer.

The following symbols are used in this section to specify command actions:

bigword In the POSIX locale, vi shall recognize four kinds of bigwords:

1. A maximal sequence of non-<blank> characters preceded and followed by
<blank> characters or the beginning or end of a line or the edit buffer

2. One or more sequential blank lines

3. The first character in the edit buffer

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3311

110524

110525

110526

110527

110528

110529

110530

110531

110532

110533

110534

110535

110536

110537

110538

110539

110540

110541

110542

110543

110544

110545

110546

110547

110548

110549

110550

110551

110552

110553

110554

110555

110556

110557

110558

110559

110560

110561

110562

110563

110564

110565

vi Utilities

4. The last non-<newline> in the edit buffer

word In the POSIX locale, vi shall recognize five kinds of words:

1. A maximal sequence of letters, digits, and underscores, delimited at both ends
by:

— Characters other than letters, digits, or underscores

— The beginning or end of a line

— The beginning or end of the edit buffer

2. A maximal sequence of characters other than letters, digits, underscores, or
<blank> characters, delimited at both ends by:

— A letter, digit, underscore

— <blank> characters

— The beginning or end of a line

— The beginning or end of the edit buffer

3. One or more sequential blank lines

4. The first character in the edit buffer

5. The last non-<newline> in the edit buffer

section boundary
A section boundary is one of the following:

1. A line whose first character is a <form-feed>

2. A line whose first character is an open curly brace (’{’)

3. A line whose first character is a <period> and whose second and third characters
match a two-character pair in the sections edit option (see ed)

4. A line whose first character is a <period> and whose only other character
matches the first character of a two-character pair in the sections edit option,
where the second character of the two-character pair is a <space>

5. The first line of the edit buffer

6. The last line of the edit buffer if the last line of the edit buffer is empty or if it is a
]] or } command; otherwise, the last non-<newline> of the last line of the edit
buffer

paragraph boundary
A paragraph boundary is one of the following:

1. A section boundary

2. A line whose first character is a <period> and whose second and third characters
match a two-character pair in the paragraphs edit option (see ed)

3. A line whose first character is a <period> and whose only other character
matches the first character of a two-character pair in the paragraphs edit option,
where the second character of the two-character pair is a <space>

3312 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

110566

110567

110568

110569

110570

110571

110572

110573

110574

110575

110576

110577

110578

110579

110580

110581

110582

110583

110584

110585

110586

110587

110588

110589

110590

110591

110592

110593

110594

110595

110596

110597

110598

110599

110600

110601

110602

Utilities vi

4. One or more sequential blank lines

remembered search direction
See the description of remembered search direction in ed.

sentence boundary
A sentence boundary is one of the following:

1. A paragraph boundary

2. The first non-<blank> that occurs after a paragraph boundary

3. The first non-<blank> that occurs after a <period> (’.’), <exclamation-mark>
(’!’), or <question-mark> (’?’), followed by two <space> characters or the end
of a line; any number of closing parenthesis (’)’), closing brackets (’]’),
double-quote (’"’), or single-quote (<apostrophe>) characters can appear
between the punctuation mark and the two <space> characters or end-of-line

In the remainder of the description of the vi utility, the term ‘‘buffer line’’ refers to a line in the
edit buffer and the term ‘‘display line’’ refers to the line or lines on the display screen used to
display one buffer line. The term ‘‘current line’’ refers to a specific ‘‘buffer line’’.

If there are display lines on the screen for which there are no corresponding buffer lines because
they correspond to lines that would be after the end of the file, they shall be displayed as a single
<tilde> (’˜’) character, plus the terminating <newline>.

The last line of the screen shall be used to report errors or display informational messages. It
shall also be used to display the input for ‘‘line-oriented commands’’ (/, ?, :, and !). When a line-
oriented command is executed, the editor shall enter text input mode on the last line on the
screen, using the respective command characters as prompt characters. (In the case of the !
command, the associated motion shall be entered by the user before the editor enters text input
mode.) The line entered by the user shall be terminated by a <newline>, a
non-<control>-V-escaped <carriage-return>, or unescaped <ESC>. It is unspecified if more
characters than require a display width minus one column number of screen columns can be
entered.

If any command is executed that overwrites a portion of the screen other than the last line of the
screen (for example, the ex suspend or ! commands), other than the ex shell command, the user
shall be prompted for a character before the screen is refreshed and the edit session continued.

<tab> characters shall take up the number of columns on the screen set by the tabstop edit
option (see ed), unless there are less than that number of columns before the display margin that
will cause the displayed line to be folded; in this case, they shall only take up the number of
columns up to that boundary.

The cursor shall be placed on the current line and relative to the current column as specified by
each command described in the following sections.

In open mode, if the current line is not already displayed, then it shall be displayed.

In visual mode, if the current line is not displayed, then the lines that are displayed shall be
expanded, scrolled, or redrawn to cause an unspecified portion of the current line to be
displayed. If the screen is redrawn, no more than the number of display lines specified by the
value of the window edit option shall be displayed (unless the current line cannot be completely
displayed in the number of display lines specified by the window edit option) and the current
line shall be positioned as close to the center of the displayed lines as possible (within the
constraints imposed by the distance of the line from the beginning or end of the edit buffer). If
the current line is before the first line in the display and the screen is scrolled, an unspecified

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3313

110603

110604

110605

110606

110607

110608

110609

110610

110611

110612

110613

110614

110615

110616

110617

110618

110619

110620

110621

110622

110623

110624

110625

110626

110627

110628

110629

110630

110631

110632

110633

110634

110635

110636

110637

110638

110639

110640

110641

110642

110643

110644

110645

110646

110647

vi Utilities

portion of the current line shall be placed on the first line of the display. If the current line is after
the last line in the display and the screen is scrolled, an unspecified portion of the current line
shall be placed on the last line of the display.

In visual mode, if a line from the edit buffer (other than the current line) does not entirely fit into
the lines at the bottom of the display that are available for its presentation, the editor may choose
not to display any portion of the line. The lines of the display that do not contain text from the
edit buffer for this reason shall each consist of a single ’@’ character.

In visual mode, the editor may choose for unspecified reasons to not update lines in the display
to correspond to the underlying edit buffer text. The lines of the display that do not correctly
correspond to text from the edit buffer for this reason shall consist of a single ’@’ character (plus
the terminating <newline>), and the <control>-R command shall cause the editor to update the
screen to correctly represent the edit buffer.

Open and visual mode commands that set the current column set it to a column position in the
display, and not a character position in the line. In this case, however, the column position in the
display shall be calculated for an infinite width display; for example, the column related to a
character that is part of a line that has been folded onto additional screen lines will be offset from
the display line column where the buffer line begins, not from the beginning of a particular
display line.

The display cursor column in the display is based on the value of the current column, as follows,
with each rule applied in turn:

1. If the current column is after the last display line column used by the displayed line, the
display cursor column shall be set to the last display line column occupied by the last
non-<newline> in the current line; otherwise, the display cursor column shall be set to the
current column.

2. If the character of which some portion is displayed in the display line column specified by
the display cursor column requires more than a single display line column:

a. If in text input mode, the display cursor column shall be adjusted to the first
display line column in which any portion of that character is displayed.

b. Otherwise, the display cursor column shall be adjusted to the last display line
column in which any portion of that character is displayed.

The current column shall not be changed by these adjustments to the display cursor column.

If an error occurs during the parsing or execution of a vi command:

• The terminal shall be alerted. Execution of the vi command shall stop, and the cursor (for
example, the current line and column) shall not be further modified.

• Unless otherwise specified by the following command sections, it is unspecified whether
an informational message shall be displayed.

• Any partially entered vi command shall be discarded.

• If the vi command resulted from a map expansion, all characters from that map expansion
shall be discarded, except as otherwise specified by the map command (see ed).

• If the vi command resulted from the execution of a buffer, no further commands caused by
the execution of the buffer shall be executed.

3314 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

110648

110649

110650

110651

110652

110653

110654

110655

110656

110657

110658

110659

110660

110661

110662

110663

110664

110665

110666

110667

110668

110669

110670

110671

110672

110673

110674

110675

110676

110677

110678

110679

110680

110681

110682

110683

110684

110685

110686

110687

110688

Utilities vi

Page Backwards

Synopsis: [count] <control>-B

If in open mode, the <control>-B command shall behave identically to the z command.
Otherwise, if the current line is the first line of the edit buffer, it shall be an error.

If the window edit option is less than 3, display a screen where the last line of the display shall
be some portion of:

(current first line) −1

otherwise, display a screen where the first line of the display shall be some portion of:

(current first line) − count x ((window edit option) −2)

If this calculation would result in a line that is before the first line of the edit buffer, the first line
of the display shall display some portion of the first line of the edit buffer.

Current line: If no lines from the previous display remain on the screen, set to the last line of the
display; otherwise, set to (line − the number of new lines displayed on this screen).

Current column: Set to non-<blank>.

Scroll Forward

Synopsis: [count] <control>-D

If the current line is the last line of the edit buffer, it shall be an error.

If no count is specified, count shall default to the count associated with the previous <control>-D
or <control>-U command. If there was no previous <control>-D or <control>-U command, count
shall default to the value of the scroll edit option.

If in open mode, write lines starting with the line after the current line, until count lines or the
last line of the file have been written.

Current line: If the current line + count is past the last line of the edit buffer, set to the last line of
the edit buffer; otherwise, set to the current line + count.

Current column: Set to non-<blank>.

Scroll Forward by Line

Synopsis: [count] <control>-E

Display the line count lines after the last line currently displayed.

If the last line of the edit buffer is displayed, it shall be an error. If there is no line count lines
after the last line currently displayed, the last line of the display shall display some portion of
the last line of the edit buffer.

Current line: Unchanged if the previous current character is displayed; otherwise, set to the first
line displayed.

Current column: Unchanged.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3315

110689

110690

110691

110692

110693

110694

110695

110696

110697

110698

110699

110700

110701

110702

110703

110704

110705

110706

110707

110708

110709

110710

110711

110712

110713

110714

110715

110716

110717

110718

110719

110720

110721

110722

vi Utilities

Page Forward

Synopsis: [count] <control>-F

If in open mode, the <control>-F command shall behave identically to the z command.
Otherwise, if the current line is the last line of the edit buffer, it shall be an error.

If the window edit option is less than 3, display a screen where the first line of the display shall
be some portion of:

(current last line) +1

otherwise, display a screen where the first line of the display shall be some portion of:

(current first line) + count x ((window edit option) −2)

If this calculation would result in a line that is after the last line of the edit buffer, the last line of
the display shall display some portion of the last line of the edit buffer.

Current line: If no lines from the previous display remain on the screen, set to the first line of the
display; otherwise, set to (line + the number of new lines displayed on this screen).

Current column: Set to non-<blank>.

Display Information

Synopsis: <control>-G

This command shall be equivalent to the ex file command.

Move Cursor Backwards

Synopsis: [count] <control>-H
[count] h
the current erase character (see stty)

If there are no characters before the current character on the current line, it shall be an error. If
there are less than count previous characters on the current line, count shall be adjusted to the
number of previous characters on the line.

If used as a motion command:

1. The text region shall be from the character before the starting cursor up to and including
the countth character before the starting cursor.

2. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Unchanged.

Current column: Set to (column − the number of columns occupied by count characters ending
with the previous current column).

3316 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

110723

110724

110725

110726

110727

110728

110729

110730

110731

110732

110733

110734

110735

110736

110737

110738

110739

110740

110741

110742

110743

110744

110745

110746

110747

110748

110749

110750

110751

110752

110753

110754

Utilities vi

Move Down

Synopsis: [count] <newline>
[count] <control>-J
[count] <control>-M
[count] <control>-N
[count] j
[count] <carriage-return>
[count] +

If there are less than count lines after the current line in the edit buffer, it shall be an error.

If used as a motion command:

1. The text region shall include the starting line and the next count − 1 lines.

2. Any text copied to a buffer shall be in line mode.

If not used as a motion command:

Current line: Set to current line+ count.

Current column: Set to non-<blank> for the <carriage-return>, <control>-M, and + commands;
otherwise, unchanged.

Clear and Redisplay

Synopsis: <control>-L

If in open mode, clear the screen and redisplay the current line. Otherwise, clear and redisplay
the screen.

Current line: Unchanged.

Current column: Unchanged.

Move Up

Synopsis: [count] <control>-P
[count] k
[count] −

If there are less than count lines before the current line in the edit buffer, it shall be an error.

If used as a motion command:

1. The text region shall include the starting line and the previous count lines.

2. Any text copied to a buffer shall be in line mode.

If not used as a motion command:

Current line: Set to current line − count.

Current column: Set to non-<blank> for the − command; otherwise, unchanged.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3317

110755

110756

110757

110758

110759

110760

110761

110762

110763

110764

110765

110766

110767

110768

110769

110770

110771

110772

110773

110774

110775

110776

110777

110778

110779

110780

110781

110782

110783

110784

110785

110786

110787

vi Utilities

Redraw Screen

Synopsis: <control>-R

If any lines have been deleted from the display screen and flagged as deleted on the terminal
using the @ convention (see the beginning of the EXTENDED DESCRIPTION section), they shall
be redisplayed to match the contents of the edit buffer.

It is unspecified whether lines flagged with @ because they do not fit on the terminal display
shall be affected.

Current line: Unchanged.

Current column: Unchanged.

Scroll Backward

Synopsis: [count] <control>-U

If the current line is the first line of the edit buffer, it shall be an error.

If no count is specified, count shall default to the count associated with the previous <control>-D
or <control>-U command. If there was no previous <control>-D or <control>-U command, count
shall default to the value of the scroll edit option.

Current line: If count is greater than the current line, set to 1; otherwise, set to the current line −
count.

Current column: Set to non-<blank>.

Scroll Backward by Line

Synopsis: [count] <control>-Y

Display the line count lines before the first line currently displayed.

If the current line is the first line of the edit buffer, it shall be an error. If this calculation would
result in a line that is before the first line of the edit buffer, the first line of the display shall
display some portion of the first line of the edit buffer.

Current line: Unchanged if the previous current character is displayed; otherwise, set to the first
line displayed.

Current column: Unchanged.

Edit the Alternate File

Synopsis: <control>-ˆ

This command shall be equivalent to the ex edit command, with the alternate pathname as its
argument.

3318 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

110788

110789

110790

110791

110792

110793

110794

110795

110796

110797

110798

110799

110800

110801

110802

110803

110804

110805

110806

110807

110808

110809

110810

110811

110812

110813

110814

110815

110816

110817

110818

Utilities vi

Terminate Command or Input Mode

Synopsis: <ESC>

If a partial vi command (as defined by at least one, non-count character) has been entered,
discard the count and the command character(s).

Otherwise, if no command characters have been entered, and the <ESC> was the result of a map
expansion, the terminal shall be alerted and the <ESC> character shall be discarded, but it shall
not be an error.

Otherwise, it shall be an error.

Current line: Unchanged.

Current column: Unchanged.

Search for tagstring

Synopsis: <control>-]

If the current character is not a word or <blank>, it shall be an error.

This command shall be equivalent to the ex tag command, with the argument to that command
defined as follows.

If the current character is a <blank>:

1. Skip all <blank> characters after the cursor up to the end of the line.

2. If the end of the line is reached, it shall be an error.

Then, the argument to the ex tag command shall be the current character and all subsequent
characters, up to the first non-word character or the end of the line.

Move Cursor Forward

Synopsis: [count] <space>
[count] l (ell)

If there are less than count non-<newline> characters after the cursor on the current line, count
shall be adjusted to the number of non-<newline> characters after the cursor on the line.

If used as a motion command:

1. If the current or countth character after the cursor is the last non-<newline> in the line, the
text region shall be comprised of the current character up to and including the last
non-<newline> in the line. Otherwise, the text region shall be from the current character
up to, but not including, the countth character after the cursor.

2. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

If there are no non-<newline> characters after the current character on the current line, it shall be
an error.

Current line: Unchanged.

Current column: Set to the last column that displays any portion of the countth character after the
current character.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3319

110819

110820

110821

110822

110823

110824

110825

110826

110827

110828

110829

110830

110831

110832

110833

110834

110835

110836

110837

110838

110839

110840

110841

110842

110843

110844

110845

110846

110847

110848

110849

110850

110851

110852

110853

110854

110855

vi Utilities

Replace Text with Results from Shell Command

Synopsis: [count] ! motion shell-commands <newline>

If the motion command is the ! command repeated:

1. If the edit buffer is empty and no count was supplied, the command shall be the
equivalent of the ex :read ! command, with the text input, and no text shall be copied to
any buffer.

2. Otherwise:

a. If there are less than count −1 lines after the current line in the edit buffer, it shall be
an error.

b. The text region shall be from the current line up to and including the next count −1
lines.

Otherwise, the text region shall be the lines in which any character of the text region specified by
the motion command appear.

Any text copied to a buffer shall be in line mode.

This command shall be equivalent to the ex ! command for the specified lines.

Move Cursor to End-of-Line

Synopsis: [count] $

It shall be an error if there are less than (count −1) lines after the current line in the edit buffer.

If used as a motion command:

1. If count is 1:

a. It shall be an error if the line is empty.

b. Otherwise, the text region shall consist of all characters from the starting cursor to
the last non-<newline> in the line, inclusive, and any text copied to a buffer shall
be in character mode.

2. Otherwise, if the starting cursor position is at or before the first non-<blank> in the line,
the text region shall consist of the current and the next count −1 lines, and any text saved
to a buffer shall be in line mode.

3. Otherwise, the text region shall consist of all characters from the starting cursor to the last
non-<newline> in the line that is count −1 lines forward from the current line, and any text
copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Set to the current line + count−1.

Current column: The current column is set to the last display line column of the last
non-<newline> in the line, or column position 1 if the line is empty.

The current column shall be adjusted to be on the last display line column of the last
non-<newline> of the current line as subsequent commands change the current line, until a
command changes the current column.

3320 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

110856

110857

110858

110859

110860

110861

110862

110863

110864

110865

110866

110867

110868

110869

110870

110871

110872

110873

110874

110875

110876

110877

110878

110879

110880

110881

110882

110883

110884

110885

110886

110887

110888

110889

110890

110891

110892

Utilities vi

Move to Matching Character

Synopsis: %

If the character at the current position is not a parenthesis, bracket, or curly brace, search
forward in the line to the first one of those characters. If no such character is found, it shall be an
error.

The matching character shall be the parenthesis, bracket, or curly brace matching the
parenthesis, bracket, or curly brace, respectively, that was at the current position or that was
found on the current line.

Matching shall be determined as follows, for an open parenthesis:

1. Set a counter to 1.

2. Search forwards until a parenthesis is found or the end of the edit buffer is reached.

3. If the end of the edit buffer is reached, it shall be an error.

4. If an open parenthesis is found, increment the counter by 1.

5. If a close parenthesis is found, decrement the counter by 1.

6. If the counter is zero, the current character is the matching character.

Matching for a close parenthesis shall be equivalent, except that the search shall be backwards,
from the starting character to the beginning of the buffer, a close parenthesis shall increment the
counter by 1, and an open parenthesis shall decrement the counter by 1.

Matching for brackets and curly braces shall be equivalent, except that searching shall be done
for open and close brackets or open and close curly braces. It is implementation-defined whether
other characters are searched for and matched as well.

If used as a motion command:

1. If the matching cursor was after the starting cursor in the edit buffer, and the starting
cursor position was at or before the first non-<blank> non-<newline> in the starting line,
and the matching cursor position was at or after the last non-<blank> non-<newline> in
the matching line, the text region shall consist of the current line to the matching line,
inclusive, and any text copied to a buffer shall be in line mode.

2. If the matching cursor was before the starting cursor in the edit buffer, and the starting
cursor position was at or after the last non-<blank> non-<newline> in the starting line,
and the matching cursor position was at or before the first non-<blank> non-<newline> in
the matching line, the text region shall consist of the current line to the matching line,
inclusive, and any text copied to a buffer shall be in line mode.

3. Otherwise, the text region shall consist of the starting character to the matching character,
inclusive, and any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Set to the line where the matching character is located.

Current column: Set to the last column where any portion of the matching character is displayed.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3321

110893

110894

110895

110896

110897

110898

110899

110900

110901

110902

110903

110904

110905

110906

110907

110908

110909

110910

110911

110912

110913

110914

110915

110916

110917

110918

110919

110920

110921

110922

110923

110924

110925

110926

110927

110928

110929

vi Utilities

Repeat Substitution

Synopsis: &

Repeat the previous substitution command. This command shall be equivalent to the ex &
command with the current line as its addresses, and without options, count, or flags.

Return to Previous Context at Beginning of Line

Synopsis: ’ character

It shall be an error if there is no line in the edit buffer marked by character.

If used as a motion command:

1. If the starting cursor is after the marked cursor, then the locations of the starting cursor
and the marked cursor in the edit buffer shall be logically swapped.

2. The text region shall consist of the starting line up to and including the marked line, and
any text copied to a buffer shall be in line mode.

If not used as a motion command:

Current line: Set to the line referenced by the mark.

Current column: Set to non-<blank>.

Return to Previous Context

Synopsis: ‘ character

It shall be an error if the marked line is no longer in the edit buffer. If the marked line no longer
contains a character in the saved numbered character position, it shall be as if the marked
position is the first non-<blank>.

If used as a motion command:

1. It shall be an error if the marked cursor references the same character in the edit buffer as
the starting cursor.

2. If the starting cursor is after the marked cursor, then the locations of the starting cursor
and the marked cursor in the edit buffer shall be logically swapped.

3. If the starting line is empty or the starting cursor is at or before the first non-<blank>
non-<newline> of the starting line, and the marked cursor line is empty or the marked
cursor references the first character of the marked cursor line, the text region shall consist
of all lines containing characters from the starting cursor to the line before the marked
cursor line, inclusive, and any text copied to a buffer shall be in line mode.

4. Otherwise, if the marked cursor line is empty or the marked cursor references a character
at or before the first non-<blank> non-<newline> of the marked cursor line, the region of
text shall be from the starting cursor to the last non-<newline> of the line before the
marked cursor line, inclusive, and any text copied to a buffer shall be in character mode.

5. Otherwise, the region of text shall be from the starting cursor (inclusive), to the marked
cursor (exclusive), and any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Set to the line referenced by the mark.

Current column: Set to the last column in which any portion of the character referenced by the

3322 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

110930

110931

110932

110933

110934

110935

110936

110937

110938

110939

110940

110941

110942

110943

110944

110945

110946

110947

110948

110949

110950

110951

110952

110953

110954

110955

110956

110957

110958

110959

110960

110961

110962

110963

110964

110965

110966

110967

110968

Utilities vi

mark is displayed.

Return to Previous Section

Synopsis: [count] [[

Move the cursor backward through the edit buffer to the first character of the previous section
boundary, count times.

If used as a motion command:

1. If the starting cursor was at the first character of the starting line or the starting line was
empty, and the first character of the boundary was the first character of the boundary line,
the text region shall consist of the current line up to and including the line where the
countth next boundary starts, and any text copied to a buffer shall be in line mode.

2. If the boundary was the last line of the edit buffer or the last non-<newline> of the last
line of the edit buffer, the text region shall consist of the last character in the edit buffer up
to and including the starting character, and any text saved to a buffer shall be in character
mode.

3. Otherwise, the text region shall consist of the starting character up to but not including
the first character in the countth next boundary, and any text copied to a buffer shall be in
character mode.

If not used as a motion command:

Current line: Set to the line where the countth next boundary in the edit buffer starts.

Current column: Set to the last column in which any portion of the first character of the countth
next boundary is displayed, or column position 1 if the line is empty.

Move to Next Section

Synopsis: [count]]]

Move the cursor forward through the edit buffer to the first character of the next section
boundary, count times.

If used as a motion command:

1. If the starting cursor was at the first character of the starting line or the starting line was
empty, and the first character of the boundary was the first character of the boundary line,
the text region shall consist of the current line up to and including the line where the
countth previous boundary starts, and any text copied to a buffer shall be in line mode.

2. If the boundary was the first line of the edit buffer, the text region shall consist of the first
character in the edit buffer up to but not including the starting character, and any text
copied to a buffer shall be in character mode.

3. Otherwise, the text region shall consist of the first character in the countth previous
section boundary up to but not including the starting character, and any text copied to a
buffer shall be in character mode.

If not used as a motion command:

Current line: Set to the line where the countth previous boundary in the edit buffer starts.

Current column: Set to the last column in which any portion of the first character of the countth
previous boundary is displayed, or column position 1 if the line is empty.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3323

110969

110970

110971

110972

110973

110974

110975

110976

110977

110978

110979

110980

110981

110982

110983

110984

110985

110986

110987

110988

110989

110990

110991

110992

110993

110994

110995

110996

110997

110998

110999

111000

111001

111002

111003

111004

111005

111006

111007

111008

vi Utilities

Move to First Non-<blank> Position on Current Line

Synopsis: ˆ

If used as a motion command:

1. If the line has no non-<blank> non-<newline> characters, or if the cursor is at the first
non-<blank> non-<newline> of the line, it shall be an error.

2. If the cursor is before the first non-<blank> non-<newline> of the line, the text region
shall be comprised of the current character, up to, but not including, the first non-<blank>
non-<newline> of the line.

3. If the cursor is after the first non-<blank> non-<newline> of the line, the text region shall
be from the character before the starting cursor up to and including the first non-<blank>
non-<newline> of the line.

4. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Unchanged.

Current column: Set to non-<blank>.

Current and Line Above

Synopsis: [count] _

If there are less than count −1 lines after the current line in the edit buffer, it shall be an error.

If used as a motion command:

1. If count is less than 2, the text region shall be the current line.

2. Otherwise, the text region shall include the starting line and the next count −1 lines.

3. Any text copied to a buffer shall be in line mode.

If not used as a motion command:

Current line: Set to current line + count −1.

Current column: Set to non-<blank>.

Move Back to Beginning of Sentence

Synopsis: [count] (

Move backward to the beginning of a sentence. This command shall be equivalent to the [[
command, with the exception that sentence boundaries shall be used instead of section
boundaries.

Move Forward to Beginning of Sentence

Synopsis: [count])

Move forward to the beginning of a sentence. This command shall be equivalent to the]]
command, with the exception that sentence boundaries shall be used instead of section
boundaries.

3324 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

111009

111010

111011

111012

111013

111014

111015

111016

111017

111018

111019

111020

111021

111022

111023

111024

111025

111026

111027

111028

111029

111030

111031

111032

111033

111034

111035

111036

111037

111038

111039

111040

111041

111042

111043

Utilities vi

Move Back to Preceding Paragraph

Synopsis: [count] {

Move back to the beginning of the preceding paragraph. This command shall be equivalent to
the [[command, with the exception that paragraph boundaries shall be used instead of section
boundaries.

Move Forward to Next Paragraph

Synopsis: [count] }

Move forward to the beginning of the next paragraph. This command shall be equivalent to the
]] command, with the exception that paragraph boundaries shall be used instead of section
boundaries.

Move to Specific Column Position

Synopsis: [count] |

For the purposes of this command, lines that are too long for the current display and that have
been folded shall be treated as having a single, 1−based, number of columns.

If there are less than count columns in which characters from the current line are displayed on
the screen, count shall be adjusted to be the last column in which any portion of the line is
displayed on the screen.

If used as a motion command:

1. If the line is empty, or the cursor character is the same as the character on the countth
column of the line, it shall be an error.

2. If the cursor is before the countth column of the line, the text region shall be comprised of
the current character, up to but not including the character on the countth column of the
line.

3. If the cursor is after the countth column of the line, the text region shall be from the
character before the starting cursor up to and including the character on the countth
column of the line.

4. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Unchanged.

Current column: Set to the last column in which any portion of the character that is displayed in
the count column of the line is displayed.

Reverse Find Character

Synopsis: [count] ,

If the last F, f, T, or t command was F, f, T, or t, this command shall be equivalent to an f, F, t, or
T command, respectively, with the specified count and the same search character.

If there was no previous F, f, T, or t command, it shall be an error.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3325

111044

111045

111046

111047

111048

111049

111050

111051

111052

111053

111054

111055

111056

111057

111058

111059

111060

111061

111062

111063

111064

111065

111066

111067

111068

111069

111070

111071

111072

111073

111074

111075

111076

111077

111078

111079

vi Utilities

Repeat

Synopsis: [count] .

Repeat the last !, <, >, A, C, D, I, J, O, P, R, S, X, Y, a, c, d, i, o, p, r, s, x, y, or ˜ command. It shall
be an error if none of these commands have been executed. Commands (other than commands
that enter text input mode) executed as a result of map expansions, shall not change the value of
the last repeatable command.

Repeated commands with associated motion commands shall repeat the motion command as
well; however, any specified count shall replace the count(s) that were originally specified to the
repeated command or its associated motion command.

If the motion component of the repeated command is f, F, t, or T, the repeated command shall
not set the remembered search character for the ; and , commands.

If the repeated command is p or P, and the buffer associated with that command was a numeric
buffer named with a number less than 9, the buffer associated with the repeated command shall
be set to be the buffer named by the name of the previous buffer logically incremented by 1.

If the repeated character is a text input command, the input text associated with that command
is repeated literally:

• Input characters are neither macro or abbreviation-expanded.

• Input characters are not interpreted in any special way with the exception that <newline>,
<carriage-return>, and <control>-T behave as described in Input Mode Commands in vi
(on page 3344).

Current line: Set as described for the repeated command.

Current column: Set as described for the repeated command.

Find Regular Expression

Synopsis: /

If the input line contains no non-<newline> characters, it shall be equivalent to a line containing
only the last regular expression encountered. The enhanced regular expressions supported by vi
are described in Regular Expressions in ex (on page 2675).

Otherwise, the line shall be interpreted as one or more regular expressions, optionally followed
by an address offset or a vi z command.

If the regular expression is not the last regular expression on the line, or if a line offset or z
command is specified, the regular expression shall be terminated by an unescaped ’/’
character, which shall not be used as part of the regular expression. If the regular expression is
not the first regular expression on the line, it shall be preceded by zero or more <blank>
characters, a <semicolon>, zero or more <blank> characters, and a leading ’/’ character, which
shall not be interpreted as part of the regular expression. It shall be an error to precede any
regular expression with any characters other than these.

Each search shall begin from the character after the first character of the last match (or, if it is the
first search, after the cursor). If the wrapscan edit option is set, the search shall continue to the
character before the starting cursor character; otherwise, to the end of the edit buffer. It shall be
an error if any search fails to find a match, and an informational message to this effect shall be
displayed.

An optional address offset (see Addressing in ex, on page 2644) can be specified after the last
regular expression by including a trailing ’/’ character after the regular expression and

3326 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

111080

111081

111082

111083

111084

111085

111086

111087

111088

111089

111090

111091

111092

111093

111094

111095

111096

111097

111098

111099

111100

111101

111102

111103

111104

111105

111106

111107

111108

111109

111110

111111

111112

111113

111114

111115

111116

111117

111118

111119

111120

111121

111122

Utilities vi

specifying the address offset. This offset will be from the line containing the match for the last
regular expression specified. It shall be an error if the line offset would indicate a line address
less than 1 or greater than the last line in the edit buffer. An address offset of zero shall be
supported. It shall be an error to follow the address offset with any other characters than
<blank> characters.

If not used as a motion command, an optional z command (see Redraw Window, on page 3343)
can be specified after the last regular expression by including a trailing ’/’ character after the
regular expression, zero or more <blank> characters, a ’z’, zero or more <blank> characters, an
optional new window edit option value, zero or more <blank> characters, and a location
character. The effect shall be as if the z command was executed after the / command. It shall be
an error to follow the z command with any other characters than <blank> characters.

The remembered search direction shall be set to forward.

If used as a motion command:

1. It shall be an error if the last match references the same character in the edit buffer as the
starting cursor.

2. If any address offset is specified, the last match shall be adjusted by the specified offset as
described previously.

3. If the starting cursor is after the last match, then the locations of the starting cursor and
the last match in the edit buffer shall be logically swapped.

4. If any address offset is specified, the text region shall consist of all lines containing
characters from the starting cursor to the last match line, inclusive, and any text copied to
a buffer shall be in line mode.

5. Otherwise, if the starting line is empty or the starting cursor is at or before the first
non-<blank> non-<newline> of the starting line, and the last match line is empty or the
last match starts at the first character of the last match line, the text region shall consist of
all lines containing characters from the starting cursor to the line before the last match
line, inclusive, and any text copied to a buffer shall be in line mode.

6. Otherwise, if the last match line is empty or the last match begins at a character at or
before the first non-<blank> non-<newline> of the last match line, the region of text shall
be from the current cursor to the last non-<newline> of the line before the last match line,
inclusive, and any text copied to a buffer shall be in character mode.

7. Otherwise, the region of text shall be from the current cursor (inclusive), to the first
character of the last match (exclusive), and any text copied to a buffer shall be in character
mode.

If not used as a motion command:

Current line: If a match is found, set to the last matched line plus the address offset, if any;
otherwise, unchanged.

Current column: Set to the last column on which any portion of the first character in the last
matched string is displayed, if a match is found; otherwise, unchanged.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3327

111123

111124

111125

111126

111127

111128

111129

111130

111131

111132

111133

111134

111135

111136

111137

111138

111139

111140

111141

111142

111143

111144

111145

111146

111147

111148

111149

111150

111151

111152

111153

111154

111155

111156

111157

111158

111159

111160

111161

vi Utilities

Move to First Character in Line

Synopsis: 0 (zero)

Move to the first character on the current line. The character ’0’ shall not be interpreted as a
command if it is immediately preceded by a digit.

If used as a motion command:

1. If the cursor character is the first character in the line, it shall be an error.

2. The text region shall be from the character before the cursor character up to and including
the first character in the line.

3. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Unchanged.

Current column: The last column in which any portion of the first character in the line is
displayed, or if the line is empty, unchanged.

Execute an ex Command

Synopsis: :

Execute one or more ex commands.

If any portion of the screen other than the last line of the screen was overwritten by any ex
command (except shell), vi shall display a message indicating that it is waiting for an input from
the user, and shall then read a character. This action may also be taken for other, unspecified
reasons.

If the next character entered is a ’:’, another ex command shall be accepted and executed. Any
other character shall cause the screen to be refreshed and vi shall return to command mode.

Current line: As specified for the ex command.

Current column: As specified for the ex command.

Repeat Find

Synopsis: [count] ;

This command shall be equivalent to the last F, f, T, or t command, with the specified count, and
with the same search character used for the last F, f, T, or t command. If there was no previous F,
f, T, or t command, it shall be an error.

Shift Left

Synopsis: [count] < motion

If the motion command is the < command repeated:

1. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
error.

2. The text region shall be from the current line, up to and including the next count −1 lines.

Shift any line in the text region specified by the count and motion command one shiftwidth (see
the ex shiftwidth option) toward the start of the line, as described by the ex < command. The
unshifted lines shall be copied to the unnamed buffer in line mode.

3328 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

111162

111163

111164

111165

111166

111167

111168

111169

111170

111171

111172

111173

111174

111175

111176

111177

111178

111179

111180

111181

111182

111183

111184

111185

111186

111187

111188

111189

111190

111191

111192

111193

111194

111195

111196

111197

111198

111199

Utilities vi

Current line: If the motion was from the current cursor position toward the end of the edit buffer,
unchanged. Otherwise, set to the first line in the edit buffer that is part of the text region
specified by the motion command.

Current column: Set to non-<blank>.

Shift Right

Synopsis: [count] > motion

If the motion command is the > command repeated:

1. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
error.

2. The text region shall be from the current line, up to and including the next count −1 lines.

Shift any line with characters in the text region specified by the count and motion command one
shiftwidth (see the ex shiftwidth option) away from the start of the line, as described by the ex >
command. The unshifted lines shall be copied into the unnamed buffer in line mode.

Current line: If the motion was from the current cursor position toward the end of the edit buffer,
unchanged. Otherwise, set to the first line in the edit buffer that is part of the text region
specified by the motion command.

Current column: Set to non-<blank>.

Scan Backwards for Regular Expression

Synopsis: ?

Scan backwards; the ? command shall be equivalent to the / command (see Find Regular
Expression, on page 3326) with the following exceptions:

1. The input prompt shall be a ’?’.

2. Each search shall begin from the character before the first character of the last match (or, if
it is the first search, the character before the cursor character).

3. The search direction shall be from the cursor toward the beginning of the edit buffer, and
the wrapscan edit option shall affect whether the search wraps to the end of the edit
buffer and continues.

4. The remembered search direction shall be set to backward.

Execute

Synopsis: @buffer

If the buffer is specified as @, the last buffer executed shall be used. If no previous buffer has been
executed, it shall be an error.

Behave as if the contents of the named buffer were entered as standard input. After each line of a
line-mode buffer, and all but the last line of a character mode buffer, behave as if a <newline>
were entered as standard input.

If an error occurs during this process, an error message shall be written, and no more characters
resulting from the execution of this command shall be processed.

If a count is specified, behave as if that count were entered as user input before the characters
from the @ buffer were entered.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3329

111200

111201

111202

111203

111204

111205

111206

111207

111208

111209

111210

111211

111212

111213

111214

111215

111216

111217

111218

111219

111220

111221

111222

111223

111224

111225

111226

111227

111228

111229

111230

111231

111232

111233

111234

111235

111236

111237

111238

vi Utilities

Current line: As specified for the individual commands.

Current column: As specified for the individual commands.

Reverse Case

Synopsis: [count] ˜

Reverse the case of the current character and the next count −1 characters, such that lowercase
characters that have uppercase counterparts shall be changed to uppercase characters, and
uppercase characters that have lowercase counterparts shall be changed to lowercase characters,
as prescribed by the current locale. No other characters shall be affected by this command.

If there are less than count −1 characters after the cursor in the edit buffer, count shall be adjusted
to the number of characters after the cursor in the edit buffer minus 1.

For the purposes of this command, the next character after the last non-<newline> on the line
shall be the next character in the edit buffer.

Current line: Set to the line including the (count−1)th character after the cursor.

Current column: Set to the last column in which any portion of the (count−1)th character after the
cursor is displayed.

Append

Synopsis: [count] a

Enter text input mode after the current cursor position. No characters already in the edit buffer
shall be affected by this command. A count shall cause the input text to be appended count −1
more times to the end of the input.

Current line/column: As specified for the text input commands (see Input Mode Commands in vi,
on page 3344).

Append at End-of-Line

Synopsis: [count] A

This command shall be equivalent to the vi command:

$ [count] a

(see Append).

Move Backward to Preceding Word

Synopsis: [count] b

With the exception that words are used as the delimiter instead of bigwords, this command shall
be equivalent to the B command.

3330 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

111239

111240

111241

111242

111243

111244

111245

111246

111247

111248

111249

111250

111251

111252

111253

111254

111255

111256

111257

111258

111259

111260

111261

111262

111263

111264

111265

111266

111267

111268

111269

Utilities vi

Move Backward to Preceding Bigword

Synopsis: [count] B

If the edit buffer is empty or the cursor is on the first character of the edit buffer, it shall be an
error. If less than count bigwords begin between the cursor and the start of the edit buffer, count
shall be adjusted to the number of bigword beginnings between the cursor and the start of the
edit buffer.

If used as a motion command:

1. The text region shall be from the first character of the countth previous bigword beginning
up to but not including the cursor character.

2. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Set to the line containing the current column.

Current column: Set to the last column upon which any part of the first character of the countth
previous bigword is displayed.

Change

Synopsis: [buffer][count] c motion

If the motion command is the c command repeated:

1. The buffer text shall be in line mode.

2. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
error.

3. The text region shall be from the current line up to and including the next count −1 lines.

Otherwise, the buffer text mode and text region shall be as specified by the motion command.

The replaced text shall be copied into buffer, if specified, and into the unnamed buffer. If the text
to be replaced contains characters from more than a single line, or the buffer text is in line mode,
the replaced text shall be copied into the numeric buffers as well.

If the buffer text is in line mode:

1. Any lines that contain characters in the region shall be deleted, and the editor shall enter
text input mode at the beginning of a new line which shall replace the first line deleted.

2. If the autoindent edit option is set, autoindent characters equal to the autoindent
characters on the first line deleted shall be inserted as if entered by the user.

Otherwise, if characters from more than one line are in the region of text:

1. The text shall be deleted.

2. Any text remaining in the last line in the text region shall be appended to the first line in
the region, and the last line in the region shall be deleted.

3. The editor shall enter text input mode after the last character not deleted from the first
line in the text region, if any; otherwise, on the first column of the first line in the region.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3331

111270

111271

111272

111273

111274

111275

111276

111277

111278

111279

111280

111281

111282

111283

111284

111285

111286

111287

111288

111289

111290

111291

111292

111293

111294

111295

111296

111297

111298

111299

111300

111301

111302

111303

111304

111305

vi Utilities

Otherwise:

1. If the glyph for ’$’ is smaller than the region, the end of the region shall be marked with
a ’$’.

2. The editor shall enter text input mode, overwriting the region of text.

Current line/column: As specified for the text input commands (see Input Mode Commands in vi,
on page 3344).

Change to End-of-Line

Synopsis: [buffer][count] C

This command shall be equivalent to the vi command:

[buffer][count] c$

See the c command.

Delete

Synopsis: [buffer][count] d motion

If the motion command is the d command repeated:

1. The buffer text shall be in line mode.

2. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
error.

3. The text region shall be from the current line up to and including the next count −1 lines.

Otherwise, the buffer text mode and text region shall be as specified by the motion command.

If in open mode, and the current line is deleted, and the line remains on the display, an ’@’
character shall be displayed as the first glyph of that line.

Delete the region of text into buffer, if specified, and into the unnamed buffer. If the text to be
deleted contains characters from more than a single line, or the buffer text is in line mode, the
deleted text shall be copied into the numeric buffers, as well.

Current line: Set to the first text region line that appears in the edit buffer, unless that line has
been deleted, in which case it shall be set to the last line in the edit buffer, or line 1 if the edit
buffer is empty.

Current column:

1. If the line is empty, set to column position 1.

2. Otherwise, if the buffer text is in line mode or the motion was from the cursor toward the
end of the edit buffer:

a. If a character from the current line is displayed in the current column, set to the
last column that displays any portion of that character.

b. Otherwise, set to the last column in which any portion of any character in the line
is displayed.

3. Otherwise, if a character is displayed in the column that began the text region, set to the
last column that displays any portion of that character.

3332 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

111306

111307

111308

111309

111310

111311

111312

111313

111314

111315

111316

111317

111318

111319

111320

111321

111322

111323

111324

111325

111326

111327

111328

111329

111330

111331

111332

111333

111334

111335

111336

111337

111338

111339

111340

111341

111342

Utilities vi

4. Otherwise, set to the last column in which any portion of any character in the line is
displayed.

Delete to End-of-Line

Synopsis: [buffer] D

Delete the text from the current position to the end of the current line; equivalent to the vi
command:

[buffer] d$

Move to End-of-Word

Synopsis: [count] e

With the exception that words are used instead of bigwords as the delimiter, this command shall
be equivalent to the E command.

Move to End-of-Bigword

Synopsis: [count] E

If the edit buffer is empty it shall be an error. If less than count bigwords end between the cursor
and the end of the edit buffer, count shall be adjusted to the number of bigword endings between
the cursor and the end of the edit buffer.

If used as a motion command:

1. The text region shall be from the last character of the countth next bigword up to and
including the cursor character.

2. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Set to the line containing the current column.

Current column: Set to the last column upon which any part of the last character of the countth
next bigword is displayed.

Find Character in Current Line (Forward)

Synopsis: [count] f character

It shall be an error if count occurrences of the character do not occur after the cursor in the line.

If used as a motion command:

1. The text range shall be from the cursor character up to and including the countth
occurrence of the specified character after the cursor.

2. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Unchanged.

Current column: Set to the last column in which any portion of the countth occurrence of the
specified character after the cursor appears in the line.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3333

111343

111344

111345

111346

111347

111348

111349

111350

111351

111352

111353

111354

111355

111356

111357

111358

111359

111360

111361

111362

111363

111364

111365

111366

111367

111368

111369

111370

111371

111372

111373

111374

111375

111376

111377

vi Utilities

Find Character in Current Line (Reverse)

Synopsis: [count] F character

It shall be an error if count occurrences of the character do not occur before the cursor in the line.

If used as a motion command:

1. The text region shall be from the countth occurrence of the specified character before the
cursor, up to, but not including the cursor character.

2. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Unchanged.

Current column: Set to the last column in which any portion of the countth occurrence of the
specified character before the cursor appears in the line.

Move to Line

Synopsis: [count] G

If count is not specified, it shall default to the last line of the edit buffer. If count is greater than
the last line of the edit buffer, it shall be an error.

If used as a motion command:

1. The text region shall be from the cursor line up to and including the specified line.

2. Any text copied to a buffer shall be in line mode.

If not used as a motion command:

Current line: Set to count if count is specified; otherwise, the last line.

Current column: Set to non-<blank>.

Move to Top of Screen

Synopsis: [count] H

If the beginning of the line count greater than the first line of which any portion appears on the
display does not exist, it shall be an error.

If used as a motion command:

1. If in open mode, the text region shall be the current line.

2. Otherwise, the text region shall be from the starting line up to and including (the first line
of the display + count −1).

3. Any text copied to a buffer shall be in line mode.

If not used as a motion command:

If in open mode, this command shall set the current column to non-<blank> and do nothing else.

Otherwise, it shall set the current line and current column as follows.

Current line: Set to (the first line of the display + count −1).

Current column: Set to non-<blank>.

3334 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

111378

111379

111380

111381

111382

111383

111384

111385

111386

111387

111388

111389

111390

111391

111392

111393

111394

111395

111396

111397

111398

111399

111400

111401

111402

111403

111404

111405

111406

111407

111408

111409

111410

111411

111412

Utilities vi

Insert Before Cursor

Synopsis: [count] i

Enter text input mode before the current cursor position. No characters already in the edit buffer
shall be affected by this command. A count shall cause the input text to be appended count −1
more times to the end of the input.

Current line/column: As specified for the text input commands (see Input Mode Commands in vi,
on page 3344).

Insert at Beginning of Line

Synopsis: [count] I

This command shall be equivalent to the vi command ˆ[count]i.

Join

Synopsis: [count] J

If the current line is the last line in the edit buffer, it shall be an error.

This command shall be equivalent to the ex join command with no addresses, and an ex
command count value of 1 if count was not specified or if a count of 1 was specified, and an ex
command count value of count −1 for any other value of count, except that the current line and
column shall be set as follows.

Current line: Unchanged.

Current column: The last column in which any portion of the character following the last
character in the initial line is displayed, or the last non-<newline> in the line if no characters
were appended.

Move to Bottom of Screen

Synopsis: [count] L

If the beginning of the line count less than the last line of which any portion appears on the
display does not exist, it shall be an error.

If used as a motion command:

1. If in open mode, the text region shall be the current line.

2. Otherwise, the text region shall include all lines from the starting cursor line to (the last
line of the display −(count −1)).

3. Any text copied to a buffer shall be in line mode.

If not used as a motion command:

1. If in open mode, this command shall set the current column to non-<blank> and do
nothing else.

2. Otherwise, it shall set the current line and current column as follows.

Current line: Set to (the last line of the display −(count −1)).

Current column: Set to non-<blank>.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3335

111413

111414

111415

111416

111417

111418

111419

111420

111421

111422

111423

111424

111425

111426

111427

111428

111429

111430

111431

111432

111433

111434

111435

111436

111437

111438

111439

111440

111441

111442

111443

111444

111445

111446

111447

111448

vi Utilities

Mark Position

Synopsis: m letter

This command shall be equivalent to the ex mark command with the specified character as an
argument.

Move to Middle of Screen

Synopsis: M

The middle line of the display shall be calculated as follows:

(the top line of the display) + (((number of lines displayed) +1) /2) −1

If used as a motion command:

1. If in open mode, the text region shall be the current line.

2. Otherwise, the text region shall include all lines from the starting cursor line up to and
including the middle line of the display.

3. Any text copied to a buffer shall be in line mode.

If not used as a motion command:

If in open mode, this command shall set the current column to non-<blank> and do nothing else.

Otherwise, it shall set the current line and current column as follows.

Current line: Set to the middle line of the display.

Current column: Set to non-<blank>.

Repeat Regular Expression Find (Forward)

Synopsis: n

If the remembered search direction was forward, the n command shall be equivalent to the vi /
command with no characters entered by the user. Otherwise, it shall be equivalent to the vi ?
command with no characters entered by the user.

If the n command is used as a motion command for the ! command, the editor shall not enter
text input mode on the last line on the screen, and shall behave as if the user entered a single
’!’ character as the text input.

Repeat Regular Expression Find (Reverse)

Synopsis: N

Scan for the next match of the last pattern given to / or ?, but in the reverse direction; this is the
reverse of n.

If the remembered search direction was forward, the N command shall be equivalent to the vi ?
command with no characters entered by the user. Otherwise, it shall be equivalent to the vi /
command with no characters entered by the user. If the N command is used as a motion
command for the ! command, the editor shall not enter text input mode on the last line on the
screen, and shall behave as if the user entered a single ! character as the text input.

3336 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

111449

111450

111451

111452

111453

111454

111455

111456

111457

111458

111459

111460

111461

111462

111463

111464

111465

111466

111467

111468

111469

111470

111471

111472

111473

111474

111475

111476

111477

111478

111479

111480

111481

111482

111483

Utilities vi

Insert Empty Line Below

Synopsis: o

Enter text input mode in a new line appended after the current line. A count shall cause the input
text to be appended count −1 more times to the end of the already added text, each time starting
on a new, appended line.

Current line/column: As specified for the text input commands (see Input Mode Commands in vi,
on page 3344).

Insert Empty Line Above

Synopsis: O

Enter text input mode in a new line inserted before the current line. A count shall cause the input
text to be appended count −1 more times to the end of the already added text, each time starting
on a new, appended line.

Current line/column: As specified for the text input commands (see Input Mode Commands in vi,
on page 3344).

Put from Buffer Following

Synopsis: [buffer] p

If no buffer is specified, the unnamed buffer shall be used.

If the buffer text is in line mode, the text shall be appended below the current line, and each line
of the buffer shall become a new line in the edit buffer. A count shall cause the buffer text to be
appended count −1 more times to the end of the already added text, each time starting on a new,
appended line.

If the buffer text is in character mode, the text shall be appended into the current line after the
cursor, and each line of the buffer other than the first and last shall become a new line in the edit
buffer. A count shall cause the buffer text to be appended count −1 more times to the end of the
already added text, each time starting after the last added character.

Current line: If the buffer text is in line mode, set the line to line +1; otherwise, unchanged.

Current column: If the buffer text is in line mode:

1. If there is a non-<blank> in the first line of the buffer, set to the last column on which any
portion of the first non-<blank> in the line is displayed.

2. If there is no non-<blank> in the first line of the buffer, set to the last column on which
any portion of the last non-<newline> in the first line of the buffer is displayed.

If the buffer text is in character mode:

1. If the text in the buffer is from more than a single line, then set to the last column on
which any portion of the first character from the buffer is displayed.

2. Otherwise, if the buffer is the unnamed buffer, set to the last column on which any
portion of the last character from the buffer is displayed.

3. Otherwise, set to the first column on which any portion of the first character from the
buffer is displayed.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3337

111484

111485

111486

111487

111488

111489

111490

111491

111492

111493

111494

111495

111496

111497

111498

111499

111500

111501

111502

111503

111504

111505

111506

111507

111508

111509

111510

111511

111512

111513

111514

111515

111516

111517

111518

111519

111520

111521

vi Utilities

Put from Buffer Before

Synopsis: [buffer] P

If no buffer is specified, the unnamed buffer shall be used.

If the buffer text is in line mode, the text shall be inserted above the current line, and each line of
the buffer shall become a new line in the edit buffer. A count shall cause the buffer text to be
appended count −1 more times to the end of the already added text, each time starting on a new,
appended line.

If the buffer text is in character mode, the text shall be inserted into the current line before the
cursor, and each line of the buffer other than the first and last shall become a new line in the edit
buffer. A count shall cause the buffer text to be appended count −1 more times to the end of the
already added text, each time starting after the last added character.

Current line: Unchanged.

Current column: If the buffer text is in line mode:

1. If there is a non-<blank> in the first line of the buffer, set to the last column on which any
portion of that character is displayed.

2. If there is no non-<blank> in the first line of the buffer, set to the last column on which
any portion of the last non-<newline> in the first line of the buffer is displayed.

If the buffer text is in character mode:

1. If the text in the buffer is from more than a single line, then set to the last column on
which any portion of the first character from the buffer is displayed.

2. Otherwise, if the buffer is the unnamed buffer, set to the last column on which any
portion of the last character from the buffer is displayed.

3. Otherwise, set to the first column on which any portion of the first character from the
buffer is displayed.

Enter ex Mode

Synopsis: Q

Leave visual or open mode and enter ex command mode.

Current line: Unchanged.

Current column: Unchanged.

Replace Character

Synopsis: [count] r character

Replace the count characters at and after the cursor with the specified character. If there are less
than count non-<newline> characters at and after the cursor on the line, it shall be an error.

If character is <control>-V, any next character other than the <newline> shall be stripped of any
special meaning and used as a literal character.

If character is <ESC>, no replacement shall be made and the current line and current column
shall be unchanged.

If character is <carriage-return> or <newline>, count new lines shall be appended to the current
line. All but the last of these lines shall be empty. count characters at and after the cursor shall be

3338 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

111522

111523

111524

111525

111526

111527

111528

111529

111530

111531

111532

111533

111534

111535

111536

111537

111538

111539

111540

111541

111542

111543

111544

111545

111546

111547

111548

111549

111550

111551

111552

111553

111554

111555

111556

111557

111558

111559

111560

Utilities vi

discarded, and any remaining characters after the cursor in the current line shall be moved to the
last of the new lines. If the autoindent edit option is set, they shall be preceded by the same
number of autoindent characters found on the line from which the command was executed.

Current line: Unchanged unless the replacement character is a <carriage-return> or <newline>, in
which case it shall be set to line + count.

Current column: Set to the last column position on which a portion of the last replaced character
is displayed, or if the replacement character caused new lines to be created, set to non-<blank>.

Replace Characters

Synopsis: R

Enter text input mode at the current cursor position possibly replacing text on the current line. A
count shall cause the input text to be appended count −1 more times to the end of the input.

Current line/column: As specified for the text input commands (see Input Mode Commands in vi,
on page 3344).

Substitute Character

Synopsis: [buffer][count] s

This command shall be equivalent to the vi command:

[buffer][count] c<space>

Substitute Lines

Synopsis: [buffer][count] S

This command shall be equivalent to the vi command:

[buffer][count] c_

Move Cursor to Before Character (Forward)

Synopsis: [count] t character

It shall be an error if count occurrences of the character do not occur after the cursor in the line.

If used as a motion command:

1. The text region shall be from the cursor up to but not including the countth occurrence of
the specified character after the cursor.

2. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Unchanged.

Current column: Set to the last column in which any portion of the character before the countth
occurrence of the specified character after the cursor appears in the line.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3339

111561

111562

111563

111564

111565

111566

111567

111568

111569

111570

111571

111572

111573

111574

111575

111576

111577

111578

111579

111580

111581

111582

111583

111584

111585

111586

111587

111588

111589

111590

111591

111592

vi Utilities

Move Cursor to After Character (Reverse)

Synopsis: [count] T character

It shall be an error if count occurrences of the character do not occur before the cursor in the line.

If used as a motion command:

1. If the character before the cursor is the specified character, it shall be an error.

2. The text region shall be from the character before the cursor up to but not including the
countth occurrence of the specified character before the cursor.

3. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

Current line: Unchanged.

Current column: Set to the last column in which any portion of the character after the countth
occurrence of the specified character before the cursor appears in the line.

Undo

Synopsis: u

This command shall be equivalent to the ex undo command except that the current line and
current column shall be set as follows:

Current line: Set to the first line added or changed if any; otherwise, move to the line preceding
any deleted text if one exists; otherwise, move to line 1.

Current column: If undoing an ex command, set to the first non-<blank>.

Otherwise, if undoing a text input command:

1. If the command was a C, c, O, o, R, S, or s command, the current column shall be set to
the value it held when the text input command was entered.

2. Otherwise, set to the last column in which any portion of the first character after the
deleted text is displayed, or, if no non-<newline> characters follow the text deleted from
this line, set to the last column in which any portion of the last non-<newline> in the line
is displayed, or 1 if the line is empty.

Otherwise, if a single line was modified (that is, not added or deleted) by the u command:

1. If text was added or changed, set to the last column in which any portion of the first
character added or changed is displayed.

2. If text was deleted, set to the last column in which any portion of the first character after
the deleted text is displayed, or, if no non-<newline> characters follow the deleted text,
set to the last column in which any portion of the last non-<newline> in the line is
displayed, or 1 if the line is empty.

Otherwise, set to non-<blank>.

3340 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

111593

111594

111595

111596

111597

111598

111599

111600

111601

111602

111603

111604

111605

111606

111607

111608

111609

111610

111611

111612

111613

111614

111615

111616

111617

111618

111619

111620

111621

111622

111623

111624

111625

111626

Utilities vi

Undo Current Line

Synopsis: U

Restore the current line to its state immediately before the most recent time that it became the
current line.

Current line: Unchanged.

Current column: Set to the first column in the line in which any portion of the first character in
the line is displayed.

Move to Beginning of Word

Synopsis: [count] w

With the exception that words are used as the delimiter instead of bigwords, this command shall
be equivalent to the W command.

Move to Beginning of Bigword

Synopsis: [count] W

If the edit buffer is empty, it shall be an error. If there are less than count bigwords between the
cursor and the end of the edit buffer, count shall be adjusted to move the cursor to the last
bigword in the edit buffer.

If used as a motion command:

1. If the associated command is c, count is 1, and the cursor is on a <blank>, the region of
text shall be the current character and no further action shall be taken.

2. If there are less than count bigwords between the cursor and the end of the edit buffer,
then the command shall succeed, and the region of text shall include the last character of
the edit buffer.

3. If there are <blank> characters or an end-of-line that precede the countth bigword, and the
associated command is c, the region of text shall be up to and including the last character
before the preceding <blank> characters or end-of-line.

4. If there are <blank> characters or an end-of-line that precede the bigword, and the
associated command is d or y, the region of text shall be up to and including the last
<blank> before the start of the bigword or end-of-line.

5. Any text copied to a buffer shall be in character mode.

If not used as a motion command:

1. If the cursor is on the last character of the edit buffer, it shall be an error.

Current line: Set to the line containing the current column.

Current column: Set to the last column in which any part of the first character of the countth next
bigword is displayed.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3341

111627

111628

111629

111630

111631

111632

111633

111634

111635

111636

111637

111638

111639

111640

111641

111642

111643

111644

111645

111646

111647

111648

111649

111650

111651

111652

111653

111654

111655

111656

111657

111658

111659

111660

vi Utilities

Delete Character at Cursor

Synopsis: [buffer][count] x

Delete the count characters at and after the current character into buffer, if specified, and into the
unnamed buffer.

If the line is empty, it shall be an error. If there are less than count non-<newline> characters at
and after the cursor on the current line, count shall be adjusted to the number of non-<newline>
characters at and after the cursor.

Current line: Unchanged.

Current column: If the line is empty, set to column position 1. Otherwise, if there were count or
less non-<newline> characters at and after the cursor on the current line, set to the last column
that displays any part of the last non-<newline> of the line. Otherwise, unchanged.

Delete Character Before Cursor

Synopsis: [buffer][count] X

Delete the count characters before the current character into buffer, if specified, and into the
unnamed buffer.

If there are no characters before the current character on the current line, it shall be an error. If
there are less than count previous characters on the current line, count shall be adjusted to the
number of previous characters on the line.

Current line: Unchanged.

Current column: Set to (current column − the width of the deleted characters).

Yank

Synopsis: [buffer][count] y motion

Copy (yank) the region of text into buffer, if specified, and into the unnamed buffer.

If the motion command is the y command repeated:

1. The buffer shall be in line mode.

2. If there are less than count −1 lines after the current line in the edit buffer, it shall be an
error.

3. The text region shall be from the current line up to and including the next count −1 lines.

Otherwise, the buffer text mode and text region shall be as specified by the motion command.

Current line: If the motion was from the current cursor position toward the end of the edit buffer,
unchanged. Otherwise, set to the first line in the edit buffer that is part of the text region
specified by the motion command.

Current column:

1. If the motion was from the current cursor position toward the end of the edit buffer,
unchanged.

2. Otherwise, if the current line is empty, set to column position 1.

3. Otherwise, set to the last column that displays any part of the first character in the file
that is part of the text region specified by the motion command.

3342 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

111661

111662

111663

111664

111665

111666

111667

111668

111669

111670

111671

111672

111673

111674

111675

111676

111677

111678

111679

111680

111681

111682

111683

111684

111685

111686

111687

111688

111689

111690

111691

111692

111693

111694

111695

111696

111697

111698

Utilities vi

Yank Current Line

Synopsis: [buffer][count] Y

This command shall be equivalent to the vi command:

[buffer][count] y_

Redraw Window

If in open mode, the z command shall have the Synopsis:

Synopsis: [count] z

If count is not specified, it shall default to the window edit option −1. The z command shall be
equivalent to the ex z command, with a type character of = and a count of count −2, except that
the current line and current column shall be set as follows, and the window edit option shall not
be affected. If the calculation for the count argument would result in a negative number, the
count argument to the ex z command shall be zero. A blank line shall be written after the last line
is written.

Current line: Unchanged.

Current column: Unchanged.

If not in open mode, the z command shall have the following Synopsis:

Synopsis: [line] z [count] character

If line is not specified, it shall default to the current line. If line is specified, but is greater than the
number of lines in the edit buffer, it shall default to the number of lines in the edit buffer.

If count is specified, the value of the window edit option shall be set to count (as described in the
ex window command), and the screen shall be redrawn.

line shall be placed as specified by the following characters:

<newline>, <carriage-return>
Place the beginning of the line on the first line of the display.

. Place the beginning of the line in the center of the display. The middle line of the display
shall be calculated as described for the M command.

− Place an unspecified portion of the line on the last line of the display.

+ If line was specified, equivalent to the <newline> case. If line was not specified, display a
screen where the first line of the display shall be (current last line) +1. If there are no lines
after the last line in the display, it shall be an error.

ˆ If line was specified, display a screen where the last line of the display shall contain an
unspecified portion of the first line of a display that had an unspecified portion of the
specified line on the last line of the display. If this calculation results in a line before the
beginning of the edit buffer, display the first screen of the edit buffer.

Otherwise, display a screen where the last line of the display shall contain an unspecified
portion of (current first line −1). If this calculation results in a line before the beginning of
the edit buffer, it shall be an error.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3343

111699

111700

111701

111702

111703

111704

111705

111706

111707

111708

111709

111710

111711

111712

111713

111714

111715

111716

111717

111718

111719

111720

111721

111722

111723

111724

111725

111726

111727

111728

111729

111730

111731

111732

111733

111734

111735

vi Utilities

Current line: If line and the ’ˆ’ character were specified:

1. If the first screen was displayed as a result of the command attempting to display lines
before the beginning of the edit buffer: if the first screen was already displayed,
unchanged; otherwise, set to (current first line −1).

2. Otherwise, set to the last line of the display.

If line and the ’+’ character were specified, set to the first line of the display.

Otherwise, if line was specified, set to line.

Otherwise, unchanged.

Current column: Set to non-<blank>.

Exit

Synopsis: ZZ

This command shall be equivalent to the ex xit command with no addresses, trailing !, or
filename (see the ex xit command).

Input Mode Commands in vi

In text input mode, the current line shall consist of zero or more of the following categories, plus
the terminating <newline>:

1. Characters preceding the text input entry point

Characters in this category shall not be modified during text input mode.

2. autoindent characters

autoindent characters shall be automatically inserted into each line that is created in text
input mode, either as a result of entering a <newline> or <carriage-return> while in text
input mode, or as an effect of the command itself; for example, O or o (see the ex
autoindent command), as if entered by the user.

It shall be possible to erase autoindent characters with the <control>-D command; it is
unspecified whether they can be erased by <control>-H, <control>-U, and <control>-W
characters. Erasing any autoindent character turns the glyph into erase-columns and
deletes the character from the edit buffer, but does not change its representation on the
screen.

3. Text input characters

Text input characters are the characters entered by the user. Erasing any text input
character turns the glyph into erase-columns and deletes the character from the edit
buffer, but does not change its representation on the screen.

Each text input character entered by the user (that does not have a special meaning) shall
be treated as follows:

a. The text input character shall be appended to the last character in the edit buffer
from the first, second, or third categories.

b. If there are no erase-columns on the screen, the text input command was the R
command, and characters in the fifth category from the original line follow the
cursor, the next such character shall be deleted from the edit buffer. If the
slowopen edit option is not set, the corresponding glyph on the screen shall

3344 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

111736

111737

111738

111739

111740

111741

111742

111743

111744

111745

111746

111747

111748

111749

111750

111751

111752

111753

111754

111755

111756

111757

111758

111759

111760

111761

111762

111763

111764

111765

111766

111767

111768

111769

111770

111771

111772

111773

111774

111775

Utilities vi

become erase-columns.

c. If there are erase-columns on the screen, as many columns as they occupy, or as are
necessary, shall be overwritten to display the text input character. (If only part of a
multi-column glyph is overwritten, the remainder shall be left on the screen, and
continue to be treated as erase-columns; it is unspecified whether the remainder of
the glyph is modified in any way.)

d. If additional display line columns are needed to display the text input character:

i. If the slowopen edit option is set, the text input characters shall be
displayed on subsequent display line columns, overwriting any characters
displayed in those columns.

ii. Otherwise, any characters currently displayed on or after the column on the
display line where the text input character is to be displayed shall be
pushed ahead the number of display line columns necessary to display the
rest of the text input character.

4. Erase-columns

Erase-columns are not logically part of the edit buffer, appearing only on the screen, and
may be overwritten on the screen by subsequent text input characters. When text input
mode ends, all erase-columns shall no longer appear on the screen.

Erase-columns are initially the region of text specified by the c command (see Change, on
page 3331); however, erasing autoindent or text input characters causes the glyphs of the
erased characters to be treated as erase-columns.

5. Characters following the text region for the c command, or the text input entry point for
all other commands

Characters in this category shall not be modified during text input mode, except as
specified in category 3.b. for the R text input command, or as <blank> characters deleted
when a <newline> or <carriage-return> is entered.

It is unspecified whether it is an error to attempt to erase past the beginning of a line that was
created by the entry of a <newline> or <carriage-return> during text input mode. If it is not an
error, the editor shall behave as if the erasing character was entered immediately after the last
text input character entered on the previous line, and all of the non-<newline> characters on the
current line shall be treated as erase-columns.

When text input mode is entered, or after a text input mode character is entered (except as
specified for the special characters below), the cursor shall be positioned as follows:

1. On the first column that displays any part of the first erase-column, if one exists

2. Otherwise, if the slowopen edit option is set, on the first display line column after the last
character in the first, second, or third categories, if one exists

3. Otherwise, the first column that displays any part of the first character in the fifth
category, if one exists

4. Otherwise, the display line column after the last character in the first, second, or third
categories, if one exists

5. Otherwise, on column position 1

The characters that are updated on the screen during text input mode are unspecified, other than
that the last text input character shall always be updated, and, if the slowopen edit option is not

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3345

111776

111777

111778

111779

111780

111781

111782

111783

111784

111785

111786

111787

111788

111789

111790

111791

111792

111793

111794

111795

111796

111797

111798

111799

111800

111801

111802

111803

111804

111805

111806

111807

111808

111809

111810

111811

111812

111813

111814

111815

111816

111817

111818

vi Utilities

set, the current cursor character shall always be updated.

The following specifications are for command characters entered during text input mode.

NUL

Synopsis: NUL

If the first character of the text input is a NUL, the most recently input text shall be input as if
entered by the user, and then text input mode shall be exited. The text shall be input literally;
that is, characters are neither macro or abbreviation expanded, nor are any characters interpreted
in any special manner. It is unspecified whether implementations shall support more than 256
bytes of remembered input text.

<control>-D

Synopsis: <control>-D

The <control>-D character shall have no special meaning when in text input mode for a line-
oriented command (see Command Descriptions in vi, on page 3310).

This command need not be supported on block-mode terminals.

If the cursor does not follow an autoindent character, or an autoindent character and a ’0’ or
’ˆ’ character:

1. If the cursor is in column position 1, the <control>-D character shall be discarded and no
further action taken.

2. Otherwise, the <control>-D character shall have no special meaning.

If the last input character was a ’0’, the cursor shall be moved to column position 1.

Otherwise, if the last input character was a ’ˆ’, the cursor shall be moved to column position 1.
In addition, the autoindent level for the next input line shall be derived from the same line from
which the autoindent level for the current input line was derived.

Otherwise, the cursor shall be moved back to the column after the previous shiftwidth (see the
ex shiftwidth command) boundary.

All of the glyphs on columns between the starting cursor position and (inclusively) the ending
cursor position shall become erase-columns as described in Input Mode Commands in vi (on
page 3344).

Current line: Unchanged.

Current column: Set to 1 if the <control>-D was preceded by a ’ˆ’ or ’0’; otherwise, set to
(column −1) −((column −2) % shiftwidth).

<control>-H

Synopsis: <control>-H

If in text input mode for a line-oriented command, and there are no characters to erase, text
input mode shall be terminated, no further action shall be done for this command, and the
current line and column shall be unchanged.

If there are characters other than autoindent characters that have been input on the current line
before the cursor, the cursor shall move back one character.

Otherwise, if there are autoindent characters on the current line before the cursor, it is

3346 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

111819

111820

111821

111822

111823

111824

111825

111826

111827

111828

111829

111830

111831

111832

111833

111834

111835

111836

111837

111838

111839

111840

111841

111842

111843

111844

111845

111846

111847

111848

111849

111850

111851

111852

111853

111854

111855

111856

111857

Utilities vi

implementation-defined whether the <control>-H command is an error or if the cursor moves
back one autoindent character.

Otherwise, if the cursor is in column position 1 and there are previous lines that have been
input, it is implementation-defined whether the <control>-H command is an error or if it is
equivalent to entering <control>-H after the last input character on the previous input line.

Otherwise, it shall be an error.

All of the glyphs on columns between the starting cursor position and (inclusively) the ending
cursor position shall become erase-columns as described in Input Mode Commands in vi (on
page 3344).

The current erase character (see stty) shall cause an equivalent action to the <control>-H
command, unless the previously inserted character was a <backslash>, in which case it shall be
as if the literal current erase character had been inserted instead of the <backslash>.

Current line: Unchanged, unless previously input lines are erased, in which case it shall be set to
line −1.

Current column: Set to the first column that displays any portion of the character backed up over.

<newline>

Synopsis: <newline>
<carriage-return>
<control>-J
<control>-M

If input was part of a line-oriented command, text input mode shall be terminated and the
command shall continue execution with the input provided.

Otherwise, terminate the current line. If there are no characters other than autoindent characters
on the line, all characters on the line shall be discarded. Otherwise, it is unspecified whether the
autoindent characters in the line are modified by entering these characters.

Continue text input mode on a new line appended after the current line. If the slowopen edit
option is set, the lines on the screen below the current line shall not be pushed down, but the
first of them shall be cleared and shall appear to be overwritten. Otherwise, the lines of the
screen below the current line shall be pushed down.

If the autoindent edit option is set, an appropriate number of autoindent characters shall be
added as a prefix to the line as described by the ex autoindent edit option.

All columns after the cursor that are erase-columns (as described in Input Mode Commands in
vi, on page 3344) shall be discarded.

If the autoindent edit option is set, all <blank> characters immediately following the cursor shall
be discarded.

All remaining characters after the cursor shall be transferred to the new line, positioned after
any autoindent characters.

Current line: Set to current line +1.

Current column: Set to the first column that displays any portion of the first character after the
autoindent characters on the new line, if any, or the first column position after the last
autoindent character, if any, or column position 1.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3347

111858

111859

111860

111861

111862

111863

111864

111865

111866

111867

111868

111869

111870

111871

111872

111873

111874

111875

111876

111877

111878

111879

111880

111881

111882

111883

111884

111885

111886

111887

111888

111889

111890

111891

111892

111893

111894

111895

111896

111897

111898

vi Utilities

<control>-T

Synopsis: <control>-T

The <control>-T character shall have no special meaning when in text input mode for a line-
oriented command (see Command Descriptions in vi, on page 3310).

This command need not be supported on block-mode terminals.

Behave as if the user entered the minimum number of <blank> characters necessary to move the
cursor forward to the column position after the next shiftwidth (see the ex shiftwidth
command) boundary.

Current line: Unchanged.

Current column: Set to column + shiftwidth − ((column −1) % shiftwidth).

<control>-U

Synopsis: <control>-U

If there are characters other than autoindent characters that have been input on the current line
before the cursor, the cursor shall move to the first character input after the autoindent
characters.

Otherwise, if there are autoindent characters on the current line before the cursor, it is
implementation-defined whether the <control>-U command is an error or if the cursor moves to
the first column position on the line.

Otherwise, if the cursor is in column position 1 and there are previous lines that have been
input, it is implementation-defined whether the <control>-U command is an error or if it is
equivalent to entering <control>-U after the last input character on the previous input line.

Otherwise, it shall be an error.

All of the glyphs on columns between the starting cursor position and (inclusively) the ending
cursor position shall become erase-columns as described in Input Mode Commands in vi (on
page 3344).

The current kill character (see stty) shall cause an equivalent action to the <control>-U command,
unless the previously inserted character was a <backslash>, in which case it shall be as if the
literal current kill character had been inserted instead of the <backslash>.

Current line: Unchanged, unless previously input lines are erased, in which case it shall be set to
line −1.

Current column: Set to the first column that displays any portion of the last character backed up
over.

<control>-V

Synopsis: <control>-V
<control>-Q

Allow the entry of any subsequent character, other than <control>-J or the <newline>, as a literal
character, removing any special meaning that it may have to the editor in text input mode. If a
<control>-V or <control>-Q is entered before a <control>-J or <newline>, the <control>-V or
<control>-Q character shall be discarded, and the <control>-J or <newline> shall behave as
described in the <newline> command character during input mode.

For purposes of the display only, the editor shall behave as if a ’ˆ’ character was entered, and

3348 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

111899

111900

111901

111902

111903

111904

111905

111906

111907

111908

111909

111910

111911

111912

111913

111914

111915

111916

111917

111918

111919

111920

111921

111922

111923

111924

111925

111926

111927

111928

111929

111930

111931

111932

111933

111934

111935

111936

111937

111938

111939

Utilities vi

the cursor shall be positioned as if overwriting the ’ˆ’ character. When a subsequent character
is entered, the editor shall behave as if that character was entered instead of the original
<control>-V or <control>-Q character.

Current line: Unchanged.

Current column: Unchanged.

<control>-W

Synopsis: <control>-W

If there are characters other than autoindent characters that have been input on the current line
before the cursor, the cursor shall move back over the last word preceding the cursor (including
any <blank> characters between the end of the last word and the current cursor); the cursor shall
not move to before the first character after the end of any autoindent characters.

Otherwise, if there are autoindent characters on the current line before the cursor, it is
implementation-defined whether the <control>-W command is an error or if the cursor moves to
the first column position on the line.

Otherwise, if the cursor is in column position 1 and there are previous lines that have been
input, it is implementation-defined whether the <control>-W command is an error or if it is
equivalent to entering <control>-W after the last input character on the previous input line.

Otherwise, it shall be an error.

All of the glyphs on columns between the starting cursor position and (inclusively) the ending
cursor position shall become erase-columns as described in Input Mode Commands in vi (on
page 3344).

Current line: Unchanged, unless previously input lines are erased, in which case it shall be set to
line −1.

Current column: Set to the first column that displays any portion of the last character backed up
over.

<ESC>

Synopsis: <ESC>

If input was part of a line-oriented command:

1. If interrupt was entered, text input mode shall be terminated and the editor shall return to
command mode. The terminal shall be alerted.

2. If <ESC> was entered, text input mode shall be terminated and the command shall
continue execution with the input provided.

Otherwise, terminate text input mode and return to command mode.

Any autoindent characters entered on newly created lines that have no other non-<newline>
characters shall be deleted.

Any leading autoindent and <blank> characters on newly created lines shall be rewritten to be
the minimum number of <blank> characters possible.

The screen shall be redisplayed as necessary to match the contents of the edit buffer.

Current line: Unchanged.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3349

111940

111941

111942

111943

111944

111945

111946

111947

111948

111949

111950

111951

111952

111953

111954

111955

111956

111957

111958

111959

111960

111961

111962

111963

111964

111965

111966

111967

111968

111969

111970

111971

111972

111973

111974

111975

111976

111977

111978

vi Utilities

Current column:

1. If there are text input characters on the current line, the column shall be set to the last
column where any portion of the last text input character is displayed.

2. Otherwise, if a character is displayed in the current column, unchanged.

3. Otherwise, set to column position 1.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
When any error is encountered and the standard input is not a terminal device file, vi shall not
write the file or return to command or text input mode, and shall terminate with a non-zero exit
status.

Otherwise, when an unrecoverable error is encountered it shall be equivalent to a SIGHUP
asynchronous event.

Otherwise, when an error is encountered, the editor shall behave as specified in Command
Descriptions in vi (on page 3310).

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
See the RATIONALE for ex for more information on vi. Major portions of the vi utility
specification point to ex to avoid inadvertent divergence. While ex and vi have historically been
implemented as a single utility, this is not required by POSIX.1-2008.

It is recognized that portions of vi would be difficult, if not impossible, to implement
satisfactorily on a block-mode terminal, or a terminal without any form of cursor addressing,
thus it is not a mandatory requirement that such features should work on all terminals. It is the
intention, however, that a vi implementation should provide the full set of capabilities on all
terminals capable of supporting them.

Historically, vi exited immediately if the standard input was not a terminal. POSIX.1-2008
permits, but does not require, this behavior. An end-of-file condition is not equivalent to an end-
of-file character. A common end-of-file character, <control>-D, is historically a vi command.

The text in the STDOUT section reflects the usage of the verb display in this section; some
implementations of vi use standard output to write to the terminal, but POSIX.1-2008 does not
require that to be the case.

Historically, implementations reverted to open mode if the terminal was incapable of supporting
full visual mode. POSIX.1-2008 requires this behavior. Historically, the open mode of vi behaved
roughly equivalently to the visual mode, with the exception that only a single line from the edit
buffer (one ‘‘buffer line’’) was kept current at any time. This line was normally displayed on the
next-to-last line of a terminal with cursor addressing (and the last line performed its normal
visual functions for line-oriented commands and messages). In addition, some few commands
behaved differently in open mode than in visual mode. POSIX.1-2008 requires conformance to
historical practice.

3350 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

111979

111980

111981

111982

111983

111984

111985

111986

111987

111988

111989

111990

111991

111992

111993

111994

111995

111996

111997

111998

111999

112000

112001

112002

112003

112004

112005

112006

112007

112008

112009

112010

112011

112012

112013

112014

112015

112016

112017

112018

112019

112020

112021

112022

Utilities vi

Historically, ex and vi implementations have expected text to proceed in the usual
European/Latin order of left to right, top to bottom. There is no requirement in POSIX.1-2008
that this be the case. The specification was deliberately written using words like ‘‘before’’,
‘‘after ’’, ‘‘first’’, and ‘‘last’’ in order to permit implementations to support the natural text order
of the language.

Historically, lines past the end of the edit buffer were marked with single <tilde> (’˜’)
characters; that is, if the one-based display was 20 lines in length, and the last line of the file was
on line one, then lines 2-20 would contain only a single ’˜’ character.

Historically, the vi editor attempted to display only complete lines at the bottom of the screen (it
did display partial lines at the top of the screen). If a line was too long to fit in its entirety at the
bottom of the screen, the screen lines where the line would have been displayed were displayed
as single ’@’ characters, instead of displaying part of the line. POSIX.1-2008 permits, but does
not require, this behavior. Implementations are encouraged to attempt always to display a
complete line at the bottom of the screen when doing scrolling or screen positioning by buffer
lines.

Historically, lines marked with ’@’ were also used to minimize output to dumb terminals over
slow lines; that is, changes local to the cursor were updated, but changes to lines on the screen
that were not close to the cursor were simply marked with an ’@’ sign instead of being updated
to match the current text. POSIX.1-2008 permits, but does not require this feature because it is
used ever less frequently as terminals become smarter and connections are faster.

Initialization in ex and vi

Historically, vi always had a line in the edit buffer, even if the edit buffer was ‘‘empty’’. For
example:

1. The ex command = executed from visual mode wrote ‘‘1’’ when the buffer was empty.

2. Writes from visual mode of an empty edit buffer wrote files of a single character (a
<newline>), while writes from ex mode of an empty edit buffer wrote empty files.

3. Put and read commands into an empty edit buffer left an empty line at the top of the edit
buffer.

For consistency, POSIX.1-2008 does not permit any of these behaviors.

Historically, vi did not always return the terminal to its original modes; for example, ICRNL was
modified if it was not originally set. POSIX.1-2008 does not permit this behavior.

Command Descriptions in vi

Motion commands are among the most complicated aspects of vi to describe. With some
exceptions, the text region and buffer type effect of a motion command on a vi command are
described on a case-by-case basis. The descriptions of text regions in POSIX.1-2008 are not
intended to imply direction; that is, an inclusive region from line n to line n+5 is identical to a
region from line n+5 to line n. This is of more than academic interest—movements to marks can
be in either direction, and, if the wrapscan option is set, so can movements to search points.
Historically, lines are always stored into buffers in text order; that is, from the start of the edit
buffer to the end. POSIX.1-2008 requires conformance to historical practice.

Historically, command counts were applied to any associated motion, and were multiplicative to
any supplied motion count. For example, 2cw is the same as c2w, and 2c3w is the same as c6w.
POSIX.1-2008 requires this behavior. Historically, vi commands that used bigwords, words,
paragraphs, and sentences as objects treated groups of empty lines, or lines that contained only

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3351

112023

112024

112025

112026

112027

112028

112029

112030

112031

112032

112033

112034

112035

112036

112037

112038

112039

112040

112041

112042

112043

112044

112045

112046

112047

112048

112049

112050

112051

112052

112053

112054

112055

112056

112057

112058

112059

112060

112061

112062

112063

112064

112065

112066

vi Utilities

<blank> characters, inconsistently. Some commands treated them as a single entity, while others
treated each line separately. For example, the w, W, and B commands treated groups of empty
lines as individual words; that is, the command would move the cursor to each new empty line.
The e and E commands treated groups of empty lines as a single word; that is, the first use
would move past the group of lines. The b command would just beep at the user, or if done from
the start of the line as a motion command, fail in unexpected ways. If the lines contained only (or
ended with) <blank> characters, the w and W commands would just beep at the user, the E and
e commands would treat the group as a single word, and the B and b commands would treat the
lines as individual words. For consistency and simplicity of specification, POSIX.1-2008 requires
that all vi commands treat groups of empty or blank lines as a single entity, and that movement
through lines ending with <blank> characters be consistent with other movements.

Historically, vi documentation indicated that any number of double-quotes were skipped after
punctuation marks at sentence boundaries; however, implementations only skipped single-
quotes. POSIX.1-2008 requires both to be skipped.

Historically, the first and last characters in the edit buffer were word boundaries. This historical
practice is required by POSIX.1-2008.

Historically, vi attempted to update the minimum number of columns on the screen possible,
which could lead to misleading information being displayed. POSIX.1-2008 makes no
requirements other than that the current character being entered is displayed correctly, leaving
all other decisions in this area up to the implementation.

Historically, lines were arbitrarily folded between columns of any characters that required
multiple column positions on the screen, with the exception of tabs, which terminated at the
right-hand margin. POSIX.1-2008 permits the former and requires the latter. Implementations
that do not arbitrarily break lines between columns of characters that occupy multiple column
positions should not permit the cursor to rest on a column that does not contain any part of a
character.

The historical vi had a problem in that all movements were by buffer lines, not by display or
screen lines. This is often the right thing to do; for example, single line movements, such as j or
k, should work on buffer lines. Commands like dj, or j., where . is a change command, only
make sense for buffer lines. It is not, however, the right thing to do for screen motion or scrolling
commands like <control>-D, <control>-F, and H. If the window is fairly small, using buffer lines
in these cases can result in completely random motion; for example, 1<control>-D can result in a
completely changed screen, without any overlap. This is clearly not what the user wanted. The
problem is even worse in the case of the H, L, and M commands—as they position the cursor at
the first non-<blank> of the line, they may all refer to the same location in large lines, and will
result in no movement at all.

In addition, if the line is larger than the screen, using buffer lines can make it impossible to
display parts of the line—there are not any commands that do not display the beginning of the
line in historical vi, and if both the beginning and end of the line cannot be on the screen at the
same time, the user suffers. Finally, the page and half-page scrolling commands historically
moved to the first non-<blank> in the new line. If the line is approximately the same size as the
screen, this is inadequate because the cursor before and after a <control>-D command will refer
to the same location on the screen.

Implementations of ex and vi exist that do not have these problems because the relevant
commands (<control>-B, <control>-D, <control>-F, <control>-U, <control>-Y, <control>-E, H, L,
and M) operate on display (screen) lines, not (edit) buffer lines.

POSIX.1-2008 does not permit this behavior by default because the standard developers believed
that users would find it too confusing. However, historical practice has been relaxed. For

3352 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

112067

112068

112069

112070

112071

112072

112073

112074

112075

112076

112077

112078

112079

112080

112081

112082

112083

112084

112085

112086

112087

112088

112089

112090

112091

112092

112093

112094

112095

112096

112097

112098

112099

112100

112101

112102

112103

112104

112105

112106

112107

112108

112109

112110

112111

112112

112113

112114

Utilities vi

example, ex and vi historically attempted, albeit sometimes unsuccessfully, to never put part of a
line on the last lines of a screen; for example, if a line would not fit in its entirety, no part of the
line was displayed, and the screen lines corresponding to the line contained single ’@’
characters. This behavior is permitted, but not required by POSIX.1-2008, so that it is possible for
implementations to support long lines in small screens more reasonably without changing the
commands to be oriented to the display (instead of oriented to the buffer). POSIX.1-2008 also
permits implementations to refuse to edit any edit buffer containing a line that will not fit on the
screen in its entirety.

The display area (for example, the value of the window edit option) has historically been
‘‘grown’’, or expanded, to display new text when local movements are done in displays where
the number of lines displayed is less than the maximum possible. Expansion has historically
been the first choice, when the target line is less than the maximum possible expansion value
away. Scrolling has historically been the next choice, done when the target line is less than half a
display away, and otherwise, the screen was redrawn. There were exceptions, however, in that ex
commands generally always caused the screen to be redrawn. POSIX.1-2008 does not specify a
standard behavior because there may be external issues, such as connection speed, the number
of characters necessary to redraw as opposed to scroll, or terminal capabilities that
implementations will have to accommodate.

The current line in POSIX.1-2008 maps one-to-one to a buffer line in the file. The current column
does not. There are two different column values that are described by POSIX.1-2008. The first is
the current column value as set by many of the vi commands. This value is remembered for the
lifetime of the editor. The second column value is the actual position on the screen where the
cursor rests. The two are not always the same. For example, when the cursor is backed by a
multi-column character, the actual cursor position on the screen has historically been the last
column of the character in command mode, and the first column of the character in input mode.

Commands that set the current line, but that do not set the current cursor value (for example, j
and k) attempt to get as close as possible to the remembered column position, so that the cursor
tends to restrict itself to a vertical column as the user moves around in the edit buffer.
POSIX.1-2008 requires conformance to historical practice, requiring that the display location of
the cursor on the display line be adjusted from the current column value as necessary to support
this historical behavior.

Historically, only a single line (and for some terminals, a single line minus 1 column) of
characters could be entered by the user for the line-oriented commands; that is, :, !, /, or ?.
POSIX.1-2008 permits, but does not require, this limitation.

Historically, ‘‘soft’’ errors in vi caused the terminal to be alerted, but no error message was
displayed. As a general rule, no error message was displayed for errors in command execution
in vi, when the error resulted from the user attempting an invalid or impossible action, or when
a searched-for object was not found. Examples of soft errors included h at the left margin,
<control>-B or [[at the beginning of the file, 2G at the end of the file, and so on. In addition,
errors such as %,]], },), N, n, f, F, t, and T failing to find the searched-for object were soft as well.
Less consistently, / and ? displayed an error message if the pattern was not found, /, ?, N, and n
displayed an error message if no previous regular expression had been specified, and ; did not
display an error message if no previous f, F, t, or T command had occurred. Also, behavior in
this area might reasonably be based on a runtime evaluation of the speed of a network
connection. Finally, some implementations have provided error messages for soft errors in order
to assist naive users, based on the value of a verbose edit option. POSIX.1-2008 does not list
specific errors for which an error message shall be displayed. Implementations should conform
to historical practice in the absence of any strong reason to diverge.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3353

112115

112116

112117

112118

112119

112120

112121

112122

112123

112124

112125

112126

112127

112128

112129

112130

112131

112132

112133

112134

112135

112136

112137

112138

112139

112140

112141

112142

112143

112144

112145

112146

112147

112148

112149

112150

112151

112152

112153

112154

112155

112156

112157

112158

112159

112160

112161

112162

vi Utilities

Page Backwards

The <control>-B and <control>-F commands historically considered it an error to attempt to
page past the beginning or end of the file, whereas the <control>-D and <control>-U commands
simply moved to the beginning or end of the file. For consistency, POSIX.1-2008 requires the
latter behavior for all four commands. All four commands still consider it an error if the current
line is at the beginning (<control>-B, <control>-U) or end (<control>-F, <control>-D) of the file.
Historically, the <control>-B and <control>-F commands skip two lines in order to include
overlapping lines when a single command is entered. This makes less sense in the presence of a
count, as there will be, by definition, no overlapping lines. The actual calculation used by
historical implementations of the vi editor for <control>-B was:

((current first line) − count x (window edit option)) +2

and for <control>-F was:

((current first line) + count x (window edit option)) −2

This calculation does not work well when intermixing commands with and without counts; for
example, 3<control>-F is not equivalent to entering the <control>-F command three times,
and is not reversible by entering the <control>-B command three times. For consistency with
other vi commands that take counts, POSIX.1-2008 requires a different calculation.

Scroll Forward

The 4BSD and System V implementations of vi differed on the initial value used by the scroll
command. 4BSD used:

((window edit option) +1) /2

while System V used the value of the scroll edit option. The System V version is specified by
POSIX.1-2008 because the standard developers believed that it was more intuitive and permitted
the user a method of setting the scroll value initially without also setting the number of lines that
are displayed.

Scroll Forward by Line

Historically, the <control>-E and <control>-Y commands considered it an error if the last and
first lines, respectively, were already on the screen. POSIX.1-2008 requires conformance to
historical practice. Historically, the <control>-E and <control>-Y commands had no effect in
open mode. For simplicity and consistency of specification, POSIX.1-2008 requires that they
behave as usual, albeit with a single line screen.

Clear and Redisplay

The historical <control>-L command refreshed the screen exactly as it was supposed to be
currently displayed, replacing any ’@’ characters for lines that had been deleted but not
updated on the screen with refreshed ’@’ characters. The intent of the <control>-L command is
to refresh when the screen has been accidentally overwritten; for example, by a write command
from another user, or modem noise.

3354 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

112163

112164

112165

112166

112167

112168

112169

112170

112171

112172

112173

112174

112175

112176

112177

112178

112179

112180

112181

112182

112183

112184

112185

112186

112187

112188

112189

112190

112191

112192

112193

112194

112195

112196

112197

112198

112199

Utilities vi

Redraw Screen

The historical <control>-R command redisplayed only when necessary to update lines that had
been deleted but not updated on the screen and that were flagged with ’@’ characters. There is
no requirement that the screen be in any way refreshed if no lines of this form are currently
displayed. POSIX.1-2008 permits implementations to extend this command to refresh lines on
the screen flagged with ’@’ characters because they are too long to be displayed in the current
framework; however, the current line and column need not be modified.

Search for tagstring

Historically, the first non-<blank> at or after the cursor was the first character, and all
subsequent characters that were word characters, up to the end of the line, were included. For
example, with the cursor on the leading <space> or on the ’#’ character in the text "#bar@",
the tag was "#bar". On the character ’b’ it was "bar", and on the ’a’ it was "ar".
POSIX.1-2008 requires this behavior.

Replace Text with Results from Shell Command

Historically, the <, >, and ! commands considered most cursor motions other than line-oriented
motions an error; for example, the command >/foo<CR> succeeded, while the command >l
failed, even though the text region described by the two commands might be identical. For
consistency, all three commands only consider entire lines and not partial lines, and the region is
defined as any line that contains a character that was specified by the motion.

Move to Matching Character

Other matching characters have been left implementation-defined in order to allow extensions
such as matching ’<’ and ’>’ for searching HTML, or #ifdef, #else, and #endif for searching C
source.

Repeat Substitution

POSIX.1-2008 requires that any c and g flags specified to the previous substitute command be
ignored; however, the r flag may still apply, if supported by the implementation.

Return to Previous (Context or Section)

The [[,]], (,), {, and } commands are all affected by ‘‘section boundaries’’, but in some historical
implementations not all of the commands recognize the same section boundaries. This is a bug,
not a feature, and a unique section-boundary algorithm was not described for each command.
One special case that is preserved is that the sentence command moves to the end of the last line
of the edit buffer while the other commands go to the beginning, in order to preserve the
traditional character cut semantics of the sentence command. Historically, vi section boundaries
at the beginning and end of the edit buffer were the first non-<blank> on the first and last lines
of the edit buffer if one exists; otherwise, the last character of the first and last lines of the edit
buffer if one exists. To increase consistency with other section locations, this has been simplified
by POSIX.1-2008 to the first character of the first and last lines of the edit buffer, or the first and
the last lines of the edit buffer if they are empty.

Sentence boundaries were problematic in the historical vi. They were not only the boundaries as
defined for the section and paragraph commands, but they were the first non-<blank> that
occurred after those boundaries, as well. Historically, the vi section commands were
documented as taking an optional window size as a count preceding the command. This was not
implemented in historical versions, so POSIX.1-2008 requires that the count repeat the command,

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3355

112200

112201

112202

112203

112204

112205

112206

112207

112208

112209

112210

112211

112212

112213

112214

112215

112216

112217

112218

112219

112220

112221

112222

112223

112224

112225

112226

112227

112228

112229

112230

112231

112232

112233

112234

112235

112236

112237

112238

112239

112240

112241

112242

vi Utilities

for consistency with other vi commands.

Repeat

Historically, mapped commands other than text input commands could not be repeated using
the period command. POSIX.1-2008 requires conformance to historical practice.

The restrictions on the interpretation of special characters (for example, <control>-H) in the
repetition of text input mode commands is intended to match historical practice. For example,
given the input sequence:

iab<control>-H<control>-H<control>-Hdef<escape>

the user should be informed of an error when the sequence is first entered, but not during a
command repetition. The character <control>-T is specifically exempted from this restriction.
Historical implementations of vi ignored <control>-T characters that were input in the original
command during command repetition. POSIX.1-2008 prohibits this behavior.

Find Regular Expression

Historically, commands did not affect the line searched to or from if the motion command was a
search (/, ?, N, n) and the final position was the start/end of the line. There were some special
cases and vi was not consistent. POSIX.1-2008 does not permit this behavior, for consistency.
Historical implementations permitted but were unable to handle searches as motion commands
that wrapped (that is, due to the edit option wrapscan) to the original location. POSIX.1-2008
requires that this behavior be treated as an error.

Historically, the syntax "/RE/0" was used to force the command to cut text in line mode.
POSIX.1-2008 requires conformance to historical practice.

Historically, in open mode, a z specified to a search command redisplayed the current line
instead of displaying the current screen with the current line highlighted. For consistency and
simplicity of specification, POSIX.1-2008 does not permit this behavior.

Historically, trailing z commands were permitted and ignored if entered as part of a search used
as a motion command. For consistency and simplicity of specification, POSIX.1-2008 does not
permit this behavior.

Execute an ex Command

Historically, vi implementations restricted the commands that could be entered on the colon
command line (for example, append and change), and some other commands were known to
cause them to fail catastrophically. For consistency, POSIX.1-2008 does not permit these
restrictions. When executing an ex command by entering :, it is not possible to enter a <newline>
as part of the command because it is considered the end of the command. A different approach
is to enter ex command mode by using the vi Q command (and later resuming visual mode with
the ex vi command). In ex command mode, the single-line limitation does not exist. So, for
example, the following is valid:

Q
s/break here/break\
here/
vi

POSIX.1-2008 requires that, if the ex command overwrites any part of the screen that would be
erased by a refresh, vi pauses for a character from the user. Historically, this character could be
any character; for example, a character input by the user before the message appeared, or even a

3356 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

112243

112244

112245

112246

112247

112248

112249

112250

112251

112252

112253

112254

112255

112256

112257

112258

112259

112260

112261

112262

112263

112264

112265

112266

112267

112268

112269

112270

112271

112272

112273

112274

112275

112276

112277

112278

112279

112280

112281

112282

112283

112284

112285

Utilities vi

mapped character. This is probably a bug, but implementations that have tried to be more
rigorous by requiring that the user enter a specific character, or that the user enter a character
after the message was displayed, have been forced by user indignation back into historical
behavior. POSIX.1-2008 requires conformance to historical practice.

Shift Left (Right)

Refer to the Rationale for the ! and / commands. Historically, the < and > commands sometimes
moved the cursor to the first non-<blank> (for example if the command was repeated or with _
as the motion command), and sometimes left it unchanged. POSIX.1-2008 does not permit this
inconsistency, requiring instead that the cursor always move to the first non-<blank>.
Historically, the < and > commands did not support buffer arguments, although some
implementations allow the specification of an optional buffer. This behavior is neither required
nor disallowed by POSIX.1-2008.

Execute

Historically, buffers could execute other buffers, and loops, infinite and otherwise, were
possible. POSIX.1-2008 requires conformance to historical practice. The *buffer syntax of ex is not
required in vi, because it is not historical practice and has been used in some vi implementations
to support additional scripting languages.

Reverse Case

Historically, the ˜ command ignored any associated count, and acted only on the characters in the
current line. For consistency with other vi commands, POSIX.1-2008 requires that an associated
count act on the next count characters, and that the command move to subsequent lines if
warranted by count, to make it possible to modify large pieces of text in a reasonably efficient
manner. There exist vi implementations that optionally require an associated motion command
for the ˜ command. Implementations supporting this functionality are encouraged to base it on
the tildedop edit option and handle the text regions and cursor positioning identically to the
yank command.

Append

Historically, counts specified to the A, a, I, and i commands repeated the input of the first line
count times, and did not repeat the subsequent lines of the input text. POSIX.1-2008 requires that
the entire text input be repeated count times.

Move Backward to Preceding Word

Historically, vi became confused if word commands were used as motion commands in empty
files. POSIX.1-2008 requires that this be an error. Historical implementations of vi had a large
number of bugs in the word movement commands, and they varied greatly in behavior in the
presence of empty lines, ‘‘words’’ made up of a single character, and lines containing only
<blank> characters. For consistency and simplicity of specification, POSIX.1-2008 does not
permit this behavior.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3357

112286

112287

112288

112289

112290

112291

112292

112293

112294

112295

112296

112297

112298

112299

112300

112301

112302

112303

112304

112305

112306

112307

112308

112309

112310

112311

112312

112313

112314

112315

112316

112317

112318

112319

112320

112321

112322

vi Utilities

Change to End-of-Line

Some historical implementations of the C command did not behave as described by
POSIX.1-2008 when the $ key was remapped because they were implemented by pushing the $
key onto the input queue and reprocessing it. POSIX.1-2008 does not permit this behavior.
Historically, the C, S, and s commands did not copy replaced text into the numeric buffers. For
consistency and simplicity of specification, POSIX.1-2008 requires that they behave like their
respective c commands in all respects.

Delete

Historically, lines in open mode that were deleted were scrolled up, and an @ glyph written over
the beginning of the line. In the case of terminals that are incapable of the necessary cursor
motions, the editor erased the deleted line from the screen. POSIX.1-2008 requires conformance
to historical practice; that is, if the terminal cannot display the ’@’ character, the line cannot
remain on the screen.

Delete to End-of-Line

Some historical implementations of the D command did not behave as described by
POSIX.1-2008 when the $ key was remapped because they were implemented by pushing the $
key onto the input queue and reprocessing it. POSIX.1-2008 does not permit this behavior.

Join

An historical oddity of vi is that the commands J, 1J, and 2J are all equivalent. POSIX.1-2008
requires conformance to historical practice. The vi J command is specified in terms of the ex join
command with an ex command count value. The address correction for a count that is past the
end of the edit buffer is necessary for historical compatibility for both ex and vi.

Mark Position

Historical practice is that only lowercase letters, plus backquote and single-quote, could be used
to mark a cursor position. POSIX.1-2008 requires conformance to historical practice, but
encourages implementations to support other characters as marks as well.

Repeat Regular Expression Find (Forward and Reverse)

Historically, the N and n commands could not be used as motion components for the c
command. With the exception of the cN command, which worked if the search crossed a line
boundary, the text region would be discarded, and the user would not be in text input mode. For
consistency and simplicity of specification, POSIX.1-2008 does not permit this behavior.

Insert Empty Line (Below and Above)

Historically, counts to the O and o commands were used as the number of physical lines to
open, if the terminal was dumb and the slowopen option was not set. This was intended to
minimize traffic over slow connections and repainting for dumb terminals. POSIX.1-2008 does
not permit this behavior, requiring that a count to the open command behave as for other text
input commands. This change to historical practice was made for consistency, and because a
superset of the functionality is provided by the slowopen edit option.

3358 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

112323

112324

112325

112326

112327

112328

112329

112330

112331

112332

112333

112334

112335

112336

112337

112338

112339

112340

112341

112342

112343

112344

112345

112346

112347

112348

112349

112350

112351

112352

112353

112354

112355

112356

112357

112358

112359

112360

Utilities vi

Put from Buffer (Following and Before)

Historically, counts to the p and P commands were ignored if the buffer was a line mode buffer,
but were (mostly) implemented as described in POSIX.1-2008 if the buffer was a character mode
buffer. Because implementations exist that do not have this limitation, and because pasting lines
multiple times is generally useful, POSIX.1-2008 requires that count be supported for all p and P
commands.

Historical implementations of vi were widely known to have major problems in the p and P
commands, particularly when unusual regions of text were copied into the edit buffer. The
standard developers viewed these as bugs, and they are not permitted for consistency and
simplicity of specification.

Historically, a P or p command (or an ex put command executed from open or visual mode)
executed in an empty file, left an empty line as the first line of the file. For consistency and
simplicity of specification, POSIX.1-2008 does not permit this behavior.

Replace Character

Historically, the r command did not correctly handle the erase and word erase characters as
arguments, nor did it handle an associated count greater than 1 with a <carriage-return>
argument, for which it replaced count characters with a single <newline>. POSIX.1-2008 does
not permit these inconsistencies.

Historically, the r command permitted the <control>-V escaping of entered characters, such as
<ESC> and the <carriage-return>; however, it required two leading <control>-V characters
instead of one. POSIX.1-2008 requires that this be changed for consistency with the other text
input commands of vi.

Historically, it is an error to enter the r command if there are less than count characters at or after
the cursor in the line. While a reasonable and unambiguous extension would be to permit the r
command on empty lines, it would require that too large a count be adjusted to match the
number of characters at or after the cursor for consistency, which is sufficiently different from
historical practice to be avoided. POSIX.1-2008 requires conformance to historical practice.

Replace Characters

Historically, if there were autoindent characters in the line on which the R command was run,
and autoindent was set, the first <newline> would be properly indented and no characters
would be replaced by the <newline>. Each additional <newline> would replace n characters,
where n was the number of characters that were needed to indent the rest of the line to the
proper indentation level. This behavior is a bug and is not permitted by POSIX.1-2008.

Undo

Historical practice for cursor positioning after undoing commands was mixed. In most cases,
when undoing commands that affected a single line, the cursor was moved to the start of added
or changed text, or immediately after deleted text. However, if the user had moved from the line
being changed, the column was either set to the first non-<blank>, returned to the origin of the
command, or remained unchanged. When undoing commands that affected multiple lines or
entire lines, the cursor was moved to the first character in the first line restored. As an example
of how inconsistent this was, a search, followed by an o text input command, followed by an
undo would return the cursor to the location where the o command was entered, but a cw
command followed by an o command followed by an undo would return the cursor to the first
non-<blank> of the line. POSIX.1-2008 requires the most useful of these behaviors, and discards
the least useful, in the interest of consistency and simplicity of specification.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3359

112361

112362

112363

112364

112365

112366

112367

112368

112369

112370

112371

112372

112373

112374

112375

112376

112377

112378

112379

112380

112381

112382

112383

112384

112385

112386

112387

112388

112389

112390

112391

112392

112393

112394

112395

112396

112397

112398

112399

112400

112401

112402

112403

112404

112405

vi Utilities

Yank

Historically, the yank command did not move to the end of the motion if the motion was in the
forward direction. It moved to the end of the motion if the motion was in the backward
direction, except for the _ command, or for the G and ’ commands when the end of the motion
was on the current line. This was further complicated by the fact that for a number of motion
commands, the yank command moved the cursor but did not update the screen; for example, a
subsequent command would move the cursor from the end of the motion, even though the
cursor on the screen had not reflected the cursor movement for the yank command.
POSIX.1-2008 requires that all yank commands associated with backward motions move the
cursor to the end of the motion for consistency, and specifically, to make ’ commands as motions
consistent with search patterns as motions.

Yank Current Line

Some historical implementations of the Y command did not behave as described by
POSIX.1-2008 when the ’_’ key was remapped because they were implemented by pushing the
’_’ key onto the input queue and reprocessing it. POSIX.1-2008 does not permit this behavior.

Redraw Window

Historically, the z command always redrew the screen. This is permitted but not required by
POSIX.1-2008, because of the frequent use of the z command in macros such as map n nz. for
screen positioning, instead of its use to change the screen size. The standard developers
believed that expanding or scrolling the screen offered a better interface for users. The ability to
redraw the screen is preserved if the optional new window size is specified, and in the
<control>-L and <control>-R commands.

The semantics of zˆ are confusing at best. Historical practice is that the screen before the screen
that ended with the specified line is displayed. POSIX.1-2008 requires conformance to historical
practice.

Historically, the z command would not display a partial line at the top or bottom of the screen. If
the partial line would normally have been displayed at the bottom of the screen, the command
worked, but the partial line was replaced with ’@’ characters. If the partial line would normally
have been displayed at the top of the screen, the command would fail. For consistency and
simplicity of specification, POSIX.1-2008 does not permit this behavior.

Historically, the z command with a line specification of 1 ignored the command. For consistency
and simplicity of specification, POSIX.1-2008 does not permit this behavior.

Historically, the z command did not set the cursor column to the first non-<blank> for the
character if the first screen was to be displayed, and was already displayed. For consistency and
simplicity of specification, POSIX.1-2008 does not permit this behavior.

Input Mode Commands in vi

Historical implementations of vi did not permit the user to erase more than a single line of input,
or to use normal erase characters such as line erase, worderase, and erase to erase autoindent
characters. As there exist implementations of vi that do not have these limitations, both
behaviors are permitted, but only historical practice is required. In the case of these extensions,
vi is required to pause at the autoindent and previous line boundaries.

Historical implementations of vi updated only the portion of the screen where the current cursor
character was displayed. For example, consider the vi input keystrokes:

iabcd<escape>0C<tab>

3360 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

112406

112407

112408

112409

112410

112411

112412

112413

112414

112415

112416

112417

112418

112419

112420

112421

112422

112423

112424

112425

112426

112427

112428

112429

112430

112431

112432

112433

112434

112435

112436

112437

112438

112439

112440

112441

112442

112443

112444

112445

112446

112447

112448

112449

Utilities vi

Historically, the <tab> would overwrite the characters "abcd" when it was displayed. Other
implementations replace only the ’a’ character with the <tab>, and then push the rest of the
characters ahead of the cursor. Both implementations have problems. The historical
implementation is probably visually nicer for the above example; however, for the keystrokes:

iabcd<ESC>0R<tab><ESC>

the historical implementation results in the string "bcd" disappearing and then magically
reappearing when the <ESC> character is entered. POSIX.1-2008 requires the former behavior
when overwriting erase-columns—that is, overwriting characters that are no longer logically
part of the edit buffer—and the latter behavior otherwise.

Historical implementations of vi discarded the <control>-D and <control>-T characters when
they were entered at places where their command functionality was not appropriate.
POSIX.1-2008 requires that the <control>-T functionality always be available, and that
<control>-D be treated as any other key when not operating on autoindent characters.

NUL

Some historical implementations of vi limited the number of characters entered using the NUL
input character to 256 bytes. POSIX.1-2008 permits this limitation; however, implementations are
encouraged to remove this limit.

<control>-D

See also Rationale for the input mode command <newline>. The hidden assumptions in the
<control>-D command (and in the vi autoindent specification in general) is that <space>
characters take up a single column on the screen and that <tab> characters are comprised of an
integral number of <space> characters.

<newline>

Implementations are permitted to rewrite autoindent characters in the line when <newline>,
<carriage-return>, <control>-D, and <control>-T are entered, or when the shift commands are
used, because historical implementations have both done so and found it necessary to do so. For
example, a <control>-D when the cursor is preceded by a single <tab>, with tabstop set to 8, and
shiftwidth set to 3, will result in the <tab> being replaced by several <space> characters.

<control>-T

See also the Rationale for the input mode command <newline>. Historically, <control>-T only
worked if no non-<blank> characters had yet been input in the current input line. In addition,
the characters inserted by <control>-T were treated as autoindent characters, and could not be
erased using normal user erase characters. Because implementations exist that do not have
these limitations, and as moving to a column boundary is generally useful, POSIX.1-2008
requires that both limitations be removed.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3361

112450

112451

112452

112453

112454

112455

112456

112457

112458

112459

112460

112461

112462

112463

112464

112465

112466

112467

112468

112469

112470

112471

112472

112473

112474

112475

112476

112477

112478

112479

112480

112481

112482

112483

112484

vi Utilities

<control>-V

Historically, vi used ˆV, regardless of the value of the literal-next character of the terminal.
POSIX.1-2008 requires conformance to historical practice.

The uses described for <control>-V can also be accomplished with <control>-Q, which is useful
on terminals that use <control>-V for the down-arrow function. However, most historical
implementations use <control>-Q for the termios START character, so the editor will generally
not receive the <control>-Q unless stty ixon mode is set to off. (In addition, some historical
implementations of vi explicitly set ixon mode to on, so it was difficult for the user to set it to
off.) Any of the command characters described in POSIX.1-2008 can be made ineffective by their
selection as termios control characters, using the stty utility or other methods described in the
System Interfaces volume of POSIX.1-2008.

<ESC>

Historically, SIGINT alerted the terminal when used to end input mode. This behavior is
permitted, but not required, by POSIX.1-2008.

FUTURE DIRECTIONS
None.

SEE ALSO
ed , ex , stty

XBD Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The APPLICATION USAGE section is added.

The obsolescent SYNOPSIS is removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The reindent command description is added.

The vi utility has been extensively rewritten for alignment with the IEEE P1003.2b draft
standard.

IEEE PASC Interpretations 1003.2 #57, #62, #63, #64, #78, and #188 are applied.

IEEE PASC Interpretation 1003.2 #207 is applied, clarifying the description of the R command in
a manner similar to the descriptions of other text input mode commands such as i, o, and O.

The −l option is removed.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/41 is applied, adding [count] to the
Synopsis for [[.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/42 is applied, adding [count] to the
Synopsis for]].

3362 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

112485

112486

112487

112488

112489

112490

112491

112492

112493

112494

112495

112496

112497

112498

112499

112500

112501

112502

112503

112504

112505

112506

112507

112508

112509

112510

112511

112512

112513

112514

112515

112516

112517

112518

112519

112520

112521

112522

112523

112524

Utilities vi

Issue 7
Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that ’+’ may be recognized
as an option delimiter in the OPTIONS section.

Austin Group Interpretation 1003.1-2001 #087 is applied, updating the Put from Buffer Before (P)
command description to address multi-line requirements.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3363

112525

112526

112527

112528

112529

112530

wait Utilities

NAME
wait — await process completion

SYNOPSIS
wait [pid...]

DESCRIPTION
When an asynchronous list (see Section 2.9.3.1, on page 2319) is started by the shell, the process
ID of the last command in each element of the asynchronous list shall become known in the
current shell execution environment; see Section 2.12 (on page 2331).

If the wait utility is invoked with no operands, it shall wait until all process IDs known to the
invoking shell have terminated and exit with a zero exit status.

If one or more pid operands are specified that represent known process IDs, the wait utility shall
wait until all of them have terminated. If one or more pid operands are specified that represent
unknown process IDs, wait shall treat them as if they were known process IDs that exited with
exit status 127. The exit status returned by the wait utility shall be the exit status of the process
requested by the last pid operand.

The known process IDs are applicable only for invocations of wait in the current shell execution
environment.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

pid One of the following:

1. The unsigned decimal integer process ID of a command, for which the
utility is to wait for the termination.

2. A job control job ID (see XBD Section 3.203, on page 65) that identifies a
background process group to be waited for. The job control job ID notation
is applicable only for invocations of wait in the current shell execution
environment; see Section 2.12 (on page 2331). The exit status of wait shall be
determined by the last command in the pipeline.

Note: The job control job ID type of pid is only available on systems supporting
the User Portability Utilities option.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of wait:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

3364 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

112531

112532

112533

112534

112535

112536

112537

112538

112539

112540

112541

112542

112543

112544

112545

112546

112547

112548

112549

112550

112551

112552

112553

112554

112555

112556

112557

112558

112559

112560

112561

112562

112563

112564

112565

112566

112567

112568

112569

112570

112571

112572

Utilities wait

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If one or more operands were specified, all of them have terminated or were not known by the
invoking shell, and the status of the last operand specified is known, then the exit status of wait
shall be the exit status information of the command indicated by the last operand specified. If
the process terminated abnormally due to the receipt of a signal, the exit status shall be greater
than 128 and shall be distinct from the exit status generated by other signals, but the exact value
is unspecified. (See the kill −l option.) Otherwise, the wait utility shall exit with one of the
following values:

0 The wait utility was invoked with no operands and all process IDs known by the
invoking shell have terminated.

1-126 The wait utility detected an error.

127 The command identified by the last pid operand specified is unknown.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
On most implementations, wait is a shell built-in. If it is called in a subshell or separate utility
execution environment, such as one of the following:

(wait)
nohup wait ...
find . −exec wait ... \;

it returns immediately because there are no known process IDs to wait for in those
environments.

Historical implementations of interactive shells have discarded the exit status of terminated
background processes before each shell prompt. Therefore, the status of background processes
was usually lost unless it terminated while wait was waiting for it. This could be a serious
problem when a job that was expected to run for a long time actually terminated quickly with a
syntax or initialization error because the exit status returned was usually zero if the requested

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3365

112573

112574

112575

112576

112577

112578

112579

112580

112581

112582

112583

112584

112585

112586

112587

112588

112589

112590

112591

112592

112593

112594

112595

112596

112597

112598

112599

112600

112601

112602

112603

112604

112605

112606

112607

112608

112609

112610

112611

112612

112613

112614

112615

112616

wait Utilities

process ID was not found. This volume of POSIX.1-2008 requires the implementation to keep the
status of terminated jobs available until the status is requested, so that scripts like:

j1&
p1=$!
j2&
wait $p1
echo Job 1 exited with status $?
wait $!
echo Job 2 exited with status $?

work without losing status on any of the jobs. The shell is allowed to discard the status of any
process if it determines that the application cannot get the process ID for that process from the
shell. It is also required to remember only {CHILD_MAX} number of processes in this way. Since
the only way to get the process ID from the shell is by using the ’!’ shell parameter, the shell is
allowed to discard the status of an asynchronous list if "$!" was not referenced before another
asynchronous list was started. (This means that the shell only has to keep the status of the last
asynchronous list started if the application did not reference "$!". If the implementation of the
shell is smart enough to determine that a reference to "$!" was not saved anywhere that the
application can retrieve it later, it can use this information to trim the list of saved information.
Note also that a successful call to wait with no operands discards the exit status of all
asynchronous lists.)

If the exit status of wait is greater than 128, there is no way for the application to know if the
waited-for process exited with that value or was killed by a signal. Since most utilities exit with
small values, there is seldom any ambiguity. Even in the ambiguous cases, most applications just
need to know that the asynchronous job failed; it does not matter whether it detected an error
and failed or was killed and did not complete its job normally.

EXAMPLES
Although the exact value used when a process is terminated by a signal is unspecified, if it is
known that a signal terminated a process, a script can still reliably determine which signal by
using kill as shown by the following script:

sleep 1000&
pid=$!
kill −kill $pid
wait $pid
echo $pid was terminated by a SIG$(kill −l $?) signal.

If the following sequence of commands is run in less than 31 seconds:

sleep 257 | sleep 31 &
jobs −l %%

either of the following commands returns the exit status of the second sleep in the pipeline:

wait <pid of sleep 31>

wait %%

RATIONALE
The description of wait does not refer to the waitpid() function from the System Interfaces
volume of POSIX.1-2008 because that would needlessly overspecify this interface. However, the
wording means that wait is required to wait for an explicit process when it is given an argument
so that the status information of other processes is not consumed. Historical implementations
use the wait() function defined in the System Interfaces volume of POSIX.1-2008 until wait()
returns the requested process ID or finds that the requested process does not exist. Because this

3366 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

112617

112618

112619

112620

112621

112622

112623

112624

112625

112626

112627

112628

112629

112630

112631

112632

112633

112634

112635

112636

112637

112638

112639

112640

112641

112642

112643

112644

112645

112646

112647

112648

112649

112650

112651

112652

112653

112654

112655

112656

112657

112658

112659

112660

112661

112662

112663

Utilities wait

means that a shell script could not reliably get the status of all background children if a second
background job was ever started before the first job finished, it is recommended that the wait
utility use a method such as the functionality provided by the waitpid() function.

The ability to wait for multiple pid operands was adopted from the KornShell.

This new functionality was added because it is needed to determine the exit status of any
asynchronous list accurately. The only compatibility problem that this change creates is for a
script like

while sleep 60 do
job& echo Job started $(date) as $! done

which causes the shell to monitor all of the jobs started until the script terminates or runs out of
memory. This would not be a problem if the loop did not reference "$!" or if the script would
occasionally wait for jobs it started.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2297), kill , sh

XBD Section 3.203 (on page 65), Chapter 8 (on page 173)

XSH wait()

CHANGE HISTORY
First released in Issue 2.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3367

112664

112665

112666

112667

112668

112669

112670

112671

112672

112673

112674

112675

112676

112677

112678

112679

112680

112681

112682

112683

wc Utilities

NAME
wc — word, line, and byte or character count

SYNOPSIS
wc [−c|−m] [−lw] [file...]

DESCRIPTION
The wc utility shall read one or more input files and, by default, write the number of <newline>
characters, words, and bytes contained in each input file to the standard output.

The utility also shall write a total count for all named files, if more than one input file is
specified.

The wc utility shall consider a word to be a non-zero-length string of characters delimited by
white space.

OPTIONS
The wc utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−c Write to the standard output the number of bytes in each input file.

−l Write to the standard output the number of <newline> characters in each input
file.

−m Write to the standard output the number of characters in each input file.

−w Write to the standard output the number of words in each input file.

When any option is specified, wc shall report only the information requested by the specified
options.

OPERANDS
The following operand shall be supported:

file A pathname of an input file. If no file operands are specified, the standard input
shall be used.

STDIN
The standard input shall be used if no file operands are specified, and shall be used if a file
operand is ’−’ and the implementation treats the ’−’ as meaning standard input. Otherwise,
the standard input shall not be used. See the INPUT FILES section.

INPUT FILES
The input files may be of any type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of wc:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and which characters are defined as white-space
characters.

3368 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

112684

112685

112686

112687

112688

112689

112690

112691

112692

112693

112694

112695

112696

112697

112698

112699

112700

112701

112702

112703

112704

112705

112706

112707

112708

112709

112710

112711

112712

112713

112714

112715

112716

112717

112718

112719

112720

112721

112722

112723

112724

112725

Utilities wc

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
By default, the standard output shall contain an entry for each input file of the form:

"%d %d %d %s\n", <newlines>, <words>, <bytes>, <file>

If the −m option is specified, the number of characters shall replace the <bytes> field in this
format.

If any options are specified and the −l option is not specified, the number of <newline>
characters shall not be written.

If any options are specified and the −w option is not specified, the number of words shall not be
written.

If any options are specified and neither −c nor −m is specified, the number of bytes or characters
shall not be written.

If no input file operands are specified, no name shall be written and no <blank> characters
preceding the pathname shall be written.

If more than one input file operand is specified, an additional line shall be written, of the same
format as the other lines, except that the word total (in the POSIX locale) shall be written instead
of a pathname and the total of each column shall be written as appropriate. Such an additional
line, if any, is written at the end of the output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3369

112726

112727

112728

112729

112730

112731

112732

112733

112734

112735

112736

112737

112738

112739

112740

112741

112742

112743

112744

112745

112746

112747

112748

112749

112750

112751

112752

112753

112754

112755

112756

112757

112758

112759

112760

112761

wc Utilities

APPLICATION USAGE
The −m option is not a switch, but an option at the same level as −c. Thus, to produce the full
default output with character counts instead of bytes, the command required is:

wc −mlw

EXAMPLES
None.

RATIONALE
The output file format pseudo-printf() string differs from the System V version of wc:

"%7d%7d%7d %s\n"

which produces possibly ambiguous and unparsable results for very large files, as it assumes no
number shall exceed six digits.

Some historical implementations use only <space>, <tab>, and <newline> as word separators.
The equivalent of the ISO C standard isspace() function is more appropriate.

The −c option stands for ‘‘character ’’ count, even though it counts bytes. This stems from the
sometimes erroneous historical view that bytes and characters are the same size. Due to
international requirements, the −m option (reminiscent of ‘‘multi-byte’’) was added to obtain
actual character counts.

Early proposals only specified the results when input files were text files. The current
specification more closely matches historical practice. (Bytes, words, and <newline> characters
are counted separately and the results are written when an end-of-file is detected.)

Historical implementations of the wc utility only accepted one argument to specify the options
−c, −l, and −w. Some of them also had multiple occurrences of an option cause the
corresponding count to be written multiple times and had the order of specification of the
options affect the order of the fields on output, but did not document either of these. Because
common usage either specifies no options or only one option, and because none of this was
documented, the changes required by this volume of POSIX.1-2008 should not break many
historical applications (and do not break any historical conforming applications).

FUTURE DIRECTIONS
None.

SEE ALSO
cksum

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 7
Austin Group Interpretation 1003.1-2001 #092 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3370 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

112762

112763

112764

112765

112766

112767

112768

112769

112770

112771

112772

112773

112774

112775

112776

112777

112778

112779

112780

112781

112782

112783

112784

112785

112786

112787

112788

112789

112790

112791

112792

112793

112794

112795

112796

112797

112798

Utilities what

NAME
what — identify SCCS files (DEVELOPMENT)

SYNOPSIS
XSI what [−s] file...

DESCRIPTION
The what utility shall search the given files for all occurrences of the pattern that get (see get)
substitutes for the %Z% keyword ("@(#)") and shall write to standard output what follows
until the first occurrence of one of the following:

" > newline \ NUL

OPTIONS
The what utility shall conform to XBD Section 12.2 (on page 215).

The following option shall be supported:

−s Quit after finding the first occurrence of the pattern in each file.

OPERANDS
The following operands shall be supported:

file A pathname of a file to search.

STDIN
Not used.

INPUT FILES
The input files shall be of any file type.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of what:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output shall consist of the following for each file operand:

"%s:\n\t%s\n", <pathname>, <identification string>

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3371

112799

112800

112801

112802

112803

112804

112805

112806

112807

112808

112809

112810

112811

112812

112813

112814

112815

112816

112817

112818

112819

112820

112821

112822

112823

112824

112825

112826

112827

112828

112829

112830

112831

112832

112833

112834

112835

112836

112837

what Utilities

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Any matches were found.

1 Otherwise.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The what utility is intended to be used in conjunction with the SCCS command get, which
automatically inserts identifying information, but it can also be used where the information is
inserted by any other means.

When the string "@(#)" is included in a library routine in a shared library, it might not be found
in an a.out file using that library routine.

EXAMPLES
If the C-language program in file f.c contains:

char ident[] = "@(#)identification information";

and f.c is compiled to yield f.o and a.out, then the command:

what f.c f.o a.out

writes:

f.c:
identification information
...

f.o:
identification information
...

a.out:
identification information
...

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
get

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

3372 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

112838

112839

112840

112841

112842

112843

112844

112845

112846

112847

112848

112849

112850

112851

112852

112853

112854

112855

112856

112857

112858

112859

112860

112861

112862

112863

112864

112865

112866

112867

112868

112869

112870

112871

112872

112873

112874

112875

112876

112877

Utilities what

CHANGE HISTORY
First released in Issue 2.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3373

112878

112879

who Utilities

NAME
who — display who is on the system

SYNOPSIS
XSI who [−mTu] [−abdHlprt] [file]

XSI who [−mu] −s [−bHlprt] [file]

who −q [file]

who am i

who am I

DESCRIPTION
The who utility shall list various pieces of information about accessible users. The domain of
accessibility is implementation-defined.

XSI Based on the options given, who can also list the user’s name, terminal line, login time, elapsed
time since activity occurred on the line, and the process ID of the command interpreter for each
current system user.

OPTIONS
The who utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported. The metavariables, such as <line>, refer to fields
described in the STDOUT section.

XSI −a Process the implementation-defined database or named file with the −b, −d, −l, −p,
−r, −t, −T and −u options turned on.

XSI −b Write the time and date of the last system reboot. The system reboot time is the
time at which the implementation is able to commence running processes.

XSI −d Write a list of all processes that have expired and not been respawned by the init
system process. The <exit> field shall appear for dead processes and contain the
termination and exit values of the dead process. This can be useful in determining
why a process terminated.

XSI −H Write column headings above the regular output.

XSI −l (The letter ell.) List only those lines on which the system is waiting for someone to
login. The <name> field shall be LOGIN in such cases. Other fields shall be the
same as for user entries except that the <state> field does not exist.

−m Output only information about the current terminal.

XSI −p List any other process that is currently active and has been previously spawned by
init.

XSI −q (Quick.) List only the names and the number of users currently logged on. When
this option is used, all other options shall be ignored.

XSI −r Write the current run-level of the init process.

XSI −s List only the <name>, <line>, and <time> fields. This is the default case.

XSI −t Indicate the last change to the system clock.

−T Show the state of each terminal, as described in the STDOUT section.

3374 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

112880

112881

112882

112883

112884

112885

112886

112887

112888

112889

112890

112891

112892

112893

112894

112895

112896

112897

112898

112899

112900

112901

112902

112903

112904

112905

112906

112907

112908

112909

112910

112911

112912

112913

112914

112915

112916

112917

112918

Utilities who

−u Write ‘‘idle time’’ for each displayed user in addition to any other information. The
idle time is the time since any activity occurred on the user’s terminal. The method

XSI of determining this is unspecified. This option shall list only those users who are
currently logged in. The <name> is the user’s login name. The <line> is the name
of the line as found in the directory /dev. The <time> is the time that the user
logged in. The <activity> is the number of hours and minutes since activity last
occurred on that particular line. A dot indicates that the terminal has seen activity
in the last minute and is therefore ‘‘current’’. If more than twenty-four hours have
elapsed or the line has not been used since boot time, the entry shall be marked
<old>. This field is useful when trying to determine whether a person is working at
the terminal or not. The <pid> is the process ID of the user’s login process.

OPERANDS
XSI The following operands shall be supported:

am i, am I In the POSIX locale, limit the output to describing the invoking user, equivalent to
the −m option. The am and i or I must be separate arguments.

file Specify a pathname of a file to substitute for the implementation-defined database
of logged-on users that who uses by default.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of who:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

LC_TIME Determine the locale used for the format and contents of the date and time strings.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TZ Determine the timezone used when writing date and time information. If TZ is
unset or null, an unspecified default timezone shall be used.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The who utility shall write its default format to the standard output in an implementation-
defined format, subject only to the requirement of containing the information described above.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3375

112919

112920

112921

112922

112923

112924

112925

112926

112927

112928

112929

112930

112931

112932

112933

112934

112935

112936

112937

112938

112939

112940

112941

112942

112943

112944

112945

112946

112947

112948

112949

112950

112951

112952

112953

112954

112955

112956

112957

112958

112959

112960

112961

who Utilities

XSI OF XSI-conformant systems shall write the default information to the standard output in the
following general format:

<name>[<state>]<line><time>[<activity>][<pid>][<comment>][<exit>]

For the −b option, <line> shall be "system boot". The <name> is unspecified.

The following format shall be used for the −T option:

"%s %c %s %s\n" <name>, <terminal state>, <terminal name>,
<time of login>

where <terminal state> is one of the following characters:

+ The terminal allows write access to other users.

− The terminal denies write access to other users.

? The terminal write-access state cannot be determined.

<space> This entry is not associated with a terminal.

In the POSIX locale, the <time of login> shall be equivalent in format to the output of:

date +"%b %e %H:%M"

If the −u option is used with −T, the idle time shall be added to the end of the previous format in
an unspecified format.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The name init used for the system process is the most commonly used on historical systems, but
it may vary.

The ‘‘domain of accessibility’’ referred to is a broad concept that permits interpretation either on
a very secure basis or even to allow a network-wide implementation like the historical rwho.

EXAMPLES
None.

RATIONALE
Due to differences between historical implementations, the base options provided were a
compromise to allow users to work with those functions. The standard developers also
considered removing all the options, but felt that these options offered users valuable
functionality. Additional options to match historical systems are available on XSI-conformant

3376 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

112962

112963

112964

112965

112966

112967

112968

112969

112970

112971

112972

112973

112974

112975

112976

112977

112978

112979

112980

112981

112982

112983

112984

112985

112986

112987

112988

112989

112990

112991

112992

112993

112994

112995

112996

112997

112998

112999

113000

113001

Utilities who

systems.

It is recognized that the who command may be of limited usefulness, especially in a multi-level
secure environment. The standard developers considered, however, that having some standard
method of determining the ‘‘accessibility’’ of other users would aid user portability.

No format was specified for the default who output for systems not supporting the XSI option. In
such a user-oriented command, designed only for human use, this was not considered to be a
deficiency.

The format of the terminal name is unspecified, but the descriptions of ps, talk, and write require
that they use the same format.

It is acceptable for an implementation to produce no output for an invocation of who mil.

FUTURE DIRECTIONS
None.

SEE ALSO
mesg

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The TZ entry is added to the ENVIRONMENT VARIABLES section.

Issue 7
SD5-XCU-ERN-58 is applied, clarifying the −b option.

The who utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3377

113002

113003

113004

113005

113006

113007

113008

113009

113010

113011

113012

113013

113014

113015

113016

113017

113018

113019

113020

113021

113022

113023

113024

113025

113026

write Utilities

NAME
write — write to another user

SYNOPSIS
write user_name [terminal]

DESCRIPTION
The write utility shall read lines from the standard input and write them to the terminal of the
specified user. When first invoked, it shall write the message:

Message from sender-login-id (sending-terminal) [date]...

to user_name. When it has successfully completed the connection, the sender’s terminal shall be
alerted twice to indicate that what the sender is typing is being written to the recipient’s
terminal.

If the recipient wants to reply, this can be accomplished by typing:

write sender-login-id [sending-terminal]

upon receipt of the initial message. Whenever a line of input as delimited by an NL, EOF, or
EOL special character (see XBD Chapter 11, on page 199) is accumulated while in canonical
input mode, the accumulated data shall be written on the other user’s terminal. Characters shall
be processed as follows:

• Typing <alert> shall write the <alert> character to the recipient’s terminal.

• Typing the erase and kill characters shall affect the sender’s terminal in the manner
described by the termios interface in XBD Chapter 11 (on page 199).

• Typing the interrupt or end-of-file characters shall cause write to write an appropriate
message ("EOT\n" in the POSIX locale) to the recipient’s terminal and exit.

• Typing characters from LC_CTYPE classifications print or space shall cause those
characters to be sent to the recipient’s terminal.

• When and only when the stty iexten local mode is enabled, the existence and processing of
additional special control characters and multi-byte or single-byte functions is
implementation-defined.

• Typing other non-printable characters shall cause implementation-defined sequences of
printable characters to be written to the recipient’s terminal.

To write to a user who is logged in more than once, the terminal argument can be used to
indicate which terminal to write to; otherwise, the recipient’s terminal is selected in an
implementation-defined manner and an informational message is written to the sender’s
standard output, indicating which terminal was chosen.

Permission to be a recipient of a write message can be denied or granted by use of the mesg
utility. However, a user ’s privilege may further constrain the domain of accessibility of other
users’ terminals. The write utility shall fail when the user lacks appropriate privileges to perform
the requested action.

OPTIONS
None.

OPERANDS

3378 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

113027

113028

113029

113030

113031

113032

113033

113034

113035

113036

113037

113038

113039

113040

113041

113042

113043

113044

113045

113046

113047

113048

113049

113050

113051

113052

113053

113054

113055

113056

113057

113058

113059

113060

113061

113062

113063

113064

113065

113066

Utilities write

The following operands shall be supported:

user_name Login name of the person to whom the message shall be written. The application
shall ensure that this operand is of the form returned by the who utility.

terminal Terminal identification in the same format provided by the who utility.

STDIN
Lines to be copied to the recipient’s terminal are read from standard input.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of write:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files). If the recipient’s locale does not use an LC_CTYPE
equivalent to the sender’s, the results are undefined.

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error and informative messages written to
standard output.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
If an interrupt signal is received, write shall write an appropriate message on the recipient’s
terminal and exit with a status of zero. It shall take the standard action for all other signals.

STDOUT
An informational message shall be written to standard output if a recipient is logged in more
than once.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
The recipient’s terminal is used for output.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 The addressed user is not logged on or the addressed user denies permission.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3379

113067

113068

113069

113070

113071

113072

113073

113074

113075

113076

113077

113078

113079

113080

113081

113082

113083

113084

113085

113086

113087

113088

113089

113090

113091

113092

113093

113094

113095

113096

113097

113098

113099

113100

113101

113102

113103

113104

113105

113106

write Utilities

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The talk utility is considered by some users to be a more usable utility on full-screen terminals.

EXAMPLES
None.

RATIONALE
The write utility was included in this volume of POSIX.1-2008 since it can be implemented on all
terminal types. The standard developers considered the talk utility, which cannot be
implemented on certain terminals, to be a ‘‘better ’’ communications interface. Both of these
programs are in widespread use on historical implementations. Therefore, the standard
developers decided that both utilities should be specified.

The format of the terminal name is unspecified, but the descriptions of ps, talk, who, and write
require that they all use or accept the same format.

FUTURE DIRECTIONS
None.

SEE ALSO
mesg , talk , who

XBD Chapter 8 (on page 173), Chapter 11 (on page 199)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the User Portability Utilities option.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
The write utility is moved from the User Portability Utilities option to the Base. User Portability
Utilities is now an option for interactive utilities.

3380 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

113107

113108

113109

113110

113111

113112

113113

113114

113115

113116

113117

113118

113119

113120

113121

113122

113123

113124

113125

113126

113127

113128

113129

113130

113131

113132

113133

113134

113135

Utilities xargs

NAME
xargs — construct argument lists and invoke utility

SYNOPSIS
XSI xargs [−ptx] [−E eofstr] [−I replstr|−L number|−n number]

[−s size] [utility [argument...]]

DESCRIPTION
The xargs utility shall construct a command line consisting of the utility and argument operands
specified followed by as many arguments read in sequence from standard input as fit in length
and number constraints specified by the options. The xargs utility shall then invoke the
constructed command line and wait for its completion. This sequence shall be repeated until one
of the following occurs:

• An end-of-file condition is detected on standard input.

• An argument consisting of just the logical end-of-file string (see the −E eofstr option) is
found on standard input after double-quote processing, <apostrophe> processing, and
<backslash>-escape processing (see next paragraph). All arguments up to but not
including the argument consisting of just the logical end-of-file string shall be used as
arguments in constructed command lines.

• An invocation of a constructed command line returns an exit status of 255.

The application shall ensure that arguments in the standard input are separated by unquoted
<blank> characters, unescaped <blank> characters, or <newline> characters. A string of zero or
more non-double-quote (’"’) characters and non-<newline> characters can be quoted by
enclosing them in double-quotes. A string of zero or more non-<apostrophe> (’’’) characters
and non-<newline> characters can be quoted by enclosing them in <apostrophe> characters.
Any unquoted character can be escaped by preceding it with a <backslash>. The utility named
by utility shall be executed one or more times until the end-of-file is reached or the logical end-of
file string is found. The results are unspecified if the utility named by utility attempts to read
from its standard input.

The generated command line length shall be the sum of the size in bytes of the utility name and
each argument treated as strings, including a null byte terminator for each of these strings. The
xargs utility shall limit the command line length such that when the command line is invoked,
the combined argument and environment lists (see the exec family of functions in the System
Interfaces volume of POSIX.1-2008) shall not exceed {ARG_MAX}−2 048 bytes. Within this
constraint, if neither the −n nor the −s option is specified, the default command line length shall
be at least {LINE_MAX}.

OPTIONS
The xargs utility shall conform to XBD Section 12.2 (on page 215).

The following options shall be supported:

−E eofstr Use eofstr as the logical end-of-file string. If −E is not specified, it is unspecified
whether the logical end-of-file string is the <underscore> character (’_’) or the
end-of-file string capability is disabled. When eofstr is the null string, the logical
end-of-file string capability shall be disabled and <underscore> characters shall be
taken literally.

XSI −I replstr Insert mode: utility is executed for each logical line from standard input.
Arguments in the standard input shall be separated only by unescaped <newline>
characters, not by <blank> characters. Any unquoted unescaped <blank>
characters at the beginning of each line shall be ignored. The resulting argument
shall be inserted in arguments in place of each occurrence of replstr. At least five

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3381

113136

113137

113138

113139

113140

113141

113142

113143

113144

113145

113146

113147

113148

113149

113150

113151

113152

113153

113154

113155

113156

113157

113158

113159

113160

113161

113162

113163

113164

113165

113166

113167

113168

113169

113170

113171

113172

113173

113174

113175

113176

113177

113178

113179

113180

113181

113182

xargs Utilities

arguments in arguments can each contain one or more instances of replstr. Each of
these constructed arguments cannot grow larger than an implementation-defined
limit greater than or equal to 255 bytes. Option −x shall be forced on.

XSI −L number The utility shall be executed for each non-empty number lines of arguments from
standard input. The last invocation of utility shall be with fewer lines of arguments
if fewer than number remain. A line is considered to end with the first <newline>
unless the last character of the line is a <blank>; a trailing <blank> signals
continuation to the next non-empty line, inclusive.

−n number Invoke utility using as many standard input arguments as possible, up to number (a
positive decimal integer) arguments maximum. Fewer arguments shall be used if:

• The command line length accumulated exceeds the size specified by the −s
option (or {LINE_MAX} if there is no −s option).

• The last iteration has fewer than number, but not zero, operands remaining.

−p Prompt mode: the user is asked whether to execute utility at each invocation. Trace
mode (−t) is turned on to write the command instance to be executed, followed by
a prompt to standard error. An affirmative response read from /dev/tty shall
execute the command; otherwise, that particular invocation of utility shall be
skipped.

−s size Invoke utility using as many standard input arguments as possible yielding a
command line length less than size (a positive decimal integer) bytes. Fewer
arguments shall be used if:

• The total number of arguments exceeds that specified by the −n option.

XSI • The total number of lines exceeds that specified by the −L option.

• End-of-file is encountered on standard input before size bytes are
accumulated.

Values of size up to at least {LINE_MAX} bytes shall be supported, provided that
the constraints specified in the DESCRIPTION are met. It shall not be considered
an error if a value larger than that supported by the implementation or exceeding
the constraints specified in the DESCRIPTION is given; xargs shall use the largest
value it supports within the constraints.

−t Enable trace mode. Each generated command line shall be written to standard
error just prior to invocation.

−x Terminate if a constructed command line will not fit in the implied or specified size
(see the −s option above).

OPERANDS
The following operands shall be supported:

utility The name of the utility to be invoked, found by search path using the PA TH
environment variable, described in XBD Chapter 8 (on page 173). If utility is
omitted, the default shall be the echo utility. If the utility operand names any of the
special built-in utilities in Section 2.14 (on page 2334), the results are undefined.

argument An initial option or operand for the invocation of utility.

3382 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

113183

113184

113185

113186

113187

113188

113189

113190

113191

113192

113193

113194

113195

113196

113197

113198

113199

113200

113201

113202

113203

113204

113205

113206

113207

113208

113209

113210

113211

113212

113213

113214

113215

113216

113217

113218

113219

113220

113221

113222

113223

Utilities xargs

STDIN
The standard input shall be a text file. The results are unspecified if an end-of-file condition is
detected immediately following an escaped <newline>.

INPUT FILES
The file /dev/tty shall be used to read responses required by the −p option.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of xargs:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_COLLATE
Determine the locale for the behavior of ranges, equivalence classes, and multi-
character collating elements used in the extended regular expression defined for
the yesexpr locale keyword in the LC_MESSAGES category.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files) and the behavior of character classes used in the
extended regular expression defined for the yesexpr locale keyword in the
LC_MESSAGES category.

LC_MESSAGES
Determine the locale used to process affirmative responses, and the locale used to
affect the format and contents of diagnostic messages and prompts written to
standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PA TH Determine the location of utility, as described in XBD Chapter 8 (on page 173).

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used for diagnostic messages and the −t and −p options. If the −t
option is specified, the utility and its constructed argument list shall be written to standard error,
as it will be invoked, prior to invocation. If −p is specified, a prompt of the following format
shall be written (in the POSIX locale):

"?..."

at the end of the line of the output from −t.

OUTPUT FILES
None.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3383

113224

113225

113226

113227

113228

113229

113230

113231

113232

113233

113234

113235

113236

113237

113238

113239

113240

113241

113242

113243

113244

113245

113246

113247

113248

113249

113250

113251

113252

113253

113254

113255

113256

113257

113258

113259

113260

113261

113262

113263

xargs Utilities

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All invocations of utility returned exit status zero.

1-125 A command line meeting the specified requirements could not be assembled, one or
more of the invocations of utility returned a non-zero exit status, or some other error
occurred.

126 The utility specified by utility was found but could not be invoked.

127 The utility specified by utility could not be found.

CONSEQUENCES OF ERRORS
If a command line meeting the specified requirements cannot be assembled, the utility cannot be
invoked, an invocation of the utility is terminated by a signal, or an invocation of the utility exits
with exit status 255, the xargs utility shall write a diagnostic message and exit without
processing any remaining input.

APPLICATION USAGE
The 255 exit status allows a utility being used by xargs to tell xargs to terminate if it knows no
further invocations using the current data stream will succeed. Thus, utility should explicitly exit
with an appropriate value to avoid accidentally returning with 255.

Note that since input is parsed as lines, <blank> characters separate arguments, and
<backslash>, <apostrophe>, and double-quote characters are used for quoting, if xargs is used to
bundle the output of commands like find dir −print or ls into commands to be executed,
unexpected results are likely if any filenames contain <blank>, <newline>, or quoting characters.
This can be solved by using find to call a script that converts each file found into a quoted string
that is then piped to xargs, but in most cases it is preferable just to have find do the argument
aggregation itself by using −exec with a ’+’ terminator instead of ’;’. Note that the quoting
rules used by xargs are not the same as in the shell. They were not made consistent here because
existing applications depend on the current rules. An easy (but inefficient) method that can be
used to transform input consisting of one argument per line into a quoted form that xargs
interprets correctly is to precede each non-<newline> character with a <backslash>. More
efficient alternatives are shown in Example 2 and Example 5 below.

On implementations with a large value for {ARG_MAX}, xargs may produce command lines
longer than {LINE_MAX}. For invocation of utilities, this is not a problem. If xargs is being used
to create a text file, users should explicitly set the maximum command line length with the −s
option.

The command, env, nice, nohup, time, and xargs utilities have been specified to use exit code 127 if
an error occurs so that applications can distinguish ‘‘failure to find a utility’’ from ‘‘invoked
utility exited with an error indication’’. The value 127 was chosen because it is not commonly
used for other meanings; most utilities use small values for ‘‘normal error conditions’’ and the
values above 128 can be confused with termination due to receipt of a signal. The value 126 was
chosen in a similar manner to indicate that the utility could be found, but not invoked. Some
scripts produce meaningful error messages differentiating the 126 and 127 cases. The distinction
between exit codes 126 and 127 is based on KornShell practice that uses 127 when all attempts to
exec the utility fail with [ENOENT], and uses 126 when any attempt to exec the utility fails for
any other reason.

3384 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

113264

113265

113266

113267

113268

113269

113270

113271

113272

113273

113274

113275

113276

113277

113278

113279

113280

113281

113282

113283

113284

113285

113286

113287

113288

113289

113290

113291

113292

113293

113294

113295

113296

113297

113298

113299

113300

113301

113302

113303

113304

113305

113306

113307

113308

Utilities xargs

EXAMPLES

1. The following command combines the output of the parenthesized commands (minus the
<apostrophe> characters) onto one line, which is then appended to the file log. It assumes
that the expansion of "$0 $*" does not include any <apostrophe> or <newline>
characters.

(logname; date; printf "’%s’\n" "$0 $*") | xargs −E "" >>log

2. The following command invokes diff with successive pairs of arguments originally typed
as command line arguments. It assumes there are no embedded <newline> characters in
the elements of the original argument list.

printf "%s\n" "$@" | sed ’s/[ˆ[:alnum:]]/\\&/g’ |
xargs −E "" −n 2 −x diff

3. In the following commands, the user is asked which files in the current directory
(excluding dotfiles) are to be archived. The files are archived into arch; a, one at a time or
b, many at a time. The commands assume that no filenames contain <blank>, <newline>,
<backslash>, <apostrophe>, or double-quote characters.

a. ls | xargs −E "" −p −L 1 ar −r arch

b. ls | xargs −E "" −p −L 1 | xargs −E "" ar −r arch

4. The following command invokes command1 one or more times with multiple arguments,
stopping if an invocation of command1 has a non-zero exit status.

xargs −E "" sh −c ’command1 "$@" || exit 255’ sh < xargs_input

5. On XSI-conformant systems, the following command moves all files from directory $1 to
directory $2, and echoes each move command just before doing it. It assumes no
filenames contain <newline> characters and that neither $1 nor $2 contains the sequence
"{}".

ls −A "$1" | sed −e ’s/"/"\\""/g’ −e ’s/.*/"&"/’ |
xargs −E "" −I {} −t mv "$1"/{} "$2"/{}

RATIONALE
The xargs utility was usually found only in System V-based systems; BSD systems included an
apply utility that provided functionality similar to xargs −n number. The SVID lists xargs as a
software development extension. This volume of POSIX.1-2008 does not share the view that it is
used only for development, and therefore it is not optional.

The classic application of the xargs utility is in conjunction with the find utility to reduce the
number of processes launched by a simplistic use of the find −exec combination. The xargs utility
is also used to enforce an upper limit on memory required to launch a process. With this basis in
mind, this volume of POSIX.1-2008 selected only the minimal features required.

Although the 255 exit status is mostly an accident of historical implementations, it allows a
utility being used by xargs to tell xargs to terminate if it knows no further invocations using the
current data stream shall succeed. Any non-zero exit status from a utility falls into the 1-125
range when xargs exits. There is no statement of how the various non-zero utility exit status
codes are accumulated by xargs. The value could be the addition of all codes, their highest
value, the last one received, or a single value such as 1. Since no algorithm is arguably better
than the others, and since many of the standard utilities say little more (portably) than
‘‘pass/fail’’, no new algorithm was invented.

Several other xargs options were removed because simple alternatives already exist within this

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3385

113309

113310

113311

113312

113313

113314

113315

113316

113317

113318

113319

113320

113321

113322

113323

113324

113325

113326

113327

113328

113329

113330

113331

113332

113333

113334

113335

113336

113337

113338

113339

113340

113341

113342

113343

113344

113345

113346

113347

113348

113349

113350

113351

113352

xargs Utilities

volume of POSIX.1-2008. For example, the −i replstr option can be just as efficiently performed
using a shell for loop. Since xargs calls an exec function with each input line, the −i option does
not usually exploit the grouping capabilities of xargs.

The requirement that xargs never produces command lines such that invocation of utility is
within 2 048 bytes of hitting the POSIX exec {ARG_MAX} limitations is intended to guarantee
that the invoked utility has room to modify its environment variables and command line
arguments and still be able to invoke another utility. Note that the minimum {ARG_MAX}
allowed by the System Interfaces volume of POSIX.1-2008 is 4 096 bytes and the minimum value
allowed by this volume of POSIX.1-2008 is 2 048 bytes; therefore, the 2 048 bytes difference seems
reasonable. Note, however, that xargs may never be able to invoke a utility if the environment
passed in to xargs comes close to using {ARG_MAX} bytes.

The version of xargs required by this volume of POSIX.1-2008 is required to wait for the
completion of the invoked command before invoking another command. This was done because
historical scripts using xargs assumed sequential execution. Implementations wanting to provide
parallel operation of the invoked utilities are encouraged to add an option enabling parallel
invocation, but should still wait for termination of all of the children before xargs terminates
normally.

The −e option was omitted from the ISO POSIX-2: 1993 standard in the belief that the eofstr
option-argument was recognized only when it was on a line by itself and before quote and
escape processing were performed, and that the logical end-of-file processing was only enabled
if a −e option was specified. In that case, a simple sed script could be used to duplicate the −e
functionality. Further investigation revealed that:

• The logical end-of-file string was checked for after quote and escape processing, making a
sed script that provided equivalent functionality much more difficult to write.

• The default was to perform logical end-of-file processing with an <underscore> as the
logical end-of-file string.

To correct this misunderstanding, the −E eofstr option was adopted from the X/Open Portability
Guide. Users should note that the description of the −E option matches historical documentation
of the −e option (which was not adopted because it did not support the Utility Syntax
Guidelines), by saying that if eofstr is the null string, logical end-of-file processing is disabled.
Historical implementations of xargs actually did not disable logical end-of-file processing; they
treated a null argument found in the input as a logical end-of-file string. (A null string argument
could be generated using single or double-quotes (’’ or ""). Since this behavior was not
documented historically, it is considered to be a bug.

The −I, −L, and −n options are mutually-exclusive. Some implementations use the last one
specified if more than one is given on a command line; other implementations treat
combinations of the options in different ways.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 2 (on page 2297), diff , echo , find

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

XSH exec

3386 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

113353

113354

113355

113356

113357

113358

113359

113360

113361

113362

113363

113364

113365

113366

113367

113368

113369

113370

113371

113372

113373

113374

113375

113376

113377

113378

113379

113380

113381

113382

113383

113384

113385

113386

113387

113388

113389

113390

113391

113392

113393

113394

113395

Utilities xargs

CHANGE HISTORY
First released in Issue 2.

Issue 5
A second FUTURE DIRECTION is added.

Issue 6
The obsolescent −e, −i, and −l options are removed.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• The −p option is added.

• In the INPUT FILES section, the file /dev/tty is used to read responses required by the −p
option.

• The STDERR section is updated to describe the −p option.

The description of the −E option is aligned with the ISO POSIX-2: 1993 standard.

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #123 is applied, changing the description of the xargs −I
option.

Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description of the
LC_MESSAGES environment variable.

SD5-XCU-ERN-68 is applied.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

SD5-XCU-ERN-128 is applied, clarifying the DESCRIPTION of the logical end-of-file string.

SD5-XCU-ERN-132 is applied, updating the EXAMPLES section.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3387

113396

113397

113398

113399

113400

113401

113402

113403

113404

113405

113406

113407

113408

113409

113410

113411

113412

113413

113414

113415

113416

113417

113418

yacc Utilities

NAME
yacc — yet another compiler compiler (DEVELOPMENT)

SYNOPSIS
CD yacc [−dltv] [−b file_prefix] [−p sym_prefix] grammar

DESCRIPTION
The yacc utility shall read a description of a context-free grammar in grammar and write C source
code, conforming to the ISO C standard, to a code file, and optionally header information into a
header file, in the current directory. The generated source code shall not depend on any
undefined, unspecified, or implementation-defined behavior, except in cases where it is copied
directly from the supplied grammar, or in cases that are documented by the implementation.
The C code shall define a function and related routines and macros for an automaton that
executes a parsing algorithm meeting the requirements in Algorithms (on page 3399).

The form and meaning of the grammar are described in the EXTENDED DESCRIPTION section.

The C source code and header file shall be produced in a form suitable as input for the C
compiler (see c99).

OPTIONS
The yacc utility shall conform to XBD Section 12.2 (on page 215), except for Guideline 9.

The following options shall be supported:

−b file_prefix Use file_prefix instead of y as the prefix for all output filenames. The code file
y.tab.c, the header file y.tab.h (created when −d is specified), and the description
file y.output (created when −v is specified), shall be changed to file_prefix.tab.c,
file_prefix.tab.h, and file_prefix.output, respectively.

−d Write the header file; by default only the code file is written. The #define
statements associate the token codes assigned by yacc with the user-declared token
names. This allows source files other than y.tab.c to access the token codes.

−l Produce a code file that does not contain any #line constructs. If this option is not
present, it is unspecified whether the code file or header file contains #line
directives. This should only be used after the grammar and the associated actions
are fully debugged.

−p sym_prefix
Use sym_prefix instead of yy as the prefix for all external names produced by yacc.
The names affected shall include the functions yyparse(), yylex(), and yyerror(),
and the variables yylval, yychar, and yydebug. (In the remainder of this section, the
six symbols cited are referenced using their default names only as a notational
convenience.) Local names may also be affected by the −p option; however, the −p
option shall not affect #define symbols generated by yacc.

−t Modify conditional compilation directives to permit compilation of debugging
code in the code file. Runtime debugging statements shall always be contained in
the code file, but by default conditional compilation directives prevent their
compilation.

−v Write a file containing a description of the parser and a report of conflicts
generated by ambiguities in the grammar.

3388 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

113419

113420

113421

113422

113423

113424

113425

113426

113427

113428

113429

113430

113431

113432

113433

113434

113435

113436

113437

113438

113439

113440

113441

113442

113443

113444

113445

113446

113447

113448

113449

113450

113451

113452

113453

113454

113455

113456

113457

113458

113459

113460

Utilities yacc

OPERANDS
The following operand is required:

grammar A pathname of a file containing instructions, hereafter called grammar, for which a
parser is to be created. The format for the grammar is described in the EXTENDED
DESCRIPTION section.

STDIN
Not used.

INPUT FILES
The file grammar shall be a text file formatted as specified in the EXTENDED DESCRIPTION
section.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of yacc:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments and input files).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

The LANG and LC_* variables affect the execution of the yacc utility as stated. The main()
function defined in Yacc Library (on page 3399) shall call:

setlocale(LC_ALL, "")

and thus the program generated by yacc shall also be affected by the contents of these variables
at runtime.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
If shift/reduce or reduce/reduce conflicts are detected in grammar, yacc shall write a report of
those conflicts to the standard error in an unspecified format.

Standard error shall also be used for diagnostic messages.

OUTPUT FILES
The code file, the header file, and the description file shall be text files. All are described in the
following sections.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3389

113461

113462

113463

113464

113465

113466

113467

113468

113469

113470

113471

113472

113473

113474

113475

113476

113477

113478

113479

113480

113481

113482

113483

113484

113485

113486

113487

113488

113489

113490

113491

113492

113493

113494

113495

113496

113497

113498

113499

113500

yacc Utilities

Code File

This file shall contain the C source code for the yyparse() function. It shall contain code for the
various semantic actions with macro substitution performed on them as described in the
EXTENDED DESCRIPTION section. It also shall contain a copy of the #define statements in the
header file. If a %union declaration is used, the declaration for YYSTYPE shall also be included
in this file.

Header File

The header file shall contain #define statements that associate the token numbers with the token
names. This allows source files other than the code file to access the token codes. If a %union
declaration is used, the declaration for YYSTYPE and an extern YYSTYPE yylval declaration shall
also be included in this file.

Description File

The description file shall be a text file containing a description of the state machine
corresponding to the parser, using an unspecified format. Limits for internal tables (see Limits,
on page 3400) shall also be reported, in an implementation-defined manner. (Some
implementations may use dynamic allocation techniques and have no specific limit values to
report.)

EXTENDED DESCRIPTION
The yacc command accepts a language that is used to define a grammar for a target language to
be parsed by the tables and code generated by yacc. The language accepted by yacc as a
grammar for the target language is described below using the yacc input language itself.

The input grammar includes rules describing the input structure of the target language and code
to be invoked when these rules are recognized to provide the associated semantic action. The
code to be executed shall appear as bodies of text that are intended to be C-language code. These
bodies of text shall not contain C-language trigraphs. The C-language inclusions are presumed
to form a correct function when processed by yacc into its output files. The code included in this
way shall be executed during the recognition of the target language.

Given a grammar, the yacc utility generates the files described in the OUTPUT FILES section.
The code file can be compiled and linked using c99. If the declaration and programs sections of
the grammar file did not include definitions of main(), yylex(), and yyerror(), the compiled
output requires linking with externally supplied versions of those functions. Default versions of
main() and yyerror() are supplied in the yacc library and can be linked in by using the −l y
operand to c99. The yacc library interfaces need not support interfaces with other than the
default yy symbol prefix. The application provides the lexical analyzer function, yylex(); the lex
utility is specifically designed to generate such a routine.

Input Language

The application shall ensure that every specification file consists of three sections in order:
declarations, grammar rules, and programs, separated by double <percent-sign> characters ("%%").
The declarations and programs sections can be empty. If the latter is empty, the preceding "%%"
mark separating it from the rules section can be omitted.

The input is free form text following the structure of the grammar defined below.

3390 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

113501

113502

113503

113504

113505

113506

113507

113508

113509

113510

113511

113512

113513

113514

113515

113516

113517

113518

113519

113520

113521

113522

113523

113524

113525

113526

113527

113528

113529

113530

113531

113532

113533

113534

113535

113536

113537

113538

113539

113540

113541

Utilities yacc

Lexical Structure of the Grammar

The <blank>, <newline>, and <form-feed> character shall be ignored, except that the application
shall ensure that they do not appear in names or multi-character reserved symbols. Comments
shall be enclosed in "/* ... */", and can appear wherever a name is valid.

Names are of arbitrary length, made up of letters, periods (’.’), underscores (’_’), and non-
initial digits. Uppercase and lowercase letters are distinct. Conforming applications shall not
use names beginning in yy or YY since the yacc parser uses such names. Many of the names
appear in the final output of yacc, and thus they should be chosen to conform with any
additional rules created by the C compiler to be used. In particular they appear in #define
statements.

A literal shall consist of a single character enclosed in single-quote characters. All of the escape
sequences supported for character constants by the ISO C standard shall be supported by yacc.

The relationship with the lexical analyzer is discussed in detail below.

The application shall ensure that the NUL character is not used in grammar rules or literals.

Declarations Section

The declarations section is used to define the symbols used to define the target language and
their relationship with each other. In particular, much of the additional information required to
resolve ambiguities in the context-free grammar for the target language is provided here.

Usually yacc assigns the relationship between the symbolic names it generates and their
underlying numeric value. The declarations section makes it possible to control the assignment
of these values.

It is also possible to keep semantic information associated with the tokens currently on the parse
stack in a user-defined C-language union, if the members of the union are associated with the
various names in the grammar. The declarations section provides for this as well.

The first group of declarators below all take a list of names as arguments. That list can optionally
be preceded by the name of a C union member (called a tag below) appearing within ’<’ and
’>’. (As an exception to the typographical conventions of the rest of this volume of
POSIX.1-2008, in this case <tag> does not represent a metavariable, but the literal angle bracket
characters surrounding a symbol.) The use of tag specifies that the tokens named on this line
shall be of the same C type as the union member referenced by tag. This is discussed in more
detail below.

For lists used to define tokens, the first appearance of a given token can be followed by a
positive integer (as a string of decimal digits). If this is done, the underlying value assigned to it
for lexical purposes shall be taken to be that number.

The following declares name to be a token:

%token [<tag>] name [number] [name [number]]...

If tag is present, the C type for all tokens on this line shall be declared to be the type referenced
by tag. If a positive integer, number, follows a name, that value shall be assigned to the token.

The following declares name to be a token, and assigns precedence to it:

%left [<tag>] name [number] [name [number]]...
%right [<tag>] name [number] [name [number]]...

One or more lines, each beginning with one of these symbols, can appear in this section. All
tokens on the same line have the same precedence level and associativity; the lines are in order

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3391

113542

113543

113544

113545

113546

113547

113548

113549

113550

113551

113552

113553

113554

113555

113556

113557

113558

113559

113560

113561

113562

113563

113564

113565

113566

113567

113568

113569

113570

113571

113572

113573

113574

113575

113576

113577

113578

113579

113580

113581

113582

113583

113584

yacc Utilities

of increasing precedence or binding strength. %left denotes that the operators on that line are
left associative, and %right similarly denotes right associative operators. If tag is present, it shall
declare a C type for names as described for %token.

The following declares name to be a token, and indicates that this cannot be used associatively:

%nonassoc [<tag>] name [number] [name [number]]...

If the parser encounters associative use of this token it reports an error. If tag is present, it shall
declare a C type for names as described for %token.

The following declares that union member names are non-terminals, and thus it is required to
have a tag field at its beginning:

%type <tag> name...

Because it deals with non-terminals only, assigning a token number or using a literal is also
prohibited. If this construct is present, yacc shall perform type checking; if this construct is not
present, the parse stack shall hold only the int type.

Every name used in grammar not defined by a %token, %left, %right, or %nonassoc declaration
is assumed to represent a non-terminal symbol. The yacc utility shall report an error for any non-
terminal symbol that does not appear on the left side of at least one grammar rule.

Once the type, precedence, or token number of a name is specified, it shall not be changed. If the
first declaration of a token does not assign a token number, yacc shall assign a token number.
Once this assignment is made, the token number shall not be changed by explicit assignment.

The following declarators do not follow the previous pattern.

The following declares the non-terminal name to be the start symbol, which represents the largest,
most general structure described by the grammar rules:

%start name

By default, it is the left-hand side of the first grammar rule; this default can be overridden with
this declaration.

The following declares the yacc value stack to be a union of the various types of values desired.

%union { body of union (in C) }

The body of the union shall not contain unbalanced curly brace preprocessing tokens.

By default, the values returned by actions (see below) and the lexical analyzer shall be of type
int. The yacc utility keeps track of types, and it shall insert corresponding union member names
in order to perform strict type checking of the resulting parser.

Alternatively, given that at least one <tag> construct is used, the union can be declared in a
header file (which shall be included in the declarations section by using a #include construct
within %{ and %}), and a typedef used to define the symbol YYSTYPE to represent this union.
The effect of %union is to provide the declaration of YYSTYPE directly from the yacc input.

C-language declarations and definitions can appear in the declarations section, enclosed by the
following marks:

%{ ... %}

These statements shall be copied into the code file, and have global scope within it so that they
can be used in the rules and program sections. The statements shall not contain "%}" outside a
comment, string literal, or multi-character constant.

3392 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

113585

113586

113587

113588

113589

113590

113591

113592

113593

113594

113595

113596

113597

113598

113599

113600

113601

113602

113603

113604

113605

113606

113607

113608

113609

113610

113611

113612

113613

113614

113615

113616

113617

113618

113619

113620

113621

113622

113623

113624

113625

Utilities yacc

The application shall ensure that the declarations section is terminated by the token %%.

Grammar Rules in yacc

The rules section defines the context-free grammar to be accepted by the function yacc generates,
and associates with those rules C-language actions and additional precedence information. The
grammar is described below, and a formal definition follows.

The rules section is comprised of one or more grammar rules. A grammar rule has the form:

A : BODY ;

The symbol A represents a non-terminal name, and BODY represents a sequence of zero or
more names, literals, and semantic actions that can then be followed by optional precedence rules.
Only the names and literals participate in the formation of the grammar; the semantic actions
and precedence rules are used in other ways. The <colon> and the <semicolon> are yacc
punctuation. If there are several successive grammar rules with the same left-hand side, the
<vertical-line> (’|’) can be used to avoid rewriting the left-hand side; in this case the
<semicolon> appears only after the last rule. The BODY part can be empty (or empty of names
and literals) to indicate that the non-terminal symbol matches the empty string.

The yacc utility assigns a unique number to each rule. Rules using the vertical bar notation are
distinct rules. The number assigned to the rule appears in the description file.

The elements comprising a BODY are:

name, literal These form the rules of the grammar: name is either a token or a non-terminal; literal
stands for itself (less the lexically required quotation marks).

semantic action
With each grammar rule, the user can associate actions to be performed each time
the rule is recognized in the input process. (Note that the word ‘‘action’’ can also
refer to the actions of the parser—shift, reduce, and so on.)

These actions can return values and can obtain the values returned by previous
actions. These values are kept in objects of type YYSTYPE (see %union). The
result value of the action shall be kept on the parse stack with the left-hand side of
the rule, to be accessed by other reductions as part of their right-hand side. By
using the <tag> information provided in the declarations section, the code
generated by yacc can be strictly type checked and contain arbitrary information. In
addition, the lexical analyzer can provide the same kinds of values for tokens, if
desired.

An action is an arbitrary C statement and as such can do input or output, call
subprograms, and alter external variables. An action is one or more C statements
enclosed in curly braces ’{’ and ’}’. The statements shall not contain
unbalanced curly brace preprocessing tokens.

Certain pseudo-variables can be used in the action. These are macros for access to
data structures known internally to yacc.

$$ The value of the action can be set by assigning it to $$. If type
checking is enabled and the type of the value to be assigned cannot
be determined, a diagnostic message may be generated.

$number This refers to the value returned by the component specified by the
token number in the right side of a rule, reading from left to right;
number can be zero or negative. If number is zero or negative, it refers

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3393

113626

113627

113628

113629

113630

113631

113632

113633

113634

113635

113636

113637

113638

113639

113640

113641

113642

113643

113644

113645

113646

113647

113648

113649

113650

113651

113652

113653

113654

113655

113656

113657

113658

113659

113660

113661

113662

113663

113664

113665

113666

113667

113668

113669

yacc Utilities

to the data associated with the name on the parser’s stack preceding
the leftmost symbol of the current rule. (That is, "$0" refers to the
name immediately preceding the leftmost name in the current rule to
be found on the parser’s stack and "$−1" refers to the symbol to its
left.) If number refers to an element past the current point in the rule,
or beyond the bottom of the stack, the result is undefined. If type
checking is enabled and the type of the value to be assigned cannot
be determined, a diagnostic message may be generated.

$<tag>number
These correspond exactly to the corresponding symbols without the
tag inclusion, but allow for strict type checking (and preclude
unwanted type conversions). The effect is that the macro is expanded
to use tag to select an element from the YYSTYPE union (using
dataname.tag). This is particularly useful if number is not positive.

$<tag>$ This imposes on the reference the type of the union member
referenced by tag. This construction is applicable when a reference to
a left context value occurs in the grammar, and provides yacc with a
means for selecting a type.

Actions can occur anywhere in a rule (not just at the end); an action can access
values returned by actions to its left, and in turn the value it returns can be
accessed by actions to its right. An action appearing in the middle of a rule shall be
equivalent to replacing the action with a new non-terminal symbol and adding an
empty rule with that non-terminal symbol on the left-hand side. The semantic
action associated with the new rule shall be equivalent to the original action. The
use of actions within rules might introduce conflicts that would not otherwise
exist.

By default, the value of a rule shall be the value of the first element in it. If the first
element does not have a type (particularly in the case of a literal) and type
checking is turned on by %type, an error message shall result.

precedence The keyword %prec can be used to change the precedence level associated with a
particular grammar rule. Examples of this are in cases where a unary and binary
operator have the same symbolic representation, but need to be given different
precedences, or where the handling of an ambiguous if-else construction is
necessary. The reserved symbol %prec can appear immediately after the body of
the grammar rule and can be followed by a token name or a literal. It shall cause
the precedence of the grammar rule to become that of the following token name or
literal. The action for the rule as a whole can follow %prec.

If a program section follows, the application shall ensure that the grammar rules are terminated
by %%.

Programs Section

The programs section can include the definition of the lexical analyzer yylex(), and any other
functions; for example, those used in the actions specified in the grammar rules. It is unspecified
whether the programs section precedes or follows the semantic actions in the output file;
therefore, if the application contains any macro definitions and declarations intended to apply to
the code in the semantic actions, it shall place them within "%{ ... %}" in the declarations
section.

3394 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

113670

113671

113672

113673

113674

113675

113676

113677

113678

113679

113680

113681

113682

113683

113684

113685

113686

113687

113688

113689

113690

113691

113692

113693

113694

113695

113696

113697

113698

113699

113700

113701

113702

113703

113704

113705

113706

113707

113708

113709

113710

113711

113712

113713

113714

113715

Utilities yacc

Input Grammar

The following input to yacc yields a parser for the input to yacc. This formal syntax takes
precedence over the preceding text syntax description.

The lexical structure is defined less precisely; Lexical Structure of the Grammar (on page 3391)
defines most terms. The correspondence between the previous terms and the tokens below is as
follows.

IDENTIFIER This corresponds to the concept of name, given previously. It also includes
literals as defined previously.

C_IDENTIFIER This is a name, and additionally it is known to be followed by a <colon>. A
literal cannot yield this token.

NUMBER A string of digits (a non-negative decimal integer).

TYPE, LEFT, MARK, LCURL, RCURL
These correspond directly to %type, %left, %%, %{, and %}.

{ . . . } This indicates C-language source code, with the possible inclusion of ’$’
macros as discussed previously.

/* Grammar for the input to yacc. */
/* Basic entries. */
/* The following are recognized by the lexical analyzer. */

%token IDENTIFIER /* Includes identifiers and literals */
%token C_IDENTIFIER /* identifier (but not literal)

followed by a :. */
%token NUMBER /* [0-9][0-9]* */

/* Reserved words : %type=>TYPE %left=>LEFT, and so on */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK /* The %% mark. */
%token LCURL /* The %{ mark. */
%token RCURL /* The %} mark. */

/* 8-bit character literals stand for themselves; */
/* tokens have to be defined for multi-byte characters. */

%start spec

%%

spec : defs MARK rules tail
;

tail : MARK
{
/* In this action, set up the rest of the file. */

}
| /* Empty; the second MARK is optional. */
;

defs : /* Empty. */
| defs def
;

def : START IDENTIFIER
| UNION

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3395

113716

113717

113718

113719

113720

113721

113722

113723

113724

113725

113726

113727

113728

113729

113730

113731

113732

113733

113734

113735

113736

113737

113738

113739

113740

113741

113742

113743

113744

113745

113746

113747

113748

113749

113750

113751

113752

113753

113754

113755

113756

113757

113758

113759

yacc Utilities

{
/* Copy union definition to output. */

}
| LCURL
{
/* Copy C code to output file. */

}
RCURL

| rword tag nlist
;

rword : TOKEN
| LEFT
| RIGHT
| NONASSOC
| TYPE
;

tag : /* Empty: union tag ID optional. */
| ’<’ IDENTIFIER ’>’
;

nlist : nmno
| nlist nmno
;

nmno : IDENTIFIER /* Note: literal invalid with % type. */
| IDENTIFIER NUMBER /* Note: invalid with % type. */
;

/* Rule section */

rules : C_IDENTIFIER rbody prec
| rules rule
;

rule : C_IDENTIFIER rbody prec
| ’|’ rbody prec
;

rbody : /* empty */
| rbody IDENTIFIER
| rbody act
;

act : ’{’
{
/* Copy action, translate $$, and so on. */

}
’}’

;
prec : /* Empty */

| PREC IDENTIFIER
| PREC IDENTIFIER act
| prec ’;’
;

3396 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

113760

113761

113762

113763

113764

113765

113766

113767

113768

113769

113770

113771

113772

113773

113774

113775

113776

113777

113778

113779

113780

113781

113782

113783

113784

113785

113786

113787

113788

113789

113790

113791

113792

113793

113794

113795

113796

113797

113798

113799

113800

113801

113802

113803

113804

113805

113806

Utilities yacc

Conflicts

The parser produced for an input grammar may contain states in which conflicts occur. The
conflicts occur because the grammar is not LALR(1). An ambiguous grammar always contains at
least one LALR(1) conflict. The yacc utility shall resolve all conflicts, using either default rules or
user-specified precedence rules.

Conflicts are either shift/reduce conflicts or reduce/reduce conflicts. A shift/reduce conflict is
where, for a given state and lookahead symbol, both a shift action and a reduce action are
possible. A reduce/reduce conflict is where, for a given state and lookahead symbol, reductions
by two different rules are possible.

The rules below describe how to specify what actions to take when a conflict occurs. Not all
shift/reduce conflicts can be successfully resolved this way because the conflict may be due to
something other than ambiguity, so incautious use of these facilities can cause the language
accepted by the parser to be much different from that which was intended. The description file
shall contain sufficient information to understand the cause of the conflict. Where ambiguity is
the reason either the default or explicit rules should be adequate to produce a working parser.

The declared precedences and associativities (see Declarations Section, on page 3391) are used to
resolve parsing conflicts as follows:

1. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec keyword
is used, it overrides this default. Some grammar rules might not have both precedence
and associativity.

2. If there is a shift/reduce conflict, and both the grammar rule and the input symbol have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and non-associative implies an error in the string being parsed.

3. When there is a shift/reduce conflict that cannot be resolved by rule 2, the shift is done.
Conflicts resolved this way are counted in the diagnostic output described in Error
Handling.

4. When there is a reduce/reduce conflict, a reduction is done by the grammar rule that
occurs earlier in the input sequence. Conflicts resolved this way are counted in the
diagnostic output described in Error Handling.

Conflicts resolved by precedence or associativity shall not be counted in the shift/reduce and
reduce/reduce conflicts reported by yacc on either standard error or in the description file.

Error Handling

The token error shall be reserved for error handling. The name error can be used in grammar
rules. It indicates places where the parser can recover from a syntax error. The default value of
error shall be 256. Its value can be changed using a %token declaration. The lexical analyzer
should not return the value of error.

The parser shall detect a syntax error when it is in a state where the action associated with the
lookahead symbol is error. A semantic action can cause the parser to initiate error handling by
executing the macro YYERROR. When YYERROR is executed, the semantic action passes control
back to the parser. YYERROR cannot be used outside of semantic actions.

When the parser detects a syntax error, it normally calls yyerror() with the character string
"syntax error" as its argument. The call shall not be made if the parser is still recovering

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3397

113807

113808

113809

113810

113811

113812

113813

113814

113815

113816

113817

113818

113819

113820

113821

113822

113823

113824

113825

113826

113827

113828

113829

113830

113831

113832

113833

113834

113835

113836

113837

113838

113839

113840

113841

113842

113843

113844

113845

113846

113847

113848

113849

113850

113851

yacc Utilities

from a previous error when the error is detected. The parser is considered to be recovering from
a previous error until the parser has shifted over at least three normal input symbols since the
last error was detected or a semantic action has executed the macro yyerrok. The parser shall not
call yyerror() when YYERROR is executed.

The macro function YYRECOVERING shall return 1 if a syntax error has been detected and the
parser has not yet fully recovered from it. Otherwise, zero shall be returned.

When a syntax error is detected by the parser, the parser shall check if a previous syntax error
has been detected. If a previous error was detected, and if no normal input symbols have been
shifted since the preceding error was detected, the parser checks if the lookahead symbol is an
endmarker (see Interface to the Lexical Analyzer). If it is, the parser shall return with a non-zero
value. Otherwise, the lookahead symbol shall be discarded and normal parsing shall resume.

When YYERROR is executed or when the parser detects a syntax error and no previous error has
been detected, or at least one normal input symbol has been shifted since the previous error was
detected, the parser shall pop back one state at a time until the parse stack is empty or the
current state allows a shift over error. If the parser empties the parse stack, it shall return with a
non-zero value. Otherwise, it shall shift over error and then resume normal parsing. If the parser
reads a lookahead symbol before the error was detected, that symbol shall still be the lookahead
symbol when parsing is resumed.

The macro yyerrok in a semantic action shall cause the parser to act as if it has fully recovered
from any previous errors. The macro yyclearin shall cause the parser to discard the current
lookahead token. If the current lookahead token has not yet been read, yyclearin shall have no
effect.

The macro YYACCEPT shall cause the parser to return with the value zero. The macro
YYABORT shall cause the parser to return with a non-zero value.

Interface to the Lexical Analyzer

The yylex() function is an integer-valued function that returns a token number representing the
kind of token read. If there is a value associated with the token returned by yylex() (see the
discussion of tag above), it shall be assigned to the external variable yylval.

If the parser and yylex() do not agree on these token numbers, reliable communication between
them cannot occur. For (single-byte character) literals, the token is simply the numeric value of
the character in the current character set. The numbers for other tokens can either be chosen by
yacc, or chosen by the user. In either case, the #define construct of C is used to allow yylex() to
return these numbers symbolically. The #define statements are put into the code file, and the
header file if that file is requested. The set of characters permitted by yacc in an identifier is
larger than that permitted by C. Token names found to contain such characters shall not be
included in the #define declarations.

If the token numbers are chosen by yacc, the tokens other than literals shall be assigned numbers
greater than 256, although no order is implied. A token can be explicitly assigned a number by
following its first appearance in the declarations section with a number. Names and literals not
defined this way retain their default definition. All token numbers assigned by yacc shall be
unique and distinct from the token numbers used for literals and user-assigned tokens. If
duplicate token numbers cause conflicts in parser generation, yacc shall report an error;
otherwise, it is unspecified whether the token assignment is accepted or an error is reported.

The end of the input is marked by a special token called the endmarker, which has a token
number that is zero or negative. (These values are invalid for any other token.) All lexical
analyzers shall return zero or negative as a token number upon reaching the end of their input.

3398 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

113852

113853

113854

113855

113856

113857

113858

113859

113860

113861

113862

113863

113864

113865

113866

113867

113868

113869

113870

113871

113872

113873

113874

113875

113876

113877

113878

113879

113880

113881

113882

113883

113884

113885

113886

113887

113888

113889

113890

113891

113892

113893

113894

113895

113896

113897

Utilities yacc

If the tokens up to, but excluding, the endmarker form a structure that matches the start symbol,
the parser shall accept the input. If the endmarker is seen in any other context, it shall be
considered an error.

Completing the Program

In addition to yyparse() and yylex(), the functions yyerror() and main() are required to make a
complete program. The application can supply main() and yyerror(), or those routines can be
obtained from the yacc library.

Yacc Library

The following functions shall appear only in the yacc library accessible through the −l y operand
to c99; they can therefore be redefined by a conforming application:

int main(void)
This function shall call yyparse() and exit with an unspecified value. Other actions within
this function are unspecified.

int yyerror(const char *s)
This function shall write the NUL-terminated argument to standard error, followed by a
<newline>.

The order of the −l y and −l l operands given to c99 is significant; the application shall either
provide its own main() function or ensure that −l y precedes −l l.

Debugging the Parser

The parser generated by yacc shall have diagnostic facilities in it that can be optionally enabled
at either compile time or at runtime (if enabled at compile time). The compilation of the runtime
debugging code is under the control of YYDEBUG, a preprocessor symbol. If YYDEBUG has a
non-zero value, the debugging code shall be included. If its value is zero, the code shall not be
included.

In parsers where the debugging code has been included, the external int yydebug can be used to
turn debugging on (with a non-zero value) and off (zero value) at runtime. The initial value of
yydebug shall be zero.

When −t is specified, the code file shall be built such that, if YYDEBUG is not already defined at
compilation time (using the c99 −D YYDEBUG option, for example), YYDEBUG shall be set
explicitly to 1. When −t is not specified, the code file shall be built such that, if YYDEBUG is not
already defined, it shall be set explicitly to zero.

The format of the debugging output is unspecified but includes at least enough information to
determine the shift and reduce actions, and the input symbols. It also provides information
about error recovery.

Algorithms

The parser constructed by yacc implements an LALR(1) parsing algorithm as documented in the
literature. It is unspecified whether the parser is table-driven or direct-coded.

A parser generated by yacc shall never request an input symbol from yylex() while in a state
where the only actions other than the error action are reductions by a single rule.

The literature of parsing theory defines these concepts.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3399

113898

113899

113900

113901

113902

113903

113904

113905

113906

113907

113908

113909

113910

113911

113912

113913

113914

113915

113916

113917

113918

113919

113920

113921

113922

113923

113924

113925

113926

113927

113928

113929

113930

113931

113932

113933

113934

113935

113936

113937

yacc Utilities

Limits

The yacc utility may have several internal tables. The minimum maximums for these tables are
shown in the following table. The exact meaning of these values is implementation-defined. The
implementation shall define the relationship between these values and between them and any
error messages that the implementation may generate should it run out of space for any internal
structure. An implementation may combine groups of these resources into a single pool as long
as the total available to the user does not fall below the sum of the sizes specified by this section.

Table 4-23 Internal Limits in yacc

Minimum
Limit Maximum Description

{NTERMS} 126 Number of tokens.
{NNONTERM} 200 Number of non-terminals.
{NPROD} 300 Number of rules.
{NSTATES} 600 Number of states.
{MEMSIZE} 5 200 Length of rules. The total length, in names

(tokens and non-terminals), of all the rules of the
grammar. The left-hand side is counted for each
rule, even if it is not explicitly repeated, as
specified in Grammar Rules in yacc (on page
3393).

{ACTSIZE} 4 000 Number of actions. ‘‘Actions’’ here (and in the
description file) refer to parser actions (shift,
reduce, and so on) not to semantic actions
defined in Grammar Rules in yacc (on page
3393).

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
If any errors are encountered, the run is aborted and yacc exits with a non-zero status. Partial
code files and header files may be produced. The summary information in the description file
shall always be produced if the −v flag is present.

APPLICATION USAGE
Historical implementations experience name conflicts on the names yacc.tmp, yacc.acts,
yacc.debug, y.tab.c, y.tab.h, and y.output if more than one copy of yacc is running in a single
directory at one time. The −b option was added to overcome this problem. The related problem
of allowing multiple yacc parsers to be placed in the same file was addressed by adding a −p
option to override the previously hard-coded yy variable prefix.

The description of the −p option specifies the minimal set of function and variable names that
cause conflict when multiple parsers are linked together. YYSTYPE does not need to be changed.
Instead, the programmer can use −b to give the header files for different parsers different names,
and then the file with the yylex() for a given parser can include the header for that parser.
Names such as yyclearerr do not need to be changed because they are used only in the actions;
they do not have linkage. It is possible that an implementation has other names, either internal
ones for implementing things such as yyclearerr, or providing non-standard features that it wants

3400 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

113938

113939

113940

113941

113942

113943

113944

113945

113946

113947

113948

113949

113950

113951

113952

113953

113954

113955

113956

113957

113958

113959

113960

113961

113962

113963

113964

113965

113966

113967

113968

113969

113970

113971

113972

113973

113974

113975

113976

113977

113978

113979

113980

113981

113982

113983

Utilities yacc

to change with −p.

Unary operators that are the same token as a binary operator in general need their precedence
adjusted. This is handled by the %prec advisory symbol associated with the particular grammar
rule defining that unary operator. (See Grammar Rules in yacc (on page 3393).) Applications are
not required to use this operator for unary operators, but the grammars that do not require it are
rare.

EXAMPLES
Access to the yacc library is obtained with library search operands to c99. To use the yacc library
main():

c99 y.tab.c −l y

Both the lex library and the yacc library contain main(). To access the yacc main():

c99 y.tab.c lex.yy.c −l y −l l

This ensures that the yacc library is searched first, so that its main() is used.

The historical yacc libraries have contained two simple functions that are normally coded by the
application programmer. These functions are similar to the following code:

#include <locale.h>
int main(void)
{

extern int yyparse();

setlocale(LC_ALL, "");

/* If the following parser is one created by lex, the
application must be careful to ensure that LC_CTYPE
and LC_COLLATE are set to the POSIX locale. */

(void) yyparse();
return (0);

}

#include <stdio.h>

int yyerror(const char *msg)
{

(void) fprintf(stderr, "%s\n", msg);
return (0);

}

RATIONALE
The references in Referenced Documents may be helpful in constructing the parser generator.
The referenced DeRemer and Pennello article (along with the works it references) describes a
technique to generate parsers that conform to this volume of POSIX.1-2008. Work in this area
continues to be done, so implementors should consult current literature before doing any new
implementations. The original Knuth article is the theoretical basis for this kind of parser, but the
tables it generates are impractically large for reasonable grammars and should not be used. The
‘‘equivalent to’’ wording is intentional to assure that the best tables that are LALR(1) can be
generated.

There has been confusion between the class of grammars, the algorithms needed to generate
parsers, and the algorithms needed to parse the languages. They are all reasonably orthogonal.
In particular, a parser generator that accepts the full range of LR(1) grammars need not generate
a table any more complex than one that accepts SLR(1) (a relatively weak class of LR grammars)

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3401

113984

113985

113986

113987

113988

113989

113990

113991

113992

113993

113994

113995

113996

113997

113998

113999

114000

114001

114002

114003

114004

114005

114006

114007

114008

114009

114010

114011

114012

114013

114014

114015

114016

114017

114018

114019

114020

114021

114022

114023

114024

114025

114026

114027

114028

yacc Utilities

for a grammar that happens to be SLR(1). Such an implementation need not recognize the case,
either; table compression can yield the SLR(1) table (or one even smaller than that) without
recognizing that the grammar is SLR(1). The speed of an LR(1) parser for any class is dependent
more upon the table representation and compression (or the code generation if a direct parser is
generated) than upon the class of grammar that the table generator handles.

The speed of the parser generator is somewhat dependent upon the class of grammar it handles.
However, the original Knuth article algorithms for constructing LR parsers were judged by its
author to be impractically slow at that time. Although full LR is more complex than LALR(1), as
computer speeds and algorithms improve, the difference (in terms of acceptable wall-clock
execution time) is becoming less significant.

Potential authors are cautioned that the referenced DeRemer and Pennello article previously
cited identifies a bug (an over-simplification of the computation of LALR(1) lookahead sets) in
some of the LALR(1) algorithm statements that preceded it to publication. They should take the
time to seek out that paper, as well as current relevant work, particularly Aho’s.

The −b option was added to provide a portable method for permitting yacc to work on multiple
separate parsers in the same directory. If a directory contains more than one yacc grammar, and
both grammars are constructed at the same time (by, for example, a parallel make program),
conflict results. While the solution is not historical practice, it corrects a known deficiency in
historical implementations. Corresponding changes were made to all sections that referenced
the filenames y.tab.c (now ‘‘the code file’’), y.tab.h (now ‘‘the header file’’), and y.output (now
‘‘the description file’’).

The grammar for yacc input is based on System V documentation. The textual description shows
there that the ’;’ is required at the end of the rule. The grammar and the implementation do
not require this. (The use of C_IDENTIFIER causes a reduce to occur in the right place.)

Also, in that implementation, the constructs such as %token can be terminated by a
<semicolon>, but this is not permitted by the grammar. The keywords such as %token can also
appear in uppercase, which is again not discussed. In most places where ’%’ is used,
<backslash> can be substituted, and there are alternate spellings for some of the symbols (for
example, %LEFT can be "%<" or even "\<").

Historically, <tag> can contain any characters except ’>’, including white space, in the
implementation. However, since the tag must reference an ISO C standard union member, in
practice conforming implementations need to support only the set of characters for ISO C
standard identifiers in this context.

Some historical implementations are known to accept actions that are terminated by a period.
Historical implementations often allow ’$’ in names. A conforming implementation does not
need to support either of these behaviors.

Deciding when to use %prec illustrates the difficulty in specifying the behavior of yacc. There
may be situations in which the grammar is not, strictly speaking, in error, and yet yacc cannot
interpret it unambiguously. The resolution of ambiguities in the grammar can in many instances
be resolved by providing additional information, such as using %type or %union declarations.
It is often easier and it usually yields a smaller parser to take this alternative when it is
appropriate.

The size and execution time of a program produced without the runtime debugging code is
usually smaller and slightly faster in historical implementations.

Statistics messages from several historical implementations include the following types of
information:

3402 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

114029

114030

114031

114032

114033

114034

114035

114036

114037

114038

114039

114040

114041

114042

114043

114044

114045

114046

114047

114048

114049

114050

114051

114052

114053

114054

114055

114056

114057

114058

114059

114060

114061

114062

114063

114064

114065

114066

114067

114068

114069

114070

114071

114072

114073

114074

Utilities yacc

n/512 terminals, n/300 non-terminals
n/600 grammar rules, n/1 500 states
n shift/reduce, n reduce/reduce conflicts reported
n/350 working sets used
Memory: states, etc. n/15 000, parser n/15 000
n/600 distinct lookahead sets
n extra closures
n shift entries, n exceptions
n goto entries
n entries saved by goto default
Optimizer space used: input n/15 000, output n/15 000
n table entries, n zero
Maximum spread: n, Maximum offset: n

The report of internal tables in the description file is left implementation-defined because all
aspects of these limits are also implementation-defined. Some implementations may use
dynamic allocation techniques and have no specific limit values to report.

The format of the y.output file is not given because specification of the format was not seen to
enhance applications portability. The listing is primarily intended to help human users
understand and debug the parser; use of y.output by a conforming application script would be
unusual. Furthermore, implementations have not produced consistent output and no popular
format was apparent. The format selected by the implementation should be human-readable, in
addition to the requirement that it be a text file.

Standard error reports are not specifically described because they are seldom of use to
conforming applications and there was no reason to restrict implementations.

Some implementations recognize "={" as equivalent to ’{’ because it appears in historical
documentation. This construction was recognized and documented as obsolete as long ago as
1978, in the referenced Yacc: Yet Another Compiler-Compiler. This volume of POSIX.1-2008 chose to
leave it as obsolete and omit it.

Multi-byte characters should be recognized by the lexical analyzer and returned as tokens. They
should not be returned as multi-byte character literals. The token error that is used for error
recovery is normally assigned the value 256 in the historical implementation. Thus, the token
value 256, which is used in many multi-byte character sets, is not available for use as the value
of a user-defined token.

FUTURE DIRECTIONS
None.

SEE ALSO
c99 , lex

XBD Chapter 8 (on page 173), Section 12.2 (on page 215)

CHANGE HISTORY
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Issue 6
This utility is marked as part of the C-Language Development Utilities option.

Minor changes have been added to align with the IEEE P1003.2b draft standard.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3403

114075

114076

114077

114078

114079

114080

114081

114082

114083

114084

114085

114086

114087

114088

114089

114090

114091

114092

114093

114094

114095

114096

114097

114098

114099

114100

114101

114102

114103

114104

114105

114106

114107

114108

114109

114110

114111

114112

114113

114114

114115

114116

114117

114118

114119

yacc Utilities

The normative text is reworded to avoid use of the term ‘‘must’’ for application requirements.

IEEE PASC Interpretation 1003.2 #177 is applied, changing the comment on RCURL from the }%
token to the %}.

Issue 7
Austin Group Interpretation 1003.1-2001 #190 is applied, clarifying the requirements for
generated code to conform to the ISO C standard.

Austin Group Interpretation 1003.1-2001 #191 is applied, clarifying the handling of C-language
trigraphs and curly brace preprocessing tokens.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax Guidelines does not
apply.

SD5-XCU-ERN-97 is applied, updating the SYNOPSIS.

3404 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

114120

114121

114122

114123

114124

114125

114126

114127

114128

114129

114130

Utilities zcat

NAME
zcat — expand and concatenate data

SYNOPSIS
XSI zcat [file...]

DESCRIPTION
The zcat utility shall write to standard output the uncompressed form of files that have been
compressed using the compress utility. It is the equivalent of uncompress −c. Input files are not
affected.

OPTIONS
None.

OPERANDS
The following operand shall be supported:

file The pathname of a file previously processed by the compress utility. If file already
has the .Z suffix specified, it is used as submitted. Otherwise, the .Z suffix is
appended to the filename prior to processing.

STDIN
The standard input shall be used only if no file operands are specified, or if a file operand is ’−’.

INPUT FILES
Input files shall be compressed files that are in the format produced by the compress utility.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of zcat:

LANG Provide a default value for the internationalization variables that are unset or null.
(See XBD Section 8.2 (on page 174) for the precedence of internationalization
variables used to determine the values of locale categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The compressed files given as input shall be written on standard output in their uncompressed
form.

STDERR
The standard error shall be used only for diagnostic messages.

Vol. 3: Shell and Utilities, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3405

114131

114132

114133

114134

114135

114136

114137

114138

114139

114140

114141

114142

114143

114144

114145

114146

114147

114148

114149

114150

114151

114152

114153

114154

114155

114156

114157

114158

114159

114160

114161

114162

114163

114164

114165

114166

114167

114168

114169

114170

zcat Utilities

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
compress , uncompress

XBD Chapter 8 (on page 173)

CHANGE HISTORY
First released in Issue 4.

3406 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 7

114171

114172

114173

114174

114175

114176

114177

114178

114179

114180

114181

114182

114183

114184

114185

114186

114187

114188

114189

114190

114191

114192

114193

Technical Standard

Vol. 4:

Rationale (Informative), Issue 7

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Vol. 4: Rationale (Informative), Issue 7Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3407

114194

114195

114196

114197

114198

3408 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved.Vol. 4: Rationale (Informative), Issue 7

Rationale (Informative)

Part A:

Base Definitions

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3409

114199

114200

114201

114202

114203

3410 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

Appendix A

Rationale for Base Definitions

A.1 Introduction

A.1.1 Scope

POSIX.1-2008 is one of a family of standards known as POSIX. The family of standards extends
to many topics; POSIX.1 consists of both operating system interfaces and shell and utilities.
POSIX.1-2008 is technically identical to The Open Group Base Specifications, Issue 7.

Scope of POSIX.1-2008

The (paraphrased) goals of this development were to revise the single document that is ISO/IEC
9945:2003 Parts 1 through 4, IEEE Std 1003.1, 2004 Edition, and the appropriate parts of The
Open Group Single UNIX Specification, Version 3. This work has been undertaken by the
Austin Group, a joint working group of IEEE, The Open Group, and ISO/IEC JTC 1/SC 22.

The following are the base documents in this version:

• IEEE Std 1003.1, 2004 Edition

• ISO/IEC 9899: 1999, Programming Languages — C, including ISO/IEC
9899: 1999/Cor.1: 2001(E), ISO/IEC 9899: 1999/Cor.2: 2004(E), and ISO/IEC
9899: 1999/Cor.3

• The Open Group Extended API Sets, Parts 1 through 4

This version has addressed the following areas:

• Issues raised by Austin Group defect reports, IEEE Interpretations against IEEE Std 1003.1,
and ISO/IEC defect reports against ISO/IEC 9945

The repository of interpretations can be accessed at www.opengroup.org/austin/interps.

• Issues raised in corrigenda for The Open Group Technical Standards and working group
resolutions from The Open Group

• Issues arising from ISO TR 24715: 2006, Conflicts between POSIX and the LSB

This is a Type 3 informative technical report highlighting differences between the LSB 3.1
and the 2004 Edition of this standard.

• Changes to make the text self-consistent with the additional material merged

The new material merged has come from the The Open Group Extended API Sets, Parts 1
through 4. A list of the new interfaces is included in Section B.1.1 (on page 3493).

• Features, marked legacy or obsolescent in the base documents, have been considered for
removal in this version

See Section B.1.1 (on page 3493) and Section C.1.1 (on page 3637).

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3411

114204

114205

114206

114207

114208

114209

114210

114211

114212

114213

114214

114215

114216

114217

114218

114219

114220

114221

114222

114223

114224

114225

114226

114227

114228

114229

114230

114231

114232

114233

114234

114235

114236

http://www.opengroup.org/austin/interps

Introduction Rationale for Base Definitions

• A review and reorganization of the options within the standard

This has included marking the following options obsolescent:

— Batch Environment Services and Utilities

— Tracing

— XSI STREAMS

The UUCP Utilities option is a new option for this version.

Functionality from the following former options is now mandatory in this version:

AIO _POSIX_ASYNCHRONOUS_IO (Asynchronous Input and Output)
BAR _POSIX_BARRIERS (Barriers)
CS _POSIX_CLOCK_SELECTION (Clock Selection)
MF _POSIX_MAPPED_FILES (Memory Mapped Files)
MPR _POSIX_MEMORY_PROTECTION (Memory Protection)
RTS _POSIX_REALTIME_SIGNALS (Realtime Signals Extension)
RWL _POSIX_READER_WRITER_LOCKS (Read-Write Locks)
SEM _POSIX_SEMAPHORES (Semaphores)
SPI _POSIX_SPIN_LOCKS (Spin Locks)
THR _POSIX_THREADS (Threads)
TMO _POSIX_TIMEOUTS (Timeouts)
TMR _POSIX_TIMERS (Timers)
TSF _POSIX_THREAD_SAFE_FUNCTIONS (Thread-Safe Functions)

• Alignment with the ISO/IEC 9899: 1999 standard, including ISO/IEC
9899: 1999/Cor.2: 2004(E)

• A review of the use of fixed path filenames within the standard

For example, the at, batch, and crontab utilities previously had a requirement for use of the
directory /usr/lib/cron.

The following were requirements on POSIX.1-2008:

• Backward-compatibility

For interfaces carried forward, it was agreed that there should be no breakage of
functionality in the existing base documents. All strictly conforming applications will be
conforming but not necessarily strictly conforming to the revised standard. The goal is for
system implementations to be able to support the existing and revised standards
simultaneously.

• Architecture and n-bit-neutral

The common standard should not make any implicit assumptions about the system
architecture or size of data types; for example, previously some 32-bit implicit assumptions
had crept into the standards.

• Extensibility

It should be possible to extend the common standard without breaking backwards-
compatibility; for example, the name space should be reserved and structured to avoid
duplication of names between the standard and extensions to it.

3412 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

114237

114238

114239

114240

114241

114242

114243

114244

114245

114246

114247

114248

114249

114250

114251

114252

114253

114254

114255

114256

114257

114258

114259

114260

114261

114262

114263

114264

114265

114266

114267

114268

114269

114270

114271

114272

114273

114274

114275

114276

Rationale for Base Definitions Introduction

POSIX.1 and the ISO C Standard

The standard developers believed it essential for a programmer to have a single complete
reference place, but recognized that deference to the formal standard has to be addressed for the
duplicate interface definitions between the ISO C standard and POSIX.1-2008.

Where an interface has a version in the ISO C standard, the DESCRIPTION section describes the
relationship to the ISO C standard and markings are included as appropriate to show where the
ISO C standard has been extended in the text.

A block of text is included at the start of each affected reference page stating whether the page is
aligned with the ISO C standard or extended. Each page has been parsed for additions beyond
the ISO C standard (that is, including both POSIX and UNIX extensions), and these extensions
are marked as CX extensions (for C extensions).

FIPS Requirements

The Federal Information Processing Standards (FIPS) are a series of US government
procurement standards managed and maintained on behalf of the US Department of Commerce
by the National Institute of Standards and Technology (NIST).

The following restrictions were integrated into IEEE Std 1003.1-2001. They originally came from
FIPS 151-2 which was withdrawn by NIST on February 25 2000.

• The implementation supports _POSIX_CHOWN_RESTRICTED.

• The limit {NGROUPS_MAX} is greater than or equal to 8.

• The implementation supports the setting of the group ID of a file (when it is created) to
that of the parent directory.

• The implementation supports _POSIX_SAVED_IDS.

• The implementation supports _POSIX_VDISABLE.

• The implementation supports _POSIX_JOB_CONTROL.

• The implementation supports _POSIX_NO_TRUNC.

• The read() function returns the number of bytes read when interrupted by a signal and
does not return −1.

• The write() function returns the number of bytes written when interrupted by a signal and
does not return −1.

• In the environment for the login shell, the environment variables LOGNAME and HOME
are defined and have the properties described in POSIX.1-2008.

• The value of {CHILD_MAX} is greater than or equal to 25.

• The value of {OPEN_MAX} is greater than or equal to 20.

• The implementation supports the functionality associated with the symbols CS7, CS8,
CSTOPB, PARODD, and PARENB defined in <termios.h>.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3413

114277

114278

114279

114280

114281

114282

114283

114284

114285

114286

114287

114288

114289

114290

114291

114292

114293

114294

114295

114296

114297

114298

114299

114300

114301

114302

114303

114304

114305

114306

114307

114308

114309

114310

114311

Introduction Rationale for Base Definitions

A.1.2 Conformance

See Section A.2 (on page 3417).

A.1.3 Normative References

There is no additional rationale provided for this section.

A.1.4 Change History

There is no additional rationale provided for this section.

A.1.5 Terminology

The meanings specified in POSIX.1-2008 for the words shall, should, and may are mandated by
ISO/IEC directives.

In the Rationale (Informative) volume of POSIX.1-2008, the words shall, should, and may are
sometimes used to illustrate similar usages in POSIX.1-2008. However, the rationale itself does
not specify anything regarding implementations or applications.

conformance document
As a practical matter, the conformance document is effectively part of the system
documentation. Conformance documents are distinguished by POSIX.1-2008 so that they
can be referred to distinctly.

implementation-defined
This definition is analogous to that of the ISO C standard and, together with ‘‘undefined’’
and ‘‘unspecified’’, provides a range of specification of freedom allowed to the interface
implementor.

may
The use of may has been limited as much as possible, due both to confusion stemming from
its ordinary English meaning and to objections regarding the desirability of having as few
options as possible and those as clearly specified as possible.

The usage of can and may were selected to contrast optional application behavior (can)
against optional implementation behavior (may).

shall
Declarative sentences are sometimes used in POSIX.1-2008 as if they included the word
shall, and facilities thus specified are no less required. For example, the two statements:

1. The foo() function shall return zero.

2. The foo() function returns zero.

are meant to be exactly equivalent.

should
In POSIX.1-2008, the word should does not usually apply to the implementation, but rather
to the application. Thus, the important words regarding implementations are shall, which
indicates requirements, and may, which indicates options.

3414 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

114312

114313

114314

114315

114316

114317

114318

114319

114320

114321

114322

114323

114324

114325

114326

114327

114328

114329

114330

114331

114332

114333

114334

114335

114336

114337

114338

114339

114340

114341

114342

114343

114344

114345

114346

114347

Rationale for Base Definitions Introduction

obsolescent
The term ‘‘obsolescent’’ means ‘‘do not use this feature in new applications’’. A feature
noted as obsolescent is supported by all implementations, but may be removed in a future
version; new applications should not use these features. The obsolescence concept is not an
ideal solution, but was used as a method of increasing consensus: many more objections
would be heard from the user community if some of these historical features were suddenly
removed without the grace period obsolescence implies. The phrase ‘‘may be removed in a
future version’’ implies that the result of that consideration might in fact keep those features
indefinitely if the predominance of applications do not migrate away from them quickly.

legacy
The term ‘‘legacy’’ was included in earlier versions of this standard but is no longer used in
the current version.

system documentation
The system documentation should normally describe the whole of the implementation,
including any extensions provided by the implementation. Such documents normally
contain information at least as detailed as the specifications in POSIX.1-2008. Few
requirements are made on the system documentation, but the term is needed to avoid a
dangling pointer where the conformance document is permitted to point to the system
documentation.

undefined
See implementation-defined.

unspecified
See implementation-defined.

The definitions for ‘‘unspecified’’ and ‘‘undefined’’ appear nearly identical at first
examination, but are not. The term ‘‘unspecified’’ means that a conforming application may
deal with the unspecified behavior, and it should not care what the outcome is. The term
‘‘undefined’’ says that a conforming application should not do it because no definition is
provided for what it does (and implicitly it would care what the outcome was if it tried it).
It is important to remember, however, that if the syntax permits the statement at all, it must
have some outcome in a real implementation.

Thus, the terms ‘‘undefined’’ and ‘‘unspecified’’ apply to the way the application should
think about the feature. In terms of the implementation, it is always ‘‘defined’’—there is
always some result, even if it is an error. The implementation is free to choose the behavior
it prefers.

This also implies that an implementation, or another standard, could specify or define the
result in a useful fashion. The terms apply to POSIX.1-2008 specifically.

The term ‘‘implementation-defined’’ implies requirements for documentation that are not
required for ‘‘undefined’’ (or ‘‘unspecified’’). Where there is no need for a conforming
program to know the definition, the term ‘‘undefined’’ is used, even though
‘‘implementation-defined’’ could also have been used in this context. There could be a
fourth term, specifying ‘‘this standard does not say what this does; it is acceptable to define
it in an implementation, but it does not need to be documented’’, and undefined would
then be used very rarely for the few things for which any definition is not useful. In
particular, implementation-defined is used where it is believed that certain classes of
application will need to know such details to determine whether the application can be
successfully ported to the implementation. Such applications are not always strictly
portable, but nevertheless are common and useful; often the requirements met by the
application cannot be met without dealing with the issues implied by ‘‘implementation-
defined’’. In some places the text refers to facilities supplied by the implementation that are

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3415

114348

114349

114350

114351

114352

114353

114354

114355

114356

114357

114358

114359

114360

114361

114362

114363

114364

114365

114366

114367

114368

114369

114370

114371

114372

114373

114374

114375

114376

114377

114378

114379

114380

114381

114382

114383

114384

114385

114386

114387

114388

114389

114390

114391

114392

114393

114394

114395

114396

Introduction Rationale for Base Definitions

outside the standard as implementation-supplied or implementation-provided. This is not
intended to imply a requirement for documentation. If it were, the term ‘‘implementation-
defined’’ would have been used.

In many places POSIX.1-2008 is silent about the behavior of some possible construct. For
example, a variable may be defined for a specified range of values and behaviors are
described for those values; nothing is said about what happens if the variable has any other
value. That kind of silence can imply an error in the standard, but it may also imply that the
standard was intentionally silent and that any behavior is permitted. There is a natural
tendency to infer that if the standard is silent, a behavior is prohibited. That is not the intent.
Silence is intended to be equivalent to the term ‘‘unspecified’’.

The term ‘‘application’’ is not defined in POSIX.1-2008; it is assumed to be a part of general
computer science terminology.

Three terms used within POSIX.1-2008 overlap in meaning: ‘‘macro’’, ‘‘symbolic name’’, and
‘‘symbolic constant’’.

macro
This usually describes a C preprocessor symbol, the result of the #define operator, with or
without an argument. It may also be used to describe similar mechanisms in editors and
text processors.

symbolic name
In earlier versions of this standard this was also sometimes used to refer to a C preprocessor
symbol (without arguments), but the intention is for all such uses to have been removed. It
is now mainly used to refer to the names for characters in character sets, but is sometimes
used to refer to host names and even filenames.

symbolic constant
This also refers to a C preprocessor symbol, with specific associated requirements. See the
definition in Section 3.372 (on page 93).

A.1.6 Definitions and Concepts

There is no additional rationale provided for this section.

A.1.7 Portability

To aid the identification of options within POSIX.1-2008, a notation consisting of margin codes
and shading is used. This is based on the notation used in earlier versions of The Open Group
Base specifications.

The benefit of this approach is a reduction in the number of if statements within the running
text, that makes the text easier to read, and also an identification to the programmer that they
need to ensure that their target platforms support the underlying options. For example, if
functionality is marked with RPP in the margin, it will be available on all systems supporting
the Robust Mutex Priority Protection option, but may not be available on some others.

3416 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

114397

114398

114399

114400

114401

114402

114403

114404

114405

114406

114407

114408

114409

114410

114411

114412

114413

114414

114415

114416

114417

114418

114419

114420

114421

114422

114423

114424

114425

114426

114427

114428

114429

114430

114431

114432

114433

Rationale for Base Definitions Introduction

A.1.7.1 Codes

This section includes codes for options defined in XBD Section 2.1.6 (on page 26), and the
following additional codes for other purposes:

CX This margin code is used to denote extensions beyond the ISO C standard. For
interfaces that are duplicated between POSIX.1-2008 and the ISO C standard, a CX
introduction block describes the nature of the duplication, with any extensions
appropriately CX marked and shaded.

Where an interface is added to an ISO C standard header, within the header the
interface has an appropriate margin marker and shading (for example, CX, XSI, TSF,
and so on) and the same marking appears on the reference page in the SYNOPSIS
section. This enables a programmer to easily identify that the interface is extending an
ISO C standard header.

MX This margin code is used to denote IEC 60559: 1989 standard floating-point extensions.

OB This margin code is used to denote obsolescent behavior and thus flag a possible future
applications portability warning.

OH The Single UNIX Specification has historically tried to reduce the number of headers an
application has had to include when using a particular interface. Sometimes this was
fewer than the base standard, and hence a notation is used to flag which headers are
optional if you are using a system supporting the XSI option.

A.1.7.2 Margin Code Notation

Since some features may depend on one or more options, or require more than one option, a
notation is used. Where a feature requires support of a single option, a single margin code will
occur in the margin. If it depends on two options and both are required, then the codes will
appear with a <space> separator. If either of two options are required, then a logical OR is
denoted using the ’|’ symbol. If more than two codes are used, a special notation is used.

A.2 Conformance

The terms ‘‘profile’’ and ‘‘profiling’’ are used throughout this section.

A profile of a standard or standards is a codified set of option selections, such that by being
conformant to a profile, particular classes of users are specifically supported.

A.2.1 Implementation Conformance

These definitions allow application developers to know what to depend on in an
implementation.

There is no definition of a ‘‘strictly conforming implementation’’; that would be an
implementation that provides only those facilities specified by POSIX.1 with no extensions
whatsoever. This is because no actual operating system implementation can exist without
system administration and initialization facilities that are beyond the scope of POSIX.1.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3417

114434

114435

114436

114437

114438

114439

114440

114441

114442

114443

114444

114445

114446

114447

114448

114449

114450

114451

114452

114453

114454

114455

114456

114457

114458

114459

114460

114461

114462

114463

114464

114465

114466

114467

114468

114469

Conformance Rationale for Base Definitions

A.2.1.1 Requirements

The word ‘‘support’’ is used in certain instances, rather than ‘‘provide’’, in order to allow an
implementation that has no resident software development facilities, but that supports the
execution of a Strictly Conforming POSIX.1 Application, to be a conforming implementation.

A.2.1.2 Documentation

The conformance documentation is required to use the same numbering scheme as POSIX.1 for
purposes of cross-referencing. All options that an implementation chooses are reflected in
<limits.h> and <unistd.h>.

Note that the use of ‘‘may’’ in terms of where conformance documents record where
implementations may vary, implies that it is not required to describe those features identified as
undefined or unspecified.

Other aspects of systems must be evaluated by purchasers for suitability. Many systems
incorporate buffering facilities, maintaining updated data in volatile storage and transferring
such updates to non-volatile storage asynchronously. Various exception conditions, such as a
power failure or a system crash, can cause this data to be lost. The data may be associated with a
file that is still open, with one that has been closed, with a directory, or with any other internal
system data structures associated with permanent storage. This data can be lost, in whole or
part, so that only careful inspection of file contents could determine that an update did not
occur.

Also, interrelated file activities, where multiple files and/or directories are updated, or where
space is allocated or released in the file system structures, can leave inconsistencies in the
relationship between data in the various files and directories, or in the file system itself. Such
inconsistencies can break applications that expect updates to occur in a specific sequence, so that
updates in one place correspond with related updates in another place.

For example, if a user creates a file, places information in the file, and then records this action in
another file, a system or power failure at this point followed by restart may result in a state in
which the record of the action is permanently recorded, but the file created (or some of its
information) has been lost. The consequences of this to the user may be undesirable. For a user
on such a system, the only safe action may be to require the system administrator to have a
policy that requires, after any system or power failure, that the entire file system must be
restored from the most recent backup copy (causing all intervening work to be lost).

The characteristics of each implementation will vary in this respect and may or may not meet
the requirements of a given application or user. Enforcement of such requirements is beyond the
scope of POSIX.1. It is up to the purchaser to determine what facilities are provided in an
implementation that affect the exposure to possible data or sequence loss, and also what
underlying implementation techniques and/or facilities are provided that reduce or limit such
loss or its consequences.

A.2.1.3 POSIX Conformance

This really means conformance to the base standard; however, since this document includes the
core material of the Single UNIX Specification, the standard developers decided that it was
appropriate to segment the conformance requirements into two, the former for the base
standard, and the latter for the Single UNIX Specification (denoted XSI Conformance).

Within POSIX.1 there are some symbolic constants that, if defined to a certain value or range of
values, indicate that a certain option is enabled. Other symbolic constants exist in POSIX.1 for
other reasons.

3418 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

114470

114471

114472

114473

114474

114475

114476

114477

114478

114479

114480

114481

114482

114483

114484

114485

114486

114487

114488

114489

114490

114491

114492

114493

114494

114495

114496

114497

114498

114499

114500

114501

114502

114503

114504

114505

114506

114507

114508

114509

114510

114511

114512

114513

114514

Rationale for Base Definitions Conformance

In this version, some features that were previously optional have been made mandatory. For
backwards compatibility, the symbolic constants associated with the option are still required
now with fixed allowable ranges or values. The following options from the previous version of
this standard are now mandatory:

_POSIX_ASYNCHRONOUS_IO
_POSIX_BARRIERS
_POSIX_CLOCK_SELECTION
_POSIX_MAPPED_FILES
_POSIX_MEMORY_PROTECTION
_POSIX_READER_WRITER_LOCKS
_POSIX_REALTIME_SIGNALS
_POSIX_SEMAPHORES
_POSIX_SPIN_LOCKS
_POSIX_THREAD_SAFE_FUNCTIONS
_POSIX_THREADS
_POSIX_TIMEOUTS
_POSIX_TIMERS

A POSIX-conformant system may support the XSI option required by the Single UNIX
Specification. This was intentional since the standard developers intend them to be upwards-
compatible, so that a system conforming to the Single UNIX Specification can also conform to
the base standard at the same time.

A.2.1.4 XSI Conformance

This section is included to describe the conformance requirements for the base volumes of the
Single UNIX Specification.

XSI conformance can be thought of as a profile, selecting certain options from POSIX.1-2008.

A.2.1.5 Option Groups

The concept of ‘‘Option Groups’’ is included to allow collections of related functions or options
to be grouped together. This has been used as follows: the ‘‘XSI Option Groups’’ have been
created to allow super-options, collections of underlying options and related functions, to be
collectively supported by XSI-conforming systems.

The standard developers considered the matter of subprofiling and decided it was better to
include an enabling mechanism rather than detailed normative requirements. A set of
subprofiling options was developed and included later in this volume of POSIX.1-2008 as an
informative illustration.

Subprofiling Considerations

The goal of not simultaneously fixing maximums and minimums was to allow implementations
of the base standard or standards to support multiple profiles without conflict.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3419

114515

114516

114517

114518

114519

114520

114521

114522

114523

114524

114525

114526

114527

114528

114529

114530

114531

114532

114533

114534

114535

114536

114537

114538

114539

114540

114541

114542

114543

114544

114545

114546

114547

114548

114549

114550

114551

Conformance Rationale for Base Definitions

The following summarizes the rules for the limit types:

Limit Fixed Minimum Maximum
Type Value Acceptable Value Acceptable Value

Standard Xs Ys Zs
Profile Xp = = Xs Yp >= Ys Zp <= Zs

(No change) (May increase the limit) (May decrease the limit)

The intent is that ranges specified by limits in profiles be entirely contained within the
corresponding ranges of the base standard or standards being profiled, and that the unlimited
end of a range in a base standard must remain unlimited in any profile of that standard.

Thus, the fixed _POSIX_* limits are constants and must not be changed by a profile. The variable
counterparts (typically without the leading _POSIX_) can be changed but still remain
semantically the same; that is, they still allow implementation values to vary as long as they
meet the requirements for that value (be it a minimum or maximum).

Where a profile does not provide a feature upon which a limit is based, the limit is not relevant.
Applications written to that profile should be written to operate independently of the value of
the limit.

An example which has previously allowed implementations to support both the base standard
and two other profiles in a compatible manner follows:

Base standard (POSIX.1-1996): _POSIX_CHILD_MAX 6
Base standard: CHILD_MAX minimum maximum _POSIX_CHILD_MAX

FIPS profile/SUSv2 CHILD_MAX 25 (minimum maximum)

Another example:

Base standard (POSIX.1-1996): _POSIX_NGROUPS_MAX 0
Base standard: NGROUPS_MAX minimum maximum _POSIX_NGROUP_MAX

FIPS profile/SUSv2 NGROUPS_MAX 8

A profile may lower a minimum maximum below the equivalent _POSIX value:

Base standard: _POSIX_foo_MAX Z
Base standard: foo_MAX _POSIX_foo_MAX

profile standard : foo_MAX X (X can be less than, equal to,
or greater than _POSIX_foo_MAX)

In this case an implementation conforming to the profile may not conform to the base standard,
but an implementation to the base standard will conform to the profile.

A.2.1.6 Options

The final subsections within Implementation Conformance list the core options within
POSIX.1-2008. This includes both options for the System Interfaces volume of POSIX.1-2008 and
the Shell and Utilities volume of POSIX.1-2008.

3420 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

114552

114553

114554

114555

114556

114557

114558

114559

114560

114561

114562

114563

114564

114565

114566

114567

114568

114569

114570

114571

114572

114573

114574

114575

114576

114577

114578

114579

114580

114581

114582

114583

114584

114585

114586

114587

Rationale for Base Definitions Conformance

A.2.2 Application Conformance

These definitions guide users or adapters of applications in determining on which
implementations an application will run and how much adaptation would be required to make
it run on others. These definitions are modeled after related ones in the ISO C standard.

POSIX.1 occasionally uses the expressions ‘‘portable application’’ or ‘‘conforming application’’.
As they are used, these are synonyms for any of these terms. The differences between the classes
of application conformance relate to the requirements for other standards, the options supported
(such as the XSI option) or, in the case of the Conforming POSIX.1 Application Using Extensions,
to implementation extensions. When one of the less explicit expressions is used, it should be
apparent from the context of the discussion which of the more explicit names is appropriate

A.2.2.1 Strictly Conforming POSIX Application

This definition is analogous to that of an ISO C standard ‘‘conforming program’’.

The major difference between a Strictly Conforming POSIX Application and an ISO C standard
strictly conforming program is that the latter is not allowed to use features of POSIX that are not
in the ISO C standard.

A.2.2.2 Conforming POSIX Application

Examples of <National Bodies> include ANSI, BSI, and AFNOR.

A.2.2.3 Conforming POSIX Application Using Extensions

Due to possible requirements for configuration or implementation characteristics in excess of the
specifications in <limits.h> or related to the hardware (such as array size or file space), not
every Conforming POSIX Application Using Extensions will run on every conforming
implementation.

A.2.2.4 Strictly Conforming XSI Application

This is intended to be upwards-compatible with the definition of a Strictly Conforming POSIX
Application, with the addition of the facilities and functionality included in the XSI option.

A.2.2.5 Conforming XSI Application Using Extensions

Such applications may use extensions beyond the facilities defined by POSIX.1-2008 including
the XSI option, but need to document the additional requirements.

A.2.3 Language-Dependent Services for the C Programming Language

POSIX.1 is, for historical reasons, both a specification of an operating system interface, shell and
utilities, and a C binding for that specification. Efforts had been previously undertaken to
generate a language-independent specification; however, that had failed, and the fact that the
ISO C standard is the de facto primary language on POSIX and the UNIX system makes this a
necessary and workable situation.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3421

114588

114589

114590

114591

114592

114593

114594

114595

114596

114597

114598

114599

114600

114601

114602

114603

114604

114605

114606

114607

114608

114609

114610

114611

114612

114613

114614

114615

114616

114617

114618

114619

114620

114621

Conformance Rationale for Base Definitions

A.2.4 Other Language-Related Specifications

There is no additional rationale provided for this section.

A.3 Definitions

The definitions in this section are stated so that they can be used as exact substitutes for the
terms in text. They should not contain requirements or cross-references to sections within
POSIX.1-2008; that is accomplished by using an informative note. In addition, the term should
not be included in its own definition. Where requirements or descriptions need to be addressed
but cannot be included in the definitions, due to not meeting the above criteria, these occur in
the General Concepts chapter.

In this version, the definitions have been reworked extensively to meet style requirements and to
include terms from the base documents (see the Scope).

Many of these definitions are necessarily circular, and some of the terms (such as ‘‘process’’) are
variants of basic computing science terms that are inherently hard to define. Where some
definitions are more conceptual and contain requirements, these appear in the General Concepts
chapter. Those listed in this section appear in an alphabetical glossary format of terms.

Some definitions must allow extension to cover terms or facilities that are not explicitly
mentioned in POSIX.1-2008. For example, the definition of ‘‘Extended Security Controls’’
permits implementations beyond those defined in POSIX.1-2008.

Some terms in the following list of notes do not appear in POSIX.1-2008; these are marked
suffixed with an asterisk (*). Many of them have been specifically excluded from POSIX.1-2008
because they concern system administration, implementation, or other issues that are not
specific to the programming interface. Those are marked with a reason, such as
‘‘implementation-defined’’.

Appropriate Privileges

One of the fundamental security problems with many historical UNIX systems has been that the
privilege mechanism is monolithic—a user has either no privileges or all privileges. Thus, a
successful ‘‘trojan horse’’ attack on a privileged process defeats all security provisions.
Therefore, POSIX.1 allows more granular privilege mechanisms to be defined. For many
historical implementations of the UNIX system, the presence of the term ‘‘appropriate
privileges’’ in POSIX.1 may be understood as a synonym for ‘‘superuser ’’ (UID 0). However,
other systems have emerged where this is not the case and each discrete controllable action has
appropriate privileges associated with it. Because this mechanism is implementation-defined, it
must be described in the conformance document. Although that description affects several parts
of POSIX.1 where the term ‘‘appropriate privilege’’ is used, because the term ‘‘implementation-
defined’’ only appears here, the description of the entire mechanism and its effects on these
other sections belongs in this equivalent section of the conformance document. This is especially
convenient for implementations with a single mechanism that applies in all areas, since it only
needs to be described once.

3422 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

114622

114623

114624

114625

114626

114627

114628

114629

114630

114631

114632

114633

114634

114635

114636

114637

114638

114639

114640

114641

114642

114643

114644

114645

114646

114647

114648

114649

114650

114651

114652

114653

114654

114655

114656

114657

114658

114659

Rationale for Base Definitions Definitions

Base Character*

The term ‘‘Base Character’’ has been removed, as it was felt that the use of this term within
POSIX.1-2008 was common usage English.

Byte

The restriction that a byte is now exactly eight bits was a conscious decision by the standard
developers. It came about due to a combination of factors, primarily the use of the type int8_t
within the networking functions and the alignment with the ISO/IEC 9899: 1999 standard,
where the intN_t types are now defined.

According to the ISO/IEC 9899: 1999 standard:

• The [u]intN_t types must be two’s complement with no padding bits and no illegal values.

• All types (apart from bit fields, which are not relevant here) must occupy an integral
number of bytes.

• If a type with width W occupies B bytes with C bits per byte (C is the value of
{CHAR_BIT}), then it has P padding bits where P+W=B∗C.

• Therefore, for int8_t P=0, W=8. Since B≥1, C≥8, the only solution is B=1, C=8.

The standard developers also felt that this was not an undue restriction for the current state-of-
the-art for this version of the standard, but recognize that if industry trends continue, a wider
character type may be required in the future.

Character

The term ‘‘character ’’ is used to mean a sequence of one or more bytes representing a single
graphic symbol. The deviation in the exact text of the ISO C standard definition for ‘‘byte’’ meets
the intent of the rationale of the ISO C standard also clears up the ambiguity raised by the term
‘‘basic execution character set’’. The octet-minimum requirement is a reflection of the
{CHAR_BIT} value.

Child Process

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/3 is applied, adding the vfork() function
to those listed.

Clock Tick

The ISO C standard defines a similar interval for use by the clock() function. There is no
requirement that these intervals be the same. In historical implementations these intervals are
different.

Command

The terms ‘‘command’’ and ‘‘utility’’ are related but have distinct meanings. Command is
defined as ‘‘a directive to a shell to perform a specific task’’. The directive can be in the form of a
single utility name (for example, ls), or the directive can take the form of a compound command
(for example, "ls | grep name | pr"). A utility is a program that can be called by name
from a shell. Issuing only the name of the utility to a shell is the equivalent of a one-word
command. A utility may be invoked as a separate program that executes in a different process
than the command language interpreter, or it may be implemented as a part of the command
language interpreter. For example, the echo command (the directive to perform a specific task)
may be implemented such that the echo utility (the logic that performs the task of echoing) is in a
separate program; therefore, it is executed in a process that is different from the command

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3423

114660

114661

114662

114663

114664

114665

114666

114667

114668

114669

114670

114671

114672

114673

114674

114675

114676

114677

114678

114679

114680

114681

114682

114683

114684

114685

114686

114687

114688

114689

114690

114691

114692

114693

114694

114695

114696

114697

114698

114699

114700

114701

Definitions Rationale for Base Definitions

language interpreter. Conversely, the logic that performs the echo utility could be built into the
command language interpreter; therefore, it could execute in the same process as the command
language interpreter.

The terms ‘‘tool’’ and ‘‘application’’ can be thought of as being synonymous with ‘‘utility’’ from
the perspective of the operating system kernel. Tools, applications, and utilities historically have
run, typically, in processes above the kernel level. Tools and utilities historically have been a part
of the operating system non-kernel code and have performed system-related functions, such as
listing directory contents, checking file systems, repairing file systems, or extracting system
status information. Applications have not generally been a part of the operating system, and
they perform non-system-related functions, such as word processing, architectural design,
mechanical design, workstation publishing, or financial analysis. Utilities have most frequently
been provided by the operating system distributor, applications by third-party software
distributors, or by the users themselves. Nevertheless, POSIX.1-2008 does not differentiate
between tools, utilities, and applications when it comes to receiving services from the system, a
shell, or the standard utilities. (For example, the xargs utility invokes another utility; it would be
of fairly limited usefulness if the users could not run their own applications in place of the
standard utilities.) Utilities are not applications in the sense that they are not themselves subject
to the restrictions of POSIX.1-2008 or any other standard—there is no requirement for grep, stty,
or any of the utilities defined here to be any of the classes of conforming applications.

Column Positions

In most 1-byte character sets, such as ASCII, the concept of column positions is identical to
character positions and to bytes. Therefore, it has been historically acceptable for some
implementations to describe line folding or tab stops or table column alignment in terms of
bytes or character positions. Other character sets pose complications, as they can have internal
representations longer than one octet and they can have display characters that have different
widths on the terminal screen or printer.

In POSIX.1-2008 the term ‘‘column positions’’ has been defined to mean character—not byte—
positions in input files (such as ‘‘column position 7 of the FORTRAN input’’). Output files
describe the column position in terms of the display width of the narrowest printable character
in the character set, adjusted to fit the characteristics of the output device. It is very possible that
n column positions will not be able to hold n characters in some character sets, unless all of those
characters are of the narrowest width. It is assumed that the implementation is aware of the
width of the various characters, deriving this information from the value of LC_CTYPE, and
thus can determine how many column positions to allot for each character in those utilities
where it is important.

The term ‘‘column position’’ was used instead of the more natural ‘‘column’’ because the latter is
frequently used in the different contexts of columns of figures, columns of table values, and so
on. Wherever confusion might result, these latter types of columns are referred to as ‘‘text
columns’’.

Controlling Terminal

The question of which of possibly several special files referring to the terminal is meant is not
addressed in POSIX.1. The filename /dev/tty is a synonym for the controlling terminal associated
with a process.

3424 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

114702

114703

114704

114705

114706

114707

114708

114709

114710

114711

114712

114713

114714

114715

114716

114717

114718

114719

114720

114721

114722

114723

114724

114725

114726

114727

114728

114729

114730

114731

114732

114733

114734

114735

114736

114737

114738

114739

114740

114741

114742

114743

114744

Rationale for Base Definitions Definitions

Device Number*

The concept is handled in stat() as ID of device.

Direct I/O

Historically, direct I/O refers to the system bypassing intermediate buffering, but may be
extended to cover implementation-defined optimizations.

Directory

The format of the directory file is implementation-defined and differs radically between
System V and 4.3 BSD. However, routines (derived from 4.3 BSD) for accessing directories and
certain constraints on the format of the information returned by those routines are described in
the <dirent.h> header.

Directory Entry

Throughout POSIX.1-2008, the term ‘‘link’’ is used (about the link() function, for example) in
describing the objects that point to files from directories.

Display

The Shell and Utilities volume of POSIX.1-2008 assigns precise requirements for the terms
‘‘display’’ and ‘‘write’’. Some historical systems have chosen to implement certain utilities
without using the traditional file descriptor model. For example, the vi editor might employ
direct screen memory updates on a personal computer, rather than a write() system call. An
instance of user prompting might appear in a dialog box, rather than with standard error. When
the Shell and Utilities volume of POSIX.1-2008 uses the term ‘‘display’’, the method of
outputting to the terminal is unspecified; many historical implementations use termcap or
terminfo, but this is not a requirement. The term ‘‘write’’ is used when the Shell and Utilities
volume of POSIX.1-2008 mandates that a file descriptor be used and that the output can be
redirected. However, it is assumed that when the writing is directly to the terminal (it has not
been redirected elsewhere), there is no practical way for a user or test suite to determine whether
a file descriptor is being used. Therefore, the use of a file descriptor is mandated only for the
redirection case and the implementation is free to use any method when the output is not
redirected. The verb write is used almost exclusively, with the very few exceptions of those
utilities where output redirection need not be supported: tabs, talk, tput, and vi.

Dot

The symbolic name dot is carefully used in POSIX.1 to distinguish the working directory
filename from a period or a decimal point.

Dot-Dot

Historical implementations permit the use of these filenames without their special meanings.
Such use precludes any meaningful use of these filenames by a Conforming POSIX.1
Application. Therefore, such use is considered an extension, the use of which makes an
implementation non-conforming; see also Section A.4.12 (on page 3449).

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3425

114745

114746

114747

114748

114749

114750

114751

114752

114753

114754

114755

114756

114757

114758

114759

114760

114761

114762

114763

114764

114765

114766

114767

114768

114769

114770

114771

114772

114773

114774

114775

114776

114777

114778

114779

114780

114781

Definitions Rationale for Base Definitions

Epoch

Historically, the origin of UNIX system time was referred to as ‘‘00:00:00 GMT, January 1, 1970’’.
Greenwich Mean Time is actually not a term acknowledged by the international standards
community; therefore, this term, ‘‘Epoch’’, is used to abbreviate the reference to the actual
standard, Coordinated Universal Time.

FIFO Special File

See Pipe (on page 3433).

File

It is permissible for an implementation-defined file type to be non-readable or non-writable.

File Classes

These classes correspond to the historical sets of permission bits. The classes are general to
allow implementations flexibility in expanding the access mechanism for more stringent security
environments. Note that a process is in one and only one class, so there is no ambiguity.

Filename

At the present time, the primary responsibility for truncating filenames containing multi-byte
characters must reside with the application. Some industry groups involved in
internationalization believe that in the future the responsibility must reside with the kernel. For
the moment, a clearer understanding of the implications of making the kernel responsible for
truncation of multi-byte filenames is needed.

Character-level truncation was not adopted because there is no support in POSIX.1 that advises
how the kernel distinguishes between single and multi-byte characters. Until that time, it must
be incumbent upon application developers to determine where multi-byte characters must be
truncated.

File System

Historically, the meaning of this term has been overloaded with two meanings: that of the
complete file hierarchy, and that of a mountable subset of that hierarchy; that is, a mounted file
system. POSIX.1 uses the term ‘‘file system’’ in the second sense, except that it is limited to the
scope of a process (and root directory of a process). This usage also clarifies the domain in which
a file serial number is unique.

Graphic Character

This definition is made available for those definitions (in particular, TZ) which must exclude
control characters.

Group Database

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/4 is applied, removing the words ‘‘of
implementation-defined format’’. See User Database (on page 3442).

3426 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

114782

114783

114784

114785

114786

114787

114788

114789

114790

114791

114792

114793

114794

114795

114796

114797

114798

114799

114800

114801

114802

114803

114804

114805

114806

114807

114808

114809

114810

114811

114812

114813

114814

114815

114816

Rationale for Base Definitions Definitions

Group File*

Implementation-defined; see User Database (on page 3442).

Historical Implementations*

This refers to previously existing implementations of programming interfaces and operating
systems that are related to the interface specified by POSIX.1.

Hosted Implementation*

This refers to a POSIX.1 implementation that is accomplished through interfaces from the
POSIX.1 services to some alternate form of operating system kernel services. Note that the line
between a hosted implementation and a native implementation is blurred, since most
implementations will provide some services directly from the kernel and others through some
indirect path. (For example, fopen() might use open(); or mkfifo() might use mknod().) There is
no necessary relationship between the type of implementation and its correctness, performance,
and/or reliability.

Implementation*

This term is generally used instead of its synonym, ‘‘system’’, to emphasize the consequences of
decisions to be made by system implementors. Perhaps if no options or extensions to POSIX.1
were allowed, this usage would not have occurred.

The term ‘‘specific implementation’’ is sometimes used as a synonym for ‘‘implementation’’.
This should not be interpreted too narrowly; both terms can represent a relatively broad group
of systems. For example, a hardware vendor could market a very wide selection of systems that
all used the same instruction set, with some systems desktop models and others large multi-user
minicomputers. This wide range would probably share a common POSIX.1 operating system,
allowing an application compiled for one to be used on any of the others; this is a [specific]
implementation. However, such a wide range of machines probably has some differences
between the models. Some may have different clock rates, different file systems, different
resource limits, different network connections, and so on, depending on their sizes or intended
usages. Even on two identical machines, the system administrators may configure them
differently. Each of these different systems is known by the term ‘‘a specific instance of a specific
implementation’’. This term is only used in the portions of POSIX.1 dealing with runtime
queries: sysconf() and pathconf().

Incomplete Pathname*

Absolute pathname has been adequately defined.

Job Control

In order to understand the job control facilities in POSIX.1 it is useful to understand how they
are used by a job control-cognizant shell to create the user interface effect of job control.

While the job control facilities supplied by POSIX.1 can, in theory, support different types of
interactive job control interfaces supplied by different types of shells, there was historically one
particular interface that was most common when the standard was originally developed
(provided by BSD C Shell).

This discussion describes that interface as a means of illustrating how the POSIX.1 job control
facilities can be used.

Job control allows users to selectively stop (suspend) the execution of processes and continue
(resume) their execution at a later point. The user typically employs this facility via the

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3427

114817

114818

114819

114820

114821

114822

114823

114824

114825

114826

114827

114828

114829

114830

114831

114832

114833

114834

114835

114836

114837

114838

114839

114840

114841

114842

114843

114844

114845

114846

114847

114848

114849

114850

114851

114852

114853

114854

114855

114856

114857

114858

114859

Definitions Rationale for Base Definitions

interactive interface jointly supplied by the terminal I/O driver and a command interpreter
(shell).

The user can launch jobs (command pipelines) in either the foreground or background. When
launched in the foreground, the shell waits for the job to complete before prompting for
additional commands. When launched in the background, the shell does not wait, but
immediately prompts for new commands.

If the user launches a job in the foreground and subsequently regrets this, the user can type the
suspend character (typically set to <control>-Z), which causes the foreground job to stop and the
shell to begin prompting for new commands. The stopped job can be continued by the user (via
special shell commands) either as a foreground job or as a background job. Background jobs can
also be moved into the foreground via shell commands.

If a background job attempts to access the login terminal (controlling terminal), it is stopped by
the terminal driver and the shell is notified, which, in turn, notifies the user. (Terminal access
includes read() and certain terminal control functions, and conditionally includes write().) The
user can continue the stopped job in the foreground, thus allowing the terminal access to
succeed in an orderly fashion. After the terminal access succeeds, the user can optionally move
the job into the background via the suspend character and shell commands.

Implementing Job Control Shells

The interactive interface described previously can be accomplished using the POSIX.1 job
control facilities in the following way.

The key feature necessary to provide job control is a way to group processes into jobs. This
grouping is necessary in order to direct signals to a single job and also to identify which job is in
the foreground. (There is at most one job that is in the foreground on any controlling terminal at
a time.)

The concept of process groups is used to provide this grouping. The shell places each job in a
separate process group via the setpgid() function. To do this, the setpgid() function is invoked by
the shell for each process in the job. It is actually useful to invoke setpgid() twice for each
process: once in the child process, after calling fork() to create the process, but before calling one
of the exec family of functions to begin execution of the program, and once in the parent shell
process, after calling fork() to create the child. The redundant invocation avoids a race condition
by ensuring that the child process is placed into the new process group before either the parent
or the child relies on this being the case. The process group ID for the job is selected by the shell
to be equal to the process ID of one of the processes in the job. Some shells choose to make one
process in the job be the parent of the other processes in the job (if any). Other shells (for
example, the C Shell) choose to make themselves the parent of all processes in the pipeline (job).
In order to support this latter case, the setpgid() function accepts a process group ID parameter
since the correct process group ID cannot be inherited from the shell. The shell itself is
considered to be a job and is the sole process in its own process group.

The shell also controls which job is currently in the foreground. A foreground and background
job differ in two ways: the shell waits for a foreground command to complete (or stop) before
continuing to read new commands, and the terminal I/O driver inhibits terminal access by
background jobs (causing the processes to stop). Thus, the shell must work cooperatively with
the terminal I/O driver and have a common understanding of which job is currently in the
foreground. It is the user who decides which command should be currently in the foreground,
and the user informs the shell via shell commands. The shell, in turn, informs the terminal I/O
driver via the tcsetpgrp() function. This indicates to the terminal I/O driver the process group ID
of the foreground process group (job). When the current foreground job either stops or
terminates, the shell places itself in the foreground via tcsetpgrp() before prompting for
additional commands. Note that when a job is created the new process group begins as a

3428 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

114860

114861

114862

114863

114864

114865

114866

114867

114868

114869

114870

114871

114872

114873

114874

114875

114876

114877

114878

114879

114880

114881

114882

114883

114884

114885

114886

114887

114888

114889

114890

114891

114892

114893

114894

114895

114896

114897

114898

114899

114900

114901

114902

114903

114904

114905

114906

114907

114908

Rationale for Base Definitions Definitions

background process group. It requires an explicit act of the shell via tcsetpgrp() to move a
process group (job) into the foreground.

When a process in a job stops or terminates, its parent (for example, the shell) receives
synchronous notification by calling the waitpid() function with the WUNTRACED flag set.
Asynchronous notification is also provided when the parent establishes a signal handler for
SIGCHLD and does not specify the SA_NOCLDSTOP flag. Usually all processes in a job stop as
a unit since the terminal I/O driver always sends job control stop signals to all processes in the
process group.

To continue a stopped job, the shell sends the SIGCONT signal to the process group of the job. In
addition, if the job is being continued in the foreground, the shell invokes tcsetpgrp() to place the
job in the foreground before sending SIGCONT. Otherwise, the shell leaves itself in the
foreground and reads additional commands.

There is additional flexibility in the POSIX.1 job control facilities that allows deviations from the
typical interface. Clearing the TOSTOP terminal flag allows background jobs to perform write()
functions without stopping. The same effect can be achieved on a per-process basis by having a
process set the signal action for SIGTTOU to SIG_IGN.

Note that the terms ‘‘job’’ and ‘‘process group’’ can be used interchangeably. A login session that
is not using the job control facilities can be thought of as a large collection of processes that are
all in the same job (process group). Such a login session may have a partial distinction between
foreground and background processes; that is, the shell may choose to wait for some processes
before continuing to read new commands and may not wait for other processes. However, the
terminal I/O driver will consider all these processes to be in the foreground since they are all
members of the same process group.

In addition to the basic job control operations already mentioned, a job control-cognizant shell
needs to perform the following actions.

When a foreground (not background) job stops, the shell must sample and remember the current
terminal settings so that it can restore them later when it continues the stopped job in the
foreground (via the tcgetattr() and tcsetattr() functions).

Because a shell itself can be spawned from a shell, it must take special action to ensure that
subshells interact well with their parent shells.

A subshell can be spawned to perform an interactive function (prompting the terminal for
commands) or a non-interactive function (reading commands from a file). When operating non-
interactively, the job control shell will refrain from performing the job control-specific actions
described above. It will behave as a shell that does not support job control. For example, all jobs
will be left in the same process group as the shell, which itself remains in the process group
established for it by its parent. This allows the shell and its children to be treated as a single job
by a parent shell, and they can be affected as a unit by terminal keyboard signals.

An interactive subshell can be spawned from another job control-cognizant shell in either the
foreground or background. (For example, from the C Shell, the user can execute the command,
csh &.) Before the subshell activates job control by calling setpgid() to place itself in its own
process group and tcsetpgrp() to place its new process group in the foreground, it needs to
ensure that it has already been placed in the foreground by its parent. (Otherwise, there could
be multiple job control shells that simultaneously attempt to control mediation of the terminal.)
To determine this, the shell retrieves its own process group via getpgrp() and the process group
of the current foreground job via tcgetpgrp(). If these are not equal, the shell sends SIGTTIN to
its own process group, causing itself to stop. When continued later by its parent, the shell
repeats the process group check. When the process groups finally match, the shell is in the
foreground and it can proceed to take control. After this point, the shell ignores all the job

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3429

114909

114910

114911

114912

114913

114914

114915

114916

114917

114918

114919

114920

114921

114922

114923

114924

114925

114926

114927

114928

114929

114930

114931

114932

114933

114934

114935

114936

114937

114938

114939

114940

114941

114942

114943

114944

114945

114946

114947

114948

114949

114950

114951

114952

114953

114954

114955

114956

Definitions Rationale for Base Definitions

control stop signals so that it does not inadvertently stop itself.

Implementing Job Control Applications

Most applications do not need to be aware of job control signals and operations; the intuitively
correct behavior happens by default. However, sometimes an application can inadvertently
interfere with normal job control processing, or an application may choose to overtly effect job
control in cooperation with normal shell procedures.

An application can inadvertently subvert job control processing by ‘‘blindly’’ altering the
handling of signals. A common application error is to learn how many signals the system
supports and to ignore or catch them all. Such an application makes the assumption that it does
not know what this signal is, but knows the right handling action for it. The system may
initialize the handling of job control stop signals so that they are being ignored. This allows
shells that do not support job control to inherit and propagate these settings and hence to be
immune to stop signals. A job control shell will set the handling to the default action and
propagate this, allowing processes to stop. In doing so, the job control shell is taking
responsibility for restarting the stopped applications. If an application wishes to catch the stop
signals itself, it should first determine their inherited handling states. If a stop signal is being
ignored, the application should continue to ignore it. This is directly analogous to the
recommended handling of SIGINT described in the referenced UNIX Programmer ’s Manual.

If an application is reading the terminal and has disabled the interpretation of special characters
(by clearing the ISIG flag), the terminal I/O driver will not send SIGTSTP when the suspend
character is typed. Such an application can simulate the effect of the suspend character by
recognizing it and sending SIGTSTP to its process group as the terminal driver would have
done. Note that the signal is sent to the process group, not just to the application itself; this
ensures that other processes in the job also stop. (Note also that other processes in the job could
be children, siblings, or even ancestors.) Applications should not assume that the suspend
character is <control>-Z (or any particular value); they should retrieve the current setting at
startup.

Implementing Job Control Systems

The intent in adding 4.2 BSD-style job control functionality was to adopt the necessary 4.2 BSD
programmatic interface with only minimal changes to resolve syntactic or semantic conflicts
with System V or to close recognized security holes. The goal was to maximize the ease of
providing both conforming implementations and Conforming POSIX.1 Applications.

It is only useful for a process to be affected by job control signals if it is the descendant of a job
control shell. Otherwise, there will be nothing that continues the stopped process.

POSIX.1 does not specify how controlling terminal access is affected by a user logging out (that
is, by a controlling process terminating). 4.2 BSD uses the vhangup() function to prevent any
access to the controlling terminal through file descriptors opened prior to logout. System V does
not prevent controlling terminal access through file descriptors opened prior to logout (except
for the case of the special file, /dev/tty). Some implementations choose to make processes
immune from job control after logout (that is, such processes are always treated as if in the
foreground); other implementations continue to enforce foreground/background checks after
logout. Therefore, a Conforming POSIX.1 Application should not attempt to access the
controlling terminal after logout since such access is unreliable. If an implementation chooses to
deny access to a controlling terminal after its controlling process exits, POSIX.1 requires a certain
type of behavior (see Controlling Terminal, on page 3424).

3430 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

114957

114958

114959

114960

114961

114962

114963

114964

114965

114966

114967

114968

114969

114970

114971

114972

114973

114974

114975

114976

114977

114978

114979

114980

114981

114982

114983

114984

114985

114986

114987

114988

114989

114990

114991

114992

114993

114994

114995

114996

114997

114998

114999

115000

115001

Rationale for Base Definitions Definitions

Kernel*

See System Call* (on page 3440).

Library Routine*

See System Call* (on page 3440).

Logical Device*

Implementation-defined.

Map

The definition of map is included to clarify the usage of mapped pages in the description of the
behavior of process memory locking.

Memory-Resident

The term ‘‘memory-resident’’ is historically understood to mean that the so-called resident pages
are actually present in the physical memory of the computer system and are immune from
swapping, paging, copy-on-write faults, and so on. This is the actual intent of POSIX.1-2008 in
the process memory locking section for implementations where this is logical. But for some
implementations—primarily mainframes—actually locking pages into primary storage is not
advantageous to other system objectives, such as maximizing throughput. For such
implementations, memory locking is a ‘‘hint’’ to the implementation that the application wishes
to avoid situations that would cause long latencies in accessing memory. Furthermore, there are
other implementation-defined issues with minimizing memory access latencies that ‘‘memory
residency’’ does not address—such as MMU reload faults. The definition attempts to
accommodate various implementations while allowing conforming applications to specify to the
implementation that they want or need the best memory access times that the implementation
can provide.

Memory Object*

The term ‘‘memory object’’ usually implies shared memory. If the object is the same as a
filename in the file system name space of the implementation, it is expected that the data written
into the memory object be preserved on disk. A memory object may also apply to a physical
device on an implementation. In this case, writes to the memory object are sent to the controller
for the device and reads result in control registers being returned.

Mount Point*

The directory on which a ‘‘mounted file system’’ is mounted. This term, like mount() and
umount(), was not included because it was implementation-defined.

Mounted File System*

See File System (on page 3426).

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3431

115002

115003

115004

115005

115006

115007

115008

115009

115010

115011

115012

115013

115014

115015

115016

115017

115018

115019

115020

115021

115022

115023

115024

115025

115026

115027

115028

115029

115030

115031

115032

115033

115034

115035

Definitions Rationale for Base Definitions

Name

There are no explicit limits in POSIX.1-2008 on the sizes of names, words (see the definition of
word in the Base Definitions volume of POSIX.1-2008), lines, or other objects. However, other
implicit limits do apply: shell script lines produced by many of the standard utilities cannot
exceed {LINE_MAX} and the sum of exported variables comes under the {ARG_MAX} limit.
Historical shells dynamically allocate memory for names and words and parse incoming lines a
character at a time. Lines cannot have an arbitrary {LINE_MAX} limit because of historical
practice, such as makefiles, where make removes the <newline> characters associated with the
commands for a target and presents the shell with one very long line. The text on INPUT FILES
in XCU Section 1.4 (on page 2288) does allow a shell to run out of memory, but it cannot have
arbitrary programming limits.

Native Implementation*

This refers to an implementation of POSIX.1 that interfaces directly to an operating system
kernel; see also hosted implementation. A similar concept is a native UNIX system, which would
be a kernel derived from one of the original UNIX system products.

Nice Value

This definition is not intended to suggest that all processes in a system have priorities that are
comparable. Scheduling policy extensions, such as adding realtime priorities, make the notion of
a single underlying priority for all scheduling policies problematic. Some implementations may
implement the features related to nice to affect all processes on the system, others to affect just
the general time-sharing activities implied by POSIX.1-2008, and others may have no effect at all.
Because of the use of ‘‘implementation-defined’’ in nice and renice, a wide range of
implementation strategies is possible.

Open File Description

An ‘‘open file description’’, as it is currently named, describes how a file is being accessed. What
is currently called a ‘‘file descriptor’’ is actually just an identifier or ‘‘handle’’; it does not
actually describe anything.

The following alternate names were discussed:

• For ‘‘open file description’’:
‘‘open instance’’, ‘‘file access description’’, ‘‘open file information’’, and ‘‘file access
information’’.

• For ‘‘file descriptor’’:
‘‘file handle’’, ‘‘file number’’ (cf., fileno()). Some historical implementations use the term
‘‘file table entry’’.

Orphaned Process Group

Historical implementations have a concept of an orphaned process, which is a process whose
parent process has exited. When job control is in use, it is necessary to prevent processes from
being stopped in response to interactions with the terminal after they no longer are controlled by
a job control-cognizant program. Because signals generated by the terminal are sent to a process
group and not to individual processes, and because a signal may be provoked by a process that
is not orphaned, but sent to another process that is orphaned, it is necessary to define an
orphaned process group. The definition assumes that a process group will be manipulated as a
group and that the job control-cognizant process controlling the group is outside of the group
and is the parent of at least one process in the group (so that state changes may be reported via
waitpid()). Therefore, a group is considered to be controlled as long as at least one process in the

3432 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

115036

115037

115038

115039

115040

115041

115042

115043

115044

115045

115046

115047

115048

115049

115050

115051

115052

115053

115054

115055

115056

115057

115058

115059

115060

115061

115062

115063

115064

115065

115066

115067

115068

115069

115070

115071

115072

115073

115074

115075

115076

115077

115078

115079

115080

Rationale for Base Definitions Definitions

group has a parent that is outside of the process group, but within the session.

This definition of orphaned process groups ensures that a session leader’s process group is
always considered to be orphaned, and thus it is prevented from stopping in response to
terminal signals.

Page

The term ‘‘page’’ is defined to support the description of the behavior of memory mapping for
shared memory and memory mapped files, and the description of the behavior of process
memory locking. It is not intended to imply that shared memory/file mapping and memory
locking are applicable only to ‘‘paged’’ architectures. For the purposes of POSIX.1-2008,
whatever the granularity on which an architecture supports mapping or locking, this is
considered to be a ‘‘page’’ . If an architecture cannot support the memory mapping or locking
functions specified by POSIX.1-2008 on any granularity, then these options will not be
implemented on the architecture.

Passwd File*

Implementation-defined; see User Database (on page 3442).

Parent Directory

There may be more than one directory entry pointing to a given directory in some
implementations. The wording here identifies that exactly one of those is the parent directory. In
pathname resolution, dot-dot is identified as the way that the unique directory is identified.
(That is, the parent directory is the one to which dot-dot points.) In the case of a remote file
system, if the same file system is mounted several times, it would appear as if they were distinct
file systems (with interesting synchronization properties).

Pipe

It proved convenient to define a pipe as a special case of a FIFO, even though historically the
latter was not introduced until System III and does not exist at all in 4.3 BSD.

Portable Filename Character Set

The encoding of this character set is not specified—specifically, ASCII is not required. But the
implementation must provide a unique character code for each of the printable graphics
specified by POSIX.1; see also Section A.4.6 (on page 3445).

Situations where characters beyond the portable filename character set (or historically ASCII or
the ISO/IEC 646: 1991 standard) would be used (in a context where the portable filename
character set or the ISO/IEC 646: 1991 standard is required by POSIX.1) are expected to be
common. Although such a situation renders the use technically non-compliant, mutual
agreement among the users of an extended character set will make such use portable between
those users. Such a mutual agreement could be formalized as an optional extension to POSIX.1.
(Making it required would eliminate too many possible systems, as even those systems using the
ISO/IEC 646: 1991 standard as a base character set extend their character sets for Western
Europe and the rest of the world in different ways.)

Nothing in POSIX.1 is intended to preclude the use of extended characters where interchange is
not required or where mutual agreement is obtained. It has been suggested that in several places
‘‘should’’ be used instead of ‘‘shall’’. Because (in the worst case) use of any character beyond the
portable filename character set would render the program or data not portable to all possible
systems, no extensions are permitted in this context.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3433

115081

115082

115083

115084

115085

115086

115087

115088

115089

115090

115091

115092

115093

115094

115095

115096

115097

115098

115099

115100

115101

115102

115103

115104

115105

115106

115107

115108

115109

115110

115111

115112

115113

115114

115115

115116

115117

115118

115119

115120

115121

115122

115123

Definitions Rationale for Base Definitions

Process Lifetime

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/5 is applied, adding fork(), posix_spawn(),
posix_spawnp(), and vfork() to the list of functions.

Process Termination

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/6 is applied, rewording the definition to
address the ‘‘passive exit’’ on termination of the last thread or the _Exit() function.

Regular File

POSIX.1 does not intend to preclude the addition of structuring data (for example, record
lengths) in the file, as long as such data is not visible to an application that uses the features
described in POSIX.1.

Root Directory

This definition permits the operation of chroot(), even though that function is not in POSIX.1; see
also Section A.4.5 (on page 3444).

Root File System*

Implementation-defined.

Root of a File System*

Implementation-defined; see Mount Point* (on page 3431).

Signal

The definition implies a double meaning for the term. Although a signal is an event, common
usage implies that a signal is an identifier of the class of event.

Superuser*

This concept, with great historical significance to UNIX system users, has been replaced with the
notion of appropriate privileges.

Supplementary Group ID

The POSIX.1-1990 standard is inconsistent in its treatment of supplementary groups. The
definition of supplementary group ID explicitly permits the effective group ID to be included in
the set, but wording in the description of the setuid() and setgid() functions states: ‘‘Any
supplementary group IDs of the calling process remain unchanged by these function calls’’. In
the case of setgid() this contradicts that definition. In addition, some felt that the unspecified
behavior in the definition of supplementary group IDs adds unnecessary portability problems.
The standard developers considered several solutions to this problem:

1. Reword the description of setgid() to permit it to change the supplementary group IDs to
reflect the new effective group ID. A problem with this is that it adds more ‘‘may’’s to the
wording and does not address the portability problems of this optional behavior.

2. Mandate the inclusion of the effective group ID in the supplementary set (giving
{NGROUPS_MAX} a minimum value of 1). This is the behavior of 4.4 BSD. In that
system, the effective group ID is the first element of the array of supplementary group
IDs (there is no separate copy stored, and changes to the effective group ID are made only
in the supplementary group set). By convention, the initial value of the effective group ID

3434 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

115124

115125

115126

115127

115128

115129

115130

115131

115132

115133

115134

115135

115136

115137

115138

115139

115140

115141

115142

115143

115144

115145

115146

115147

115148

115149

115150

115151

115152

115153

115154

115155

115156

115157

115158

115159

115160

115161

115162

Rationale for Base Definitions Definitions

is duplicated elsewhere in the array so that the initial value is not lost when executing a
set-group-ID program.

3. Change the definition of supplementary group ID to exclude the effective group ID and
specify that the effective group ID does not change the set of supplementary group IDs.
This is the behavior of 4.2 BSD, 4.3 BSD, and System V Release 4.

4. Change the definition of supplementary group ID to exclude the effective group ID, and
require that getgroups() return the union of the effective group ID and the supplementary
group IDs.

5. Change the definition of {NGROUPS_MAX} to be one more than the number of
supplementary group IDs, so it continues to be the number of values returned by
getgroups() and existing applications continue to work. This alternative is effectively the
same as the second (and might actually have the same implementation).

The standard developers decided to permit either 2 or 3. The effective group ID is orthogonal to
the set of supplementary group IDs, and it is implementation-defined whether getgroups()
returns this. If the effective group ID is returned with the set of supplementary group IDs, then
all changes to the effective group ID affect the supplementary group set returned by getgroups().
It is permissible to eliminate duplicates from the list returned by getgroups(). However, if a
group ID is contained in the set of supplementary group IDs, setting the group ID to that value
and then to a different value should not remove that value from the supplementary group IDs.

The definition of supplementary group IDs has been changed to not include the effective group
ID. This simplifies permanent rationale and makes the relevant functions easier to understand.
The getgroups() function has been modified so that it can, on an implementation-defined basis,
return the effective group ID. By making this change, functions that modify the effective group
ID do not need to discuss adding to the supplementary group list; the only view into the
supplementary group list that the application developer has is through the getgroups() function.

Symbolic Constant

Earlier versions of this standard used a variety of terms other than ‘‘macro’’ for many of the
constants defined in headers, and it was not clear in which of these cases they were required to
be macros or not, or to be pre-processor constants (i.e., usable in #if) or not. In cases where the
symbols had a reserved prefix or suffix, there was often inconsistency between whether the
prefix/suffix was reserved only for macros or for any use, and whether the term ‘‘macro’’ or a
different term was used in the descriptions of the symbols. There were also some unintentional
differences from the ISO C standard.

One of the most commonly used terms was ‘‘symbolic constant’’. This has now been designated
as the default term to be used wherever appropriate, and a formal definition of the term has
been added giving the exact requirements for symbols that are described as symbolic constants.

The standard developers have performed a major rationalization of the header descriptions of
symbols with constant values according to the following policy:

• Where symbols are from the ISO C standard, the wording from the ISO C standard (or
equivalent, in cases where the exact wording is not appropriate) is used to describe them.

• For all other constants, the first choice is to use ‘‘symbolic constant’’ when the
requirements for the symbol are a reasonably close fit with those of the term.

The description of the symbol can override individual requirements for symbolic
constants; e.g., to specify a non-integer type, or to add a requirement that the symbol is
usable in #if preprocessor directives.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3435

115163

115164

115165

115166

115167

115168

115169

115170

115171

115172

115173

115174

115175

115176

115177

115178

115179

115180

115181

115182

115183

115184

115185

115186

115187

115188

115189

115190

115191

115192

115193

115194

115195

115196

115197

115198

115199

115200

115201

115202

115203

115204

115205

115206

115207

Definitions Rationale for Base Definitions

• When neither of the above apply, the exact requirements are stated in the description.
(Note that macros are not required to be usable in #if, or even to expand to constant
expressions, unless explicitly stated.)

• In cases where there is a reserved prefix or suffix, if the symbol(s) with that prefix/suffix
are from the ISO C standard and are required to be macros, or if the symbol is required to
be usable in #if, then the prefix/suffix is reserved for use only as macros. If the symbol(s)
are ‘‘symbolic constants’’ and not required to be usable in #if, the prefix/suffix is reserved
for any use except in a few special cases.

Where a constant is required to be a macro but is also allowed to be another type of constant
such as an enumeration constant, on implementations which do define it as another type of
constant the macro is typically defined as follows:

#define macro_name macro_name

This allows applications to use #ifdef, etc. to determine whether the macro is defined, but the
macro is not usable in #if preprocessor directives because the preprocessor will treat the
unexpanded word macro_name as having the value zero.

Symbolic Link

Earlier versions of this standard did not require symbolic links to have attributes such as
ownership and a file serial number. This was because the 4.4 BSD implementation did not have
them, and it was expected that other implementations may wish to do the same. However,
experience with 4.4 BSD has shown that symbolic links implemented in this way cause problems
for users and application developers, and later BSD systems have reverted to using inodes to
implement symbolic links. Allowing no-inode symbolic links also caused problems in the
standard. For example, leaving the st_ino value for symbolic links unspecified meant that the
common technique of comparing the st_dev and st_ino values for two pathnames to see if they
refer to the same file could only be used with stat() in conforming applications and not with
lstat(). The standard now requires symbolic links to have meaningful values for the same struct
stat fields as regular files, except for the file mode bits in st_mode. Historically, the file mode bits
were unused (the contents of a symbolic link could always be read), but implementations
differed as to whether the file mode bits (as returned in st_mode or reported by ls −l) were set
according to the umask or just to a fixed value such as 0777. Accordingly, the standard requires
the file mode bits to be ignored by readlink() and when a symbolic link is followed during
pathname resolution, but leaves the corresponding part of the value returned in st_mode
unspecified.

Historical implementations were followed when determining which interfaces should apply to
symbolic links. Interfaces that historically followed symbolic links include chmod(), stat(), and
utime(). Interfaces that historically did not follow symbolic links include lstat(), rename(),
remove(), rmdir(), and unlink(). For chown() and link(), historical implementations differed.
POSIX.1-2008 inherited the lchown() function from the Single UNIX Specification, Version 2, and
therefore requires chown() to follow symbolic links. Earlier versions of this standard required
link() to follow symbolic links, but with the addition of the linkat() function (which has a flag to
indicate whether to follow symbolic links), both behaviors are now allowed for link().

When the final component of a pathname is a symbolic link, the standard requires that a trailing
<slash> causes the link to be followed. This is the behavior of historical implementations. For
example, for /a/b and /a/b/, if /a/b is a symbolic link to a directory, then /a/b refers to the
symbolic link, and /a/b/ refers to the directory to which the symbolic link points.

Because a symbolic link and its referenced object coexist in the file system name space, confusion
can arise in distinguishing between the link itself and the referenced object. Historically, utilities
and system calls have adopted their own link following conventions in a somewhat ad hoc

3436 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

115208

115209

115210

115211

115212

115213

115214

115215

115216

115217

115218

115219

115220

115221

115222

115223

115224

115225

115226

115227

115228

115229

115230

115231

115232

115233

115234

115235

115236

115237

115238

115239

115240

115241

115242

115243

115244

115245

115246

115247

115248

115249

115250

115251

115252

115253

115254

115255

Rationale for Base Definitions Definitions

fashion. Rules for a uniform approach are outlined here, although historical practice has been
adhered to as much as was possible. To promote consistent system use, user-written utilities are
encouraged to follow these same rules.

Symbolic links are handled either by operating on the link itself, or by operating on the object
referenced by the link. In the latter case, an application or system call is said to ‘‘follow’’ the link.
Symbolic links may reference other symbolic links, in which case links are dereferenced until an
object that is not a symbolic link is found, a symbolic link that references a file that does not exist
is found, or a loop is detected. (Current implementations do not detect loops, but have a limit on
the number of symbolic links that they will dereference before declaring it an error.)

There are four domains for which default symbolic link policy is established in a system. In
almost all cases, there are utility options that override this default behavior. The four domains
are as follows:

1. Symbolic links specified to system calls that take filename arguments

2. Symbolic links specified as command line filename arguments to utilities that are not
performing a traversal of a file hierarchy

3. Symbolic links referencing files not of type directory, specified to utilities that are
performing a traversal of a file hierarchy

4. Symbolic links referencing files of type directory, specified to utilities that are performing
a traversal of a file hierarchy

First Domain

The first domain is considered in earlier rationale.

Second Domain

The reason this category is restricted to utilities that are not traversing the file hierarchy is that
some standard utilities take an option that specifies a hierarchical traversal, but by default
operate on the arguments themselves. Generally, users specifying the option for a file hierarchy
traversal wish to operate on a single, physical hierarchy, and therefore symbolic links, which
may reference files outside of the hierarchy, are ignored. For example, chown owner file is a
different operation from the same command with the −R option specified. In this example, the
behavior of the command chown owner file is described here, while the behavior of the command
chown −R owner file is described in the third and fourth domains.

The general rule is that the utilities in this category follow symbolic links named as arguments.

Exceptions in the second domain are:

• The mv and rm utilities do not follow symbolic links named as arguments, but respectively
attempt to rename or delete them.

• The ls utility is also an exception to this rule. For compatibility with historical systems,
when the −R option is not specified, the ls utility follows symbolic links named as
arguments if the −L option is specified or if the −F, −d, or −l options are not specified. (If
the −L option is specified, ls always follows symbolic links; it is the only utility where the
−L option affects its behavior even though a tree walk is not being performed.)

All other standard utilities, when not traversing a file hierarchy, always follow symbolic links
named as arguments.

Historical practice is that the −h option is specified if standard utilities are to act upon symbolic
links instead of upon their targets. Examples of commands that have historically had a −h option
for this purpose are the chgrp, chown, file, and test utilities.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3437

115256

115257

115258

115259

115260

115261

115262

115263

115264

115265

115266

115267

115268

115269

115270

115271

115272

115273

115274

115275

115276

115277

115278

115279

115280

115281

115282

115283

115284

115285

115286

115287

115288

115289

115290

115291

115292

115293

115294

115295

115296

115297

115298

115299

Definitions Rationale for Base Definitions

Third Domain

The third domain is symbolic links, referencing files not of type directory, specified to utilities
that are performing a traversal of a file hierarchy. (This includes symbolic links specified as
command line filename arguments or encountered during the traversal.)

The intention of the Shell and Utilities volume of POSIX.1-2008 is that the operation that the
utility is performing is applied to the symbolic link itself, if that operation is applicable to
symbolic links. If the operation is not applicable to symbolic links, the symbolic link should be
ignored. Specifically, by default, no change should be made to the file referenced by the symbolic
link.

Fourth Domain

The fourth domain is symbolic links referencing files of type directory, specified to utilities that
are performing a traversal of a file hierarchy. (This includes symbolic links specified as
command line filename arguments or encountered during the traversal.)

Most standard utilities do not, by default, indirect into the file hierarchy referenced by the
symbolic link. (The Shell and Utilities volume of POSIX.1-2008 uses the informal term ‘‘physical
walk’’ to describe this case. The case where the utility does indirect through the symbolic link is
termed a ‘‘logical walk’’.)

There are three reasons for the default to be a physical walk:

1. With very few exceptions, a physical walk has been the historical default on UNIX
systems supporting symbolic links. Because some utilities (that is, rm) must default to a
physical walk, regardless, changing historical practice in this regard would be confusing
to users and needlessly incompatible.

2. For systems where symbolic links have the historical file attributes (that is, owner, group,
mode), defaulting to a logical traversal would require the addition of a new option to the
commands to modify the attributes of the link itself. This is painful and more complex
than the alternatives.

3. There is a security issue with defaulting to a logical walk. Historically, the command
chown −R user file has been safe for the superuser because setuid and setgid bits were lost
when the ownership of the file was changed. If the walk were logical, changing
ownership would no longer be safe because a user might have inserted a symbolic link
pointing to any file in the tree. Again, this would necessitate the addition of an option to
the commands doing hierarchy traversal to not indirect through the symbolic links, and
historical scripts doing recursive walks would instantly become security problems. While
this is mostly an issue for system administrators, it is preferable to not have different
defaults for different classes of users.

However, the standard developers agreed to leave it unspecified to achieve consensus.

As consistently as possible, users may cause standard utilities performing a file hierarchy
traversal to follow any symbolic links named on the command line, regardless of the type of file
they reference, by specifying the −H (for half logical) option. This option is intended to make the
command line name space look like the logical name space.

As consistently as possible, users may cause standard utilities performing a file hierarchy
traversal to follow any symbolic links named on the command line as well as any symbolic links
encountered during the traversal, regardless of the type of file they reference, by specifying the
−L (for logical) option. This option is intended to make the entire name space look like the
logical name space.

For consistency, implementors are encouraged to use the −P (for ‘‘physical’’) flag to specify the

3438 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

115300

115301

115302

115303

115304

115305

115306

115307

115308

115309

115310

115311

115312

115313

115314

115315

115316

115317

115318

115319

115320

115321

115322

115323

115324

115325

115326

115327

115328

115329

115330

115331

115332

115333

115334

115335

115336

115337

115338

115339

115340

115341

115342

115343

115344

115345

Rationale for Base Definitions Definitions

physical walk in utilities that do logical walks by default for whatever reason.

When one or more of the −H, −L, and −P flags can be specified, the last one specified determines
the behavior of the utility. This permits users to alias commands so that the default behavior is a
logical walk and then override that behavior on the command line.

Exceptions in the Third and Fourth Domains

The ls and rm utilities are exceptions to these rules. The rm utility never follows symbolic links
and does not support the −H, −L, or −P options. Some historical versions of ls always followed
symbolic links given on the command line whether the −L option was specified or not.
Historical versions of ls did not support the −H option. In POSIX.1-2008, unless one of the −H or
−L options is specified, the ls utility only follows symbolic links to directories that are given as
operands. The ls utility does not support the −P option.

The Shell and Utilities volume of POSIX.1-2008 requires that the standard utilities ls, find, and
pax detect infinite loops when doing logical walks; that is, a directory, or more commonly a
symbolic link, that refers to an ancestor in the current file hierarchy. If the file system itself is
corrupted, causing the infinite loop, it may be impossible to recover. Because find and ls are often
used in system administration and security applications, they should attempt to recover and
continue as best as they can. The pax utility should terminate because the archive it was creating
is by definition corrupted. Other, less vital, utilities should probably simply terminate as well.
Implementations are strongly encouraged to detect infinite loops in all utilities.

Historical practice is shown in Table A-1 (on page 3440). The heading SVID3 stands for the
Third Edition of the System V Interface Definition.

Historically, several shells have had built-in versions of the pwd utility. In some of these shells,
pwd reported the physical path, and in others, the logical path. Implementations of the shell
corresponding to POSIX.1-2008 must report the logical path by default.

The cd command is required, by default, to treat the filename dot-dot logically. Implementors are
required to support the −P flag in cd so that users can have their current environment handled
physically. In 4.3 BSD, chgrp during tree traversal changed the group of the symbolic link, not
the target. Symbolic links in 4.4 BSD did not have owner, group, mode, or other standard UNIX
system file attributes.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3439

115346

115347

115348

115349

115350

115351

115352

115353

115354

115355

115356

115357

115358

115359

115360

115361

115362

115363

115364

115365

115366

115367

115368

115369

115370

115371

115372

115373

115374

Definitions Rationale for Base Definitions

Table A-1 Historical Practice for Symbolic Links

Utility SVID3 4.3 BSD 4.4 BSD POSIX Comments

cd −L Tr eat ".." logically.
cd −P Tr eat ".." physically.
chgrp −H −H Follow command line symlinks.
chgrp −h −L Follow symlinks.
chgrp −h −h Affect the symlink.
chmod Affect the symlink.
chmod −H Follow command line symlinks.
chmod −h Follow symlinks.
chown −H −H Follow command line symlinks.
chown −h −L Follow symlinks.
chown −h −h Affect the symlink.
cp −H −H Follow command line symlinks.
cp −h −L Follow symlinks.
cpio −L −L Follow symlinks.
du −H −H Follow command line symlinks.
du −h −L Follow symlinks.
file −h −h Affect the symlink.
find −H −H Follow command line symlinks.
find −h −L Follow symlinks.
find −follow −follow Follow symlinks.
ln −s −s −s −s Create a symbolic link.
ls −L −L −L −L Follow symlinks.
ls −H Follow command line symlinks.
mv Operates on the symlink.
pax −H −H Follow command line symlinks.
pax −h −L Follow symlinks.
pwd −L Printed path may contain symlinks.
pwd −P Printed path will not contain symlinks.
rm Operates on the symlink.
tar −H Follow command line symlinks.
tar −h −h Follow symlinks.
test −h −h −h Affect the symlink.

Synchronously-Generated Signal

Those signals that may be generated synchronously include SIGABRT, SIGBUS, SIGILL, SIGFPE,
SIGPIPE, and SIGSEGV.

Any signal sent via the raise() function or a kill() function targeting the current process is also
considered synchronous.

System Call*

The distinction between a ‘‘system call’’ and a ‘‘library routine’’ is an implementation detail that
may differ between implementations and has thus been excluded from POSIX.1.

See ‘‘Interface, Not Implementation’’ in the Preface.

3440 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

115375

115376

115377

115378

115379

115380

115381

115382

115383

115384

115385

115386

115387

115388

115389

115390

115391

115392

115393

115394

115395

115396

115397

115398

115399

115400

115401

115402

115403

115404

115405

115406

115407

115408

115409

115410

115411

115412

115413

115414

115415

115416

115417

Rationale for Base Definitions Definitions

System Console

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/7 is applied, changing from ‘‘An
implementation-defined device’’ to ‘‘A device’’.

System Databases

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/9 is applied, rewording the definition to
reference the existing definitions for ‘‘group database’’ and ‘‘user database’’.

System Process

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/8 is applied, rewording the definition to
remove the requirement for an implementation to define the object.

System Reboot

A ‘‘system reboot’’ is an event initiated by an unspecified circumstance that causes all processes
(other than special system processes) to be terminated in an implementation-defined manner,
after which any changes to the state and contents of files created or written to by a Conforming
POSIX.1 Application prior to the event are implementation-defined.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/10 is applied, changing ‘‘An
implementation-defined sequence of events’’ to ‘‘An unspecified sequence of events’’.

Synchronized I/O Data (and File) Integrity Completion

These terms specify that for synchronized read operations, pending writes must be successfully
completed before the read operation can complete. This is motivated by two circumstances.
Firstly, when synchronizing processes can access the same file, but not share common buffers
(such as for a remote file system), this requirement permits the reading process to guarantee that
it can read data written remotely. Secondly, having data written synchronously is insufficient to
guarantee the order with respect to a subsequent write by a reading process, and thus this extra
read semantic is necessary.

Text File

The term ‘‘text file’’ does not prevent the inclusion of control or other non-printable characters
(other than NUL). Therefore, standard utilities that list text files as inputs or outputs are either
able to process the special characters or they explicitly describe their limitations within their
individual descriptions. The definition of ‘‘text file’’ has caused controversy. The only difference
between text and binary files is that text files have lines of less than {LINE_MAX} bytes, with no
NUL characters, each terminated by a <newline>. The definition allows a file with a single
<newline>, or a totally empty file, to be called a text file. If a file ends with an incomplete line it
is not strictly a text file by this definition. The <newline> referred to in POSIX.1-2008 is not some
generic line separator, but a single character; files created on systems where they use multiple
characters for ends of lines are not portable to all conforming systems without some translation
process unspecified by POSIX.1-2008.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3441

115418

115419

115420

115421

115422

115423

115424

115425

115426

115427

115428

115429

115430

115431

115432

115433

115434

115435

115436

115437

115438

115439

115440

115441

115442

115443

115444

115445

115446

115447

115448

115449

115450

115451

115452

115453

Definitions Rationale for Base Definitions

Thread

POSIX.1-2008 defines a thread to be a flow of control within a process. Each thread has a
minimal amount of private state; most of the state associated with a process is shared among all
of the threads in the process. While most multi-thread extensions to POSIX have taken this
approach, others have made different decisions.

Note: The choice to put threads within a process does not constrain implementations to implement
threads in that manner. However, all functions have to behave as though threads share the
indicated state information with the process from which they were created.

Threads need to share resources in order to cooperate. Memory has to be widely shared between
threads in order for the threads to cooperate at a fine level of granularity. Threads keep data
structures and the locks protecting those data structures in shared memory. For a data structure
to be usefully shared between threads, such structures should not refer to any data that can only
be interpreted meaningfully by a single thread. Thus, any system resources that might be
referred to in data structures need to be shared between all threads. File descriptors, pathnames,
and pointers to stack variables are all things that programmers want to share between their
threads. Thus, the file descriptor table, the root directory, the current working directory, and the
address space have to be shared.

Library implementations are possible as long as the effective behavior is as if system services
invoked by one thread do not suspend other threads. This may be difficult for some library
implementations on systems that do not provide asynchronous facilities.

See Section B.2.9 (on page 3564) for additional rationale.

Thread ID

See Section B.2.9.2 (on page 3581) for additional rationale.

Thread-Safe Function

All functions required by POSIX.1-2008 need to be thread-safe; see Section A.4.17 (on page 3452)
and Section B.2.9.1 (on page 3578) for additional rationale.

User Database

There are no references in POSIX.1-2008 to a ‘‘passwd file’’ or a ‘‘group file’’, and there is no
requirement that the group or passwd databases be kept in files containing editable text. Many
large timesharing systems use passwd databases that are hashed for speed. Certain security
classifications prohibit certain information in the passwd database from being publicly readable.

The term ‘‘encoded’’ is used instead of ‘‘encrypted’’ in order to avoid the implementation
connotations (such as reversibility or use of a particular algorithm) of the latter term.

The getgrent(), setgrent(), endgrent(), getpwent(), setpwent(), and endpwent() functions are not
included as part of the base standard because they provide a linear database search capability
that is not generally useful (the getpwuid(), getpwnam(), getgrgid(), and getgrnam() functions are
provided for keyed lookup) and because in certain distributed systems, especially those with
different authentication domains, it may not be possible or desirable to provide an application
with the ability to browse the system databases indiscriminately. They are provided on XSI-
conformant systems due to their historical usage by many existing applications.

A change from historical implementations is that the structures used by these functions have
fields of the types gid_t and uid_t, which are required to be defined in the <sys/types.h> header.
POSIX.1-2008 requires implementations to ensure that these types are defined by inclusion of
<grp.h> and <pwd.h>, respectively, without imposing any name space pollution or errors from
redefinition of types.

3442 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

115454

115455

115456

115457

115458

115459

115460

115461

115462

115463

115464

115465

115466

115467

115468

115469

115470

115471

115472

115473

115474

115475

115476

115477

115478

115479

115480

115481

115482

115483

115484

115485

115486

115487

115488

115489

115490

115491

115492

115493

115494

115495

115496

115497

115498

Rationale for Base Definitions Definitions

POSIX.1-2008 is silent about the content of the strings containing user or group names. These
could be digit strings. POSIX.1-2008 is also silent as to whether such digit strings bear any
relationship to the corresponding (numeric) user or group ID.

Database Access

The thread-safe versions of the user and group database access functions return values in user-
supplied buffers instead of possibly using static data areas that may be overwritten by each call.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/11 is applied, removing the words ‘‘of
implementation-defined format’’.

Virtual Processor*

The term ‘‘virtual processor ’’ was chosen as a neutral term describing all kernel-level
schedulable entities, such as processes, Mach tasks, or lightweight processes. Implementing
threads using multiple processes as virtual processors, or implementing multiplexed threads
above a virtual processor layer, should be possible, provided some mechanism has also been
implemented for sharing state between processes or virtual processors. Many systems may also
wish to provide implementations of threads on systems providing ‘‘shared processes’’ or
‘‘variable-weight processes’’. It was felt that exposing such implementation details would
severely limit the type of systems upon which the threads interface could be supported and
prevent certain types of valid implementations. It was also determined that a virtual processor
interface was out of the scope of the Rationale (Informative) volume of POSIX.1-2008.

XSI

This is included to allow POSIX.1-2008 to be adopted as an IEEE standard and an Open Group
Technical Standard, serving both the POSIX and the Single UNIX Specification in a core set of
volumes.

The term ‘‘XSI’’ has been used for 10 years in connection with the XPG series and the first and
second versions of the base volumes of the Single UNIX Specification. The XSI margin code was
introduced to denote the extended or more restrictive semantics beyond POSIX that are
applicable to UNIX systems.

A.4 General Concepts

The general concepts are similar in nature to the definitions section, with the exception that a
term defined in general concepts can contain normative requirements.

A.4.1 Concurrent Execution

There is no additional rationale provided for this section.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3443

115499

115500

115501

115502

115503

115504

115505

115506

115507

115508

115509

115510

115511

115512

115513

115514

115515

115516

115517

115518

115519

115520

115521

115522

115523

115524

115525

115526

115527

115528

115529

115530

General Concepts Rationale for Base Definitions

A.4.2 Directory Protection

There is no additional rationale provided for this section.

A.4.3 Extended Security Controls

Allowing an implementation to define extended security controls enables the use of
POSIX.1-2008 in environments that require different or more rigorous security than that
provided in POSIX.1. Extensions are allowed in two areas: privilege and file access permissions.
The semantics of these areas have been defined to permit extensions with reasonable, but not
exact, compatibility with all existing practices. For example, the elimination of the superuser
definition precludes identifying a process as privileged or not by virtue of its effective user ID.

A.4.4 File Access Permissions

A process should not try to anticipate the result of an attempt to access data by a priori use of
these rules. Rather, it should make the attempt to access data and examine the return value (and
possibly errno as well), or use access(). An implementation may include other security
mechanisms in addition to those specified in POSIX.1, and an access attempt may fail because of
those additional mechanisms, even though it would succeed according to the rules given in this
section. (For example, the user’s security level might be lower than that of the object of the
access attempt.) The supplementary group IDs provide another reason for a process to not
attempt to anticipate the result of an access attempt.

Since the current standard does not specify a method for opening a directory for searching, it is
unspecified whether search permission on the fd argument to openat() and related functions is
based on whether the directory was opened with search mode or on the current permissions
allowed by the directory at the time a search is performed. When there is existing practice that
supports opening directories for searching, it is expected that these functions will be modified to
specify that the search permissions will be granted based on the file access modes of the
directory’s file descriptor identified by fd, and not on the mode of the directory at the time the
directory is searched.

A.4.5 File Hierarchy

Though the file hierarchy is commonly regarded to be a tree, POSIX.1 does not define it as such
for three reasons:

1. Links may join branches.

2. In some network implementations, there may be no single absolute root directory; see
pathname resolution.

3. With symbolic links, the file system need not be a tree or even a directed acyclic graph.

3444 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

115531

115532

115533

115534

115535

115536

115537

115538

115539

115540

115541

115542

115543

115544

115545

115546

115547

115548

115549

115550

115551

115552

115553

115554

115555

115556

115557

115558

115559

115560

115561

115562

115563

Rationale for Base Definitions General Concepts

A.4.6 Filenames

Historically, certain filenames have been reserved. This list includes core, /etc/passwd, and so
on. Conforming applications should avoid these.

Most historical implementations prohibit case folding in filenames; that is, treating uppercase
and lowercase alphabetic characters as identical. However, some consider case folding desirable:

• For user convenience

• For ease-of-implementation of the POSIX.1 interface as a hosted system on some popular
operating systems

Variants, such as maintaining case distinctions in filenames, but ignoring them in comparisons,
have been suggested. Methods of allowing escaped characters of the case opposite the default
have been proposed.

Many reasons have been expressed for not allowing case folding, including:

• No solid evidence has been produced as to whether case-sensitivity or case-insensitivity is
more convenient for users.

• Making case-insensitivity a POSIX.1 implementation option would be worse than either
having it or not having it, because:

— More confusion would be caused among users.

— Application developers would have to account for both cases in their code.

— POSIX.1 implementors would still have other problems with native file systems, such
as short or otherwise constrained filenames or pathnames, and the lack of
hierarchical directory structure.

• Case folding is not easily defined in many European languages, both because many of
them use characters outside the US ASCII alphabetic set, and because:

— In Spanish, the digraph "ll" is considered to be a single letter, the capitalized form
of which may be either "Ll" or "LL", depending on context.

— In French, the capitalized form of a letter with an accent may or may not retain the
accent, depending on the country in which it is written.

— In German, the sharp ess may be represented as a single character resembling a
Greek beta (β) in lowercase, but as the digraph "SS" in uppercase.

— In Greek, there are several lowercase forms of some letters; the one to use depends on
its position in the word. Arabic has similar rules.

• Many East Asian languages, including Japanese, Chinese, and Korean, do not distinguish
case and are sometimes encoded in character sets that use more than one byte per
character.

• Multiple character codes may be used on the same machine simultaneously. There are
several ISO character sets for European alphabets. In Japan, several Japanese character
codes are commonly used together, sometimes even in filenames; this is evidently also the
case in China. To handle case insensitivity, the kernel would have to at least be able to
distinguish for which character sets the concept made sense.

• The file system implementation historically deals only with bytes, not with characters,
except for <slash> and the null byte.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3445

115564

115565

115566

115567

115568

115569

115570

115571

115572

115573

115574

115575

115576

115577

115578

115579

115580

115581

115582

115583

115584

115585

115586

115587

115588

115589

115590

115591

115592

115593

115594

115595

115596

115597

115598

115599

115600

115601

115602

115603

115604

General Concepts Rationale for Base Definitions

• The purpose of POSIX.1 is to standardize the common, existing definition, not to change it.
Mandating case-insensitivity would make all historical implementations non-standard.

• Not only the interface, but also application programs would need to change, counter to the
purpose of having minimal changes to existing application code.

• At least one of the original developers of the UNIX system has expressed objection in the
strongest terms to either requiring case-insensitivity or making it an option, mostly on the
basis that POSIX.1 should not hinder portability of application programs across related
implementations in order to allow compatibility with unrelated operating systems.

Two proposals were entertained regarding case folding in filenames:

1. Remove all wording that previously permitted case folding.

Rationale Case folding is inconsistent with portable filename character set definition
and filename definition (all characters except <slash> and null). No known
implementations allowing all characters except <slash> and null also do
case folding.

2. Change ‘‘though this practice is not recommended:’’ to ‘‘although this practice is strongly
discouraged.’’

Rationale If case folding must be included in POSIX.1, the wording should be stronger
to discourage the practice.

The consensus selected the first proposal. Otherwise, a conforming application would have to
assume that case folding would occur when it was not wanted, but that it would not occur when
it was wanted.

A.4.7 Filename Portability

Filenames should be constructed from the portable filename character set because the use of
other characters can be confusing or ambiguous in certain contexts. (For example, the use of a
<colon> (’:’) in a pathname could cause ambiguity if that pathname were included in a PA TH
definition.)

The constraint on use of the <hyphen> character as the first character of a portable filename is a
constraint on application behavior and not on implementations, since applications might not
work as expected when such a filename is passed as a command line argument.

A.4.8 File Times Update

This section reflects the actions of historical implementations. The times are not updated
immediately, but are only marked for update by the functions. An implementation may update
these times immediately.

The accuracy of the time update values is intentionally left unspecified so that systems can
control the bandwidth of a possible covert channel.

The wording was carefully chosen to make it clear that there is no requirement that the
conformance document contain information that might incidentally affect file timestamps. Any
function that performs pathname resolution might update several last data access timestamps.
Functions such as getpwnam() and getgrnam() might update the last data access timestamp of
some specific file or files. It is intended that these are not required to be documented in the
conformance document, but they should appear in the system documentation.

3446 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

115605

115606

115607

115608

115609

115610

115611

115612

115613

115614

115615

115616

115617

115618

115619

115620

115621

115622

115623

115624

115625

115626

115627

115628

115629

115630

115631

115632

115633

115634

115635

115636

115637

115638

115639

115640

115641

115642

115643

115644

115645

Rationale for Base Definitions General Concepts

A.4.9 Host and Network Byte Order

There is no additional rationale provided for this section.

A.4.10 Measurement of Execution Time

The methods used to measure the execution time of processes and threads, and the precision of
these measurements, may vary considerably depending on the software architecture of the
implementation, and on the underlying hardware. Implementations can also make tradeoffs
between the scheduling overhead and the precision of the execution time measurements.
POSIX.1-2008 does not impose any requirement on the accuracy of the execution time; it instead
specifies that the measurement mechanism and its precision are implementation-defined.

A.4.11 Memory Synchronization

In older multi-processors, access to memory by the processors was strictly multiplexed. This
meant that a processor executing program code interrogates or modifies memory in the order
specified by the code and that all the memory operation of all the processors in the system
appear to happen in some global order, though the operation histories of different processors are
interleaved arbitrarily. The memory operations of such machines are said to be sequentially
consistent. In this environment, threads can synchronize using ordinary memory operations. For
example, a producer thread and a consumer thread can synchronize access to a circular data
buffer as follows:

int rdptr = 0;
int wrptr = 0;
data_t buf[BUFSIZE];

Thread 1:
while (work_to_do) {

int next;

buf[wrptr] = produce();
next = (wrptr + 1) % BUFSIZE;
while (rdptr == next)

;
wrptr = next;

}

Thread 2:
while (work_to_do) {

while (rdptr == wrptr)
;

consume(buf[rdptr]);
rdptr = (rdptr + 1) % BUFSIZE;

}

In modern multi-processors, these conditions are relaxed to achieve greater performance. If one
processor stores values in location A and then location B, then other processors loading data
from location B and then location A may see the new value of B but the old value of A. The
memory operations of such machines are said to be weakly ordered. On these machines, the
circular buffer technique shown in the example will fail because the consumer may see the new
value of wrptr but the old value of the data in the buffer. In such machines, synchronization can
only be achieved through the use of special instructions that enforce an order on memory

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3447

115646

115647

115648

115649

115650

115651

115652

115653

115654

115655

115656

115657

115658

115659

115660

115661

115662

115663

115664

115665

115666

115667

115668

115669

115670

115671

115672

115673

115674

115675

115676

115677

115678

115679

115680

115681

115682

115683

115684

115685

115686

115687

115688

115689

General Concepts Rationale for Base Definitions

operations. Most high-level language compilers only generate ordinary memory operations to
take advantage of the increased performance. They usually cannot determine when memory
operation order is important and generate the special ordering instructions. Instead, they rely on
the programmer to use synchronization primitives correctly to ensure that modifications to a
location in memory are ordered with respect to modifications and/or access to the same location
in other threads. Access to read-only data need not be synchronized. The resulting program is
said to be data race-free.

Synchronization is still important even when accessing a single primitive variable (for example,
an integer). On machines where the integer may not be aligned to the bus data width or be
larger than the data width, a single memory load may require multiple memory cycles. This
means that it may be possible for some parts of the integer to have an old value while other
parts have a newer value. On some processor architectures this cannot happen, but portable
programs cannot rely on this.

In summary, a portable multi-threaded program, or a multi-process program that shares
writable memory between processes, has to use the synchronization primitives to synchronize
data access. It cannot rely on modifications to memory being observed by other threads in the
order written in the application or even on modification of a single variable being seen
atomically.

Conforming applications may only use the functions listed to synchronize threads of control
with respect to memory access. There are many other candidates for functions that might also be
used. Examples are: signal sending and reception, or pipe writing and reading. In general, any
function that allows one thread of control to wait for an action caused by another thread of
control is a candidate. POSIX.1-2008 does not require these additional functions to synchronize
memory access since this would imply the following:

• All these functions would have to be recognized by advanced compilation systems so that
memory operations and calls to these functions are not reordered by optimization.

• All these functions would potentially have to have memory synchronization instructions
added, depending on the particular machine.

• The additional functions complicate the model of how memory is synchronized and make
automatic data race detection techniques impractical.

Formal definitions of the memory model were rejected as unreadable by the vast majority of
programmers. In addition, most of the formal work in the literature has concentrated on the
memory as provided by the hardware as opposed to the application programmer through the
compiler and runtime system. It was believed that a simple statement intuitive to most
programmers would be most effective. POSIX.1-2008 defines functions that can be used to
synchronize access to memory, but it leaves open exactly how one relates those functions to the
semantics of each function as specified elsewhere in POSIX.1-2008. POSIX.1-2008 also does not
make a formal specification of the partial ordering in time that the functions can impose, as that
is implied in the description of the semantics of each function. It simply states that the
programmer has to ensure that modifications do not occur ‘‘simultaneously’’ with other access
to a memory location.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/4 is applied, adding a new paragraph
beneath the table of functions: ‘‘The pthread_once() function shall synchronize memory for the
first call in each thread for a given pthread_once_t object.’’.

3448 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

115690

115691

115692

115693

115694

115695

115696

115697

115698

115699

115700

115701

115702

115703

115704

115705

115706

115707

115708

115709

115710

115711

115712

115713

115714

115715

115716

115717

115718

115719

115720

115721

115722

115723

115724

115725

115726

115727

115728

115729

115730

115731

115732

115733

Rationale for Base Definitions General Concepts

A.4.12 Pathname Resolution

It is necessary to differentiate between the definition of pathname and the concept of pathname
resolution with respect to the handling of trailing <slash> characters. By specifying the behavior
here, it is not possible to provide an implementation that is conforming but extends all interfaces
that handle pathnames to also handle strings that are not legal pathnames (because they have
trailing <slash> characters).

Pathnames that end with one or more trailing <slash> characters must refer to directory paths.
Earlier versions of this standard were not specific about the distinction between trailing <slash>
characters on files and directories, and both were permitted.

Two types of implementation have been prevalent; those that ignored trailing <slash> characters
on all pathnames regardless, and those that permitted them only on existing directories.

An earlier version of this standard required that a pathname with a trailing <slash> character be
treated as if it had a trailing "/." everywhere. This specification was ambiguous. In situations
where the intent was that the application wanted to require the implementation to accept the
pathname only if it named a directory (existing or to be created as a result of the call performing
pathname resolution), literally adding a ’.’ after the trailing <slash> could be interpreted to
require use of that pathname to fail. Some of the uses that created ambiguous requirements
included mkdir("newdir/") and rmdir("existing-dir/"). POSIX.1-2008 requires that a pathname
with a trailing <slash> be rejected unless it refers to a file that is a directory or to a file that is to
be created as a directory. The rename() function and the mv utility further specify that a trailing
<slash> cannot be used on a pathname naming a file that does not exist when used as the last
argument to rename() or renameat(), or as the last operand to mv.

Note that this change does not break any conforming applications; since there were two different
types of implementation, no application could have portably depended on either behavior. This
change does however require some implementations to be altered to remain compliant.
Substantial discussion over a three-year period has shown that the benefits to application
developers outweighs the disadvantages for some vendors.

On a historical note, some early applications automatically appended a ’/’ to every path.
Rather than fix the applications, the system implementation was modified to accept this
behavior by ignoring any trailing <slash>.

Each directory has exactly one parent directory which is represented by the name dot-dot in the
first directory. No other directory, regardless of linkages established by symbolic links, is
considered the parent directory by POSIX.1-2008.

There are two general categories of interfaces involving pathname resolution: those that follow
the symbolic link, and those that do not. There are several exceptions to this rule; for example,
open(path,O_CREAT|O_EXCL) will fail when path names a symbolic link. However, in all other
situations, the open() function will follow the link.

What the filename dot-dot refers to relative to the root directory is implementation-defined. In
Version 7 it refers to the root directory itself; this is the behavior mentioned in POSIX.1-2008. In
some networked systems the construction /. . /hostname/ is used to refer to the root directory of
another host, and POSIX.1 permits this behavior.

Other networked systems use the construct //hostname for the same purpose; that is, a double
initial <slash> is used. There is a potential problem with existing applications that create full
pathnames by taking a trunk and a relative pathname and making them into a single string
separated by ’/’, because they can accidentally create networked pathnames when the trunk is
’/’. This practice is not prohibited because such applications can be made to conform by
simply changing to use "//" as a separator instead of ’/’:

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3449

115734

115735

115736

115737

115738

115739

115740

115741

115742

115743

115744

115745

115746

115747

115748

115749

115750

115751

115752

115753

115754

115755

115756

115757

115758

115759

115760

115761

115762

115763

115764

115765

115766

115767

115768

115769

115770

115771

115772

115773

115774

115775

115776

115777

115778

115779

115780

General Concepts Rationale for Base Definitions

• If the trunk is ’/’, the full pathname will begin with "///" (the initial ’/’ and the
separator "//"). This is the same as ’/’, which is what is desired. (This is the general
case of making a relative pathname into an absolute one by prefixing with "///" instead
of ’/’.)

• If the trunk is "/A", the result is "/A//..."; since non-leading sequences of two or more
<slash> characters are treated as a single <slash>, this is equivalent to the desired
"/A/...".

• If the trunk is "//A", the implementation-defined semantics will apply. (The multiple
<slash> rule would apply.)

Application developers should avoid generating pathnames that start with "//".
Implementations are strongly encouraged to avoid using this special interpretation since a
number of applications currently do not follow this practice and may inadvertently generate
"//. . .".

The term ‘‘root directory’’ is only defined in POSIX.1 relative to the process. In some
implementations, there may be no absolute root directory. The initialization of the root directory
of a process is implementation-defined.

When the standard says: ‘‘Pathname resolution for a given pathname shall yield the same results
when used by any interface in POSIX.1-2008 as long as there are no changes to any files
evaluated during pathname resolution for the given pathname between resolutions’’, this
applies to absolute pathnames or to relative pathnames from the same current working
directory. Using the same relative pathname from two different working directories may yield
different results.

A.4.13 Process ID Reuse

There is no additional rationale provided for this section.

A.4.14 Scheduling Policy

There is no additional rationale provided for this section.

A.4.15 Seconds Since the Epoch

Coordinated Universal Time (UTC) includes leap seconds. However, in POSIX time (seconds
since the Epoch), leap seconds are ignored (not applied) to provide an easy and compatible
method of computing time differences. Broken-down POSIX time is therefore not necessarily
UTC, despite its appearance.

As of December 2007, 23 leap seconds had been added to UTC since the Epoch, 1 January, 1970.
Historically, one leap second is added every 15 months on average, so this offset can be expected
to grow with time.

Most systems’ notion of ‘‘time’’ is that of a continuously increasing value, so this value should
increase even during leap seconds. However, not only do most systems not keep track of leap
seconds, but most systems are probably not synchronized to any standard time reference.
Therefore, it is inappropriate to require that a time represented as seconds since the Epoch
precisely represent the number of seconds between the referenced time and the Epoch.

It is sufficient to require that applications be allowed to treat this time as if it represented the
number of seconds between the referenced time and the Epoch. It is the responsibility of the

3450 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

115781

115782

115783

115784

115785

115786

115787

115788

115789

115790

115791

115792

115793

115794

115795

115796

115797

115798

115799

115800

115801

115802

115803

115804

115805

115806

115807

115808

115809

115810

115811

115812

115813

115814

115815

115816

115817

115818

115819

115820

115821

Rationale for Base Definitions General Concepts

vendor of the system, and the administrator of the system, to ensure that this value represents
the number of seconds between the referenced time and the Epoch as closely as necessary for the
application being run on that system.

It is important that the interpretation of time names and seconds since the Epoch values be
consistent across conforming systems; that is, it is important that all conforming systems
interpret ‘‘536 457 599 seconds since the Epoch’’ as 59 seconds, 59 minutes, 23 hours 31 December
1986, regardless of the accuracy of the system’s idea of the current time. The expression is given
to ensure a consistent interpretation, not to attempt to specify the calendar. The relationship
between tm_yday and the day of week, day of month, and month is in accordance with the
Gregorian calendar, and so is not specified in POSIX.1.

Consistent interpretation of seconds since the Epoch can be critical to certain types of distributed
applications that rely on such timestamps to synchronize events. The accrual of leap seconds in a
time standard is not predictable. The number of leap seconds since the Epoch will likely
increase. POSIX.1 is more concerned about the synchronization of time between applications of
astronomically short duration.

Note that tm_yday is zero-based, not one-based, so the day number in the example above is 364.
Note also that the division is an integer division (discarding remainder) as in the C language.

Note also that the meaning of gmtime(), localtime(), and mktime() is specified in terms of this
expression. However, the ISO C standard computes tm_yday from tm_mday, tm_mon, and tm_year
in mktime(). Because it is stated as a (bidirectional) relationship, not a function, and because the
conversion between month-day-year and day-of-year dates is presumed well known and is also
a relationship, this is not a problem.

Implementations that implement time_t as a signed 32-bit integer will overflow in 2 038. The
data size for time_t is as per the ISO C standard definition, which is implementation-defined.

See also Epoch (on page 3426).

The topic of whether seconds since the Epoch should account for leap seconds has been debated
on a number of occasions, and each time consensus was reached (with acknowledged dissent
each time) that the majority of users are best served by treating all days identically. (That is, the
majority of applications were judged to assume a single length—as measured in seconds since
the Epoch—for all days. Thus, leap seconds are not applied to seconds since the Epoch.) Those
applications which do care about leap seconds can determine how to handle them in whatever
way those applications feel is best. This was particularly emphasized because there was
disagreement about what the best way of handling leap seconds might be. It is a practical
impossibility to mandate that a conforming implementation must have a fixed relationship to
any particular official clock (consider isolated systems, or systems performing ‘‘reruns’’ by
setting the clock to some arbitrary time).

Note that as a practical consequence of this, the length of a second as measured by some external
standard is not specified. This unspecified second is nominally equal to an International System
(SI) second in duration. Applications must be matched to a system that provides the particular
handling of external time in the way required by the application.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/12 is applied, making an editorial
correction to the paragraph commencing ‘‘How any changes to the value of seconds ...’’.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3451

115822

115823

115824

115825

115826

115827

115828

115829

115830

115831

115832

115833

115834

115835

115836

115837

115838

115839

115840

115841

115842

115843

115844

115845

115846

115847

115848

115849

115850

115851

115852

115853

115854

115855

115856

115857

115858

115859

115860

115861

115862

115863

General Concepts Rationale for Base Definitions

A.4.16 Semaphore

There is no additional rationale provided for this section.

A.4.17 Thread-Safety

Where the interface of a function required by POSIX.1-2008 precludes thread-safety, an alternate
thread-safe form is provided. The names of these thread-safe forms are the same as the non-
thread-safe forms with the addition of the suffix ‘‘_r ’’. The suffix ‘‘_r ’’ is historical, where the
’r’ stood for ‘‘reentrant’’.

In some cases, thread-safety is provided by restricting the arguments to an existing function.

See also Section B.2.9.1 (on page 3578).

A.4.18 Tracing

Refer to Section B.2.11 (on page 3594).

A.4.19 Treatment of Error Conditions for Mathematical Functions

There is no additional rationale provided for this section.

A.4.20 Treatment of NaN Arguments for Mathematical Functions

There is no additional rationale provided for this section.

A.4.21 Utility

There is no additional rationale provided for this section.

A.4.22 Variable Assignment

There is no additional rationale provided for this section.

A.5 File Format Notation

The notation for spaces allows some flexibility for application output. Note that an empty
character position in format represents one or more <blank> characters on the output (not white
space, which can include <newline> characters). Therefore, another utility that reads that output
as its input must be prepared to parse the data using scanf(), awk, and so on. The ’∆’ character
is used when exactly one <space> is output.

The treatment of integers and spaces is different from the printf() function in that they can be
surrounded with <blank> characters. This was done so that, given a format such as:

"%d\n",<foo>

the implementation could use a printf() call such as:

3452 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

115864

115865

115866

115867

115868

115869

115870

115871

115872

115873

115874

115875

115876

115877

115878

115879

115880

115881

115882

115883

115884

115885

115886

115887

115888

115889

115890

115891

115892

Rationale for Base Definitions File Format Notation

printf("%6d\n", foo);

and still conform. This notation is thus somewhat like scanf() in addition to printf().

The printf() function was chosen as a model because most of the standard developers were
familiar with it. One difference from the C function printf() is that the l and h conversion
specifier characters are not used. As expressed by the Shell and Utilities volume of
POSIX.1-2008, there is no differentiation between decimal values for type int, type long, or type
short. The conversion specifications %d or %i should be interpreted as an arbitrary length
sequence of digits. Also, no distinction is made between single precision and double precision
numbers (float or double in C). These are simply referred to as floating-point numbers.

Many of the output descriptions in the Shell and Utilities volume of POSIX.1-2008 use the term
‘‘line’’, such as:

"%s", <input line>

Since the definition of line includes the trailing <newline> already, there is no need to include a
’\n’ in the format; a double <newline> would otherwise result.

A.6 Character Set

A.6.1 Portable Character Set

The portable character set is listed in full so there is no dependency on the ISO/IEC 646: 1991
standard (or historically ASCII) encoded character set, although the set is identical to the
characters defined in the International Reference version of the ISO/IEC 646: 1991 standard.

POSIX.1-2008 poses no requirement that multiple character sets or codesets be supported,
leaving this as a marketing differentiation for implementors. Although multiple charmap files
are supported, it is the responsibility of the implementation to provide the file(s); if only one is
provided, only that one will be accessible using the localedef −f option.

The statement about invariance in codesets for the portable character set is worded to avoid
precluding implementations where multiple incompatible codesets are available (for instance,
ASCII and EBCDIC). The standard utilities cannot be expected to produce predictable results if
they access portable characters that vary on the same implementation.

Not all character sets need include the portable character set, but each locale must include it. For
example, a Japanese-based locale might be supported by a mixture of character sets: JIS X 0201
Roman (a Japanese version of the ISO/IEC 646: 1991 standard), JIS X 0208, and JIS X 0201
Katakana. Not all of these character sets include the portable characters, but at least one does
(JIS X 0201 Roman).

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3453

115893

115894

115895

115896

115897

115898

115899

115900

115901

115902

115903

115904

115905

115906

115907

115908

115909

115910

115911

115912

115913

115914

115915

115916

115917

115918

115919

115920

115921

115922

115923

115924

Character Set Rationale for Base Definitions

A.6.2 Character Encoding

Encoding mechanisms based on single shifts, such as the EUC encoding used in some Asian and
other countries, can be supported via the current charmap mechanism. With single-shift
encoding, each character is preceded by a shift code (SS2 or SS3). A complete EUC code,
consisting of the portable character set (G0) and up to three additional character sets (G1, G2,
G3), can be described using the current charmap mechanism; the encoding for each character in
additional character sets G2 and G3 must then include their single-shift code. Other mechanisms
to support locales based on encoding mechanisms such as locking shift are not addressed by this
volume of POSIX.1-2008.

A.6.3 C Language Wide-Character Codes

The standard does not specify how wide characters are encoded or provide a method for
defining wide characters in a charmap. It specifies ways of translating between wide characters
and multi-byte characters. The standard does not prevent an extension from providing a method
to define wide characters.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/13 is applied, adding a statement that the
standard has no means of defining a wide-character codeset.

A.6.4 Character Set Description File

IEEE PASC Interpretation 1003.2 #196 is applied, removing three lines of text dealing with
ranges of symbolic names using position constant values which had been erroneously included
in the final IEEE P1003.2b draft standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/14 is applied, correcting the example and
adding a statement that the standard provides no means of defining a wide-character codeset.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/15 is applied, allowing the value zero for
the width value of WIDTH and WIDTH_DEFAULT. This is required to cover some existing
locales.

A.6.4.1 State-Dependent Character Encodings

A requirement was considered that would force utilities to eliminate any redundant locking
shifts, but this was left as a quality of implementation issue.

This change satisfies the following requirement from the ISO POSIX-2: 1993 standard, Annex
H.1:

The support of state-dependent (shift encoding) character sets should be addressed fully. See
descriptions of these in XBD Section 6.2 (on page 128). If such character encodings are supported,
it is expected that this will impact XBD Section 6.2 (on page 128), Chapter 7 (on page 135),
Chapter 9 (on page 181), and the comm, cut, diff, grep, head, join, paste, and tail utilities.

The character set description file provides:

• The capability to describe character set attributes (such as collation order or character
classes) independent of character set encoding, and using only the characters in the
portable character set. This makes it possible to create generic localedef source files for all
codesets that share the portable character set (such as the ISO 8859 family or IBM Extended
ASCII).

3454 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

115925

115926

115927

115928

115929

115930

115931

115932

115933

115934

115935

115936

115937

115938

115939

115940

115941

115942

115943

115944

115945

115946

115947

115948

115949

115950

115951

115952

115953

115954

115955

115956

115957

115958

115959

115960

115961

115962

115963

115964

Rationale for Base Definitions Character Set

• Standardized symbolic names for all characters in the portable character set, making it
possible to refer to any such character regardless of encoding.

Implementations are free to choose their own symbolic names, as long as the names identified
by the Base Definitions volume of POSIX.1-2008 are also defined; this provides support for
already existing ‘‘character names’’.

The names selected for the members of the portable character set follow the
ISO/IEC 8859-1: 1998 standard and the ISO/IEC 10646-1: 2000 standard. However, several
commonly used UNIX system names occur as synonyms in the list:

• The historical UNIX system names are used for control characters.

• The word ‘‘slash’’ is given in addition to ‘‘solidus’’.

• The word ‘‘backslash’’ is given in addition to ‘‘reverse-solidus’’.

• The word ‘‘hyphen’’ is given in addition to ‘‘hyphen-minus’’.

• The word ‘‘period’’ is given in addition to ‘‘full-stop’’.

• For digits, the word ‘‘digit’’ is eliminated.

• For letters, the words ‘‘Latin Capital Letter’’ and ‘‘Latin Small Letter’’ are eliminated.

• The words ‘‘left brace’’ and ‘‘right brace’’ are given in addition to ‘‘left-curly-bracket’’ and
‘‘right-curly-bracket’’.

• The names of the digits are preferred over the numbers to avoid possible confusion
between ’0’ and ’O’, and between ’1’ and ’l’ (one and the letter ell).

The names for the control characters in XBD Chapter 6 (on page 125) were taken from the
ISO/IEC 4873: 1991 standard.

The charmap file was introduced to resolve problems with the portability of, especially, localedef
sources. POSIX.1-2008 assumes that the portable character set is constant across all locales, but
does not prohibit implementations from supporting two incompatible codings, such as both
ASCII and EBCDIC. Such dual-support implementations should have all charmaps and localedef
sources encoded using one portable character set, in effect cross-compiling for the other
environment. Naturally, charmaps (and localedef sources) are only portable without
transformation between systems using the same encodings for the portable character set. They
can, however, be transformed between two sets using only a subset of the actual characters (the
portable character set). However, the particular coded character set used for an application or an
implementation does not necessarily imply different characteristics or collation; on the contrary,
these attributes should in many cases be identical, regardless of codeset. The charmap provides
the capability to define a common locale definition for multiple codesets (the same localedef
source can be used for codesets with different extended characters; the ability in the charmap to
define empty names allows for characters missing in certain codesets).

The <escape_char> declaration was added at the request of the international community to ease
the creation of portable charmap files on terminals not implementing the default
<backslash>-escape. The <comment_char> declaration was added at the request of the
international community to eliminate the potential confusion between the <number-sign> and
the hash sign.

The octal number notation with no leading zero required was selected to match those of awk and
tr and is consistent with that used by localedef. To avoid confusion between an octal constant and
the back-references used in localedef source, the octal, hexadecimal, and decimal constants must
contain at least two digits. As single-digit constants are relatively rare, this should not impose
any significant hardship. Provision is made for more digits to account for systems in which the

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3455

115965

115966

115967

115968

115969

115970

115971

115972

115973

115974

115975

115976

115977

115978

115979

115980

115981

115982

115983

115984

115985

115986

115987

115988

115989

115990

115991

115992

115993

115994

115995

115996

115997

115998

115999

116000

116001

116002

116003

116004

116005

116006

116007

116008

116009

Character Set Rationale for Base Definitions

byte size is larger than 8 bits. For example, a Unicode (ISO/IEC 10646-1: 2000 standard) system
that has defined 16-bit bytes may require six octal, four hexadecimal, and five decimal digits.

The decimal notation is supported because some newer international standards define character
values in decimal, rather than in the old column/row notation.

The charmap identifies the coded character sets supported by an implementation. At least one
charmap must be provided, but no implementation is required to provide more than one.
Likewise, implementations can allow users to generate new charmaps (for instance, for a new
version of the ISO 8859 family of coded character sets), but does not have to do so. If users are
allowed to create new charmaps, the system documentation describes the rules that apply (for
instance, ‘‘only coded character sets that are supersets of the ISO/IEC 646: 1991 standard IRV, no
multi-byte characters’’).

This addition of the WIDTH specification satisfies the following requirement from the
ISO POSIX-2: 1993 standard, Annex H.1:

(9) The definition of column position relies on the implementation’s knowledge of the integral
width of the characters. The charmap or LC_CTYPE locale definitions should be enhanced to
allow application specification of these widths.

The character ‘‘width’’ information was first considered for inclusion under LC_CTYPE but was
moved because it is more closely associated with the information in the charmap than
information in the locale source (cultural conventions information). Concerns were raised that
formalizing this type of information is moving the locale source definition from the codeset-
independent entity that it was designed to be to a repository of codeset-specific information. A
similar issue occurred with the <code_set_name>, <mb_cur_max>, and <mb_cur_min>
information, which was resolved to reside in the charmap definition.

The width definition was added to the IEEE P1003.2b draft standard with the intent that the
wcswidth() and/or wcwidth() functions (currently specified in the System Interfaces volume of
POSIX.1-2008) be the mechanism to retrieve the character width information.

A.7 Locale

A.7.1 General

The description of locales is based on work performed in the UniForum Technical Committee,
Subcommittee on Internationalization. Wherever appropriate, keywords are taken from the
ISO C standard or the X/Open Portability Guide.

The value used to specify a locale with environment variables is the name specified as the name
operand to the localedef utility when the locale was created. This provides a verifiable method to
create and invoke a locale.

The ‘‘object’’ definitions need not be portable, as long as ‘‘source’’ definitions are. Strictly
speaking, source definitions are portable only between implementations using the same
character set(s). Such source definitions, if they use symbolic names only, easily can be ported
between systems using different codesets, as long as the characters in the portable character set
(see XBD Section 6.1, on page 125) have common values between the codesets; this is frequently
the case in historical implementations. Of source, this requires that the symbolic names used for

3456 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

116010

116011

116012

116013

116014

116015

116016

116017

116018

116019

116020

116021

116022

116023

116024

116025

116026

116027

116028

116029

116030

116031

116032

116033

116034

116035

116036

116037

116038

116039

116040

116041

116042

116043

116044

116045

116046

116047

116048

116049

Rationale for Base Definitions Locale

characters outside the portable character set be identical between character sets. The definition
of symbolic names for characters is outside the scope of POSIX.1-2008, but is certainly within the
scope of other standards organizations.

Applications can select the desired locale by invoking the setlocale() function (or equivalent)
with the appropriate value. If the function is invoked with an empty string, the value of the
corresponding environment variable is used. If the environment variable is not set or is set to the
empty string, the implementation sets the appropriate environment as defined in XBD Chapter 8
(on page 173).

A.7.2 POSIX Locale

The POSIX locale is equal to the C locale. To avoid being classified as a C-language function, the
name has been changed to the POSIX locale; the environment variable value can be either
"POSIX" or, for historical reasons, "C".

The POSIX definitions mirror the historical UNIX system behavior.

The use of symbolic names for characters in the tables does not imply that the POSIX locale must
be described using symbolic character names, but merely that it may be advantageous to do so.

A.7.3 Locale Definition

The decision to separate the file format from the localedef utility description was only partially
editorial. Implementations may provide other interfaces than localedef. Requirements on ‘‘the
utility’’, mostly concerning error messages, are described in this way because they are meant to
affect the other interfaces implementations may provide as well as localedef.

The text about POSIX2_LOCALEDEF does not mean that internationalization is optional; only
that the functionality of the localedef utility is. REs, for instance, must still be able to recognize,
for example, character class expressions such as "[[:alpha:]]". A possible analogy is with
an applications development environment; while all conforming implementations must be
capable of executing applications, not all need to have the development environment installed.
The assumption is that the capability to modify the behavior of utilities (and applications) via
locale settings must be supported. If the localedef utility is not present, then the only choice is to
select an existing (presumably implementation-documented) locale. An implementation could,
for example, choose to support only the POSIX locale, which would in effect limit the amount of
changes from historical implementations quite drastically. The localedef utility is still required,
but would always terminate with an exit code indicating that no locale could be created.
Supported locales must be documented using the syntax defined in this chapter. (This ensures
that users can accurately determine what capabilities are provided. If the implementation
decides to provide additional capabilities to the ones in this chapter, that is already provided
for.)

If the option is present (that is, locales can be created), then the localedef utility must be capable
of creating locales based on the syntax and rules defined in this chapter. This does not mean that
the implementation cannot also provide alternate means for creating locales.

The octal, decimal, and hexadecimal notations are the same employed by the charmap facility
(see XBD Section 6.4, on page 129). To avoid confusion between an octal constant and a back-
reference, the octal, hexadecimal, and decimal constants must contain at least two digits. As
single-digit constants are relatively rare, this should not impose any significant hardship.
Provision is made for more digits to account for systems in which the byte size is larger than 8
bits. For example, a Unicode (see the ISO/IEC 10646-1: 2000 standard) system that has defined

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3457

116050

116051

116052

116053

116054

116055

116056

116057

116058

116059

116060

116061

116062

116063

116064

116065

116066

116067

116068

116069

116070

116071

116072

116073

116074

116075

116076

116077

116078

116079

116080

116081

116082

116083

116084

116085

116086

116087

116088

116089

116090

116091

116092

116093

Locale Rationale for Base Definitions

16-bit bytes may require six octal, four hexadecimal, and five decimal digits. As with the
charmap file, multi-byte characters are described in the locale definition file using ‘‘big-endian’’
notation for reasons of portability. There is no requirement that the internal representation in the
computer memory be in this same order.

One of the guidelines used for the development of this volume of POSIX.1-2008 is that
characters outside the invariant part of the ISO/IEC 646: 1991 standard should not be used in
portable specifications. The <backslash> character is not in the invariant part; the <number-
sign> is, but with multiple representations: as a <number-sign>, and as a hash sign. As far as
general usage of these symbols, they are covered by the ‘‘grandfather clause’’, but for newly
defined interfaces, the WG15 POSIX working group has requested that POSIX provide alternate
representations. Consequently, while the default escape character remains the <backslash> and
the default comment character is the <number-sign>, implementations are required to recognize
alternative representations, identified in the applicable source file via the <escape_char> and
<comment_char> keywords.

A.7.3.1 LC_CTYPE

The LC_CTYPE category is primarily used to define the encoding-independent aspects of a
character set, such as character classification. In addition, certain encoding-dependent
characteristics are also defined for an application via the LC_CTYPE category. POSIX.1-2008 does
not mandate that the encoding used in the locale is the same as the one used by the application
because an implementation may decide that it is advantageous to define locales in a system-
wide encoding rather than having multiple, logically identical locales in different encodings, and
to convert from the application encoding to the system-wide encoding on usage. Other
implementations could require encoding-dependent locales.

In either case, the LC_CTYPE attributes that are directly dependent on the encoding, such as
<mb_cur_max> and the display width of characters, are not user-specifiable in a locale source
and are consequently not defined as keywords.

Implementations may define additional keywords or extend the LC_CTYPE mechanism to allow
application-defined keywords.

The text ‘‘The ellipsis specification shall only be valid within a single encoded character set’’ is
present because it is possible to have a locale supported by multiple character encodings, as
explained in the rationale for XBD Section 6.1 (on page 125). An example given there is of a
possible Japanese-based locale supported by a mixture of the character sets JIS X 0201 Roman,
JIS X 0208, and JIS X 0201 Katakana. Attempting to express a range of characters across these sets
is not logical and the implementation is free to reject such attempts.

As the LC_CTYPE character classes are based on the ISO C standard character class definition,
the category does not support multi-character elements. For instance, the German character
<sharp-s> is traditionally classified as a lowercase letter. There is no corresponding uppercase
letter; in proper capitalization of German text, the <sharp-s> will be replaced by "SS"; that is, by
two characters. This kind of conversion is outside the scope of the toupper and tolower
keywords.

Where POSIX.1-2008 specifies that only certain characters can be specified, as for the keywords
digit and xdigit, the specified characters must be from the portable character set, as shown. As
an example, only the Arabic digits 0 through 9 are acceptable as digits.

The character classes digit, xdigit, lower, upper, and space have a set of automatically included
characters. These only need to be specified if the character values (that is, encoding) differs from
the implementation default values. It is not possible to define a locale without these
automatically included characters unless some implementation extension is used to prevent

3458 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

116094

116095

116096

116097

116098

116099

116100

116101

116102

116103

116104

116105

116106

116107

116108

116109

116110

116111

116112

116113

116114

116115

116116

116117

116118

116119

116120

116121

116122

116123

116124

116125

116126

116127

116128

116129

116130

116131

116132

116133

116134

116135

116136

116137

116138

116139

116140

Rationale for Base Definitions Locale

their inclusion. Such a definition would not be a proper superset of the C locale, and thus, it
might not be possible for the standard utilities to be implemented as programs conforming to
the ISO C standard.

The definition of character class digit requires that only ten characters—the ones defining
digits—can be specified; alternate digits (for example, Hindi or Kanji) cannot be specified here.
However, the encoding may vary if an implementation supports more than one encoding.

The definition of character class xdigit requires that the characters included in character class
digit are included here also and allows for different symbols for the hexadecimal digits 10
through 15.

The inclusion of the charclass keyword satisfies the following requirement from the
ISO POSIX-2: 1993 standard, Annex H.1:

(3) The LC_CTYPE (2.5.2.1) locale definition should be enhanced to allow user-specified additional
character classes, similar in concept to the ISO C standard Multibyte Support Extension (MSE)
iswctype () function.

This keyword was previously included in The Open Group specifications and is now mandated
in the Shell and Utilities volume of POSIX.1-2008.

The symbolic constant {CHARCLASS_NAME_MAX} was also adopted from The Open Group
specifications. Applications portability is enhanced by the use of symbolic constants.

A.7.3.2 LC_COLLATE

The rules governing collation depend to some extent on the use. At least five different levels of
increasingly complex collation rules can be distinguished:

1. Byte/machine code order: This is the historical collation order in the UNIX system and many
proprietary operating systems. Collation is here performed character by character,
without any regard to context. The primary virtue is that it usually is quite fast and also
completely deterministic; it works well when the native machine collation sequence
matches the user expectations.

2. Character order: On this level, collation is also performed character by character, without
regard to context. The order between characters is, however, not determined by the code
values, but on the expectations by the user of the ‘‘correct’’ order between characters. In
addition, such a (simple) collation order can specify that certain characters collate equally
(for example, uppercase and lowercase letters).

3. String ordering: On this level, entire strings are compared based on relatively
straightforward rules. Several ‘‘passes’’ may be required to determine the order between
two strings. Characters may be ignored in some passes, but not in others; the strings may
be compared in different directions; and simple string substitutions may be performed
before strings are compared. This level is best described as ‘‘dictionary’’ ordering; it is
based on the spelling, not the pronunciation, or meaning, of the words.

4. Text search ordering: This is a further refinement of the previous level, best described as
‘‘telephone book ordering’’; some common homonyms (words spelled differently but
with the same pronunciation) are collated together; numbers are collated as if they were
spelled out, and so on.

5. Semantic-level ordering: Words and strings are collated based on their meaning; entire
words (such as ‘‘the’’) are eliminated; the ordering is not deterministic. This usually
requires special software and is highly dependent on the intended use.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3459

116141

116142

116143

116144

116145

116146

116147

116148

116149

116150

116151

116152

116153

116154

116155

116156

116157

116158

116159

116160

116161

116162

116163

116164

116165

116166

116167

116168

116169

116170

116171

116172

116173

116174

116175

116176

116177

116178

116179

116180

116181

116182

116183

116184

Locale Rationale for Base Definitions

While the historical collation order formally is at level 1, for the English language it corresponds
roughly to elements at level 2. The user expects to see the output from the ls utility sorted very
much as it would be in a dictionary. While telephone book ordering would be an optimal goal
for standard collation, this was ruled out as the order would be language-dependent.
Furthermore, a requirement was that the order must be determined solely from the text string
and the collation rules; no external information (for example, ‘‘pronunciation dictionaries’’)
could be required.

As a result, the goal for the collation support is at level 3. This also matches the requirements for
the Canadian collation order, as well as other, known collation requirements for alphabetic
scripts. It specifically rules out collation based on pronunciation rules or based on semantic
analysis of the text.

The syntax for the LC_COLLATE category source meets the requirements for level 3 and has
been verified to produce the correct result with examples based on French, Canadian, and
Danish collation order. Because it supports multi-character collating elements, it is also capable
of supporting collation in codesets where a character is expressed using non-spacing characters
followed by the base character (such as the ISO/IEC 6937: 2001 standard).

The directives that can be specified in an operand to the order_start keyword are based on the
requirements specified in several proposed standards and in customary use. The following is a
rephrasing of rules defined for ‘‘lexical ordering in English and French’’ by the Canadian
Standards Association (the text in square brackets is rephrased):

• Once special characters [punctuation] have been removed from original strings, the
ordering is determined by scanning forwards (left to right) [disregarding case and
diacriticals].

• In case of equivalence, special characters are once again removed from original strings and
the ordering is determined by scanning backwards (starting from the rightmost character
of the string and back), character by character [disregarding case but considering
diacriticals].

• In case of repeated equivalence, special characters are removed again from original strings
and the ordering is determined by scanning forwards, character by character [considering
both case and diacriticals].

• If there is still an ordering equivalence after the first three rules have been applied, then
only special characters and the position they occupy in the string are considered to
determine ordering. The string that has a special character in the lowest position comes
first. If two strings have a special character in the same position, the character [with the
lowest collation value] comes first. In case of equality, the other special characters are
considered until there is a difference or until all special characters have been exhausted.

It is estimated that this part of POSIX.1-2008 covers the requirements for all European
languages, and no particular problems are anticipated with Slavic or Middle East character sets.

The Far East (particularly Japanese/Chinese) collations are often based on contextual
information and pronunciation rules (the same ideogram can have different meanings and
different pronunciations). Such collation, in general, falls outside the desired goal of
POSIX.1-2008. There are, however, several other collation rules (stroke/radical or ‘‘most
common pronunciation’’) that can be supported with the mechanism described here.

The character order is defined by the order in which characters and elements are specified
between the order_start and order_end keywords. Weights assigned to the characters and
elements define the collation sequence; in the absence of weights, the character order is also the
collation sequence.

3460 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

116185

116186

116187

116188

116189

116190

116191

116192

116193

116194

116195

116196

116197

116198

116199

116200

116201

116202

116203

116204

116205

116206

116207

116208

116209

116210

116211

116212

116213

116214

116215

116216

116217

116218

116219

116220

116221

116222

116223

116224

116225

116226

116227

116228

116229

116230

116231

Rationale for Base Definitions Locale

The position keyword provides the capability to consider, in a compare, the relative position of
characters not subject to IGNORE. As an example, consider the two strings "o-ring" and
"or-ing". Assuming the <hyphen> is subject to IGNORE on the first pass, the two strings
compare equal, and the position of the <hyphen> is immaterial. On second pass, all characters
except the <hyphen> are subject to IGNORE, and in the normal case the two strings would
again compare equal. By taking position into account, the first collates before the second.

A.7.3.3 LC_MONETARY

The currency symbol does not appear in LC_MONETARY because it is not defined in the C
locale of the ISO C standard.

The ISO C standard limits the size of decimal points and thousands delimiters to single-byte
values. In locales based on multi-byte coded character sets, this cannot be enforced;
POSIX.1-2008 does not prohibit such characters, but makes the behavior unspecified (in the text
‘‘In contexts where other standards ...’’).

The grouping specification is based on, but not identical to, the ISO C standard. The −1 indicates
that no further grouping is performed; the equivalent of {CHAR_MAX} in the ISO C standard.

The text ‘‘the value is not available in the locale’’ is taken from the ISO C standard and is used
instead of the ‘‘unspecified’’ text in early proposals. There is no implication that omitting these
keywords or assigning them values of "" or −1 produces unspecified results; such omissions or
assignments eliminate the effects described for the keyword or produce zero-length strings, as
appropriate.

The locale definition is an extension of the ISO C standard localeconv() specification. In
particular, rules on how currency_symbol is treated are extended to also cover int_curr_symbol,
and p_set_by_space and n_sep_by_space have been augmented with the value 2, which places
a <space> between the sign and the symbol. This has been updated to match the
ISO/IEC 9899: 1999 standard requirements and is an incompatible change from UNIX 98 and the
ISO POSIX-2 standard and the ISO POSIX-1: 1996 standard requirements. The following table
shows the result of various combinations:

p_sep_by_space

2 1 0

p_cs_precedes = 1 p_sign_posn = 0 ($1.25) ($ 1.25) ($1.25)
p_sign_posn = 1 + $1.25 +$ 1.25 +$1.25
p_sign_posn = 2 $1.25 + $ 1.25+ $1.25+
p_sign_posn = 3 + $1.25 +$ 1.25 +$1.25
p_sign_posn = 4 $ +1.25 $+ 1.25 $+1.25

p_cs_precedes = 0 p_sign_posn = 0 (1.25 $) (1.25 $) (1.25$)
p_sign_posn = 1 +1.25 $ +1.25 $ +1.25$
p_sign_posn = 2 1.25$ + 1.25 $+ 1.25$+
p_sign_posn = 3 1.25+ $ 1.25 +$ 1.25+$
p_sign_posn = 4 1.25$ + 1.25 $+ 1.25$+

The following is an example of the interpretation of the mon_grouping keyword. Assuming that
the value to be formatted is 123 456 789 and the mon_thousands_sep is <apostrophe>, then the
following table shows the result. The third column shows the equivalent string in the ISO C
standard that would be used by the localeconv() function to accommodate this grouping.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3461

116232

116233

116234

116235

116236

116237

116238

116239

116240

116241

116242

116243

116244

116245

116246

116247

116248

116249

116250

116251

116252

116253

116254

116255

116256

116257

116258

116259

116260

116261

116262

116263

116264

116265

116266

116267

116268

116269

116270

116271

116272

116273

116274

Locale Rationale for Base Definitions

mon_grouping Formatted Value ISO C String

3;−1 123456’789 "\3\177"
3 123’456’789 "\3"
3;2;−1 1234’56’789 "\3\2\177"
3;2 12’34’56’789 "\3\2"
−1 123456789 "\177"

In these examples, the octal value of {CHAR_MAX} is 177.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/6 adds a correction that permits the Euro
currency symbol and addresses extensibility. The correction is stated using the term ‘‘should’’
intentionally, in order to make this a recommendation rather than a restriction on
implementations. This allows for flexibility in implementations on how they handle future
currency symbol additions.

IEEE Std 1003.1-2001/Cor 1-2002, tem XBD/TC1/D6/5 is applied, adding the int_[np]_* values
to the POSIX locale definition of LC_MONETARY.

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/16 is applied, updating the descriptions
of p_sep_by_space, n_sep_by_space, int_p_sep_by_space, and int_n_sep_by_space to match
the description of these keywords in the ISO C standard and the System Interfaces volume of
POSIX.1-2008, localeconv().

A.7.3.4 LC_NUMERIC

See the rationale for LC_MONETARY for a description of the behavior of grouping.

A.7.3.5 LC_TIME

Although certain of the conversion specifications in the POSIX locale (such as the name of the
month) are shown with initial capital letters, this need not be the case in other locales. Programs
using these conversion specifications may need to adjust the capitalization if the output is going
to be used at the beginning of a sentence.

The LC_TIME descriptions of abday, day, mon, and abmon imply a Gregorian style calendar
(7-day weeks, 12-month years, leap years, and so on). Formatting time strings for other types of
calendars is outside the scope of POSIX.1-2008.

While the ISO 8601: 2004 standard numbers the weekdays starting with Monday, historical
practice is to use the Sunday as the first day. Rather than change the order and introduce
potential confusion, the days must be specified beginning with Sunday; previous references to
‘‘first day’’ have been removed. Note also that the Shell and Utilities volume of POSIX.1-2008
date utility supports numbering compliant with the ISO 8601: 2004 standard.

As specified under date in the Shell and Utilities volume of POSIX.1-2008 and strftime() in the
System Interfaces volume of POSIX.1-2008, the conversion specifications corresponding to the
optional keywords consist of a modifier followed by a traditional conversion specification (for
instance, %Ex). If the optional keywords are not supported by the implementation or are
unspecified for the current locale, these modified conversion specifications are treated as the
traditional conversion specifications. For example, assume the following keywords:

alt_digits "0th";"1st";"2nd";"3rd";"4th";"5th";\
"6th";"7th";"8th";"9th";"10th"

d_fmt "The %Od day of %B in %Y"

On July 4th 1776, the %x conversion specifications would result in "The 4th day of July

3462 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

116275

116276

116277

116278

116279

116280

116281

116282

116283

116284

116285

116286

116287

116288

116289

116290

116291

116292

116293

116294

116295

116296

116297

116298

116299

116300

116301

116302

116303

116304

116305

116306

116307

116308

116309

116310

116311

116312

116313

116314

116315

116316

116317

Rationale for Base Definitions Locale

in 1776", while on July 14th 1789 it would result in "The 14 day of July in 1789". It
can be noted that the above example is for illustrative purposes only; the %O modifier is
primarily intended to provide for Kanji or Hindi digits in date formats.

The following is an example for Japan that supports the current plus last three Emperors and
reverts to Western style numbering for years prior to the Meiji era. The example also allows for
the custom of using a special name for the first year of an era instead of using 1. (The examples
substitute romaji where kanji should be used.)

era_d_fmt "%EY%mgatsu%dnichi (%a)"

era "+:2:1990/01/01:+*:Heisei:%EC%Eynen";\
"+:1:1989/01/08:1989/12/31:Heisei:%ECgannen";\
"+:2:1927/01/01:1989/01/07:Shouwa:%EC%Eynen";\
"+:1:1926/12/25:1926/12/31:Shouwa:%ECgannen";\
"+:2:1913/01/01:1926/12/24:Taishou:%EC%Eynen";\
"+:1:1912/07/30:1912/12/31:Taishou:%ECgannen";\
"+:2:1869/01/01:1912/07/29:Meiji:%EC%Eynen";\
"+:1:1868/09/08:1868/12/31:Meiji:%ECgannen";\
"-:1868:1868/09/07:-*::%Ey"

Assuming that the current date is September 21, 1991, a request to date or strftime() would yield
the following results:

%Ec - Heisei3nen9gatsu21nichi (Sat) 14:39:26
%EC - Heisei
%Ex - Heisei3nen9gatsu21nichi (Sat)
%Ey - 3
%EY - Heisei3nen

Example era definitions for the Republic of China:

era "+:2:1913/01/01:+*:ChungHwaMingGuo:%EC%EyNen";\
"+:1:1912/1/1:1912/12/31:ChungHwaMingGuo:%ECYuenNen";\
"+:1:1911/12/31:-*:MingChien:%EC%EyNen"

Example definitions for the Christian Era:

era "+:1:0001/01/01:+*:AD:%EC %Ey";\
"+:1:-0001/12/31:-*:BC:%Ey %EC"

A.7.3.6 LC_MESSAGES

The yesstr and nostr locale keywords and the YESSTR and NOSTR langinfo items were formerly
used to match user affirmative and negative responses. In POSIX.1-2008, the yesexpr, noexpr,
YESEXPR, and NOEXPR extended regular expressions have replaced them. Applications
should use the general locale-based messaging facilities to issue prompting messages which
include sample desired responses.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3463

116318

116319

116320

116321

116322

116323

116324

116325

116326

116327

116328

116329

116330

116331

116332

116333

116334

116335

116336

116337

116338

116339

116340

116341

116342

116343

116344

116345

116346

116347

116348

116349

116350

116351

116352

116353

116354

Locale Rationale for Base Definitions

A.7.4 Locale Definition Grammar

There is no additional rationale provided for this section.

A.7.4.1 Locale Lexical Conventions

There is no additional rationale provided for this section.

A.7.4.2 Locale Grammar

There is no additional rationale provided for this section.

A.7.5 Locale Definition Example

The following is an example of a locale definition file that could be used as input to the localedef
utility. It assumes that the utility is executed with the −f option, naming a charmap file with (at
least) the following content:

CHARMAP
<space> \x20
<dollar> \x24
<A> \101
<a> \141
<A-acute> \346
<a-acute> \365
<A-grave> \300
<a-grave> \366
 \142
<C> \103
<c> \143
<c-cedilla> \347
<d> \x64
<H> \110
<h> \150
<eszet> \xb7
<s> \x73
<z> \x7a
END CHARMAP

It should not be taken as complete or to represent any actual locale, but only to illustrate the
syntax.

#
LC_CTYPE
lower <a>;;<c>;<c-cedilla>;<d>;...;<z>
upper A;B;C;Ç;...;Z
space \x20;\x09;\x0a;\x0b;\x0c;\x0d
blank \040;\011
toupper (<a>,<A>);(b,B);(c,C);(ç,Ç);(d,D);(z,Z)
END LC_CTYPE
#
LC_COLLATE
#

3464 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

116355

116356

116357

116358

116359

116360

116361

116362

116363

116364

116365

116366

116367

116368

116369

116370

116371

116372

116373

116374

116375

116376

116377

116378

116379

116380

116381

116382

116383

116384

116385

116386

116387

116388

116389

116390

116391

116392

116393

116394

116395

116396

116397

Rationale for Base Definitions Locale

The following example of collation is based on
Canadian standard Z243.4.1-1998, "Canadian Alphanumeric
Ordering Standard for Character Sets of CSA Z234.4 Standard".
(Other parts of this example locale definition file do not
purport to relate to Canada, or to any other real culture.)
The proposed standard defines a 4-weight collation, such that
in the first pass, characters are compared without regard to
case or accents; in the second pass, backwards-compare without
regard to case; in the third pass, forwards-compare without
regard to diacriticals. In the 3 first passes, non-alphabetic
characters are ignored; in the fourth pass, only special
characters are considered, such that "The string that has a
special character in the lowest position comes first. If two
strings have a special character in the same position, the
collation value of the special character determines ordering.
#
Only a subset of the character set is used here; mostly to
illustrate the set-up.
#
collating-symbol <NULL>
collating-symbol <LOW_VALUE>
collating-symbol <LOWER-CASE>
collating-symbol <SUBSCRIPT-LOWER>
collating-symbol <SUPERSCRIPT-LOWER>
collating-symbol <UPPER-CASE>
collating-symbol <NO-ACCENT>
collating-symbol <PECULIAR>
collating-symbol <LIGATURE>
collating-symbol <ACUTE>
collating-symbol <GRAVE>
Further collating-symbols follow.
#
Properly, the standard does not include any multi-character
collating elements; the one below is added for completeness.
#
collating_element <ch> from "<c><h>"
collating_element <CH> from "<C><H>"
collating_element <Ch> from "<C><h>"
#
order_start forward;backward;forward;forward,position
#
Collating symbols are specified first in the sequence to allocate
basic collation values to them, lower than that of any character.
<NULL>
<LOW_VALUE>
<LOWER-CASE>
<SUBSCRIPT-LOWER>
<SUPERSCRIPT-LOWER>
<UPPER-CASE>
<NO-ACCENT>
<PECULIAR>
<LIGATURE>
<ACUTE>

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3465

116398

116399

116400

116401

116402

116403

116404

116405

116406

116407

116408

116409

116410

116411

116412

116413

116414

116415

116416

116417

116418

116419

116420

116421

116422

116423

116424

116425

116426

116427

116428

116429

116430

116431

116432

116433

116434

116435

116436

116437

116438

116439

116440

116441

116442

116443

116444

116445

116446

116447

116448

116449

116450

Locale Rationale for Base Definitions

<GRAVE>
<RING-ABOVE>
<DIAERESIS>
<TILDE>
Further collating symbols are given a basic collating value here.
#
Here follow special characters.
<space> IGNORE;IGNORE;IGNORE;<space>
Other special characters follow here.
#
Here follow the regular characters.
<a> <a>;<NO-ACCENT>;<LOWER-CASE>;IGNORE
<A> <a>;<NO-ACCENT>;<UPPER-CASE>;IGNORE
<a-acute> <a>;<ACUTE>;<LOWER-CASE>;IGNORE
<A-acute> <a>;<ACUTE>;<UPPER-CASE>;IGNORE
<a-grave> <a>;<GRAVE>;<LOWER-CASE>;IGNORE
<A-grave> <a>;<GRAVE>;<UPPER-CASE>;IGNORE
<ae> "<a><e>";"<LIGATURE><LIGATURE>";\

"<LOWER-CASE><LOWER-CASE>";IGNORE
<AE> "<a><e>";"<LIGATURE><LIGATURE>";\

"<UPPER-CASE><UPPER-CASE>";IGNORE
 ;<NO-ACCENT>;<LOWER-CASE>;IGNORE
 ;<NO-ACCENT>;<UPPER-CASE>;IGNORE
<c> <c>;<NO-ACCENT>;<LOWER-CASE>;IGNORE
<C> <c>;<NO-ACCENT>;<UPPER-CASE>;IGNORE
<ch> <ch>;<NO-ACCENT>;<LOWER-CASE>;IGNORE
<Ch> <ch>;<NO-ACCENT>;<PECULIAR>;IGNORE
<CH> <ch>;<NO-ACCENT>;<UPPER-CASE>;IGNORE
#
As an example, the strings "Bach" and "bach" could be encoded (for
compare purposes) as:
"Bach" ;<a>;<ch>;<LOW_VALUE>;<NO_ACCENT>;<NO_ACCENT>;\
<NO_ACCENT>;<LOW_VALUE>;<UPPER-CASE>;<LOWER-CASE>;\
<LOWER-CASE>;<NULL>
"bach" ;<a>;<ch>;<LOW_VALUE>;<NO_ACCENT>;<NO_ACCENT>;\
<NO_ACCENT>;<LOW_VALUE>;<LOWER-CASE>;<LOWER-CASE>;\
<LOWER-CASE>;<NULL>
#
The two strings are equal in pass 1 and 2, but differ in pass 3.
#
Further characters follow.
#
UNDEFINED IGNORE;IGNORE;IGNORE;IGNORE
#
order_end
#
END LC_COLLATE
#
LC_MONETARY
int_curr_symbol "USD "
currency_symbol "$"
mon_decimal_point "."
mon_grouping 3;0

3466 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

116451

116452

116453

116454

116455

116456

116457

116458

116459

116460

116461

116462

116463

116464

116465

116466

116467

116468

116469

116470

116471

116472

116473

116474

116475

116476

116477

116478

116479

116480

116481

116482

116483

116484

116485

116486

116487

116488

116489

116490

116491

116492

116493

116494

116495

116496

116497

116498

116499

116500

116501

116502

116503

Rationale for Base Definitions Locale

positive_sign ""
negative_sign "-"
p_cs_precedes 1
n_sign_posn 0
END LC_MONETARY
#
LC_NUMERIC
copy "US_en.ASCII"
END LC_NUMERIC
#
LC_TIME
abday "Sun";"Mon";"Tue";"Wed";"Thu";"Fri";"Sat"
#
day "Sunday";"Monday";"Tuesday";"Wednesday";\

"Thursday";"Friday";"Saturday"
#
abmon "Jan";"Feb";"Mar";"Apr";"May";"Jun";\

"Jul";"Aug";"Sep";"Oct";"Nov";"Dec"
#
mon "January";"February";"March";"April";\

"May";"June";"July";"August";"September";\
"October";"November";"December"

#
d_t_fmt "%a %b %d %T %Z %Y\n"
END LC_TIME
#
LC_MESSAGES
yesexpr "ˆ([yY][[:alpha:]]*)|(OK)"
#
noexpr "ˆ[nN][[:alpha:]]*"
END LC_MESSAGES

A.8 Environment Variables

A.8.1 Environment Variable Definition

The variable environ is not intended to be declared in any header, but rather to be declared by
the user for accessing the array of strings that is the environment. This is the traditional usage of
the symbol. Putting it into a header could break some programs that use the symbol for their
own purposes.

The decision to restrict conforming systems to the use of digits, uppercase letters, and
underscores for environment variable names allows applications to use lowercase letters in their
environment variable names without conflicting with any conforming system.

In addition to the obvious conflict with the shell syntax for positional parameter substitution,
some historical applications (including some shells) exclude names with leading digits from the
environment.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3467

116504

116505

116506

116507

116508

116509

116510

116511

116512

116513

116514

116515

116516

116517

116518

116519

116520

116521

116522

116523

116524

116525

116526

116527

116528

116529

116530

116531

116532

116533

116534

116535

116536

116537

116538

116539

116540

116541

116542

116543

116544

116545

116546

Environment Variables Rationale for Base Definitions

A.8.2 Internationalization Variables

Utilities conforming to the Shell and Utilities volume of POSIX.1-2008 and written in standard C
can access the locale variables by issuing the following call:

setlocale(LC_ALL, "")

If this were omitted, the ISO C standard specifies that the C locale would be used.

The DESCRIPTION of setlocale() requires that when setting all categories of a locale, if the value
of any of the environment variable searches yields a locale that is not supported (and non-null),
the setlocale() function returns a null pointer and the locale of the process is unchanged.

For the standard utilities, if any of the environment variables are invalid, it makes sense to
default to an implementation-defined, consistent locale environment. It is more confusing for a
user to have partial settings occur in case of a mistake. All utilities would then behave in one
language/cultural environment. Furthermore, it provides a way of forcing the whole
environment to be the implementation-defined default. Disastrous results could occur if a
pipeline of utilities partially uses the environment variables in different ways. In this case, it
would be appropriate for utilities that use LANG and related variables to exit with an error if
any of the variables are invalid. For example, users typing individual commands at a terminal
might want date to work if LC_MONETARY is invalid as long as LC_TIME is valid. Since these
are conflicting reasonable alternatives, POSIX.1-2008 leaves the results unspecified if the locale
environment variables would not produce a complete locale matching the specification of the
user.

The locale settings of individual categories cannot be truly independent and still guarantee
correct results. For example, when collating two strings, characters must first be extracted from
each string (governed by LC_CTYPE) before being mapped to collating elements (governed by
LC_COLLATE) for comparison. That is, if LC_CTYPE is causing parsing according to the rules of
a large, multi-byte code set (potentially returning 20 000 or more distinct character codeset
values), but LC_COLLATE is set to handle only an 8-bit codeset with 256 distinct characters,
meaningful results are obviously impossible.

The LC_MESSAGES variable affects the language of messages generated by the standard
utilities.

The description of the environment variable names starting with the characters ‘‘LC_’’
acknowledges the fact that the interfaces presented may be extended as new international
functionality is required. In the ISO C standard, names preceded by ‘‘LC_’’ are reserved in the
name space for future categories.

To avoid name clashes, new categories and environment variables are divided into two
classifications: ‘‘implementation-independent’’ and ‘‘implementation-defined’’.

Implementation-independent names will have the following format:

LC_NAME

where NAME is the name of the new category and environment variable. Capital letters must be
used for implementation-independent names.

Implementation-defined names must be in lowercase letters, as below:

LC_name

3468 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

116547

116548

116549

116550

116551

116552

116553

116554

116555

116556

116557

116558

116559

116560

116561

116562

116563

116564

116565

116566

116567

116568

116569

116570

116571

116572

116573

116574

116575

116576

116577

116578

116579

116580

116581

116582

116583

116584

116585

116586

116587

Rationale for Base Definitions Environment Variables

A.8.3 Other Environment Variables

COLUMNS, LINES

The default values for the number of column positions, COLUMNS, and screen height, LINES,
are unspecified because historical implementations use different methods to determine values
corresponding to the size of the screen in which the utility is run. This size is typically known to
the implementation through the value of TERM, or by more elaborate methods such as
extensions to the stty utility or knowledge of how the user is dynamically resizing windows on a
bit-mapped display terminal. Users should not need to set these variables in the environment
unless there is a specific reason to override the default behavior of the implementation, such as
to display data in an area arbitrarily smaller than the terminal or window. Values for these
variables that are not decimal integers greater than zero are implicitly undefined values; it is
unnecessary to enumerate all of the possible values outside of the acceptable set.

LOGNAME

In most implementations, the value of such a variable is easily forged, so security-critical
applications should rely on other means of determining user identity. LOGNAME is required to
be constructed from the portable filename character set for reasons of interchange. No diagnostic
condition is specified for violating this rule, and no requirement for enforcement exists. The
intent of the requirement is that if extended characters are used, the ‘‘guarantee’’ of portability
implied by a standard is void.

PATH

Many historical implementations of the Bourne shell do not interpret a trailing <colon> to
represent the current working directory and are thus non-conforming. The C Shell and the
KornShell conform to POSIX.1-2008 on this point. The usual name of dot may also be used to
refer to the current working directory.

Many implementations historically have used a default value of /bin and /usr/bin for the PA TH
variable. POSIX.1-2008 does not mandate this default path be identical to that retrieved from
getconf PATH because it is likely that the standardized utilities may be provided in another
directory separate from the directories used by some historical applications.

SHELL

The SHELL variable names the preferred shell of the user; it is a guide to applications. There is
no direct requirement that that shell conform to POSIX.1-2008; that decision should rest with the
user. It is the intention of the standard developers that alternative shells be permitted, if the user
chooses to develop or acquire one. An operating system that builds its shell into the ‘‘kernel’’ in
such a manner that alternative shells would be impossible does not conform to the spirit of
POSIX.1-2008.

TZ

The quoted form of the timezone variable allows timezone names of the form UTC+1 (or any
name that contains the character plus (’+’), the character minus (’−’), or digits), which may be
appropriate for countries that do not have an official timezone name. It would be coded as
<UTC+1>+1<UTC+2>, which would cause std to have a value of UTC+1 and dst a value of
UTC+2, each with a length of 5 characters. This does not appear to conflict with any existing
usage. The characters ’<’ and ’>’ were chosen for quoting because they are easier to parse
visually than a quoting character that does not provide some sense of bracketing (and in a string
like this, such bracketing is helpful). They were also chosen because they do not need special
treatment when assigning to the TZ variable. Users are often confused by embedding quotes in a

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3469

116588

116589

116590

116591

116592

116593

116594

116595

116596

116597

116598

116599

116600

116601

116602

116603

116604

116605

116606

116607

116608

116609

116610

116611

116612

116613

116614

116615

116616

116617

116618

116619

116620

116621

116622

116623

116624

116625

116626

116627

116628

116629

116630

116631

116632

Environment Variables Rationale for Base Definitions

string. Because ’<’ and ’>’ are meaningful to the shell, the whole string would have to be
quoted, but that is easily explained. (Parentheses would have presented the same problems.)
Although the ’>’ symbol could have been permitted in the string by either escaping it or
doubling it, it seemed of little value to require that. This could be provided as an extension if
there was a need. Timezone names of this new form lead to a requirement that the value of
{_POSIX_TZNAME_MAX} change from 3 to 6.

Since the TZ environment variable is usually inherited by all applications started by a user after
the value of the TZ environment variable is changed and since many applications run using the
C or POSIX locale, using characters that are not in the portable character set in the std and dst
fields could cause unexpected results.

The format of the TZ environment variable is changed in Issue 6 to allow for the quoted form, as
defined in earlier versions of the ISO POSIX-1 standard.

IEEE Std 1003.1-2001/Cor 1-2002, item XBD/TC1/D6/7 is applied, adding the ctime_r() and
localtime_r() functions to the list of functions that use the TZ environment variable.

A.9 Regular Expressions

Rather than repeating the description of REs for each utility supporting REs, the standard
developers preferred a common, comprehensive description of regular expressions in one place.
The most common behavior is described here, and exceptions or extensions to this are
documented for the respective utilities, as appropriate.

The BRE corresponds to the ed or historical grep type, and the ERE corresponds to the historical
egrep type (now grep −E).

The text is based on the ed description and substantially modified, primarily to aid developers
and others in the understanding of the capabilities and limitations of REs. Much of this was
influenced by internationalization requirements.

It should be noted that the definitions in this section do not cover the tr utility; the tr syntax does
not employ REs.

The specification of REs is particularly important to internationalization because pattern
matching operations are very basic operations in business and other operations. The syntax and
rules of REs are intended to be as intuitive as possible to make them easy to understand and use.
The historical rules and behavior do not provide that capability to non-English language users,
and do not provide the necessary support for commonly used characters and language
constructs. It was necessary to provide extensions to the historical RE syntax and rules to
accommodate other languages.

As they are limited to bracket expressions, the rationale for these modifications is in XBD Section
9.3.5 (on page 184).

3470 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

116633

116634

116635

116636

116637

116638

116639

116640

116641

116642

116643

116644

116645

116646

116647

116648

116649

116650

116651

116652

116653

116654

116655

116656

116657

116658

116659

116660

116661

116662

116663

116664

116665

116666

116667

Rationale for Base Definitions Regular Expressions

A.9.1 Regular Expression Definitions

It is possible to determine what strings correspond to subexpressions by recursively applying
the leftmost longest rule to each subexpression, but only with the proviso that the overall match
is leftmost longest. For example, matching "\(ac*\)c*d[ac]*\1" against acdacaaa matches
acdacaaa (with \1=a); simply matching the longest match for "\(ac*\)" would yield \1=ac, but
the overall match would be smaller (acdac). Conceptually, the implementation must examine
every possible match and among those that yield the leftmost longest total matches, pick the one
that does the longest match for the leftmost subexpression, and so on. Note that this means that
matching by subexpressions is context-dependent: a subexpression within a larger RE may
match a different string from the one it would match as an independent RE, and two instances of
the same subexpression within the same larger RE may match different lengths even in similar
sequences of characters. For example, in the ERE "(a.*b)(a.*b)", the two identical
subexpressions would match four and six characters, respectively, of accbaccccb.

The definition of single character has been expanded to include also collating elements
consisting of two or more characters; this expansion is applicable only when a bracket
expression is included in the BRE or ERE. An example of such a collating element may be the
Dutch ij, which collates as a ’y’. In some encodings, a ligature ‘‘i with j’’ exists as a character
and would represent a single-character collating element. In another encoding, no such ligature
exists, and the two-character sequence ij is defined as a multi-character collating element.
Outside brackets, the ij is treated as a two-character RE and matches the same characters in a
string. Historically, a bracket expression only matched a single character. The ISO POSIX-2: 1993
standard required bracket expressions like "[ˆ[:lower:]]" to match multi-character collating
elements such as "ij". However, this requirement led to behavior that many users did not
expect and that could not feasibly be mimicked in user code, and it was rarely if ever
implemented correctly. The current standard leaves it unspecified whether a bracket expression
matches a multi-character collating element, allowing both historical and ISO POSIX-2: 1993
standard implementations to conform.

Also, in the current standard, it is unspecified whether character class expressions like
"[:lower:]" can include multi-character collating elements like "ij"; hence
"[[:lower:]]" can match "ij", and "[ˆ[:lower:]]" can fail to match "ij". Common
practice is for a character class expression to match a collating element if it matches the collating
element’s first character.

A.9.2 Regular Expression General Requirements

The definition of which sequence is matched when several are possible is based on the leftmost-
longest rule historically used by deterministic recognizers. This rule is easier to define and
describe, and arguably more useful, than the first-match rule historically used by non-
deterministic recognizers. It is thought that dependencies on the choice of rule are rare; carefully
contrived examples are needed to demonstrate the difference.

A formal expression of the leftmost-longest rule is:

The search is performed as if all possible suffixes of the string were tested for a prefix
matching the pattern; the longest suffix containing a matching prefix is chosen, and the
longest possible matching prefix of the chosen suffix is identified as the matching
sequence.

Historically, most RE implementations only match lines, not strings. However, that is more an
effect of the usage than of an inherent feature of REs themselves. Consequently, POSIX.1-2008
does not regard <newline> characters as special; they are ordinary characters, and both a

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3471

116668

116669

116670

116671

116672

116673

116674

116675

116676

116677

116678

116679

116680

116681

116682

116683

116684

116685

116686

116687

116688

116689

116690

116691

116692

116693

116694

116695

116696

116697

116698

116699

116700

116701

116702

116703

116704

116705

116706

116707

116708

116709

116710

116711

116712

116713

Regular Expressions Rationale for Base Definitions

<period> and a non-matching list can match them. Those utilities (like grep) that do not allow
<newline> characters to match are responsible for eliminating any <newline> from strings
before matching against the RE. The regcomp() function, however, can provide support for such
processing without violating the rules of this section.

Some implementations of egrep have had very limited flexibility in handling complex EREs.
POSIX.1-2008 does not attempt to define the complexity of a BRE or ERE, but does place a lower
limit on it—any RE must be handled, as long as it can be expressed in 256 bytes or less. (Of
course, this does not place an upper limit on the implementation.) There are historical programs
using a non-deterministic-recognizer implementation that should have no difficulty with this
limit. It is possible that a good approach would be to attempt to use the faster, but more limited,
deterministic recognizer for simple expressions and to fall back on the non-deterministic
recognizer for those expressions requiring it. Non-deterministic implementations must be
careful to observe the rules on which match is chosen; the longest match, not the first match,
starting at a given character is used.

The term ‘‘invalid’’ highlights a difference between this section and some others: POSIX.1-2008
frequently avoids mandating of errors for syntax violations because they can be used by
implementors to trigger extensions. However, the authors of the internationalization features of
REs wanted to mandate errors for certain conditions to identify usage problems or non-portable
constructs. These are identified within this rationale as appropriate. The remaining syntax
violations have been left implicitly or explicitly undefined. For example, the BRE construct
"\{1,2,3\}" does not comply with the grammar. A conforming application cannot rely on it
producing an error nor matching the literal characters "\{1,2,3\}".

The term ‘‘undefined’’ was used in favor of ‘‘unspecified’’ because many of the situations are
considered errors on some implementations, and the standard developers considered that
consistency throughout the section was preferable to mixing undefined and unspecified.

A.9.3 Basic Regular Expressions

There is no additional rationale provided for this section.

A.9.3.1 BREs Matching a Single Character or Collating Element

There is no additional rationale provided for this section.

A.9.3.2 BRE Ordinary Characters

There is no additional rationale provided for this section.

A.9.3.3 BRE Special Characters

There is no additional rationale provided for this section.

A.9.3.4 Periods in BREs

There is no additional rationale provided for this section.

3472 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

116714

116715

116716

116717

116718

116719

116720

116721

116722

116723

116724

116725

116726

116727

116728

116729

116730

116731

116732

116733

116734

116735

116736

116737

116738

116739

116740

116741

116742

116743

116744

116745

116746

116747

116748

Rationale for Base Definitions Regular Expressions

A.9.3.5 RE Bracket Expression

Range expressions are, historically, an integral part of REs. However, the requirements of
‘‘natural language behavior’’ and portability do conflict. In the POSIX locale, ranges must be
treated according to the collating sequence and include such characters that fall within the range
based on that collating sequence, regardless of character values. In other locales, ranges have
unspecified behavior.

Some historical implementations allow range expressions where the ending range point of one
range is also the starting point of the next (for instance, "[a−m−o]"). This behavior should not
be permitted, but to avoid breaking historical implementations, it is now undefined whether it is
a valid expression and how it should be interpreted.

Current practice in awk and lex is to accept escape sequences in bracket expressions as per XBD
Table 5-1 (on page 121), while the normal ERE behavior is to regard such a sequence as
consisting of two characters. Allowing the awk/lex behavior in EREs would change the normal
behavior in an unacceptable way; it is expected that awk and lex will decode escape sequences in
EREs before passing them to regcomp() or comparable routines. Each utility describes the escape
sequences it accepts as an exception to the rules in this section; the list is not the same, for
historical reasons.

As noted previously, the new syntax and rules have been added to accommodate other
languages than English. The remainder of this section describes the rationale for these
modifications.

In the POSIX locale, a regular expression that starts with a range expression matches a set of
strings that are contiguously sorted, but this is not necessarily true in other locales. For example,
a French locale might have the following behavior:

$ ls
alpha Alpha estimé ESTIMÉ été eurêka
$ ls [a-e]*
alpha Alpha estimé eurêka

Such disagreements between matching and contiguous sorting are unavoidable because POSIX
sorting cannot be implemented in terms of a deterministic finite-state automaton (DFA), but
range expressions by design are implementable in terms of DFAs.

Historical implementations used native character order to interpret range expressions. The
ISO POSIX-2: 1993 standard instead required collating element order (CEO): the order that
collating elements were specified between the order_start and order_end keywords in the
LC_COLLATE category of the current locale. CEO had some advantages in portability over the
native character order, but it also had some disadvantages:

• CEO could not feasibly be mimicked in user code, leading to inconsistencies between
POSIX matchers and matchers in popular user programs like Emacs, ksh, and Perl.

• CEO caused range expressions to match accented and capitalized letters contrary to many
users’ expectations. For example, "[a-e]" typically matched both ’E’ and ’á’ but
neither ’A’ nor ’é’.

• CEO was not consistent across implementations. In practice, CEO was often less portable
than native character order. For example, it was common for the CEOs of two
implementation-supplied locales to disagree, even if both locales were named "da_DK".

Because of these problems, some implementations of regular expressions continued to use native
character order. Others used the collation sequence, which is more consistent with sorting than
either CEO or native order, but which departs further from the traditional POSIX semantics
because it generally requires "[a-e]" to match either ’A’ or ’E’ but not both. As a result of

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3473

116749

116750

116751

116752

116753

116754

116755

116756

116757

116758

116759

116760

116761

116762

116763

116764

116765

116766

116767

116768

116769

116770

116771

116772

116773

116774

116775

116776

116777

116778

116779

116780

116781

116782

116783

116784

116785

116786

116787

116788

116789

116790

116791

116792

116793

116794

116795

Regular Expressions Rationale for Base Definitions

this kind of implementation variation, programmers who wanted to write portable regular
expressions could not rely on the ISO POSIX-2: 1993 standard guarantees in practice.

While revising the standard, lengthy consideration was given to proposals to attack this problem
by adding an API for querying the CEO to allow user-mode matchers, but none of these
proposals had implementation experience and none achieved consensus. Leaving the standard
alone was also considered, but rejected due to the problems described above.

The current standard leaves unspecified the behavior of a range expression outside the POSIX
locale. This makes it clearer that conforming applications should avoid range expressions
outside the POSIX locale, and it allows implementations and compatible user-mode matchers to
interpret range expressions using native order, CEO, collation sequence, or other, more
advanced techniques. The concerns which led to this change were raised in IEEE PASC
interpretation 1003.2 #43 and others, and related to ambiguities in the specification of how
multi-character collating elements should be handled in range expressions. These ambiguities
had led to multiple interpretations of the specification, in conflicting ways, which led to varying
implementations. As noted above, efforts were made to resolve the differences, but no solution
has been found that would be specific enough to allow for portable software while not
invalidating existing implementations.

The standard developers recognize that collating elements are important, such elements being
common in several European languages; for example, ’ch’ or ’ll’ in traditional Spanish;
’aa’ in several Scandinavian languages. Existing internationalized implementations have
processed, and continue to process, these elements in range expressions. Efforts are expected to
continue in the future to find a way to define the behavior of these elements precisely and
portably.

The ISO POSIX-2: 1993 standard required "[b-a]" to be an invalid expression in the POSIX
locale, but this requirement has been relaxed in this version of the standard so that "[b-a]" can
instead be treated as a valid expression that does not match any string.

A.9.3.6 BREs Matching Multiple Characters

The limit of nine back-references to subexpressions in the RE is based on the use of a single-digit
identifier; increasing this to multiple digits would break historical applications. This does not
imply that only nine subexpressions are allowed in REs. The following is a valid BRE with ten
subexpressions:

\(\(\(ab\)*c\)*d\)\(ef\)*\(gh\)\{2\}\(ij\)*\(kl\)*\(mn\)*\(op\)*\(qr\)*

The standard developers regarded the common historical behavior, which supported "\n*", but
not "\n\{min,max\}", "\(...\)*", or "\(...\)\{min,max\}", as a non-intentional
result of a specific implementation, and they supported both duplication and interval
expressions following subexpressions and back-references.

The changes to the processing of the back-reference expression remove an unspecified or
ambiguous behavior in the Shell and Utilities volume of POSIX.1-2008, aligning it with the
requirements specified for the regcomp() expression, and is the result of PASC Interpretation
1003.2-92 #43 submitted for the ISO POSIX-2: 1993 standard.

3474 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

116796

116797

116798

116799

116800

116801

116802

116803

116804

116805

116806

116807

116808

116809

116810

116811

116812

116813

116814

116815

116816

116817

116818

116819

116820

116821

116822

116823

116824

116825

116826

116827

116828

116829

116830

116831

116832

116833

116834

116835

Rationale for Base Definitions Regular Expressions

A.9.3.7 BRE Precedence

There is no additional rationale provided for this section.

A.9.3.8 BRE Expression Anchoring

Often, the <dollar-sign> is viewed as matching the ending <newline> in text files. This is not
strictly true; the <newline> is typically eliminated from the strings to be matched, and the
<dollar-sign> matches the terminating null character.

The ability of ’ˆ’, ’$’, and ’*’ to be non-special in certain circumstances may be confusing to
some programmers, but this situation was changed only in a minor way from historical practice
to avoid breaking many historical scripts. Some consideration was given to making the use of
the anchoring characters undefined if not escaped and not at the beginning or end of strings.
This would cause a number of historical BREs, such as "2ˆ10", "$HOME", and "$1.35", that
relied on the characters being treated literally, to become invalid.

However, one relatively uncommon case was changed to allow an extension used on some
implementations. Historically, the BREs "ˆfoo" and "\(ˆfoo\)" did not match the same
string, despite the general rule that subexpressions and entire BREs match the same strings. To
increase consensus, POSIX.1-2008 has allowed an extension on some implementations to treat
these two cases in the same way by declaring that anchoring may occur at the beginning or end
of a subexpression. Therefore, portable BREs that require a literal <circumflex> at the beginning
or a <dollar-sign> at the end of a subexpression must escape them. Note that a BRE such as
"a\(ˆbc\)" will either match "aˆbc" or nothing on different systems under the rules.

ERE anchoring has been different from BRE anchoring in all historical systems. An unescaped
anchor character has never matched its literal counterpart outside a bracket expression. Some
implementations treated "foo$bar" as a valid expression that never matched anything; others
treated it as invalid. POSIX.1-2008 mandates the former, valid unmatched behavior.

Some implementations have extended the BRE syntax to add alternation. For example, the
subexpression "\(foo$\|bar\)" would match either "foo" at the end of the string or "bar"
anywhere. The extension is triggered by the use of the undefined "\|" sequence. Because the
BRE is undefined for portable scripts, the extending system is free to make other assumptions,
such that the ’$’ represents the end-of-line anchor in the middle of a subexpression. If it were
not for the extension, the ’$’ would match a literal <dollar-sign> under the rules.

A.9.4 Extended Regular Expressions

As with BREs, the standard developers decided to make the interpretation of escaped ordinary
characters undefined.

The <right-parenthesis> is not listed as an ERE special character because it is only special in the
context of a preceding <left-parenthesis>. If found without a preceding <left-parenthesis>, the
<right-parenthesis> has no special meaning.

The interval expression, "{m,n}", has been added to EREs. Historically, the interval expression
has only been supported in some ERE implementations. The standard developers estimated that
the addition of interval expressions to EREs would not decrease consensus and would also make
BREs more of a subset of EREs than in many historical implementations.

It was suggested that, in addition to interval expressions, back-references (’\n’) should also be
added to EREs. This was rejected by the standard developers as likely to decrease consensus.

In historical implementations, multiple duplication symbols are usually interpreted from left to
right and treated as additive. As an example, "a+*b" matches zero or more instances of ’a’

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3475

116836

116837

116838

116839

116840

116841

116842

116843

116844

116845

116846

116847

116848

116849

116850

116851

116852

116853

116854

116855

116856

116857

116858

116859

116860

116861

116862

116863

116864

116865

116866

116867

116868

116869

116870

116871

116872

116873

116874

116875

116876

116877

116878

116879

Regular Expressions Rationale for Base Definitions

followed by a ’b’. In POSIX.1-2008, multiple duplication symbols are undefined; that is, they
cannot be relied upon for conforming applications. One reason for this is to provide some scope
for future enhancements.

The precedence of operations differs between EREs and those in lex; in lex, for historical reasons,
interval expressions have a lower precedence than concatenation.

A.9.4.1 EREs Matching a Single Character or Collating Element

There is no additional rationale provided for this section.

A.9.4.2 ERE Ordinary Characters

There is no additional rationale provided for this section.

A.9.4.3 ERE Special Characters

There is no additional rationale provided for this section.

A.9.4.4 Periods in EREs

There is no additional rationale provided for this section.

A.9.4.5 ERE Bracket Expression

There is no additional rationale provided for this section.

A.9.4.6 EREs Matching Multiple Characters

There is no additional rationale provided for this section.

A.9.4.7 ERE Alternation

There is no additional rationale provided for this section.

A.9.4.8 ERE Precedence

There is no additional rationale provided for this section.

A.9.4.9 ERE Expression Anchoring

There is no additional rationale provided for this section.

3476 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

116880

116881

116882

116883

116884

116885

116886

116887

116888

116889

116890

116891

116892

116893

116894

116895

116896

116897

116898

116899

116900

116901

116902

Rationale for Base Definitions Regular Expressions

A.9.5 Regular Expression Grammar

The grammars are intended to represent the range of acceptable syntaxes available to
conforming applications. There are instances in the text where undefined constructs are
described; as explained previously, these allow implementation extensions. There is no intended
requirement that an implementation extension must somehow fit into the grammars shown
here.

The BRE grammar does not permit L_ANCHOR or R_ANCHOR inside "\(" and "\)" (which
implies that ’ˆ’ and ’$’ are ordinary characters). This reflects the semantic limits on the
application, as noted in XBD Section 9.3.8 (on page 187). Implementations are permitted to
extend the language to interpret ’ˆ’ and ’$’ as anchors in these locations, and as such,
conforming applications cannot use unescaped ’ˆ’ and ’$’ in positions inside "\(" and "\)"
that might be interpreted as anchors.

The ERE grammar does not permit several constructs that XBD Section 9.4.2 (on page 188) and
Section 9.4.3 (on page 188) specify as having undefined results:

• ORD_CHAR preceded by <backslash>

• ERE_dupl_symbol(s) appearing first in an ERE, or immediately following ’|’, ’ˆ’, or ’(’

• ’{’ not part of a valid ERE_dupl_symbol

• ’|’ appearing first or last in an ERE, or immediately following ’|’ or ’(’, or
immediately preceding ’)’

Implementations are permitted to extend the language to allow these. Conforming applications
cannot use such constructs.

A.9.5.1 BRE/ERE Grammar Lexical Conventions

There is no additional rationale provided for this section.

A.9.5.2 RE and Bracket Expression Grammar

The removal of the Back_open_paren Back_close_paren option from the nondupl_RE specification is
the result of PASC Interpretation 1003.2-92 #43 submitted for the ISO POSIX-2: 1993 standard.
Although the grammar required support for null subexpressions, this section does not describe
the meaning of, and historical practice did not support, this construct.

A.9.5.3 ERE Grammar

There is no additional rationale provided for this section.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3477

116903

116904

116905

116906

116907

116908

116909

116910

116911

116912

116913

116914

116915

116916

116917

116918

116919

116920

116921

116922

116923

116924

116925

116926

116927

116928

116929

116930

116931

116932

Directory Structure and Devices Rationale for Base Definitions

A.10 Directory Structure and Devices

A.10.1 Directory Structure and Files

A description of the historical /usr/tmp was omitted, removing any concept of differences in
emphasis between the / and /usr directories. The descriptions of /bin, /usr/bin, /lib, and /usr/lib
were omitted because they are not useful for applications. In an early draft, a distinction was
made between system and application directory usage, but this was not found to be useful.

The directories / and /dev are included because the notion of a hierarchical directory structure is
key to other information presented elsewhere in POSIX.1-2008. In early drafts, it was argued that
special devices and temporary files could conceivably be handled without a directory structure
on some implementations. For example, the system could treat the characters "/tmp" as a
special token that would store files using some non-POSIX file system structure. This notion was
rejected by the standard developers, who required that all the files in this section be
implemented via POSIX file systems.

The /tmp directory is retained in POSIX.1-2008 to accommodate historical applications that
assume its availability. Implementations are encouraged to provide suitable directory names in
the environment variable TMPDIR and applications are encouraged to use the contents of
TMPDIR for creating temporary files.

The standard files /dev/null and /dev/tty are required to be both readable and writable to allow
applications to have the intended historical access to these files.

The standard file /dev/console has been added for alignment with the Single UNIX
Specification.

A.10.2 Output Devices and Terminal Types

IEEE Std 1003.1-2001/Cor 2-2004, item XBD/TC2/D6/17 is applied, making it clear that the
requirements for documenting terminal support are in the system documentation.

A.11 General Terminal Interface

If the implementation does not support this interface on any device types, it should behave as if
it were being used on a device that is not a terminal device (in most cases errno will be set to
[ENOTTY] on return from functions defined by this interface). This is based on the fact that
many applications are written to run both interactively and in some non-interactive mode, and
they adapt themselves at runtime. Requiring that they all be modified to test an environment
variable to determine whether they should try to adapt is unnecessary. On a system that
provides no general terminal interface, providing all the entry points as stubs that return
[ENOTTY] (or an equivalent, as appropriate) has the same effect and requires no changes to the
application.

Although the needs of both interface implementors and application developers were addressed
throughout POSIX.1-2008, this section pays more attention to the needs of the latter. This is
because, while many aspects of the programming interface can be hidden from the user by the
application developer, the terminal interface is usually a large part of the user interface.
Although to some extent the application developer can build missing features or work around

3478 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

116933

116934

116935

116936

116937

116938

116939

116940

116941

116942

116943

116944

116945

116946

116947

116948

116949

116950

116951

116952

116953

116954

116955

116956

116957

116958

116959

116960

116961

116962

116963

116964

116965

116966

116967

116968

116969

116970

116971

Rationale for Base Definitions General Terminal Interface

inappropriate ones, the difficulties of doing that are greater in the terminal interface than
elsewhere. For example, efficiency prohibits the average program from interpreting every
character passing through it in order to simulate character erase, line kill, and so on. These
functions should usually be done by the operating system, possibly at the interrupt level.

The tc*() functions were introduced as a way of avoiding the problems inherent in the
traditional ioctl() function and in variants of it that were proposed. For example, tcsetattr() is
specified in place of the use of the TCSETA ioctl() command function. This allows specification
of all the arguments in a manner consistent with the ISO C standard unlike the varying third
argument of ioctl(), which is sometimes a pointer (to any of many different types) and
sometimes an int.

The advantages of this new method include:

• It allows strict type checking.

• The direction of transfer of control data is explicit.

• Portable capabilities are clearly identified.

• The need for a general interface routine is avoided.

• Size of the argument is well-defined (there is only one type).

The disadvantages include:

• No historical implementation used the new method.

• There are many small routines instead of one general-purpose one.

• The historical parallel with fcntl() is broken.

The issue of modem control was excluded from POSIX.1-2008 on the grounds that:

• It was concerned with setting and control of hardware timers.

• The appropriate timers and settings vary widely internationally.

• Feedback from European computer manufacturers indicated that this facility was not
consistent with European needs and that specification of such a facility was not a
requirement for portability.

A.11.1 Interface Characteristics

A.11.1.1 Opening a Terminal Device File

The O_TTY_INIT flag for open() has been added to POSIX.1-2008 to solve a problem
encountered by applications written for earlier versions of this standard which need to open a
modem or similar device and initialize all of the parameter settings. Using the
tcgetattr()-modify-tcsetattr() method mandated by the standard could result in non-conforming
behavior if the device had previously been used with non-conforming parameter settings, on
implementations which do not reset the parameter settings in between the last close of the
device by one application and the first open by another application. To avoid this problem, some
application developers were resorting to using memset() to zero the termios structure before
setting all of the standard parameters, but this risks non-conforming behavior on systems where
some non-standard parameter needs a non-zero value in order for the terminal to behave in a
conforming manner.

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3479

116972

116973

116974

116975

116976

116977

116978

116979

116980

116981

116982

116983

116984

116985

116986

116987

116988

116989

116990

116991

116992

116993

116994

116995

116996

116997

116998

116999

117000

117001

117002

117003

117004

117005

117006

117007

117008

117009

117010

General Terminal Interface Rationale for Base Definitions

On systems which do reset the parameter settings to defaults between uses of a terminal device,
it is expected that either O_TTY_INIT will have the value zero or open(ttypath,
O_RDWR|O_TTY_INIT) will do nothing additional.

The standard developers considered an alternative solution of a special fildes argument for the
tcgetattr() call to obtain default parameters. However, this would not be adequate if a system
supports several different types of terminal device and the default settings need to differ
between the different types. With the O_TTY_INIT open flag, the implementor can determine
which device type is being opened.

The standard developers also considered a special POSIX_TTY_INIT value for the termios
structure used in tcsetattr(), which would reset the values if used immediately after an open()
call. However, it was felt that this would lead to confusion amongst application developers who
wanted to reset the parameters at other points, and implementations might diverge.

A.11.1.2 Process Groups

There is a potential race when the members of the foreground process group on a terminal leave
that process group, either by exit or by changing process groups. After the last process exits the
process group, but before the foreground process group ID of the terminal is changed (usually
by a job control shell), it would be possible for a new process to be created with its process ID
equal to the terminal’s foreground process group ID. That process might then become the
process group leader and accidentally be placed into the foreground on a terminal that was not
necessarily its controlling terminal. As a result of this problem, the controlling terminal is
defined to not have a foreground process group during this time.

The cases where a controlling terminal has no foreground process group occur when all
processes in the foreground process group either terminate and are waited for or join other
process groups via setpgid() or setsid(). If the process group leader terminates, this is the first
case described; if it leaves the process group via setpgid(), this is the second case described (a
process group leader cannot successfully call setsid()). When one of those cases causes a
controlling terminal to have no foreground process group, it has two visible effects on
applications. The first is the value returned by tcgetpgrp(). The second (which occurs only in the
case where the process group leader terminates) is the sending of signals in response to special
input characters. The intent of POSIX.1-2008 is that no process group be wrongly identified as
the foreground process group by tcgetpgrp() or unintentionally receive signals because of
placement into the foreground.

In 4.3 BSD, the old process group ID continues to be used to identify the foreground process
group and is returned by the function equivalent to tcgetpgrp(). In that implementation it is
possible for a newly created process to be assigned the same value as a process ID and then form
a new process group with the same value as a process group ID. The result is that the new
process group would receive signals from this terminal for no apparent reason, and
POSIX.1-2008 precludes this by forbidding a process group from entering the foreground in this
way. It would be more direct to place part of the requirement made by the last sentence under
fork(), but there is no convenient way for that section to refer to the value that tcgetpgrp()
returns, since in this case there is no process group and thus no process group ID.

One possibility for a conforming implementation is to behave similarly to 4.3 BSD, but to
prevent this reuse of the ID, probably in the implementation of fork(), as long as it is in use by
the terminal.

Another possibility is to recognize when the last process stops using the terminal’s foreground
process group ID, which is when the process group lifetime ends, and to change the terminal’s
foreground process group ID to a reserved value that is never used as a process ID or process
group ID. (See the definition of process group lifetime in the definitions section.) The process ID

3480 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

117011

117012

117013

117014

117015

117016

117017

117018

117019

117020

117021

117022

117023

117024

117025

117026

117027

117028

117029

117030

117031

117032

117033

117034

117035

117036

117037

117038

117039

117040

117041

117042

117043

117044

117045

117046

117047

117048

117049

117050

117051

117052

117053

117054

117055

117056

117057

117058

Rationale for Base Definitions General Terminal Interface

can then be reserved until the terminal has another foreground process group.

The 4.3 BSD implementation permits the leader (and only member) of the foreground process
group to leave the process group by calling the equivalent of setpgid() and to later return,
expecting to return to the foreground. There are no known application needs for this behavior,
and POSIX.1-2008 neither requires nor forbids it (except that it is forbidden for session leaders)
by leaving it unspecified.

A.11.1.3 The Controlling Terminal

POSIX.1-2008 does not specify a mechanism by which to allocate a controlling terminal. This is
normally done by a system utility (such as getty) and is considered an administrative feature
outside the scope of POSIX.1-2008.

Historical implementations allocate controlling terminals on certain open() calls. Since open() is
part of POSIX.1, its behavior had to be dealt with. The traditional behavior is not required
because it is not very straightforward or flexible for either implementations or applications.
However, because of its prevalence, it was not practical to disallow this behavior either. Thus, a
mechanism was standardized to ensure portable, predictable behavior in open().

Some historical implementations deallocate a controlling terminal on the last system-wide close.
This behavior in neither required nor prohibited. Even on implementations that do provide this
behavior, applications generally cannot depend on it due to its system-wide nature.

A.11.1.4 Terminal Access Control

The access controls described in this section apply only to a process that is accessing its
controlling terminal. A process accessing a terminal that is not its controlling terminal is
effectively treated the same as a member of the foreground process group. While this may seem
unintuitive, note that these controls are for the purpose of job control, not security, and job
control relates only to the controlling terminal of a process. Normal file access permissions
handle security.

If the process calling read() or write() is in a background process group that is orphaned, it is not
desirable to stop the process group, as it is no longer under the control of a job control shell that
could put it into the foreground again. Accordingly, calls to read() or write() functions by such
processes receive an immediate error return. This is different from 4.2 BSD, which kills orphaned
processes that receive terminal stop signals.

The foreground/background/orphaned process group check performed by the terminal driver
must be repeatedly performed until the calling process moves into the foreground or until the
process group of the calling process becomes orphaned. That is, when the terminal driver
determines that the calling process is in the background and should receive a job control signal,
it sends the appropriate signal (SIGTTIN or SIGTTOU) to every process in the process group of
the calling process and then it allows the calling process to immediately receive the signal. The
latter is typically performed by blocking the process so that the signal is immediately noticed.
Note, however, that after the process finishes receiving the signal and control is returned to the
driver, the terminal driver must re-execute the foreground/background/orphaned process
group check. The process may still be in the background, either because it was continued in the
background by a job control shell, or because it caught the signal and did nothing.

The terminal driver repeatedly performs the foreground/background/orphaned process group
checks whenever a process is about to access the terminal. In the case of write() or the control
tc*() functions, the check is performed at the entry of the function. In the case of read(), the
check is performed not only at the entry of the function, but also after blocking the process to

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3481

117059

117060

117061

117062

117063

117064

117065

117066

117067

117068

117069

117070

117071

117072

117073

117074

117075

117076

117077

117078

117079

117080

117081

117082

117083

117084

117085

117086

117087

117088

117089

117090

117091

117092

117093

117094

117095

117096

117097

117098

117099

117100

117101

117102

117103

General Terminal Interface Rationale for Base Definitions

wait for input characters (if necessary). That is, once the driver has determined that the process
calling the read() function is in the foreground, it attempts to retrieve characters from the input
queue. If the queue is empty, it blocks the process waiting for characters. When characters are
available and control is returned to the driver, the terminal driver must return to the repeated
foreground/background/orphaned process group check again. The process may have moved
from the foreground to the background while it was blocked waiting for input characters.

A.11.1.5 Input Processing and Reading Data

There is no additional rationale provided for this section.

A.11.1.6 Canonical Mode Input Processing

The term ‘‘character ’’ is intended here. ERASE should erase the last character, not the last byte.
In the case of multi-byte characters, these two may be different.

4.3 BSD has a WERASE character that erases the last ‘‘word’’ typed (but not any preceding
<blank> or <tab> characters). A word is defined as a sequence of non-<blank> characters, with
<tab> characters counted as <blank> characters. Like ERASE, WERASE does not erase beyond
the beginning of the line. This WERASE feature has not been specified in POSIX.1 because it is
difficult to define in the international environment. It is only useful for languages where words
are delimited by <blank> characters. In some ideographic languages, such as Japanese and
Chinese, words are not delimited at all. The WERASE character should presumably go back to
the beginning of a sentence in those cases; practically, this means it would not be used much for
those languages.

It should be noted that there is a possible inherent deadlock if the application and
implementation conflict on the value of {MAX_CANON}. With ICANON set (if IXOFF is
enabled) and more than {MAX_CANON} characters transmitted without a <linefeed>,
transmission will be stopped, the <linefeed> (or <carriage-return> when ICRLF is set) will never
arrive, and the read() will never be satisfied.

An application should not set IXOFF if it is using canonical mode unless it knows that (even in
the face of a transmission error) the conditions described previously cannot be met or unless it is
prepared to deal with the possible deadlock in some other way, such as timeouts.

It should also be noted that this can be made to happen in non-canonical mode if the trigger
value for sending IXOFF is less than VMIN and VTIME is zero.

A.11.1.7 Non-Canonical Mode Input Processing

Some points to note about MIN and TIME:

1. The interactions of MIN and TIME are not symmetric. For example, when MIN>0 and
TIME=0, TIME has no effect. However, in the opposite case where MIN=0 and TIME>0,
both MIN and TIME play a role in that MIN is satisfied with the receipt of a single
character.

2. Also note that in case A (MIN>0, TIME>0), TIME represents an inter-character timer,
while in case C (MIN=0, TIME>0), TIME represents a read timer.

These two points highlight the dual purpose of the MIN/TIME feature. Cases A and B, where
MIN>0, exist to handle burst-mode activity (for example, file transfer programs) where a
program would like to process at least MIN characters at a time. In case A, the inter-character
timer is activated by a user as a safety measure; in case B, it is turned off.

3482 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

117104

117105

117106

117107

117108

117109

117110

117111

117112

117113

117114

117115

117116

117117

117118

117119

117120

117121

117122

117123

117124

117125

117126

117127

117128

117129

117130

117131

117132

117133

117134

117135

117136

117137

117138

117139

117140

117141

117142

117143

117144

117145

Rationale for Base Definitions General Terminal Interface

Cases C and D exist to handle single-character timed transfers. These cases are readily adaptable
to screen-based applications that need to know if a character is present in the input queue before
refreshing the screen. In case C, the read is timed; in case D, it is not.

Another important note is that MIN is always just a minimum. It does not denote a record
length. That is, if a program does a read of 20 bytes, MIN is 10, and 25 characters are present, 20
characters are returned to the user. In the special case of MIN=0, this still applies: if more than
one character is available, they all will be returned immediately.

A.11.1.8 Writing Data and Output Processing

There is no additional rationale provided for this section.

A.11.1.9 Special Characters

There is no additional rationale provided for this section.

A.11.1.10 Modem Disconnect

There is no additional rationale provided for this section.

A.11.1.11 Closing a Terminal Device File

POSIX.1-2008 does not specify that a close() on a terminal device file include the equivalent of a
call to tcflow(fd,TCOON).

An implementation that discards output at the time close() is called after reporting the return
value to the write() call that data was written does not conform with POSIX.1-2008. An
application has functions such as tcdrain(), tcflush(), and tcflow() available to obtain the detailed
behavior it requires with respect to flushing of output.

At the time of the last close on a terminal device, an application relinquishes any ability to exert
flow control via tcflow().

A.11.2 Parameters that Can be Set

A.11.2.1 The termios Structure

This structure is part of an interface that, in general, retains the historic grouping of flags.
Although a more optimal structure for implementations may be possible, the degree of change
to applications would be significantly larger.

A.11.2.2 Input Modes

Some historical implementations treated a long break as multiple events, as many as one per
character time. The wording in POSIX.1 explicitly prohibits this.

Although the ISTRIP flag is normally superfluous with today’s terminal hardware and software,
it is historically supported. Therefore, applications may be using ISTRIP, and there is no
technical problem with supporting this flag. Also, applications may wish to receive only 7-bit
input bytes and may not be connected directly to the hardware terminal device (for example,

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3483

117146

117147

117148

117149

117150

117151

117152

117153

117154

117155

117156

117157

117158

117159

117160

117161

117162

117163

117164

117165

117166

117167

117168

117169

117170

117171

117172

117173

117174

117175

117176

117177

117178

117179

General Terminal Interface Rationale for Base Definitions

when a connection traverses a network).

Also, there is no requirement in general that the terminal device ensures that high-order bits
beyond the specified character size are cleared. ISTRIP provides this function for 7-bit
characters, which are common.

In dealing with multi-byte characters, the consequences of a parity error in such a character, or
in an escape sequence affecting the current character set, are beyond the scope of POSIX.1 and
are best dealt with by the application processing the multi-byte characters.

A.11.2.3 Output Modes

POSIX.1 does not describe post-processing of output to a terminal or detailed control of that
from a conforming application. (That is, translation of <newline> to <carriage-return> followed
by <linefeed> or <tab> processing.) There is nothing that a conforming application should do to
its output for a terminal because that would require knowledge of the operation of the terminal.
It is the responsibility of the operating system to provide post-processing appropriate to the
output device, whether it is a terminal or some other type of device.

Extensions to POSIX.1 to control the type of post-processing already exist and are expected to
continue into the future. The control of these features is primarily to adjust the interface between
the system and the terminal device so the output appears on the display correctly. This should
be set up before use by any application.

In general, both the input and output modes should not be set absolutely, but rather modified
from the inherited state.

A.11.2.4 Control Modes

This section could be misread that the symbol ‘‘CSIZE’’ is a title in the termios c_cflag field.
Although it does serve that function, it is also a required symbol, as a literal reading of POSIX.1
(and the caveats about typography) would indicate.

A.11.2.5 Local Modes

Non-canonical mode is provided to allow fast bursts of input to be read efficiently while still
allowing single-character input.

The ECHONL function historically has been in many implementations. Since there seems to be
no technical problem with supporting ECHONL, it is included in POSIX.1 to increase consensus.

The alternate behavior possible when ECHOK or ECHOE are specified with ICANON is
permitted as a compromise depending on what the actual terminal hardware can do. Erasing
characters and lines is preferred, but is not always possible.

A.11.2.6 Special Control Characters

Permitting VMIN and VTIME to overlap with VEOF and VEOL was a compromise for historical
implementations. Only when backwards-compatibility of object code is a serious concern to an
implementor should an implementation continue this practice. Correct applications that work
with the overlap (at the source level) should also work if it is not present, but not the reverse.

3484 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

117180

117181

117182

117183

117184

117185

117186

117187

117188

117189

117190

117191

117192

117193

117194

117195

117196

117197

117198

117199

117200

117201

117202

117203

117204

117205

117206

117207

117208

117209

117210

117211

117212

117213

117214

117215

117216

Rationale for Base Definitions Utility Conventions

A.12 Utility Conventions

A.12.1 Utility Argument Syntax

The standard developers considered that recent trends toward diluting the SYNOPSIS sections
of historical reference pages to the equivalent of:

command [options][operands]

were a disservice to the reader. Therefore, considerable effort was placed into rigorous
definitions of all the command line arguments and their interrelationships. The relationships
depicted in the synopses are normative parts of POSIX.1-2008; this information is sometimes
repeated in textual form, but that is only for clarity within context.

The use of ‘‘undefined’’ for conflicting argument usage and for repeated usage of the same
option is meant to prevent conforming applications from using conflicting arguments or
repeated options unless specifically allowed (as is the case with ls, which allows simultaneous,
repeated use of the −C, −l, and −1 options). Many historical implementations will tolerate this
usage, choosing either the first or the last applicable argument. This tolerance can continue, but
conforming applications cannot rely upon it. (Other implementations may choose to print usage
messages instead.)

The use of ‘‘undefined’’ for conflicting argument usage also allows an implementation to make
reasonable extensions to utilities where the implementor considers mutually-exclusive options
according to POSIX.1-2008 to have a sensible meaning and result.

POSIX.1-2008 does not define the result of a command when an option-argument or operand is
not followed by ellipses and the application specifies more than one of that option-argument or
operand. This allows an implementation to define valid (although non-standard) behavior for
the utility when more than one such option or operand is specified.

The requirements for option-arguments are summarized as follows:

SYNOPSIS Shows:

−a arg −c[arg]
Conforming application uses: −a arg −carg or −c

System supports: −a arg and −aarg −carg and −c
Non-conforming applications may use: −aarg N/A

Earlier versions of this standard included obsolescent syntax which showed some options with
(mandatory) adjacent option-arguments in the SYNOPSIS for some utilities. These have since
been removed. For all options with mandatory option-arguments, the SYNOPSIS now shows
<blank> characters between the option and the option-argument; however, historical usage has
not been consistent in this area; therefore, <blank> characters are required to be used by
conforming applications and to be handled by all implementations, but implementations are
also required to handle an adjacent option-argument in order to preserve backwards-
compatibility for old scripts. One of the justifications for selecting the multiple-argument
method was that the single-argument case is inherently ambiguous when the option-argument
can legitimately be a null string.

POSIX.1-2008 explicitly states that digits are permitted as operands and option-arguments. The
lower and upper bounds for the values of the numbers used for operands and option-arguments
were derived from the ISO C standard values for {LONG_MIN} and {LONG_MAX}. The

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3485

117217

117218

117219

117220

117221

117222

117223

117224

117225

117226

117227

117228

117229

117230

117231

117232

117233

117234

117235

117236

117237

117238

117239

117240

117241

117242

117243

117244

117245

117246

117247

117248

117249

117250

117251

117252

117253

117254

117255

117256

117257

117258

Utility Conventions Rationale for Base Definitions

requirement on the standard utilities is that numbers in the specified range do not cause a
syntax error, although the specification of a number need not be semantically correct for a
particular operand or option-argument of a utility. For example, the specification of:

dd obs=3000000000

would yield undefined behavior for the application and could be a syntax error because the
number 3 000 000 000 is outside of the range −2 147 483 647 to +2 147 483 647. On the other hand:

dd obs=2000000000

may cause some error, such as ‘‘blocksize too large’’, rather than a syntax error.

A.12.2 Utility Syntax Guidelines

This section is based on the rules listed in the SVID. It was included for two reasons:

1. The individual utility descriptions in XCU Chapter 4 (on page 2401) needed a set of
common (although not universal) actions on which they could anchor their descriptions
of option and operand syntax. Most of the standard utilities actually do use these
guidelines, and many of their historical implementations use the getopt() function for
their parsing. Therefore, it was simpler to cite the rules and merely identify exceptions.

2. Developers of conforming applications need suggested guidelines if the POSIX
community is to avoid the chaos of historical UNIX system command syntax.

It is recommended that all future utilities and applications use these guidelines to enhance ‘‘user
portability’’. The fact that some historical utilities could not be changed (to avoid breaking
historical applications) should not deter this future goal.

The voluntary nature of the guidelines is highlighted by repeated uses of the word should
throughout. This usage should not be misinterpreted to imply that utilities that claim
conformance in their OPTIONS sections do not always conform.

Guidelines 1 and 2 encourage utility writers to use only characters from the portable character
set because use of locale-specific characters may make the utility inaccessible from other locales.
Use of uppercase letters is discouraged due to problems associated with porting utilities to
systems that do not distinguish between uppercase and lowercase characters in filenames. Use
of non-alphanumeric characters is discouraged due to the number of utilities that treat non-
alphanumeric characters in ‘‘special’’ ways depending on context (such as the shell using white-
space characters to delimit arguments, various quote characters for quoting, the <dollar-sign> to
introduce variable expansion, etc.).

In XCU Section 2.9.1 (on page 2316), it is further stated that a command used in the Shell
Command Language cannot be named with a trailing <colon>.

Guideline 3 was changed to allow alphanumeric characters (letters and digits) from the
character set to allow compatibility with historical usage. Historical practice allows the use of
digits wherever practical, and there are no portability issues that would prohibit the use of
digits. In fact, from an internationalization viewpoint, digits (being non-language-dependent)
are preferable over letters (a −2 is intuitively self-explanatory to any user, while in the −f filename
the letter ’f’ is a mnemonic aid only to speakers of Latin-based languages where ‘‘filename’’
happens to translate to a word that begins with ’f’. Since Guideline 3 still retains the word
‘‘single’’, multi-digit options are not allowed. Instances of historical utilities that used them have
been marked obsolescent, with the numbers being changed from option names to option-
arguments.

It was difficult to achieve a satisfactory solution to the problem of name space in option

3486 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

117259

117260

117261

117262

117263

117264

117265

117266

117267

117268

117269

117270

117271

117272

117273

117274

117275

117276

117277

117278

117279

117280

117281

117282

117283

117284

117285

117286

117287

117288

117289

117290

117291

117292

117293

117294

117295

117296

117297

117298

117299

117300

117301

117302

Rationale for Base Definitions Utility Conventions

characters. When the standard developers desired to extend the historical cc utility to accept
ISO C standard programs, they found that all of the portable alphabet was already in use by
various vendors. Thus, they had to devise a new name, c89 (now superseded by c99), rather than
something like cc −X. There were suggestions that implementors be restricted to providing
extensions through various means (such as using a <plus-sign> as the option delimiter or using
option characters outside the alphanumeric set) that would reserve all of the remaining
alphanumeric characters for future POSIX standards. These approaches were resisted because
they lacked the historical style of UNIX systems. Furthermore, if a vendor-provided option
should become commonly used in the industry, it would be a candidate for standardization. It
would be desirable to standardize such a feature using historical practice for the syntax (the
semantics can be standardized with any syntax). This would not be possible if the syntax was
one reserved for the vendor. However, since the standardization process may lead to minor
changes in the semantics, it may prove to be better for a vendor to use a syntax that will not be
affected by standardization.

Guideline 8 includes the concept of <comma>-separated lists in a single argument. It is up to the
utility to parse such a list itself because getopt() just returns the single string. This situation was
retained so that certain historical utilities would not violate the guidelines. Applications
preparing for international use should be aware of an occasional problem with
<comma>-separated lists: in some locales, the <comma> is used as the radix character. Thus, if
an application is preparing operands for a utility that expects a <comma>-separated list, it
should avoid generating non-integer values through one of the means that is influenced by
setting the LC_NUMERIC variable (such as awk, bc, printf, or printf()).

Unless explicitly stated otherwise in the utility description, Guideline 9 requires applications to
put options before operands, and requires utilities to accept any such usage without
misinterpreting operands as options. For example, if an implementation of the printf utility
supports a −e option as an extension, the command:

printf %s -e

must output the string "−e" without interpreting the −e as an option. Similarly, the command:

ls myfile -l

must interpret the −l argument as a second file operand, not as a −l option.

Applications calling any utility with a first operand starting with ’−’ should usually specify − −,
as indicated by Guideline 10, to mark the end of the options. This is true even if the SYNOPSIS
in the Shell and Utilities volume of POSIX.1-2008 does not specify any options; implementations
may provide options as extensions to the Shell and Utilities volume of POSIX.1-2008. The
standard utilities that do not support Guideline 10 indicate that fact in the OPTIONS section of
the utility description.

Guideline 7 allows any string to be an option-argument; an option-argument can begin with any
character, can be − or − −, and can be an empty string. For example, the commands pr −h −, pr −h
− −, pr −h −d, pr −h +2, and pr −h ’ ’ contain the option-arguments −, − −, −d, +2, and an empty
string, respectively. Conversely, the command pr −h − − −d treats −d as an option, not as an
argument, because the −− is an option-argument here, not a delimiter.

Guideline 11 was modified to clarify that the order of different options should not matter
relative to one another. However, the order of repeated options that also have option-arguments
may be significant; therefore, such options are required to be interpreted in the order that they
are specified. The make utility is an instance of a historical utility that uses repeated options in
which the order is significant. Multiple files are specified by giving multiple instances of the −f
option; for example:

make −f common_header −f specific_rules target

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3487

117303

117304

117305

117306

117307

117308

117309

117310

117311

117312

117313

117314

117315

117316

117317

117318

117319

117320

117321

117322

117323

117324

117325

117326

117327

117328

117329

117330

117331

117332

117333

117334

117335

117336

117337

117338

117339

117340

117341

117342

117343

117344

117345

117346

117347

117348

117349

117350

Utility Conventions Rationale for Base Definitions

Guideline 13 does not imply that all of the standard utilities automatically accept the operand
’−’ to mean standard input or output, nor does it specify the actions of the utility upon
encountering multiple ’−’ operands. It simply says that, by default, ’−’ operands are not used
for other purposes in the file reading or writing (but not when using stat(), unlink(), touch, and
so on) utilities. In earlier versions of this standard, all information concerning actual treatment of
the ’−’ operand is found in the individual utility sections. Many implementations, however,
treated ’−’ as standard input or output and many applications depended on this behavior even
though it was not standard. This behavior is now implementation-defined. Portable applications
should not use ’−’ to mean standard input or output unless it is explicitly stated to do so in the
utility description and they should always use ’./−’ if they intend to refer to a file named − in
the current working directory.

Guideline 14 is intended to prohibit implementations that would treat the command ls −l −d as if
it were ls −− −l −d or ls −l −− −d.

The standard permits implementations to have extensions that violate the Utility Syntax
Guidelines so long as when the utility is used in line with the forms defined by the standard it
follows the Utility Syntax Guidelines. Thus, head−42file and ls−−help are permitted extensions.
The intent is to allow extensions so long as the standard form is accepted and follows the
guidelines.

An area of concern was that as implementations mature, implementation-defined utilities and
implementation-defined utility options will result. The idea was expressed that there needed to
be a standard way, say an environment variable or some such mechanism, to identify
implementation-defined utilities separately from standard utilities that may have the same
name. It was decided that there already exist several ways of dealing with this situation and that
it is outside of the scope to attempt to standardize in the area of non-standard items. A method
that exists on some historical implementations is the use of the so-called /local/bin or
/usr/local/bin directory to separate local or additional copies or versions of utilities. Another
method that is also used is to isolate utilities into completely separate domains. Still another
method to ensure that the desired utility is being used is to request the utility by its full
pathname. There are many approaches to this situation; the examples given above serve to
illustrate that there is more than one.

A.13 Headers

A.13.1 Format of Entries

Each header reference page has a common layout of sections describing the interface. This
layout is similar to the manual page or ‘‘man’’ page format shipped with most UNIX systems,
and each header has sections describing the SYNOPSIS and DESCRIPTION. These are the two
sections that relate to conformance.

Additional sections are informative, and add considerable information for the application
developer. APPLICATION USAGE sections provide additional caveats, issues, and
recommendations to the developer. RATIONALE sections give additional information on the
decisions made in defining the interface.

FUTURE DIRECTIONS sections act as pointers to related work that may impact the interface in
the future, and often cautions the developer to architect the code to account for a change in this
area. Note that a future directions statement should not be taken as a commitment to adopt a

3488 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

117351

117352

117353

117354

117355

117356

117357

117358

117359

117360

117361

117362

117363

117364

117365

117366

117367

117368

117369

117370

117371

117372

117373

117374

117375

117376

117377

117378

117379

117380

117381

117382

117383

117384

117385

117386

117387

117388

117389

117390

117391

117392

117393

Rationale for Base Definitions Headers

feature or interface in the future.

The CHANGE HISTORY section describes when the interface was introduced, and how it has
changed.

Option labels and margin markings in the page can be useful in guiding the application
developer.

A.13.2 Removed Headers in Issue 7

The headers removed in Issue 7 (from the Issue 6 base document) are as follows:

Removed Headers in Issue 7

<sys/timeb.h> <ucontext.h>

Part A: Base Definitions Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3489

117394

117395

117396

117397

117398

117399

117400

117401

117402

Rationale for Base Definitions

3490 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part A: Base Definitions

Rationale (Informative)

Part B:

System Interfaces

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3491

117403

117404

117405

117406

117407

3492 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

Appendix B

Rationale for System Interfaces

B.1 Introduction

B.1.1 Change History

The change history is provided as an informative section, to track changes from earlier versions
of this standard.

The following sections describe changes made to the System Interfaces volume of POSIX.1-2008
since Issue 6 of the base document. The CHANGE HISTORY section for each entry details the
technical changes that have been made to that entry from Issue 5. Changes between earlier
versions of the base document and Issue 5 are not included.

Changes from Issue 6 to Issue 7 (POSIX.1-2008)

The following list summarizes the major changes that were made in the System Interfaces
volume of POSIX.1-2008 from Issue 6 to Issue 7:

• The Open Group Technical Standard, 2006, Extended API Set Part 1 is incorporated.

• The Open Group Technical Standard, 2006, Extended API Set Part 2 is incorporated.

• The Open Group Technical Standard, 2006, Extended API Set Part 3 is incorporated.

• The Open Group Technical Standard, 2006, Extended API Set Part 4 is incorporated.

• Existing functionality is aligned with ISO/IEC 9899: 1999, Programming Languages — C,
ISO/IEC 9899: 1999/Cor.2: 2004(E)

• Austin Group defect reports, IEEE Interpretations against IEEE Std 1003.1, and responses
to ISO/IEC defect reports against ISO/IEC 9945 are applied.

• The Open Group corrigenda and resolutions are applied.

• Features, marked legacy or obsolescent in the base document, have been considered for
removal in this version.

• The options within the standard have been revised.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3493

117408

117409

117410

117411

117412

117413

117414

117415

117416

117417

117418

117419

117420

117421

117422

117423

117424

117425

117426

117427

117428

117429

117430

117431

117432

Introduction Rationale for System Interfaces

New Features in Issue 7

The functions first introduced in Issue 7 (over the Issue 6 base document) are as follows:

New Functions in Issue 7

alphasort()
dirfd()
dprintf()
duplocale()
faccessat()
fchmodat()
fchownat()
fdopendir()
fexecve()
fmemopen()
freelocale()
fstatat()
futimens()
getdelim()
getline()
isalnum_l()
isalpha_l()
isblank_l()
iscntrl_l()
isdigit_l()
isgraph_l()
islower_l()
isprint_l()
ispunct_l()
isspace_l()
isupper_l()
iswalnum_l()
iswalpha_l()
iswblank_l()
iswcntrl_l()
iswctype_l()

iswdigit_l()
iswgraph_l()
iswlower_l()
iswprint_l()
iswpunct_l()
iswspace_l()
iswupper_l()
iswxdigit_l()
isxdigit_l()
linkat()
mbsnrtowcs()
mkdirat()
mkdtemp()
mkfifoat()
mknodat()
newlocale()
openat()
open_memstream()
open_wmemstream()
psiginfo()
psignal()
pthread_mutexattr_getrobust()
pthread_mutexattr_setrobust()
pthread_mutex_consistent()
readlinkat()
renameat()
scandir()
stpcpy()
stpncpy()
strcasecmp_l()
strcoll_l()

strfmon_l()
strncasecmp_l()
strndup()
strnlen()
strsignal()
strxfrm_l()
symlinkat()
tolower_l()
toupper_l()
towctrans_l()
towlower_l()
towupper_l()
unlinkat()
uselocale()
utimensat()
vdprintf()
wcpcpy()
wcpncpy()
wcscasecmp()
wcscasecmp_l()
wcscoll_l()
wcsdup()
wcsncasecmp()
wcsncasecmp_l()
wcsnlen()
wcsnrtombs()
wcsxfrm_l()
wctrans_l()
wctype_l()

Newly Mandated Functions in Issue 7

The functions that were previously part of an option group but are now mandatory in Issue 7 are
as follows:

3494 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

117433

117434

117435

117436

117437

117438

117439

117440

117441

117442

117443

117444

117445

117446

117447

117448

117449

117450

117451

117452

117453

117454

117455

117456

117457

117458

117459

117460

117461

117462

117463

117464

117465

117466

117467

117468

117469

Rationale for System Interfaces Introduction

Newly Mandated Functions in Issue 7

aio_cancel()
aio_error()
aio_fsync()
aio_read()
aio_return()
aio_suspend()
aio_write()
asctime_r()
catclose()
catgets()
catopen()
clock_getres()
clock_gettime()
clock_nanosleep()
clock_settime()
ctime_r()
dlcose()
dlerror()
dlopen()
dlsym()
fchdir()
flockfile()
fstatvfs()
ftrylockfile()
funlockfile()
getc_unlocked()
getchar_unlocked()
getgrgid_r()
getgrnam_r()
getlogin_r()
getpgid()
getpwnam_r()
getpwuid_r()
getsid()
getsubopt()
gmtime_r()
iconv()
iconv_close()
iconv_open()
lchown()
lio_listio()
localtime_r()
mkstemp()
mmap()
mprotect()
munmap()
nanosleep()
nl_langinfo()
poll()
posix_trace_timedgetnext_event()
pread()

pthread_atfork()
pthread_attr_destroy()
pthread_attr_getdetachstate()
pthread_attr_getguardsize()
pthread_attr_getschedparam()
pthread_attr_init()
pthread_attr_setdetachstate()
pthread_attr_setguardsize()
pthread_attr_setschedparam()
pthread_barrier_destroy()
pthread_barrier_init()
pthread_barrier_wait()
pthread_barrierattr_destroy()
pthread_barrierattr_init()
pthread_cancel()
pthread_cleanup_pop()
pthread_cleanup_push()
pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_condattr_destroy()
pthread_condattr_getclock()
pthread_condattr_init()
pthread_condattr_setclock()
pthread_create()
pthread_detach()
pthread_equal()
pthread_exit()
pthread_getspecific()
pthread_join()
pthread_key_create()
pthread_key_delete()
pthread_mutex_destroy()
pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_timedlock()
pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_mutexattr_destroy()
pthread_mutexattr_gettype()
pthread_mutexattr_init()
pthread_mutexattr_settype()
pthread_once()
pthread_rwlock_destroy()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()

pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_destroy()
pthread_rwlockattr_init()
pthread_self()
pthread_setcancelstate()
pthread_setcanceltype()
pthread_setspecific()
pthread_spin_destroy()
pthread_spin_init()
pthread_spin_lock()
pthread_spin_trylock()
pthread_spin_unlock()
pthread_testcancel()
putc_unlocked()
putchar_unlocked()
pwrite()
rand_r()
readdir_r()
sem_close()
sem_destroy()
sem_getvalue()
sem_init()
sem_open()
sem_post()
sem_timedwait()
sem_trywait()
sem_unlink()
sem_wait()
sigqueue()
sigqueue()
sigtimedwait()
sigwaitinfo()
statvfs()
strcasecmp()
strdup()
strerror_r()
strfmon()
strncasecmp()
strtok_r()
tcgetsid()
timer_create()
timer_delete()
timer_getoverrun()
timer_gettime()
timer_settime()
truncate()
ttyname_r()
waitid()

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3495

117470

117471

117472

117473

117474

117475

117476

117477

117478

117479

117480

117481

117482

117483

117484

117485

117486

117487

117488

117489

117490

117491

117492

117493

117494

117495

117496

117497

117498

117499

117500

117501

117502

117503

117504

117505

117506

117507

117508

117509

117510

117511

117512

117513

117514

117515

117516

117517

117518

117519

117520

117521

Introduction Rationale for System Interfaces

Obsolescent Functions in Issue 7

The base functions moved to obsolescent status in Issue 7 (from the Issue 6 base document) are
as follows:

Obsolescent Base Functions in Issue 7

asctime()
asctime_r()
ctime()
ctime_r()

gets()
rand_r()
tmpnam()
utime()

The XSI functions moved to obsolescent status in Issue 7 (from the Issue 6 base document) are as
follows:

Obsolescent XSI Functions in Issue 7

_longjmp()
_setjmp()
_tolower()
_toupper()
ftw()
getitimer()
gettimeofday()
isascii()

pthread_getconcurrency()
pthread_setconcurrency()
setitimer()
setpgrp()
sighold()
sigignore()
sigpause()
sigrelse()

sigset()
siginterrupt()
tempnam()
toascii()
ulimit()

Removed Functions and Symbols in Issue 7

The functions and symbols removed in Issue 7 (from the Issue 6 base document) are as follows:

Removed Functions and Symbols in Issue 7

bcmp()
bcopy()
bsd_signal()
bzero()
ecvt()
fcvt()
ftime()
gcvt()
getcontext()

gethostbyaddr()
gethostbyname()
getwd()
h_errno
index()
makecontext()
mktemp()
pthread_attr_getstackaddr()
pthread_attr_setstackaddr()

rindex()
scalb()
setcontext()
swapcontext()
ualarm()
usleep()
vfork()
wcswcs()

B.1.2 Relationship to Other Formal Standards

There is no additional rationale provided for this section.

B.1.3 Format of Entries

Each system interface reference page has a common layout of sections describing the interface.
This layout is similar to the manual page or ‘‘man’’ page format shipped with most UNIX
systems, and each header has sections describing the SYNOPSIS, DESCRIPTION, RETURN
VALUE, and ERRORS. These are the four sections that relate to conformance.

Additional sections are informative, and add considerable information for the application
developer. EXAMPLES sections provide example usage. APPLICATION USAGE sections

3496 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

117522

117523

117524

117525

117526

117527

117528

117529

117530

117531

117532

117533

117534

117535

117536

117537

117538

117539

117540

117541

117542

117543

117544

117545

117546

117547

117548

117549

117550

117551

117552

117553

117554

117555

117556

117557

117558

117559

117560

117561

Rationale for System Interfaces Introduction

provide additional caveats, issues, and recommendations to the developer. RATIONALE
sections give additional information on the decisions made in defining the interface.

FUTURE DIRECTIONS sections act as pointers to related work that may impact the interface in
the future, and often cautions the developer to architect the code to account for a change in this
area. Note that a future directions statement should not be taken as a commitment to adopt a
feature or interface in the future.

The CHANGE HISTORY section describes when the interface was introduced, and how it has
changed.

Option labels and margin markings in the page can be useful in guiding the application
developer.

B.2 General Information

B.2.1 Use and Implementation of Interfaces

The information concerning the use of functions was adapted from a description in the ISO C
standard. Here is an example of how an application program can protect itself from functions
that may or may not be macros, rather than true functions:

The atoi() function may be used in any of several ways:

• By use of its associated header (possibly generating a macro expansion):

#include <stdlib.h>
/* ... */
i = atoi(str);

• By use of its associated header (assuredly generating a true function call):

#include <stdlib.h>
#undef atoi
/* ... */
i = atoi(str);

or:

#include <stdlib.h>
/* ... */
i = (atoi) (str);

• By explicit declaration:

extern int atoi (const char *);
/* ... */
i = atoi(str);

• By implicit declaration:

/* ... */
i = atoi(str);

(Assuming no function prototype is in scope. This is not allowed by the ISO C standard for
functions with variable arguments; furthermore, parameter type conversion ‘‘widening’’ is

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3497

117562

117563

117564

117565

117566

117567

117568

117569

117570

117571

117572

117573

117574

117575

117576

117577

117578

117579

117580

117581

117582

117583

117584

117585

117586

117587

117588

117589

117590

117591

117592

117593

117594

117595

117596

117597

117598

117599

General Information Rationale for System Interfaces

subject to different rules in this case.)

Note that the ISO C standard reserves names starting with ’_’ for the compiler. Therefore, the
compiler could, for example, implement an intrinsic, built-in function _asm_builtin_atoi(), which
it recognized and expanded into inline assembly code. Then, in <stdlib.h>, there could be the
following:

#define atoi(X) _asm_builtin_atoi(X)

The user’s ‘‘normal’’ call to atoi() would then be expanded inline, but the implementor would
also be required to provide a callable function named atoi() for use when the application
requires it; for example, if its address is to be stored in a function pointer variable.

Implementors should note that since applications can #undef a macro in order to ensure that the
function is used, this means that it is not safe for implementations to use the names of any
standard functions in macro values, since the application could use #undef to ensure that no
macro exists and then use the same name for an identifier with local scope. For example,
historically it was common for a getchar() macro to be defined in <stdio.h> as:

#define getchar() getc(stdin)

This definition does not conform, because an application is allowed to use the identifier getc
with local scope, and the expansion of the getchar() macro would then pick up the local getc.
The following is conforming code, but would not compile with the above definition of getchar():

#include <stdio.h>
#undef getc

int main(void)
{

int getc;

getc = getchar();

return getc;
}

This does not only affect function-like macros. For example, the following definition does not
conform because there could be a local sysconf variable in scope when SIGRTMIN is expanded:

#define SIGRTMIN ((int)sysconf(_SC_SIGRT_MIN))

Implementors can avoid the problem by using aliases for standard functions instead of the
actual function, with names that conforming applications cannot use for local variables. For
example:

#define SIGRTMIN ((int)__sysconf(_SC_SIGRT_MIN))

B.2.2 The Compilation Environment

B.2.2.1 POSIX.1 Symbols

This and the following section address the issue of ‘‘name space pollution’’. The ISO C standard
requires that the name space beyond what it reserves not be altered except by explicit action of
the application developer. This section defines the actions to add the POSIX.1 symbols for those
headers where both the ISO C standard and POSIX.1 need to define symbols, and also where the

3498 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

117600

117601

117602

117603

117604

117605

117606

117607

117608

117609

117610

117611

117612

117613

117614

117615

117616

117617

117618

117619

117620

117621

117622

117623

117624

117625

117626

117627

117628

117629

117630

117631

117632

117633

117634

117635

117636

117637

117638

Rationale for System Interfaces General Information

XSI option extends the base standard.

When headers are used to provide symbols, there is a potential for introducing symbols that the
application developer cannot predict. Ideally, each header should only contain one set of
symbols, but this is not practical for historical reasons. Thus, the concept of feature test macros is
included. Two feature test macros are explicitly defined by POSIX.1-2008; it is expected that
future versions may add to this.

Note: Feature test macros allow an application to announce to the implementation its desire to have
certain symbols and prototypes exposed. They should not be confused with the version test
macros and constants for options in <unistd.h> which are the implementation’s way of
announcing functionality to the application.

It is further intended that these feature test macros apply only to the headers specified by
POSIX.1-2008. Implementations are expressly permitted to make visible symbols not specified
by POSIX.1-2008, within both POSIX.1 and other headers, under the control of feature test
macros that are not defined by POSIX.1-2008.

The _POSIX_C_SOURCE Feature Test Macro

Since _POSIX_SOURCE specified by the POSIX.1-1990 standard did not have a value associated
with it, the _POSIX_C_SOURCE macro replaces it, allowing an application to inform the system
of the version of the standard to which it conforms. This symbol will allow implementations to
support various versions of this standard simultaneously. For instance, when either
_POSIX_SOURCE is defined or _POSIX_C_SOURCE is defined as 1, the system should make
visible the same name space as permitted and required by the POSIX.1-1990 standard. When
_POSIX_C_SOURCE is defined, the state of _POSIX_SOURCE is completely irrelevant.

It is expected that C bindings to future POSIX standards will define new values for
_POSIX_C_SOURCE, with each new value reserving the name space for that new standard, plus
all earlier POSIX standards.

The _XOPEN_SOURCE Feature Test Macro

The feature test macro _XOPEN_SOURCE is provided as the announcement mechanism for the
application that it requires functionality from the Single UNIX Specification. _XOPEN_SOURCE
must be defined to the value 700 before the inclusion of any header to enable the functionality in
the Single UNIX Specification. Its definition subsumes the use of _POSIX_SOURCE and
_POSIX_C_SOURCE.

An extract of code from a conforming application, that appears before any #include statements,
is given below:

#define _XOPEN_SOURCE 700 /* Single UNIX Specification, Version x */

#include ...

Note that the definition of _XOPEN_SOURCE with the value 700 makes the definition of
_POSIX_C_SOURCE redundant and it can safely be omitted.

B.2.2.2 The Name Space

The reservation of identifiers is paraphrased from the ISO C standard. The text is included
because it needs to be part of POSIX.1-2008, regardless of possible changes in future versions of
the ISO C standard.

These identifiers may be used by implementations, particularly for feature test macros.
Implementations should not use feature test macro names that might be reasonably used by a
standard.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3499

117639

117640

117641

117642

117643

117644

117645

117646

117647

117648

117649

117650

117651

117652

117653

117654

117655

117656

117657

117658

117659

117660

117661

117662

117663

117664

117665

117666

117667

117668

117669

117670

117671

117672

117673

117674

117675

117676

117677

117678

117679

117680

117681

117682

General Information Rationale for System Interfaces

Including headers more than once is a reasonably common practice, and it should be carried
forward from the ISO C standard. More significantly, having definitions in more than one
header is explicitly permitted. Where the potential declaration is ‘‘benign’’ (the same definition
twice) the declaration can be repeated, if that is permitted by the compiler. (This is usually true
of macros, for example.) In those situations where a repetition is not benign (for example,
typedefs), conditional compilation must be used. The situation actually occurs both within the
ISO C standard and within POSIX.1: time_t should be in <sys/types.h>, and the ISO C standard
mandates that it be in <time.h>.

The area of name space pollution versus additions to structures is difficult because of the macro
structure of C. The following discussion summarizes all the various problems with and
objections to the issue.

Note the phrase ‘‘user-defined macro’’. Users are not permitted to define macro names (or any
other name) beginning with "_[A-Z_]". Thus, the conflict cannot occur for symbols reserved
to the vendor’s name space, and the permission to add fields automatically applies, without
qualification, to those symbols.

1. Data structures (and unions) need to be defined in headers by implementations to meet
certain requirements of POSIX.1 and the ISO C standard.

2. The structures defined by POSIX.1 are typically minimal, and any practical
implementation would wish to add fields to these structures either to hold additional
related information or for backwards-compatibility (or both). Future standards (and de
facto standards) would also wish to add to these structures. Issues of field alignment
make it impractical (at least in the general case) to simply omit fields when they are not
defined by the particular standard involved.

The dirent structure is an example of such a minimal structure (although one could argue
about whether the other fields need visible names). The st_rdev field of most
implementations’ stat structure is a common example where extension is needed and
where a conflict could occur.

3. Fields in structures are in an independent name space, so the addition of such fields
presents no problem to the C language itself in that such names cannot interact with
identically named user symbols because access is qualified by the specific structure name.

4. There is an exception to this: macro processing is done at a lexical level. Thus, symbols
added to a structure might be recognized as user-provided macro names at the location
where the structure is declared. This only can occur if the user-provided name is declared
as a macro before the header declaring the structure is included. The user’s use of the
name after the declaration cannot interfere with the structure because the symbol is
hidden and only accessible through access to the structure. Presumably, the user would
not declare such a macro if there was an intention to use that field name.

5. Macros from the same or a related header might use the additional fields in the structure,
and those field names might also collide with user macros. Although this is a less
frequent occurrence, since macros are expanded at the point of use, no constraint on the
order of use of names can apply.

6. An ‘‘obvious’’ solution of using names in the reserved name space and then redefining
them as macros when they should be visible does not work because this has the effect of
exporting the symbol into the general name space. For example, given a (hypothetical)
system-provided header <h.h>, and two parts of a C program in a.c and b.c, in header
<h.h>:

struct foo {
int __i;

3500 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

117683

117684

117685

117686

117687

117688

117689

117690

117691

117692

117693

117694

117695

117696

117697

117698

117699

117700

117701

117702

117703

117704

117705

117706

117707

117708

117709

117710

117711

117712

117713

117714

117715

117716

117717

117718

117719

117720

117721

117722

117723

117724

117725

117726

117727

117728

117729

117730

Rationale for System Interfaces General Information

}

#ifdef _FEATURE_TEST
#define i __i;
#endif

In file a.c:

#include h.h
extern int i;
...

In file b.c:

extern int i;
...

The symbol that the user thinks of as i in both files has an external name of _ _i in a.c; the
same symbol i in b.c has an external name i (ignoring any hidden manipulations the
compiler might perform on the names). This would cause a mysterious name resolution
problem when a.o and b.o are linked.

Simply avoiding definition then causes alignment problems in the structure.

A structure of the form:

struct foo {
union {

int __i;
#ifdef _FEATURE_TEST

int i;
#endif

} __ii;
}

does not work because the name of the logical field i is _ _ii.i, and introduction of a macro
to restore the logical name immediately reintroduces the problem discussed previously
(although its manifestation might be more immediate because a syntax error would result
if a recursive macro did not cause it to fail first).

7. A more workable solution would be to declare the structure:

struct foo {
#ifdef _FEATURE_TEST

int i;
#else

int __i;
#endif
}

However, if a macro (particularly one required by a standard) is to be defined that uses
this field, two must be defined: one that uses i, the other that uses _ _i. If more than one
additional field is used in a macro and they are conditional on distinct combinations of
features, the complexity goes up as 2n.

All this leaves a difficult situation: vendors must provide very complex headers to deal with
what is conceptually simple and safe—adding a field to a structure. It is the possibility of user-
provided macros with the same name that makes this difficult.

Several alternatives were proposed that involved constraining the user’s access to part of the

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3501

117731

117732

117733

117734

117735

117736

117737

117738

117739

117740

117741

117742

117743

117744

117745

117746

117747

117748

117749

117750

117751

117752

117753

117754

117755

117756

117757

117758

117759

117760

117761

117762

117763

117764

117765

117766

117767

117768

117769

117770

117771

117772

117773

117774

117775

General Information Rationale for System Interfaces

name space available to the user (as specified by the ISO C standard). In some cases, this was
only until all the headers had been included. There were two proposals discussed that failed to
achieve consensus:

1. Limiting it for the whole program.

2. Restricting the use of identifiers containing only uppercase letters until after all system
headers had been included. It was also pointed out that because macros might wish to
access fields of a structure (and macro expansion occurs totally at point of use) restricting
names in this way would not protect the macro expansion, and thus the solution was
inadequate.

It was finally decided that reservation of symbols would occur, but as constrained.

The current wording also allows the addition of fields to a structure, but requires that user
macros of the same name not interfere. This allows vendors to do one of the following:

• Not create the situation (do not extend the structures with user-accessible names or use the
solution in (7) above)

• Extend their compilers to allow some way of adding names to structures and macros safely

There are at least two ways that the compiler might be extended: add new preprocessor
directives that turn off and on macro expansion for certain symbols (without changing the value
of the macro) and a function or lexical operation that suppresses expansion of a word. The latter
seems more flexible, particularly because it addresses the problem in macros as well as in
declarations.

The following seems to be a possible implementation extension to the C language that will do
this: any token that during macro expansion is found to be preceded by three ’#’ symbols shall
not be further expanded in exactly the same way as described for macros that expand to their
own name as in Section 3.8.3.4 of the ISO C standard. A vendor may also wish to implement this
as an operation that is lexically a function, which might be implemented as:

#define __safe_name(x) ###x

Using a function notation would insulate vendors from changes in standards until such a
functionality is standardized (if ever). Standardization of such a function would be valuable
because it would then permit third parties to take advantage of it portably in software they may
supply.

The symbols that are ‘‘explicitly permitted, but not required by POSIX.1-2008’’ include those
classified below. (That is, the symbols classified below might, but are not required to, be present
when _POSIX_C_SOURCE is defined to have the value 200809L.)

• Symbols in <limits.h> and <unistd.h> that are defined to indicate support for options or
limits that are constant at compile-time

• Symbols in the name space reserved for the implementation by the ISO C standard

• Symbols in a name space reserved for a particular type of extension (for example, type
names ending with _t in <sys/types.h>)

• Additional members of structures or unions whose names do not reduce the name space
reserved for applications

Since both implementations and future versions of this standard and other POSIX standards
may use symbols in the reserved spaces described in these tables, there is a potential for name
space clashes. To avoid future name space clashes when adding symbols, implementations
should not use the posix_, POSIX_, or _POSIX_ prefixes.

3502 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

117776

117777

117778

117779

117780

117781

117782

117783

117784

117785

117786

117787

117788

117789

117790

117791

117792

117793

117794

117795

117796

117797

117798

117799

117800

117801

117802

117803

117804

117805

117806

117807

117808

117809

117810

117811

117812

117813

117814

117815

117816

117817

117818

117819

Rationale for System Interfaces General Information

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/2 is applied, deleting the entries POSIX_,
POSIX, and posix_ from the column of allowed name space prefixes for use by an
implementation in the first table. The presence of these prefixes was contradicting later text
which states that: ‘‘The prefixes posix_, POSIX_, and _POSIX are reserved for use by XCU
Chapter 2 (on page 2297) and other POSIX standards. Implementations may add symbols to the
headers shown in the following table, provided the identifiers . . . do not use the reserved
prefixes posix_, POSIX_, or _POSIX.’’.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/3 is applied, correcting the reserved
macro prefix from: ‘‘PRI[a-z], SCN[a-z]’’ to: ‘‘PRI[Xa-z], SCN[Xa-z]’’ in the second table. The
change was needed since the ISO C standard allows implementations to define macros of the
form PRI or SCN followed by any lowercase letter or ’X’ in <inttypes.h>. (The
ISO/IEC 9899: 1999 standard, Subclause 7.26.4.)

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/4 is applied, adding a new section listing
reserved names for the <stdint.h> header. This change is for alignment with the ISO C standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/2 is applied, making it clear that
implementations are permitted to have symbols with the prefix _POSIX_ visible in any header.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/3 is applied, updating the table of
allowed macro prefixes to include the prefix FP_[A-Z] for <math.h>. This text is added for
consistency with the <math.h> reference page in the Base Definitions volume of POSIX.1-2008
which permits additional implementation-defined floating-point classifications.

Austin Group Interpretation 1003.1-2001 #048 is applied, reserving SEEK_ in the name space.

B.2.3 Error Numbers

It was the consensus of the standard developers that to allow the conformance document to state
that an error occurs and under what conditions, but to disallow a statement that it never occurs,
does not make sense. It could be implied by the current wording that this is allowed, but to
reduce the possibility of future interpretation requests, it is better to make an explicit statement.

The ISO C standard requires that errno be an assignable lvalue. Originally, the definition in
POSIX.1 was stricter than that in the ISO C standard, extern int errno, in order to support
historical usage. In a multi-threaded environment, implementing errno as a global variable
results in non-deterministic results when accessed. It is required, however, that errno work as a
per-thread error reporting mechanism. In order to do this, a separate errno value has to be
maintained for each thread. The following section discusses the various alternative solutions
that were considered.

In order to avoid this problem altogether for new functions, these functions avoid using errno
and, instead, return the error number directly as the function return value; a return value of zero
indicates that no error was detected.

For any function that can return errors, the function return value is not used for any purpose
other than for reporting errors. Even when the output of the function is scalar, it is passed
through a function argument. While it might have been possible to allow some scalar outputs to
be coded as negative function return values and mixed in with positive error status returns, this
was rejected—using the return value for a mixed purpose was judged to be of limited use and
error prone.

Checking the value of errno alone is not sufficient to determine the existence or type of an error,
since it is not required that a successful function call clear errno. The variable errno should only
be examined when the return value of a function indicates that the value of errno is meaningful.
In that case, the function is required to set the variable to something other than zero.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3503

117820

117821

117822

117823

117824

117825

117826

117827

117828

117829

117830

117831

117832

117833

117834

117835

117836

117837

117838

117839

117840

117841

117842

117843

117844

117845

117846

117847

117848

117849

117850

117851

117852

117853

117854

117855

117856

117857

117858

117859

117860

117861

117862

117863

117864

117865

General Information Rationale for System Interfaces

The variable errno is never set to zero by any function call; to do so would contradict the ISO C
standard.

POSIX.1 requires (in the ERRORS sections of function descriptions) certain error values to be set
in certain conditions because many existing applications depend on them. Some error numbers,
such as [EFAULT], are entirely implementation-defined and are noted as such in their
description in the ERRORS section. This section otherwise allows wide latitude to the
implementation in handling error reporting.

Some of the ERRORS sections in POSIX.1-2008 have two subsections. The first:

‘‘The function shall fail if:’’

could be called the ‘‘mandatory’’ section.

The second:

‘‘The function may fail if:’’

could be informally known as the ‘‘optional’’ section.

Attempting to infer the quality of an implementation based on whether it detects optional error
conditions is not useful.

Following each one-word symbolic name for an error, there is a description of the error. The
rationale for some of the symbolic names follows:

[ECANCELED] This spelling was chosen as being more common.

[EFAULT] Most historical implementations do not catch an error and set errno when an
invalid address is given to the functions wait(), time(), or times(). Some
implementations cannot reliably detect an invalid address. And most systems
that detect invalid addresses will do so only for a system call, not for a library
routine.

[EFTYPE] This error code was proposed in earlier proposals as ‘‘Inappropriate operation
for file type’’, meaning that the operation requested is not appropriate for the
file specified in the function call. This code was proposed, although the same
idea was covered by [ENOTTY], because the connotations of the name would
be misleading. It was pointed out that the fcntl() function uses the error code
[EINVAL] for this notion, and hence all instances of [EFTYPE] were changed
to this code.

[EINTR] POSIX.1 prohibits conforming implementations from restarting interrupted
system calls of conforming applications unless the SA_RESTART flag is in
effect for the signal. However, it does not require that [EINTR] be returned
when another legitimate value may be substituted; for example, a partial
transfer count when read() or write() are interrupted. This is only given when
the signal-catching function returns normally as opposed to returns by
mechanisms like longjmp() or siglongjmp().

[ELOOP] In specifying conditions under which implementations would generate this
error, the following goals were considered:

• To ensure that actual loops are detected, including loops that result from
symbolic links across distributed file systems.

• To ensure that during pathname resolution an application can rely on
the ability to follow at least {SYMLOOP_MAX} symbolic links in the
absence of a loop.

3504 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

117866

117867

117868

117869

117870

117871

117872

117873

117874

117875

117876

117877

117878

117879

117880

117881

117882

117883

117884

117885

117886

117887

117888

117889

117890

117891

117892

117893

117894

117895

117896

117897

117898

117899

117900

117901

117902

117903

117904

117905

117906

117907

117908

117909

Rationale for System Interfaces General Information

• To allow implementations to provide the capability of traversing more
than {SYMLOOP_MAX} symbolic links in the absence of a loop.

• To allow implementations to detect loops and generate the error prior to
encountering {SYMLOOP_MAX} symbolic links.

[ENAMETOOLONG]
When a symbolic link is encountered during pathname resolution, the
contents of that symbolic link are used to create a new pathname. The
standard developers intended to allow, but not require, that implementations
enforce the restriction of {PATH_MAX} on the result of this pathname
substitution.

Implementations are allowed, but not required, to treat a pathname longer
than {PATH_MAX} passed into the system as an error. Implementations are
required to return a pathname (even if it is longer than {PATH_MAX}) when
the user supplies a buffer with an interface that specifies the buffer size, as
long as the user-supplied buffer is large enough to hold the entire pathname
(see XSH getcwd() for an example of this type of interface). Implementations
are required to treat a request to pass a pathname longer than {PATH_MAX}
from the system to a user-supplied buffer of an unspecified size (usually
assumed to be of size {PATH_MAX}) as an error (see XSH realpath() for an
example of this type of interface).

[ENOMEM] The term ‘‘main memory’’ is not used in POSIX.1 because it is
implementation-defined.

[ENOTSUP] This error code is to be used when an implementation chooses to implement
the required functionality of POSIX.1-2008 but does not support optional
facilities defined by POSIX.1-2008. The return of [ENOSYS] is to be taken to
indicate that the function of the interface is not supported at all; the function
will always fail with this error code.

[ENOTTY] The symbolic name for this error is derived from a time when device control
was done by ioctl() and that operation was only permitted on a terminal
interface. The term ‘‘TTY’’ is derived from ‘‘teletypewriter ’’, the devices to
which this error originally applied.

[EOVERFLOW] Most of the uses of this error code are related to large file support. Typically,
these cases occur on systems which support multiple programming
environments with different sizes for off_t, but they may also occur in
connection with remote file systems.

In addition, when different programming environments have different widths
for types such as int and uid_t, several functions may encounter a condition
where a value in a particular environment is too wide to be represented. In
that case, this error should be raised. For example, suppose the currently
running process has 64-bit int, and file descriptor 9 223 372 036 854 775 807 is
open and does not have the close-on-exec flag set. If the process then uses
execl() to exec a file compiled in a programming environment with 32-bit int,
the call to execl() can fail with errno set to [EOVERFLOW]. A similar failure
can occur with execl() if any of the user IDs or any of the group IDs to be
assigned to the new process image are out of range for the executed file’s
programming environment.

Note, however, that this condition cannot occur for functions that are
explicitly described as always being successful, such as getpid().

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3505

117910

117911

117912

117913

117914

117915

117916

117917

117918

117919

117920

117921

117922

117923

117924

117925

117926

117927

117928

117929

117930

117931

117932

117933

117934

117935

117936

117937

117938

117939

117940

117941

117942

117943

117944

117945

117946

117947

117948

117949

117950

117951

117952

117953

117954

117955

117956

117957

General Information Rationale for System Interfaces

[EPIPE] This condition normally generates the signal SIGPIPE; the error is returned if
the generation of the signal is suppressed or the signal does not terminate the
process.

[EROFS] In historical implementations, attempting to unlink() or rmdir() a mount point
would generate an [EBUSY] error. An implementation could be envisioned
where such an operation could be performed without error. In this case, if
either the directory entry or the actual data structures reside on a read-only file
system, [EROFS] is the appropriate error to generate. (For example, changing
the link count of a file on a read-only file system could not be done, as is
required by unlink(), and thus an error should be reported.)

Three error numbers, [EDOM], [EILSEQ], and [ERANGE], were added to this section primarily
for consistency with the ISO C standard.

Alternative Solutions for Per-Thread errno

The usual implementation of errno as a single global variable does not work in a multi-threaded
environment. In such an environment, a thread may make a POSIX.1 call and get a −1 error
return, but before that thread can check the value of errno, another thread might have made a
second POSIX.1 call that also set errno. This behavior is unacceptable in robust programs. There
were a number of alternatives that were considered for handling the errno problem:

• Implement errno as a per-thread integer variable.

• Implement errno as a service that can access the per-thread error number.

• Change all POSIX.1 calls to accept an extra status argument and avoid setting errno.

• Change all POSIX.1 calls to raise a language exception.

The first option offers the highest level of compatibility with existing practice but requires
special support in the linker, compiler, and/or virtual memory system to support the new
concept of thread private variables. When compared with current practice, the third and fourth
options are much cleaner, more efficient, and encourage a more robust programming style, but
they require new versions of all of the POSIX.1 functions that might detect an error. The second
option offers compatibility with existing code that uses the <errno.h> header to define the
symbol errno. In this option, errno may be a macro defined:

#define errno (*__errno())
extern int *__errno();

This option may be implemented as a per-thread variable whereby an errno field is allocated in
the user space object representing a thread, and whereby the function __errno() makes a system
call to determine the location of its user space object and returns the address of the errno field of
that object. Another implementation, one that avoids calling the kernel, involves allocating
stacks in chunks. The stack allocator keeps a side table indexed by chunk number containing a
pointer to the thread object that uses that chunk. The __errno() function then looks at the stack
pointer, determines the chunk number, and uses that as an index into the chunk table to find its
thread object and thus its private value of errno. On most architectures, this can be done in four
to five instructions. Some compilers may wish to implement __errno() inline to improve
performance.

3506 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

117958

117959

117960

117961

117962

117963

117964

117965

117966

117967

117968

117969

117970

117971

117972

117973

117974

117975

117976

117977

117978

117979

117980

117981

117982

117983

117984

117985

117986

117987

117988

117989

117990

117991

117992

117993

117994

117995

117996

117997

117998

Rationale for System Interfaces General Information

Disallowing Return of the [EINTR] Error Code

Many blocking interfaces defined by POSIX.1-2008 may return [EINTR] if interrupted during
their execution by a signal handler. Blocking interfaces introduced under the threads
functionality do not have this property. Instead, they require that the interface appear to be
atomic with respect to interruption. In particular, clients of blocking interfaces need not handle
any possible [EINTR] return as a special case since it will never occur. If it is necessary to restart
operations or complete incomplete operations following the execution of a signal handler, this is
handled by the implementation, rather than by the application.

Requiring applications to handle [EINTR] errors on blocking interfaces has been shown to be a
frequent source of often unreproducible bugs, and it adds no compelling value to the available
functionality. Thus, blocking interfaces introduced for use by multi-threaded programs do not
use this paradigm. In particular, in none of the functions flockfile(), pthread_cond_timedwait(),
pthread_cond_wait(), pthread_join(), pthread_mutex_lock(), and sigwait() did providing [EINTR]
returns add value, or even particularly make sense. Thus, these functions do not provide for an
[EINTR] return, even when interrupted by a signal handler. The same arguments can be applied
to sem_wait(), sem_trywait(), sigwaitinfo(), and sigtimedwait(), but implementations are
permitted to return [EINTR] error codes for these functions for compatibility with earlier
versions of this standard. Applications cannot rely on calls to these functions returning [EINTR]
error codes when signals are delivered to the calling thread, but they should allow for the
possibility.

Austin Group Interpretation 1003.1-2001 #050 is applied, allowing [ENOTSUP] and
[EOPNOTSUP] to be the same values.

B.2.3.1 Additional Error Numbers

The ISO C standard defines the name space for implementations to add additional error
numbers.

B.2.4 Signal Concepts

Historical implementations of signals, using the signal() function, have shortcomings that make
them unreliable for many application uses. Because of this, a new signal mechanism, based very
closely on the one of 4.2 BSD and 4.3 BSD, was added to POSIX.1.

Signal Names

The restriction on the actual type used for sigset_t is intended to guarantee that these objects can
always be assigned, have their address taken, and be passed as parameters by value. It is not
intended that this type be a structure including pointers to other data structures, as that could
impact the portability of applications performing such operations. A reasonable implementation
could be a structure containing an array of some integer type.

The signals described in POSIX.1-2008 must have unique values so that they may be named as
parameters of case statements in the body of a C-language switch clause. However,
implementation-defined signals may have values that overlap with each other or with signals
specified in POSIX.1-2008. An example of this is SIGABRT, which traditionally overlaps some
other signal, such as SIGIOT.

SIGKILL, SIGTERM, SIGUSR1, and SIGUSR2 are ordinarily generated only through the explicit
use of the kill() function, although some implementations generate SIGKILL under
extraordinary circumstances. SIGTERM is traditionally the default signal sent by the kill
command.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3507

117999

118000

118001

118002

118003

118004

118005

118006

118007

118008

118009

118010

118011

118012

118013

118014

118015

118016

118017

118018

118019

118020

118021

118022

118023

118024

118025

118026

118027

118028

118029

118030

118031

118032

118033

118034

118035

118036

118037

118038

118039

118040

118041

118042

General Information Rationale for System Interfaces

The signals SIGBUS, SIGEMT, SIGIOT, SIGTRAP, and SIGSYS were omitted from POSIX.1
because their behavior is implementation-defined and could not be adequately categorized.
Conforming implementations may deliver these signals, but must document the circumstances
under which they are delivered and note any restrictions concerning their delivery. The signals
SIGFPE, SIGILL, and SIGSEGV are similar in that they also generally result only from
programming errors. They were included in POSIX.1 because they do indicate three relatively
well-categorized conditions. They are all defined by the ISO C standard and thus would have to
be defined by any system with an ISO C standard binding, even if not explicitly included in
POSIX.1.

There is very little that a Conforming POSIX.1 Application can do by catching, ignoring, or
masking any of the signals SIGILL, SIGTRAP, SIGIOT, SIGEMT, SIGBUS, SIGSEGV, SIGSYS, or
SIGFPE. They will generally be generated by the system only in cases of programming errors.
While it may be desirable for some robust code (for example, a library routine) to be able to
detect and recover from programming errors in other code, these signals are not nearly sufficient
for that purpose. One portable use that does exist for these signals is that a command interpreter
can recognize them as the cause of termination of a process (with wait()) and print an
appropriate message. The mnemonic tags for these signals are derived from their PDP-11 origin.

The signals SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, and SIGCONT are provided for job control
and are unchanged from 4.2 BSD. The signal SIGCHLD is also typically used by job control
shells to detect children that have terminated or, as in 4.2 BSD, stopped.

Some implementations, including System V, have a signal named SIGCLD, which is similar to
SIGCHLD in 4.2 BSD. POSIX.1 permits implementations to have a single signal with both
names. POSIX.1 carefully specifies ways in which conforming applications can avoid the
semantic differences between the two different implementations. The name SIGCHLD was
chosen for POSIX.1 because most current application usages of it can remain unchanged in
conforming applications. SIGCLD in System V has more cases of semantics that POSIX.1 does
not specify, and thus applications using it are more likely to require changes in addition to the
name change.

The signals SIGUSR1 and SIGUSR2 are commonly used by applications for notification of
exceptional behavior and are described as ‘‘reserved as application-defined’’ so that such use is
not prohibited. Implementations should not generate SIGUSR1 or SIGUSR2, except when
explicitly requested by kill(). It is recommended that libraries not use these two signals, as such
use in libraries could interfere with their use by applications calling the libraries. If such use is
unavoidable, it should be documented. It is prudent for non-portable libraries to use non-
standard signals to avoid conflicts with use of standard signals by portable libraries.

There is no portable way for an application to catch or ignore non-standard signals. Some
implementations define the range of signal numbers, so applications can install signal-catching
functions for all of them. Unfortunately, implementation-defined signals often cause problems
when caught or ignored by applications that do not understand the reason for the signal. While
the desire exists for an application to be more robust by handling all possible signals (even those
only generated by kill()), no existing mechanism was found to be sufficiently portable to include
in POSIX.1. The value of such a mechanism, if included, would be diminished given that
SIGKILL would still not be catchable.

A number of new signal numbers are reserved for applications because the two user signals
defined by POSIX.1 are insufficient for many realtime applications. A range of signal numbers is
specified, rather than an enumeration of additional reserved signal names, because different
applications and application profiles will require a different number of application signals. It is
not desirable to burden all application domains and therefore all implementations with the
maximum number of signals required by all possible applications. Note that in this context,
signal numbers are essentially different signal priorities.

3508 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

118043

118044

118045

118046

118047

118048

118049

118050

118051

118052

118053

118054

118055

118056

118057

118058

118059

118060

118061

118062

118063

118064

118065

118066

118067

118068

118069

118070

118071

118072

118073

118074

118075

118076

118077

118078

118079

118080

118081

118082

118083

118084

118085

118086

118087

118088

118089

118090

118091

118092

Rationale for System Interfaces General Information

The relatively small number of required additional signals, {_POSIX_RTSIG_MAX}, was chosen
so as not to require an unreasonably large signal mask/set. While this number of signals
defined in POSIX.1 will fit in a single 32-bit word signal mask, it is recognized that most existing
implementations define many more signals than are specified in POSIX.1 and, in fact, many
implementations have already exceeded 32 signals (including the ‘‘null signal’’). Support of
{_POSIX_RTSIG_MAX} additional signals may push some implementation over the single 32-bit
word line, but is unlikely to push any implementations that are already over that line beyond
the 64-signal line.

B.2.4.1 Signal Generation and Delivery

The terms defined in this section are not used consistently in documentation of historical
systems. Each signal can be considered to have a lifetime beginning with generation and ending
with delivery or acceptance. The POSIX.1 definition of ‘‘delivery’’ does not exclude ignored
signals; this is considered a more consistent definition. This revised text in several parts of
POSIX.1-2008 clarifies the distinct semantics of asynchronous signal delivery and synchronous
signal acceptance. The previous wording attempted to categorize both under the term
‘‘delivery’’, which led to conflicts over whether the effects of asynchronous signal delivery
applied to synchronous signal acceptance.

Signals generated for a process are delivered to only one thread. Thus, if more than one thread
is eligible to receive a signal, one has to be chosen. The choice of threads is left entirely up to the
implementation both to allow the widest possible range of conforming implementations and to
give implementations the freedom to deliver the signal to the ‘‘easiest possible’’ thread should
there be differences in ease of delivery between different threads.

Note that should multiple delivery among cooperating threads be required by an application,
this can be trivially constructed out of the provided single-delivery semantics. The construction
of a sigwait_multiple() function that accomplishes this goal is presented with the rationale for
sigwaitinfo().

Implementations should deliver unblocked signals as soon after they are generated as possible.
However, it is difficult for POSIX.1 to make specific requirements about this, beyond those in
kill() and sigprocmask(). Even on systems with prompt delivery, scheduling of higher priority
processes is always likely to cause delays.

In general, the interval between the generation and delivery of unblocked signals cannot be
detected by an application. Thus, references to pending signals generally apply to blocked,
pending signals. An implementation registers a signal as pending on the process when no
thread has the signal unblocked and there are no threads blocked in a sigwait() function for that
signal. Thereafter, the implementation delivers the signal to the first thread that unblocks the
signal or calls a sigwait() function on a signal set containing this signal rather than choosing the
recipient thread at the time the signal is sent.

In the 4.3 BSD system, signals that are blocked and set to SIG_IGN are discarded immediately
upon generation. For a signal that is ignored as its default action, if the action is SIG_DFL and
the signal is blocked, a generated signal remains pending. In the 4.1 BSD system and in
System V Release 3 (two other implementations that support a somewhat similar signal
mechanism), all ignored blocked signals remain pending if generated. Because it is not normally
useful for an application to simultaneously ignore and block the same signal, it was unnecessary
for POSIX.1 to specify behavior that would invalidate any of the historical implementations.

There is one case in some historical implementations where an unblocked, pending signal does
not remain pending until it is delivered. In the System V implementation of signal(), pending
signals are discarded when the action is set to SIG_DFL or a signal-catching routine (as well as
to SIG_IGN). Except in the case of setting SIGCHLD to SIG_DFL, implementations that do this

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3509

118093

118094

118095

118096

118097

118098

118099

118100

118101

118102

118103

118104

118105

118106

118107

118108

118109

118110

118111

118112

118113

118114

118115

118116

118117

118118

118119

118120

118121

118122

118123

118124

118125

118126

118127

118128

118129

118130

118131

118132

118133

118134

118135

118136

118137

118138

118139

118140

General Information Rationale for System Interfaces

do not conform completely to POSIX.1. Some earlier proposals for POSIX.1 explicitly stated this,
but these statements were redundant due to the requirement that functions defined by POSIX.1
not change attributes of processes defined by POSIX.1 except as explicitly stated.

POSIX.1 specifically states that the order in which multiple, simultaneously pending signals are
delivered is unspecified. This order has not been explicitly specified in historical
implementations, but has remained quite consistent and been known to those familiar with the
implementations. Thus, there have been cases where applications (usually system utilities) have
been written with explicit or implicit dependencies on this order. Implementors and others
porting existing applications may need to be aware of such dependencies.

When there are multiple pending signals that are not blocked, implementations should arrange
for the delivery of all signals at once, if possible. Some implementations stack calls to all pending
signal-catching routines, making it appear that each signal-catcher was interrupted by the next
signal. In this case, the implementation should ensure that this stacking of signals does not
violate the semantics of the signal masks established by sigaction(). Other implementations
process at most one signal when the operating system is entered, with remaining signals saved
for later delivery. Although this practice is widespread, this behavior is neither standardized
nor endorsed. In either case, implementations should attempt to deliver signals associated with
the current state of the process (for example, SIGFPE) before other signals, if possible.

In 4.2 BSD and 4.3 BSD, it is not permissible to ignore or explicitly block SIGCONT, because if
blocking or ignoring this signal prevented it from continuing a stopped process, such a process
could never be continued (only killed by SIGKILL). However, 4.2 BSD and 4.3 BSD do block
SIGCONT during execution of its signal-catching function when it is caught, creating exactly
this problem. A proposal was considered to disallow catching SIGCONT in addition to ignoring
and blocking it, but this limitation led to objections. The consensus was to require that
SIGCONT always continue a stopped process when generated. This removed the need to
disallow ignoring or explicit blocking of the signal; note that SIG_IGN and SIG_DFL are
equivalent for SIGCONT.

B.2.4.2 Realtime Signal Generation and Delivery

The realtime signals functionality is required in this version of the standard for the following
reasons:

• The sigevent structure is used by other POSIX.1 functions that result in asynchronous
event notifications to specify the notification mechanism to use and other information
needed by the notification mechanism. POSIX.1-2008 defines only three symbolic values
for the notification mechanism:

— SIGEV_NONE is used to indicate that no notification is required when the event
occurs. This is useful for applications that use asynchronous I/O with polling for
completion.

— SIGEV_SIGNAL indicates that a signal is generated when the event occurs.

— SIGEV_THREAD provides for ‘‘callback functions’’ for asynchronous notifications
done by a function call within the context of a new thread. This provides a multi-
threaded process with a more natural means of notification than signals.

The primary difficulty with previous notification approaches has been to specify the
environment of the notification routine.

— One approach is to limit the notification routine to call only functions permitted in a
signal handler. While the list of permissible functions is clearly stated, this is overly
restrictive.

3510 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

118141

118142

118143

118144

118145

118146

118147

118148

118149

118150

118151

118152

118153

118154

118155

118156

118157

118158

118159

118160

118161

118162

118163

118164

118165

118166

118167

118168

118169

118170

118171

118172

118173

118174

118175

118176

118177

118178

118179

118180

118181

118182

118183

118184

118185

118186

Rationale for System Interfaces General Information

— A second approach is to define a new list of functions or classes of functions that are
explicitly permitted or not permitted. This would give a programmer more lists to
deal with, which would be awkward.

— The third approach is to define completely the environment for execution of the
notification function. A clear definition of an execution environment for notification
is provided by executing the notification function in the environment of a newly
created thread.

Implementations may support additional notification mechanisms by defining new values
for sigev_notify.

For a notification type of SIGEV_SIGNAL, the other members of the sigevent structure
defined by POSIX.1-2008 specify the realtime signal—that is, the signal number and
application-defined value that differentiates between occurrences of signals with the same
number—that will be generated when the event occurs. The structure is defined in
<signal.h>, even though the structure is not directly used by any of the signal functions,
because it is part of the signals interface used by the POSIX.1b ‘‘client functions’’. When the
client functions include <signal.h> to define the signal names, the sigevent structure will
also be defined.

An application-defined value passed to the signal handler is used to differentiate between
different ‘‘events’’ instead of requiring that the application use different signal numbers for
several reasons:

— Realtime applications potentially handle a very large number of different events.
Requiring that implementations support a correspondingly large number of distinct
signal numbers will adversely impact the performance of signal delivery because the
signal masks to be manipulated on entry and exit to the handlers will become large.

— Event notifications are prioritized by signal number (the rationale for this is
explained in the following paragraphs) and the use of different signal numbers to
differentiate between the different event notifications overloads the signal number
more than has already been done. It also requires that the application developer
make arbitrary assignments of priority to events that are logically of equal priority.

A union is defined for the application-defined value so that either an integer constant or a
pointer can be portably passed to the signal-catching function. On some architectures a
pointer cannot be cast to an int and vice versa.

Use of a structure here with an explicit notification type discriminant rather than explicit
parameters to realtime functions, or embedded in other realtime structures, provides for
future extensions to POSIX.1-2008. Additional, perhaps more efficient, notification
mechanisms can be supported for existing realtime function interfaces, such as timers and
asynchronous I/O, by extending the sigevent structure appropriately. The existing
realtime function interfaces will not have to be modified to use any such new notification
mechanism. The revised text concerning the SIGEV_SIGNAL value makes consistent the
semantics of the members of the sigevent structure, particularly in the definitions of
lio_listio() and aio_fsync(). For uniformity, other revisions cause this specification to be
referred to rather than inaccurately duplicated in the descriptions of functions and
structures using the sigevent structure. The revised wording does not relax the
requirement that the signal number be in the range SIGRTMIN to SIGRTMAX to guarantee
queuing and passing of the application value, since that requirement is still implied by the
signal names.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3511

118187

118188

118189

118190

118191

118192

118193

118194

118195

118196

118197

118198

118199

118200

118201

118202

118203

118204

118205

118206

118207

118208

118209

118210

118211

118212

118213

118214

118215

118216

118217

118218

118219

118220

118221

118222

118223

118224

118225

118226

118227

118228

118229

118230

118231

118232

General Information Rationale for System Interfaces

• POSIX.1-2008 is intentionally vague on whether ‘‘non-realtime’’ signal-generating
mechanisms can result in a siginfo_t being supplied to the handler on delivery. In one
existing implementation, a siginfo_t is posted on signal generation, even though the
implementation does not support queuing of multiple occurrences of a signal. It is not the
intent of POSIX.1-2008 to preclude this, independent of the mandate to define signals that
do support queuing. Any interpretation that appears to preclude this is a mistake in the
reading or writing of the standard.

• Signals handled by realtime signal handlers might be generated by functions or conditions
that do not allow the specification of an application-defined value and do not queue.
POSIX.1-2008 specifies the si_code member of the siginfo_t structure used in existing
practice and defines additional codes so that applications can detect whether an
application-defined value is present or not. The code SI_USER for kill()-generated signals
is adopted from existing practice.

• The sigaction() sa_flags value SA_SIGINFO tells the implementation that the signal-
catching function expects two additional arguments. When the flag is not set, a single
argument, the signal number, is passed as specified by POSIX.1-2008. Although
POSIX.1-2008 does not explicitly allow the info argument to the handler function to be
NULL, this is existing practice. This provides for compatibility with programs whose
signal-catching functions are not prepared to accept the additional arguments.
POSIX.1-2008 is explicitly unspecified as to whether signals actually queue when
SA_SIGINFO is not set for a signal, as there appear to be no benefits to applications in
specifying one behavior or another. One existing implementation queues a siginfo_t on
each signal generation, unless the signal is already pending, in which case the
implementation discards the new siginfo_t; that is, the queue length is never greater than
one. This implementation only examines SA_SIGINFO on signal delivery, discarding the
queued siginfo_t if its delivery was not requested.

The third argument to the signal-catching function, context, is left undefined by
POSIX.1-2008, but is specified in the interface because it matches existing practice for the
SA_SIGINFO flag. It was considered undesirable to require a separate implementation for
SA_SIGINFO for POSIX conformance on implementations that already support the two
additional parameters.

• The requirement to deliver lower numbered signals in the range SIGRTMIN to SIGRTMAX
first, when multiple unblocked signals are pending, results from several considerations:

— A method is required to prioritize event notifications. The signal number was chosen
instead of, for instance, associating a separate priority with each request, because an
implementation has to check pending signals at various points and select one for
delivery when more than one is pending. Specifying a selection order is the minimal
additional semantic that will achieve prioritized delivery. If a separate priority were
to be associated with queued signals, it would be necessary for an implementation to
search all non-empty, non-blocked signal queues and select from among them the
pending signal with the highest priority. This would significantly increase the cost of
and decrease the determinism of signal delivery.

— Given the specified selection of the lowest numeric unblocked pending signal,
preemptive priority signal delivery can be achieved using signal numbers and signal
masks by ensuring that the sa_mask for each signal number blocks all signals with a
higher numeric value.

For realtime applications that want to use only the newly defined realtime signal
numbers without interference from the standard signals, this can be achieved by
blocking all of the standard signals in the thread signal mask and in the sa_mask

3512 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

118233

118234

118235

118236

118237

118238

118239

118240

118241

118242

118243

118244

118245

118246

118247

118248

118249

118250

118251

118252

118253

118254

118255

118256

118257

118258

118259

118260

118261

118262

118263

118264

118265

118266

118267

118268

118269

118270

118271

118272

118273

118274

118275

118276

118277

118278

118279

118280

118281

Rationale for System Interfaces General Information

installed by the signal action for the realtime signal handlers.

POSIX.1-2008 explicitly leaves unspecified the ordering of signals outside of the range of
realtime signals and the ordering of signals within this range with respect to those outside
the range. It was believed that this would unduly constrain implementations or standards
in the future definition of new signals.

B.2.4.3 Signal Actions

Early proposals mentioned SIGCONT as a second exception to the rule that signals are not
delivered to stopped processes until continued. Because POSIX.1-2008 now specifies that
SIGCONT causes the stopped process to continue when it is generated, delivery of SIGCONT is
not prevented because a process is stopped, even without an explicit exception to this rule.

Ignoring a signal by setting the action to SIG_IGN (or SIG_DFL for signals whose default action
is to ignore) is not the same as installing a signal-catching function that simply returns. Invoking
such a function will interrupt certain system functions that block processes (for example, wait(),
sigsuspend(), pause(), read(), write()) while ignoring a signal has no such effect on the process.

Historical implementations discard pending signals when the action is set to SIG_IGN.
However, they do not always do the same when the action is set to SIG_DFL and the default
action is to ignore the signal. POSIX.1-2008 requires this for the sake of consistency and also for
completeness, since the only signal this applies to is SIGCHLD, and POSIX.1-2008 disallows
setting its action to SIG_IGN.

Some implementations (System V, for example) assign different semantics for SIGCLD
depending on whether the action is set to SIG_IGN or SIG_DFL. Since POSIX.1 requires that the
default action for SIGCHLD be to ignore the signal, applications should always set the action to
SIG_DFL in order to avoid SIGCHLD.

Whether or not an implementation allows SIG_IGN as a SIGCHLD disposition to be inherited
across a call to one of the exec family of functions or posix_spawn() is explicitly left as
unspecified. This change was made as a result of IEEE PASC Interpretation 1003.1 #132, and
permits the implementation to decide between the following alternatives:

• Unconditionally leave SIGCHLD set to SIG_IGN, in which case the implementation would
not allow applications that assume inheritance of SIG_DFL to conform to POSIX.1-2008
without change. The implementation would, however, retain an ability to control
applications that create child processes but never call on the wait family of functions,
potentially filling up the process table.

• Unconditionally reset SIGCHLD to SIG_DFL, in which case the implementation would
allow applications that assume inheritance of SIG_DFL to conform. The implementation
would, however, lose an ability to control applications that spawn child processes but
never reap them.

• Provide some mechanism, not specified in POSIX.1-2008, to control inherited SIGCHLD
dispositions.

Some implementations (System V, for example) will deliver a SIGCLD signal immediately when
a process establishes a signal-catching function for SIGCLD when that process has a child that
has already terminated. Other implementations, such as 4.3 BSD, do not generate a new
SIGCHLD signal in this way. In general, a process should not attempt to alter the signal action
for the SIGCHLD signal while it has any outstanding children. However, it is not always
possible for a process to avoid this; for example, shells sometimes start up processes in pipelines
with other processes from the pipeline as children. Processes that cannot ensure that they have
no children when altering the signal action for SIGCHLD thus need to be prepared for, but not

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3513

118282

118283

118284

118285

118286

118287

118288

118289

118290

118291

118292

118293

118294

118295

118296

118297

118298

118299

118300

118301

118302

118303

118304

118305

118306

118307

118308

118309

118310

118311

118312

118313

118314

118315

118316

118317

118318

118319

118320

118321

118322

118323

118324

118325

118326

118327

General Information Rationale for System Interfaces

depend on, generation of an immediate SIGCHLD signal.

The default action of the stop signals (SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU) is to stop a
process that is executing. If a stop signal is delivered to a process that is already stopped, it has
no effect. In fact, if a stop signal is generated for a stopped process whose signal mask blocks the
signal, the signal will never be delivered to the process since the process must receive a
SIGCONT, which discards all pending stop signals, in order to continue executing.

The SIGCONT signal continues a stopped process even if SIGCONT is blocked (or ignored).
However, if a signal-catching routine has been established for SIGCONT, it will not be entered
until SIGCONT is unblocked.

If a process in an orphaned process group stops, it is no longer under the control of a job control
shell and hence would not normally ever be continued. Because of this, orphaned processes that
receive terminal-related stop signals (SIGTSTP, SIGTTIN, SIGTTOU, but not SIGSTOP) must not
be allowed to stop. The goal is to prevent stopped processes from languishing forever. (As
SIGSTOP is sent only via kill(), it is assumed that the process or user sending a SIGSTOP can
send a SIGCONT when desired.) Instead, the system must discard the stop signal. As an
extension, it may also deliver another signal in its place. 4.3 BSD sends a SIGKILL, which is
overly effective because SIGKILL is not catchable. Another possible choice is SIGHUP. 4.3 BSD
also does this for orphaned processes (processes whose parent has terminated) rather than for
members of orphaned process groups; this is less desirable because job control shells manage
process groups. POSIX.1 also prevents SIGTTIN and SIGTTOU signals from being generated for
processes in orphaned process groups as a direct result of activity on a terminal, preventing
infinite loops when read() and write() calls generate signals that are discarded; see Section
A.11.1.4 (on page 3481). A similar restriction on the generation of SIGTSTP was considered, but
that would be unnecessary and more difficult to implement due to its asynchronous nature.

Although POSIX.1 requires that signal-catching functions be called with only one argument,
there is nothing to prevent conforming implementations from extending POSIX.1 to pass
additional arguments, as long as Strictly Conforming POSIX.1 Applications continue to compile
and execute correctly. Most historical implementations do, in fact, pass additional, signal-
specific arguments to certain signal-catching routines.

There was a proposal to change the declared type of the signal handler to:

void func (int sig, ...);

The usage of ellipses ("...") is ISO C standard syntax to indicate a variable number of
arguments. Its use was intended to allow the implementation to pass additional information to
the signal handler in a standard manner.

Unfortunately, this construct would require all signal handlers to be defined with this syntax
because the ISO C standard allows implementations to use a different parameter passing
mechanism for variable parameter lists than for non-variable parameter lists. Thus, all existing
signal handlers in all existing applications would have to be changed to use the variable syntax
in order to be standard and portable. This is in conflict with the goal of Minimal Changes to
Existing Application Code.

When terminating a process from a signal-catching function, processes should be aware of any
interpretation that their parent may make of the status returned by wait(), waitid(), or waitpid().
In particular, a signal-catching function should not call exit(0) or _exit(0) unless it wants to
indicate successful termination. A non-zero argument to exit() or _exit() can be used to indicate
unsuccessful termination. Alternatively, the process can use kill() to send itself a fatal signal
(first ensuring that the signal is set to the default action and not blocked). See also the
RATIONALE section of the _exit() function.

The behavior of unsafe functions, as defined by this section, is undefined when they are invoked

3514 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

118328

118329

118330

118331

118332

118333

118334

118335

118336

118337

118338

118339

118340

118341

118342

118343

118344

118345

118346

118347

118348

118349

118350

118351

118352

118353

118354

118355

118356

118357

118358

118359

118360

118361

118362

118363

118364

118365

118366

118367

118368

118369

118370

118371

118372

118373

118374

118375

Rationale for System Interfaces General Information

from signal-catching functions in certain circumstances. The behavior of async-signal-safe
functions, as defined by this section, is as specified by POSIX.1, regardless of invocation from a
signal-catching function. This is the only intended meaning of the statement that async-signal-
safe functions may be used in signal-catching functions without restriction. Applications must
still consider all effects of such functions on such things as data structures, files, and process
state. In particular, application developers need to consider the restrictions on interactions when
interrupting sleep() (see sleep()) and interactions among multiple handles for a file description.
The fact that any specific function is listed as async-signal-safe does not necessarily mean that
invocation of that function from a signal-catching function is recommended.

In order to prevent errors arising from interrupting non-async-signal-safe function calls,
applications should protect calls to these functions either by blocking the appropriate signals or
through the use of some programmatic semaphore. POSIX.1 does not address the more general
problem of synchronizing access to shared data structures. Note in particular that even the
‘‘safe’’ functions may modify the global variable errno; the signal-catching function may want to
save and restore its value. The same principles apply to the async-signal-safety of application
routines and asynchronous data access.

Note that longjmp() and siglongjmp() are not in the list of async-signal-safe functions. This is
because the code executing after longjmp() or siglongjmp() can call any unsafe functions with the
same danger as calling those unsafe functions directly from the signal handler. Applications that
use longjmp() or siglongjmp() out of signal handlers require rigorous protection in order to be
portable. Many of the other functions that are excluded from the list are traditionally
implemented using either the C language malloc() or free() functions or the ISO C standard I/O
library, both of which traditionally use data structures in a non-async-signal-safe manner.
Because any combination of different functions using a common data structure can cause async-
signal-safety problems, POSIX.1 does not define the behavior when any unsafe function is called
in a signal handler that interrupts any unsafe function.

The only realtime extension to signal actions is the addition of the additional parameters to the
signal-catching function. This extension has been explained and motivated in the previous
section. In making this extension, though, developers of POSIX.1b ran into issues relating to
function prototypes. In response to input from the POSIX.1 standard developers, members were
added to the sigaction structure to specify function prototypes for the newer signal-catching
function specified by POSIX.1b. These members follow changes that are being made to POSIX.1.
Note that POSIX.1-2008 explicitly states that these fields may overlap so that a union can be
defined. This enabled existing implementations of POSIX.1 to maintain binary-compatibility
when these extensions were added.

The siginfo_t structure was adopted for passing the application-defined value to match existing
practice, but the existing practice has no provision for an application-defined value, so this was
added. Note that POSIX normally reserves the ‘‘_t’’ type designation for opaque types. The
siginfo_t structure breaks with this convention to follow existing practice and thus promote
portability.

POSIX.1-2008 specifies several values for the si_code member of the siginfo_t structure. Some
were introduced in POSIX.1b; others were XSI functionality in the Single UNIX Specification,
Version 2 and Version 3, that has now become Base functionality. Historically, an si_code value of
less than or equal to zero indicated that the signal was generated by a process via the kill()
function, and values of si_code that provided additional information for implementation-
generated signals, such as SIGFPE or SIGSEGV, were all positive. This functionality is partially
specified for XSI systems in that if si_code is less than or equal to zero, the signal was generated
by a process. However, since POSIX.1b did not specify that SI_USER (or SI_QUEUE) had a value
less than or equal to zero, it is not true that when the signal is generated by a process, the value
of si_code will always be less than or equal to zero. XSI applications should check whether si_code

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3515

118376

118377

118378

118379

118380

118381

118382

118383

118384

118385

118386

118387

118388

118389

118390

118391

118392

118393

118394

118395

118396

118397

118398

118399

118400

118401

118402

118403

118404

118405

118406

118407

118408

118409

118410

118411

118412

118413

118414

118415

118416

118417

118418

118419

118420

118421

118422

118423

118424

118425

General Information Rationale for System Interfaces

is SI_USER or SI_QUEUE in addition to checking whether it is less than or equal to zero.
Applications on systems that do not support the XSI option should just check for SI_USER and
SI_QUEUE.

If an implementation chooses to define additional values for si_code, these values have to be
different from the values of the non-signal-specific symbols specified by POSIX.1-2008. This will
allow conforming applications to differentiate between signals generated by standard events
and those generated by other implementation events in a manner compatible with existing
practice.

The unique values of si_code for the POSIX.1b asynchronous events have implications for
implementations of, for example, asynchronous I/O or message passing in user space library
code. Such an implementation will be required to provide a hidden interface to the signal
generation mechanism that allows the library to specify the standard values of si_code.

POSIX.1-2008 also specifies additional members of siginfo_t, beyond those that were in
POSIX.1b. Like the si_code values mentioned above, these were XSI functionality in the Single
UNIX Specification, Version 2 and Version 3, that has now become Base functionality. They
provide additional information when si_code has one of the values that moved from XSI to Base.

Although it is not explicitly visible to applications, there are additional semantics for signal
actions implied by queued signals and their interaction with other POSIX.1b realtime functions.
Specifically:

• It is not necessary to queue signals whose action is SIG_IGN.

• For implementations that support POSIX.1b timers, some interaction with the timer
functions at signal delivery is implied to manage the timer overrun count.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/5 is applied, reordering the RTS shaded
text under the third and fourth paragraphs of the SIG_DFL description. This corrects an earlier
editorial error in this section.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/6 is applied, adding the abort() function
to the list of async-cancel-safe functions.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/4 is applied, adding the sockatmark()
function to the list of functions that shall be either reentrant or non-interruptible by signals and
shall be async-signal-safe.

B.2.4.4 Signal Effects on Other Functions

The most common behavior of an interrupted function after a signal-catching function returns is
for the interrupted function to give an [EINTR] error unless the SA_RESTART flag is in effect for
the signal. However, there are a number of specific exceptions, including sleep() and certain
situations with read() and write().

The historical implementations of many functions defined by POSIX.1-2008 are not interruptible,
but delay delivery of signals generated during their execution until after they complete. This is
never a problem for functions that are guaranteed to complete in a short (imperceptible to a
human) period of time. It is normally those functions that can suspend a process indefinitely or
for long periods of time (for example, wait(), pause(), sigsuspend(), sleep(), or read()/write() on a
slow device like a terminal) that are interruptible. This permits applications to respond to
interactive signals or to set timeouts on calls to most such functions with alarm(). Therefore,
implementations should generally make such functions (including ones defined as extensions)
interruptible.

Functions not mentioned explicitly as interruptible may be so on some implementations,

3516 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

118426

118427

118428

118429

118430

118431

118432

118433

118434

118435

118436

118437

118438

118439

118440

118441

118442

118443

118444

118445

118446

118447

118448

118449

118450

118451

118452

118453

118454

118455

118456

118457

118458

118459

118460

118461

118462

118463

118464

118465

118466

118467

118468

118469

118470

Rationale for System Interfaces General Information

possibly as an extension where the function gives an [EINTR] error. There are several functions
(for example, getpid(), getuid()) that are specified as never returning an error, which can thus
never be extended in this way.

If a signal-catching function returns while the SA_RESTART flag is in effect, an interrupted
function is restarted at the point it was interrupted. Conforming applications cannot make
assumptions about the internal behavior of interrupted functions, even if the functions are
async-signal-safe. For example, suppose the read() function is interrupted with SA_RESTART in
effect, the signal-catching function closes the file descriptor being read from and returns, and the
read() function is then restarted; in this case the application cannot assume that the read()
function will give an [EBADF] error, since read() might have checked the file descriptor for
validity before being interrupted.

B.2.5 Standard I/O Streams

B.2.5.1 Interaction of File Descriptors and Standard I/O Streams

There is no additional rationale provided for this section.

B.2.5.2 Stream Orientation and Encoding Rules

There is no additional rationale provided for this section.

B.2.6 STREAMS

STREAMS are included into POSIX.1-2008 as part of the alignment with the Single UNIX
Specification, but marked as an option in recognition that not all systems may wish to
implement the facility. The option within POSIX.1-2008 is denoted by the XSR margin marker.
The standard developers made this option independent of the XSI option. In this version of the
standard this option is marked obsolescent.

STREAMS are a method of implementing network services and other character-based
input/output mechanisms, with the STREAM being a full-duplex connection between a process
and a device. STREAMS provides direct access to protocol modules, and optional protocol
modules can be interposed between the process-end of the STREAM and the device-driver at the
device-end of the STREAM. Pipes can be implemented using the STREAMS mechanism, so they
can provide process-to-process as well as process-to-device communications.

This section introduces STREAMS I/O, the message types used to control them, an overview of
the priority mechanism, and the interfaces used to access them.

B.2.6.1 Accessing STREAMS

There is no additional rationale provided for this section.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3517

118471

118472

118473

118474

118475

118476

118477

118478

118479

118480

118481

118482

118483

118484

118485

118486

118487

118488

118489

118490

118491

118492

118493

118494

118495

118496

118497

118498

118499

118500

118501

118502

General Information Rationale for System Interfaces

B.2.7 XSI Interprocess Communication

There are two forms of IPC supported as options in POSIX.1-2008. The traditional System V IPC
routines derived from the SVID—that is, the msg*(), sem*(), and shm*() interfaces—are
mandatory on XSI-conformant systems. Thus, all XSI-conformant systems provide the same
mechanisms for manipulating messages, shared memory, and semaphores.

In addition, the POSIX Realtime Extension provides an alternate set of routines for those systems
supporting the appropriate options.

The application developer is presented with a choice: the System V interfaces or the POSIX
interfaces (loosely derived from the Berkeley interfaces). The XSI profile prefers the System V
interfaces, but the POSIX interfaces may be more suitable for realtime or other performance-
sensitive applications.

B.2.7.1 IPC General Information

General information that is shared by all three mechanisms is described in this section. The
common permissions mechanism is briefly introduced, describing the mode bits, and how they
are used to determine whether or not a process has access to read or write/alter the appropriate
instance of one of the IPC mechanisms. All other relevant information is contained in the
reference pages themselves.

The semaphore type of IPC allows processes to communicate through the exchange of
semaphore values. A semaphore is a positive integer. Since many applications require the use of
more than one semaphore, XSI-conformant systems have the ability to create sets or arrays of
semaphores.

Calls to support semaphores include:

semctl(), semget(), semop()

Semaphore sets are created by using the semget() function.

The message type of IPC allows processes to communicate through the exchange of data stored
in buffers. This data is transmitted between processes in discrete portions known as messages.

Calls to support message queues include:

msgctl(), msgget(), msgrcv(), msgsnd()

The shared memory type of IPC allows two or more processes to share memory and
consequently the data contained therein. This is done by allowing processes to set up access to a
common memory address space. This sharing of memory provides a fast means of exchange of
data between processes.

Calls to support shared memory include:

shmctl(), shmdt(), shmget()

The ftok() interface is also provided.

3518 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

118503

118504

118505

118506

118507

118508

118509

118510

118511

118512

118513

118514

118515

118516

118517

118518

118519

118520

118521

118522

118523

118524

118525

118526

118527

118528

118529

118530

118531

118532

118533

118534

118535

118536

118537

Rationale for System Interfaces General Information

B.2.8 Realtime

Advisory Information

POSIX.1b contains an Informative Annex with proposed interfaces for ‘‘realtime files’’. These
interfaces could determine groups of the exact parameters required to do ‘‘direct I/O’’ or
‘‘extents’’. These interfaces were objected to by a significant portion of the balloting group as too
complex. A conforming application had little chance of correctly navigating the large parameter
space to match its desires to the system. In addition, they only applied to a new type of file
(realtime files) and they told the implementation exactly what to do as opposed to advising the
implementation on application behavior and letting it optimize for the system the (portable)
application was running on. For example, it was not clear how a system that had a disk array
should set its parameters.

There seemed to be several overall goals:

• Optimizing sequential access

• Optimizing caching behavior

• Optimizing I/O data transfer

• Preallocation

The advisory interfaces, posix_fadvise() and posix_madvise(), satisfy the first two goals. The
POSIX_FADV_SEQUENTIAL and POSIX_MADV_SEQUENTIAL advice tells the
implementation to expect serial access. Typically the system will prefetch the next several serial
accesses in order to overlap I/O. It may also free previously accessed serial data if memory is
tight. If the application is not doing serial access it can use POSIX_FADV_WILLNEED and
POSIX_MADV_WILLNEED to accomplish I/O overlap, as required. When the application
advises POSIX_FADV_RANDOM or POSIX_MADV_RANDOM behavior, the implementation
usually tries to fetch a minimum amount of data with each request and it does not expect much
locality. POSIX_FADV_DONTNEED and POSIX_MADV_DONTNEED allow the system to free
up caching resources as the data will not be required in the near future.

POSIX_FADV_NOREUSE tells the system that caching the specified data is not optimal. For file
I/O, the transfer should go directly to the user buffer instead of being cached internally by the
implementation. To portably perform direct disk I/O on all systems, the application must
perform its I/O transfers according to the following rules:

1. The user buffer should be aligned according to the {POSIX_REC_XFER_ALIGN}
pathconf() variable.

2. The number of bytes transferred in an I/O operation should be a multiple of the
{POSIX_ALLOC_SIZE_MIN} pathconf() variable.

3. The offset into the file at the start of an I/O operation should be a multiple of the
{POSIX_ALLOC_SIZE_MIN} pathconf() variable.

4. The application should ensure that all threads which open a given file specify
POSIX_FADV_NOREUSE to be sure that there is no unexpected interaction between
threads using buffered I/O and threads using direct I/O to the same file.

In some cases, a user buffer must be properly aligned in order to be transferred directly to/from
the device. The {POSIX_REC_XFER_ALIGN} pathconf() variable tells the application the proper
alignment.

The preallocation goal is met by the space control function, posix_fallocate(). The application can
use posix_fallocate() to guarantee no [ENOSPC] errors and to improve performance by prepaying
any overhead required for block allocation.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3519

118538

118539

118540

118541

118542

118543

118544

118545

118546

118547

118548

118549

118550

118551

118552

118553

118554

118555

118556

118557

118558

118559

118560

118561

118562

118563

118564

118565

118566

118567

118568

118569

118570

118571

118572

118573

118574

118575

118576

118577

118578

118579

118580

118581

118582

General Information Rationale for System Interfaces

Implementations may use information conveyed by a previous posix_fadvise() call to influence
the manner in which allocation is performed. For example, if an application did the following
calls:

fd = open("file");
posix_fadvise(fd, offset, len, POSIX_FADV_SEQUENTIAL);
posix_fallocate(fd, len, size);

an implementation might allocate the file contiguously on disk.

Finally, the pathconf() variables {POSIX_REC_MIN_XFER_SIZE},
{POSIX_REC_MAX_XFER_SIZE}, and {POSIX_REC_INCR_XFER_SIZE} tell the application a
range of transfer sizes that are recommended for best I/O performance.

Where bounded response time is required, the vendor can supply the appropriate settings of the
advisories to achieve a guaranteed performance level.

The interfaces meet the goals while allowing applications using regular files to take advantage
of performance optimizations. The interfaces tell the implementation expected application
behavior which the implementation can use to optimize performance on a particular system
with a particular dynamic load.

The posix_memalign() function was added to allow for the allocation of specifically aligned
buffers; for example, for {POSIX_REC_XFER_ALIGN}.

The working group also considered the alternative of adding a function which would return an
aligned pointer to memory within a user-supplied buffer. This was not considered to be the best
method, because it potentially wastes large amounts of memory when buffers need to be aligned
on large alignment boundaries.

Message Passing

This section provides the rationale for the definition of the message passing interface in
POSIX.1-2008. This is presented in terms of the objectives, models, and requirements imposed
upon this interface.

• Objectives

Many applications, including both realtime and database applications, require a means of
passing arbitrary amounts of data between cooperating processes comprising the overall
application on one or more processors. Many conventional interfaces for interprocess
communication are insufficient for realtime applications in that efficient and deterministic
data passing methods cannot be implemented. This has prompted the definition of
message passing interfaces providing these facilities:

— Open a message queue.

— Send a message to a message queue.

— Receive a message from a queue, either synchronously or asynchronously.

— Alter message queue attributes for flow and resource control.

It is assumed that an application may consist of multiple cooperating processes and that
these processes may wish to communicate and coordinate their activities. The message
passing facility described in POSIX.1-2008 allows processes to communicate through
system-wide queues. These message queues are accessed through names that may be
pathnames. A message queue can be opened for use by multiple sending and/or multiple
receiving processes.

3520 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

118583

118584

118585

118586

118587

118588

118589

118590

118591

118592

118593

118594

118595

118596

118597

118598

118599

118600

118601

118602

118603

118604

118605

118606

118607

118608

118609

118610

118611

118612

118613

118614

118615

118616

118617

118618

118619

118620

118621

118622

118623

118624

118625

Rationale for System Interfaces General Information

• Background on Embedded Applications

Interprocess communication utilizing message passing is a key facility for the construction
of deterministic, high-performance realtime applications. The facility is present in all
realtime systems and is the framework upon which the application is constructed. The
performance of the facility is usually a direct indication of the performance of the resulting
application.

Realtime applications, especially for embedded systems, are typically designed around the
performance constraints imposed by the message passing mechanisms. Applications for
embedded systems are typically very tightly constrained. Application developers expect to
design and control the entire system. In order to minimize system costs, the writer will
attempt to use all resources to their utmost and minimize the requirement to add
additional memory or processors.

The embedded applications usually share address spaces and only a simple message
passing mechanism is required. The application can readily access common data incurring
only mutual-exclusion overheads. The models desired are the simplest possible with the
application building higher-level facilities only when needed.

• Requirements

The following requirements determined the features of the message passing facilities
defined in POSIX.1-2008:

— Naming of Message Queues

The mechanism for gaining access to a message queue is a pathname evaluated in a
context that is allowed to be a file system name space, or it can be independent of
any file system. This is a specific attempt to allow implementations based on either
method in order to address both embedded systems and to also allow
implementation in larger systems.

The interface of mq_open() is defined to allow but not require the access control and
name conflicts resulting from utilizing a file system for name resolution. All required
behavior is specified for the access control case. Yet a conforming implementation,
such as an embedded system kernel, may define that there are no distinctions
between users and may define that all processes have all access privileges.

— Embedded System Naming

Embedded systems need to be able to utilize independent name spaces for accessing
the various system objects. They typically do not have a file system, precluding its
utilization as a common name resolution mechanism. The modularity of an
embedded system limits the connections between separate mechanisms that can be
allowed.

Embedded systems typically do not have any access protection. Since the system
does not support the mixing of applications from different areas, and usually does
not even have the concept of an authorization entity, access control is not useful.

— Large System Naming

On systems with more functionality, the name resolution must support the ability to
use the file system as the name resolution mechanism/object storage medium and to
have control over access to the objects. Utilizing the pathname space can result in
further errors when the names conflict with other objects.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3521

118626

118627

118628

118629

118630

118631

118632

118633

118634

118635

118636

118637

118638

118639

118640

118641

118642

118643

118644

118645

118646

118647

118648

118649

118650

118651

118652

118653

118654

118655

118656

118657

118658

118659

118660

118661

118662

118663

118664

118665

118666

118667

118668

118669

General Information Rationale for System Interfaces

— Fixed Size of Messages

The interfaces impose a fixed upper bound on the size of messages that can be sent to
a specific message queue. The size is set on an individual queue basis and cannot be
changed dynamically.

The purpose of the fixed size is to increase the ability of the system to optimize the
implementation of mq_send() and mq_receive(). With fixed sizes of messages and
fixed numbers of messages, specific message blocks can be pre-allocated. This
eliminates a significant amount of checking for errors and boundary conditions.
Additionally, an implementation can optimize data copying to maximize
performance. Finally, with a restricted range of message sizes, an implementation is
better able to provide deterministic operations.

— Prioritization of Messages

Message prioritization allows the application to determine the order in which
messages are received. Prioritization of messages is a key facility that is provided by
most realtime kernels and is heavily utilized by the applications. The major purpose
of having priorities in message queues is to avoid priority inversions in the message
system, where a high-priority message is delayed behind one or more lower-priority
messages. This allows the applications to be designed so that they do not need to be
interrupted in order to change the flow of control when exceptional conditions occur.
The prioritization does add additional overhead to the message operations in those
cases it is actually used but a clever implementation can optimize for the FIFO case to
make that more efficient.

— Asynchronous Notification

The interface supports the ability to have a task asynchronously notified of the
availability of a message on the queue. The purpose of this facility is to allow the task
to perform other functions and yet still be notified that a message has become
available on the queue.

To understand the requirement for this function, it is useful to understand two
models of application design: a single task performing multiple functions and
multiple tasks performing a single function. Each of these models has advantages.

Asynchronous notification is required to build the model of a single task performing
multiple operations. This model typically results from either the expectation that
interruption is less expensive than utilizing a separate task or from the growth of the
application to include additional functions.

Semaphores

Semaphores are a high-performance process synchronization mechanism. Semaphores are
named by null-terminated strings of characters.

A semaphore is created using the sem_init() function or the sem_open() function with the
O_CREAT flag set in oflag.

To use a semaphore, a process has to first initialize the semaphore or inherit an open descriptor
for the semaphore via fork().

A semaphore preserves its state when the last reference is closed. For example, if a semaphore
has a value of 13 when the last reference is closed, it will have a value of 13 when it is next
opened.

When a semaphore is created, an initial state for the semaphore has to be provided. This value is

3522 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

118670

118671

118672

118673

118674

118675

118676

118677

118678

118679

118680

118681

118682

118683

118684

118685

118686

118687

118688

118689

118690

118691

118692

118693

118694

118695

118696

118697

118698

118699

118700

118701

118702

118703

118704

118705

118706

118707

118708

118709

118710

118711

118712

118713

118714

Rationale for System Interfaces General Information

a non-negative integer. Negative values are not possible since they indicate the presence of
blocked processes. The persistence of any of these objects across a system crash or a system
reboot is undefined. Conforming applications must not depend on any sort of persistence across
a system reboot or a system crash.

• Models and Requirements

A realtime system requires synchronization and communication between the processes
comprising the overall application. An efficient and reliable synchronization mechanism
has to be provided in a realtime system that will allow more than one schedulable process
mutually-exclusive access to the same resource. This synchronization mechanism has to
allow for the optimal implementation of synchronization or systems implementors will
define other, more cost-effective methods.

At issue are the methods whereby multiple processes (tasks) can be designed and
implemented to work together in order to perform a single function. This requires
interprocess communication and synchronization. A semaphore mechanism is the lowest
level of synchronization that can be provided by an operating system.

A semaphore is defined as an object that has an integral value and a set of blocked
processes associated with it. If the value is positive or zero, then the set of blocked
processes is empty; otherwise, the size of the set is equal to the absolute value of the
semaphore value. The value of the semaphore can be incremented or decremented by any
process with access to the semaphore and must be done as an indivisible operation. When
a semaphore value is less than or equal to zero, any process that attempts to lock it again
will block or be informed that it is not possible to perform the operation.

A semaphore may be used to guard access to any resource accessible by more than one
schedulable task in the system. It is a global entity and not associated with any particular
process. As such, a method of obtaining access to the semaphore has to be provided by the
operating system. A process that wants access to a critical resource (section) has to wait on
the semaphore that guards that resource. When the semaphore is locked on behalf of a
process, it knows that it can utilize the resource without interference by any other
cooperating process in the system. When the process finishes its operation on the resource,
leaving it in a well-defined state, it posts the semaphore, indicating that some other
process may now obtain the resource associated with that semaphore.

In this section, mutexes and condition variables are specified as the synchronization
mechanisms between threads.

These primitives are typically used for synchronizing threads that share memory in a
single process. However, this section provides an option allowing the use of these
synchronization interfaces and objects between processes that share memory, regardless of
the method for sharing memory.

Much experience with semaphores shows that there are two distinct uses of
synchronization: locking, which is typically of short duration; and waiting, which is
typically of long or unbounded duration. These distinct usages map directly onto mutexes
and condition variables, respectively.

Semaphores are provided in POSIX.1-2008 primarily to provide a means of
synchronization for processes; these processes may or may not share memory. Mutexes
and condition variables are specified as synchronization mechanisms between threads;
these threads always share (some) memory. Both are synchronization paradigms that have
been in widespread use for a number of years. Each set of primitives is particularly well
matched to certain problems.

With respect to binary semaphores, experience has shown that condition variables and

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3523

118715

118716

118717

118718

118719

118720

118721

118722

118723

118724

118725

118726

118727

118728

118729

118730

118731

118732

118733

118734

118735

118736

118737

118738

118739

118740

118741

118742

118743

118744

118745

118746

118747

118748

118749

118750

118751

118752

118753

118754

118755

118756

118757

118758

118759

118760

118761

118762

General Information Rationale for System Interfaces

mutexes are easier to use for many synchronization problems than binary semaphores. The
primary reason for this is the explicit appearance of a Boolean predicate that specifies
when the condition wait is satisfied. This Boolean predicate terminates a loop, including
the call to pthread_cond_wait(). As a result, extra wakeups are benign since the predicate
governs whether the thread will actually proceed past the condition wait. With stateful
primitives, such as binary semaphores, the wakeup in itself typically means that the wait is
satisfied. The burden of ensuring correctness for such waits is thus placed on all signalers
of the semaphore rather than on an explicitly coded Boolean predicate located at the
condition wait. Experience has shown that the latter creates a major improvement in safety
and ease-of-use.

Counting semaphores are well matched to dealing with producer/consumer problems,
including those that might exist between threads of different processes, or between a signal
handler and a thread. In the former case, there may be little or no memory shared by the
processes; in the latter case, one is not communicating between co-equal threads, but
between a thread and an interrupt-like entity. It is for these reasons that POSIX.1-2008
allows semaphores to be used by threads.

Mutexes and condition variables have been effectively used with and without priority
inheritance, priority ceiling, and other attributes to synchronize threads that share
memory. The efficiency of their implementation is comparable to or better than that of
other synchronization primitives that are sometimes harder to use (for example, binary
semaphores). Furthermore, there is at least one known implementation of Ada tasking that
uses these primitives. Mutexes and condition variables together constitute an appropriate,
sufficient, and complete set of inter-thread synchronization primitives.

Efficient multi-threaded applications require high-performance synchronization
primitives. Considerations of efficiency and generality require a small set of primitives
upon which more sophisticated synchronization functions can be built.

• Standardization Issues

It is possible to implement very high-performance semaphores using test-and-set
instructions on shared memory locations. The library routines that implement such a high-
performance interface have to properly ensure that a sem_wait() or sem_trywait() operation
that cannot be performed will issue a blocking semaphore system call or properly report
the condition to the application. The same interface to the application program would be
provided by a high-performance implementation.

B.2.8.1 Realtime Signals

Realtime Signals Extension

This portion of the rationale presents models, requirements, and standardization issues relevant
to the Realtime Signals Extension. This extension provides the capability required to support
reliable, deterministic, asynchronous notification of events. While a new mechanism,
unencumbered by the historical usage and semantics of POSIX.1 signals, might allow for a more
efficient implementation, the application requirements for event notification can be met with a
small number of extensions to signals. Therefore, a minimal set of extensions to signals to
support the application requirements is specified.

The realtime signal extensions specified in this section are used by other realtime functions
requiring asynchronous notification:

• Models

The model supported is one of multiple cooperating processes, each of which handles

3524 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

118763

118764

118765

118766

118767

118768

118769

118770

118771

118772

118773

118774

118775

118776

118777

118778

118779

118780

118781

118782

118783

118784

118785

118786

118787

118788

118789

118790

118791

118792

118793

118794

118795

118796

118797

118798

118799

118800

118801

118802

118803

118804

118805

118806

118807

118808

Rationale for System Interfaces General Information

multiple asynchronous external events. Events represent occurrences that are generated as
the result of some activity in the system. Examples of occurrences that can constitute an
event include:

— Completion of an asynchronous I/O request

— Expiration of a POSIX.1b timer

— Arrival of an interprocess message

— Generation of a user-defined event

Processing of these events may occur synchronously via polling for event notifications or
asynchronously via a software interrupt mechanism. Existing practice for this model is
well established for traditional proprietary realtime operating systems, realtime
executives, and realtime extended POSIX-like systems.

A contrasting model is that of ‘‘cooperating sequential processes’’ where each process
handles a single priority of events via polling. Each process blocks while waiting for
events, and each process depends on the preemptive, priority-based process scheduling
mechanism to arbitrate between events of different priority that need to be processed
concurrently. Existing practice for this model is also well established for small realtime
executives that typically execute in an unprotected physical address space, but it is just
emerging in the context of a fuller function operating system with multiple virtual address
spaces.

It could be argued that the cooperating sequential process model, and the facilities
supported by the POSIX Threads Extension obviate a software interrupt model. But, even
with the cooperating sequential process model, the need has been recognized for a
software interrupt model to handle exceptional conditions and process aborting, so the
mechanism must be supported in any case. Furthermore, it is not the purview of
POSIX.1-2008 to attempt to convince realtime practitioners that their current application
models based on software interrupts are ‘‘broken’’ and should be replaced by the
cooperating sequential process model. Rather, it is the charter of POSIX.1-2008 to provide
standard extensions to mechanisms that support existing realtime practice.

• Requirements

This section discusses the following realtime application requirements for asynchronous
event notification:

— Reliable delivery of asynchronous event notification

The events notification mechanism guarantees delivery of an event notification.
Asynchronous operations (such as asynchronous I/O and timers) that complete
significantly after they are invoked have to guarantee that delivery of the event
notification can occur at the time of completion.

— Prioritized handling of asynchronous event notifications

The events notification mechanism supports the assigning of a user function as an
event notification handler. Furthermore, the mechanism supports the preemption of
an event handler function by a higher priority event notification and supports the
selection of the highest priority pending event notification when multiple
notifications (of different priority) are pending simultaneously.

The model here is based on hardware interrupts. Asynchronous event handling
allows the application to ensure that time-critical events are immediately processed
when delivered, without the indeterminism of being at a random location within a
polling loop. Use of handler priority allows the specification of how handlers are

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3525

118809

118810

118811

118812

118813

118814

118815

118816

118817

118818

118819

118820

118821

118822

118823

118824

118825

118826

118827

118828

118829

118830

118831

118832

118833

118834

118835

118836

118837

118838

118839

118840

118841

118842

118843

118844

118845

118846

118847

118848

118849

118850

118851

118852

118853

118854

General Information Rationale for System Interfaces

interrupted by other higher priority handlers.

— Differentiation between multiple occurrences of event notifications of the same type

The events notification mechanism passes an application-defined value to the event
handler function. This value can be used for a variety of purposes, such as enabling
the application to identify which of several possible events of the same type (for
example, timer expirations) has occurred.

— Polled reception of asynchronous event notifications

The events notification mechanism supports blocking and non-blocking polls for
asynchronous event notification.

The polled mode of operation is often preferred over the interrupt mode by those
practitioners accustomed to this model. Providing support for this model facilitates
the porting of applications based on this model to POSIX.1b conforming systems.

— Deterministic response to asynchronous event notifications

The events notification mechanism does not preclude implementations that provide
deterministic event dispatch latency and minimizes the number of system calls
needed to use the event facilities during realtime processing.

• Rationale for Extension

POSIX.1 signals have many of the characteristics necessary to support the asynchronous
handling of event notifications, and the Realtime Signals Extension addresses the
following deficiencies in the POSIX.1 signal mechanism:

— Signals do not support reliable delivery of event notification. Subsequent
occurrences of a pending signal are not guaranteed to be delivered.

— Signals do not support prioritized delivery of event notifications. The order of signal
delivery when multiple unblocked signals are pending is undefined.

— Signals do not support the differentiation between multiple signals of the same type.

B.2.8.2 Asynchronous I/O

Many applications need to interact with the I/O subsystem in an asynchronous manner. The
asynchronous I/O mechanism provides the ability to overlap application processing and I/O
operations initiated by the application. The asynchronous I/O mechanism allows a single
process to perform I/O simultaneously to a single file multiple times or to multiple files
multiple times.

Overview

Asynchronous I/O operations proceed in logical parallel with the processing done by the
application after the asynchronous I/O has been initiated. Other than this difference,
asynchronous I/O behaves similarly to normal I/O using read(), write(), lseek(), and fsync().
The effect of issuing an asynchronous I/O request is as if a separate thread of execution were to
perform atomically the implied lseek() operation, if any, and then the requested I/O operation
(either read(), write(), or fsync()). There is no seek implied with a call to aio_fsync(). Concurrent
asynchronous operations and synchronous operations applied to the same file update the file as
if the I/O operations had proceeded serially.

When asynchronous I/O completes, a signal can be delivered to the application to indicate the
completion of the I/O. This signal can be used to indicate that buffers and control blocks used
for asynchronous I/O can be reused. Signal delivery is not required for an asynchronous

3526 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

118855

118856

118857

118858

118859

118860

118861

118862

118863

118864

118865

118866

118867

118868

118869

118870

118871

118872

118873

118874

118875

118876

118877

118878

118879

118880

118881

118882

118883

118884

118885

118886

118887

118888

118889

118890

118891

118892

118893

118894

118895

118896

118897

Rationale for System Interfaces General Information

operation and may be turned off on a per-operation basis by the application. Signals may also be
synchronously polled using aio_suspend(), sigtimedwait(), or sigwaitinfo().

Normal I/O has a return value and an error status associated with it. Asynchronous I/O
returns a value and an error status when the operation is first submitted, but that only relates to
whether the operation was successfully queued up for servicing. The I/O operation itself also
has a return status and an error value. To allow the application to retrieve the return status and
the error value, functions are provided that, given the address of an asynchronous I/O control
block, yield the return and error status associated with the operation. Until an asynchronous I/O
operation is done, its error status is [EINPROGRESS]. Thus, an application can poll for
completion of an asynchronous I/O operation by waiting for the error status to become equal to
a value other than [EINPROGRESS]. The return status of an asynchronous I/O operation is
undefined so long as the error status is equal to [EINPROGRESS].

Storage for asynchronous operation return and error status may be limited. Submission of
asynchronous I/O operations may fail if this storage is exceeded. When an application retrieves
the return status of a given asynchronous operation, therefore, any system-maintained storage
used for this status and the error status may be reclaimed for use by other asynchronous
operations.

Asynchronous I/O can be performed on file descriptors that have been enabled for POSIX.1b
synchronized I/O. In this case, the I/O operation still occurs asynchronously, as defined herein;
however, the asynchronous operation I/O in this case is not completed until the I/O has reached
either the state of synchronized I/O data integrity completion or synchronized I/O file integrity
completion, depending on the sort of synchronized I/O that is enabled on the file descriptor.

Models

Three models illustrate the use of asynchronous I/O: a journalization model, a data acquisition
model, and a model of the use of asynchronous I/O in supercomputing applications.

• Journalization Model

Many realtime applications perform low-priority journalizing functions. Journalizing
requires that logging records be queued for output without blocking the initiating process.

• Data Acquisition Model

A data acquisition process may also serve as a model. The process has two or more
channels delivering intermittent data that must be read within a certain time. The process
issues one asynchronous read on each channel. When one of the channels needs data
collection, the process reads the data and posts it through an asynchronous write to
secondary memory for future processing.

• Supercomputing Model

The supercomputing community has used asynchronous I/O much like that specified in
POSIX.1 for many years. This community requires the ability to perform multiple I/O
operations to multiple devices with a minimal number of entries to ‘‘the system’’; each
entry to ‘‘the system’’ provokes a major delay in operations when compared to the normal
progress made by the application. This existing practice motivated the use of combined
lseek() and read() or write() calls, as well as the lio_listio() call. Another common practice is
to disable signal notification for I/O completion, and simply poll for I/O completion at
some interval by which the I/O should be completed. Likewise, interfaces like aio_cancel()
have been in successful commercial use for many years. Note also that an underlying
implementation of asynchronous I/O will require the ability, at least internally, to cancel
outstanding asynchronous I/O, at least when the process exits. (Consider an asynchronous
read from a terminal, when the process intends to exit immediately.)

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3527

118898

118899

118900

118901

118902

118903

118904

118905

118906

118907

118908

118909

118910

118911

118912

118913

118914

118915

118916

118917

118918

118919

118920

118921

118922

118923

118924

118925

118926

118927

118928

118929

118930

118931

118932

118933

118934

118935

118936

118937

118938

118939

118940

118941

118942

118943

118944

General Information Rationale for System Interfaces

Requirements

Asynchronous input and output for realtime implementations have these requirements:

• The ability to queue multiple asynchronous read and write operations to a single open
instance. Both sequential and random access should be supported.

• The ability to queue asynchronous read and write operations to multiple open instances.

• The ability to obtain completion status information by polling and/or asynchronous event
notification.

• Asynchronous event notification on asynchronous I/O completion is optional.

• It has to be possible for the application to associate the event with the aiocbp for the
operation that generated the event.

• The ability to cancel queued requests.

• The ability to wait upon asynchronous I/O completion in conjunction with other types of
events.

• The ability to accept an aio_read() and an aio_cancel() for a device that accepts a read(), and
the ability to accept an aio_write() and an aio_cancel() for a device that accepts a write().
This does not imply that the operation is asynchronous.

Standardization Issues

The following issues are addressed by the standardization of asynchronous I/O:

• Rationale for New Interface

Non-blocking I/O does not satisfy the needs of either realtime or high-performance
computing models; these models require that a process overlap program execution and
I/O processing. Realtime applications will often make use of direct I/O to or from the
address space of the process, or require synchronized (unbuffered) I/O; they also require
the ability to overlap this I/O with other computation. In addition, asynchronous I/O
allows an application to keep a device busy at all times, possibly achieving greater
throughput. Supercomputing and database architectures will often have specialized
hardware that can provide true asynchrony underlying the logical asynchrony provided
by this interface. In addition, asynchronous I/O should be supported by all types of files
and devices in the same manner.

• Effect of Buffering

If asynchronous I/O is performed on a file that is buffered prior to being actually written
to the device, it is possible that asynchronous I/O will offer no performance advantage
over normal I/O; the cycles stolen to perform the asynchronous I/O will be taken away
from the running process and the I/O will occur at interrupt time. This potential lack of
gain in performance in no way obviates the need for asynchronous I/O by realtime
applications, which very often will use specialized hardware support, multiple processors,
and/or unbuffered, synchronized I/O.

B.2.8.3 Memory Management

All memory management and shared memory definitions are located in the <sys/mman.h>
header. This is for alignment with historical practice.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/7 is applied, correcting the shading and
margin markers in the introduction to Section 2.8.3.1.

3528 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

118945

118946

118947

118948

118949

118950

118951

118952

118953

118954

118955

118956

118957

118958

118959

118960

118961

118962

118963

118964

118965

118966

118967

118968

118969

118970

118971

118972

118973

118974

118975

118976

118977

118978

118979

118980

118981

118982

118983

118984

118985

118986

Rationale for System Interfaces General Information

Memory Locking Functions

This portion of the rationale presents models, requirements, and standardization issues relevant
to process memory locking.

• Models

Realtime systems that conform to POSIX.1-2008 are expected (and desired) to be supported
on systems with demand-paged virtual memory management, non-paged swapping
memory management, and physical memory systems with no memory management
hardware. The general case, however, is the demand-paged, virtual memory system with
each POSIX process running in a virtual address space. Note that this includes
architectures where each process resides in its own virtual address space and architectures
where the address space of each process is only a portion of a larger global virtual address
space.

The concept of memory locking is introduced to eliminate the indeterminacy introduced
by paging and swapping, and to support an upper bound on the time required to access
the memory mapped into the address space of a process. Ideally, this upper bound will be
the same as the time required for the processor to access ‘‘main memory’’, including any
address translation and cache miss overheads. But some implementations—primarily on
mainframes—will not actually force locked pages to be loaded and held resident in main
memory. Rather, they will handle locked pages so that accesses to these pages will meet the
performance metrics for locked process memory in the implementation. Also, although it
is not, for example, the intention that this interface, as specified, be used to lock process
memory into ‘‘cache’’, it is conceivable that an implementation could support a large static
RAM memory and define this as ‘‘main memory’’ and use a large[r] dynamic RAM as
‘‘backing store’’. These interfaces could then be interpreted as supporting the locking of
process memory into the static RAM. Support for multiple levels of backing store would
require extensions to these interfaces.

Implementations may also use memory locking to guarantee a fixed translation between
virtual and physical addresses where such is beneficial to improving determinacy for
direct-to/from-process input/output. POSIX.1-2008 does not guarantee to the application
that the virtual-to-physical address translations, if such exist, are fixed, because such
behavior would not be implementable on all architectures on which implementations of
POSIX.1-2008 are expected. But POSIX.1-2008 does mandate that an implementation
define, for the benefit of potential users, whether or not locking guarantees fixed
translations.

Memory locking is defined with respect to the address space of a process. Only the pages
mapped into the address space of a process may be locked by the process, and when the
pages are no longer mapped into the address space—for whatever reason—the locks
established with respect to that address space are removed. Shared memory areas warrant
special mention, as they may be mapped into more than one address space or mapped
more than once into the address space of a process; locks may be established on pages
within these areas with respect to several of these mappings. In such a case, the lock state
of the underlying physical pages is the logical OR of the lock state with respect to each of
the mappings. Only when all such locks have been removed are the shared pages
considered unlocked.

In recognition of the page granularity of Memory Management Units (MMU), and in order
to support locking of ranges of address space, memory locking is defined in terms of
‘‘page’’ granularity. That is, for the interfaces that support an address and size specification
for the region to be locked, the address must be on a page boundary, and all pages mapped
by the specified range are locked, if valid. This means that the length is implicitly rounded

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3529

118987

118988

118989

118990

118991

118992

118993

118994

118995

118996

118997

118998

118999

119000

119001

119002

119003

119004

119005

119006

119007

119008

119009

119010

119011

119012

119013

119014

119015

119016

119017

119018

119019

119020

119021

119022

119023

119024

119025

119026

119027

119028

119029

119030

119031

119032

119033

119034

119035

General Information Rationale for System Interfaces

up to a multiple of the page size. The page size is implementation-defined and is available
to applications as a compile-time symbolic constant or at runtime via sysconf().

A ‘‘real memory’’ POSIX.1b implementation that has no MMU could elect not to support
these interfaces, returning [ENOSYS]. But an application could easily interpret this as
meaning that the implementation would unconditionally page or swap the application
when such is not the case. It is the intention of POSIX.1-2008 that such a system could
define these interfaces as ‘‘NO-OPs’’, returning success without actually performing any
function except for mandated argument checking.

• Requirements

For realtime applications, memory locking is generally considered to be required as part of
application initialization. This locking is performed after an application has been loaded
(that is, exec’d) and the program remains locked for its entire lifetime. But to support
applications that undergo major mode changes where, in one mode, locking is required,
but in another it is not, the specified interfaces allow repeated locking and unlocking of
memory within the lifetime of a process.

When a realtime application locks its address space, it should not be necessary for the
application to then ‘‘touch’’ all of the pages in the address space to guarantee that they are
resident or else suffer potential paging delays the first time the page is referenced. Thus,
POSIX.1-2008 requires that the pages locked by the specified interfaces be resident when
the locking functions return successfully.

Many architectures support system-managed stacks that grow automatically when the
current extent of the stack is exceeded. A realtime application has a requirement to be able
to ‘‘preallocate’’ sufficient stack space and lock it down so that it will not suffer page faults
to grow the stack during critical realtime operation. There was no consensus on a portable
way to specify how much stack space is needed, so POSIX.1-2008 supports no specific
interface for preallocating stack space. But an application can portably lock down a specific
amount of stack space by specifying MCL_FUTURE in a call to mlockall() and then calling
a dummy function that declares an automatic array of the desired size.

Memory locking for realtime applications is also generally considered to be an ‘‘all or
nothing’’ proposition. That is, the entire process, or none, is locked down. But, for
applications that have well-defined sections that need to be locked and others that do not,
POSIX.1-2008 supports an optional set of interfaces to lock or unlock a range of process
addresses. Reasons for locking down a specific range include:

— An asynchronous event handler function that must respond to external events in a
deterministic manner such that page faults cannot be tolerated

— An input/output ‘‘buffer ’’ area that is the target for direct-to-process I/O, and the
overhead of implicit locking and unlocking for each I/O call cannot be tolerated

Finally, locking is generally viewed as an ‘‘application-wide’’ function. That is, the
application is globally aware of which regions are locked and which are not over time. This
is in contrast to a function that is used temporarily within a ‘‘third party’’ library routine
whose function is unknown to the application, and therefore must have no ‘‘side-effects’’.
The specified interfaces, therefore, do not support ‘‘lock stacking’’ or ‘‘lock nesting’’ within
a process. But, for pages that are shared between processes or mapped more than once
into a process address space, ‘‘lock stacking’’ is essentially mandated by the requirement
that unlocking of pages that are mapped by more that one process or more than once by
the same process does not affect locks established on the other mappings.

There was some support for ‘‘lock stacking’’ so that locking could be transparently used in
functions or opaque modules. But the consensus was not to burden all implementations

3530 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

119036

119037

119038

119039

119040

119041

119042

119043

119044

119045

119046

119047

119048

119049

119050

119051

119052

119053

119054

119055

119056

119057

119058

119059

119060

119061

119062

119063

119064

119065

119066

119067

119068

119069

119070

119071

119072

119073

119074

119075

119076

119077

119078

119079

119080

119081

119082

119083

Rationale for System Interfaces General Information

with lock stacking (and reference counting), and an implementation option was proposed.
There were strong objections to the option because applications would have to support
both options in order to remain portable. The consensus was to eliminate lock stacking
altogether, primarily through overwhelming support for the System V ‘‘m[un]lock[all]’’
interface on which POSIX.1-2008 is now based.

Locks are not inherited across fork()s because some implementations implement fork() by
creating new address spaces for the child. In such an implementation, requiring locks to be
inherited would lead to new situations in which a fork would fail due to the inability of
the system to lock sufficient memory to lock both the parent and the child. The consensus
was that there was no benefit to such inheritance. Note that this does not mean that locks
are removed when, for instance, a thread is created in the same address space.

Similarly, locks are not inherited across exec because some implementations implement exec
by unmapping all of the pages in the address space (which, by definition, removes the
locks on these pages), and maps in pages of the exec’d image. In such an implementation,
requiring locks to be inherited would lead to new situations in which exec would fail.
Reporting this failure would be very cumbersome to detect in time to report to the calling
process, and no appropriate mechanism exists for informing the exec’d process of its status.

It was determined that, if the newly loaded application required locking, it was the
responsibility of that application to establish the locks. This is also in keeping with the
general view that it is the responsibility of the application to be aware of all locks that are
established.

There was one request to allow (not mandate) locks to be inherited across fork(), and a
request for a flag, MCL_INHERIT, that would specify inheritance of memory locks across
execs. Given the difficulties raised by this and the general lack of support for the feature in
POSIX.1-2008, it was not added. POSIX.1-2008 does not preclude an implementation from
providing this feature for administrative purposes, such as a ‘‘run’’ command that will
lock down and execute a specified application. Additionally, the rationale for the objection
equated fork() with creating a thread in the address space. POSIX.1-2008 does not mandate
releasing locks when creating additional threads in an existing process.

• Standardization Issues

One goal of POSIX.1-2008 is to define a set of primitives that provide the necessary
functionality for realtime applications, with consideration for the needs of other
application domains where such were identified, which is based to the extent possible on
existing industry practice.

The Memory Locking option is required by many realtime applications to tune
performance. Such a facility is accomplished by placing constraints on the virtual memory
system to limit paging of time of the process or of critical sections of the process. This
facility should not be used by most non-realtime applications.

Optional features provided in POSIX.1-2008 allow applications to lock selected address
ranges with the caveat that the process is responsible for being aware of the page
granularity of locking and the unnested nature of the locks.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3531

119084

119085

119086

119087

119088

119089

119090

119091

119092

119093

119094

119095

119096

119097

119098

119099

119100

119101

119102

119103

119104

119105

119106

119107

119108

119109

119110

119111

119112

119113

119114

119115

119116

119117

119118

119119

119120

119121

119122

119123

119124

General Information Rationale for System Interfaces

Mapped Files Functions

The memory mapped files functionality provides a mechanism that allows a process to access
files by directly incorporating file data into its address space. Once a file is ‘‘mapped’’ into a
process address space, the data can be manipulated by instructions as memory. The use of
mapped files can significantly reduce I/O data movement since file data does not have to be
copied into process data buffers as in read() and write(). If more than one process maps a file, its
contents are shared among them. This provides a low overhead mechanism by which processes
can synchronize and communicate.

• Historical Perspective

Realtime applications have historically been implemented using a collection of cooperating
processes or tasks. In early systems, these processes ran on bare hardware (that is, without
an operating system) with no memory relocation or protection. The application paradigms
that arose from this environment involve the sharing of data between the processes.

When realtime systems were implemented on top of vendor-supplied operating systems,
the paradigm or performance benefits of direct access to data by multiple processes was
still deemed necessary. As a result, operating systems that claim to support realtime
applications must support the shared memory paradigm.

Additionally, a number of realtime systems provide the ability to map specific sections of
the physical address space into the address space of a process. This ability is required if an
application is to obtain direct access to memory locations that have specific properties (for
example, refresh buffers or display devices, dual ported memory locations, DMA target
locations). The use of this ability is common enough to warrant some degree of
standardization of its interface. This ability overlaps the general paradigm of shared
memory in that, in both instances, common global objects are made addressable by
individual processes or tasks.

Finally, a number of systems also provide the ability to map process addresses to files. This
provides both a general means of sharing persistent objects, and using files in a manner
that optimizes memory and swapping space usage.

Simple shared memory is clearly a special case of the more general file mapping capability.
In addition, there is relatively widespread agreement and implementation of the file
mapping interface. In these systems, many different types of objects can be mapped (for
example, files, memory, devices, and so on) using the same mapping interfaces. This
approach both minimizes interface proliferation and maximizes the generality of programs
using the mapping interfaces.

• Memory Mapped Files Usage

A memory object can be concurrently mapped into the address space of one or more
processes. The mmap() and munmap() functions allow a process to manipulate their
address space by mapping portions of memory objects into it and removing them from it.
When multiple processes map the same memory object, they can share access to the
underlying data. Implementations may restrict the size and alignment of mappings to be
on page-size boundaries. The page size, in bytes, is the value of the system-configurable
variable {PAGESIZE}, typically accessed by calling sysconf() with a name argument of
_SC_PAGESIZE. If an implementation has no restrictions on size or alignment, it may
specify a 1-byte page size.

To map memory, a process first opens a memory object. The ftruncate() function can be
used to contract or extend the size of the memory object even when the object is currently
mapped. If the memory object is extended, the contents of the extended areas are zeros.

3532 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

119125

119126

119127

119128

119129

119130

119131

119132

119133

119134

119135

119136

119137

119138

119139

119140

119141

119142

119143

119144

119145

119146

119147

119148

119149

119150

119151

119152

119153

119154

119155

119156

119157

119158

119159

119160

119161

119162

119163

119164

119165

119166

119167

119168

119169

119170

119171

Rationale for System Interfaces General Information

After opening a memory object, the application maps the object into its address space
using the mmap() function call. Once a mapping has been established, it remains mapped
until unmapped with munmap(), even if the memory object is closed. The mprotect()
function can be used to change the memory protections initially established by mmap().

A close() of the file descriptor, while invalidating the file descriptor itself, does not unmap
any mappings established for the memory object. The address space, including all mapped
regions, is inherited on fork(). The entire address space is unmapped on process
termination or by successful calls to any of the exec family of functions.

The msync() function is used to force mapped file data to permanent storage.

• Effects on Other Functions

With memory mapped files, the operation of the open(), creat(), and unlink() functions are
a natural result of using the file system name space to map the global names for memory
objects.

The ftruncate() function can be used to set the length of a sharable memory object.

The meaning of stat() fields other than the size and protection information is undefined on
implementations where memory objects are not implemented using regular files. When
regular files are used, the times reflect when the implementation updated the file image of
the data, not when a process updated the data in memory.

The operations of fdopen(), write(), read(), and lseek() were made unspecified for objects
opened with shm_open(), so that implementations that did not implement memory objects
as regular files would not have to support the operation of these functions on shared
memory objects.

The behavior of memory objects with respect to close(), dup(), dup2(), open(), close(),
fork(), _exit(), and the exec family of functions is the same as the behavior of the existing
practice of the mmap() function.

A memory object can still be referenced after a close. That is, any mappings made to the
file are still in effect, and reads and writes that are made to those mappings are still valid
and are shared with other processes that have the same mapping. Likewise, the memory
object can still be used if any references remain after its name(s) have been deleted. Any
references that remain after a close must not appear to the application as file descriptors.

This is existing practice for mmap() and close(). In addition, there are already mappings
present (text, data, stack) that do not have open file descriptors. The text mapping in
particular is considered a reference to the file containing the text. The desire was to treat all
mappings by the process uniformly. Also, many modern implementations use mmap() to
implement shared libraries, and it would not be desirable to keep file descriptors for each
of the many libraries an application can use. It was felt there were many other existing
programs that used this behavior to free a file descriptor, and thus POSIX.1-2008 could not
forbid it and still claim to be using existing practice.

For implementations that implement memory objects using memory only, memory objects
will retain the memory allocated to the file after the last close and will use that same
memory on the next open. Note that closing the memory object is not the same as deleting
the name, since the memory object is still defined in the memory object name space.

The locks of fcntl() do not block any read or write operation, including read or write access
to shared memory or mapped files. In addition, implementations that only support shared
memory objects should not be required to implement record locks. The reference to fcntl()
is added to make this point explicitly. The other fcntl() commands are useful with shared
memory objects.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3533

119172

119173

119174

119175

119176

119177

119178

119179

119180

119181

119182

119183

119184

119185

119186

119187

119188

119189

119190

119191

119192

119193

119194

119195

119196

119197

119198

119199

119200

119201

119202

119203

119204

119205

119206

119207

119208

119209

119210

119211

119212

119213

119214

119215

119216

119217

119218

General Information Rationale for System Interfaces

The size of pages that mapping hardware may be able to support may be a configurable
value, or it may change based on hardware implementations. The addition of the
_SC_PAGESIZE parameter to the sysconf() function is provided for determining the
mapping page size at runtime.

Shared Memory Functions

Implementations may support the Shared Memory Objects option independently of memory
mapped files. Shared memory objects are named regions of storage that may be independent of
the file system and can be mapped into the address space of one or more processes to allow
them to share the associated memory.

• Requirements

Shared memory is used to share data among several processes, each potentially running at
different priority levels, responding to different inputs, or performing separate tasks.
Shared memory is not just simply providing common access to data, it is providing the
fastest possible communication between the processes. With one memory write operation,
a process can pass information to as many processes as have the memory region mapped.

As a result, shared memory provides a mechanism that can be used for all other
interprocess communication facilities. It may also be used by an application for
implementing more sophisticated mechanisms than semaphores and message queues.

The need for a shared memory interface is obvious for virtual memory systems, where the
operating system is directly preventing processes from accessing each other’s data.
However, in unprotected systems, such as those found in some embedded controllers, a
shared memory interface is needed to provide a portable mechanism to allocate a region of
memory to be shared and then to communicate the address of that region to other
processes.

This, then, provides the minimum functionality that a shared memory interface must have
in order to support realtime applications: to allocate and name an object to be mapped into
memory for potential sharing (open() or shm_open()), and to make the memory object
available within the address space of a process (mmap()). To complete the interface, a
mechanism to release the claim of a process on a shared memory object (munmap()) is also
needed, as well as a mechanism for deleting the name of a sharable object that was
previously created (unlink() or shm_unlink()).

After a mapping has been established, an implementation should not have to provide
services to maintain that mapping. All memory writes into that area will appear
immediately in the memory mapping of that region by any other processes.

Thus, requirements include:

— Support creation of sharable memory objects and the mapping of these objects into
the address space of a process.

— Sharable memory objects should be accessed by global names accessible from all
processes.

— Support the mapping of specific sections of physical address space (such as a
memory mapped device) into the address space of a process. This should not be
done by the process specifying the actual address, but again by an implementation-
defined global name (such as a special device name) dedicated to this purpose.

— Support the mapping of discrete portions of these memory objects.

3534 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

119219

119220

119221

119222

119223

119224

119225

119226

119227

119228

119229

119230

119231

119232

119233

119234

119235

119236

119237

119238

119239

119240

119241

119242

119243

119244

119245

119246

119247

119248

119249

119250

119251

119252

119253

119254

119255

119256

119257

119258

119259

119260

119261

119262

Rationale for System Interfaces General Information

— Support for minimum hardware configurations that contain no physical media on
which to store shared memory contents permanently.

— The ability to preallocate the entire shared memory region so that minimum
hardware configurations without virtual memory support can guarantee contiguous
space.

— The maximizing of performance by not requiring functionality that would require
implementation interaction above creating the shared memory area and returning
the mapping.

Note that the above requirements do not preclude:

— The sharable memory object from being implemented using actual files on an actual
file system.

— The global name that is accessible from all processes being restricted to a file system
area that is dedicated to handling shared memory.

— An implementation not providing implementation-defined global names for the
purpose of physical address mapping.

• Shared Memory Objects Usage

If the Shared Memory Objects option is supported, a shared memory object may be
created, or opened if it already exists, with the shm_open() function. If the shared memory
object is created, it has a length of zero. The ftruncate() function can be used to set the size
of the shared memory object after creation. The shm_unlink() function removes the name
for a shared memory object created by shm_open().

• Shared Memory Overview

The shared memory facility defined by POSIX.1-2008 usually results in memory locations
being added to the address space of the process. The implementation returns the address
of the new space to the application by means of a pointer. This works well in languages
like C. However, in languages without pointer types it will not work. In the bindings for
such a language, either a special COMMON section will need to be defined (which is
unlikely), or the binding will have to allow existing structures to be mapped. The
implementation will likely have to place restrictions on the size and alignment of such
structures or will have to map a suitable region of the address space of the process into the
memory object, and thus into other processes. These are issues for that particular language
binding. For POSIX.1-2008, however, the practice will not be forbidden, merely undefined.

Two potentially different name spaces are used for naming objects that may be mapped
into process address spaces. When using memory mapped files, files may be accessed via
open(). When the Shared Memory Objects option is supported, sharable memory objects
that might not be files may be accessed via the shm_open() function. These operations are
not mutually-exclusive.

Some implementations supporting the Shared Memory Objects option may choose to
implement the shared memory object name space as part of the file system name space.
There are several reasons for this:

— It allows applications to prevent name conflicts by use of the directory structure.

— It uses an existing mechanism for accessing global objects and prevents the creation
of a new mechanism for naming global objects.

In such implementations, memory objects can be implemented using regular files, if that is
what the implementation chooses. The shm_open() function can be implemented as an

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3535

119263

119264

119265

119266

119267

119268

119269

119270

119271

119272

119273

119274

119275

119276

119277

119278

119279

119280

119281

119282

119283

119284

119285

119286

119287

119288

119289

119290

119291

119292

119293

119294

119295

119296

119297

119298

119299

119300

119301

119302

119303

119304

119305

119306

119307

General Information Rationale for System Interfaces

open() call in a fixed directory with the O_CLOEXEC flag set. The shm_unlink() function
can be implemented as an unlink() call.

On the other hand, it is also expected that small embedded systems that support the
Shared Memory Objects option may wish to implement shared memory without having
any file systems present. In this case, the implementations may choose to use a simple
string valued name space for shared memory regions. The shm_open() function permits
either type of implementation.

Some implementations have hardware that supports protection of mapped data from
certain classes of access and some do not. Systems that supply this functionality support
the memory protection functionality.

Some implementations restrict size, alignment, and protections to be on page-size
boundaries. If an implementation has no restrictions on size or alignment, it may specify a
1-byte page size. Applications on implementations that do support larger pages must be
cognizant of the page size since this is the alignment and protection boundary.

Simple embedded implementations may have a 1-byte page size and only support the
Shared Memory Objects option. This provides simple shared memory between processes
without requiring mapping hardware.

POSIX.1-2008 specifically allows a memory object to remain referenced after a close
because that is existing practice for the mmap() function.

Typed Memory Functions

Implementations may support the Typed Memory Objects option without supporting either the
Shared Memory option or memory mapped files. Types memory objects are pools of specialized
storage, different from the main memory resource normally used by a processor to hold code
and data, that can be mapped into the address space of one or more processes.

• Model

Realtime systems conforming to one of the POSIX.13 realtime profiles are expected (and
desired) to be supported on systems with more than one type or pool of memory (for
example, SRAM, DRAM, ROM, EPROM, EEPROM), where each type or pool of memory
may be accessible by one or more processors via one or more buses (ports). Memory
mapped files, shared memory objects, and the language-specific storage allocation
operators (malloc() for the ISO C standard, new for ISO Ada) fail to provide application
program interfaces versatile enough to allow applications to control their utilization of
such diverse memory resources. The typed memory interfaces posix_typed_mem_open(),
posix_mem_offset(), posix_typed_mem_get_info(), mmap(), and munmap() defined herein
support the model of typed memory described below.

For purposes of this model, a system comprises several processors (for example, P
1

and
P

2
), several physical memory pools (for example, M

1
, M

2
, M

2a
, M

2b
, M

3
, M

4
, and M

5
), and

several buses or ‘‘ports’’ (for example, B
1
, B

2
, B

3
, and B

4
) interconnecting the various

processors and memory pools in some system-specific way. Notice that some memory
pools may be contained in others (for example, M

2a
and M

2b
are contained in M

2
).

Figure B-1 (on page 3537) shows an example of such a model. In a system like this, an
application should be able to perform the following operations:

3536 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

119308

119309

119310

119311

119312

119313

119314

119315

119316

119317

119318

119319

119320

119321

119322

119323

119324

119325

119326

119327

119328

119329

119330

119331

119332

119333

119334

119335

119336

119337

119338

119339

119340

119341

119342

119343

119344

119345

119346

119347

119348

119349

Rationale for System Interfaces General Information

Bus Bus

Bus

Bus

All addresses in pool M2 (comprising pools M2a and M2b) accessible via port B1.

Addresses in pool M2b are also accessible via port B2.

Addresses in pool M2a are not accessible via port B2.

B1B1B1 B3

B4

B2 B2 B2 B2

P1

Processor

P2

Processor

M1

Memory

M3

Memory

M4

Memory

M5

Memory
M2a

M2b

Memory

M2

*

*

Figure B-1 Example of a System with Typed Memory

— Typed Memory Allocation

An application should be able to allocate memory dynamically from the desired pool
using the desired bus, and map it into the address space of a process. For example,
processor P

1
can allocate some portion of memory pool M

1
through port B

1
, treating

all unmapped subareas of M
1

as a heap-storage resource from which memory may be
allocated. This portion of memory is mapped into address space of the process, and
subsequently deallocated when unmapped from all processes.

— Using the Same Storage Region from Different Buses

An application process with a mapped region of storage that is accessed from one
bus should be able to map that same storage area at another address (subject to page
size restrictions detailed in mmap()), to allow it to be accessed from another bus. For
example, processor P

1
may wish to access the same region of memory pool M

2b
both

through ports B
1

and B
2
.

— Sharing Typed Memory Regions

Several application processes running on the same or different processors may wish
to share a particular region of a typed memory pool. Each process or processor may
wish to access this region through different buses. For example, processor P

1
may

want to share a region of memory pool M
4

with processor P
2
, and they may be

required to use buses B
2

and B
3
, respectively, to minimize bus contention. A problem

arises here when a process allocates and maps a portion of fragmented memory and
then wants to share this region of memory with another process, either in the same
processor or different processors. The solution adopted is to allow the first process to
find out the memory map (offsets and lengths) of all the different fragments of
memory that were mapped into its address space, by repeatedly calling
posix_mem_offset(). Then, this process can pass the offsets and lengths obtained to
the second process, which can then map the same memory fragments into its address
space.

— Contiguous Allocation

The problem of finding the memory map of the different fragments of the memory
pool that were mapped into logically contiguous addresses of a given process can be

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3537

119350

119351

119352

119353

119354

119355

119356

119357

119358

119359

119360

119361

119362

119363

119364

119365

119366

119367

119368

119369

119370

119371

119372

119373

119374

119375

119376

119377

119378

119379

119380

General Information Rationale for System Interfaces

solved by requesting contiguous allocation. For example, a process in P
1

can allocate
10 Kbytes of physically contiguous memory from M

3
-B

1
, and obtain the offset (within

pool M
3
) of this block of memory. Then, it can pass this offset (and the length) to a

process in P
2

using some interprocess communication mechanism. The second
process can map the same block of memory by using the offset transferred and
specifying M

3
-B

2
.

— Unallocated Mapping

Any subarea of a memory pool that is mapped to a process, either as the result of an
allocation request or an explicit mapping, is normally unavailable for allocation.
Special processes such as debuggers, however, may need to map large areas of a
typed memory pool, yet leave those areas available for allocation.

Typed memory allocation and mapping has to coexist with storage allocation operators
like malloc(), but systems are free to choose how to implement this coexistence. For
example, it may be system configuration-dependent if all available system memory is
made part of one of the typed memory pools or if some part will be restricted to
conventional allocation operators. Equally system configuration-dependent may be the
availability of operators like malloc() to allocate storage from certain typed memory pools.
It is not excluded to configure a system such that a given named pool, P

1
, is in turn split

into non-overlapping named subpools. For example, M
1
-B

1
, M

2
-B

1
, and M

3
-B

1
could also be

accessed as one common pool M
123

-B
1
. A call to malloc() on P

1
could work on such a larger

pool while full optimization of memory usage by P
1

would require typed memory
allocation at the subpool level.

• Existing Practice

OS-9 provides for the naming (numbering) and prioritization of memory types by a system
administrator. It then provides APIs to request memory allocation of typed (colored)
memory by number, and to generate a bus address from a mapped memory address
(translate). When requesting colored memory, the user can specify type 0 to signify
allocation from the first available type in priority order.

HP-RT presents interfaces to map different kinds of storage regions that are visible through
a VME bus, although it does not provide allocation operations. It also provides functions
to perform address translation between VME addresses and virtual addresses. It represents
a VME-bus unique solution to the general problem.

The PSOS approach is similar (that is, based on a pre-established mapping of bus address
ranges to specific memories) with a concept of segments and regions (regions dynamically
allocated from a heap which is a special segment). Therefore, PSOS does not fully address
the general allocation problem either. PSOS does not have a ‘‘process’’-based model, but
more of a ‘‘thread’’-only-based model of multi-tasking. So mapping to a process address
space is not an issue.

QNX uses the System V approach of opening specially named devices (shared memory
segments) and using mmap() to then gain access from the process. They do not address
allocation directly, but once typed shared memory can be mapped, an ‘‘allocation
manager ’’ process could be written to handle requests for allocation.

The System V approach also included allocation, implemented by opening yet other
special ‘‘devices’’ which allocate, rather than appearing as a whole memory object.

The Orkid realtime kernel interface definition has operations to manage memory ‘‘regions’’
and ‘‘pools’’, which are areas of memory that may reflect the differing physical nature of
the memory. Operations to allocate memory from these regions and pools are also
provided.

3538 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

119381

119382

119383

119384

119385

119386

119387

119388

119389

119390

119391

119392

119393

119394

119395

119396

119397

119398

119399

119400

119401

119402

119403

119404

119405

119406

119407

119408

119409

119410

119411

119412

119413

119414

119415

119416

119417

119418

119419

119420

119421

119422

119423

119424

119425

119426

119427

119428

Rationale for System Interfaces General Information

• Requirements

Existing practice in SVID-derived UNIX systems relies on functionality similar to mmap()
and its related interfaces to achieve mapping and allocation of typed memory. However,
the issue of sharing typed memory (allocated or mapped) and the complication of multiple
ports are not addressed in any consistent way by existing UNIX system practice. Part of
this functionality is existing practice in specialized realtime operating systems. In order to
solidify the capabilities implied by the model above, the following requirements are
imposed on the interface:

— Identification of Typed Memory Pools and Ports

All processes (running in all processors) in the system are able to identify a particular
(system configured) typed memory pool accessed through a particular (system
configured) port by a name. That name is a member of a name space common to all
these processes, but need not be the same name space as that containing ordinary
filenames. The association between memory pools/ports and corresponding names
is typically established when the system is configured. The ‘‘open’’ operation for
typed memory objects should be distinct from the open() function, for consistency
with other similar services, but implementable on top of open(). This implies that the
handle for a typed memory object will be a file descriptor.

— Allocation and Mapping of Typed Memory

Once a typed memory object has been identified by a process, it is possible to both
map user-selected subareas of that object into process address space and to map
system-selected (that is, dynamically allocated) subareas of that object, with user-
specified length, into process address space. It is also possible to determine the
maximum length of memory allocation that may be requested from a given typed
memory object.

— Sharing Typed Memory

Two or more processes are able to share portions of typed memory, either user-
selected or dynamically allocated. This requirement applies also to dynamically
allocated regions of memory that are composed of several non-contiguous pieces.

— Contiguous Allocation

For dynamic allocation, it is the user’s option whether the system is required to
allocate a contiguous subarea within the typed memory object, or whether it is
permitted to allocate discontiguous fragments which appear contiguous in the
process mapping. Contiguous allocation simplifies the process of sharing allocated
typed memory, while discontiguous allocation allows for potentially better recovery
of deallocated typed memory.

— Accessing Typed Memory Through Different Ports

Once a subarea of a typed memory object has been mapped, it is possible to
determine the location and length corresponding to a user-selected portion of that
object within the memory pool. This location and length can then be used to remap
that portion of memory for access from another port. If the referenced portion of
typed memory was allocated discontiguously, the length thus determined may be
shorter than anticipated, and the user code must adapt to the value returned.

— Deallocation

When a previously mapped subarea of typed memory is no longer mapped by any
process in the system—as a result of a call or calls to munmap()—that subarea

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3539

119429

119430

119431

119432

119433

119434

119435

119436

119437

119438

119439

119440

119441

119442

119443

119444

119445

119446

119447

119448

119449

119450

119451

119452

119453

119454

119455

119456

119457

119458

119459

119460

119461

119462

119463

119464

119465

119466

119467

119468

119469

119470

119471

119472

119473

119474

General Information Rationale for System Interfaces

becomes potentially reusable for dynamic allocation; actual reuse of the subarea is a
function of the dynamic typed memory allocation policy.

— Unallocated Mapping

It must be possible to map user-selected subareas of a typed memory object without
marking that subarea as unavailable for allocation. This option is not the default
behavior, and requires appropriate privileges.

• Scenario

The following scenario will serve to clarify the use of the typed memory interfaces.

Process A running on P
1

(see Figure B-1, on page 3537) wants to allocate some memory
from memory pool M

2
, and it wants to share this portion of memory with process B

running on P
2
. Since P

2
only has access to the lower part of M

2
, both processes will use the

memory pool named M
2b

which is the part of M
2

that is accessible both from P
1

and P
2
. The

operations that both processes need to perform are shown below:

— Allocating Typed Memory

Process A calls posix_typed_mem_open() with the name /typed.m2b-b1 and a tflag of
POSIX_TYPED_MEM_ALLOCATE to get a file descriptor usable for allocating from
pool M

2b
accessed through port B

1
. It then calls mmap() with this file descriptor

requesting a length of 4 096 bytes. The system allocates two discontiguous blocks of
sizes 1 024 and 3 072 bytes within M

2b
. The mmap() function returns a pointer to a

4 096-byte array in process A’s logical address space, mapping the allocated blocks
contiguously. Process A can then utilize the array, and store data in it.

— Determining the Location of the Allocated Blocks

Process A can determine the lengths and offsets (relative to M
2b

) of the two blocks
allocated, by using the following procedure: First, process A calls posix_mem_offset()
with the address of the first element of the array and length 4 096. Upon return, the
offset and length (1 024 bytes) of the first block are returned. A second call to
posix_mem_offset() is then made using the address of the first element of the array
plus 1 024 (the length of the first block), and a new length of 4 096−1 024. If there were
more fragments allocated, this procedure could have been continued within a loop
until the offsets and lengths of all the blocks were obtained. Notice that this relatively
complex procedure can be avoided if contiguous allocation is requested (by opening
the typed memory object with the tflag
POSIX_TYPED_MEM_ALLOCATE_CONTIG).

— Sharing Data Across Processes

Process A passes the two offset values and lengths obtained from the
posix_mem_offset() calls to process B running on P

2
, via some form of interprocess

communication. Process B can gain access to process A’s data by calling
posix_typed_mem_open() with the name /typed.m2b-b2 and a tflag of zero, then using
two mmap() calls on the resulting file descriptor to map the two subareas of that
typed memory object to its own address space.

• Rationale for no mem_alloc() and mem_free()

The standard developers had originally proposed a pair of new flags to mmap() which,
when applied to a typed memory object descriptor, would cause mmap() to allocate
dynamically from an unallocated and unmapped area of the typed memory object.
Deallocation was similarly accomplished through the use of munmap(). This was rejected
by the ballot group because it excessively complicated the (already rather complex)

3540 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

119475

119476

119477

119478

119479

119480

119481

119482

119483

119484

119485

119486

119487

119488

119489

119490

119491

119492

119493

119494

119495

119496

119497

119498

119499

119500

119501

119502

119503

119504

119505

119506

119507

119508

119509

119510

119511

119512

119513

119514

119515

119516

119517

119518

119519

119520

Rationale for System Interfaces General Information

mmap() interface and introduced semantics useful only for typed memory, to a function
which must also map shared memory and files. They felt that a memory allocator should
be built on top of mmap() instead of being incorporated within the same interface, much as
the ISO C standard libraries build malloc() on top of the virtual memory mapping
functions brk() and sbrk(). This would eliminate the complicated semantics involved with
unmapping only part of an allocated block of typed memory.

To attempt to achieve ballot group consensus, typed memory allocation and deallocation
was first migrated from mmap() and munmap() to a pair of complementary functions
modeled on the ISO C standard malloc() and free(). The mem_alloc() function specified
explicitly the typed memory object (typed memory pool/access port) from which
allocation takes place, unlike malloc() where the memory pool and port are unspecified.
The mem_free() function handled deallocation. These new semantics still met all of the
requirements detailed above without modifying the behavior of mmap() except to allow it
to map specified areas of typed memory objects. An implementation would have been free
to implement mem_alloc() and mem_free() over mmap(), through mmap(), or independently
but cooperating with mmap().

The ballot group was queried to see if this was an acceptable alternative, and while there
was some agreement that it achieved the goal of removing the complicated semantics of
allocation from the mmap() interface, several balloters realized that it just created two
additional functions that behaved, in great part, like mmap(). These balloters proposed an
alternative which has been implemented here in place of a separate mem_alloc() and
mem_free(). This alternative is based on four specific suggestions:

1. The posix_typed_mem_open() function should provide a flag which specifies
‘‘allocate on mmap()’’ (otherwise, mmap() just maps the underlying object). This
allows things roughly similar to /dev/zero versus /dev/swap. Two such flags have
been implemented, one of which forces contiguous allocation.

2. The posix_mem_offset() function is acceptable because it can be applied usefully to
mapped objects in general. It should return the file descriptor of the underlying
object.

3. The mem_get_info() function in an earlier draft should be renamed
posix_typed_mem_get_info() because it is not generally applicable to memory objects.
It should probably return the file descriptor’s allocation attribute. The renaming of
the function has been implemented, but having it return a piece of information
which is readily known by an application without this function has been rejected.
Its whole purpose is to query the typed memory object for attributes that are not
user-specified, but determined by the implementation.

4. There should be no separate mem_alloc() or mem_free() functions. Instead, using
mmap() on a typed memory object opened with an ‘‘allocate on mmap()’’ flag
should be used to force allocation. These are precisely the semantics defined in the
current draft.

• Rationale for no Typed Memory Access Management

The working group had originally defined an additional interface (and an additional kind
of object: typed memory master) to establish and dissolve mappings to typed memory on
behalf of devices or processors which were independent of the operating system and had
no inherent capability to directly establish mappings on their own. This was to have
provided functionality similar to device driver interfaces such as physio() and their
underlying bus-specific interfaces (for example, mballoc()) which serve to set up and break
down DMA pathways, and derive mapped addresses for use by hardware devices and
processor cards.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3541

119521

119522

119523

119524

119525

119526

119527

119528

119529

119530

119531

119532

119533

119534

119535

119536

119537

119538

119539

119540

119541

119542

119543

119544

119545

119546

119547

119548

119549

119550

119551

119552

119553

119554

119555

119556

119557

119558

119559

119560

119561

119562

119563

119564

119565

119566

119567

119568

119569

General Information Rationale for System Interfaces

The ballot group felt that this was beyond the scope of POSIX.1 and its amendments.
Furthermore, the removal of interrupt handling interfaces from a preceding amendment
(the IEEE Std 1003.1d-1999) during its balloting process renders these typed memory
access management interfaces an incomplete solution to portable device management from
a user process; it would be possible to initiate a device transfer to/from typed memory, but
impossible to handle the transfer-complete interrupt in a portable way.

To achieve ballot group consensus, all references to typed memory access management
capabilities were removed. The concept of portable interfaces from a device driver to both
operating system and hardware is being addressed by the Uniform Driver Interface (UDI)
industry forum, with formal standardization deferred until proof of concept and industry-
wide acceptance and implementation.

B.2.8.4 Process Scheduling

IEEE PASC Interpretation 1003.1 #96 has been applied, adding the pthread_setschedprio()
function. This was added since previously there was no way for a thread to lower its own
priority without going to the tail of the threads list for its new priority. This capability is
necessary to bound the duration of priority inversion encountered by a thread.

The following portion of the rationale presents models, requirements, and standardization
issues relevant to process scheduling; see also Section B.2.9.4 (on page 3582).

In an operating system supporting multiple concurrent processes, the system determines the
order in which processes execute to meet implementation-defined goals. For time-sharing
systems, the goal is to enhance system throughput and promote fairness; the application is
provided with little or no control over this sequencing function. While this is acceptable and
desirable behavior in a time-sharing system, it is inappropriate in a realtime system; realtime
applications must specifically control the execution sequence of their concurrent processes in
order to meet externally defined response requirements.

In POSIX.1-2008, the control over process sequencing is provided using a concept of scheduling
policies. These policies, described in detail in this section, define the behavior of the system
whenever processor resources are to be allocated to competing processes. Only the behavior of
the policy is defined; conforming implementations are free to use any mechanism desired to
achieve the described behavior.

• Models

In an operating system supporting multiple concurrent processes, the system determines
the order in which processes execute and might force long-running processes to yield to
other processes at certain intervals. Typically, the scheduling code is executed whenever an
event occurs that might alter the process to be executed next.

The simplest scheduling strategy is a ‘‘first-in, first-out’’ (FIFO) dispatcher. Whenever a
process becomes runnable, it is placed on the end of a ready list. The process at the front of
the ready list is executed until it exits or becomes blocked, at which point it is removed
from the list. This scheduling technique is also known as ‘‘run-to-completion’’ or ‘‘run-to-
block’’.

A natural extension to this scheduling technique is the assignment of a ‘‘non-migrating
priority’’ to each process. This policy differs from strict FIFO scheduling in only one
respect: whenever a process becomes runnable, it is placed at the end of the list of
processes runnable at that priority level. When selecting a process to run, the system
always selects the first process from the highest priority queue with a runnable process.
Thus, when a process becomes unblocked, it will preempt a running process of lower
priority without otherwise altering the ready list. Further, if a process elects to alter its

3542 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

119570

119571

119572

119573

119574

119575

119576

119577

119578

119579

119580

119581

119582

119583

119584

119585

119586

119587

119588

119589

119590

119591

119592

119593

119594

119595

119596

119597

119598

119599

119600

119601

119602

119603

119604

119605

119606

119607

119608

119609

119610

119611

119612

119613

119614

119615

119616

Rationale for System Interfaces General Information

priority, it is removed from the ready list and reinserted, using its new priority, according
to the policy above.

While the above policy might be considered unfriendly in a time-sharing environment in
which multiple users require more balanced resource allocation, it could be ideal in a
realtime environment for several reasons. The most important of these is that it is
deterministic: the highest-priority process is always run and, among processes of equal
priority, the process that has been runnable for the longest time is executed first. Because of
this determinism, cooperating processes can implement more complex scheduling simply
by altering their priority. For instance, if processes at a single priority were to reschedule
themselves at fixed time intervals, a time-slice policy would result.

In a dedicated operating system in which all processes are well-behaved realtime
applications, non-migrating priority scheduling is sufficient. However, many existing
implementations provide for more complex scheduling policies.

POSIX.1-2008 specifies a linear scheduling model. In this model, every process in the
system has a priority. The system scheduler always dispatches a process that has the
highest (generally the most time-critical) priority among all runnable processes in the
system. As long as there is only one such process, the dispatching policy is trivial. When
multiple processes of equal priority are eligible to run, they are ordered according to a
strict run-to-completion (FIFO) policy.

The priority is represented as a positive integer and is inherited from the parent process.
For processes running under a fixed priority scheduling policy, the priority is never altered
except by an explicit function call.

It was determined arbitrarily that larger integers correspond to ‘‘higher priorities’’.

Certain implementations might impose restrictions on the priority ranges to which
processes can be assigned. There also can be restrictions on the set of policies to which
processes can be set.

• Requirements

Realtime processes require that scheduling be fast and deterministic, and that it guarantees
to preempt lower priority processes.

Thus, given the linear scheduling model, realtime processes require that they be run at a
priority that is higher than other processes. Within this framework, realtime processes are
free to yield execution resources to each other in a completely portable and
implementation-defined manner.

As there is a generally perceived requirement for processes at the same priority level to
share processor resources more equitably, provisions are made by providing a scheduling
policy (that is, SCHED_RR) intended to provide a timeslice-like facility.

Note: The following topics assume that low numeric priority implies low scheduling criticality
and vice versa.

• Rationale for New Interface

Realtime applications need to be able to determine when processes will run in relation to
each other. It must be possible to guarantee that a critical process will run whenever it is
runnable; that is, whenever it wants to for as long as it needs. SCHED_FIFO satisfies this
requirement. Additionally, SCHED_RR was defined to meet a realtime requirement for a
well-defined time-sharing policy for processes at the same priority.

It would be possible to use the BSD setpriority() and getpriority() functions by redefining
the meaning of the ‘‘nice’’ parameter according to the scheduling policy currently in use by

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3543

119617

119618

119619

119620

119621

119622

119623

119624

119625

119626

119627

119628

119629

119630

119631

119632

119633

119634

119635

119636

119637

119638

119639

119640

119641

119642

119643

119644

119645

119646

119647

119648

119649

119650

119651

119652

119653

119654

119655

119656

119657

119658

119659

119660

119661

119662

General Information Rationale for System Interfaces

the process. The System V nice() interface was felt to be undesirable for realtime because it
specifies an adjustment to the ‘‘nice’’ value, rather than setting it to an explicit value.
Realtime applications will usually want to set priority to an explicit value. Also, System V
nice() does not allow for changing the priority of another process.

With the POSIX.1b interfaces, the traditional ‘‘nice’’ value does not affect the SCHED_FIFO
or SCHED_RR scheduling policies. If a ‘‘nice’’ value is supported, it is implementation-
defined whether it affects the SCHED_OTHER policy.

An important aspect of POSIX.1-2008 is the explicit description of the queuing and
preemption rules. It is critical, to achieve deterministic scheduling, that such rules be
stated clearly in POSIX.1-2008.

POSIX.1-2008 does not address the interaction between priority and swapping. The issues
involved with swapping and virtual memory paging are extremely implementation-
defined and would be nearly impossible to standardize at this point. The proposed
scheduling paradigm, however, fully describes the scheduling behavior of runnable
processes, of which one criterion is that the working set be resident in memory. Assuming
the existence of a portable interface for locking portions of a process in memory, paging
behavior need not affect the scheduling of realtime processes.

POSIX.1-2008 also does not address the priorities of ‘‘system’’ processes. In general, these
processes should always execute in low-priority ranges to avoid conflict with other
realtime processes. Implementations should document the priority ranges in which system
processes run.

The default scheduling policy is not defined. The effect of I/O interrupts and other system
processing activities is not defined. The temporary lending of priority from one process to
another (such as for the purposes of affecting freeing resources) by the system is not
addressed. Preemption of resources is not addressed. Restrictions on the ability of a
process to affect other processes beyond a certain level (influence levels) is not addressed.

The rationale used to justify the simple time-quantum scheduler is that it is common
practice to depend upon this type of scheduling to ensure ‘‘fair ’’ distribution of processor
resources among portions of the application that must interoperate in a serial fashion. Note
that POSIX.1-2008 is silent with respect to the setting of this time quantum, or whether it is
a system-wide value or a per-process value, although it appears that the prevailing
realtime practice is for it to be a system-wide value.

In a system with N processes at a given priority, all processor-bound, in which the time
quantum is equal for all processes at a specific priority level, the following assumptions
are made of such a scheduling policy:

1. A time quantum Q exists and the current process will own control of the processor
for at least a duration of Q and will have the processor for a duration of Q.

2. The Nth process at that priority will control a processor within a duration of (N−1)
× Q.

These assumptions are necessary to provide equal access to the processor and bounded
response from the application.

The assumptions hold for the described scheduling policy only if no system overhead,
such as interrupt servicing, is present. If the interrupt servicing load is non-zero, then one
of the two assumptions becomes fallacious, based upon how Q is measured by the system.

If Q is measured by clock time, then the assumption that the process obtains a duration Q
processor time is false if interrupt overhead exists. Indeed, a scenario can be constructed
with N processes in which a single process undergoes complete processor starvation if a

3544 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

119663

119664

119665

119666

119667

119668

119669

119670

119671

119672

119673

119674

119675

119676

119677

119678

119679

119680

119681

119682

119683

119684

119685

119686

119687

119688

119689

119690

119691

119692

119693

119694

119695

119696

119697

119698

119699

119700

119701

119702

119703

119704

119705

119706

119707

119708

119709

Rationale for System Interfaces General Information

peripheral device, such as an analog-to-digital converter, generates significant interrupt
activity periodically with a period of N × Q.

If Q is measured as actual processor time, then the assumption that the Nth process runs in
within the duration (N−1) × Q is false.

It should be noted that SCHED_FIFO suffers from interrupt-based delay as well. However,
for SCHED_FIFO, the implied response of the system is ‘‘as soon as possible’’, so that the
interrupt load for this case is a vendor selection and not a compliance issue.

With this in mind, it is necessary either to complete the definition by including bounds on
the interrupt load, or to modify the assumptions that can be made about the scheduling
policy.

Since the motivation of inclusion of the policy is common usage, and since current
applications do not enjoy the luxury of bounded interrupt load, item (2) above is sufficient
to express existing application needs and is less restrictive in the standard definition. No
difference in interface is necessary.

In an implementation in which the time quantum is equal for all processes at a specific
priority, our assumptions can then be restated as:

— A time quantum Q exists, and a processor-bound process will be rescheduled after a
duration of, at most, Q. Time quantum Q may be defined in either wall clock time or
execution time.

— In general, the Nth process of a priority level should wait no longer than (N−1) × Q
time to execute, assuming no processes exist at higher priority levels.

— No process should wait indefinitely.

For implementations supporting per-process time quanta, these assumptions can be
readily extended.

Sporadic Server Scheduling Policy

The sporadic server is a mechanism defined for scheduling aperiodic activities in time-critical
realtime systems. This mechanism reserves a certain bounded amount of execution capacity for
processing aperiodic events at a high priority level. Any aperiodic events that cannot be
processed within the bounded amount of execution capacity are executed in the background at a
low priority level. Thus, a certain amount of execution capacity can be guaranteed to be
available for processing periodic tasks, even under burst conditions in the arrival of aperiodic
processing requests (that is, a large number of requests in a short time interval). The sporadic
server also simplifies the schedulability analysis of the realtime system, because it allows
aperiodic processes or threads to be treated as if they were periodic. The sporadic server was
first described by Sprunt, et al.

The key concept of the sporadic server is to provide and limit a certain amount of computation
capacity for processing aperiodic events at their assigned normal priority, during a time interval
called the ‘‘replenishment period’’. Once the entity controlled by the sporadic server mechanism
is initialized with its period and execution-time budget attributes, it preserves its execution
capacity until an aperiodic request arrives. The request will be serviced (if there are no higher
priority activities pending) as long as there is execution capacity left. If the request is completed,
the actual execution time used to service it is subtracted from the capacity, and a replenishment
of this amount of execution time is scheduled to happen one replenishment period after the
arrival of the aperiodic request. If the request is not completed, because there is no execution
capacity left, then the aperiodic process or thread is assigned a lower background priority. For
each portion of consumed execution capacity the execution time used is replenished after one

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3545

119710

119711

119712

119713

119714

119715

119716

119717

119718

119719

119720

119721

119722

119723

119724

119725

119726

119727

119728

119729

119730

119731

119732

119733

119734

119735

119736

119737

119738

119739

119740

119741

119742

119743

119744

119745

119746

119747

119748

119749

119750

119751

119752

119753

119754

119755

General Information Rationale for System Interfaces

replenishment period. At the time of replenishment, if the sporadic server was executing at a
background priority level, its priority is elevated to the normal level. Other similar
replenishment policies have been defined, but the one presented here represents a compromise
between efficiency and implementation complexity.

The interface that appears in this section defines a new scheduling policy for threads and
processes that behaves according to the rules of the sporadic server mechanism. Scheduling
attributes are defined and functions are provided to allow the user to set and get the parameters
that control the scheduling behavior of this mechanism, namely the normal and low priority, the
replenishment period, the maximum number of pending replenishment operations, and the
initial execution-time budget.

• Scheduling Aperiodic Activities

Virtually all realtime applications are required to process aperiodic activities. In many
cases, there are tight timing constraints that the response to the aperiodic events must
meet. Usual timing requirements imposed on the response to these events are:

— The effects of an aperiodic activity on the response time of lower priority activities
must be controllable and predictable.

— The system must provide the fastest possible response time to aperiodic events.

— It must be possible to take advantage of all the available processing bandwidth not
needed by time-critical activities to enhance average-case response times to aperiodic
events.

Traditional methods for scheduling aperiodic activities are background processing, polling
tasks, and direct event execution:

— Background processing consists of assigning a very low priority to the processing of
aperiodic events. It utilizes all the available bandwidth in the system that has not
been consumed by higher priority threads. However, it is very difficult, or
impossible, to meet requirements on average-case response time, because the
aperiodic entity has to wait for the execution of all other entities which have higher
priority.

— Polling consists of creating a periodic process or thread for servicing aperiodic
requests. At regular intervals, the polling entity is started and its services
accumulated pending aperiodic requests. If no aperiodic requests are pending, the
polling entity suspends itself until its next period. Polling allows the aperiodic
requests to be processed at a higher priority level. However, worst and average-case
response times of polling entities are a direct function of the polling period, and there
is execution overhead for each polling period, even if no event has arrived. If the
deadline of the aperiodic activity is short compared to the inter-arrival time, the
polling frequency must be increased to guarantee meeting the deadline. For this case,
the increase in frequency can dramatically reduce the efficiency of the system and,
therefore, its capacity to meet all deadlines. Yet, polling represents a good way to
handle a large class of practical problems because it preserves system predictability,
and because the amortized overhead drops as load increases.

— Direct event execution consists of executing the aperiodic events at a high fixed-
priority level. Typically, the aperiodic event is processed by an interrupt service
routine as soon as it arrives. This technique provides predictable response times for
aperiodic events, but makes the response times of all lower priority activities
completely unpredictable under burst arrival conditions. Therefore, if the density of
aperiodic event arrivals is unbounded, it may be a dangerous technique for time-
critical systems. Yet, for those cases in which the physics of the system imposes a

3546 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

119756

119757

119758

119759

119760

119761

119762

119763

119764

119765

119766

119767

119768

119769

119770

119771

119772

119773

119774

119775

119776

119777

119778

119779

119780

119781

119782

119783

119784

119785

119786

119787

119788

119789

119790

119791

119792

119793

119794

119795

119796

119797

119798

119799

119800

119801

119802

119803

Rationale for System Interfaces General Information

bound on the event arrival rate, it is probably the most efficient technique.

— The sporadic server scheduling algorithm combines the predictability of the polling
approach with the short response times of the direct event execution. Thus, it allows
systems to meet an important class of application requirements that cannot be met by
using the traditional approaches. Multiple sporadic servers with different attributes
can be applied to the scheduling of multiple classes of aperiodic events, each with
different kinds of timing requirements, such as individual deadlines, average
response times, and so on. It also has many other interesting applications for
realtime, such as scheduling producer/consumer tasks in time-critical systems,
limiting the effects of faults on the estimation of task execution-time requirements,
and so on.

• Existing Practice

The sporadic server has been used in different kinds of applications, including military
avionics, robot control systems, industrial automation systems, and so on. There are
examples of many systems that cannot be successfully scheduled using the classic
approaches, such as direct event execution, or polling, and are schedulable using a
sporadic server scheduler. The sporadic server algorithm itself can successfully schedule
all systems scheduled with direct event execution or polling.

The sporadic server scheduling policy has been implemented as a commercial product in
the run-time system of the Verdix Ada compiler. There are also many applications that
have used a much less efficient application-level sporadic server. These realtime
applications would benefit from a sporadic server scheduler implemented at the scheduler
level.

• Library-Level versus Kernel-Level Implementation

The sporadic server interface described in this section requires the sporadic server policy
to be implemented at the same level as the scheduler. This means that the process sporadic
server must be implemented at the kernel level and the thread sporadic server policy
implemented at the same level as the thread scheduler; that is, kernel or library level.

In an earlier interface for the sporadic server, this mechanism was implementable at a
different level than the scheduler. This feature allowed the implementor to choose between
an efficient scheduler-level implementation, or a simpler user or library-level
implementation. However, the working group considered that this interface made the use
of sporadic servers more complex, and that library-level implementations would lack some
of the important functionality of the sporadic server, namely the limitation of the actual
execution time of aperiodic activities. The working group also felt that the interface
described in this chapter does not preclude library-level implementations of threads
intended to provide efficient low-overhead scheduling for those threads that are not
scheduled under the sporadic server policy.

• Range of Scheduling Priorities

Each of the scheduling policies supported in POSIX.1-2008 has an associated range of
priorities. The priority ranges for each policy might or might not overlap with the priority
ranges of other policies. For time-critical realtime applications it is usual for periodic and
aperiodic activities to be scheduled together in the same processor. Periodic activities will
usually be scheduled using the SCHED_FIFO scheduling policy, while aperiodic activities
may be scheduled using SCHED_SPORADIC. Since the application developer will require
complete control over the relative priorities of these activities in order to meet his timing
requirements, it would be desirable for the priority ranges of SCHED_FIFO and
SCHED_SPORADIC to overlap completely. Therefore, although POSIX.1-2008 does not

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3547

119804

119805

119806

119807

119808

119809

119810

119811

119812

119813

119814

119815

119816

119817

119818

119819

119820

119821

119822

119823

119824

119825

119826

119827

119828

119829

119830

119831

119832

119833

119834

119835

119836

119837

119838

119839

119840

119841

119842

119843

119844

119845

119846

119847

119848

119849

119850

119851

General Information Rationale for System Interfaces

require any particular relationship between the different priority ranges, it is
recommended that these two ranges should coincide.

• Dynamically Setting the Sporadic Server Policy

Several members of the working group requested that implementations should not be
required to support dynamically setting the sporadic server scheduling policy for a thread.
The reason is that this policy may have a high overhead for library-level implementations
of threads, and if threads are allowed to dynamically set this policy, this overhead can be
experienced even if the thread does not use that policy. By disallowing the dynamic setting
of the sporadic server scheduling policy, these implementations can accomplish efficient
scheduling for threads using other policies. If a strictly conforming application needs to
use the sporadic server policy, and is therefore willing to pay the overhead, it must set this
policy at the time of thread creation.

• Limitation of the Number of Pending Replenishments

The number of simultaneously pending replenishment operations must be limited for each
sporadic server for two reasons: an unlimited number of replenishment operations would
need an unlimited number of system resources to store all the pending replenishment
operations; on the other hand, in some implementations each replenishment operation will
represent a source of priority inversion (just for the duration of the replenishment
operation) and thus, the maximum amount of replenishments must be bounded to
guarantee bounded response times. The way in which the number of replenishments is
bounded is by lowering the priority of the sporadic server to sched_ss_low_priority when
the number of pending replenishments has reached its limit. In this way, no new
replenishments are scheduled until the number of pending replenishments decreases.

In the sporadic server scheduling policy defined in POSIX.1-2008, the application can
specify the maximum number of pending replenishment operations for a single sporadic
server, by setting the value of the sched_ss_max_repl scheduling parameter. This value must
be between one and {SS_REPL_MAX}, which is a maximum limit imposed by the
implementation. The limit {SS_REPL_MAX} must be greater than or equal to
{_POSIX_SS_REPL_MAX}, which is defined to be four in POSIX.1-2008. The minimum
limit of four was chosen so that an application can at least guarantee that four different
aperiodic events can be processed during each interval of length equal to the
replenishment period.

B.2.8.5 Clocks and Timers

• Clocks

POSIX.1-2008 and the ISO C standard both define functions for obtaining system time.
Implicit behind these functions is a mechanism for measuring passage of time. This
specification makes this mechanism explicit and calls it a clock. The CLOCK_REALTIME
clock required by POSIX.1-2008 is a higher resolution version of the clock that maintains
POSIX.1 system time. This is a ‘‘system-wide’’ clock, in that it is visible to all processes
and, were it possible for multiple processes to all read the clock at the same time, they
would see the same value.

An extensible interface was defined, with the ability for implementations to define
additional clocks. This was done because of the observation that many realtime platforms
support multiple clocks, and it was desired to fit this model within the standard interface.
But implementation-defined clocks need not represent actual hardware devices, nor are
they necessarily system-wide.

3548 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

119852

119853

119854

119855

119856

119857

119858

119859

119860

119861

119862

119863

119864

119865

119866

119867

119868

119869

119870

119871

119872

119873

119874

119875

119876

119877

119878

119879

119880

119881

119882

119883

119884

119885

119886

119887

119888

119889

119890

119891

119892

119893

119894

119895

119896

119897

Rationale for System Interfaces General Information

• Timers

Two timer types are required for a system to support realtime applications:

1. One-shot

A one-shot timer is a timer that is armed with an initial expiration time, either
relative to the current time or at an absolute time (based on some timing base, such
as time in seconds and nanoseconds since the Epoch). The timer expires once and
then is disarmed. With the specified facilities, this is accomplished by setting the
it_value member of the value argument to the desired expiration time and the
it_interval member to zero.

2. Periodic

A periodic timer is a timer that is armed with an initial expiration time, again either
relative or absolute, and a repetition interval. When the initial expiration occurs,
the timer is reloaded with the repetition interval and continues counting. With the
specified facilities, this is accomplished by setting the it_value member of the value
argument to the desired initial expiration time and the it_interval member to the
desired repetition interval.

For both of these types of timers, the time of the initial timer expiration can be specified in
two ways:

1. Relative (to the current time)

2. Absolute

• Examples of Using Realtime Timers

In the diagrams below, S indicates a program schedule, R shows a schedule method
request, and E suggests an internal operating system event.

— Periodic Timer: Data Logging

During an experiment, it might be necessary to log realtime data periodically to an
internal buffer or to a mass storage device. With a periodic scheduling method, a
logging module can be started automatically at fixed time intervals to log the data.

Program schedule is requested every 10 seconds.

R S S S S S
----+----+----+----+----+----+----+----+----+----+----+--->

5 10 15 20 25 30 35 40 45 50 55

[Time (in Seconds)]

To achieve this type of scheduling using the specified facilities, one would allocate a
per-process timer based on clock ID CLOCK_REALTIME. Then the timer would be
armed via a call to timer_settime() with the TIMER_ABSTIME flag reset, and with an
initial expiration value and a repetition interval of 10 seconds.

— One-shot Timer (Relative Time): Device Initialization

In an emission test environment, large sample bags are used to capture the exhaust
from a vehicle. The exhaust is purged from these bags before each and every test.
With a one-shot timer, a module could initiate the purge function and then suspend
itself for a predetermined period of time while the sample bags are prepared.

Program schedule requested 20 seconds after call is issued.

R S

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3549

119898

119899

119900

119901

119902

119903

119904

119905

119906

119907

119908

119909

119910

119911

119912

119913

119914

119915

119916

119917

119918

119919

119920

119921

119922

119923

119924

119925

119926

119927

119928

119929

119930

119931

119932

119933

119934

119935

119936

119937

119938

119939

119940

General Information Rationale for System Interfaces

----+----+----+----+----+----+----+----+----+----+----+--->
5 10 15 20 25 30 35 40 45 50 55

[Time (in Seconds)]

To achieve this type of scheduling using the specified facilities, one would allocate a
per-process timer based on clock ID CLOCK_REALTIME. Then the timer would be
armed via a call to timer_settime() with the TIMER_ABSTIME flag reset, and with an
initial expiration value of 20 seconds and a repetition interval of zero.

Note that if the program wishes merely to suspend itself for the specified interval, it
could more easily use nanosleep().

— One-shot Timer (Absolute Time): Data Transmission

The results from an experiment are often moved to a different system within a
network for post-processing or archiving. With an absolute one-shot timer, a module
that moves data from a test-cell computer to a host computer can be automatically
scheduled on a daily basis.

Program schedule requested for 2:30 a.m.

R S
-----+-----+-----+-----+-----+-----+-----+-----+-----+----->

23:00 23:30 24:00 00:30 01:00 01:30 02:00 02:30 03:00

[Time of Day]

To achieve this type of scheduling using the specified facilities, a per-process timer
would be allocated based on clock ID CLOCK_REALTIME. Then the timer would be
armed via a call to timer_settime() with the TIMER_ABSTIME flag set, and an initial
expiration value equal to 2:30 a.m. of the next day.

— Periodic Timer (Relative Time): Signal Stabilization

Some measurement devices, such as emission analyzers, do not respond
instantaneously to an introduced sample. With a periodic timer with a relative initial
expiration time, a module that introduces a sample and records the average response
could suspend itself for a predetermined period of time while the signal is stabilized
and then sample at a fixed rate.

Program schedule requested 15 seconds after call is issued and every 2 seconds
thereafter.

R S
----+----+----+----+----+----+----+----+----+----+----+--->

5 10 15 20 25 30 35 40 45 50 55

[Time (in Seconds)]

To achieve this type of scheduling using the specified facilities, one would allocate a
per-process timer based on clock ID CLOCK_REALTIME. Then the timer would be
armed via a call to timer_settime() with TIMER_ABSTIME flag reset, and with an
initial expiration value of 15 seconds and a repetition interval of 2 seconds.

— Periodic Timer (Absolute Time): Work Shift-related Processing

Resource utilization data is useful when time to perform experiments is being
scheduled at a facility. With a periodic timer with an absolute initial expiration time,
a module can be scheduled at the beginning of a work shift to gather resource
utilization data throughout the shift. This data can be used to allocate resources

3550 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

119941

119942

119943

119944

119945

119946

119947

119948

119949

119950

119951

119952

119953

119954

119955

119956

119957

119958

119959

119960

119961

119962

119963

119964

119965

119966

119967

119968

119969

119970

119971

119972

119973

119974

119975

119976

119977

119978

119979

119980

119981

119982

119983

119984

Rationale for System Interfaces General Information

effectively to minimize bottlenecks and delays and maximize facility throughput.

Program schedule requested for 2:00 a.m. and every 15 minutes thereafter.

R S S S S S S
-----+-----+-----+-----+-----+-----+-----+-----+-----+----->

23:00 23:30 24:00 00:30 01:00 01:30 02:00 02:30 03:00

[Time of Day]

To achieve this type of scheduling using the specified facilities, one would allocate a
per-process timer based on clock ID CLOCK_REALTIME. Then the timer would be
armed via a call to timer_settime() with TIMER_ABSTIME flag set, and with an initial
expiration value equal to 2:00 a.m. and a repetition interval equal to 15 minutes.

• Relationship of Timers to Clocks

The relationship between clocks and timers armed with an absolute time is
straightforward: a timer expiration signal is requested when the associated clock reaches
or exceeds the specified time. The relationship between clocks and timers armed with a
relative time (an interval) is less obvious, but not unintuitive. In this case, a timer
expiration signal is requested when the specified interval, as measured by the associated clock,
has passed. For the required CLOCK_REALTIME clock, this allows timer expiration
signals to be requested at specified ‘‘wall clock’’ times (absolute), or when a specified
interval of ‘‘realtime’’ has passed (relative). For an implementation-defined clock—say, a
process virtual time clock—timer expirations could be requested when the process has
used a specified total amount of virtual time (absolute), or when it has used a specified
additional amount of virtual time (relative).

The interfaces also allow flexibility in the implementation of the functions. For example, an
implementation could convert all absolute times to intervals by subtracting the clock value
at the time of the call from the requested expiration time and ‘‘counting down’’ at the
supported resolution. Or it could convert all relative times to absolute expiration time by
adding in the clock value at the time of the call and comparing the clock value to the
expiration time at the supported resolution. Or it might even choose to maintain absolute
times as absolute and compare them to the clock value at the supported resolution for
absolute timers, and maintain relative times as intervals and count them down at the
resolution supported for relative timers. The choice will be driven by efficiency
considerations and the underlying hardware or software clock implementation.

• Data Definitions for Clocks and Timers

POSIX.1-2008 uses a time representation capable of supporting nanosecond resolution
timers for the following reasons:

— To enable POSIX.1-2008 to represent those computer systems already using
nanosecond or submicrosecond resolution clocks.

— To accommodate those per-process timers that might need nanoseconds to specify an
absolute value of system-wide clocks, even though the resolution of the per-process
timer may only be milliseconds, or vice versa.

— Because the number of nanoseconds in a second can be represented in 32 bits.

Time values are represented in the timespec structure. The tv_sec member is of type time_t
so that this member is compatible with time values used by POSIX.1 functions and the
ISO C standard. The tv_nsec member is a signed long in order to simplify and clarify code
that decrements or finds differences of time values. Note that because 1 billion (number of
nanoseconds per second) is less than half of the value representable by a signed 32-bit

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3551

119985

119986

119987

119988

119989

119990

119991

119992

119993

119994

119995

119996

119997

119998

119999

120000

120001

120002

120003

120004

120005

120006

120007

120008

120009

120010

120011

120012

120013

120014

120015

120016

120017

120018

120019

120020

120021

120022

120023

120024

120025

120026

120027

120028

120029

120030

General Information Rationale for System Interfaces

value, it is always possible to add two valid fractional seconds represented as integral
nanoseconds without overflowing the signed 32-bit value.

A maximum allowable resolution for the CLOCK_REALTIME clock of 20 ms (1/50
seconds) was chosen to allow line frequency clocks in European countries to be
conforming. 60 Hz clocks in the US will also be conforming, as will finer granularity
clocks, although a Strictly Conforming Application cannot assume a granularity of less
than 20 ms (1/50 seconds).

The minimum allowable maximum time allowed for the CLOCK_REALTIME clock and
the function nanosleep(), and timers created with clock_id=CLOCK_REALTIME, is
determined by the fact that the tv_sec member is of type time_t.

POSIX.1-2008 specifies that timer expirations must not be delivered early, and nanosleep()
must not return early due to quantization error. POSIX.1-2008 discusses the various
implementations of alarm() in the rationale and states that implementations that do not
allow alarm signals to occur early are the most appropriate, but refrained from mandating
this behavior. Because of the importance of predictability to realtime applications,
POSIX.1-2008 takes a stronger stance.

The standard developers considered using a time representation that differs from
POSIX.1b in the second 32 bit of the 64-bit value. Whereas POSIX.1b defines this field as a
fractional second in nanoseconds, the other methodology defines this as a binary fraction
of one second, with the radix point assumed before the most significant bit.

POSIX.1b is a software, source-level standard and most of the benefits of the alternate
representation are enjoyed by hardware implementations of clocks and algorithms. It was
felt that mandating this format for POSIX.1b clocks and timers would unnecessarily
burden the application developer with writing, possibly non-portable, multiple precision
arithmetic packages to perform conversion between binary fractions and integral units
such as nanoseconds, milliseconds, and so on.

Rationale for the Monotonic Clock

For those applications that use time services to achieve realtime behavior, changing the value of
the clock on which these services rely may cause erroneous timing behavior. For these
applications, it is necessary to have a monotonic clock which cannot run backwards, and which
has a maximum clock jump that is required to be documented by the implementation.
Additionally, it is desirable (but not required by POSIX.1-2008) that the monotonic clock
increases its value uniformly. This clock should not be affected by changes to the system time;
for example, to synchronize the clock with an external source or to account for leap seconds.
Such changes would cause errors in the measurement of time intervals for those time services
that use the absolute value of the clock.

One could argue that by defining the behavior of time services when the value of a clock is
changed, deterministic realtime behavior can be achieved. For example, one could specify that
relative time services should be unaffected by changes in the value of a clock. However, there are
time services that are based upon an absolute time, but that are essentially intended as relative
time services. For example, pthread_cond_timedwait() uses an absolute time to allow it to wake
up after the required interval despite spurious wakeups. Although sometimes the
pthread_cond_timedwait() timeouts are absolute in nature, there are many occasions in which they
are relative, and their absolute value is determined from the current time plus a relative time
interval. In this latter case, if the clock changes while the thread is waiting, the wait interval will
not be the expected length. If a pthread_cond_timedwait() function were created that would take a
relative time, it would not solve the problem because to retain the intended ‘‘deadline’’ a thread
would need to compensate for latency due to the spurious wakeup, and preemption between

3552 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

120031

120032

120033

120034

120035

120036

120037

120038

120039

120040

120041

120042

120043

120044

120045

120046

120047

120048

120049

120050

120051

120052

120053

120054

120055

120056

120057

120058

120059

120060

120061

120062

120063

120064

120065

120066

120067

120068

120069

120070

120071

120072

120073

120074

120075

120076

120077

120078

Rationale for System Interfaces General Information

wakeup and the next wait.

The solution is to create a new monotonic clock, whose value does not change except for the
regular ticking of the clock, and use this clock for implementing the various relative timeouts
that appear in the different POSIX interfaces, as well as allow pthread_cond_timedwait() to choose
this new clock for its timeout. A new clock_nanosleep() function is created to allow an application
to take advantage of this newly defined clock. Notice that the monotonic clock may be
implemented using the same hardware clock as the system clock.

Relative timeouts for sigtimedwait() and aio_suspend() have been redefined to use the monotonic
clock, if present. The alarm() function has not been redefined, because the same effect but with
better resolution can be achieved by creating a timer (for which the appropriate clock may be
chosen).

The pthread_cond_timedwait() function has been treated in a different way, compared to other
functions with absolute timeouts, because it is used to wait for an event, and thus it may have a
deadline, while the other timeouts are generally used as an error recovery mechanism, and for
them the use of the monotonic clock is not so important. Since the desired timeout for the
pthread_cond_timedwait() function may either be a relative interval or an absolute time of day
deadline, a new initialization attribute has been created for condition variables to specify the
clock that is used for measuring the timeout in a call to pthread_cond_timedwait(). In this way, if
a relative timeout is desired, the monotonic clock will be used; if an absolute deadline is
required instead, the CLOCK_REALTIME or another appropriate clock may be used. This
capability has not been added to other functions with absolute timeouts because for those
functions the expected use of the timeout is mostly to prevent errors, and not so often to meet
precise deadlines. As a consequence, the complexity of adding this capability is not justified by
its perceived application usage.

The nanosleep() function has not been modified with the introduction of the monotonic clock.
Instead, a new clock_nanosleep() function has been created, in which the desired clock may be
specified in the function call.

• History of Resolution Issues

Due to the shift from relative to absolute timeouts in IEEE Std 1003.1d-1999, the
amendments to the sem_timedwait(), pthread_mutex_timedlock(), mq_timedreceive(), and
mq_timedsend() functions of that standard have been removed. Those amendments
specified that CLOCK_MONOTONIC would be used for the (relative) timeouts if the
Monotonic Clock option was supported.

Having these functions continue to be tied solely to CLOCK_MONOTONIC would not
work. Since the absolute value of a time value obtained from CLOCK_MONOTONIC is
unspecified, under the absolute timeouts interface, applications would behave differently
depending on whether the Monotonic Clock option was supported or not (because the
absolute value of the clock would have different meanings in either case).

Two options were considered:

1. Leave the current behavior unchanged, which specifies the CLOCK_REALTIME
clock for these (absolute) timeouts, to allow portability of applications between
implementations supporting or not the Monotonic Clock option.

2. Modify these functions in the way that pthread_cond_timedwait() was modified to
allow a choice of clock, so that an application could use CLOCK_REALTIME when
it is trying to achieve an absolute timeout and CLOCK_MONOTONIC when it is
trying to achieve a relative timeout.

It was decided that the features of CLOCK_MONOTONIC are not as critical to these

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3553

120079

120080

120081

120082

120083

120084

120085

120086

120087

120088

120089

120090

120091

120092

120093

120094

120095

120096

120097

120098

120099

120100

120101

120102

120103

120104

120105

120106

120107

120108

120109

120110

120111

120112

120113

120114

120115

120116

120117

120118

120119

120120

120121

120122

120123

120124

120125

General Information Rationale for System Interfaces

functions as they are to pthread_cond_timedwait(). The pthread_cond_timedwait() function is
given a relative timeout; the timeout may represent a deadline for an event. When these
functions are given relative timeouts, the timeouts are typically for error recovery
purposes and need not be so precise.

Therefore, it was decided that these functions should be tied to CLOCK_REALTIME and
not complicated by being given a choice of clock.

Execution Time Monitoring

• Introduction

The main goals of the execution time monitoring facilities defined in this chapter are to
measure the execution time of processes and threads and to allow an application to
establish CPU time limits for these entities.

The analysis phase of time-critical realtime systems often relies on the measurement of
execution times of individual threads or processes to determine whether the timing
requirements will be met. Also, performance analysis techniques for soft deadline realtime
systems rely heavily on the determination of these execution times. The execution time
monitoring functions provide application developers with the ability to measure these
execution times online and open the possibility of dynamic execution-time analysis and
system reconfiguration, if required.

The second goal of allowing an application to establish execution time limits for individual
processes or threads and detecting when they overrun allows program robustness to be
increased by enabling online checking of the execution times.

If errors are detected—possibly because of erroneous program constructs, the existence of
errors in the analysis phase, or a burst of event arrivals—online detection and recovery is
possible in a portable way. This feature can be extremely important for many time-critical
applications. Other applications require trapping CPU-time errors as a normal way to exit
an algorithm; for instance, some realtime artificial intelligence applications trigger a
number of independent inference processes of varying accuracy and speed, limit how long
they can run, and pick the best answer available when time runs out. In many periodic
systems, overrun processes are simply restarted in the next resource period, after necessary
end-of-period actions have been taken. This allows algorithms that are inherently data-
dependent to be made predictable.

The interface that appears in this chapter defines a new type of clock, the CPU-time clock,
which measures execution time. Each process or thread can invoke the clock and timer
functions defined in POSIX.1 to use them. Functions are also provided to access the CPU-
time clock of other processes or threads to enable remote monitoring of these clocks.
Monitoring of threads of other processes is not supported, since these threads are not
visible from outside of their own process with the interfaces defined in POSIX.1.

• Execution Time Monitoring Interface

The clock and timer interface defined in POSIX.1 historically only defined one clock, which
measures wall-clock time. The requirements for measuring execution time of processes and
threads, and setting limits to their execution time by detecting when they overrun, can be
accomplished with that interface if a new kind of clock is defined. These new clocks
measure execution time, and one is associated with each process and with each thread. The
clock functions currently defined in POSIX.1 can be used to read and set these CPU-time
clocks, and timers can be created using these clocks as their timing base. These timers can
then be used to send a signal when some specified execution time has been exceeded. The
CPU-time clocks of each process or thread can be accessed by using the symbols

3554 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

120126

120127

120128

120129

120130

120131

120132

120133

120134

120135

120136

120137

120138

120139

120140

120141

120142

120143

120144

120145

120146

120147

120148

120149

120150

120151

120152

120153

120154

120155

120156

120157

120158

120159

120160

120161

120162

120163

120164

120165

120166

120167

120168

120169

120170

120171

120172

Rationale for System Interfaces General Information

CLOCK_PROCESS_CPUTIME_ID or CLOCK_THREAD_CPUTIME_ID.

The clock and timer interface defined in POSIX.1 and extended with the new kind of CPU-
time clock would only allow processes or threads to access their own CPU-time clocks.
However, many realtime systems require the possibility of monitoring the execution time
of processes or threads from independent monitoring entities. In order to allow
applications to construct independent monitoring entities that do not require cooperation
from or modification of the monitored entities, two functions have been added:
clock_getcpuclockid(), for accessing CPU-time clocks of other processes, and
pthread_getcpuclockid(), for accessing CPU-time clocks of other threads. These functions
return the clock identifier associated with the process or thread specified in the call. These
clock IDs can then be used in the rest of the clock function calls.

The clocks accessed through these functions could also be used as a timing base for the
creation of timers, thereby allowing independent monitoring entities to limit the CPU time
consumed by other entities. However, this possibility would imply additional complexity
and overhead because of the need to maintain a timer queue for each process or thread, to
store the different expiration times associated with timers created by different processes or
threads. The working group decided this additional overhead was not justified by
application requirements. Therefore, creation of timers attached to the CPU-time clocks of
other processes or threads has been specified as implementation-defined.

• Overhead Considerations

The measurement of execution time may introduce additional overhead in the thread
scheduling, because of the need to keep track of the time consumed by each of these
entities. In library-level implementations of threads, the efficiency of scheduling could be
somehow compromised because of the need to make a kernel call, at each context switch,
to read the process CPU-time clock. Consequently, a thread creation attribute called cpu-
clock-requirement was defined, to allow threads to disconnect their respective CPU-time
clocks. However, the Ballot Group considered that this attribute itself introduced some
overhead, and that in current implementations it was not worth the effort. Therefore, the
attribute was deleted, and thus thread CPU-time clocks are required for all threads if the
Thread CPU-Time Clocks option is supported.

• Accuracy of CPU-Time Clocks

The mechanism used to measure the execution time of processes and threads is specified in
POSIX.1-2008 as implementation-defined. The reason for this is that both the underlying
hardware and the implementation architecture have a very strong influence on the
accuracy achievable for measuring CPU time. For some implementations, the specification
of strict accuracy requirements would represent very large overheads, or even the
impossibility of being implemented.

Since the mechanism for measuring execution time is implementation-defined, realtime
applications will be able to take advantage of accurate implementations using a portable
interface. Of course, strictly conforming applications cannot rely on any particular degree
of accuracy, in the same way as they cannot rely on a very accurate measurement of wall
clock time. There will always exist applications whose accuracy or efficiency requirements
on the implementation are more rigid than the values defined in POSIX.1-2008 or any
other standard.

In any case, there is a minimum set of characteristics that realtime applications would
expect from most implementations. One such characteristic is that the sum of all the
execution times of all the threads in a process equals the process execution time, when no
CPU-time clocks are disabled. This need not always be the case because implementations
may differ in how they account for time during context switches. Another characteristic is

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3555

120173

120174

120175

120176

120177

120178

120179

120180

120181

120182

120183

120184

120185

120186

120187

120188

120189

120190

120191

120192

120193

120194

120195

120196

120197

120198

120199

120200

120201

120202

120203

120204

120205

120206

120207

120208

120209

120210

120211

120212

120213

120214

120215

120216

120217

120218

120219

120220

120221

General Information Rationale for System Interfaces

that the sum of the execution times of all processes in a system equals the number of
processors, multiplied by the elapsed time, assuming that no processor is idle during that
elapsed time. However, in some implementations it might not be possible to relate CPU
time to elapsed time. For example, in a heterogeneous multi-processor system in which
each processor runs at a different speed, an implementation may choose to define each
‘‘second’’ of CPU time to be a certain number of ‘‘cycles’’ that a CPU has executed.

• Existing Practice

Measuring and limiting the execution time of each concurrent activity are common
features of most industrial implementations of realtime systems. Almost all critical
realtime systems are currently built upon a cyclic executive. With this approach, a regular
timer interrupt kicks off the next sequence of computations. It also checks that the current
sequence has completed. If it has not, then some error recovery action can be undertaken
(or at least an overrun is avoided). Current software engineering principles and the
increasing complexity of software are driving application developers to implement these
systems on multi-threaded or multi-process operating systems. Therefore, if a POSIX
operating system is to be used for this type of application, then it must offer the same level
of protection.

Execution time clocks are also common in most UNIX implementations, although these
clocks usually have requirements different from those of realtime applications. The
POSIX.1 times() function supports the measurement of the execution time of the calling
process, and its terminated child processes. This execution time is measured in clock ticks
and is supplied as two different values with the user and system execution times,
respectively. BSD supports the function getrusage(), which allows the calling process to get
information about the resources used by itself and/or all of its terminated child processes.
The resource usage includes user and system CPU time. Some UNIX systems have options
to specify high resolution (up to one microsecond) CPU-time clocks using the times() or
the getrusage() functions.

The times() and getrusage() interfaces do not meet important realtime requirements, such
as the possibility of monitoring execution time from a different process or thread, or the
possibility of detecting an execution time overrun. The latter requirement is supported in
some UNIX implementations that are able to send a signal when the execution time of a
process has exceeded some specified value. For example, BSD defines the functions
getitimer() and setitimer(), which can operate either on a realtime clock (wall-clock), or on
virtual-time or profile-time clocks which measure CPU time in two different ways. These
functions do not support access to the execution time of other processes.

IBM’s MVS operating system supports per-process and per-thread execution time clocks. It
also supports limiting the execution time of a given process.

Given all this existing practice, the working group considered that the POSIX.1 clocks and
timers interface was appropriate to meet most of the requirements that realtime
applications have for execution time clocks. Functions were added to get the CPU time
clock IDs, and to allow/disallow the thread CPU-time clocks (in order to preserve the
efficiency of some implementations of threads).

• Clock Constants

The definition of the manifest constants CLOCK_PROCESS_CPUTIME_ID and
CLOCK_THREAD_CPUTIME_ID allows processes or threads, respectively, to access their
own execution-time clocks. However, given a process or thread, access to its own
execution-time clock is also possible if the clock ID of this clock is obtained through a call
to clock_getcpuclockid() or pthread_getcpuclockid(). Therefore, these constants are not
necessary and could be deleted to make the interface simpler. Their existence saves one

3556 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

120222

120223

120224

120225

120226

120227

120228

120229

120230

120231

120232

120233

120234

120235

120236

120237

120238

120239

120240

120241

120242

120243

120244

120245

120246

120247

120248

120249

120250

120251

120252

120253

120254

120255

120256

120257

120258

120259

120260

120261

120262

120263

120264

120265

120266

120267

120268

120269

120270

Rationale for System Interfaces General Information

system call in the first access to the CPU-time clock of each process or thread. The working
group considered this issue and decided to leave the constants in POSIX.1-2008 because
they are closer to the POSIX.1b use of clock identifiers.

• Library Implementations of Threads

In library implementations of threads, kernel entities and library threads can coexist. In
this case, if the CPU-time clocks are supported, most of the clock and timer functions will
need to have two implementations: one in the thread library, and one in the system calls
library. The main difference between these two implementations is that the thread library
implementation will have to deal with clocks and timers that reside in the thread space,
while the kernel implementation will operate on timers and clocks that reside in kernel
space. In the library implementation, if the clock ID refers to a clock that resides in the
kernel, a kernel call will have to be made. The correct version of the function can be chosen
by specifying the appropriate order for the libraries during the link process.

• History of Resolution Issues: Deletion of the enable Attribute

In early proposals, consideration was given to inclusion of an attribute called enable for
CPU-time clocks. This would allow implementations to avoid the overhead of measuring
execution time for those processes or threads for which this measurement was not
required. However, this is unnecessary since processes are already required to measure
execution time by the POSIX.1 times() function. Consequently, the enable attribute is not
present.

Rationale Relating to Timeouts

• Requirements for Timeouts

Realtime systems which must operate reliably over extended periods without human
intervention are characteristic in embedded applications such as avionics, machine control,
and space exploration, as well as more mundane applications such as cable TV, security
systems, and plant automation. A multi-tasking paradigm, in which many independent
and/or cooperating software functions relinquish the processor(s) while waiting for a
specific stimulus, resource, condition, or operation completion, is very useful in producing
well engineered programs for such systems. For such systems to be robust and fault-
tolerant, expected occurrences that are unduly delayed or that never occur must be
detected so that appropriate recovery actions may be taken. This is difficult if there is no
way for a task to regain control of a processor once it has relinquished control (blocked)
awaiting an occurrence which, perhaps because of corrupted code, hardware malfunction,
or latent software bugs, will not happen when expected. Therefore, the common practice
in realtime operating systems is to provide a capability to time out such blocking services.
Although there are several methods to achieve this already defined by POSIX, none are as
reliable or efficient as initiating a timeout simultaneously with initiating a blocking service.
This is especially critical in hard-realtime embedded systems because the processors
typically have little time reserve, and allowed fault recovery times are measured in
milliseconds rather than seconds.

The working group largely agreed that such timeouts were necessary and ought to become
part of POSIX.1-2008, particularly vendors of realtime operating systems whose customers
had already expressed a strong need for timeouts. There was some resistance to inclusion
of timeouts in POSIX.1-2008 because the desired effect, fault tolerance, could, in theory, be
achieved using existing facilities and alternative software designs, but there was no
compelling evidence that realtime system designers would embrace such designs at the
sacrifice of performance and/or simplicity.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3557

120271

120272

120273

120274

120275

120276

120277

120278

120279

120280

120281

120282

120283

120284

120285

120286

120287

120288

120289

120290

120291

120292

120293

120294

120295

120296

120297

120298

120299

120300

120301

120302

120303

120304

120305

120306

120307

120308

120309

120310

120311

120312

120313

120314

120315

120316

120317

General Information Rationale for System Interfaces

• Which Services should be Timed Out?

Originally, the working group considered the prospect of providing timeouts on all
blocking services, including those currently existing in POSIX.1, POSIX.1b, and POSIX.1c,
and future interfaces to be defined by other working groups, as sort of a general policy.
This was rather quickly rejected because of the scope of such a change, and the fact that
many of those services would not normally be used in a realtime context. More traditional
timesharing solutions to timeout would suffice for most of the POSIX.1 interfaces, while
others had asynchronous alternatives which, while more complex to utilize, would be
adequate for some realtime and all non-realtime applications.

The list of potential candidates for timeouts was narrowed to the following for further
consideration:

— POSIX.1b

— sem_wait()

— mq_receive()

— mq_send()

— lio_listio()

— aio_suspend()

— sigwait() (timeout already implemented by sigtimedwait())

— POSIX.1c

— pthread_mutex_lock()

— pthread_join()

— pthread_cond_wait()
(timeout already implemented by pthread_cond_timedwait())

— POSIX.1

— read()

— write()

After further review by the working group, the lio_listio(), read(), and write() functions (all
forms of blocking synchronous I/O) were eliminated from the list because of the
following:

— Asynchronous alternatives exist

— Timeouts can be implemented, albeit non-portably, in device drivers

— A strong desire not to introduce modifications to POSIX.1 interfaces

The working group ultimately rejected pthread_join() since both that interface and a timed
variant of that interface are non-minimal and may be implemented as a function. See
below for a library implementation of pthread_join().

Thus, there was a consensus among the working group members to add timeouts to 4 of
the remaining 5 functions (the timeout for aio_suspend() was ultimately added directly to
POSIX.1b, while the others were added by POSIX.1d). However, pthread_mutex_lock()
remained contentious.

Many feel that pthread_mutex_lock() falls into the same class as the other functions; that is,
it is desirable to time out a mutex lock because a mutex may fail to be unlocked due to

3558 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

120318

120319

120320

120321

120322

120323

120324

120325

120326

120327

120328

120329

120330

120331

120332

120333

120334

120335

120336

120337

120338

120339

120340

120341

120342

120343

120344

120345

120346

120347

120348

120349

120350

120351

120352

120353

120354

120355

120356

120357

120358

Rationale for System Interfaces General Information

errant or corrupted code in a critical section (looping or branching outside of the unlock
code), and therefore is equally in need of a reliable, simple, and efficient timeout. In fact,
since mutexes are intended to guard small critical sections, most pthread_mutex_lock() calls
would be expected to obtain the lock without blocking nor utilizing any kernel service,
even in implementations of threads with global contention scope; the timeout alternative
need only be considered after it is determined that the thread must block.

Those opposed to timing out mutexes feel that the very simplicity of the mutex is
compromised by adding a timeout semantic, and that to do so is senseless. They claim that
if a timed mutex is really deemed useful by a particular application, then it can be
constructed from the facilities already in POSIX.1b and POSIX.1c. The following two C-
language library implementations of mutex locking with timeout represent the solutions
offered (in both implementations, the timeout parameter is specified as absolute time, not
relative time as in the proposed POSIX.1c interfaces).

• Spinlock Implementation

#include <pthread.h>
#include <time.h>
#include <errno.h>

int pthread_mutex_timedlock(pthread_mutex_t *mutex,
const struct timespec *timeout)

{
struct timespec timenow;

while (pthread_mutex_trylock(mutex) == EBUSY)
{
clock_gettime(CLOCK_REALTIME, &timenow);
if (timespec_cmp(&timenow,timeout) >= 0)

{
return ETIMEDOUT;

}
pthread_yield();
}

return 0;
}

The Spinlock implementation is generally unsuitable for any application using priority-
based thread scheduling policies such as SCHED_FIFO or SCHED_RR, since the mutex
could currently be held by a thread of lower priority within the same allocation domain,
but since the waiting thread never blocks, only threads of equal or higher priority will ever
run, and the mutex cannot be unlocked. Setting priority inheritance or priority ceiling
protocol on the mutex does not solve this problem, since the priority of a mutex owning
thread is only boosted if higher priority threads are blocked waiting for the mutex; clearly
not the case for this spinlock.

• Condition Wait Implementation

#include <pthread.h>
#include <time.h>
#include <errno.h>

struct timed_mutex
{
int locked;
pthread_mutex_t mutex;

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3559

120359

120360

120361

120362

120363

120364

120365

120366

120367

120368

120369

120370

120371

120372

120373

120374

120375

120376

120377

120378

120379

120380

120381

120382

120383

120384

120385

120386

120387

120388

120389

120390

120391

120392

120393

120394

120395

120396

120397

120398

120399

120400

120401

120402

120403

120404

120405

120406

General Information Rationale for System Interfaces

pthread_cond_t cond;
};

typedef struct timed_mutex timed_mutex_t;

int timed_mutex_lock(timed_mutex_t *tm,
const struct timespec *timeout)

{
int timedout=FALSE;
int error_status;

pthread_mutex_lock(&tm->mutex);

while (tm->locked && !timedout)
{
if ((error_status=pthread_cond_timedwait(&tm->cond,

&tm->mutex,
timeout))!=0)

{
if (error_status==ETIMEDOUT) timedout = TRUE;
}

}

if(timedout)
{
pthread_mutex_unlock(&tm->mutex);
return ETIMEDOUT;
}

else
{
tm->locked = TRUE;
pthread_mutex_unlock(&tm->mutex);
return 0;
}

}

void timed_mutex_unlock(timed_mutex_t *tm)
{
pthread_mutex_lock(&tm->mutex); / for case assignment not atomic /
tm->locked = FALSE;
pthread_mutex_unlock(&tm->mutex);
pthread_cond_signal(&tm->cond);
}

The Condition Wait implementation effectively substitutes the pthread_cond_timedwait()
function (which is currently timed out) for the desired pthread_mutex_timedlock(). Since
waits on condition variables currently do not include protocols which avoid priority
inversion, this method is generally unsuitable for realtime applications because it does not
provide the same priority inversion protection as the untimed pthread_mutex_lock(). Also,
for any given implementations of the current mutex and condition variable primitives, this
library implementation has a performance cost at least 2.5 times that of the untimed
pthread_mutex_lock() even in the case where the timed mutex is readily locked without
blocking (the interfaces required for this case are shown in bold). Even in uniprocessors or
where assignment is atomic, at least an additional pthread_cond_signal() is required.
pthread_mutex_timedlock() could be implemented at effectively no performance penalty in
this case because the timeout parameters need only be considered after it is determined
that the mutex cannot be locked immediately.

3560 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

120407

120408

120409

120410

120411

120412

120413

120414

120415

120416

120417

120418

120419

120420

120421

120422

120423

120424

120425

120426

120427

120428

120429

120430

120431

120432

120433

120434

120435

120436

120437

120438

120439

120440

120441

120442

120443

120444

120445

120446

120447

120448

120449

120450

120451

120452

120453

120454

120455

120456

Rationale for System Interfaces General Information

Thus it has not yet been shown that the full semantics of mutex locking with timeout can
be efficiently and reliably achieved using existing interfaces. Even if the existence of an
acceptable library implementation were proven, it is difficult to justify why the interface
itself should not be made portable, especially considering approval for the other four
timeouts.

• Rationale for Library Implementation of pthread_timedjoin()

Library implementation of pthread_timedjoin():

/*
* Construct a thread variety entirely from existing functions
* with which a join can be done, allowing the join to time out.
*/
#include <pthread.h>
#include <time.h>

struct timed_thread {
pthread_t t;
pthread_mutex_t m;
int exiting;
pthread_cond_t exit_c;
void *(*start_routine)(void *arg);
void *arg;
void *status;

};

typedef struct timed_thread *timed_thread_t;
static pthread_key_t timed_thread_key;
static pthread_once_t timed_thread_once = PTHREAD_ONCE_INIT;

static void timed_thread_init()
{

pthread_key_create(&timed_thread_key, NULL);
}

static void *timed_thread_start_routine(void *args)

/*
* Routine to establish thread-specific data value and run the actual
* thread start routine which was supplied to timed_thread_create().
*/
{

timed_thread_t tt = (timed_thread_t) args;

pthread_once(&timed_thread_once, timed_thread_init);
pthread_setspecific(timed_thread_key, (void *)tt);
timed_thread_exit((tt->start_routine)(tt->arg));

}

int timed_thread_create(timed_thread_t ttp, const pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg)

/*
* Allocate a thread which can be used with timed_thread_join().
*/
{

timed_thread_t tt;

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3561

120457

120458

120459

120460

120461

120462

120463

120464

120465

120466

120467

120468

120469

120470

120471

120472

120473

120474

120475

120476

120477

120478

120479

120480

120481

120482

120483

120484

120485

120486

120487

120488

120489

120490

120491

120492

120493

120494

120495

120496

120497

120498

120499

120500

120501

120502

120503

General Information Rationale for System Interfaces

int result;

tt = (timed_thread_t) malloc(sizeof(struct timed_thread));
pthread_mutex_init(&tt->m,NULL);
tt->exiting = FALSE;
pthread_cond_init(&tt->exit_c,NULL);
tt->start_routine = start_routine;
tt->arg = arg;
tt->status = NULL;

if ((result = pthread_create(&tt->t, attr,
timed_thread_start_routine, (void *)tt)) != 0) {
free(tt);
return result;

}

pthread_detach(tt->t);
ttp = tt;
return 0;

}

int timed_thread_join(timed_thread_t tt,
struct timespec *timeout,
void **status)

{
int result;

pthread_mutex_lock(&tt->m);
result = 0;
/*
* Wait until the thread announces that it is exiting,
* or until timeout.
*/
while (result == 0 && ! tt->exiting) {

result = pthread_cond_timedwait(&tt->exit_c, &tt->m, timeout);
}
pthread_mutex_unlock(&tt->m);
if (result == 0 && tt->exiting) {

*status = tt->status;
free((void *)tt);
return result;

}
return result;

}

void timed_thread_exit(void *status)
{

timed_thread_t tt;
void *specific;

if ((specific=pthread_getspecific(timed_thread_key)) == NULL){
/*
* Handle cases which won’t happen with correct usage.
*/
pthread_exit(NULL);

}

3562 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

120504

120505

120506

120507

120508

120509

120510

120511

120512

120513

120514

120515

120516

120517

120518

120519

120520

120521

120522

120523

120524

120525

120526

120527

120528

120529

120530

120531

120532

120533

120534

120535

120536

120537

120538

120539

120540

120541

120542

120543

120544

120545

120546

120547

120548

120549

120550

120551

120552

Rationale for System Interfaces General Information

tt = (timed_thread_t) specific;
pthread_mutex_lock(&tt->m);
/*
* Tell a joiner that we’re exiting.
*/
tt->status = status;
tt->exiting = TRUE;
pthread_cond_signal(&tt->exit_c);
pthread_mutex_unlock(&tt->m);
/*
* Call pthread exit() to call destructors and really
* exit the thread.
*/
pthread_exit(NULL);

}

The pthread_join() C-language example shown above demonstrates that it is possible,
using existing pthread facilities, to construct a variety of thread which allows for joining
such a thread, but which allows the join operation to time out. It does this by using a
pthread_cond_timedwait() to wait for the thread to exit. A timed_thread_t descriptor
structure is used to pass parameters from the creating thread to the created thread, and
from the exiting thread to the joining thread. This implementation is roughly equivalent to
what a normal pthread_join() implementation would do, with the single change being that
pthread_cond_timedwait() is used in place of a simple pthread_cond_wait().

Since it is possible to implement such a facility entirely from existing pthread interfaces,
and with roughly equal efficiency and complexity to an implementation which would be
provided directly by a pthreads implementation, it was the consensus of the working
group members that any pthread_timedjoin() facility would be unnecessary, and should not
be provided.

• Form of the Timeout Interfaces

The working group considered a number of alternative ways to add timeouts to blocking
services. At first, a system interface which would specify a one-shot or persistent timeout
to be applied to subsequent blocking services invoked by the calling process or thread was
considered because it allowed all blocking services to be timed out in a uniform manner
with a single additional interface; this was rather quickly rejected because it could easily
result in the wrong services being timed out.

It was suggested that a timeout value might be specified as an attribute of the object
(semaphore, mutex, message queue, and so on), but there was no consensus on this, either
on a case-by-case basis or for all timeouts.

Looking at the two existing timeouts for blocking services indicates that the working
group members favor a separate interface for the timed version of a function. However,
pthread_cond_timedwait() utilizes an absolute timeout value while sigtimedwait() uses a
relative timeout value. The working group members agreed that relative timeout values
are appropriate where the timeout mechanism’s primary use was to deal with an
unexpected or error situation, but they are inappropriate when the timeout must expire at
a particular time, or before a specific deadline. For the timeouts being introduced in
POSIX.1-2008, the working group considered allowing both relative and absolute timeouts
as is done with POSIX.1b timers, but ultimately favored the simpler absolute timeout form.

An absolute time measure can be easily implemented on top of an interface that specifies
relative time, by reading the clock, calculating the difference between the current time and

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3563

120553

120554

120555

120556

120557

120558

120559

120560

120561

120562

120563

120564

120565

120566

120567

120568

120569

120570

120571

120572

120573

120574

120575

120576

120577

120578

120579

120580

120581

120582

120583

120584

120585

120586

120587

120588

120589

120590

120591

120592

120593

120594

120595

120596

120597

120598

120599

120600

120601

General Information Rationale for System Interfaces

the desired wakeup time, and issuing a relative timeout call. But there is a race condition
with this approach because the thread could be preempted after reading the clock, but
before making the timed-out call; in this case, the thread would be awakened later than it
should and, thus, if the wakeup time represented a deadline, it would miss it.

There is also a race condition when trying to build a relative timeout on top of an interface
that specifies absolute timeouts. In this case, the clock would have to be read to calculate
the absolute wakeup time as the sum of the current time plus the relative timeout interval.
In this case, if the thread is preempted after reading the clock but before making the timed-
out call, the thread would be awakened earlier than desired.

But the race condition with the absolute timeouts interface is not as bad as the one that
happens with the relative timeout interface, because there are simple workarounds. For the
absolute timeouts interface, if the timing requirement is a deadline, the deadline can still
be met because the thread woke up earlier than the deadline. If the timeout is just used as
an error recovery mechanism, the precision of timing is not really important. If the timing
requirement is that between actions A and B a minimum interval of time must elapse, the
absolute timeout interface can be safely used by reading the clock after action A has been
started. It could be argued that, since the call with the absolute timeout is atomic from the
application point of view, it is not possible to read the clock after action A, if this action is
part of the timed-out call. But looking at the nature of the calls for which timeouts are
specified (locking a mutex, waiting for a semaphore, waiting for a message, or waiting
until there is space in a message queue), the timeouts that an application would build on
these actions would not be triggered by these actions themselves, but by some other
external action. For example, if waiting for a message to arrive to a message queue, and
waiting for at least 20 milliseconds, this time interval would start to be counted from some
event that would trigger both the action that produces the message, as well as the action
that waits for the message to arrive, and not by the wait-for-message operation itself. In
this case, the workaround proposed above could be used.

For these reasons, the absolute timeout is preferred over the relative timeout interface.

B.2.9 Threads

Threads will normally be more expensive than subroutines (or functions, routines, and so on) if
specialized hardware support is not provided. Nevertheless, threads should be sufficiently
efficient to encourage their use as a medium to fine-grained structuring mechanism for
parallelism in an application. Structuring an application using threads then allows it to take
immediate advantage of any underlying parallelism available in the host environment. This
means implementors are encouraged to optimize for fast execution at the possible expense of
efficient utilization of storage. For example, a common thread creation technique is to cache
appropriate thread data structures. That is, rather than releasing system resources, the
implementation retains these resources and reuses them when the program next asks to create a
new thread. If this reuse of thread resources is to be possible, there has to be very little unique
state associated with each thread, because any such state has to be reset when the thread is
reused.

3564 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

120602

120603

120604

120605

120606

120607

120608

120609

120610

120611

120612

120613

120614

120615

120616

120617

120618

120619

120620

120621

120622

120623

120624

120625

120626

120627

120628

120629

120630

120631

120632

120633

120634

120635

120636

120637

120638

120639

120640

120641

120642

Rationale for System Interfaces General Information

Thread Creation Attributes

Attributes objects are provided for threads, mutexes, and condition variables as a mechanism to
support probable future standardization in these areas without requiring that the interface itself
be changed.

Attributes objects provide clean isolation of the configurable aspects of threads. For example,
‘‘stack size’’ is an important attribute of a thread, but it cannot be expressed portably. When
porting a threaded program, stack sizes often need to be adjusted. The use of attributes objects
can help by allowing the changes to be isolated in a single place, rather than being spread across
every instance of thread creation.

Attributes objects can be used to set up classes of threads with similar attributes; for example,
‘‘threads with large stacks and high priority’’ or ‘‘threads with minimal stacks’’. These classes
can be defined in a single place and then referenced wherever threads need to be created.
Changes to ‘‘class’’ decisions become straightforward, and detailed analysis of each
pthread_create() call is not required.

The attributes objects are defined as opaque types as an aid to extensibility. If these objects had
been specified as structures, adding new attributes would force recompilation of all multi-
threaded programs when the attributes objects are extended; this might not be possible if
different program components were supplied by different vendors.

Additionally, opaque attributes objects present opportunities for improving performance.
Argument validity can be checked once when attributes are set, rather than each time a thread is
created. Implementations will often need to cache kernel objects that are expensive to create.
Opaque attributes objects provide an efficient mechanism to detect when cached objects become
invalid due to attribute changes.

Because assignment is not necessarily defined on a given opaque type, implementation-defined
default values cannot be defined in a portable way. The solution to this problem is to allow
attribute objects to be initialized dynamically by attributes object initialization functions, so that
default values can be supplied automatically by the implementation.

The following proposal was provided as a suggested alternative to the supplied attributes:

1. Maintain the style of passing a parameter formed by the bitwise-inclusive OR of flags to
the initialization routines (pthread_create(), pthread_mutex_init(), pthread_cond_init()). The
parameter containing the flags should be an opaque type for extensibility. If no flags are
set in the parameter, then the objects are created with default characteristics. An
implementation may specify implementation-defined flag values and associated
behavior.

2. If further specialization of mutexes and condition variables is necessary, implementations
may specify additional procedures that operate on the pthread_mutex_t and
pthread_cond_t objects (instead of on attributes objects).

The difficulties with this solution are:

1. A bitmask is not opaque if bits have to be set into bit-vector attributes objects using
explicitly-coded bitwise-inclusive OR operations. If the set of options exceeds an int,
application programmers need to know the location of each bit. If bits are set or read by
encapsulation (that is, get*() or set*() functions), then the bitmask is merely an
implementation of attributes objects as currently defined and should not be exposed to
the programmer.

2. Many attributes are not Boolean or very small integral values. For example, scheduling
policy may be placed in 3 bits or 4 bits, but priority requires 5 bits or more, thereby taking
up at least 8 bits out of a possible 16 bits on machines with 16-bit integers. Because of this,

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3565

120643

120644

120645

120646

120647

120648

120649

120650

120651

120652

120653

120654

120655

120656

120657

120658

120659

120660

120661

120662

120663

120664

120665

120666

120667

120668

120669

120670

120671

120672

120673

120674

120675

120676

120677

120678

120679

120680

120681

120682

120683

120684

120685

120686

120687

120688

120689

General Information Rationale for System Interfaces

the bitmask can only reasonably control whether particular attributes are set or not, and it
cannot serve as the repository of the value itself. The value needs to be specified as a
function parameter (which is non-extensible), or by setting a structure field (which is non-
opaque), or by get*() and set*() functions (making the bitmask a redundant addition to
the attributes objects).

Stack size is defined as an optional attribute because the very notion of a stack is inherently
machine-dependent. Some implementations may not be able to change the size of the stack, for
example, and others may not need to because stack pages may be discontiguous and can be
allocated and released on demand.

The attribute mechanism has been designed in large measure for extensibility. Future extensions
to the attribute mechanism or to any attributes object defined in POSIX.1-2008 have to be done
with care so as not to affect binary-compatibility.

Attribute objects, even if allocated by means of dynamic allocation functions such as malloc(),
may have their size fixed at compile time. This means, for example, a pthread_create() in an
implementation with extensions to the pthread_attr_t cannot look beyond the area that the
binary application assumes is valid. This suggests that implementations should maintain a size
field in the attributes object, as well as possibly version information, if extensions in different
directions (possibly by different vendors) are to be accommodated.

Thread Implementation Models

There are various thread implementation models. At one end of the spectrum is the ‘‘library-
thread model’’. In such a model, the threads of a process are not visible to the operating system
kernel, and the threads are not kernel-scheduled entities. The process is the only kernel-
scheduled entity. The process is scheduled onto the processor by the kernel according to the
scheduling attributes of the process. The threads are scheduled onto the single kernel-scheduled
entity (the process) by the runtime library according to the scheduling attributes of the threads.
A problem with this model is that it constrains concurrency. Since there is only one kernel-
scheduled entity (namely, the process), only one thread per process can execute at a time. If the
thread that is executing blocks on I/O, then the whole process blocks.

At the other end of the spectrum is the ‘‘kernel-thread model’’. In this model, all threads are
visible to the operating system kernel. Thus, all threads are kernel-scheduled entities, and all
threads can concurrently execute. The threads are scheduled onto processors by the kernel
according to the scheduling attributes of the threads. The drawback to this model is that the
creation and management of the threads entails operating system calls, as opposed to subroutine
calls, which makes kernel threads heavier weight than library threads.

Hybrids of these two models are common. A hybrid model offers the speed of library threads
and the concurrency of kernel threads. In hybrid models, a process has some (relatively small)
number of kernel scheduled entities associated with it. It also has a potentially much larger
number of library threads associated with it. Some library threads may be bound to kernel-
scheduled entities, while the other library threads are multiplexed onto the remaining kernel-
scheduled entities. There are two levels of thread scheduling:

1. The runtime library manages the scheduling of (unbound) library threads onto kernel-
scheduled entities.

2. The kernel manages the scheduling of kernel-scheduled entities onto processors.

For this reason, a hybrid model is referred to as a two-level threads scheduling model. In this
model, the process can have multiple concurrently executing threads; specifically, it can have as
many concurrently executing threads as it has kernel-scheduled entities.

3566 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

120690

120691

120692

120693

120694

120695

120696

120697

120698

120699

120700

120701

120702

120703

120704

120705

120706

120707

120708

120709

120710

120711

120712

120713

120714

120715

120716

120717

120718

120719

120720

120721

120722

120723

120724

120725

120726

120727

120728

120729

120730

120731

120732

120733

120734

120735

Rationale for System Interfaces General Information

Thread-Specific Data

Many applications require that a certain amount of context be maintained on a per-thread basis
across procedure calls. A common example is a multi-threaded library routine that allocates
resources from a common pool and maintains an active resource list for each thread. The thread-
specific data interface provided to meet these needs may be viewed as a two-dimensional array
of values with keys serving as the row index and thread IDs as the column index (although the
implementation need not work this way).

• Models

Three possible thread-specific data models were considered:

1. No Explicit Support

A standard thread-specific data interface is not strictly necessary to support
applications that require per-thread context. One could, for example, provide a hash
function that converted a pthread_t into an integer value that could then be used to
index into a global array of per-thread data pointers. This hash function, in
conjunction with pthread_self(), would be all the interface required to support a
mechanism of this sort. Unfortunately, this technique is cumbersome. It can lead to
duplicated code as each set of cooperating modules implements their own per-
thread data management schemes.

2. Single (void *) Pointer

Another technique would be to provide a single word of per-thread storage and a
pair of functions to fetch and store the value of this word. The word could then hold
a pointer to a block of per-thread memory. The allocation, partitioning, and general
use of this memory would be entirely up to the application. Although this method
is not as problematic as technique 1, it suffers from interoperability problems. For
example, all modules using the per-thread pointer would have to agree on a
common usage protocol.

3. Key/Value Mechanism

This method associates an opaque key (for example, stored in a variable of type
pthread_key_t) with each per-thread datum. These keys play the role of identifiers
for per-thread data. This technique is the most generic and avoids the problems
noted above, albeit at the cost of some complexity.

The primary advantage of the third model is its information hiding properties. Modules
using this model are free to create and use their own key(s) independent of all other such
usage, whereas the other models require that all modules that use thread-specific context
explicitly cooperate with all other such modules. The data-independence provided by the
third model is worth the additional interface.

• Requirements

It is important that it be possible to implement the thread-specific data interface without
the use of thread private memory. To do otherwise would increase the weight of each
thread, thereby limiting the range of applications for which the threads interfaces provided
by POSIX.1-2008 is appropriate.

The values that one binds to the key via pthread_setspecific() may, in fact, be pointers to
shared storage locations available to all threads. It is only the key/value bindings that are
maintained on a per-thread basis, and these can be kept in any portion of the address space
that is reserved for use by the calling thread (for example, on the stack). Thus, no per-
thread MMU state is required to implement the interface. On the other hand, there is

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3567

120736

120737

120738

120739

120740

120741

120742

120743

120744

120745

120746

120747

120748

120749

120750

120751

120752

120753

120754

120755

120756

120757

120758

120759

120760

120761

120762

120763

120764

120765

120766

120767

120768

120769

120770

120771

120772

120773

120774

120775

120776

120777

120778

120779

120780

120781

General Information Rationale for System Interfaces

nothing in the interface specification to preclude the use of a per-thread MMU state if it is
available (for example, the key values returned by pthread_key_create() could be thread
private memory addresses).

• Standardization Issues

Thread-specific data is a requirement for a usable thread interface. The binding described
in this section provides a portable thread-specific data mechanism for languages that do
not directly support a thread-specific storage class. A binding to POSIX.1-2008 for a
language that does include such a storage class need not provide this specific interface.

If a language were to include the notion of thread-specific storage, it would be desirable
(but not required) to provide an implementation of the pthreads thread-specific data
interface based on the language feature. For example, assume that a compiler for a C-like
language supports a private storage class that provides thread-specific storage. Something
similar to the following macros might be used to effect a compatible implementation:

#define pthread_key_t private void *
#define pthread_key_create(key) /* no-op */
#define pthread_setspecific(key,value) (key)=(value)
#define pthread_getspecific(key) (key)

Note: For the sake of clarity, this example ignores destructor functions. A correct
implementation would have to support them.

Barriers

• Background

Barriers are typically used in parallel DO/FOR loops to ensure that all threads have
reached a particular stage in a parallel computation before allowing any to proceed to the
next stage. Highly efficient implementation is possible on machines which support a
‘‘Fetch and Add’’ operation as described in the referenced Almasi and Gottlieb (1989).

The use of return value PTHREAD_BARRIER_SERIAL_THREAD is shown in the
following example:

if ((status=pthread_barrier_wait(&barrier)) ==
PTHREAD_BARRIER_SERIAL_THREAD) {
...serial section
}

else if (status != 0) {
...error processing

}
status=pthread_barrier_wait(&barrier);
...

This behavior allows a serial section of code to be executed by one thread as soon as all
threads reach the first barrier. The second barrier prevents the other threads from
proceeding until the serial section being executed by the one thread has completed.

Although barriers can be implemented with mutexes and condition variables, the
referenced Almasi and Gottlieb (1989) provides ample illustration that such
implementations are significantly less efficient than is possible. While the relative
efficiency of barriers may well vary by implementation, it is important that they be
recognized in the POSIX.1-2008 to facilitate applications portability while providing the
necessary freedom to implementors.

3568 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

120782

120783

120784

120785

120786

120787

120788

120789

120790

120791

120792

120793

120794

120795

120796

120797

120798

120799

120800

120801

120802

120803

120804

120805

120806

120807

120808

120809

120810

120811

120812

120813

120814

120815

120816

120817

120818

120819

120820

120821

120822

120823

120824

120825

120826

Rationale for System Interfaces General Information

• Lack of Timeout Feature

Alternate versions of most blocking routines have been provided to support watchdog
timeouts. No alternate interface of this sort has been provided for barrier waits for the
following reasons:

• Multiple threads may use different timeout values, some of which may be indefinite.
It is not clear which threads should break through the barrier with a timeout error if
and when these timeouts expire.

• The barrier may become unusable once a thread breaks out of a pthread_barrier_wait()
with a timeout error. There is, in general, no way to guarantee the consistency of a
barrier ’s internal data structures once a thread has timed out of a
pthread_barrier_wait(). Even the inclusion of a special barrier reinitialization function
would not help much since it is not clear how this function would affect the behavior
of threads that reach the barrier between the original timeout and the call to the
reinitialization function.

Spin Locks

• Background

Spin locks represent an extremely low-level synchronization mechanism suitable primarily
for use on shared memory multi-processors. It is typically an atomically modified Boolean
value that is set to one when the lock is held and to zero when the lock is freed.

When a caller requests a spin lock that is already held, it typically spins in a loop testing
whether the lock has become available. Such spinning wastes processor cycles so the lock
should only be held for short durations and not across sleep/block operations. Callers
should unlock spin locks before calling sleep operations.

Spin locks are available on a variety of systems. The functions included in POSIX.1-2008
are an attempt to standardize that existing practice.

• Lack of Timeout Feature

Alternate versions of most blocking routines have been provided to support watchdog
timeouts. No alternate interface of this sort has been provided for spin locks for the
following reasons:

• It is impossible to determine appropriate timeout intervals for spin locks in a
portable manner. The amount of time one can expect to spend spin-waiting is
inversely proportional to the degree of parallelism provided by the system.

It can vary from a few cycles when each competing thread is running on its own
processor, to an indefinite amount of time when all threads are multiplexed on a
single processor (which is why spin locking is not advisable on uniprocessors).

• When used properly, the amount of time the calling thread spends waiting on a spin
lock should be considerably less than the time required to set up a corresponding
watchdog timer. Since the primary purpose of spin locks is to provide a low-
overhead synchronization mechanism for multi-processors, the overhead of a
timeout mechanism was deemed unacceptable.

It was also suggested that an additional count argument be provided (on the
pthread_spin_lock() call) in lieu of a true timeout so that a spin lock call could fail gracefully
if it was unable to apply the lock after count attempts. This idea was rejected because it is
not existing practice. Furthermore, the same effect can be obtained with
pthread_spin_trylock(), as illustrated below:

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3569

120827

120828

120829

120830

120831

120832

120833

120834

120835

120836

120837

120838

120839

120840

120841

120842

120843

120844

120845

120846

120847

120848

120849

120850

120851

120852

120853

120854

120855

120856

120857

120858

120859

120860

120861

120862

120863

120864

120865

120866

120867

120868

120869

120870

120871

General Information Rationale for System Interfaces

int n = MAX_SPIN;

while (− −n >= 0)
{

if (!pthread_spin_try_lock(...))
break;

}
if (n >= 0)
{

/* Successfully acquired the lock */
}
else
{

/* Unable to acquire the lock */
}

• process-shared Attribute

The initialization functions associated with most POSIX synchronization objects (for
example, mutexes, barriers, and read-write locks) take an attributes object with a process-
shared attribute that specifies whether or not the object is to be shared across processes. In
the draft corresponding to the first balloting round, two separate initialization functions
are provided for spin locks, however: one for spin locks that were to be shared across
processes (spin_init()), and one for locks that were only used by multiple threads within a
single process (pthread_spin_init()). This was done so as to keep the overhead associated
with spin waiting to an absolute minimum. However, the balloting group requested that,
since the overhead associated to a bit check was small, spin locks should be consistent with
the rest of the synchronization primitives, and thus the process-shared attribute was
introduced for spin locks.

• Spin Locks versus Mutexes

It has been suggested that mutexes are an adequate synchronization mechanism and spin
locks are not necessary. Locking mechanisms typically must trade off the processor
resources consumed while setting up to block the thread and the processor resources
consumed by the thread while it is blocked. Spin locks require very little resources to set
up the blocking of a thread. Existing practice is to simply loop, repeating the atomic
locking operation until the lock is available. While the resources consumed to set up
blocking of the thread are low, the thread continues to consume processor resources while
it is waiting.

On the other hand, mutexes may be implemented such that the processor resources
consumed to block the thread are large relative to a spin lock. After detecting that the
mutex lock is not available, the thread must alter its scheduling state, add itself to a set of
waiting threads, and, when the lock becomes available again, undo all of this before taking
over ownership of the mutex. However, while a thread is blocked by a mutex, no processor
resources are consumed.

Therefore, spin locks and mutexes may be implemented to have different characteristics.
Spin locks may have lower overall overhead for very short-term blocking, and mutexes
may have lower overall overhead when a thread will be blocked for longer periods of time.
The presence of both interfaces allows implementations with these two different
characteristics, both of which may be useful to a particular application.

It has also been suggested that applications can build their own spin locks from the
pthread_mutex_trylock() function:

3570 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

120872

120873

120874

120875

120876

120877

120878

120879

120880

120881

120882

120883

120884

120885

120886

120887

120888

120889

120890

120891

120892

120893

120894

120895

120896

120897

120898

120899

120900

120901

120902

120903

120904

120905

120906

120907

120908

120909

120910

120911

120912

120913

120914

120915

120916

120917

120918

120919

Rationale for System Interfaces General Information

while (pthread_mutex_trylock(&mutex));

The apparent simplicity of this construct is somewhat deceiving, however. While the actual
wait is quite efficient, various guarantees on the integrity of mutex objects (for example,
priority inheritance rules) may add overhead to the successful path of the trylock
operation that is not required of spin locks. One could, of course, add an attribute to the
mutex to bypass such overhead, but the very act of finding and testing this attribute
represents more overhead than is found in the typical spin lock.

The need to hold spin lock overhead to an absolute minimum also makes it impossible to
provide guarantees against starvation similar to those provided for mutexes or read-write
locks. The overhead required to implement such guarantees (for example, disabling
preemption before spinning) may well exceed the overhead of the spin wait itself by many
orders of magnitude. If a ‘‘safe’’ spin wait seems desirable, it can always be provided
(albeit at some performance cost) via appropriate mutex attributes.

Robust Mutexes

Robust mutexes are intended to protect applications that use mutexes to protect data shared
between different processes. If a process is terminated by a signal while a thread is holding a
mutex, there is no chance for the process to clean up after it. Waiters for the locked mutex might
wait indefinitely.

With robust mutexes the problem can be solved: whenever a fatal signal terminates a process,
current or future waiters of the mutex are notified about this fact. The locking function provides
notification of this condition through the error condition [EOWNERDEAD]. A thread then has
the chance to clean up the state protected by the mutex and mark the state as consistent again by
a call to pthread_mutex_consistent().

Pre-existing implementations have used the semantics of robust mutexes for a variety of
situations, some of them not defined in the standard. Where a normally terminated process (i.e.,
when one thread calls exit()) causes notification of other waiters of robust mutexes if the mutex
is locked by any thread in the process. This behavior is defined in the standard and makes sense
because no thread other than the thread calling exit() has the chance to clean up its data.

If a thread is terminated by cancellation or if it calls pthread_exit(), the situation is different. In
both these situations the thread has the chance to clean up after itself by registering appropriate
cleanup handlers. There is no real reason to demand that other waiters for a robust mutex the
terminating thread owns are notified. The committee felt that this is actively encouraging bad
practice because programmers are tempted to rely on the robust mutex semantics instead of
correctly cleaning up after themselves.

Therefore, the standard does not require notification of other waiters at the time a thread is
terminated while the process continues to run. The mutex is still recognized as being locked by
the process (with the thread gone it makes no sense to refer to the thread owning the mutex).
Therefore, a terminating process will cause notifications about the dead owner to be sent to all
waiters. This delay in the notification is not required, but programmers cannot rely on prompt
notification after a thread is terminated.

For the same reason is it not required that an implementation supports robust mutexes that are
not shared between processes. If a robust mutex is used only within one process, all the cleanup
can be performed by the threads themselves by registering appropriate cleanup handlers. Fatal
signals are of no importance in this case because after the signal is delivered there is no thread
remaining to use the mutex.

Some implementations might choose to support intra-process robust mutexes and they might
also send notification of a dead owner right after the previous owner died. But applications

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3571

120920

120921

120922

120923

120924

120925

120926

120927

120928

120929

120930

120931

120932

120933

120934

120935

120936

120937

120938

120939

120940

120941

120942

120943

120944

120945

120946

120947

120948

120949

120950

120951

120952

120953

120954

120955

120956

120957

120958

120959

120960

120961

120962

120963

120964

120965

120966

General Information Rationale for System Interfaces

must not rely on this. Applications should only use robust mutexes for the purpose of handling
fatal signals in situations where inter-process mutexes are in use.

Supported Threads Functions

On POSIX-conforming systems, the following symbolic constants are always conforming:

_POSIX_READER_WRITER_LOCKS
_POSIX_THREADS

Therefore, the following threads functions are always supported:

pthread_atfork()
pthread_attr_destroy()
pthread_attr_getdetachstate()
pthread_attr_getguardsize()
pthread_attr_getschedparam()
pthread_attr_init()
pthread_attr_setdetachstate()
pthread_attr_setguardsize()
pthread_attr_setschedparam()
pthread_cancel()
pthread_cleanup_pop()
pthread_cleanup_push()
pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_condattr_destroy()
pthread_condattr_getpshared()
pthread_condattr_init()
pthread_condattr_setpshared()
pthread_create()
pthread_detach()
pthread_equal()
pthread_exit()
pthread_getconcurrency()
pthread_getspecific()
pthread_join()
pthread_key_create()
pthread_key_delete()
pthread_kill()

pthread_mutex_destroy()
pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_mutexattr_destroy()
pthread_mutexattr_getpshared()
pthread_mutexattr_gettype()
pthread_mutexattr_init()
pthread_mutexattr_setpshared()
pthread_mutexattr_settype()
pthread_once()
pthread_rwlock_destroy()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_destroy()
pthread_rwlockattr_getpshared()
pthread_rwlockattr_init()
pthread_rwlockattr_setpshared()
pthread_self()
pthread_setcancelstate()
pthread_setcanceltype()
pthread_setconcurrency()
pthread_setspecific()
pthread_sigmask()
pthread_testcancel()
sigwait()

3572 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

120967

120968

120969

120970

120971

120972

120973

120974

120975

120976

120977

120978

120979

120980

120981

120982

120983

120984

120985

120986

120987

120988

120989

120990

120991

120992

120993

120994

120995

120996

120997

120998

120999

121000

121001

121002

121003

121004

121005

Rationale for System Interfaces General Information

On POSIX-conforming systems, the symbolic constant _POSIX_THREAD_SAFE_FUNCTIONS is
always defined. Therefore, the following functions are always supported:

asctime_r()
ctime_r()
flockfile()
ftrylockfile()
funlockfile()
getc_unlocked()
getchar_unlocked()
getgrgid_r()
getgrnam_r()
getpwnam_r()

getpwuid_r()
gmtime_r()
localtime_r()
putc_unlocked()
putchar_unlocked()
rand_r()
readdir_r()
strerror_r()
strtok_r()

Threads Extensions

The following extensions to the IEEE P1003.1c draft standard are now supported in
POSIX.1-2008 as part of the alignment with the Single UNIX Specification:

• Extended mutex attribute types

• Read-write locks and attributes (also introduced by the IEEE Std 1003.1j-2000 amendment)

• Thread concurrency level

• Thread stack guard size

• Parallel I/O

• Robust mutexes

These extensions carefully follow the threads programming model specified in POSIX.1c. As
with POSIX.1c, all the new functions return zero if successful; otherwise, an error number is
returned to indicate the error.

The concept of attribute objects was introduced in POSIX.1c to allow implementations to extend
POSIX.1-2008 without changing the existing interfaces. Attribute objects were defined for
threads, mutexes, and condition variables. Attributes objects are defined as implementation-
defined opaque types to aid extensibility, and functions are defined to allow attributes to be set
or retrieved. This model has been followed when adding the new type attribute of
pthread_mutexattr_t or the new read-write lock attributes object pthread_rwlockattr_t.

• Extended Mutex Attributes

POSIX.1c defines a mutex attributes object as an implementation-defined opaque object of
type pthread_mutexattr_t, and specifies a number of attributes which this object must
have and a number of functions which manipulate these attributes. These attributes
include detachstate, inheritsched, schedparm, schedpolicy, contentionscope, stackaddr, and
stacksize.

The System Interfaces volume of POSIX.1-2008 specifies another mutex attribute called
type. The type attribute allows applications to specify the behavior of mutex locking
operations in situations where POSIX.1c behavior is undefined. The OSF DCE threads
implementation, based on Draft 4 of POSIX.1c, specified a similar attribute. Note that the
names of the attributes have changed somewhat from the OSF DCE threads
implementation.

The System Interfaces volume of POSIX.1-2008 also extends the specification of the
following POSIX.1c functions which manipulate mutexes:

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3573

121006

121007

121008

121009

121010

121011

121012

121013

121014

121015

121016

121017

121018

121019

121020

121021

121022

121023

121024

121025

121026

121027

121028

121029

121030

121031

121032

121033

121034

121035

121036

121037

121038

121039

121040

121041

121042

121043

121044

121045

121046

121047

121048

121049

General Information Rationale for System Interfaces

pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()

to take account of the new mutex attribute type and to specify behavior which was
declared as undefined in POSIX.1c. How a calling thread acquires or releases a mutex now
depends upon the mutex type attribute.

The type attribute can have the following values:

PTHREAD_MUTEX_NORMAL
Basic mutex with no specific error checking built in. Does not report a deadlock error.

PTHREAD_MUTEX_RECURSIVE
Allows any thread to recursively lock a mutex. The mutex must be unlocked an equal
number of times to release the mutex.

PTHREAD_MUTEX_ERRORCHECK
Detects and reports simple usage errors; that is, an attempt to unlock a mutex that is
not locked by the calling thread or that is not locked at all, or an attempt to relock a
mutex the thread already owns.

PTHREAD_MUTEX_DEFAULT
The default mutex type. May be mapped to any of the above mutex types or may be
an implementation-defined type.

Normal mutexes do not detect deadlock conditions; for example, a thread will hang if it
tries to relock a normal mutex that it already owns. Attempting to unlock a mutex locked
by another thread, or unlocking an unlocked mutex, results in undefined behavior. Normal
mutexes will usually be the fastest type of mutex available on a platform but provide the
least error checking.

Recursive mutexes are useful for converting old code where it is difficult to establish clear
boundaries of synchronization. A thread can relock a recursive mutex without first
unlocking it. The relocking deadlock which can occur with normal mutexes cannot occur
with this type of mutex. However, multiple locks of a recursive mutex require the same
number of unlocks to release the mutex before another thread can acquire the mutex.
Furthermore, this type of mutex maintains the concept of an owner. Thus, a thread
attempting to unlock a recursive mutex which another thread has locked returns with an
error. A thread attempting to unlock a recursive mutex that is not locked returns with an
error. Never use a recursive mutex with condition variables because the implicit unlock
performed by pthread_cond_wait() or pthread_cond_timedwait() will not actually release the
mutex if it had been locked multiple times.

Errorcheck mutexes provide error checking and are useful primarily as a debugging aid. A
thread attempting to relock an errorcheck mutex without first unlocking it returns with an
error. Again, this type of mutex maintains the concept of an owner. Thus, a thread
attempting to unlock an errorcheck mutex which another thread has locked returns with
an error. A thread attempting to unlock an errorcheck mutex that is not locked also returns
with an error. It should be noted that errorcheck mutexes will almost always be much
slower than normal mutexes due to the extra state checks performed.

The default mutex type provides implementation-defined error checking. The default
mutex may be mapped to one of the other defined types or may be something entirely
different. This enables each vendor to provide the mutex semantics which the vendor feels
will be most useful to their target users. Most vendors will probably choose to make
normal mutexes the default so as to give applications the benefit of the fastest type of

3574 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

121050

121051

121052

121053

121054

121055

121056

121057

121058

121059

121060

121061

121062

121063

121064

121065

121066

121067

121068

121069

121070

121071

121072

121073

121074

121075

121076

121077

121078

121079

121080

121081

121082

121083

121084

121085

121086

121087

121088

121089

121090

121091

121092

121093

121094

121095

121096

Rationale for System Interfaces General Information

mutexes available on their platform. Check your implementation’s documentation.

An application developer can use any of the mutex types almost interchangeably as long
as the application does not depend upon the implementation detecting (or failing to
detect) any particular errors. Note that a recursive mutex can be used with condition
variable waits as long as the application never recursively locks the mutex.

Two functions are provided for manipulating the type attribute of a mutex attributes object.
This attribute is set or returned in the type parameter of these functions. The
pthread_mutexattr_settype() function is used to set a specific type value while
pthread_mutexattr_gettype() is used to return the type of the mutex. Setting the type
attribute of a mutex attributes object affects only mutexes initialized using that mutex
attributes object. Changing the type attribute does not affect mutexes previously initialized
using that mutex attributes object.

• Read-Write Locks and Attributes

The read-write locks introduced have been harmonized with those in IEEE Std
1003.1j-2000; see also Section B.2.9.6 (on page 3590).

Read-write locks (also known as reader-writer locks) allow a thread to exclusively lock
some shared data while updating that data, or allow any number of threads to have
simultaneous read-only access to the data.

Unlike a mutex, a read-write lock distinguishes between reading data and writing data. A
mutex excludes all other threads. A read-write lock allows other threads access to the data,
providing no thread is modifying the data. Thus, a read-write lock is less primitive than
either a mutex-condition variable pair or a semaphore.

Application developers should consider using a read-write lock rather than a mutex to
protect data that is frequently referenced but seldom modified. Most threads (readers) will
be able to read the data without waiting and will only have to block when some other
thread (a writer) is in the process of modifying the data. Conversely a thread that wants to
change the data is forced to wait until there are no readers. This type of lock is often used
to facilitate parallel access to data on multi-processor platforms or to avoid context
switches on single processor platforms where multiple threads access the same data.

If a read-write lock becomes unlocked and there are multiple threads waiting to acquire
the write lock, the implementation’s scheduling policy determines which thread acquires
the read-write lock for writing. If there are multiple threads blocked on a read-write lock
for both read locks and write locks, it is unspecified whether the readers or a writer
acquire the lock first. However, for performance reasons, implementations often favor
writers over readers to avoid potential writer starvation.

A read-write lock object is an implementation-defined opaque object of type
pthread_rwlock_t as defined in <pthread.h>. There are two different sorts of locks
associated with a read-write lock: a read lock and a write lock.

The pthread_rwlockattr_init() function initializes a read-write lock attributes object with the
default value for all the attributes defined in the implementation. After a read-write lock
attributes object has been used to initialize one or more read-write locks, changes to the
read-write lock attributes object, including destruction, do not affect previously initialized
read-write locks.

Implementations must provide at least the read-write lock attribute process-shared. This
attribute can have the following values:

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3575

121097

121098

121099

121100

121101

121102

121103

121104

121105

121106

121107

121108

121109

121110

121111

121112

121113

121114

121115

121116

121117

121118

121119

121120

121121

121122

121123

121124

121125

121126

121127

121128

121129

121130

121131

121132

121133

121134

121135

121136

121137

121138

121139

121140

121141

General Information Rationale for System Interfaces

PTHREAD_PROCESS_SHARED
Any thread of any process that has access to the memory where the read-write lock
resides can manipulate the read-write lock.

PTHREAD_PROCESS_PRIVATE
Only threads created within the same process as the thread that initialized the read-
write lock can manipulate the read-write lock. This is the default value.

The pthread_rwlockattr_setpshared() function is used to set the process-shared attribute of an
initialized read-write lock attributes object while the function
pthread_rwlockattr_getpshared() obtains the current value of the process-shared attribute.

A read-write lock attributes object is destroyed using the pthread_rwlockattr_destroy()
function. The effect of subsequent use of the read-write lock attributes object is undefined.

A thread creates a read-write lock using the pthread_rwlock_init() function. The attributes
of the read-write lock can be specified by the application developer; otherwise, the default
implementation-defined read-write lock attributes are used if the pointer to the read-write
lock attributes object is NULL. In cases where the default attributes are appropriate, the
PTHREAD_RWLOCK_INITIALIZER macro can be used to initialize statically allocated
read-write locks.

A thread which wants to apply a read lock to the read-write lock can use either
pthread_rwlock_rdlock() or pthread_rwlock_tryrdlock(). If pthread_rwlock_rdlock() is used, the
thread acquires a read lock if a writer does not hold the write lock and there are no writers
blocked on the write lock. If a read lock is not acquired, the calling thread blocks until it
can acquire a lock. However, if pthread_rwlock_tryrdlock() is used, the function returns
immediately with the error [EBUSY] if any thread holds a write lock or there are blocked
writers waiting for the write lock.

A thread which wants to apply a write lock to the read-write lock can use either of two
functions: pthread_rwlock_wrlock() or pthread_rwlock_trywrlock(). If pthread_rwlock_wrlock()
is used, the thread acquires the write lock if no other reader or writer threads hold the
read-write lock. If the write lock is not acquired, the thread blocks until it can acquire the
write lock. However, if pthread_rwlock_trywrlock() is used, the function returns
immediately with the error [EBUSY] if any thread is holding either a read or a write lock.

The pthread_rwlock_unlock() function is used to unlock a read-write lock object held by the
calling thread. Results are undefined if the read-write lock is not held by the calling thread.
If there are other read locks currently held on the read-write lock object, the read-write
lock object remains in the read locked state but without the current thread as one of its
owners. If this function releases the last read lock for this read-write lock object, the read-
write lock object is put in the unlocked read state. If this function is called to release a write
lock for this read-write lock object, the read-write lock object is put in the unlocked state.

• Thread Concurrency Level

On threads implementations that multiplex user threads onto a smaller set of kernel
execution entities, the system attempts to create a reasonable number of kernel execution
entities for the application upon application startup.

On some implementations, these kernel entities are retained by user threads that block in
the kernel. Other implementations do not timeslice user threads so that multiple compute-
bound user threads can share a kernel thread. On such implementations, some
applications may use up all the available kernel execution entities before their user-space
threads are used up. The process may be left with user threads capable of doing work for
the application but with no way to schedule them.

3576 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

121142

121143

121144

121145

121146

121147

121148

121149

121150

121151

121152

121153

121154

121155

121156

121157

121158

121159

121160

121161

121162

121163

121164

121165

121166

121167

121168

121169

121170

121171

121172

121173

121174

121175

121176

121177

121178

121179

121180

121181

121182

121183

121184

121185

121186

121187

121188

Rationale for System Interfaces General Information

The pthread_setconcurrency() function enables an application to request more kernel
entities; that is, specify a desired concurrency level. However, this function merely
provides a hint to the implementation. The implementation is free to ignore this request or
to provide some other number of kernel entities. If an implementation does not multiplex
user threads onto a smaller number of kernel execution entities, the
pthread_setconcurrency() function has no effect.

The pthread_setconcurrency() function may also have an effect on implementations where
the kernel mode and user mode schedulers cooperate to ensure that ready user threads are
not prevented from running by other threads blocked in the kernel.

The pthread_getconcurrency() function always returns the value set by a previous call to
pthread_setconcurrency(). However, if pthread_setconcurrency() was not previously called,
this function returns zero to indicate that the threads implementation is maintaining the
concurrency level.

• Thread Stack Guard Size

DCE threads introduced the concept of a ‘‘thread stack guard size’’. Most thread
implementations add a region of protected memory to a thread’s stack, commonly known
as a ‘‘guard region’’, as a safety measure to prevent stack pointer overflow in one thread
from corrupting the contents of another thread’s stack. The default size of the guard
regions attribute is {PAGESIZE} bytes and is implementation-defined.

Some application developers may wish to change the stack guard size. When an
application creates a large number of threads, the extra page allocated for each stack may
strain system resources. In addition to the extra page of memory, the kernel’s memory
manager has to keep track of the different protections on adjoining pages. When this is a
problem, the application developer may request a guard size of 0 bytes to conserve system
resources by eliminating stack overflow protection.

Conversely an application that allocates large data structures such as arrays on the stack
may wish to increase the default guard size in order to detect stack overflow. If a thread
allocates two pages for a data array, a single guard page provides little protection against
thread stack overflows since the thread can corrupt adjoining memory beyond the guard
page.

The System Interfaces volume of POSIX.1-2008 defines a new attribute of a thread
attributes object; that is, the guardsize attribute which allows applications to specify the size
of the guard region of a thread’s stack.

Two functions are provided for manipulating a thread’s stack guard size. The
pthread_attr_setguardsize() function sets the thread guardsize attribute, and the
pthread_attr_getguardsize() function retrieves the current value.

An implementation may round up the requested guard size to a multiple of the
configurable system variable {PAGESIZE}. In this case, pthread_attr_getguardsize() returns
the guard size specified by the previous pthread_attr_setguardsize() function call and not
the rounded up value.

If an application is managing its own thread stacks using the stackaddr attribute, the
guardsize attribute is ignored and no stack overflow protection is provided. In this case, it is
the responsibility of the application to manage stack overflow along with stack allocation.

• Parallel I/O

Suppose two or more threads independently issue read requests on the same file. To read
specific data from a file, a thread must first call lseek() to seek to the proper offset in the
file, and then call read() to retrieve the required data. If more than one thread does this at

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3577

121189

121190

121191

121192

121193

121194

121195

121196

121197

121198

121199

121200

121201

121202

121203

121204

121205

121206

121207

121208

121209

121210

121211

121212

121213

121214

121215

121216

121217

121218

121219

121220

121221

121222

121223

121224

121225

121226

121227

121228

121229

121230

121231

121232

121233

121234

121235

General Information Rationale for System Interfaces

the same time, the first thread may complete its seek call, but before it gets a chance to
issue its read call a second thread may complete its seek call, resulting in the first thread
accessing incorrect data when it issues its read call. One workaround is to lock the file
descriptor while seeking and reading or writing, but this reduces parallelism and adds
overhead.

Instead, the System Interfaces volume of POSIX.1-2008 provides two functions to make
seek/read and seek/write operations atomic. The file descriptor’s current offset is
unchanged, thus allowing multiple read and write operations to proceed in parallel. This
improves the I/O performance of threaded applications. The pread() function is used to do
an atomic read of data from a file into a buffer. Conversely, the pwrite() function does an
atomic write of data from a buffer to a file.

B.2.9.1 Thread-Safety

All functions required by POSIX.1-2008 need to be thread-safe. Implementations have to
provide internal synchronization when necessary in order to achieve this goal. In certain cases—
for example, most floating-point implementations—context switch code may have to manage
the writable shared state.

While a read from a pipe of {PIPE_MAX}*2 bytes may not generate a single atomic and thread-
safe stream of bytes, it should generate ‘‘several’’ (individually atomic) thread-safe streams of
bytes. Similarly, while reading from a terminal device may not generate a single atomic and
thread-safe stream of bytes, it should generate some finite number of (individually atomic) and
thread-safe streams of bytes. That is, concurrent calls to read for a pipe, FIFO, or terminal device
are not allowed to result in corrupting the stream of bytes or other internal data. However,
read(), in these cases, is not required to return a single contiguous and atomic stream of bytes.

It is not required that all functions provided by POSIX.1-2008 be either async-cancel-safe or
async-signal-safe.

As it turns out, some functions are inherently not thread-safe; that is, their interface
specifications preclude async-signal-safety. For example, some functions (such as asctime())
return a pointer to a result stored in memory space allocated by the function on a per-process
basis. Such a function is not thread-safe, because its result can be overwritten by successive
invocations. Other functions, while not inherently non-thread-safe, may be implemented in
ways that lead to them not being thread-safe. For example, some functions (such as rand()) store
state information (such as a seed value, which survives multiple function invocations) in
memory space allocated by the function on a per-process basis. The implementation of such a
function is not thread-safe if the implementation fails to synchronize invocations of the function
and thus fails to protect the state information. The problem is that when the state information is
not protected, concurrent invocations can interfere with one another (for example, applications
using rand() may see the same seed value).

Thread-Safety and Locking of Existing Functions

Originally, POSIX.1 was not designed to work in a multi-threaded environment, and some
implementations of some existing functions will not work properly when executed concurrently.
To provide routines that will work correctly in an environment with threads (‘‘thread-safe’’), two
problems need to be solved:

1. Routines that maintain or return pointers to static areas internal to the routine (which
may now be shared) need to be modified. The routines ttyname() and localtime() are
examples.

3578 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

121236

121237

121238

121239

121240

121241

121242

121243

121244

121245

121246

121247

121248

121249

121250

121251

121252

121253

121254

121255

121256

121257

121258

121259

121260

121261

121262

121263

121264

121265

121266

121267

121268

121269

121270

121271

121272

121273

121274

121275

121276

121277

121278

121279

121280

Rationale for System Interfaces General Information

2. Routines that access data space shared by more than one thread need to be modified. The
malloc() function and the stdio family routines are examples.

There are a variety of constraints on these changes. The first is compatibility with the existing
versions of these functions—non-thread-safe functions will continue to be in use for some time,
as the original interfaces are used by existing code. Another is that the new thread-safe versions
of these functions represent as small a change as possible over the familiar interfaces provided
by the existing non-thread-safe versions. The new interfaces should be independent of any
particular threads implementation. In particular, they should be thread-safe without depending
on explicit thread-specific memory. Finally, there should be minimal performance penalty due to
the changes made to the functions.

It is intended that the list of functions from POSIX.1 that cannot be made thread-safe and for
which corrected versions are provided be complete.

Thread-Safety and Locking Solutions

Many of the POSIX.1 functions were thread-safe and did not change at all. However, some
functions (for example, the math functions typically found in libm) are not thread-safe because
of writable shared global state. For instance, in IEEE Std 754-1985 floating-point
implementations, the computation modes and flags are global and shared.

Some functions are not thread-safe because a particular implementation is not reentrant,
typically because of a non-essential use of static storage. These require only a new
implementation.

Thread-safe libraries are useful in a wide range of parallel (and asynchronous) programming
environments, not just within pthreads. In order to be used outside the context of pthreads,
however, such libraries still have to use some synchronization method. These could either be
independent of the pthread synchronization operations, or they could be a subset of the pthread
interfaces. Either method results in thread-safe library implementations that can be used without
the rest of pthreads.

Some functions, such as the stdio family interface and dynamic memory allocation functions
such as malloc(), are inter-dependent routines that share resources (for example, buffers) across
related calls. These require synchronization to work correctly, but they do not require any
change to their external (user-visible) interfaces.

In some cases, such as getc() and putc(), adding synchronization is likely to create an
unacceptable performance impact. In this case, slower thread-safe synchronized functions are to
be provided, but the original, faster (but unsafe) functions (which may be implemented as
macros) are retained under new names. Some additional special-purpose synchronization
facilities are necessary for these macros to be usable in multi-threaded programs. This also
requires changes in <stdio.h>.

The other common reason that functions are unsafe is that they return a pointer to static storage,
making the functions non-thread-safe. This has to be changed, and there are three natural
choices:

1. Return a pointer to thread-specific storage

This could incur a severe performance penalty on those architectures with a costly
implementation of the thread-specific data interface.

A variation on this technique is to use malloc() to allocate storage for the function output
and return a pointer to this storage. This technique may also have an undesirable
performance impact, however, and a simplistic implementation requires that the user
program explicitly free the storage object when it is no longer needed. This technique is
used by some existing POSIX.1 functions. With careful implementation for infrequently

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3579

121281

121282

121283

121284

121285

121286

121287

121288

121289

121290

121291

121292

121293

121294

121295

121296

121297

121298

121299

121300

121301

121302

121303

121304

121305

121306

121307

121308

121309

121310

121311

121312

121313

121314

121315

121316

121317

121318

121319

121320

121321

121322

121323

121324

121325

121326

121327

General Information Rationale for System Interfaces

used functions, there may be little or no performance or storage penalty, and the
maintenance of already-standardized interfaces is a significant benefit.

2. Return the actual value computed by the function

This technique can only be used with functions that return pointers to structures—
routines that return character strings would have to wrap their output in an enclosing
structure in order to return the output on the stack. There is also a negative performance
impact inherent in this solution in that the output value has to be copied twice before it
can be used by the calling function: once from the called routine’s local buffers to the top
of the stack, then from the top of the stack to the assignment target. Finally, many older
compilers cannot support this technique due to a historical tendency to use internal static
buffers to deliver the results of structure-valued functions.

3. Have the caller pass the address of a buffer to contain the computed value

The only disadvantage of this approach is that extra arguments have to be provided by
the calling program. It represents the most efficient solution to the problem, however,
and, unlike the malloc() technique, it is semantically clear.

There are some routines (often groups of related routines) whose interfaces are inherently non-
thread-safe because they communicate across multiple function invocations by means of static
memory locations. The solution is to redesign the calls so that they are thread-safe, typically by
passing the needed data as extra parameters. Unfortunately, this may require major changes to
the interface as well.

A floating-point implementation using IEEE Std 754-1985 is a case in point. A less problematic
example is the rand48 family of pseudo-random number generators. The functions getgrgid(),
getgrnam(), getpwnam(), and getpwuid() are another such case.

The problems with errno are discussed in Alternative Solutions for Per-Thread errno (on page
3506).

Some functions can be thread-safe or not, depending on their arguments. These include the
tmpnam() and ctermid() functions. These functions have pointers to character strings as
arguments. If the pointers are not NULL, the functions store their results in the character string;
however, if the pointers are NULL, the functions store their results in an area that may be static
and thus subject to overwriting by successive calls. These should only be called by multi-thread
applications when their arguments are non-NULL.

Asynchronous Safety and Thread-Safety

A floating-point implementation has many modes that effect rounding and other aspects of
computation. Functions in some math library implementations may change the computation
modes for the duration of a function call. If such a function call is interrupted by a signal or
cancellation, the floating-point state is not required to be protected.

There is a significant cost to make floating-point operations async-cancel-safe or async-signal-
safe; accordingly, neither form of async safety is required.

Functions Returning Pointers to Static Storage

For those functions that are not thread-safe because they return values in fixed size statically
allocated structures, alternate ‘‘_r ’’ forms are provided that pass a pointer to an explicit result
structure. Those that return pointers into library-allocated buffers have forms provided with
explicit buffer and length parameters.

For functions that return pointers to library-allocated buffers, it makes sense to provide ‘‘_r ’’
versions that allow the application control over allocation of the storage in which results are
returned. This allows the state used by these functions to be managed on an application-specific

3580 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

121328

121329

121330

121331

121332

121333

121334

121335

121336

121337

121338

121339

121340

121341

121342

121343

121344

121345

121346

121347

121348

121349

121350

121351

121352

121353

121354

121355

121356

121357

121358

121359

121360

121361

121362

121363

121364

121365

121366

121367

121368

121369

121370

121371

121372

121373

Rationale for System Interfaces General Information

basis, supporting per-thread, per-process, or other application-specific sharing relationships.

Early proposals had provided ‘‘_r ’’ versions for functions that returned pointers to variable-size
buffers without providing a means for determining the required buffer size. This would have
made using such functions exceedingly clumsy, potentially requiring iteratively calling them
with increasingly larger guesses for the amount of storage required. Hence, sysconf() variables
have been provided for such functions that return the maximum required buffer size.

Thus, the rule that has been followed by POSIX.1-2008 when adapting single-threaded non-
thread-safe functions is as follows: all functions returning pointers to library-allocated storage
should have ‘‘_r ’’ versions provided, allowing the application control over the storage
allocation. Those with variable-sized return values accept both a buffer address and a length
parameter. The sysconf() variables are provided to supply the appropriate buffer sizes when
required. Implementors are encouraged to apply the same rule when adapting their own
existing functions to a pthreads environment.

B.2.9.2 Thread IDs

Separate applications should communicate through well-defined interfaces and should not
depend on each other’s implementation. For example, if a programmer decides to rewrite the
sort utility using multiple threads, it should be easy to do this so that the interface to the sort
utility does not change. Consider that if the user causes SIGINT to be generated while the sort
utility is running, keeping the same interface means that the entire sort utility is killed, not just
one of its threads. As another example, consider a realtime application that manages a reactor.
Such an application may wish to allow other applications to control the priority at which it
watches the control rods. One technique to accomplish this is to write the ID of the thread
watching the control rods into a file and allow other programs to change the priority of that
thread as they see fit. A simpler technique is to have the reactor process accept IPCs
(Interprocess Communication messages) from other processes, telling it at a semantic level what
priority the program should assign to watching the control rods. This allows the programmer
greater flexibility in the implementation. For example, the programmer can change the
implementation from having one thread per rod to having one thread watching all of the rods
without changing the interface. Having threads live inside the process means that the
implementation of a process is invisible to outside processes (excepting debuggers and system
management tools).

Threads do not provide a protection boundary. Every thread model allows threads to share
memory with other threads and encourages this sharing to be widespread. This means that one
thread can wipe out memory that is needed for the correct functioning of other threads that are
sharing its memory. Consequently, providing each thread with its own user and/or group IDs
would not provide a protection boundary between threads sharing memory.

Some applications make the assumption that the implementation can always detect invalid uses
of thread IDs of type pthread_t. This is an invalid assumption. Specifically, if pthread_t is
defined as a pointer type, no access check needs to be performed before using the ID.

As with other interfaces that take pointer parameters, the outcome of passing an invalid
parameter can result in an invalid memory reference or an attempt to access an undefined
portion of a memory object, cause signals to be sent (SIGSEGV or SIGBUS) and possible
termination of the process. This is a similar case to passing an invalid buffer pointer to read().
Some implementations might implement read() as a system call and set an [EFAULT] error
condition. Other implementations might contain parts of read() at user level and the first
attempt to access data at an invalid reference will cause a signal to be sent instead.

If an implementation detects use of a thread ID after the end of its lifetime, it is recommended
that the function should fail and report an [ESRCH] error. This does not imply that

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3581

121374

121375

121376

121377

121378

121379

121380

121381

121382

121383

121384

121385

121386

121387

121388

121389

121390

121391

121392

121393

121394

121395

121396

121397

121398

121399

121400

121401

121402

121403

121404

121405

121406

121407

121408

121409

121410

121411

121412

121413

121414

121415

121416

121417

121418

121419

121420

121421

General Information Rationale for System Interfaces

implementations are required to return in this case. It is legitimate behavior to send an ‘‘invalid
memory reference’’ signal (SIGSEGV or SIGBUS). It is the application’s responsibility to use only
valid thread IDs and to keep track of the lifetime of the underlying threads.

B.2.9.3 Thread Mutexes

There is no additional rationale provided for this section.

B.2.9.4 Thread Scheduling

• Scheduling Implementation Models

The following scheduling implementation models are presented in terms of threads and
‘‘kernel entities’’. This is to simplify exposition of the models, and it does not imply that
an implementation actually has an identifiable ‘‘kernel entity’’.

A kernel entity is not defined beyond the fact that it has scheduling attributes that are used
to resolve contention with other kernel entities for execution resources. A kernel entity
may be thought of as an envelope that holds a thread or a separate kernel thread. It is not a
conventional process, although it shares with the process the attribute that it has a single
thread of control; it does not necessarily imply an address space, open files, and so on. It is
better thought of as a primitive facility upon which conventional processes and threads
may be constructed.

— System Thread Scheduling Model

This model consists of one thread per kernel entity. The kernel entity is solely
responsible for scheduling thread execution on one or more processors. This model
schedules all threads against all other threads in the system using the scheduling
attributes of the thread.

— Process Scheduling Model

A generalized process scheduling model consists of two levels of scheduling. A
threads library creates a pool of kernel entities, as required, and schedules threads to
run on them using the scheduling attributes of the threads. Typically, the size of the
pool is a function of the simultaneously runnable threads, not the total number of
threads. The kernel then schedules the kernel entities onto processors according to
their scheduling attributes, which are managed by the threads library. This set model
potentially allows a wide range of mappings between threads and kernel entities.

• System and Process Scheduling Model Performance

There are a number of important implications on the performance of applications using
these scheduling models. The process scheduling model potentially provides lower
overhead for making scheduling decisions, since there is no need to access kernel-level
information or functions and the set of schedulable entities is smaller (only the threads
within the process).

On the other hand, since the kernel is also making scheduling decisions regarding the
system resources under its control (for example, CPU(s), I/O devices, memory), decisions
that do not take thread scheduling parameters into account can result in unspecified
delays for realtime application threads, causing them to miss maximum response time
limits.

3582 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

121422

121423

121424

121425

121426

121427

121428

121429

121430

121431

121432

121433

121434

121435

121436

121437

121438

121439

121440

121441

121442

121443

121444

121445

121446

121447

121448

121449

121450

121451

121452

121453

121454

121455

121456

121457

121458

121459

121460

121461

121462

Rationale for System Interfaces General Information

• Rate Monotonic Scheduling

Rate monotonic scheduling was considered, but rejected for standardization in the context
of pthreads. A sporadic server policy is included.

• Scheduling Options

In POSIX.1-2008, the basic thread scheduling functions are defined under the threads
functionality, so that they are required of all threads implementations. However, there are
no specific scheduling policies required by this functionality to allow for conforming
thread implementations that are not targeted to realtime applications.

Specific standard scheduling policies are defined to be under the Thread Execution
Scheduling option, and they are specifically designed to support realtime applications by
providing predictable resource-sharing sequences. The name of this option was chosen to
emphasize that this functionality is defined as appropriate for realtime applications that
require simple priority-based scheduling.

It is recognized that these policies are not necessarily satisfactory for some multi-processor
implementations, and work is ongoing to address a wider range of scheduling behaviors.
The interfaces have been chosen to create abundant opportunity for future scheduling
policies to be implemented and standardized based on this interface. In order to
standardize a new scheduling policy, all that is required (from the standpoint of thread
scheduling attributes) is to define a new policy name, new members of the thread
attributes object, and functions to set these members when the scheduling policy is equal
to the new value.

Scheduling Contention Scope

In order to accommodate the requirement for realtime response, each thread has a scheduling
contention scope attribute. Threads with a system scheduling contention scope have to be
scheduled with respect to all other threads in the system. These threads are usually bound to a
single kernel entity that reflects their scheduling attributes and are directly scheduled by the
kernel.

Threads with a process scheduling contention scope need be scheduled only with respect to the
other threads in the process. These threads may be scheduled within the process onto a pool of
kernel entities. The implementation is also free to bind these threads directly to kernel entities
and let them be scheduled by the kernel. Process scheduling contention scope allows the
implementation the most flexibility and is the default if both contention scopes are supported
and none is specified.

Thus, the choice by implementors to provide one or the other (or both) of these scheduling
models is driven by the need of their supported application domains for worst-case (that is,
realtime) response, or average-case (non-realtime) response.

Scheduling Allocation Domain

The SCHED_FIFO and SCHED_RR scheduling policies take on different characteristics on a
multi-processor. Other scheduling policies are also subject to changed behavior when executed
on a multi-processor. The concept of scheduling allocation domain determines the set of
processors on which the threads of an application may run. By considering the application’s
processor scheduling allocation domain for its threads, scheduling policies can be defined in
terms of their behavior for varying processor scheduling allocation domain values. It is
conceivable that not all scheduling allocation domain sizes make sense for all scheduling
policies on all implementations. The concept of scheduling allocation domain, however, is a
useful tool for the description of multi-processor scheduling policies.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3583

121463

121464

121465

121466

121467

121468

121469

121470

121471

121472

121473

121474

121475

121476

121477

121478

121479

121480

121481

121482

121483

121484

121485

121486

121487

121488

121489

121490

121491

121492

121493

121494

121495

121496

121497

121498

121499

121500

121501

121502

121503

121504

121505

121506

121507

121508

General Information Rationale for System Interfaces

The ‘‘process control’’ approach to scheduling obtains significant performance advantages from
dynamic scheduling allocation domain sizes when it is applicable.

Non-Uniform Memory Access (NUMA) multi-processors may use a system scheduling structure
that involves reassignment of threads among scheduling allocation domains. In NUMA
machines, a natural model of scheduling is to match scheduling allocation domains to clusters of
processors. Load balancing in such an environment requires changing the scheduling allocation
domain to which a thread is assigned.

Scheduling Documentation

Implementation-provided scheduling policies need to be completely documented in order to be
useful. This documentation includes a description of the attributes required for the policy, the
scheduling interaction of threads running under this policy and all other supported policies, and
the effects of all possible values for processor scheduling allocation domain. Note that for the
implementor wishing to be minimally-compliant, it is (minimally) acceptable to define the
behavior as undefined.

Scheduling Contention Scope Attribute

The scheduling contention scope defines how threads compete for resources. Within
POSIX.1-2008, scheduling contention scope is used to describe only how threads are scheduled
in relation to one another in the system. That is, either they are scheduled against all other
threads in the system (‘‘system scope’’) or only against those threads in the process (‘‘process
scope’’). In fact, scheduling contention scope may apply to additional resources, including
virtual timers and profiling, which are not currently considered by POSIX.1-2008.

Mixed Scopes

If only one scheduling contention scope is supported, the scheduling decision is straightforward.
To perform the processor scheduling decision in a mixed scope environment, it is necessary to
map the scheduling attributes of the thread with process-wide contention scope to the same
attribute space as the thread with system-wide contention scope.

Since a conforming implementation has to support one and may support both scopes, it is useful
to discuss the effects of such choices with respect to example applications. If an implementation
supports both scopes, mixing scopes provides a means of better managing system-level (that is,
kernel-level) and library-level resources. In general, threads with system scope will require the
resources of a separate kernel entity in order to guarantee the scheduling semantics. On the
other hand, threads with process scope can share the resources of a kernel entity while
maintaining the scheduling semantics.

The application is free to create threads with dedicated kernel resources, and other threads that
multiplex kernel resources. Consider the example of a window server. The server allocates two
threads per widget: one thread manages the widget user interface (including drawing), while
the other thread takes any required application action. This allows the widget to be ‘‘active’’
while the application is computing. A screen image may be built from thousands of widgets. If
each of these threads had been created with system scope, then most of the kernel-level
resources might be wasted, since only a few widgets are active at any one time. In addition,
mixed scope is particularly useful in a window server where one thread with high priority and
system scope handles the mouse so that it tracks well. As another example, consider a database
server. For each of the hundreds or thousands of clients supported by a large server, an
equivalent number of threads will have to be created. If each of these threads were system scope,
the consequences would be the same as for the window server example above. However, the
server could be constructed so that actual retrieval of data is done by several dedicated threads.
Dedicated threads that do work for all clients frequently justify the added expense of system

3584 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

121509

121510

121511

121512

121513

121514

121515

121516

121517

121518

121519

121520

121521

121522

121523

121524

121525

121526

121527

121528

121529

121530

121531

121532

121533

121534

121535

121536

121537

121538

121539

121540

121541

121542

121543

121544

121545

121546

121547

121548

121549

121550

121551

121552

121553

121554

121555

Rationale for System Interfaces General Information

scope. If it were not permissible to mix system and process threads in the same process, this type
of solution would not be possible.

Dynamic Thread Scheduling Parameters Access

In many time-constrained applications, there is no need to change the scheduling attributes
dynamically during thread or process execution, since the general use of these attributes is to
reflect directly the time constraints of the application. Since these time constraints are generally
imposed to meet higher-level system requirements, such as accuracy or availability, they
frequently should remain unchanged during application execution.

However, there are important situations in which the scheduling attributes should be changed.
Generally, this will occur when external environmental conditions exist in which the time
constraints change. Consider, for example, a space vehicle major mode change, such as the
change from ascent to descent mode, or the change from the space environment to the
atmospheric environment. In such cases, the frequency with which many of the sensors or
actuators need to be read or written will change, which will necessitate a priority change. In
other cases, even the existence of a time constraint might be temporary, necessitating not just a
priority change, but also a policy change for ongoing threads or processes. For this reason, it is
critical that the interface should provide functions to change the scheduling parameters
dynamically, but, as with many of the other realtime functions, it is important that applications
use them properly to avoid the possibility of unnecessarily degrading performance.

In providing functions for dynamically changing the scheduling behavior of threads, there were
two options: provide functions to get and set the individual scheduling parameters of threads,
or provide a single interface to get and set all the scheduling parameters for a given thread
simultaneously. Both approaches have merit. Access functions for individual parameters allow
simpler control of thread scheduling for simple thread scheduling parameters. However, a single
function for setting all the parameters for a given scheduling policy is required when first setting
that scheduling policy. Since the single all-encompassing functions are required, it was decided
to leave the interface as minimal as possible. Note that simpler functions (such as
pthread_setprio() for threads running under the priority-based schedulers) can be easily defined
in terms of the all-encompassing functions.

If the pthread_setschedparam() function executes successfully, it will have set all of the scheduling
parameter values indicated in param; otherwise, none of the scheduling parameters will have
been modified. This is necessary to ensure that the scheduling of this and all other threads
continues to be consistent in the presence of an erroneous scheduling parameter.

The [EPERM] error value is included in the list of possible pthread_setschedparam() error returns
as a reflection of the fact that the ability to change scheduling parameters increases risks to the
implementation and application performance if the scheduling parameters are changed
improperly. For this reason, and based on some existing practice, it was felt that some
implementations would probably choose to define specific permissions for changing either a
thread’s own or another thread’s scheduling parameters. POSIX.1-2008 does not include
portable methods for setting or retrieving permissions, so any such use of permissions is
completely unspecified.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3585

121556

121557

121558

121559

121560

121561

121562

121563

121564

121565

121566

121567

121568

121569

121570

121571

121572

121573

121574

121575

121576

121577

121578

121579

121580

121581

121582

121583

121584

121585

121586

121587

121588

121589

121590

121591

121592

121593

121594

121595

121596

General Information Rationale for System Interfaces

Mutex Initialization Scheduling Attributes

In a priority-driven environment, a direct use of traditional primitives like mutexes and
condition variables can lead to unbounded priority inversion, where a higher priority thread can
be blocked by a lower priority thread, or set of threads, for an unbounded duration of time. As a
result, it becomes impossible to guarantee thread deadlines. Priority inversion can be bounded
and minimized by the use of priority inheritance protocols. This allows thread deadlines to be
guaranteed even in the presence of synchronization requirements.

Two useful but simple members of the family of priority inheritance protocols are the basic
priority inheritance protocol and the priority ceiling protocol emulation. Under the Basic
Priority Inheritance protocol (governed by the Non-Robust Mutex Priority Inheritance option), a
thread that is blocking higher priority threads executes at the priority of the highest priority
thread that it blocks. This simple mechanism allows priority inversion to be bounded by the
duration of critical sections and makes timing analysis possible.

Under the Priority Ceiling Protocol Emulation protocol (governed by the Thread Priority
Protection option), each mutex has a priority ceiling, usually defined as the priority of the
highest priority thread that can lock the mutex. When a thread is executing inside critical
sections, its priority is unconditionally increased to the highest of the priority ceilings of all the
mutexes owned by the thread. This protocol has two very desirable properties in uni-processor
systems. First, a thread can be blocked by a lower priority thread for at most the duration of one
single critical section. Furthermore, when the protocol is correctly used in a single processor, and
if threads do not become blocked while owning mutexes, mutual deadlocks are prevented.

The priority ceiling emulation can be extended to multiple processor environments, in which
case the values of the priority ceilings will be assigned depending on the kind of mutex that is
being used: local to only one processor, or global, shared by several processors. Local priority
ceilings will be assigned the usual way, equal to the priority of the highest priority thread that
may lock that mutex. Global priority ceilings will usually be assigned a priority level higher
than all the priorities assigned to any of the threads that reside in the involved processors to
avoid the effect called remote blocking.

Change the Priority Ceiling of a Mutex

In order for the priority protect protocol to exhibit its desired properties of bounding priority
inversion and avoidance of deadlock, it is critical that the ceiling priority of a mutex be the same
as the priority of the highest thread that can ever hold it, or higher. Thus, if the priorities of the
threads using such mutexes never change dynamically, there is no need ever to change the
priority ceiling of a mutex.

However, if a major system mode change results in an altered response time requirement for one
or more application threads, their priority has to change to reflect it. It will occasionally be the
case that the priority ceilings of mutexes held also need to change. While changing priority
ceilings should generally be avoided, it is important that POSIX.1-2008 provide these interfaces
for those cases in which it is necessary.

B.2.9.5 Thread Cancellation

Many existing threads packages have facilities for canceling an operation or canceling a thread.
These facilities are used for implementing user requests (such as the CANCEL button in a
window-based application), for implementing OR parallelism (for example, telling the other
threads to stop working once one thread has found a forced mate in a parallel chess program), or
for implementing the ABORT mechanism in Ada.

POSIX programs traditionally have used the signal mechanism combined with either longjmp()

3586 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

121597

121598

121599

121600

121601

121602

121603

121604

121605

121606

121607

121608

121609

121610

121611

121612

121613

121614

121615

121616

121617

121618

121619

121620

121621

121622

121623

121624

121625

121626

121627

121628

121629

121630

121631

121632

121633

121634

121635

121636

121637

121638

121639

121640

121641

121642

Rationale for System Interfaces General Information

or polling to cancel operations. Many POSIX programmers have trouble using these facilities to
solve their problems efficiently in a single-threaded process. With the introduction of threads,
these solutions become even more difficult to use.

The main issues with implementing a cancellation facility are specifying the operation to be
canceled, cleanly releasing any resources allocated to that operation, controlling when the target
notices that it has been canceled, and defining the interaction between asynchronous signals and
cancellation.

Specifying the Operation to Cancel

Consider a thread that calls through five distinct levels of program abstraction and then, inside
the lowest-level abstraction, calls a function that suspends the thread. (An abstraction boundary
is a layer at which the client of the abstraction sees only the service being provided and can
remain ignorant of the implementation. Abstractions are often layered, each level of abstraction
being a client of the lower-level abstraction and implementing a higher-level abstraction.)
Depending on the semantics of each abstraction, one could imagine wanting to cancel only the
call that causes suspension, only the bottom two levels, or the operation being done by the entire
thread. Canceling operations at a finer grain than the entire thread is difficult because threads
are active and they may be run in parallel on a multi-processor. By the time one thread can make
a request to cancel an operation, the thread performing the operation may have completed that
operation and gone on to start another operation whose cancellation is not desired. Thread IDs
are not reused until the thread has exited, and either it was created with the Attr detachstate
attribute set to PTHREAD_CREATE_DETACHED or the pthread_join() or pthread_detach()
function has been called for that thread. Consequently, a thread cancellation will never be
misdirected when the thread terminates. For these reasons, the canceling of operations is done at
the granularity of the thread. Threads are designed to be inexpensive enough so that a separate
thread may be created to perform each separately cancelable operation; for example, each
possibly long running user request.

For cancellation to be used in existing code, cancellation scopes and handlers will have to be
established for code that needs to release resources upon cancellation, so that it follows the
programming discipline described in the text.

A Special Signal Versus a Special Interface

Two different mechanisms were considered for providing the cancellation interfaces. The first
was to provide an interface to direct signals at a thread and then to define a special signal that
had the required semantics. The other alternative was to use a special interface that delivered the
correct semantics to the target thread.

The solution using signals produced a number of problems. It required the implementation to
provide cancellation in terms of signals whereas a perfectly valid (and possibly more efficient)
implementation could have both layered on a low-level set of primitives. There were so many
exceptions to the special signal (it cannot be used with kill(), no POSIX.1 interfaces can be used
with it) that it was clearly not a valid signal. Its semantics on delivery were also completely
different from any existing POSIX.1 signal. As such, a special interface that did not mandate the
implementation and did not confuse the semantics of signals and cancellation was felt to be the
better solution.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3587

121643

121644

121645

121646

121647

121648

121649

121650

121651

121652

121653

121654

121655

121656

121657

121658

121659

121660

121661

121662

121663

121664

121665

121666

121667

121668

121669

121670

121671

121672

121673

121674

121675

121676

121677

121678

121679

121680

121681

121682

121683

121684

General Information Rationale for System Interfaces

Races Between Cancellation and Resuming Execution

Due to the nature of cancellation, there is generally no synchronization between the thread
requesting the cancellation of a blocked thread and events that may cause that thread to resume
execution. For this reason, and because excess serialization hurts performance, when both an
event that a thread is waiting for has occurred and a cancellation request has been made and
cancellation is enabled, POSIX.1-2008 explicitly allows the implementation to choose between
returning from the blocking call or acting on the cancellation request.

Interaction of Cancellation with Asynchronous Signals

A typical use of cancellation is to acquire a lock on some resource and to establish a cancellation
cleanup handler for releasing the resource when and if the thread is canceled.

A correct and complete implementation of cancellation in the presence of asynchronous signals
requires considerable care. An implementation has to push a cancellation cleanup handler on the
cancellation cleanup stack while maintaining the integrity of the stack data structure. If an
asynchronously-generated signal is posted to the thread during a stack operation, the signal
handler cannot manipulate the cancellation cleanup stack. As a consequence, asynchronous
signal handlers may not cancel threads or otherwise manipulate the cancellation state of a
thread. Threads may, of course, be canceled by another thread that used a sigwait() function to
wait synchronously for an asynchronous signal.

In order for cancellation to function correctly, it is required that asynchronous signal handlers
not change the cancellation state. This requires that some elements of existing practice, such as
using longjmp() to exit from an asynchronous signal handler implicitly, be prohibited in cases
where the integrity of the cancellation state of the interrupt thread cannot be ensured.

Thread Cancellation Overview

• Cancelability States

The three possible cancelability states (disabled, deferred, and asynchronous) are encoded
into two separate bits ((disable, enable) and (deferred, asynchronous)) to allow them to be
changed and restored independently. For instance, short code sequences that will not block
sometimes disable cancelability on entry and restore the previous state upon exit.
Likewise, long or unbounded code sequences containing no convenient explicit
cancellation points will sometimes set the cancelability type to asynchronous on entry and
restore the previous value upon exit.

• Cancellation Points

Cancellation points are points inside of certain functions where a thread has to act on any
pending cancellation request when cancelability is enabled. For functions in the ‘‘shall
occur ’’ list, a cancellation check must be performed on every call regardless of whether,
absent the cancellation, the call would have blocked. For functions in the ‘‘may occur’’ list,
a cancellation check may be performed on some calls but not others; i.e., whether or not a
cancellation point occurs when one of these functions is being executed can depend on
current conditions.

The idea was considered of allowing implementations to define whether blocking calls
such as read() should be cancellation points. It was decided that it would adversely affect
the design of conforming applications if blocking calls were not cancellation points
because threads could be left blocked in an uncancelable state.

There are several important blocking routines that are specifically not made cancellation
points:

3588 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

121685

121686

121687

121688

121689

121690

121691

121692

121693

121694

121695

121696

121697

121698

121699

121700

121701

121702

121703

121704

121705

121706

121707

121708

121709

121710

121711

121712

121713

121714

121715

121716

121717

121718

121719

121720

121721

121722

121723

121724

121725

121726

121727

121728

121729

Rationale for System Interfaces General Information

— pthread_mutex_lock()

If pthread_mutex_lock() were a cancellation point, every routine that called it would
also become a cancellation point (that is, any routine that touched shared state would
automatically become a cancellation point). For example, malloc(), free(), and rand()
would become cancellation points under this scheme. Having too many cancellation
points makes programming very difficult, leading to either much disabling and
restoring of cancelability or much difficulty in trying to arrange for reliable cleanup
at every possible place.

Since pthread_mutex_lock() is not a cancellation point, threads could result in being
blocked uninterruptibly for long periods of time if mutexes were used as a general
synchronization mechanism. As this is normally not acceptable, mutexes should only
be used to protect resources that are held for small fixed lengths of time where not
being able to be canceled will not be a problem. Resources that need to be held
exclusively for long periods of time should be protected with condition variables.

— pthread_barrier_wait()

Canceling a barrier wait will render a barrier unusable. Similar to a barrier timeout
(which the standard developers rejected), there is no way to guarantee the
consistency of a barrier’s internal data structures if a barrier wait is canceled.

— pthread_spin_lock()

As with mutexes, spin locks should only be used to protect resources that are held for
small fixed lengths of time where not being cancelable will not be a problem.

Every library routine should specify whether or not it includes any cancellation points.
Typically, only those routines that may block or compute indefinitely need to include
cancellation points.

Correctly coded routines only reach cancellation points after having set up a cancellation
cleanup handler to restore invariants if the thread is canceled at that point. Being
cancelable only at specified cancellation points allows programmers to keep track of
actions needed in a cancellation cleanup handler more easily. A thread should only be
made asynchronously cancelable when it is not in the process of acquiring or releasing
resources or otherwise in a state from which it would be difficult or impossible to recover.

• Thread Cancellation Cleanup Handlers

The cancellation cleanup handlers provide a portable mechanism, easy to implement, for
releasing resources and restoring invariants. They are easier to use than signal handlers
because they provide a stack of cancellation cleanup handlers rather than a single handler,
and because they have an argument that can be used to pass context information to the
handler.

The alternative to providing these simple cancellation cleanup handlers (whose only use is
for cleaning up when a thread is canceled) is to define a general exception package that
could be used for handling and cleaning up after hardware traps and software-detected
errors. This was too far removed from the charter of providing threads to handle
asynchrony. However, it is an explicit goal of POSIX.1-2008 to be compatible with existing
exception facilities and languages having exceptions.

The interaction of this facility and other procedure-based or language-level exception
facilities is unspecified in this version of POSIX.1-2008. However, it is intended that it be
possible for an implementation to define the relationship between these cancellation
cleanup handlers and Ada, C++, or other language-level exception handling facilities.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3589

121730

121731

121732

121733

121734

121735

121736

121737

121738

121739

121740

121741

121742

121743

121744

121745

121746

121747

121748

121749

121750

121751

121752

121753

121754

121755

121756

121757

121758

121759

121760

121761

121762

121763

121764

121765

121766

121767

121768

121769

121770

121771

121772

121773

121774

121775

General Information Rationale for System Interfaces

It was suggested that the cancellation cleanup handlers should also be called when the
process exits or calls the exec function. This was rejected partly due to the performance
problem caused by having to call the cancellation cleanup handlers of every thread before
the operation could continue. The other reason was that the only state expected to be
cleaned up by the cancellation cleanup handlers would be the intraprocess state. Any
handlers that are to clean up the interprocess state would be registered with atexit(). There
is the orthogonal problem that the exec functions do not honor the atexit() handlers, but
resolving this is beyond the scope of POSIX.1-2008.

• Async-Cancel Safety

A function is said to be async-cancel-safe if it is written in such a way that entering the
function with asynchronous cancelability enabled will not cause any invariants to be
violated, even if a cancellation request is delivered at any arbitrary instruction. Functions
that are async-cancel-safe are often written in such a way that they need to acquire no
resources for their operation and the visible variables that they may write are strictly
limited.

Any routine that gets a resource as a side-effect cannot be made async-cancel-safe (for
example, malloc()). If such a routine were called with asynchronous cancelability enabled,
it might acquire the resource successfully, but as it was returning to the client, it could act
on a cancellation request. In such a case, the application would have no way of knowing
whether the resource was acquired or not.

Indeed, because many interesting routines cannot be made async-cancel-safe, most library
routines in general are not async-cancel-safe. Every library routine should specify whether
or not it is async-cancel safe so that programmers know which routines can be called from
code that is asynchronously cancelable.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/8 is applied, adding the pselect() function
to the list of functions with cancellation points.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/5 is applied, adding the fdatasync()
function into the table of functions that shall have cancellation points.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/6 is applied, adding the numerous
functions into the table of functions that may have cancellation points.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/7 is applied, clarifying the requirements
in Thread Cancellation Cleanup Handlers.

B.2.9.6 Thread Read-Write Locks

Background

Read-write locks are often used to allow parallel access to data on multi-processors, to avoid
context switches on uni-processors when multiple threads access the same data, and to protect
data structures that are frequently accessed (that is, read) but rarely updated (that is, written).
The in-core representation of a file system directory is a good example of such a data structure.
One would like to achieve as much concurrency as possible when searching directories, but limit
concurrent access when adding or deleting files.

Although read-write locks can be implemented with mutexes and condition variables, such
implementations are significantly less efficient than is possible. Therefore, this synchronization
primitive is included in POSIX.1-2008 for the purpose of allowing more efficient
implementations in multi-processor systems.

3590 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

121776

121777

121778

121779

121780

121781

121782

121783

121784

121785

121786

121787

121788

121789

121790

121791

121792

121793

121794

121795

121796

121797

121798

121799

121800

121801

121802

121803

121804

121805

121806

121807

121808

121809

121810

121811

121812

121813

121814

121815

121816

121817

121818

121819

Rationale for System Interfaces General Information

Queuing of Waiting Threads

The pthread_rwlock_unlock() function description states that one writer or one or more readers
must acquire the lock if it is no longer held by any thread as a result of the call. However, the
function does not specify which thread(s) acquire the lock, unless the Thread Execution
Scheduling option is supported.

The standard developers considered the issue of scheduling with respect to the queuing of
threads blocked on a read-write lock. The question turned out to be whether POSIX.1-2008
should require priority scheduling of read-write locks for threads whose execution scheduling
policy is priority-based (for example, SCHED_FIFO or SCHED_RR). There are tradeoffs
between priority scheduling, the amount of concurrency achievable among readers, and the
prevention of writer and/or reader starvation.

For example, suppose one or more readers hold a read-write lock and the following threads
request the lock in the listed order:

pthread_rwlock_wrlock() - Low priority thread writer_a
pthread_rwlock_rdlock() - High priority thread reader_a
pthread_rwlock_rdlock() - High priority thread reader_b
pthread_rwlock_rdlock() - High priority thread reader_c

When the lock becomes available, should writer_a block the high priority readers? Or, suppose a
read-write lock becomes available and the following are queued:

pthread_rwlock_rdlock() - Low priority thread reader_a
pthread_rwlock_rdlock() - Low priority thread reader_b
pthread_rwlock_rdlock() - Low priority thread reader_c
pthread_rwlock_wrlock() - Medium priority thread writer_a
pthread_rwlock_rdlock() - High priority thread reader_d

If priority scheduling is applied then reader_d would acquire the lock and writer_a would block
the remaining readers. But should the remaining readers also acquire the lock to increase
concurrency? The solution adopted takes into account that when the Thread Execution
Scheduling option is supported, high priority threads may in fact starve low priority threads
(the application developer is responsible in this case for designing the system in such a way that
this starvation is avoided). Therefore, POSIX.1-2008 specifies that high priority readers take
precedence over lower priority writers. However, to prevent writer starvation from threads of
the same or lower priority, writers take precedence over readers of the same or lower priority.

Priority inheritance mechanisms are non-trivial in the context of read-write locks. When a high
priority writer is forced to wait for multiple readers, for example, it is not clear which subset of
the readers should inherit the writer’s priority. Furthermore, the internal data structures that
record the inheritance must be accessible to all readers, and this implies some sort of
serialization that could negate any gain in parallelism achieved through the use of multiple
readers in the first place. Finally, existing practice does not support the use of priority
inheritance for read-write locks. Therefore, no specification of priority inheritance or priority
ceiling is attempted. If reliable priority-scheduled synchronization is absolutely required, it can
always be obtained through the use of mutexes.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3591

121820

121821

121822

121823

121824

121825

121826

121827

121828

121829

121830

121831

121832

121833

121834

121835

121836

121837

121838

121839

121840

121841

121842

121843

121844

121845

121846

121847

121848

121849

121850

121851

121852

121853

121854

121855

121856

121857

121858

121859

121860

General Information Rationale for System Interfaces

Comparison to fcntl() Locks

The read-write locks and the fcntl() locks in POSIX.1-2008 share a common goal: increasing
concurrency among readers, thus increasing throughput and decreasing delay.

However, the read-write locks have two features not present in the fcntl() locks. First, under
priority scheduling, read-write locks are granted in priority order. Second, also under priority
scheduling, writer starvation is prevented by giving writers preference over readers of equal or
lower priority.

Also, read-write locks can be used in systems lacking a file system, such as those conforming to
the minimal realtime system profile of IEEE Std 1003.13-1998.

History of Resolution Issues

Based upon some balloting objections, early drafts specified the behavior of threads waiting on a
read-write lock during the execution of a signal handler, as if the thread had not called the lock
operation. However, this specified behavior would require implementations to establish
internal signal handlers even though this situation would be rare, or never happen for many
programs. This would introduce an unacceptable performance hit in comparison to the little
additional functionality gained. Therefore, the behavior of read-write locks and signals was
reverted back to its previous mutex-like specification.

B.2.9.7 Thread Interactions with Regular File Operations

There is no additional rationale provided for this section.

B.2.9.8 Use of Application-Managed Thread Stacks

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/8 is applied, adding this new section. It
was added to make it clear that the current standard does not allow an application to determine
when a stack can be reclaimed. This may be addressed in a future version.

B.2.10 Sockets

The base document for the sockets interfaces in POSIX.1-2008 is the XNS, Issue 5.2 specification.
This was primarily chosen as it aligns with IPv6. Additional material has been added from
IEEE Std 1003.1g-2000, notably socket concepts, raw sockets, the pselect() function, the
sockatmark() function, and the <sys/select.h> header.

B.2.10.1 Address Families

There is no additional rationale provided for this section.

B.2.10.2 Addressing

There is no additional rationale provided for this section.

3592 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

121861

121862

121863

121864

121865

121866

121867

121868

121869

121870

121871

121872

121873

121874

121875

121876

121877

121878

121879

121880

121881

121882

121883

121884

121885

121886

121887

121888

121889

121890

121891

121892

Rationale for System Interfaces General Information

B.2.10.3 Protocols

There is no additional rationale provided for this section.

B.2.10.4 Routing

There is no additional rationale provided for this section.

B.2.10.5 Interfaces

There is no additional rationale provided for this section.

B.2.10.6 Socket Types

The type socklen_t was invented to cover the range of implementations seen in the field. The
intent of socklen_t is to be the type for all lengths that are naturally bounded in size; that is, that
they are the length of a buffer which cannot sensibly become of massive size: network addresses,
host names, string representations of these, ancillary data, control messages, and socket options
are examples. Truly boundless sizes are represented by size_t as in read(), write(), and so on.

All socklen_t types were originally (in BSD UNIX) of type int. During the development of
POSIX.1-2008, it was decided to change all buffer lengths to size_t, which appears at face value
to make sense. When dual mode 32/64-bit systems came along, this choice unnecessarily
complicated system interfaces because size_t (with long) was a different size under ILP32 and
LP64 models. Reverting to int would have happened except that some implementations had
already shipped 64-bit-only interfaces. The compromise was a type which could be defined to be
any size by the implementation: socklen_t.

B.2.10.7 Socket I/O Mode

There is no additional rationale provided for this section.

B.2.10.8 Socket Owner

There is no additional rationale provided for this section.

B.2.10.9 Socket Queue Limits

There is no additional rationale provided for this section.

B.2.10.10 Pending Error

There is no additional rationale provided for this section.

B.2.10.11 Socket Receive Queue

There is no additional rationale provided for this section.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3593

121893

121894

121895

121896

121897

121898

121899

121900

121901

121902

121903

121904

121905

121906

121907

121908

121909

121910

121911

121912

121913

121914

121915

121916

121917

121918

121919

121920

121921

General Information Rationale for System Interfaces

B.2.10.12 Socket Out-of-Band Data State

There is no additional rationale provided for this section.

B.2.10.13 Connection Indication Queue

There is no additional rationale provided for this section.

B.2.10.14 Signals

There is no additional rationale provided for this section.

B.2.10.15 Asynchronous Errors

There is no additional rationale provided for this section.

B.2.10.16 Use of Options

There is no additional rationale provided for this section.

B.2.10.17 Use of Sockets for Local UNIX Connections

There is no additional rationale provided for this section.

B.2.10.18 Use of Sockets over Internet Protocols

A raw socket allows privileged users direct access to a protocol; for example, raw access to the
IP and ICMP protocols is possible through raw sockets. Raw sockets are intended for
knowledgeable applications that wish to take advantage of some protocol feature not directly
accessible through the other sockets interfaces.

B.2.10.19 Use of Sockets over Internet Protocols Based on IPv4

There is no additional rationale provided for this section.

B.2.10.20 Use of Sockets over Internet Protocols Based on IPv6

The Open Group Base Resolution bwg2001-012 is applied, clarifying that IPv6 implementations
are required to support use of AF_INET6 sockets over IPv4.

B.2.11 Tracing

The organization of the tracing rationale differs from the traditional rationale in that this tracing
rationale text is written against the trace interface as a whole, rather than against the individual
components of the trace interface or the normative section in which those components are
defined. Therefore the sections below do not parallel the sections of normative text in
POSIX.1-2008.

3594 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

121922

121923

121924

121925

121926

121927

121928

121929

121930

121931

121932

121933

121934

121935

121936

121937

121938

121939

121940

121941

121942

121943

121944

121945

121946

121947

121948

121949

Rationale for System Interfaces General Information

B.2.11.1 Objectives

The intended uses of tracing are application-system debugging during system development, as a
‘‘flight recorder ’’ for maintenance of fielded systems, and as a performance measurement tool.
In all of these intended uses, the vendor-supplied computer system and its software are, for this
discussion, assumed error-free; the intent being to debug the user-written and/or third-party
application code, and their interactions. Clearly, problems with the vendor-supplied system and
its software will be uncovered from time to time, but this is a byproduct of the primary activity,
debugging user code.

Another need for defining a trace interface in POSIX stems from the objective to provide an
efficient portable way to perform benchmarks. Existing practice shows that such interfaces are
commonly used in a variety of systems but with little commonality. As part of the benchmarking
needs, two aspects within the trace interface must be considered.

The first, and perhaps more important one, is the qualitative aspect.

The second is the quantitative aspect.

• Qualitative Aspect

To better understand this aspect, let us consider an example. Suppose that you want to
organize a number of actions to be performed during the day. Some of these actions are
known at the beginning of the day. Some others, which may be more or less important,
will be triggered by reading your mail. During the day you will make some phone calls
and synchronously receive some more information. Finally you will receive asynchronous
phone calls that also will trigger actions. If you, or somebody else, examines your day at
work, you, or he, can discover that you have not efficiently organized your work. For
instance, relative to the phone calls you made, would it be preferable to make some of
these early in the morning? Or to delay some others until the end of the day? Relative to
the phone calls you have received, you might find that somebody you called in the
morning has called you 10 times while you were performing some important work. To
examine, afterwards, your day at work, you record in sequence all the trace events relative
to your work. This should give you a chance of organizing your next day at work.

This is the qualitative aspect of the trace interface. The user of a system needs to keep a
trace of particular points the application passes through, so that he can eventually make
some changes in the application and/or system configuration, to give the application a
chance of running more efficiently.

• Quantitative Aspect

This aspect concerns primarily realtime applications, where missed deadlines can be
undesirable. Although there are, in POSIX.1-2008, some interfaces useful for such
applications (timeouts, execution time monitoring, and so on), there are no APIs to aid in
the tuning of a realtime application’s behavior (timespec in timeouts, length of message
queues, duration of driver interrupt service routine, and so on). The tuning of an
application needs a means of recording timestamped important trace events during
execution in order to analyze offline, and eventually, to tune some realtime features
(redesign the system with less functionalities, readjust timeouts, redesign driver interrupts,
and so on).

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3595

121950

121951

121952

121953

121954

121955

121956

121957

121958

121959

121960

121961

121962

121963

121964

121965

121966

121967

121968

121969

121970

121971

121972

121973

121974

121975

121976

121977

121978

121979

121980

121981

121982

121983

121984

121985

121986

121987

121988

121989

121990

121991

General Information Rationale for System Interfaces

Detailed Objectives

Objectives were defined to build the trace interface and are kept for historical interest. Although
some objectives are not fully respected in this trace interface, the concept of the POSIX trace
interface assumes the following points:

1. It must be possible to trace both system and user trace events concurrently.

2. It must be possible to trace per-process trace events and also to trace system trace events
which are unrelated to any particular process. A per-process trace event is either user-
initiated or system-initiated.

3. It must be possible to control tracing on a per-process basis from either inside or outside
the process.

4. It must be possible to control tracing on a per-thread basis from inside the enclosing
process.

5. Trace points must be controllable by trace event type ID from inside and outside of the
process. Multiple trace points can have the same trace event type ID, and will be
controlled jointly.

6. Recording of trace events is dependent on both trace event type ID and the
process/thread. Both must be enabled in order to record trace events. System trace events
may or may not be handled differently.

7. The API must not mandate the ability to control tracing for more than one process at the
same time.

8. There is no objective for trace control on anything bigger than a process; for example,
group or session.

9. Trace propagation and control:

a. Trace propagation across fork() is optional; the default is to not trace a child
process.

b. Trace control must span pthread_create() operations; that is, if a process is being
traced, any thread will be traced as well if this thread allows tracing. The default is
to allow tracing.

10. Trace control must not span exec or posix_spawn() operations.

11. A triggering API is not required. The triggering API is the ability to command or stop
tracing based on the occurrence of a specific trace event other than a
POSIX_TRACE_START trace event or a POSIX_TRACE_STOP trace event.

12. Trace log entries must have timestamps of implementation-defined resolution.
Implementations are exhorted to support at least microsecond resolution. When a trace
log entry is retrieved, it must have timestamp, PC address, PID, and TID of the entity that
generated the trace event.

13. Independently developed code should be able to use trace facilities without coordination
and without conflict.

14. Even if the trace points in the trace calls are not unique, the trace log entries (after any
processing) must be uniquely identified as to trace point.

15. There must be a standard API to read the trace stream.

3596 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

121992

121993

121994

121995

121996

121997

121998

121999

122000

122001

122002

122003

122004

122005

122006

122007

122008

122009

122010

122011

122012

122013

122014

122015

122016

122017

122018

122019

122020

122021

122022

122023

122024

122025

122026

122027

122028

122029

122030

122031

122032

Rationale for System Interfaces General Information

16. The format of the trace stream and the trace log is opaque and unspecified.

17. It must be possible to read a completed trace, if recorded on some suitable non-volatile
storage, even subsequent to a power cycle or subsequent cold boot of the system.

18. Support of analysis of a trace log while it is being formed is implementation-defined.

19. The API must allow the application to write trace stream identification information into
the trace stream and to be able to retrieve it, without it being overwritten by trace entries,
even if the trace stream is full.

20. It must be possible to specify the destination of trace data produced by trace events.

21. It must be possible to have different trace streams, and for the tracing enabled by one
trace stream to be completely independent of the tracing of another trace stream.

22. It must be possible to trace events from threads in different CPUs.

23. The API must support one or more trace streams per-system, and one or more trace
streams per-process, up to an implementation-defined set of per-system and per-process
maximums.

24. It must be possible to determine the order in which the trace events happened, without
necessarily depending on the clock, up to an implementation-defined time resolution.

25. For performance reasons, the trace event point call(s) must be implementable as a macro
(see the ISO POSIX-1: 1996 standard, 1.3.4, Statement 2).

26. POSIX.1-2008 must not define the trace points which a conforming system must
implement, except for trace points used in the control of tracing.

27. The APIs must be thread-safe, and trace points should be lock-free (that is, not require a
lock to gain exclusive access to some resource).

28. The user-provided information associated with a trace event is variable-sized, up to some
maximum size.

29. Bounds on record and trace stream sizes:

a. The API must permit the application to declare the upper bounds on the length of
an application data record. The system must return the limit it used. The limit used
may be smaller than requested.

b. The API must permit the application to declare the upper bounds on the size of
trace streams. The system must return the limit it used. The limit used may be
different, either larger or smaller, than requested.

30. The API must be able to pass any fundamental data type, and a structured data type
composed only of fundamental types. The API must be able to pass data by reference,
given only as an address and a length. Fundamental types are the POSIX.1 types (see the
<sys/types.h> header) plus those defined in the ISO C standard.

31. The API must apply the POSIX notions of ownership and permission to recorded trace
data, corresponding to the sources of that data.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3597

122033

122034

122035

122036

122037

122038

122039

122040

122041

122042

122043

122044

122045

122046

122047

122048

122049

122050

122051

122052

122053

122054

122055

122056

122057

122058

122059

122060

122061

122062

122063

122064

122065

122066

122067

122068

122069

General Information Rationale for System Interfaces

Comments on Objectives

Note: In the following comments, numbers in square brackets refer to the above objectives.

It is necessary to be able to obtain a trace stream for a complete activity. Thus there is a
requirement to be able to trace both application and system trace events. A per-process trace
event is either user-initiated, like the write() function, or system-initiated, like a timer expiration.
There is also a need to be able to trace the activity of an entire process even when it has threads
in multiple CPUs. To avoid excess trace activity, it is necessary to be able to control tracing on a
trace event type basis.
[Objectives 1,2,5,22]

There is a need to be able to control tracing on a per-process basis, both from inside and outside
the process; that is, a process can start a trace activity on itself or any other process. There is also
the perceived need to allow the definition of a maximum number of trace streams per system.
[Objectives 3,23]

From within a process, it is necessary to be able to control tracing on a per-thread basis. This
provides an additional filtering capability to keep the amount of traced data to a minimum. It
also allows for less ambiguity as to the origin of trace events. It is recognized that thread-level
control is only valid from within the process itself. It is also desirable to know the maximum
number of trace streams per process that can be started. The API should not require thread
synchronization or mandate priority inversions that would cause the thread to block. However,
the API must be thread-safe.
[Objectives 4,23,24,27]

There was no perceived objective to control tracing on anything larger than a process; for
example, a group or session. Also, the ability to start or stop a trace activity on multiple
processes atomically may be very difficult or cumbersome in some implementations.
[Objectives 6,8]

It is also necessary to be able to control tracing by trace event type identifier, sometimes called a
trace hook ID. However, there is no mandated set of system trace events, since such trace points
are implementation-defined. The API must not require from the operating system facilities that
are not standard.
[Objectives 6,26]

Trace control must span fork() and pthread_create(). If not, there will be no way to ensure that an
application’s activity is entirely traced. The newly forked child would not be able to turn on its
tracing until after it obtained control after the fork, and trace control externally would be even
more problematic.
[Objective 9]

Since exec and posix_spawn() represent a complete change in the execution of a task (a new
program), trace control need not persist over an exec or posix_spawn().
[Objective 10]

Where trace activities are started on multiple processes, these trace activities should not interfere
with each other.
[Objective 21]

There is no need for a triggering objective, primarily for performance reasons; see also Section
B.2.11.8 (on page 3618), rationale on triggering.
[Objective 11]

It must be possible to determine the origin of each traced event. The process and thread
identifiers for each trace event are needed. Also there was a perceived need for a user-specifiable
origin, but it was felt that this would create too much overhead.
[Objectives 12,14]

3598 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

122070

122071

122072

122073

122074

122075

122076

122077

122078

122079

122080

122081

122082

122083

122084

122085

122086

122087

122088

122089

122090

122091

122092

122093

122094

122095

122096

122097

122098

122099

122100

122101

122102

122103

122104

122105

122106

122107

122108

122109

122110

122111

122112

122113

122114

122115

122116

122117

Rationale for System Interfaces General Information

An allowance must be made for trace points to come embedded in software components from
several different sources and vendors without requiring coordination.
[Objective 13]

There is a requirement to be able to uniquely identify trace points that may have the same trace
stream identifier. This is only necessary when a trace report is produced.
[Objectives 12,14]

Tracing is a very performance-sensitive activity, and will therefore likely be implemented at a
low level within the system. Hence the interface must not mandate any particular buffering or
storage method. Therefore, a standard API is needed to read a trace stream. Also the interface
must not mandate the format of the trace data, and the interface must not assume a trace storage
method. Due to the possibility of a monolithic kernel and the possible presence of multiple
processes capable of running trace activities, the two kinds of trace events may be stored in two
separate streams for performance reasons. A mandatory dump mechanism, common in some
existing practice, has been avoided to allow the implementation of this set of functions on small
realtime profiles for which the concept of a file system is not defined. The trace API calls should
be implemented as macros.
[Objectives 15,16,25,30]

Since a trace facility is a valuable service tool, the output (or log) of a completed trace stream
that is written to permanent storage must be readable on other systems of the type that
produced the trace log. Note that there is no objective to be able to interpret a trace log that was
not successfully completed.
[Objectives 17,18,19]

For trace streams written to permanent storage, a way to specify the destination of the trace
stream is needed.
[Objective 20]

There is a requirement to be able to depend on the ordering of trace events up to some
implementation-defined time interval. For example, there is a need to know the time period
during which, if trace events are closer together, their ordering is unspecified. Events that occur
within an interval smaller than this resolution may or may not be read back in the correct order.
[Objective 24]

The application should be able to know how much data can be traced. When trace event types
can be filtered, the application should be able to specify the approximate maximum amount of
data that will be traced in a trace event so resources can be more efficiently allocated.
[Objectives 28,29]

Users should not be able to trace data to which they would not normally have access. System
trace events corresponding to a process/thread should be associated with the ownership of that
process/thread.
[Objective 31]

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3599

122118

122119

122120

122121

122122

122123

122124

122125

122126

122127

122128

122129

122130

122131

122132

122133

122134

122135

122136

122137

122138

122139

122140

122141

122142

122143

122144

122145

122146

122147

122148

122149

122150

122151

122152

122153

122154

122155

General Information Rationale for System Interfaces

B.2.11.2 Trace Model

Introduction

The model is based on two base entities: the ‘‘Trace Stream’’ and the ‘‘Trace Log’’, and a recorded
unit called the ‘‘Trace Event’’. The possibility of using Trace Streams and Trace Logs separately
gives two use dimensions and solves both the performance issue and the full-information
system issue. In the case of a trace stream without log, specific information, although reduced in
quantity, is required to be registered, in a possibly small realtime system, with as little overhead
as possible. The Trace Log option has been added for small realtime systems. In the case of a
trace stream with log, considerable complex application-specific information needs to be
collected.

Trace Model Description

The trace model can be examined for three different subfunctions: Application Instrumentation,
Trace Operation Control, and Trace Analysis.

TRACE
STREAM

During Collection

trace
controller
program

instrumented
program

trace control
trace system

or or

Later

trace
analyzer
program

TRACE

LOG

trace point

trace point

trace point

create to

start

shutdown

prefiltered

trace events

open trace log

get next event

post filter
format

send to

co
p

y

Figure B-2 Trace System Overview: for Offline Analysis

Each of these subfunctions requires specific characteristics of the trace mechanism API.

• Application Instrumentation

When instrumenting an application, the programmer is not concerned about the future use
of the trace events in the trace stream or the trace log, the full policy of the trace stream, or
the eventual pre-filtering of trace events. But he is concerned about the correct
determination of the specific trace event type identifier, regardless of how many
independent libraries are used in the same user application; see Figure B-2 and Figure B-3
(on page 3601).

This trace API provides the necessary operations to accomplish this subfunction. This is
done by providing functions to associate a programmer-defined name with an
implementation-defined trace event type identifier (see the posix_trace_eventid_open()
function), and to send this trace event into a potential trace stream (see the
posix_trace_event() function).

3600 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

122156

122157

122158

122159

122160

122161

122162

122163

122164

122165

122166

122167

122168

122169

122170

122171

122172

122173

122174

122175

122176

122177

122178

122179

122180

122181

122182

Rationale for System Interfaces General Information

• Trace Operation Control

When controlling the recording of trace events in a trace stream, the programmer is
concerned with the correct initialization of the trace mechanism (that is, the sizing of the
trace stream), the correct retention of trace events in a permanent storage, the correct
dynamic recording of trace events, and so on.

This trace API provides the necessary material to permit this efficiently. This is done by
providing functions to initialize a new trace stream, and optionally a trace log:

— Trace Stream Attributes Object Initialization (see posix_trace_attr_init())

— Functions to Retrieve or Set Information About a Trace Stream (see
posix_trace_attr_getgenversion())

— Functions to Retrieve or Set the Behavior of a Trace Stream (see
posix_trace_attr_getinherited())

— Functions to Retrieve or Set Trace Stream Size Attributes (see
posix_trace_attr_getmaxusereventsize())

— Trace Stream Initialization, Flush, and Shutdown from a Process (see
posix_trace_create())

— Clear Trace Stream and Trace Log (see posix_trace_clear())

To select the trace event types that are to be traced:

— Manipulate Trace Event Type Identifier (see posix_trace_trid_eventid_open())

— Iterate over a Mapping of Trace Event Type (see posix_trace_eventtypelist_getnext_id())

— Manipulate Trace Event Type Sets (see posix_trace_eventset_empty())

— Set Filter of an Initialized Trace Stream (see posix_trace_set_filter())

To control the execution of an active trace stream:

— Trace Start and Stop (see posix_trace_start())

— Functions to Retrieve the Trace Attributes or Trace Statuses (see
posix_trace_get_attr())

TRACE
STREAM

instrumented
program

trace control
trace system

or or

trace controller
and analyzer
program

trace point

trace point

trace point

create

start

shutdown

prefiltered

trace events

get next event

post filter
format

send to

Figure B-3 Trace System Overview: for Online Analysis

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3601

122183

122184

122185

122186

122187

122188

122189

122190

122191

122192

122193

122194

122195

122196

122197

122198

122199

122200

122201

122202

122203

122204

122205

122206

122207

122208

122209

General Information Rationale for System Interfaces

• Trace Analysis

Once correctly recorded, on permanent storage or not, an ultimate activity consists of the
analysis of the recorded information. If the recorded data is on permanent storage, a
specific open operation is required to associate a trace stream to a trace log.

The first intent of the group was to request the presence of a system identification structure
in the trace stream attribute. This was, for the application, to allow some portable way to
process the recorded information. However, there is no requirement that the utsname
structure, on which this system identification was based, be portable from one machine to
another, so the contents of the attribute cannot be interpreted correctly by an application
conforming to POSIX.1-2008.

This modification has been incorporated and requests that some unspecified information
be recorded in the trace log in order to fail opening it if the analysis process and the
controller process were running in different types of machine, but does not request that
this information be accessible to the application. This modification has implied a
modification in the posix_trace_open() function error code returns.

This trace API provides functions to:

— Extract trace stream identification attributes (see posix_trace_attr_getgenversion())

— Extract trace stream behavior attributes (see posix_trace_attr_getinherited())

— Extract trace event, stream, and log size attributes (see
posix_trace_attr_getmaxusereventsize())

— Look up trace event type names (see posix_trace_eventid_get_name())

— Iterate over trace event type identifiers (see posix_trace_eventtypelist_getnext_id())

— Open, rewind, and close a trace log (see posix_trace_open())

— Read trace stream attributes and status (see posix_trace_get_attr())

— Read trace events (see posix_trace_getnext_event())

Due to the following two reasons:

1. The requirement that the trace system must not add unacceptable overhead to the traced
process and so that the trace event point execution must be fast

2. The traced application does not care about tracing errors

the trace system cannot return any internal error to the application. Internal error conditions can
range from unrecoverable errors that will force the active trace stream to abort, to small errors
that can affect the quality of tracing without aborting the trace stream. The group decided to
define a system trace event to report to the analysis process such internal errors. It is not the
intention of POSIX.1-2008 to require an implementation to report an internal error that corrupts
or terminates tracing operation. The implementor is free to decide which internal documented
errors, if any, the trace system is able to report.

3602 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

122210

122211

122212

122213

122214

122215

122216

122217

122218

122219

122220

122221

122222

122223

122224

122225

122226

122227

122228

122229

122230

122231

122232

122233

122234

122235

122236

122237

122238

122239

122240

122241

122242

122243

122244

122245

Rationale for System Interfaces General Information

States of a Trace Stream

create()

shutdown()

shutdown()

shutdown()

start()

stop()

start()

Non-Existent

Completed

Created

Started

Stopped

Figure B-4 Trace System Overview: States of a Trace Stream

Figure B-4 shows the different states an active trace stream passes through. After the
posix_trace_create() function call, a trace stream becomes CREATED and a trace stream is
associated for the future collection of trace events. The status of the trace stream is
POSIX_TRACE_SUSPENDED. The state becomes STARTED after a call to the posix_trace_start()
function, and the status becomes POSIX_TRACE_RUNNING. In this state, all trace events that
are not filtered out will be stored into the trace stream. After a call to posix_trace_stop(), the trace
stream becomes STOPPED (and the status POSIX_TRACE_SUSPENDED). In this state, no new
trace events will be recorded in the trace stream, but previously recorded trace events may
continue to be read.

After a call to posix_trace_shutdown(), the trace stream is in the state COMPLETED. The trace
stream no longer exists but, if the Trace Log option is supported, all the information contained in
it has been logged. If a log object has not been associated with the trace stream at the creation, it
is the responsibility of the trace controller process to not shut the trace stream down while trace
events remain to be read in the stream.

Tracing All Processes

Some implementations have a tracing subsystem with the ability to trace all processes. This is
useful to debug some types of device drivers such as those for ATM or X25 adapters. These
types of adapters are used by several independent processes, that are not issued from the same
process.

The POSIX trace interface does not define any constant or option to create a trace stream tracing
all processes. POSIX.1 does not prevent this type of implementation and an implementor is free
to add this capability. Nevertheless, the trace interface allows tracing of all the system trace
events and all the processes issued from the same process.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3603

122246

122247

122248

122249

122250

122251

122252

122253

122254

122255

122256

122257

122258

122259

122260

122261

122262

122263

122264

122265

122266

122267

122268

122269

122270

General Information Rationale for System Interfaces

If such a tracing system capability has to be implemented, when a trace stream is created, it is
recommended that a constant named POSIX_TRACE_ALLPROC be used instead of the process
identifier in the argument of the posix_trace_create() or posix_trace_create_withlog() function. A
possible value for POSIX_TRACE_ALLPROC may be −1 instead of a real process identifier.

The implementor has to be aware that there is some impact on the tracing behavior as defined in
the POSIX trace interface. For example:

• If the default value for the inheritance attribute is set to
POSIX_TRACE_CLOSE_FOR_CHILD, the implementation has to stop tracing for the child
process.

• The trace controller which is creating this type of trace stream must have the appropriate
privilege to trace all the processes.

Trace Storage

The model is based on two types of trace events: system trace events and user-defined trace
events. The internal representation of trace events is implementation-defined, and so the
implementor is free to choose the more suitable, practical, and efficient way to design the
internal management of trace events. For the timestamping operation, the model does not
impose the CLOCK_REALTIME or any other clock. The buffering allocation and operation
follow the same principle. The implementor is free to use one or more buffers to record trace
events; the interface assumes only a logical trace stream of sequentially recorded trace events.
Regarding flushing of trace events, the interface allows the definition of a trace log object which
typically can be a file. But the group was also aware of defining functions to permit the use of
this interface in small realtime systems, which may not have general file system capabilities. For
instance, the three functions posix_trace_getnext_event() (blocking),
posix_trace_timedgetnext_event() (blocking with timeout), and posix_trace_trygetnext_event() (non-
blocking) are proposed to read the recorded trace events.

The policy to be used when the trace stream becomes full also relies on common practice:

• For an active trace stream, the POSIX_TRACE_LOOP trace stream policy permits
automatic overrun (overwrite of oldest trace events) while waiting for some user-defined
condition to cause tracing to stop. By contrast, the POSIX_TRACE_UNTIL_FULL trace
stream policy requires the system to stop tracing when the trace stream is full. However, if
the trace stream that is full is at least partially emptied by a call to the posix_trace_flush()
function or by calls to the posix_trace_getnext_event() function, the trace system will
automatically resume tracing.

If the Trace Log option is supported, the operation of the POSIX_TRACE_FLUSH policy is
an extension of the POSIX_TRACE_UNTIL_FULL policy. The automatic free operation (by
flushing to the associated trace log) is added.

• If a log is associated with the trace stream and this log is a regular file, these policies also
apply for the log. One more policy, POSIX_TRACE_APPEND, is defined to allow
indefinite extension of the log. Since the log destination can be any device or pseudo-
device, the implementation may not be able to manipulate the destination as required by
POSIX.1-2008. For this reason, the behavior of the log full policy may be unspecified
depending on the trace log type.

The current trace interface does not define a service to preallocate space for a trace log file,
because this space can be preallocated by means of a call to the posix_fallocate() function.
This function could be called after the file has been opened, but before the trace stream is
created. The posix_fallocate() function ensures that any required storage for regular file data
is allocated on the file system storage media. If posix_fallocate() returns successfully,

3604 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

122271

122272

122273

122274

122275

122276

122277

122278

122279

122280

122281

122282

122283

122284

122285

122286

122287

122288

122289

122290

122291

122292

122293

122294

122295

122296

122297

122298

122299

122300

122301

122302

122303

122304

122305

122306

122307

122308

122309

122310

122311

122312

122313

122314

122315

122316

122317

Rationale for System Interfaces General Information

subsequent writes to the specified file data will not fail due to the lack of free space on the
file system storage media. Besides trace events, a trace stream also includes trace attributes
and the mapping from trace event names to trace event type identifiers. The implementor
is free to choose how to store the trace attributes and the trace event type map, but must
ensure that this information is not lost when a trace stream overrun occurs.

B.2.11.3 Trace Programming Examples

Several programming examples are presented to show the code of the different possible
subfunctions using a trace subsystem. All these programs need to include the <trace.h> header.
In the examples shown, error checking is omitted for more simplicity.

Trace Operation Control

These examples show the creation of a trace stream for another process; one which is already
trace instrumented. All the default trace stream attributes are used to simplify programming in
the first example. The second example shows more possibilities.

First Example

/* Caution. Error checks omitted */
{

trace_attr_t attr;
pid_t pid = traced_process_pid;
int fd;
trace_id_t trid;

- - - - - -
/* Initialize trace stream attributes */
posix_trace_attr_init(&attr);
/* Open a trace log */
fd=open("/tmp/mytracelog",...);
/*
* Create a new trace associated with a log
* and with default attributes
*/

posix_trace_create_withlog(pid, &attr, fd, &trid);

/* Trace attribute structure can now be destroyed */
posix_trace_attr_destroy(&attr);
/* Start of trace event recording */
posix_trace_start(trid);
- - - - - -
- - - - - -
/* Duration of tracing */
- - - - - -
- - - - - -
/* Stop and shutdown of trace activity */
posix_trace_shutdown(trid);
- - - - - -

}

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3605

122318

122319

122320

122321

122322

122323

122324

122325

122326

122327

122328

122329

122330

122331

122332

122333

122334

122335

122336

122337

122338

122339

122340

122341

122342

122343

122344

122345

122346

122347

122348

122349

122350

122351

122352

122353

122354

122355

122356

122357

122358

122359

122360

General Information Rationale for System Interfaces

Second Example

Between the initialization of the trace stream attributes and the creation of the trace stream, these
trace stream attributes may be modified; see Trace Stream Attribute Manipulation (on page
3609) for a specific programming example. Between the creation and the start of the trace
stream, the event filter may be set; after the trace stream is started, the event filter may be
changed. The setting of an event set and the change of a filter is shown in Create a Trace Event
Type Set and Change the Trace Event Type Filter (on page 3610).

/* Caution. Error checks omitted */
{

trace_attr_t attr;
pid_t pid = traced_process_pid;
int fd;
trace_id_t trid;
- - - - - -
/* Initialize trace stream attributes */
posix_trace_attr_init(&attr);
/* Attr default may be changed at this place; see example */
- - - - - -
/* Create and open a trace log with R/W user access */
fd=open("/tmp/mytracelog",O_WRONLY|O_CREAT,S_IRUSR|S_IWUSR);
/* Create a new trace associated with a log */
posix_trace_create_withlog(pid, &attr, fd, &trid);
/*
* If the Trace Filter option is supported
* trace event type filter default may be changed at this place;
* see example about changing the trace event type filter
*/
posix_trace_start(trid);
- - - - - -

/*
* If you have an uninteresting part of the application
* you can stop temporarily.
*
* posix_trace_stop(trid);
* - - - - - -
* - - - - - -
* posix_trace_start(trid);
*/
- - - - - -
/*
* If the Trace Filter option is supported
* the current trace event type filter can be changed
* at any time (see example about how to set
* a trace event type filter)
*/
- - - - - -

/* Stop the recording of trace events */
posix_trace_stop(trid);
/* Shutdown the trace stream */
posix_trace_shutdown(trid);
/*

3606 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

122361

122362

122363

122364

122365

122366

122367

122368

122369

122370

122371

122372

122373

122374

122375

122376

122377

122378

122379

122380

122381

122382

122383

122384

122385

122386

122387

122388

122389

122390

122391

122392

122393

122394

122395

122396

122397

122398

122399

122400

122401

122402

122403

122404

122405

122406

122407

122408

122409

122410

122411

Rationale for System Interfaces General Information

* Destroy trace stream attributes; attr structure may have
* been used during tracing to fetch the attributes
*/
posix_trace_attr_destroy(&attr);
- - - - - -

}

Application Instrumentation

This example shows an instrumented application. The code is included in a block of instructions,
perhaps a function from a library. Possibly in an initialization part of the instrumented
application, two user trace events names are mapped to two trace event type identifiers
(function posix_trace_eventid_open()). Then two trace points are programmed.

/* Caution. Error checks omitted */
{

trace_event_id_t eventid1, eventid2;
- - - - - -
/* Initialization of two trace event type ids */
posix_trace_eventid_open("my_first_event",&eventid1);
posix_trace_eventid_open("my_second_event",&eventid2);
- - - - - -
- - - - - -
- - - - - -
/* Trace point */
posix_trace_event(eventid1,NULL,0);
- - - - - -
/* Trace point */
posix_trace_event(eventid2,NULL,0);
- - - - - -

}

Trace Analyzer

This example shows the manipulation of a trace log resulting from the dumping of a completed
trace stream. All the default attributes are used to simplify programming, and data associated
with a trace event is not shown in the first example. The second example shows more
possibilities.

First Example

/* Caution. Error checks omitted */
{

int fd;
trace_id_t trid;
posix_trace_event_info trace_event;
char trace_event_name[TRACE_EVENT_NAME_MAX];
int return_value;
size_t returndatasize;
int lost_event_number;

- - - - - -

/* Open an existing trace log */
fd=open("/tmp/tracelog", O_RDONLY);

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3607

122412

122413

122414

122415

122416

122417

122418

122419

122420

122421

122422

122423

122424

122425

122426

122427

122428

122429

122430

122431

122432

122433

122434

122435

122436

122437

122438

122439

122440

122441

122442

122443

122444

122445

122446

122447

122448

122449

122450

122451

122452

122453

122454

122455

122456

122457

General Information Rationale for System Interfaces

/* Open a trace stream on the open log */
posix_trace_open(fd, &trid);
/* Read a trace event */
posix_trace_getnext_event(trid, &trace_event,

NULL, 0, &returndatasize,&return_value);

/* Read and print all trace event names out in a loop */
while (return_value == NULL)
{

/*
* Get the name of the trace event associated
* with trid trace ID
*/
posix_trace_eventid_get_name(trid, trace_event.event_id,

trace_event_name);
/* Print the trace event name out */
printf("%s\n",trace_event_name);
/* Read a trace event */
posix_trace_getnext_event(trid, &trace_event,

NULL, 0, &returndatasize,&return_value);
}

/* Close the trace stream */
posix_trace_close(trid);
/* Close the trace log */
close(fd);

}

Second Example

The complete example includes the two other examples in Retrieve Information from a Trace
Log (on page 3611) and in Retrieve the List of Trace Event Types Used in a Trace Log (on page
3612). For example, the maxdatasize variable is set in Retrieve the List of Trace Event Types Used
in a Trace Log (on page 3612).

/* Caution. Error checks omitted */
{

int fd;
trace_id_t trid;
posix_trace_event_info trace_event;
char trace_event_name[TRACE_EVENT_NAME_MAX];
char * data;
size_t maxdatasize=1024, returndatasize;
int return_value;
- - - - - -

/* Open an existing trace log */
fd=open("/tmp/tracelog", O_RDONLY);
/* Open a trace stream on the open log */
posix_trace_open(fd, &trid);
/*
* Retrieve information about the trace stream which
* was dumped in this trace log (see example)
*/
- - - - - -

3608 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

122458

122459

122460

122461

122462

122463

122464

122465

122466

122467

122468

122469

122470

122471

122472

122473

122474

122475

122476

122477

122478

122479

122480

122481

122482

122483

122484

122485

122486

122487

122488

122489

122490

122491

122492

122493

122494

122495

122496

122497

122498

122499

122500

122501

122502

122503

122504

122505

122506

Rationale for System Interfaces General Information

/* Allocate a buffer for trace event data */
data=(char *)malloc(maxdatasize);
/*
* Retrieve the list of trace events used in this
* trace log (see example)
*/
- - - - - -

/* Read and print all trace event names and data out in a loop */
while (1)
{
posix_trace_getnext_event(trid, &trace_event,

data, maxdatasize, &returndatasize,&return_value);
if (return_value != NULL) break;
/*
* Get the name of the trace event type associated
* with trid trace ID
*/
posix_trace_eventid_get_name(trid, trace_event.event_id,

trace_event_name);
{
int i;

/* Print the trace event name out */
printf("%s: ", trace_event_name);
/* Print the trace event data out */
for (i=0; i<returndatasize, i++) printf("%02.2X",

(unsigned char)data[i]);
printf("\n");
}

}

/* Close the trace stream */
posix_trace_close(trid);
/* The buffer data is deallocated */
free(data);
/* Now the file can be closed */
close(fd);

}

Several Programming Manipulations

The following examples show some typical sets of operations needed in some contexts.

Trace Stream Attribute Manipulation

This example shows the manipulation of a trace stream attribute object in order to change the
default value provided by a previous posix_trace_attr_init() call.

/* Caution. Error checks omitted */
{

trace_attr_t attr;
size_t logsize=100000;
- - - - - -
/* Initialize trace stream attributes */

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3609

122507

122508

122509

122510

122511

122512

122513

122514

122515

122516

122517

122518

122519

122520

122521

122522

122523

122524

122525

122526

122527

122528

122529

122530

122531

122532

122533

122534

122535

122536

122537

122538

122539

122540

122541

122542

122543

122544

122545

122546

122547

122548

122549

122550

122551

122552

122553

General Information Rationale for System Interfaces

posix_trace_attr_init(&attr);
/* Set the trace name in the attributes structure */
posix_trace_attr_setname(&attr, "my_trace");
/* Set the trace full policy */
posix_trace_attr_setstreamfullpolicy(&attr, POSIX_TRACE_LOOP);
/* Set the trace log size */
posix_trace_attr_setlogsize(&attr, logsize);
- - - - - -

}

Create a Trace Event Type Set and Change the Trace Event Type Filter

This example is valid only if the Trace Event Filter option is supported. This example shows the
manipulation of a trace event type set in order to change the trace event type filter for an
existing active trace stream, which may be just-created, running, or suspended. Some sets of
trace event types are well-known, such as the set of trace event types not associated with a
process, some trace event types are just-built trace event types for this trace stream; one trace
event type is the predefined trace event error type which is deleted from the trace event type set.

/* Caution. Error checks omitted */
{

trace_id_t trid = existing_trace;
trace_event_set_t set;
trace_event_id_t trace_event1, trace_event2;
- - - - - -
/* Initialize to an empty set of trace event types */
/* (not strictly required because posix_trace_event_set_fill() */
/* will ignore the prior contents of the event set.) */
posix_trace_eventset_emptyset(&set);
/*
* Fill the set with all system trace events
* not associated with a process
*/
posix_trace_eventset_fill(&set, POSIX_TRACE_WOPID_EVENTS);

/*
* Get the trace event type identifier of the known trace event name
* my_first_event for the trid trace stream
*/
posix_trace_trid_eventid_open(trid, "my_first_event", &trace_event1);
/* Add the set with this trace event type identifier */
posix_trace_eventset_add_event(trace_event1, &set);
/*
* Get the trace event type identifier of the known trace event name
* my_second_event for the trid trace stream
*/

posix_trace_trid_eventid_open(trid, "my_second_event", &trace_event2);
/* Add the set with this trace event type identifier */
posix_trace_eventset_add_event(trace_event2, &set);
- - - - - -
/* Delete the system trace event POSIX_TRACE_ERROR from the set */
posix_trace_eventset_del_event(POSIX_TRACE_ERROR, &set);
- - - - - -

3610 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

122554

122555

122556

122557

122558

122559

122560

122561

122562

122563

122564

122565

122566

122567

122568

122569

122570

122571

122572

122573

122574

122575

122576

122577

122578

122579

122580

122581

122582

122583

122584

122585

122586

122587

122588

122589

122590

122591

122592

122593

122594

122595

122596

122597

122598

122599

122600

122601

122602

Rationale for System Interfaces General Information

/* Modify the trace stream filter making it equal to the new set */
posix_trace_set_filter(trid, &set, POSIX_TRACE_SET_EVENTSET);
- - - - - -
/*
* Now trace_event1, trace_event2, and all system trace event types
* not associated with a process, except for the POSIX_TRACE_ERROR
* system trace event type, are filtered out of (not recorded in) the
* existing trace stream.
*/

}

Retrieve Information from a Trace Log

This example shows how to extract information from a trace log, the dump of a trace stream.
This code:

• Asks if the trace stream has lost trace events

• Extracts the information about the version of the trace subsystem which generated this
trace log

• Retrieves the maximum size of trace event data; this may be used to dynamically allocate
an array for extracting trace event data from the trace log without overflow

/* Caution. Error checks omitted */
{

struct posix_trace_status_info statusinfo;
trace_attr_t attr;
trace_id_t trid = existing_trace;
size_t maxdatasize;
char genversion[TRACE_NAME_MAX];
- - - - - -
/* Get the trace stream status */
posix_trace_get_status(trid, &statusinfo);
/* Detect an overrun condition */
if (statusinfo.posix_stream_overrun_status == POSIX_TRACE_OVERRUN)

printf("trace events have been lost\n");

/* Get attributes from the trid trace stream */
posix_trace_get_attr(trid, &attr);
/* Get the trace generation version from the attributes */
posix_trace_attr_getgenversion(&attr, genversion);
/* Print the trace generation version out */
printf("Information about Trace Generator:%s\n",genversion);

/* Get the trace event max data size from the attributes */
posix_trace_attr_getmaxdatasize(&attr, &maxdatasize);
/* Print the trace event max data size out */
printf("Maximum size of associated data:%d\n",maxdatasize);
/* Destroy the trace stream attributes */
posix_trace_attr_destroy(&attr);

}

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3611

122603

122604

122605

122606

122607

122608

122609

122610

122611

122612

122613

122614

122615

122616

122617

122618

122619

122620

122621

122622

122623

122624

122625

122626

122627

122628

122629

122630

122631

122632

122633

122634

122635

122636

122637

122638

122639

122640

122641

122642

122643

122644

122645

122646

General Information Rationale for System Interfaces

Retrieve the List of Trace Event Types Used in a Trace Log

This example shows the retrieval of a trace stream’s trace event type list. This operation may be
very useful if you are interested only in tracking the type of trace events in a trace log.

/* Caution. Error checks omitted */
{

trace_id_t trid = existing_trace;
trace_event_id_t event_id;
char event_name[TRACE_EVENT_NAME_MAX];
int return_value;
- - - - - -

/*
* In a loop print all existing trace event names out
* for the trid trace stream
*/
while (1)
{

posix_trace_eventtypelist_getnext_id(trid, &event_id
&return_value);

if (return_value != NULL) break;
/*
* Get the name of the trace event associated
* with trid trace ID
*/
posix_trace_eventid_get_name(trid, event_id, event_name);
/* Print the name out */
printf("%s\n", event_name);

}
}

3612 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

122647

122648

122649

122650

122651

122652

122653

122654

122655

122656

122657

122658

122659

122660

122661

122662

122663

122664

122665

122666

122667

122668

122669

122670

122671

122672

122673

122674

Rationale for System Interfaces General Information

B.2.11.4 Rationale on Trace for Debugging

pid=fork() posix_trace_create(pid)

parent

child

synchro

trace

debugger

trace points

TRACE
STREAM

execexec

Figure B-5 Trace Another Process

Among the different possibilities offered by the trace interface defined in POSIX.1-2008, the
debugging of an application is the most interesting one. Typical operations in the controlling
debugger process are to filter trace event types, to get trace events from the trace stream, to stop
the trace stream when the debugged process is executing uninteresting code, to start the trace
stream when some interesting point is reached, and so on. The interface defined in POSIX.1-2008
should define all the necessary base functions to allow this dynamic debug handling.

Figure B-5 shows an example in which the trace stream is created after the call to the fork()
function. If the user does not want to lose trace events, some synchronization mechanism
(represented in the figure) may be needed before calling the exec() function, to give the parent a
chance to create the trace stream before the child begins the execution of its trace points.

B.2.11.5 Rationale on Trace Event Type Name Space

At first, the working group was in favor of the representation of a trace event type by an integer
(event_name). It seems that existing practice shows the weakness of such a representation. The
collision of trace event types is the main problem that cannot be simply resolved using this sort
of representation. Suppose, for example, that a third party designs an instrumented library. The
user does not have the source of this library and wants to trace his application which uses in
some part the third-party library. There is no means for him to know what are the trace event
types used in the instrumented library so he has some chance of duplicating some of them and
thus to obtain a contaminated tracing of his application.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3613

122675

122676

122677

122678

122679

122680

122681

122682

122683

122684

122685

122686

122687

122688

122689

122690

122691

122692

122693

122694

122695

General Information Rationale for System Interfaces

TRACE STREAM

libx_f();

liby_g(); liby_g()
{

trace_point

}

libx_f()
{

trace_point

}

Internal
Data Needed
to Interpret

the List

Time-Ordered
List of Trace

Events

Figure B-6 Trace Name Space Overview: With Third-Party Library

There are requirements to allow program images containing pieces from various vendors to be
traced without also requiring those of any other vendors to coordinate their uses of the trace
facility, and especially the naming of their various trace event types and trace point IDs. The
chosen solution is to provide a very large name space, large enough so that the individual
vendors can give their trace types and tracepoint IDs sufficiently long and descriptive names
making the occurrence of collisions quite unlikely. The probability of collision is thus made
sufficiently low so that the problem may, as a practical matter, be ignored. By requirement, the
consequence of collisions will be a slight ambiguity in the trace streams; tracing will continue in
spite of collisions and ambiguities. ‘‘The show must go on’’. The posix_prog_address member of
the posix_trace_event_info structure is used to allow trace streams to be unambiguously
interpreted, despite the fact that trace event types and trace event names need not be unique.

The posix_trace_eventid_open() function is required to allow the instrumented third-party library
to get a valid trace event type identifier for its trace event names. This operation is, somehow,
an allocation, and the group was aware of proposing some deallocation mechanism which the
instrumented application could use to recover the resources used by a trace event type identifier.
This would have given the instrumented application the benefit of being capable of reusing a
possible minimum set of trace event type identifiers, but also the inconvenience to have,
possibly in the same trace stream, one trace event type identifier identifying two different trace
event types. After some discussions the group decided to not define such a function which
would make this API thicker for little benefit, the user having always the possibility of adding
identification information in the data member of the trace event structure.

The set of the trace event type identifiers the controlling process wants to filter out is initialized
in the trace mechanism using the function posix_trace_set_filter(), setting the arguments
according to the definitions explained in posix_trace_set_filter(). This operation can be done
statically (when the trace is in the STOPPED state) or dynamically (when the trace is in the
STARTED state). The preparation of the filter is normally done using the function defined in
posix_trace_eventtypelist_getnext_id() and eventually the function
posix_trace_eventtypelist_rewind() in order to know (before the recording) the list of the potential

3614 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

122696

122697

122698

122699

122700

122701

122702

122703

122704

122705

122706

122707

122708

122709

122710

122711

122712

122713

122714

122715

122716

122717

122718

122719

122720

122721

122722

122723

122724

Rationale for System Interfaces General Information

set of trace event types that can be recorded. In the case of an active trace stream, this list may
not be exhaustive. Actually, the target process may not have yet called the function
posix_trace_eventid_open(). But it is a common practice, for a controlling process, to prepare the
filtering of a future trace stream before its start. Therefore the user must have a way to get the
trace event type identifier corresponding to a well-known trace event name before its future
association by the pre-cited function. This is done by calling the posix_trace_trid_eventid_open()
function, given the trace stream identifier and the trace name, and described hereafter. Because
this trace event type identifier is associated with a trace stream identifier, where a unique
process has initialized two or more traces, the implementation is expected to return the same
trace event type identifier for successive calls to posix_trace_trid_eventid_open() with different
trace stream identifiers. The posix_trace_eventid_get_name() function is used by the controller
process to identify, by the name, the trace event type returned by a call to the
posix_trace_eventtypelist_getnext_id() function.

Afterwards, the set of trace event types is constructed using the functions defined in
posix_trace_eventset_empty(), posix_trace_eventset_fill(), posix_trace_eventset_add(), and
posix_trace_eventset_del().

A set of functions is provided devoted to the manipulation of the trace event type identifier and
names for an active trace stream. All these functions require the trace stream identifier argument
as the first parameter. The opacity of the trace event type identifier implies that the user cannot
associate directly its well-known trace event name with the system-associated trace event type
identifier.

The posix_trace_trid_eventid_open() function allows the application to get the system trace event
type identifier back from the system, given its well-known trace event name. This function is
useful only when a controlling process needs to specify specific events to be filtered.

The posix_trace_eventid_get_name() function allows the application to obtain a trace event name
given its trace event type identifier. One possible use of this function is to identify the type of a
trace event retrieved from the trace stream, and print it. The easiest way to implement this
requirement, is to use a single trace event type map for all the processes whose maps are
required to be identical. A more difficult way is to attempt to keep multiple maps identical at
every call to posix_trace_eventid_open() and posix_trace_trid_eventid_open().

B.2.11.6 Rationale on Trace Events Type Filtering

The most basic rationale for runtime and pre-registration filtering (selection/rejection) of trace
event types is to prevent choking of the trace collection facility, and/or overloading of the
computer system. Any worthwhile trace facility can bring even the largest computer to its
knees. Otherwise, everything would be recorded and filtered after the fact; it would be much
simpler, but impractical.

To achieve debugging, measurement, or whatever the purpose of tracing, the filtering of trace
event types is an important part of trace analysis. Due to the fact that the trace events are put
into a trace stream and probably logged afterwards into a file, different levels of filtering—that
is, rejection of trace event types—are possible.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3615

122725

122726

122727

122728

122729

122730

122731

122732

122733

122734

122735

122736

122737

122738

122739

122740

122741

122742

122743

122744

122745

122746

122747

122748

122749

122750

122751

122752

122753

122754

122755

122756

122757

122758

122759

122760

122761

122762

122763

122764

General Information Rationale for System Interfaces

Filtering of Trace Event Types Before Tracing

This function, represented by the posix_trace_set_filter() function in POSIX.1-2008 (see
posix_trace_set_filter()), selects, before or during tracing, the set of trace event types to be filtered
out. It should be possible also (as OSF suggested in their ETAP trace specifications) to select the
kernel trace event types to be traced in a system-wide fashion. These two functionalities are
called the pre-filtering of trace event types.

The restriction on the actual type used for the trace_event_set_t type is intended to guarantee
that these objects can always be assigned, have their address taken, and be passed by value as
parameters. It is not intended that this type be a structure including pointers to other data
structures, as that could impact the portability of applications performing such operations. A
reasonable implementation could be a structure containing an array of integer types.

Filtering of Trace Event Types at Runtime

It is possible to build this functionality using the posix_trace_set_filter() function. A privileged
process or a privileged thread can get trace events from the trace stream of another process or
thread, and thus specify the type of trace events to record into a file, using implementation-
defined methods and interfaces. This functionality, called inline filtering of trace event types, is
used for runtime analysis of trace streams.

Post-Mortem Filtering of Trace Event Types

The word ‘‘post-mortem’’ is used here to indicate that some unanticipated situation occurs
during execution that does not permit a pre or inline filtering of trace events and that it is
necessary to record all trace event types to have a chance to discover the problem afterwards.
When the program stops, all the trace events recorded previously can be analyzed in order to
find the solution. This functionality could be named the post-filtering of trace event types.

Discussions about Trace Event Type Filtering

After long discussions with the parties involved in the process of defining the trace interface, it
seems that the sensitivity to the filtering problem is different, but everybody agrees that the level
of the overhead introduced during the tracing operation depends on the filtering method
elected. If the time that it takes the trace event to be recorded can be neglected, the overhead
introduced by the filtering process can be classified as follows:

Pre-filtering System and process/thread-level overhead

Inline-filtering Process/thread-level overhead

Post-filtering No overhead; done offline

The pre-filtering could be named ‘‘critical realtime’’ filtering in the sense that the filtering of
trace event type is manageable at the user level so the user can lower to a minimum the filtering
overhead at some user selected level of priority for the inline filtering, or delay the filtering to
after execution for the post-filtering. The counterpart of this solution is that the size of the trace
stream must be sufficient to record all the trace events. The advantage of the pre-filtering is that
the utilization of the trace stream is optimized.

Only pre-filtering is defined by POSIX.1-2008. However, great care must be taken in specifying
pre-filtering, so that it does not impose unacceptable overhead. Moreover, it is necessary to
isolate all the functionality relative to the pre-filtering.

The result of this rationale is to define a new option, the Trace Event Filter option, not
necessarily implemented in small realtime systems, where system overhead is minimized to the
extent possible.

3616 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

122765

122766

122767

122768

122769

122770

122771

122772

122773

122774

122775

122776

122777

122778

122779

122780

122781

122782

122783

122784

122785

122786

122787

122788

122789

122790

122791

122792

122793

122794

122795

122796

122797

122798

122799

122800

122801

122802

122803

122804

122805

122806

122807

122808

Rationale for System Interfaces General Information

B.2.11.7 Tracing, pthread API

The objective to be able to control tracing for individual threads may be in conflict with the
efficiency expected in threads with a contentionscope attribute of PTHREAD_SCOPE_PROCESS.
For these threads, context switches from one thread that has tracing enabled to another thread
that has tracing disabled may require a kernel call to inform the kernel whether it has to trace
system events executed by that thread or not. For this reason, it was proposed that the ability to
enable or disable tracing for PTHREAD_SCOPE_PROCESS threads be made optional, through
the introduction of a Trace Scope Process option. A trace implementation which did not
implement the Trace Scope Process option would not honor the tracing-state attribute of a thread
with PTHREAD_SCOPE_PROCESS; it would, however, honor the tracing-state attribute of a
thread with PTHREAD_SCOPE_SYSTEM. This proposal was rejected as:

1. Removing desired functionality (per-thread trace control)

2. Introducing counter-intuitive behavior for the tracing-state attribute

3. Mixing logically orthogonal ideas (thread scheduling and thread tracing)
[Objective 4]

Finally, to solve this complex issue, this API does not provide pthread_gettracingstate(),
pthread_settracingstate(), pthread_attr_gettracingstate(), and pthread_attr_settracingstate()
interfaces. These interfaces force the thread implementation to add to the weight of the thread
and cause a revision of the threads libraries, just to support tracing. Worse yet,
posix_trace_event() must always test this per-thread variable even in the common case where it is
not used at all. Per-thread tracing is easy to implement using existing interfaces where
necessary; see the following example.

Example

/* Caution. Error checks omitted */
static pthread_key_t my_key;
static trace_event_id_t my_event_id;
static pthread_once_t my_once = PTHREAD_ONCE_INIT;

void my_init(void)
{

(void) pthread_key_create(&my_key, NULL);
(void) posix_trace_eventid_open("my", &my_event_id);

}

int get_trace_flag(void)
{

pthread_once(&my_once, my_init);
return (pthread_getspecific(my_key) != NULL);

}

void set_trace_flag(int f)
{

pthread_once(&my_once, my_init);
pthread_setspecific(my_key, f? &my_event_id: NULL);

}

fn()
{

if (get_trace_flag())
posix_trace_event(my_event_id, ...)

}

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3617

122809

122810

122811

122812

122813

122814

122815

122816

122817

122818

122819

122820

122821

122822

122823

122824

122825

122826

122827

122828

122829

122830

122831

122832

122833

122834

122835

122836

122837

122838

122839

122840

122841

122842

122843

122844

122845

122846

122847

122848

122849

122850

122851

122852

122853

122854

122855

General Information Rationale for System Interfaces

The above example does not implement third-party state setting.

Lastly, per-thread tracing works poorly for threads with PTHREAD_SCOPE_PROCESS
contention scope. These ‘‘library’’ threads have minimal interaction with the kernel and would
have to explicitly set the attributes whenever they are context switched to a new kernel thread in
order to trace system events. Such state was explicitly avoided in POSIX threads to keep
PTHREAD_SCOPE_PROCESS threads lightweight.

The reason that keeping PTHREAD_SCOPE_PROCESS threads lightweight is important is that
such threads can be used not just for simple multi-processors but also for co-routine style
programming (such as discrete event simulation) without inventing a new threads paradigm.
Adding extra runtime cost to thread context switches will make using POSIX threads less
attractive in these situations.

B.2.11.8 Rationale on Triggering

The ability to start or stop tracing based on the occurrence of specific trace event types has been
proposed as a parallel to similar functionality appearing in logic analyzers. Such triggering, in
order to be very useful, should be based not only on the trace event type, but on trace event-
specific data, including tests of user-specified fields for matching or threshold values.

Such a facility is unnecessary where the buffering of the stream is not a constraint, since such
checks can be performed offline during post-mortem analysis.

For example, a large system could incorporate a daemon utility to collect the trace records from
memory buffers and spool them to secondary storage for later analysis. In the instances where
resources are truly limited, such as embedded applications, the application incorporation of
application code to test the circumstances of a trace event and call the trace point only if needed
is usually straightforward.

For performance reasons, the posix_trace_event() function should be implemented using a macro,
so if the trace is inactive, the trace event point calls are latent code and must cost no more than a
scalar test.

The API proposed in POSIX.1-2008 does not include any triggering functionality.

B.2.11.9 Rationale on Timestamp Clock

It has been suggested that the tracing mechanism should include the possibility of specifying the
clock to be used in timestamping the trace events. When application trace events must be
correlated to remote trace events, such a facility could provide a global time reference not
available from a local clock. Further, the application may be driven by timers based on a clock
different from that used for the timestamp, and the correlation of the trace to those untraced
timer activities could be an important part of the analysis of the application.

However, the tracing mechanism needs to be fast and just the provision of such an option can
materially affect its performance. Leaving aside the performance costs of reading some clocks,
this notion is also ill-defined when kernel trace events are to be traced by two applications
making use of different tracing clocks. This can even happen within a single application where
different parts of the application are served by different clocks. Another complication can occur
when a clock is maintained strictly at the user level and is unavailable at the kernel level.

It is felt that the benefits of a selectable trace clock do not match its costs. Applications that wish
to correlate clocks other than the default tracing clock can include trace events with sample
values of those other clocks, allowing correlation of timestamps from the various independent
clocks. In any case, such a technique would be required when applications are sensitive to

3618 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

122856

122857

122858

122859

122860

122861

122862

122863

122864

122865

122866

122867

122868

122869

122870

122871

122872

122873

122874

122875

122876

122877

122878

122879

122880

122881

122882

122883

122884

122885

122886

122887

122888

122889

122890

122891

122892

122893

122894

122895

122896

122897

122898

122899

Rationale for System Interfaces General Information

multiple clocks.

B.2.11.10 Rationale on Different Overrun Conditions

The analysis of the dynamic behavior of the trace mechanism shows that different overrun
conditions may occur. The API must provide a means to manage such conditions in a portable
way.

Overrun in Trace Streams Initialized with POSIX_TRACE_LOOP Policy

In this case, the user of the trace mechanism is interested in using the trace stream with
POSIX_TRACE_LOOP policy to record trace events continuously, but ideally without losing any
trace events. The online analyzer process must get the trace events at a mean speed equivalent to
the recording speed. Should the trace stream become full, a trace stream overrun occurs. This
condition is detected by getting the status of the active trace stream (function
posix_trace_get_status()) and looking at the member posix_stream_overrun_status of the read
posix_stream_status structure. In addition, two predefined trace event types are defined:

1. The beginning of a trace overflow, to locate the beginning of an overflow when reading a
trace stream

2. The end of a trace overflow, to locate the end of an overflow, when reading a trace stream

As a timestamp is associated with these predefined trace events, it is possible to know the
duration of the overflow.

Overrun in Dumping Trace Streams into Trace Logs

The user lets the trace mechanism dump the trace stream initialized with
POSIX_TRACE_FLUSH policy automatically into a trace log. If the dump operation is slower
than the recording of trace events, the trace stream can overrun. This condition is detected by
getting the status of the active trace stream (the posix_trace_get_status() function) and looking at
the member posix_stream_overrun_status of the read posix_stream_status structure. This overrun
indicates that the trace mechanism is not able to operate in this mode at this speed. It is the
responsibility of the user to modify one of the trace parameters (the stream size or the trace
event type filter, for instance) to avoid such overrun conditions, if overruns are to be prevented.
The same already predefined trace event types (see Overrun in Trace Streams Initialized with
POSIX_TRACE_LOOP Policy) are used to detect and to know the duration of an overflow.

Reading an Active Trace Stream

Although this trace API allows one to read an active trace stream with log while it is tracing, this
feature can lead to false overflow origin interpretation: the trace log or the reader of the trace
stream. Reading from an active trace stream with log is thus non-portable, and has been left
unspecified.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3619

122900

122901

122902

122903

122904

122905

122906

122907

122908

122909

122910

122911

122912

122913

122914

122915

122916

122917

122918

122919

122920

122921

122922

122923

122924

122925

122926

122927

122928

122929

122930

122931

122932

122933

General Information Rationale for System Interfaces

B.2.12 Data Types

B.2.12.1 Defined Types

The requirement that additional types defined in this section end in ‘‘_t’’ was prompted by the
problem of name space pollution. It is difficult to define a type (where that type is not one
defined by POSIX.1-2008) in one header file and use it in another without adding symbols to the
name space of the program. To allow implementors to provide their own types, all conforming
applications are required to avoid symbols ending in ‘‘_t’’, which permits the implementor to
provide additional types. Because a major use of types is in the definition of structure members,
which can (and in many cases must) be added to the structures defined in POSIX.1-2008, the
need for additional types is compelling.

The types, such as ushort and ulong, which are in common usage, are not defined in
POSIX.1-2008 (although ushort_t would be permitted as an extension). They can be added to
<sys/types.h> using a feature test macro (see Section B.2.2.1, on page 3498). A suggested symbol
for these is _SYSIII. Similarly, the types like u_short would probably be best controlled by _BSD.

Some of these symbols may appear in other headers; see Section B.2.2.2 (on page 3499).

dev_t This type may be made large enough to accommodate host-locality considerations
of networked systems.

This type must be arithmetic. Earlier proposals allowed this to be non-arithmetic
(such as a structure) and provided a samefile() function for comparison.

gid_t Some implementations had separated gid_t from uid_t before POSIX.1 was
completed. It would be difficult for them to coalesce them when it was
unnecessary. Additionally, it is quite possible that user IDs might be different from
group IDs because the user ID might wish to span a heterogeneous network,
where the group ID might not.

For current implementations, the cost of having a separate gid_t will be only
lexical.

mode_t This type was chosen so that implementations could choose the appropriate
integer type, and for compatibility with the ISO C standard. 4.3 BSD uses
unsigned short and the SVID uses ushort, which is the same. Historically, only the
low-order sixteen bits are significant.

nlink_t This type was introduced in place of short for st_nlink (see the <sys/stat.h> header)
in response to an objection that short was too small.

off_t This type is used to represent a file offset or file size. On systems supporting large
files, off_t is larger than 32 bits in at least one programming environment. Other
programming environments may use different sizes for off_t, for compatibility or
other reasons.

pid_t The inclusion of this symbol was controversial because it is tied to the issue of the
representation of a process ID as a number. From the point of view of a
conforming application, process IDs should be ‘‘magic cookies’’8 that are produced
by calls such as fork(), used by calls such as waitpid() or kill(), and not otherwise

8. An historical term meaning: ‘‘An opaque object, or token, of determinate size, whose significance is known only to the entity which

created it. An entity receiving such a token from the generating entity may only make such use of the ‘cookie’ as is defined and permitted

by the supplying entity.’’

3620 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

122934

122935

122936

122937

122938

122939

122940

122941

122942

122943

122944

122945

122946

122947

122948

122949

122950

122951

122952

122953

122954

122955

122956

122957

122958

122959

122960

122961

122962

122963

122964

122965

122966

122967

122968

122969

122970

122971

122972

122973

122974

122975

122976

Rationale for System Interfaces General Information

analyzed (except that the sign is used as a flag for certain operations).

The concept of a {PID_MAX} value interacted with this in early proposals. Treating
process IDs as an opaque type both removes the requirement for {PID_MAX} and
allows systems to be more flexible in providing process IDs that span a large range
of values, or a small one.

Since the values in uid_t, gid_t, and pid_t will be numbers generally, and
potentially both large in magnitude and sparse, applications that are based on
arrays of objects of this type are unlikely to be fully portable in any case. Solutions
that treat them as magic cookies will be portable.

{CHILD_MAX} precludes the possibility of a ‘‘toy implementation’’, where there
would only be one process.

ssize_t This is intended to be a signed analog of size_t. The wording is such that an
implementation may either choose to use a longer type or simply to use the signed
version of the type that underlies size_t. All functions that return ssize_t (read()
and write()) describe as ‘‘implementation-defined’’ the result of an input exceeding
{SSIZE_MAX}. It is recognized that some implementations might have ints that
are smaller than size_t. A conforming application would be constrained not to
perform I/O in pieces larger than {SSIZE_MAX}, but a conforming application
using extensions would be able to use the full range if the implementation
provided an extended range, while still having a single type-compatible interface.

The symbols size_t and ssize_t are also required in <unistd.h> to minimize the
changes needed for calls to read() and write(). Implementors are reminded that it
must be possible to include both <sys/types.h> and <unistd.h> in the same
program (in either order) without error.

uid_t Before the addition of this type, the data types used to represent these values
varied throughout early proposals. The <sys/stat.h> header defined these values
as type short, the <passwd.h> file (now <pwd.h> and <grp.h>) used an int, and
getuid() returned an int. In response to a strong objection to the inconsistent
definitions, all the types were switched to uid_t.

In practice, those historical implementations that use varying types of this sort can
typedef uid_t to short with no serious consequences.

The problem associated with this change concerns object compatibility after
structure size changes. Since most implementations will define uid_t as a short, the
only substantive change will be a reduction in the size of the passwd structure.
Consequently, implementations with an overriding concern for object
compatibility can pad the structure back to its current size. For that reason, this
problem was not considered critical enough to warrant the addition of a separate
type to POSIX.1.

The types uid_t and gid_t are magic cookies. There is no {UID_MAX} defined by
POSIX.1, and no structure imposed on uid_t and gid_t other than that they be
positive arithmetic types. (In fact, they could be unsigned char.) There is no
maximum or minimum specified for the number of distinct user or group IDs.

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3621

122977

122978

122979

122980

122981

122982

122983

122984

122985

122986

122987

122988

122989

122990

122991

122992

122993

122994

122995

122996

122997

122998

122999

123000

123001

123002

123003

123004

123005

123006

123007

123008

123009

123010

123011

123012

123013

123014

123015

123016

123017

123018

General Information Rationale for System Interfaces

B.2.12.2 The char Type

POSIX.1-2008 explicitly requires that a char type is exactly one byte (8 bits).

B.2.12.3 Pointer Types

POSIX.1-2008 explicitly requires implementations to convert pointers to void * and back with no
loss of information. This is an extension over the ISO C standard.

B.3 System Interfaces

See the RATIONALE sections on the individual reference pages.

B.3.1 System Interfaces Removed in this Version

The following section contains a list of the interfaces removed in POSIX.1-2008, together with
advice for application developers on the alternative interfaces that should be used for maximum
portability.

B.3.1.1 bcmp()

Applications are recommended to use the memcmp() function instead of this function.

For maximum portability, it is recommended to replace the function call to bcmp() as follows:

#define bcmp(b1,b2,len) memcmp((b1), (b2), (size_t)(len))

B.3.1.2 bcopy()

Applications are recommended to use the memmove() function instead of this function.

The following are approximately equivalent (note the order of the arguments):

bcopy(s1,s2,n) ≈ memmove(s2,s1,n)

For maximum portability, it is recommended to replace the function call to bcopy() as follows:

#define bcopy(b1,b2,len) (void)(memmove((b2), (b1), (len)))

B.3.1.3 bsd_signal()

Applications are recommended to use the sigaction() function instead of this function.

The bsd_signal() function was supplied as a migration path for the BSD signal() function for
simple applications that installed a single-argument signal handler function.

Historically, the bsd_signal() function differs from signal() in that the SA_RESTART flag is set
and the SA_RESETHAND flag is clear when bsd_signal() is used. The state of these flags is not
specified for signal().

3622 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

123019

123020

123021

123022

123023

123024

123025

123026

123027

123028

123029

123030

123031

123032

123033

123034

123035

123036

123037

123038

123039

123040

123041

123042

123043

123044

123045

123046

Rationale for System Interfaces System Interfaces

B.3.1.4 bzero()

Applications are recommended to use the memset() function instead of this function.

For maximum portability, it is recommended to replace the function call to bzero() as follows:

#define bzero(b,len) (void)(memset((b), ’\0’, (len)))

B.3.1.5 ecvt(), fcvt(), gcvt()

Applications are recommended to use the sprintf() function instead of these functions.

The sprintf() function is required by ISO C and is thus more portable.

B.3.1.6 ftime()

Applications are recommended to use the time() function to determine the current time.
Realtime applications should use clock_gettime() to determine the current time.

B.3.1.7 getcontext(), makecontext(), swapcontext()

Due to portability issues with these functions, especially with the manipulation of contexts,
applications are recommended to be rewritten to use POSIX threads.

B.3.1.8 gethostbyaddr(), gethostbyname()

Applications are recommended to use the getaddrinfo() and getnameinfo() functions instead of
these functions.

The gethostbyaddr() and gethostbyname() functions may return pointers to static data, which may
be overwritten by subsequent calls to any of these functions. The suggested replacements do not
have this problem and are also IPv6-capable.

B.3.1.9 getwd()

Applications are recommended to use the getcwd() function to determine the current working
directory.

B.3.1.10 h_errno

Applications are recommended not to use this error return code. Previously it was set by the
gethostbyname() and gethostbyaddr() functions.

B.3.1.11 index()

Applications are recommended to use the strchr() function instead of this function.

For maximum portability, it is recommended to replace the function call to index() as follows:

#define index(a,b) strchr((a),(b))

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3623

123047

123048

123049

123050

123051

123052

123053

123054

123055

123056

123057

123058

123059

123060

123061

123062

123063

123064

123065

123066

123067

123068

123069

123070

123071

123072

123073

123074

123075

System Interfaces Rationale for System Interfaces

B.3.1.12 makecontext()

Applications using the getcontext(), makecontext(), and swapcontext() functions should be
rewritten to use POSIX threads.

B.3.1.13 mktemp()

Applications are recommended to use the mkstemp() function instead of this function.

The mktemp() function makes an application vulnerable to possible security problems since
between the time a pathname is created and the file opened, it is possible for some other process
to create a file with the same name. The mkstemp() function does not have this vulnerability.

B.3.1.14 pthread_attr_getstackaddr(), pthread_attr_setstackaddr()

Applications are recommended to use the pthread_attr_setstack() and pthread_attr_getstack()
functions instead of these functions.

There are a number of ambiguities in the specification of the stackaddr attribute that makes
portable use of these interfaces impossible.

B.3.1.15 rindex()

Applications are recommended to use the strrchr() function instead of this function.

For maximum portability, it is recommended to replace the function call to rindex() as follows:

#define rindex(a,b) strrchr((a),(b))

B.3.1.16 scalb()

Applications are recommended to use either scalbln(), scalblnf(), or scalblnl() instead of these
functions.

The behavior for the scalb() function was only defined when the n argument is an integer, a
NaN, or Inf. The behavior of other values for the n argument was unspecified.

B.3.1.17 ualarm()

Applications are recommended to use timer_create(), timer_delete(), timer_getoverrun(),
timer_gettime(), or timer_settime() instead of this function.

B.3.1.18 usleep()

Applications are recommended to use the nanosleep() function instead of this function.

B.3.1.19 vfork()

Applications are recommended to use the fork() function instead of this function.

The vfork() function was previously under-specified.

3624 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

123076

123077

123078

123079

123080

123081

123082

123083

123084

123085

123086

123087

123088

123089

123090

123091

123092

123093

123094

123095

123096

123097

123098

123099

123100

123101

123102

123103

123104

123105

Rationale for System Interfaces System Interfaces

B.3.1.20 wcswcs()

Applications are recommended to use the wcsstr() function instead of this function.

The wcsstr() function is technically equivalent and is portable across all ISO C implementations.

B.3.2 System Interfaces Removed in the Previous Version

The following system interfaces, headers, and external variables were removed in the previous
version of this standard:

advance()
brk()
chroot()
compile()
cuserid()
gamma()

getdtablesize()
getpagesize()
getpass()
getw()
putw()
re_comp()

re_exec()
regcmp()
regex()
sbrk()
sigstack()
step()

ttyslot()
valloc()
wait3()
<re_comp.h>
<regexp.h>
<varargs.h>

loc1
_ _loc1
loc2
locs

B.3.3 Examples for Spawn

The following long examples are provided in the Rationale (Informative) volume of
POSIX.1-2008 as a supplement to the reference page for posix_spawn().

Example Library Implementation of Spawn

The posix_spawn() or posix_spawnp() functions provide the following:

• Simply start a process executing a process image. This is the simplest application for
process creation, and it may cover most executions of fork().

• Support I/O redirection, including pipes.

• Run the child under a user and group ID in the domain of the parent.

• Run the child at any priority in the domain of the parent.

The posix_spawn() or posix_spawnp() functions do not cover every possible use of the fork()
function, but they do span the common applications: typical use by a shell and a login utility.

The price for an application is that before it calls posix_spawn() or posix_spawnp(), the parent
must adjust to a state that posix_spawn() or posix_spawnp() can map to the desired state for the
child. Environment changes require the parent to save some of its state and restore it afterwards.
The effective behavior of a successful invocation of posix_spawn() is as if the operation were
implemented with POSIX operations as follows:

#include <sys/types.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sched.h>
#include <fcntl.h>
#include <signal.h>
#include <errno.h>
#include <string.h>
#include <signal.h>

/* #include <spawn.h> */

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3625

123106

123107

123108

123109

123110

123111

123112

123113

123114

123115

123116

123117

123118

123119

123120

123121

123122

123123

123124

123125

123126

123127

123128

123129

123130

123131

123132

123133

123134

123135

123136

123137

123138

123139

123140

123141

123142

123143

123144

123145

System Interfaces Rationale for System Interfaces

/***/
/* Things that could be defined in spawn.h */
/***/
typedef struct
{

short posix_attr_flags;
#define POSIX_SPAWN_SETPGROUP 0x1
#define POSIX_SPAWN_SETSIGMASK 0x2
#define POSIX_SPAWN_SETSIGDEF 0x4
#define POSIX_SPAWN_SETSCHEDULER 0x8
#define POSIX_SPAWN_SETSCHEDPARAM 0x10
#define POSIX_SPAWN_RESETIDS 0x20

pid_t posix_attr_pgroup;
sigset_t posix_attr_sigmask;
sigset_t posix_attr_sigdefault;
int posix_attr_schedpolicy;
struct sched_param posix_attr_schedparam;

} posix_spawnattr_t;

typedef char *posix_spawn_file_actions_t;

int posix_spawn_file_actions_init(
posix_spawn_file_actions_t *file_actions);

int posix_spawn_file_actions_destroy(
posix_spawn_file_actions_t *file_actions);

int posix_spawn_file_actions_addclose(
posix_spawn_file_actions_t *file_actions, int fildes);

int posix_spawn_file_actions_adddup2(
posix_spawn_file_actions_t *file_actions, int fildes,
int newfildes);

int posix_spawn_file_actions_addopen(
posix_spawn_file_actions_t *file_actions, int fildes,
const char *path, int oflag, mode_t mode);

int posix_spawnattr_init(posix_spawnattr_t *attr);
int posix_spawnattr_destroy(posix_spawnattr_t *attr);
int posix_spawnattr_getflags(const posix_spawnattr_t *attr,

short *lags);
int posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags);
int posix_spawnattr_getpgroup(const posix_spawnattr_t *attr,

pid_t *pgroup);
int posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup);
int posix_spawnattr_getschedpolicy(const posix_spawnattr_t *attr,

int *schedpolicy);
int posix_spawnattr_setschedpolicy(posix_spawnattr_t *attr,

int schedpolicy);
int posix_spawnattr_getschedparam(const posix_spawnattr_t *attr,

struct sched_param *schedparam);
int posix_spawnattr_setschedparam(posix_spawnattr_t *attr,

const struct sched_param *schedparam);
int posix_spawnattr_getsigmask(const posix_spawnattr_t *attr,

sigset_t *sigmask);
int posix_spawnattr_setsigmask(posix_spawnattr_t *attr,

const sigset_t *sigmask);
int posix_spawnattr_getdefault(const posix_spawnattr_t *attr,

3626 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

123146

123147

123148

123149

123150

123151

123152

123153

123154

123155

123156

123157

123158

123159

123160

123161

123162

123163

123164

123165

123166

123167

123168

123169

123170

123171

123172

123173

123174

123175

123176

123177

123178

123179

123180

123181

123182

123183

123184

123185

123186

123187

123188

123189

123190

123191

123192

123193

123194

123195

123196

123197

Rationale for System Interfaces System Interfaces

sigset_t *sigdefault);
int posix_spawnattr_setsigdefault(posix_spawnattr_t *attr,

const sigset_t *sigdefault);
int posix_spawn(pid_t *pid, const char *path,

const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *attrp, char *const argv[],
char *const envp[]);

int posix_spawnp(pid_t *pid, const char *file,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *attrp, char *const argv[],
char *const envp[]);

/***/
/* Example posix_spawn() library routine */
/***/
int posix_spawn(pid_t *pid,

const char *path,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *attrp,
char *const argv[],
char *const envp[])

{
/* Create process */
if ((*pid = fork()) == (pid_t) 0)
{

/* This is the child process */
/* Worry about process group */
if (attrp->posix_attr_flags & POSIX_SPAWN_SETPGROUP)
{

/* Override inherited process group */
if (setpgid(0, attrp->posix_attr_pgroup) != 0)
{

/* Failed */
exit(127);

}
}

/* Worry about thread signal mask */
if (attrp->posix_attr_flags & POSIX_SPAWN_SETSIGMASK)
{

/* Set the signal mask (can’t fail) */
sigprocmask(SIG_SETMASK, &attrp->posix_attr_sigmask, NULL);

}

/* Worry about resetting effective user and group IDs */
if (attrp->posix_attr_flags & POSIX_SPAWN_RESETIDS)
{

/* None of these can fail for this case. */
setuid(getuid());
setgid(getgid());

}

/* Worry about defaulted signals */
if (attrp->posix_attr_flags & POSIX_SPAWN_SETSIGDEF)
{

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3627

123198

123199

123200

123201

123202

123203

123204

123205

123206

123207

123208

123209

123210

123211

123212

123213

123214

123215

123216

123217

123218

123219

123220

123221

123222

123223

123224

123225

123226

123227

123228

123229

123230

123231

123232

123233

123234

123235

123236

123237

123238

123239

123240

123241

123242

123243

123244

123245

123246

123247

123248

System Interfaces Rationale for System Interfaces

struct sigaction deflt;
sigset_t all_signals;

int s;

/* Construct default signal action */
deflt.sa_handler = SIG_DFL;
deflt.sa_flags = 0;

/* Construct the set of all signals */
sigfillset(&all_signals);

/* Loop for all signals */
for (s = 0; sigismember(&all_signals, s); s++)
{

/* Signal to be defaulted? */
if (sigismember(&attrp->posix_attr_sigdefault, s))
{

/* Yes; default this signal */
if (sigaction(s, &deflt, NULL) == −1)
{

/* Failed */
exit(127);

}
}

}
}

/* Worry about the fds if they are to be mapped */
if (file_actions != NULL)
{

/* Loop for all actions in object file_actions */
/* (implementation dives beneath abstraction) */
char *p = *file_actions;

while (*p != ’\0’)
{

if (strncmp(p, "close(", 6) == 0)
{

int fd;

if (sscanf(p + 6, "%d)", &fd) != 1)
{

exit(127);
}
if (close(fd) == −1)

exit(127);
}
else if (strncmp(p, "dup2(", 5) == 0)
{

int fd, newfd;

if (sscanf(p + 5, "%d,%d)", &fd, &newfd) != 2)
{

exit(127);
}
if (dup2(fd, newfd) == −1)

3628 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

123249

123250

123251

123252

123253

123254

123255

123256

123257

123258

123259

123260

123261

123262

123263

123264

123265

123266

123267

123268

123269

123270

123271

123272

123273

123274

123275

123276

123277

123278

123279

123280

123281

123282

123283

123284

123285

123286

123287

123288

123289

123290

123291

123292

123293

123294

123295

123296

123297

Rationale for System Interfaces System Interfaces

exit(127);
}
else if (strncmp(p, "open(", 5) == 0)
{

int fd, oflag;
mode_t mode;
int tempfd;
char path[1000]; /* Should be dynamic */
char *q;

if (sscanf(p + 5, "%d,", &fd) != 1)
{

exit(127);
}
p = strchr(p, ’,’) + 1;
q = strchr(p, ’*’);
if (q == NULL)

exit(127);
strncpy(path, p, q - p);
path[q - p] = ’\0’;
if (sscanf(q + 1, "%o,%o)", &oflag, &mode) != 2)
{

exit(127);
}
if (close(fd) == −1)
{

if (errno != EBADF)
exit(127);

}
tempfd = open(path, oflag, mode);
if (tempfd == −1)

exit(127);
if (tempfd != fd)
{

if (dup2(tempfd, fd) == −1)
{

exit(127);
}
if (close(tempfd) == −1)
{

exit(127);
}

}
}
else
{

exit(127);
}
p = strchr(p, ’)’) + 1;

}
}

/* Worry about setting new scheduling policy and parameters */
if (attrp->posix_attr_flags & POSIX_SPAWN_SETSCHEDULER)

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3629

123298

123299

123300

123301

123302

123303

123304

123305

123306

123307

123308

123309

123310

123311

123312

123313

123314

123315

123316

123317

123318

123319

123320

123321

123322

123323

123324

123325

123326

123327

123328

123329

123330

123331

123332

123333

123334

123335

123336

123337

123338

123339

123340

123341

123342

123343

123344

123345

123346

123347

123348

123349

System Interfaces Rationale for System Interfaces

{
if (sched_setscheduler(0, attrp->posix_attr_schedpolicy,

&attrp->posix_attr_schedparam) == −1)
{

exit(127);
}

}

/* Worry about setting only new scheduling parameters */
if (attrp->posix_attr_flags & POSIX_SPAWN_SETSCHEDPARAM)
{

if (sched_setparam(0, &attrp->posix_attr_schedparam) == −1)
{

exit(127);
}

}

/* Now execute the program at path */
/* Any fd that still has FD_CLOEXEC set will be closed */
execve(path, argv, envp);
exit(127); /* exec failed */

}
else
{

/* This is the parent (calling) process */
if (*pid == (pid_t) - 1)

return errno;
return 0;

}
}

/***/
/* Here is a crude but effective implementation of the */
/* file action object operators which store actions as */
/* concatenated token-separated strings. */
/***/
/* Create object with no actions. */
int posix_spawn_file_actions_init(

posix_spawn_file_actions_t *file_actions)
{

*file_actions = malloc(sizeof(char));
if (*file_actions == NULL)

return ENOMEM;
strcpy(*file_actions, "");
return 0;

}

/* Free object storage and make invalid. */
int posix_spawn_file_actions_destroy(

posix_spawn_file_actions_t *file_actions)
{

free(*file_actions);
*file_actions = NULL;
return 0;

}

3630 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

123350

123351

123352

123353

123354

123355

123356

123357

123358

123359

123360

123361

123362

123363

123364

123365

123366

123367

123368

123369

123370

123371

123372

123373

123374

123375

123376

123377

123378

123379

123380

123381

123382

123383

123384

123385

123386

123387

123388

123389

123390

123391

123392

123393

123394

123395

123396

123397

123398

123399

123400

Rationale for System Interfaces System Interfaces

/* Add a new action string to object. */
static int add_to_file_actions(

posix_spawn_file_actions_t *file_actions, char *new_action)
{

*file_actions = realloc
(*file_actions, strlen(*file_actions) + strlen(new_action) + 1);
if (*file_actions == NULL)

return ENOMEM;
strcat(*file_actions, new_action);
return 0;

}

/* Add a close action to object. */
int posix_spawn_file_actions_addclose(

posix_spawn_file_actions_t *file_actions, int fildes)
{

char temp[100];

sprintf(temp, "close(%d)", fildes);
return add_to_file_actions(file_actions, temp);

}

/* Add a dup2 action to object. */
int posix_spawn_file_actions_adddup2(

posix_spawn_file_actions_t *file_actions, int fildes,
int newfildes)

{
char temp[100];

sprintf(temp, "dup2(%d,%d)", fildes, newfildes);
return add_to_file_actions(file_actions, temp);

}

/* Add an open action to object. */
int posix_spawn_file_actions_addopen(

posix_spawn_file_actions_t *file_actions, int fildes,
const char *path, int oflag, mode_t mode)

{
char temp[100];

sprintf(temp, "open(%d,%s*%o,%o)", fildes, path, oflag, mode);
return add_to_file_actions(file_actions, temp);

}

/***/
/* Here is a crude but effective implementation of the */
/* spawn attributes object functions which manipulate */
/* the individual attributes. */
/***/
/* Initialize object with default values. */
int posix_spawnattr_init(posix_spawnattr_t *attr)
{

attr->posix_attr_flags = 0;
attr->posix_attr_pgroup = 0;
/* Default value of signal mask is the parent’s signal mask; */
/* other values are also allowed */

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3631

123401

123402

123403

123404

123405

123406

123407

123408

123409

123410

123411

123412

123413

123414

123415

123416

123417

123418

123419

123420

123421

123422

123423

123424

123425

123426

123427

123428

123429

123430

123431

123432

123433

123434

123435

123436

123437

123438

123439

123440

123441

123442

123443

123444

123445

123446

123447

123448

123449

System Interfaces Rationale for System Interfaces

sigprocmask(0, NULL, &attr->posix_attr_sigmask);
sigemptyset(&attr->posix_attr_sigdefault);
/* Default values of scheduling attr inherited from the parent; */
/* other values are also allowed */
attr->posix_attr_schedpolicy = sched_getscheduler(0);
sched_getparam(0, &attr->posix_attr_schedparam);
return 0;

}

int posix_spawnattr_destroy(posix_spawnattr_t *attr)
{

/* No action needed */
return 0;

}

int posix_spawnattr_getflags(const posix_spawnattr_t *attr,
short *flags)

{
*flags = attr->posix_attr_flags;
return 0;

}

int posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags)
{

attr->posix_attr_flags = flags;
return 0;

}

int posix_spawnattr_getpgroup(const posix_spawnattr_t *attr,
pid_t *pgroup)

{
*pgroup = attr->posix_attr_pgroup;
return 0;

}

int posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup)
{

attr->posix_attr_pgroup = pgroup;
return 0;

}

int posix_spawnattr_getschedpolicy(const posix_spawnattr_t *attr,
int *schedpolicy)

{
*schedpolicy = attr->posix_attr_schedpolicy;
return 0;

}

int posix_spawnattr_setschedpolicy(posix_spawnattr_t *attr,
int schedpolicy)

{
attr->posix_attr_schedpolicy = schedpolicy;
return 0;

}

int posix_spawnattr_getschedparam(const posix_spawnattr_t *attr,
struct sched_param *schedparam)

3632 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

123450

123451

123452

123453

123454

123455

123456

123457

123458

123459

123460

123461

123462

123463

123464

123465

123466

123467

123468

123469

123470

123471

123472

123473

123474

123475

123476

123477

123478

123479

123480

123481

123482

123483

123484

123485

123486

123487

123488

123489

123490

123491

123492

123493

123494

123495

123496

123497

123498

Rationale for System Interfaces System Interfaces

{
*schedparam = attr->posix_attr_schedparam;
return 0;

}

int posix_spawnattr_setschedparam(posix_spawnattr_t *attr,
const struct sched_param *schedparam)

{
attr->posix_attr_schedparam = *schedparam;
return 0;

}

int posix_spawnattr_getsigmask(const posix_spawnattr_t *attr,
sigset_t *sigmask)

{
*sigmask = attr->posix_attr_sigmask;
return 0;

}

int posix_spawnattr_setsigmask(posix_spawnattr_t *attr,
const sigset_t *sigmask)

{
attr->posix_attr_sigmask = *sigmask;
return 0;

}

int posix_spawnattr_getsigdefault(const posix_spawnattr_t *attr,
sigset_t *sigdefault)

{
*sigdefault = attr->posix_attr_sigdefault;
return 0;

}

int posix_spawnattr_setsigdefault(posix_spawnattr_t *attr,
const sigset_t *sigdefault)

{
attr->posix_attr_sigdefault = *sigdefault;
return 0;

}

I/O Redirection with Spawn

I/O redirection with posix_spawn() or posix_spawnp() is accomplished by crafting a file_actions
argument to effect the desired redirection. Such a redirection follows the general outline of the
following example:

/* To redirect new standard output (fd 1) to a file, */
/* and redirect new standard input (fd 0) from my fd socket_pair[1], */
/* and close my fd socket_pair[0] in the new process. */
posix_spawn_file_actions_t file_actions;
posix_spawn_file_actions_init(&file_actions);
posix_spawn_file_actions_addopen(&file_actions, 1, "newout", ...);
posix_spawn_file_actions_dup2(&file_actions, socket_pair[1], 0);
posix_spawn_file_actions_close(&file_actions, socket_pair[0]);
posix_spawn_file_actions_close(&file_actions, socket_pair[1]);
posix_spawn(..., &file_actions, ...);

Part B: System Interfaces Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3633

123499

123500

123501

123502

123503

123504

123505

123506

123507

123508

123509

123510

123511

123512

123513

123514

123515

123516

123517

123518

123519

123520

123521

123522

123523

123524

123525

123526

123527

123528

123529

123530

123531

123532

123533

123534

123535

123536

123537

123538

123539

123540

123541

123542

123543

123544

123545

123546

System Interfaces Rationale for System Interfaces

posix_spawn_file_actions_destroy(&file_actions);

Spawning a Process Under a New User ID

Spawning a process under a new user ID follows the outline shown in the following example:

Save = getuid();
setuid(newid);
posix_spawn(...);
setuid(Save);

3634 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

123547

123548

123549

123550

123551

123552

123553

Rationale (Informative)

Part C:

Shell and Utilities

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3635

123554

123555

123556

123557

123558

3636 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

Appendix C

Rationale for Shell and Utilities

C.1 Introduction

C.1.1 Change History

The change history is provided as an informative section, to track changes from earlier versions
of this standard.

The following sections describe changes made to the Shell and Utilities volume of POSIX.1-2008
since Issue 6 of the base document. The CHANGE HISTORY section for each utility describes
technical changes made to that utility from Issue 5. Changes between earlier versions of the base
document and Issue 5 are not included.

Changes from Issue 6 to Issue 7 (POSIX.1-2008)

The following list summarizes the major changes that were made in the Shell and Utilities
volume of POSIX.1-2008 from Issue 6 to Issue 7:

• Austin Group defect reports, IEEE Interpretations against IEEE Std 1003.1, and responses
to ISO/IEC defect reports against ISO/IEC 9945 are applied.

• The Open Group corrigenda and resolutions are applied.

• Features, marked legacy or obsolescent in the base document, have been considered for
removal in this version.

• A review of the use of fixed path filenames within the standard has been undertaken; for
example, the at, batch, and crontab utilities previously had a requirement for use of the
directory /usr/lib/cron.

• The options within the standard have been revised.

— The Batch Environment Services and Utilities option is marked obsolescent.

— The UUCP utilities option is added.

— The User Portability Utilities option is revised so that only the bg, ex, fc, fg, jobs, more,
talk, and vi utilities are included, the rest being moved to the Base.

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3637

123559

123560

123561

123562

123563

123564

123565

123566

123567

123568

123569

123570

123571

123572

123573

123574

123575

123576

123577

123578

123579

123580

123581

123582

123583

123584

Introduction Rationale for Shell and Utilities

New Features in Issue 7

There are no new utilities in Issue 7.

C.1.2 Relationship to Other Documents

C.1.2.1 System Interfaces

It has been pointed out that the Shell and Utilities volume of POSIX.1-2008 assumes that a great
deal of functionality from the System Interfaces volume of POSIX.1-2008 is present, but never
states exactly how much (and strictly does not need to since both are mandated on a conforming
system). This section is an attempt to clarify the assumptions.

File Read, Write, and Creation

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/2 is applied, updating Table 1-1.

File Removal

This is intended to be a summary of the unlink() and rmdir() requirements. Note that it is
possible using the unlink() function for item 4. to occur.

C.1.2.2 Concepts Derived from the ISO C Standard

This section was introduced to address the issue that there was insufficient detail presented by
such utilities as awk or sh about their procedural control statements and their methods of
performing arithmetic functions.

The ISO C standard was selected as a model because most historical implementations of the
standard utilities were written in C. Thus, it was more likely that they would act in the desired
manner without modification.

Using the ISO C standard is primarily a notational convenience so that the many procedural
languages in the Shell and Utilities volume of POSIX.1-2008 would not have to be rigorously
described in every aspect. Its selection does not require that the standard utilities be written in
Standard C; they could be written in Common Usage C, Ada, Pascal, assembler language, or
anything else.

The sizes of the various numeric values refer to C-language data types that are allowed to be
different sizes by the ISO C standard. Thus, like a C-language application, a shell application
cannot rely on their exact size. However, it can rely on their minimum sizes expressed in the
ISO C standard, such as {LONG_MAX} for a long type.

The behavior on overflow is undefined for ISO C standard arithmetic. Therefore, the standard
utilities can use ‘‘bignum’’ representation for integers so that there is no fixed maximum unless
otherwise stated in the utility description. Similarly, standard utilities can use infinite-precision
representations for floating-point arithmetic, as long as these representations exceed the ISO C
standard requirements.

This section addresses only the issue of semantics; it is not intended to specify syntax. For
example, the ISO C standard requires that 0L be recognized as an integer constant equal to zero,
but utilities such as awk and sh are not required to recognize 0L (though they are allowed to, as
an extension).

3638 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

123585

123586

123587

123588

123589

123590

123591

123592

123593

123594

123595

123596

123597

123598

123599

123600

123601

123602

123603

123604

123605

123606

123607

123608

123609

123610

123611

123612

123613

123614

123615

123616

123617

123618

123619

123620

123621

123622

Rationale for Shell and Utilities Introduction

The ISO C standard requires that a C compiler must issue a diagnostic for constants that are too
large to represent. Most standard utilities are not required to issue these diagnostics; for
example, the command:

diff −C 2147483648 file1 file2

has undefined behavior, and the diff utility is not required to issue a diagnostic even if the
number 2 147 483 648 cannot be represented.

C.1.3 Utility Limits

This section grew out of an idea that originated with the original POSIX.1, in the tables of system
limits for the sysconf() and pathconf() functions. The idea being that a conforming application
can be written to use the most restrictive values that a minimal system can provide, but it should
not have to. The values provided represent compromises so that some vendors can use
historically limited versions of UNIX system utilities. They are the highest values that a strictly
conforming application can assume, given no other information.

However, by using the getconf utility or the sysconf() function, the elegant application can be
tailored to more liberal values on some of the specific instances of specific implementations.

There is no explicitly stated requirement that an implementation provide finite limits for any of
these numeric values; the implementation is free to provide essentially unbounded capabilities
(where it makes sense), stopping only at reasonable points such as {ULONG_MAX} (from the
ISO C standard). Therefore, applications desiring to tailor themselves to the values on a
particular implementation need to be ready for possibly huge values; it may not be a good idea
to allocate blindly a buffer for an input line based on the value of {LINE_MAX}, for instance.
However, unlike the System Interfaces volume of POSIX.1-2008, there is no set of limits that
return a special indication meaning ‘‘unbounded’’. The implementation should always return an
actual number, even if the number is very large.

The statement:

‘‘It is not guaranteed that the application ...’’

is an indication that many of these limits are designed to ensure that implementors design their
utilities without arbitrary constraints related to unimaginative programming. There are certainly
conditions under which combinations of options can cause failures that would not render an
implementation non-conforming. For example, {EXPR_NEST_MAX} and {ARG_MAX} could
collide when expressions are large; combinations of {BC_SCALE_MAX} and {BC_DIM_MAX}
could exceed virtual memory.

In the Shell and Utilities volume of POSIX.1-2008, the notion of a limit being guaranteed for the
process lifetime, as it is in the System Interfaces volume of POSIX.1-2008, is not as useful to a
shell script. The getconf utility is probably a process itself, so the guarantee would be without
value. Therefore, the Shell and Utilities volume of POSIX.1-2008 requires the guarantee to be for
the session lifetime. This will mean that many vendors will either return very conservative
values or possibly implement getconf as a built-in.

It may seem confusing to have limits that apply only to a single utility grouped into one global
section. However, the alternative, which would be to disperse them out into their utility
description sections, would cause great difficulty when sysconf() and getconf were described.
Therefore, the standard developers chose the global approach.

Each language binding could provide symbol names that are slightly different from those shown
here. For example, the C-Language Binding option adds a leading <underscore> to the symbols
as a prefix.

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3639

123623

123624

123625

123626

123627

123628

123629

123630

123631

123632

123633

123634

123635

123636

123637

123638

123639

123640

123641

123642

123643

123644

123645

123646

123647

123648

123649

123650

123651

123652

123653

123654

123655

123656

123657

123658

123659

123660

123661

123662

123663

123664

123665

123666

123667

Introduction Rationale for Shell and Utilities

The following comments describe selection criteria for the symbols and their values:

{ARG_MAX}
This is defined by the System Interfaces volume of POSIX.1-2008. Unfortunately, it is very
difficult for a conforming application to deal with this value, as it does not know how much
of its argument space is being consumed by the environment variables of the user.

{BC_BASE_MAX}
{BC_DIM_MAX}
{BC_SCALE_MAX}

These were originally one value, {BC_SCALE_MAX}, but it was unreasonable to link all
three concepts into one limit.

{CHILD_MAX}
This is defined by the System Interfaces volume of POSIX.1-2008.

{COLL_WEIGHTS_MAX}
The weights assigned to order can be considered as ‘‘passes’’ through the collation
algorithm.

{EXPR_NEST_MAX}
The value for expression nesting was borrowed from the ISO C standard.

{LINE_MAX}
This is a global limit that affects all utilities, unless otherwise noted. The {MAX_CANON}
value from the System Interfaces volume of POSIX.1-2008 may further limit input lines from
terminals. The {LINE_MAX} value was the subject of much debate and is a compromise
between those who wished to have unlimited lines and those who understood that many
historical utilities were written with fixed buffers. Frequently, utility writers selected the
UNIX system constant BUFSIZ to allocate these buffers; therefore, some utilities were
limited to 512 bytes for I/O lines, while others achieved 4 096 bytes or greater.

It should be noted that {LINE_MAX} applies only to input line length; there is no
requirement in POSIX.1-2008 that limits the length of output lines. Utilities such as awk, sed,
and paste could theoretically construct lines longer than any of the input lines they received,
depending on the options used or the instructions from the application. They are not
required to truncate their output to {LINE_MAX}. It is the responsibility of the application
to deal with this. If the output of one of those utilities is to be piped into another of the
standard utilities, line length restrictions will have to be considered; the fold utility, among
others, could be used to ensure that only reasonable line lengths reach utilities or
applications.

{LINK_MAX}
This is defined by the System Interfaces volume of POSIX.1-2008.

{MAX_CANON}
{MAX_INPUT}
{NAME_MAX}
{NGROUPS_MAX}
{OPEN_MAX}
{PATH_MAX}
{PIPE_BUF}

These limits are defined by the System Interfaces volume of POSIX.1-2008. Note that the
byte lengths described by some of these values continue to represent bytes, even if the
applicable character set uses a multi-byte encoding.

3640 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

123668

123669

123670

123671

123672

123673

123674

123675

123676

123677

123678

123679

123680

123681

123682

123683

123684

123685

123686

123687

123688

123689

123690

123691

123692

123693

123694

123695

123696

123697

123698

123699

123700

123701

123702

123703

123704

123705

123706

123707

123708

123709

123710

123711

123712

123713

Rationale for Shell and Utilities Introduction

{RE_DUP_MAX}
The value selected is consistent with historical practice. Although the name implies that it
applies to all REs, only BREs use the interval notation \{m,n\} addressed by this limit.

{POSIX2_SYMLINKS}
The {POSIX2_SYMLINKS} variable indicates that the underlying operating system supports
the creation of symbolic links in specific directories. Many of the utilities defined in
POSIX.1-2008 that deal with symbolic links do not depend on this value. For example, a
utility that follows symbolic links (or does not, as the case may be) will only be affected by a
symbolic link if it encounters one. Presumably, a file system that does not support symbolic
links will not contain any. This variable does affect such utilities as ln −s and pax that
attempt to create symbolic links.

There are different limits associated with command lines and input to utilities, depending on the
method of invocation. In the case of a C program exec-ing a utility, {ARG_MAX} is the
underlying limit. In the case of the shell reading a script and exec-ing a utility, {LINE_MAX}
limits the length of lines the shell is required to process, and {ARG_MAX} will still be a limit. If a
user is entering a command on a terminal to the shell, requesting that it invoke the utility,
{MAX_INPUT} may restrict the length of the line that can be given to the shell to a value below
{LINE_MAX}.

When an option is supported, getconf returns a value of 1. For example, when C development is
supported:

if ["$(getconf POSIX2_C_DEV)" −eq 1]; then
echo C supported

fi

The sysconf() function in the C-Language Binding option would return 1.

The following comments describe selection criteria for the symbols and their values:

POSIX2_C_BIND
POSIX2_C_DEV
POSIX2_FORT_DEV
POSIX2_FORT_RUN
POSIX2_SW_DEV
POSIX2_UPE

It is possible for some (usually privileged) operations to remove utilities that support these
options or otherwise to render these options unsupported. The header files, the sysconf()
function, or the getconf utility will not necessarily detect such actions, in which case they
should not be considered as rendering the implementation non-conforming. A test suite
should not attempt tests such as:

rm /usr/bin/c99
getconf POSIX2_C_DEV

POSIX2_LOCALEDEF
This symbol was introduced to allow implementations to restrict supported locales to only
those supplied by the implementation.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/2 is applied, deleting the entry for
{POSIX2_VERSION} since it is not a utility limit minimum value.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/3 is applied, changing the text in Utility
Limits from: ‘‘utility (see getconf) through the sysconf() function defined in the System Interfaces
volume of POSIX.1-2008. The literal names shown in Table 1-3 apply only to the getconf utility;
the high-level language binding describes the exact form of each name to be used by the

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3641

123714

123715

123716

123717

123718

123719

123720

123721

123722

123723

123724

123725

123726

123727

123728

123729

123730

123731

123732

123733

123734

123735

123736

123737

123738

123739

123740

123741

123742

123743

123744

123745

123746

123747

123748

123749

123750

123751

123752

123753

123754

123755

123756

123757

123758

123759

123760

Introduction Rationale for Shell and Utilities

interfaces in that binding.’’ to: ‘‘utility (see getconf).’’.

C.1.4 Grammar Conventions

There is no additional rationale provided for this section.

C.1.5 Utility Description Defaults

This section is arranged with headings in the same order as all the utility descriptions. It is a
collection of related and unrelated information concerning:

1. The default actions of utilities

2. The meanings of notations used in POSIX.1-2008 that are specific to individual utility
sections

Although this material may seem out of place here, it is important that this information appear
before any of the utilities to be described later.

NAME

There is no additional rationale provided for this section.

SYNOPSIS

There is no additional rationale provided for this section.

DESCRIPTION

There is no additional rationale provided for this section.

OPTIONS

Although it has not always been possible, the standard developers tried to avoid repeating
information to reduce the risk that duplicate explanations could each be modified differently.

The need to recognize − − is required because conforming applications need to shield their
operands from any arbitrary options that the implementation may provide as an extension. For
example, if the standard utility foo is listed as taking no options, and the application needed to
give it a pathname with a leading <hyphen>, it could safely do it as:

foo − − −myfile

and avoid any problems with −m used as an extension.

OPERANDS

The usage of − is never shown in the SYNOPSIS. Similarly, the usage of − − is never shown.

The requirement for processing operands in command-line order is to avoid a ‘‘WeirdNIX’’
utility that might choose to sort the input files alphabetically, by size, or by directory order.
Although this might be acceptable for some utilities, in general the programmer has a right to
know exactly what order will be chosen.

Some of the standard utilities take multiple file operands and act as if they were processing the
concatenation of those files. For example:

asa file1 file2

3642 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

123761

123762

123763

123764

123765

123766

123767

123768

123769

123770

123771

123772

123773

123774

123775

123776

123777

123778

123779

123780

123781

123782

123783

123784

123785

123786

123787

123788

123789

123790

123791

123792

123793

123794

123795

Rationale for Shell and Utilities Introduction

and:

cat file1 file2 | asa

have similar results when questions of file access, errors, and performance are ignored. Other
utilities such as grep or wc have completely different results in these two cases. This latter type of
utility is always identified in its DESCRIPTION or OPERANDS sections, whereas the former is
not. Although it might be possible to create a general assertion about the former case, the
following points must be addressed:

• Access times for the files might be different in the operand case versus the cat case.

• The utility may have error messages that are cognizant of the input filename, and this
added value should not be suppressed. (As an example, awk sets a variable with the
filename at each file boundary.)

STDIN

There is no additional rationale provided for this section.

INPUT FILES

A conforming application cannot assume the following three commands are equivalent:

tail −n +2 file
(sed −n 1q; cat) < file
cat file | (sed −n 1q; cat)

The second command is equivalent to the first only when the file is seekable. In the third
command, if the file offset in the open file description were not unspecified, sed would have to
be implemented so that it read from the pipe 1 byte at a time or it would have to employ some
method to seek backwards on the pipe. Such functionality is not defined currently in POSIX.1
and does not exist on all historical systems. Other utilities, such as head, read, and sh, have similar
properties, so the restriction is described globally in this section.

The definition of ‘‘text file’’ is strictly enforced for input to the standard utilities; very few of
them list exceptions to the undefined results called for here. (Of course, ‘‘undefined’’ here does
not mean that historical implementations necessarily have to change to start indicating error
conditions. Conforming applications cannot rely on implementations succeeding or failing when
non-text files are used.)

The utilities that allow line continuation are generally those that accept input languages, rather
than pure data. It would be unusual for an input line of this type to exceed {LINE_MAX} bytes
and unreasonable to require that the implementation allow unlimited accumulation of multiple
lines, each of which could reach {LINE_MAX}. Thus, for a conforming application the total of all
the continued lines in a set cannot exceed {LINE_MAX}.

The format description is intended to be sufficiently rigorous to allow other applications to
generate these input files. However, since <blank> characters can legitimately be included in
some of the fields described by the standard utilities, particularly in locales other than the POSIX
locale, this intent is not always realized.

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3643

123796

123797

123798

123799

123800

123801

123802

123803

123804

123805

123806

123807

123808

123809

123810

123811

123812

123813

123814

123815

123816

123817

123818

123819

123820

123821

123822

123823

123824

123825

123826

123827

123828

123829

123830

123831

123832

123833

Introduction Rationale for Shell and Utilities

ENVIRONMENT VARIABLES

There is no additional rationale provided for this section.

ASYNCHRONOUS EVENTS

Because there is no language prohibiting it, a utility is permitted to catch a signal, perform some
additional processing (such as deleting temporary files), restore the default signal action (or
action inherited from the parent process), and resignal itself.

STDOUT

The format description is intended to be sufficiently rigorous to allow post-processing of output
by other programs, particularly by an awk or lex parser.

STDERR

This section does not describe error messages that refer to incorrect operation of the utility.
Consider a utility that processes program source code as its input. This section is used to
describe messages produced by a correctly operating utility that encounters an error in the
program source code on which it is processing. However, a message indicating that the utility
had insufficient memory in which to operate would not be described.

Some utilities have traditionally produced warning messages without returning a non-zero exit
status; these are specifically noted in their sections. Other utilities shall not write to standard
error if they complete successfully, unless the implementation provides some sort of extension to
increase the verbosity or debugging level.

The format descriptions are intended to be sufficiently rigorous to allow post-processing of
output by other programs.

OUTPUT FILES

The format description is intended to be sufficiently rigorous to allow post-processing of output
by other programs, particularly by an awk or lex parser.

Receipt of the SIGQUIT signal should generally cause termination (unless in some debugging
mode) that would bypass any attempted recovery actions.

EXTENDED DESCRIPTION

There is no additional rationale provided for this section.

EXIT STATUS

Note the additional discussion of exit values in Exit Status for Commands in the sh utility. It
describes requirements for returning exit values greater than 125.

A utility may list zero as a successful return, 1 as a failure for a specific reason, and greater than
1 as ‘‘an error occurred’’. In this case, unspecified conditions may cause a 2 or 3, or other value,
to be returned. A strictly conforming application should be written so that it tests for successful
exit status values (zero in this case), rather than relying upon the single specific error value listed
in POSIX.1-2008. In that way, it will have maximum portability, even on implementations with
extensions.

The standard developers are aware that the general non-enumeration of errors makes it difficult
to write test suites that test the incorrect operation of utilities. There are some historical
implementations that have expended effort to provide detailed status messages and a helpful
environment to bypass or explain errors, such as prompting, retrying, or ignoring unimportant

3644 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

123834

123835

123836

123837

123838

123839

123840

123841

123842

123843

123844

123845

123846

123847

123848

123849

123850

123851

123852

123853

123854

123855

123856

123857

123858

123859

123860

123861

123862

123863

123864

123865

123866

123867

123868

123869

123870

123871

123872

123873

123874

Rationale for Shell and Utilities Introduction

syntax errors; other implementations have not. Since there is no realistic way to mandate system
behavior in cases of undefined application actions or system problems—in a manner acceptable
to all cultures and environments—attention has been limited to the correct operation of utilities
by the conforming application. Furthermore, the conforming application does not need detailed
information concerning errors that it caused through incorrect usage or that it cannot correct.

There is no description of defaults for this section because all of the standard utilities specify
something (or explicitly state ‘‘Unspecified’’) for exit status.

CONSEQUENCES OF ERRORS

Several actions are possible when a utility encounters an error condition, depending on the
severity of the error and the state of the utility. Included in the possible actions of various
utilities are: deletion of temporary or intermediate work files; deletion of incomplete files; and
validity checking of the file system or directory.

The text about recursive traversing is meant to ensure that utilities such as find process as many
files in the hierarchy as they can. They should not abandon all of the hierarchy at the first error
and resume with the next command-line operand, but should attempt to keep going.

APPLICATION USAGE

This section provides additional caveats, issues, and recommendations to the developer.

EXAMPLES

This section provides sample usage.

RATIONALE

There is no additional rationale provided for this section.

FUTURE DIRECTIONS

FUTURE DIRECTIONS sections act as pointers to related work that may impact the interface in
the future, and often cautions the developer to architect the code to account for a change in this
area. Note that a future directions statement should not be taken as a commitment to adopt a
feature or interface in the future.

SEE ALSO

There is no additional rationale provided for this section.

CHANGE HISTORY

There is no additional rationale provided for this section.

C.1.6 Considerations for Utilities in Support of Files of Arbitrary Size

This section is intended to clarify the requirements for utilities in support of large files.

The utilities listed in this section are utilities which are used to perform administrative tasks
such as to create, move, copy, remove, change the permissions, or measure the resources of a file.
They are useful both as end-user tools and as utilities invoked by applications during software
installation and operation.

The chgrp, chmod, chown, ln, and rm utilities probably require use of large file-capable versions of
stat(), lstat(), ftw(), and the stat structure.

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3645

123875

123876

123877

123878

123879

123880

123881

123882

123883

123884

123885

123886

123887

123888

123889

123890

123891

123892

123893

123894

123895

123896

123897

123898

123899

123900

123901

123902

123903

123904

123905

123906

123907

123908

123909

123910

123911

123912

Introduction Rationale for Shell and Utilities

The cat, cksum, cmp, cp, dd, mv, sum, and touch utilities probably require use of large file-capable
versions of creat(), open(), and fopen().

The cat, cksum, cmp, dd, df, du, ls, and sum utilities may require writing large integer values. For
example:

• The cat utility might have a −n option which counts <newline> characters.

• The cksum and ls utilities report file sizes.

• The cmp utility reports the line number at which the first difference occurs, and also has a
−l option which reports file offsets.

• The dd, df, du, ls, and sum utilities report block counts.

The dd, find, and test utilities may need to interpret command arguments that contain 64-bit
values. For dd, the arguments include skip=n, seek=n, and count=n. For find, the arguments
include −sizen. For test, the arguments are those associated with algebraic comparisons.

The df utility might need to access large file systems with statvfs().

The ulimit utility will need to use large file-capable versions of getrlimit() and setrlimit() and be
able to read and write large integer values.

C.1.7 Built-In Utilities

All of these utilities can be exec-ed. There is no requirement that these utilities are actually built
into the shell itself, but many shells need the capability to do so because XCU Section 2.9.1.1 (on
page 2317) requires that they be found prior to the PA TH search. The shell could satisfy its
requirements by keeping a list of the names and directly accessing the file-system versions
regardless of PA TH. Providing all of the required functionality for those such as cd or read would
be more difficult.

There were originally three justifications for allowing the omission of exec-able versions:

1. It would require wasting space in the file system, at the expense of very small systems.
However, it has been pointed out that all 16 utilities in the table can be provided with 16
links to a single-line shell script:

$0 "$@"

2. It is not logical to require invocation of utilities such as cd because they have no value
outside the shell environment or cannot be useful in a child process. However, counter-
examples always seemed to be available for even the most unusual cases:

find . −type d −exec cd {} \; −exec foo {} \;
(which invokes ‘‘foo’’ on accessible directories)

ps ... | sed ... | xargs kill

find . −exec true \; −a ...
(where ‘‘true’’ is used for temporary debugging)

3. It is confusing to have a utility such as kill that can easily be in the file system in the base
standard, but that requires built-in status for the User Portability Utilities option (for the
% job control job ID notation). It was decided that it was more appropriate to describe the
required functionality (rather than the implementation) to the system implementors and
let them decide how to satisfy it.

On the other hand, it was realized that any distinction like this between utilities was not useful
to applications, and that the cost to correct it was small. These arguments were ultimately the

3646 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

123913

123914

123915

123916

123917

123918

123919

123920

123921

123922

123923

123924

123925

123926

123927

123928

123929

123930

123931

123932

123933

123934

123935

123936

123937

123938

123939

123940

123941

123942

123943

123944

123945

123946

123947

123948

123949

123950

123951

123952

123953

123954

Rationale for Shell and Utilities Introduction

most effective.

There were varying reasons for including utilities in the table of built-ins:

alias, fc, unalias
The functionality of these utilities is performed more simply within the shell itself and that
is the model most historical implementations have used.

bg, fg, jobs
All of the job control-related utilities are eligible for built-in status because that is the model
most historical implementations have used.

cd, getopts, newgrp, read, umask, wait
The functionality of these utilities is performed more simply within the context of the
current process. An example can be taken from the usage of the cd utility. The purpose of
the cd utility is to change the working directory for subsequent operations. The actions of cd
affect the process in which cd is executed and all subsequent child processes of that process.
Based on the POSIX standard process model, changes in the process environment of a child
process have no effect on the parent process. If the cd utility were executed from a child
process, the working directory change would be effective only in the child process. Child
processes initiated subsequent to the child process that executed the cd utility would not
have a changed working directory relative to the parent process.

command
This utility was placed in the table primarily to protect scripts that are concerned about
their PA TH being manipulated. The ‘‘secure’’ shell script example in the command utility in
the Shell and Utilities volume of POSIX.1-2008 would not be possible if a PA TH change
retrieved an alien version of command. (An alternative would have been to implement
getconf as a built-in, but the standard developers considered that it carried too many
changing configuration strings to require in the shell.)

kill Since kill provides optional job control functionality using shell notation (%1, %2, and so on),
some implementations would find it extremely difficult to provide this outside the shell.

true, false
These are in the table as a courtesy to programmers who wish to use the "while true"
shell construct without protecting true from PA TH searches. (It is acknowledged that
"while :" also works, but the idiom with true is historically pervasive.)

All utilities, including those in the table, are accessible via the system() and popen() functions in
the System Interfaces volume of POSIX.1-2008. There are situations where the return
functionality of system() and popen() is not desirable. Applications that require the exit status of
the invoked utility will not be able to use system() or popen(), since the exit status returned is
that of the command language interpreter rather than that of the invoked utility. The alternative
for such applications is the use of the exec family.

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3647

123955

123956

123957

123958

123959

123960

123961

123962

123963

123964

123965

123966

123967

123968

123969

123970

123971

123972

123973

123974

123975

123976

123977

123978

123979

123980

123981

123982

123983

123984

123985

123986

123987

123988

123989

123990

123991

Shell Command Language Rationale for Shell and Utilities

C.2 Shell Command Language

C.2.1 Shell Introduction

The System V shell was selected as the starting point for the Shell and Utilities volume of
POSIX.1-2008. The BSD C shell was excluded from consideration for the following reasons:

• Most historically portable shell scripts assume the Version 7 Bourne shell, from which the
System V shell is derived.

• The majority of tutorial materials on shell programming assume the System V shell.

The construct "#!" is reserved for implementations wishing to provide that extension. If it were
not reserved, the Shell and Utilities volume of POSIX.1-2008 would disallow it by forcing it to be
a comment. As it stands, a strictly conforming application must not use "#!" as the first two
characters of the file.

C.2.2 Quoting

There is no additional rationale provided for this section.

C.2.2.1 Escape Character (Backslash)

There is no additional rationale provided for this section.

C.2.2.2 Single-Quotes

A <backslash> cannot be used to escape a single-quote in a single-quoted string. An embedded
quote can be created by writing, for example: "’a’\’’b’", which yields "a’b". (See XCU
Section 2.6.5 (on page 2311) for a better understanding of how portions of words are either split
into fields or remain concatenated.) A single token can be made up of concatenated partial
strings containing all three kinds of quoting or escaping, thus permitting any combination of
characters.

C.2.2.3 Double-Quotes

The escaped <newline> used for line continuation is removed entirely from the input and is not
replaced by any white space. Therefore, it cannot serve as a token separator.

In double-quoting, if a <backslash> is immediately followed by a character that would be
interpreted as having a special meaning, the <backslash> is deleted and the subsequent
character is taken literally. If a <backslash> does not precede a character that would have a
special meaning, it is left in place unmodified and the character immediately following it is also
left unmodified. Thus, for example:

"\$" -> $

"\a" -> \a

It would be desirable to include the statement ‘‘The characters from an enclosed "${" to the
matching ’}’ shall not be affected by the double-quotes’’, similar to the one for "$()".
However, historical practice in the System V shell prevents this.

3648 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

123992

123993

123994

123995

123996

123997

123998

123999

124000

124001

124002

124003

124004

124005

124006

124007

124008

124009

124010

124011

124012

124013

124014

124015

124016

124017

124018

124019

124020

124021

124022

124023

124024

124025

124026

Rationale for Shell and Utilities Shell Command Language

The requirement that double-quotes be matched inside "${...}" within double-quotes and the
rule for finding the matching ’}’ in XCU Section 2.6.2 (on page 2306) eliminate several subtle
inconsistencies in expansion for historical shells in rare cases; for example:

"${foo-bar"}

yields bar when foo is not defined, and is an invalid substitution when foo is defined, in many
historical shells. The differences in processing the "${...}" form have led to inconsistencies
between historical systems. A consequence of this rule is that single-quotes cannot be used to
quote the ’}’ within "${...}"; for example:

unset bar
foo="${bar−’}’}"

is invalid because the "${...}" substitution contains an unpaired unescaped single-quote. The
<backslash> can be used to escape the ’}’ in this example to achieve the desired result:

unset bar
foo="${bar−\}}"

The differences in processing the "${...}" form have led to inconsistencies between the
historical System V shell, BSD, and KornShells, and the text in the Shell and Utilities volume of
POSIX.1-2008 is an attempt to converge them without breaking too many applications. The only
alternative to this compromise between shells would be to make the behavior unspecified
whenever the literal characters single-quote, ’{’, ’}’, and ’"’ appear within "${...}". To
write a portable script that uses these values, a user would have to assign variables; for example:

squote=\’ dquote=\" lbrace=’{’ rbrace=’}’
${foo−$squote$rbrace$squote}

rather than:

${foo−"’}’"}

Some implementations have allowed the end of the word to terminate the backquoted command
substitution, such as in:

"‘echo hello"

This usage is undefined; the matching backquote is required by the Shell and Utilities volume of
POSIX.1-2008. The other undefined usage can be illustrated by the example:

sh −c ’‘ echo "foo‘’

The description of the recursive actions involving command substitution can be illustrated with
an example. Upon recognizing the introduction of command substitution, the shell parses input
(in a new context), gathering the source for the command substitution until an unbalanced ’)’
or ’‘’ is located. For example, in the following:

echo "$(date; echo "
one")"

the double-quote following the echo does not terminate the first double-quote; it is part of the
command substitution script. Similarly, in:

echo "$(echo *)"

the <asterisk> is not quoted since it is inside command substitution; however:

echo "$(echo "*")"

is quoted (and represents the <asterisk> character itself).

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3649

124027

124028

124029

124030

124031

124032

124033

124034

124035

124036

124037

124038

124039

124040

124041

124042

124043

124044

124045

124046

124047

124048

124049

124050

124051

124052

124053

124054

124055

124056

124057

124058

124059

124060

124061

124062

124063

124064

124065

124066

124067

124068

Shell Command Language Rationale for Shell and Utilities

C.2.3 Token Recognition

The "((" and "))" symbols are control operators in the KornShell, used for an alternative
syntax of an arithmetic expression command. A conforming application cannot use "((" as a
single token (with the exception of the "$((" form for shell arithmetic).

On some implementations, the symbol "((" is a control operator; its use produces unspecified
results. Applications that wish to have nested subshells, such as:

((echo Hello);(echo World))

must separate the "((" characters into two tokens by including white space between them.
Some systems may treat these as invalid arithmetic expressions instead of subshells.

Certain combinations of characters are invalid in portable scripts, as shown in the grammar.
Implementations may use these combinations (such as "|&") as valid control operators. Portable
scripts cannot rely on receiving errors in all cases where this volume of POSIX.1-2008 indicates
that a syntax is invalid.

The (3) rule about combining characters to form operators is not meant to preclude systems from
extending the shell language when characters are combined in otherwise invalid ways.
Conforming applications cannot use invalid combinations, and test suites should not penalize
systems that take advantage of this fact. For example, the unquoted combination "|&" is not
valid in a POSIX script, but has a specific KornShell meaning.

The (10) rule about ’#’ as the current character is the first in the sequence in which a new token
is being assembled. The ’#’ starts a comment only when it is at the beginning of a token. This
rule is also written to indicate that the search for the end-of-comment does not consider escaped
<newline> specially, so that a comment cannot be continued to the next line.

C.2.3.1 Alias Substitution

The alias capability was added because it is widely used in historical implementations by
interactive users.

The definition of ‘‘alias name’’ precludes an alias name containing a <slash> character. Since the
text applies to the command words of simple commands, reserved words (in their proper
places) cannot be confused with aliases.

The placement of alias substitution in token recognition makes it clear that it precedes all of the
word expansion steps.

An example concerning trailing <blank> characters and reserved words follows. If the user
types:

$ alias foo="/bin/ls "
$ alias while="/"

The effect of executing:

$ while true
> do
> echo "Hello, World"
> done

is a never-ending sequence of "Hello, World" strings to the screen. However, if the user
types:

$ foo while

3650 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

124069

124070

124071

124072

124073

124074

124075

124076

124077

124078

124079

124080

124081

124082

124083

124084

124085

124086

124087

124088

124089

124090

124091

124092

124093

124094

124095

124096

124097

124098

124099

124100

124101

124102

124103

124104

124105

124106

124107

124108

124109

124110

Rationale for Shell and Utilities Shell Command Language

the result is an ls listing of /. Since the alias substitution for foo ends in a <space>, the next word
is checked for alias substitution. The next word, while, has also been aliased, so it is substituted
as well. Since it is not in the proper position as a command word, it is not recognized as a
reserved word.

If the user types:

$ foo; while

while retains its normal reserved-word properties.

C.2.4 Reserved Words

All reserved words are recognized syntactically as such in the contexts described. However, note
that in is the only meaningful reserved word after a case or for; similarly, in is not meaningful as
the first word of a simple command.

Reserved words are recognized only when they are delimited (that is, meet the definition of XBD
Section 3.438, on page 104), whereas operators are themselves delimiters. For instance, ’(’ and
’)’ are control operators, so that no <space> is needed in (list). However, ’{’ and ’}’ are
reserved words in { list;}, so that in this case the leading <space> and <semicolon> are required.

The list of unspecified reserved words is from the KornShell, so conforming applications cannot
use them in places a reserved word would be recognized. This list contained time in early
proposals, but it was removed when the time utility was selected for the Shell and Utilities
volume of POSIX.1-2008.

There was a strong argument for promoting braces to operators (instead of reserved words), so
they would be syntactically equivalent to subshell operators. Concerns about compatibility
outweighed the advantages of this approach. Nevertheless, conforming applications should
consider quoting ’{’ and ’}’ when they represent themselves.

The restriction on ending a name with a <colon> is to allow future implementations that support
named labels for flow control; see the RATIONALE for the break built-in utility.

It is possible that a future version of the Shell and Utilities volume of POSIX.1-2008 may require
that ’{’ and ’}’ be treated individually as control operators, although the token "{ }" will
probably be a special-case exemption from this because of the often-used find{ } construct.

C.2.5 Parameters and Variables

C.2.5.1 Positional Parameters

There is no additional rationale provided for this section.

C.2.5.2 Special Parameters

Most historical implementations implement subshells by forking; thus, the special parameter
’$’ does not necessarily represent the process ID of the shell process executing the commands
since the subshell execution environment preserves the value of ’$’.

If a subshell were to execute a background command, the value of "$!" for the parent would
not change. For example:

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3651

124111

124112

124113

124114

124115

124116

124117

124118

124119

124120

124121

124122

124123

124124

124125

124126

124127

124128

124129

124130

124131

124132

124133

124134

124135

124136

124137

124138

124139

124140

124141

124142

124143

124144

124145

124146

124147

Shell Command Language Rationale for Shell and Utilities

(
date &
echo $!
)
echo $!

would echo two different values for "$!".

The "$−" special parameter can be used to save and restore set options:

Save=$(echo $− | sed ’s/[ics]//g’)
...
set +aCefnuvx
if [−n "$Save"]; then

set −$Save
fi

The three options are removed using sed in the example because they may appear in the value of
"$−" (from the sh command line), but are not valid options to set.

The descriptions of parameters ’*’ and ’@’ assume the reader is familiar with the field
splitting discussion in XCU Section 2.6.5 (on page 2311) and understands that portions of the
word remain concatenated unless there is some reason to split them into separate fields.

Some examples of the ’*’ and ’@’ properties, including the concatenation aspects:

set "abc" "def ghi" "jkl"

echo $* => "abc" "def" "ghi" "jkl"
echo "$*" => "abc def ghi jkl"
echo $@ => "abc" "def" "ghi" "jkl"

but:

echo "$@" => "abc" "def ghi" "jkl"
echo "xx$@yy" => "xxabc" "def ghi" "jklyy"
echo "$@$@" => "abc" "def ghi" "jklabc" "def ghi" "jkl"

In the preceding examples, the double-quote characters that appear after the "=>" do not
appear in the output and are used only to illustrate word boundaries.

The following example illustrates the effect of setting IFS to a null string:

$ IFS=’’
$ set foo bar bam
$ echo "$@"
foo bar bam

$ echo "$*"
foobarbam

$ unset IFS
$ echo "$*"
foo bar bam

3652 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

124148

124149

124150

124151

124152

124153

124154

124155

124156

124157

124158

124159

124160

124161

124162

124163

124164

124165

124166

124167

124168

124169

124170

124171

124172

124173

124174

124175

124176

124177

124178

124179

124180

124181

124182

124183

124184

124185

124186

Rationale for Shell and Utilities Shell Command Language

C.2.5.3 Shell Variables

See the discussion of IFS in Section C.2.6.5 (on page 3659) and the RATIONALE for the sh utility.

The prohibition on LC_CTYPE changes affecting lexical processing protects the shell
implementor (and the shell programmer) from the ill effects of changing the definition of
<blank> or the set of alphabetic characters in the current environment. It would probably not be
feasible to write a compiled version of a shell script without this rule. The rule applies only to
the current invocation of the shell and its subshells—invoking a shell script or performing exec
sh would subject the new shell to the changes in LC_CTYPE.

Other common environment variables used by historical shells are not specified by the Shell and
Utilities volume of POSIX.1-2008, but they should be reserved for the historical uses.

Tilde expansion for components of PA TH in an assignment such as:

PATH=˜hlj/bin:˜dwc/bin:$PATH

is a feature of some historical shells and is allowed by the wording of XCU Section 2.6.1 (on page
2305). Note that the <tilde> characters are expanded during the assignment to PA TH, not when
PA TH is accessed during command search.

The following entries represent additional information about variables included in the Shell and
Utilities volume of POSIX.1-2008, or rationale for common variables in use by shells that have
been excluded:

_ (Underscore.) While <underscore> is historical practice, its overloaded usage
in the KornShell is confusing, and it has been omitted from the Shell and
Utilities volume of POSIX.1-2008.

ENV This variable can be used to set aliases and other items local to the invocation
of a shell. The file referred to by ENV differs from $HOME/.profile in that
.profile is typically executed at session start-up, whereas the ENV file is
executed at the beginning of each shell invocation. The ENV value is
interpreted in a manner similar to a dot script, in that the commands are
executed in the current environment and the file needs to be readable, but not
executable. However, unlike dot scripts, no PA TH searching is performed. This
is used as a guard against Trojan Horse security breaches.

ERRNO This variable was omitted from the Shell and Utilities volume of POSIX.1-2008
because the values of error numbers are not defined in POSIX.1-2008 in a
portable manner.

FCEDIT Since this variable affects only the fc utility, it has been omitted from this more
global place. The value of FCEDIT does not affect the command-line editing
mode in the shell; see the description of set −o vi in the set built-in utility.

PS1 This variable is used for interactive prompts. Historically, the ‘‘superuser ’’
has had a prompt of ’#’. Since privileges are not required to be monolithic, it
is difficult to define which privileges should cause the alternate prompt.
However, a sufficiently powerful user should be reminded of that power by
having an alternate prompt.

PS3 This variable is used by the KornShell for the select command. Since the POSIX
shell does not include select, PS3 was omitted.

PS4 This variable is used for shell debugging. For example, the following script:

PS4=’[${LINENO}]+ ’
set −x
echo Hello

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3653

124187

124188

124189

124190

124191

124192

124193

124194

124195

124196

124197

124198

124199

124200

124201

124202

124203

124204

124205

124206

124207

124208

124209

124210

124211

124212

124213

124214

124215

124216

124217

124218

124219

124220

124221

124222

124223

124224

124225

124226

124227

124228

124229

124230

124231

124232

Shell Command Language Rationale for Shell and Utilities

writes the following to standard error:

[3]+ echo Hello

RANDOM This pseudo-random number generator was not seen as being useful to
interactive users.

SECONDS Although this variable is sometimes used with PS1 to allow the display of the
current time in the prompt of the user, it is not one that would be manipulated
frequently enough by an interactive user to include in the Shell and Utilities
volume of POSIX.1-2008.

C.2.6 Word Expansions

Step (2) refers to the ‘‘portions of fields generated by step (1)’’. For example, if the word being
expanded were "$x+$y" and IFS=+, the word would be split only if "$x" or "$y" contained
’+’; the ’+’ in the original word was not generated by step (1).

IFS is used for performing field splitting on the results of parameter and command substitution;
it is not used for splitting all fields. Earlier versions of the shell used it for splitting all fields
during field splitting, but this has severe problems because the shell can no longer parse its own
script. There are also important security implications caused by this behavior. All useful
applications of IFS use it for parsing input of the read utility and for splitting the results of
parameter and command substitution.

The rule concerning expansion to a single field requires that if foo=abc and bar=def, that:

"$foo""$bar"

expands to the single field:

abcdef

The rule concerning empty fields can be illustrated by:

$ unset foo
$ set $foo bar ’’ xyz "$foo" abc
$ for i
> do
> echo "−$i−"
> done
−bar−
− −
−xyz−
− −
−abc−

Step (1) indicates that parameter expansion, command substitution, and arithmetic expansion
are all processed simultaneously as they are scanned. For example, the following is valid
arithmetic:

x=1
echo $(($(echo 3)+$x))

An early proposal stated that tilde expansion preceded the other steps, but this is not the case in
known historical implementations; if it were, and if a referenced home directory contained a ’$’
character, expansions would result within the directory name.

3654 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

124233

124234

124235

124236

124237

124238

124239

124240

124241

124242

124243

124244

124245

124246

124247

124248

124249

124250

124251

124252

124253

124254

124255

124256

124257

124258

124259

124260

124261

124262

124263

124264

124265

124266

124267

124268

124269

124270

124271

124272

124273

124274

Rationale for Shell and Utilities Shell Command Language

C.2.6.1 Tilde Expansion

Tilde expansion generally occurs only at the beginning of words, but an exception based on
historical practice has been included:

PATH=/posix/bin:˜dgk/bin

This is eligible for tilde expansion because <tilde> follows a <colon> and none of the relevant
characters is quoted. Consideration was given to prohibiting this behavior because any of the
following are reasonable substitutes:

PATH=$(printf %s ˜karels/bin : ˜bostic/bin)

for Dir in ˜maart/bin ˜srb/bin ...
do

PATH=${PATH:+$PATH:}$Dir
done

In the first command, explicit <colon> characters are used for each directory. In all cases, the
shell performs tilde expansion on each directory because all are separate words to the shell.

Note that expressions in operands such as:

make −k mumble LIBDIR=˜chet/lib

do not qualify as shell variable assignments, and tilde expansion is not performed (unless the
command does so itself, which make does not).

Because of the requirement that the word is not quoted, the following are not equivalent; only
the last causes tilde expansion:

\˜hlj/ ˜h\lj/ ˜"hlj"/ ˜hlj\/ ˜hlj/

In an early proposal, tilde expansion occurred following any unquoted <equals-sign> or
<colon>, but this was removed because of its complexity and to avoid breaking commands such
as:

rcp hostname:˜marc/.profile .

A suggestion was made that the special sequence "$˜" should be allowed to force tilde
expansion anywhere. Since this is not historical practice, it has been left for future
implementations to evaluate. (The description in XCU Section 2.2 (on page 2298) requires that a
<dollar-sign> be quoted to represent itself, so the "$˜" combination is already unspecified.)

The results of giving <tilde> with an unknown login name are undefined because the KornShell
"˜+" and "˜−" constructs make use of this condition, but in general it is an error to give an
incorrect login name with <tilde>. The results of having HOME unset are unspecified because
some historical shells treat this as an error.

Historically, the Korn shell performed field splitting and pathname expansion on the results of
tilde expansion, and earlier versions of this standard reflected this. However, tilde expansion
results in a pathname, and performing field splitting and pathname expansion on something
that is already a pathname is at best redundant and at worst will change the value from the
correct pathname to one or more incorrect ones. Later versions of the Korn shell do not perform
these expansions and POSIX.1-2008 has been updated to match. Note that although pathname
expansion is not performed on the results of tilde expansion, this does not prevent other parts of
the same word from being expanded. For example, ˜/a* expands to all files in $HOME
beginning with ’a’.

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3655

124275

124276

124277

124278

124279

124280

124281

124282

124283

124284

124285

124286

124287

124288

124289

124290

124291

124292

124293

124294

124295

124296

124297

124298

124299

124300

124301

124302

124303

124304

124305

124306

124307

124308

124309

124310

124311

124312

124313

124314

124315

124316

Shell Command Language Rationale for Shell and Utilities

C.2.6.2 Parameter Expansion

The rule for finding the closing ’}’ in "${...}" is the one used in the KornShell and is
upwardly-compatible with the Bourne shell, which does not determine the closing ’}’ until the
word is expanded. The advantage of this is that incomplete expansions, such as:

${foo

can be determined during tokenization, rather than during expansion.

The string length and substring capabilities were included because of the demonstrated need for
them, based on their usage in other shells, such as C shell and KornShell.

Historical versions of the KornShell have not performed tilde expansion on the word part of
parameter expansion; however, it is more consistent to do so.

C.2.6.3 Command Substitution

The "$()" form of command substitution solves a problem of inconsistent behavior when using
backquotes. For example:

Command Output

echo ’\$x’ \$x
echo ‘echo ’\$x’‘ $x
echo $(echo ’\$x’) \$x

Additionally, the backquoted syntax has historical restrictions on the contents of the embedded
command. While the newer "$()" form can process any kind of valid embedded script, the
backquoted form cannot handle some valid scripts that include backquotes. For example, these
otherwise valid embedded scripts do not work in the left column, but do work on the right:

echo ‘ echo $(
cat <<\eof cat <<\eof
a here-doc with ‘ a here-doc with)
eof eof
‘)

echo ‘ echo $(
echo abc # a comment with ‘ echo abc # a comment with)
‘)

echo ‘ echo $(
echo ’‘’ echo ’)’
‘)

Because of these inconsistent behaviors, the backquoted variety of command substitution is not
recommended for new applications that nest command substitutions or attempt to embed
complex scripts.

The KornShell feature:

If command is of the form <word, word is expanded to generate a pathname, and the value
of the command substitution is the contents of this file with any trailing <newline>
characters deleted.

was omitted from the Shell and Utilities volume of POSIX.1-2008 because $(cat word) is an
appropriate substitute. However, to prevent breaking numerous scripts relying on this feature, it
is unspecified to have a script within "$()" that has only redirections.

3656 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

124317

124318

124319

124320

124321

124322

124323

124324

124325

124326

124327

124328

124329

124330

124331

124332

124333

124334

124335

124336

124337

124338

124339

124340

124341

124342

124343

124344

124345

124346

124347

124348

124349

124350

124351

124352

124353

124354

124355

124356

124357

124358

Rationale for Shell and Utilities Shell Command Language

The requirement to separate "$(" and ’(’ when a single subshell is command-substituted is to
avoid any ambiguities with arithmetic expansion.

IEEE Std 1003.1-2001/Cor 1-2002, item XCU/TC1/D6/4 is applied, changing the text from: ‘‘If a
command substitution occurs inside double-quotes, it shall not be performed on the results of
the substitution.’’ to: ‘‘If a command substitution occurs inside double-quotes, field splitting and
pathname expansion shall not be performed on the results of the substitution.’’. The
replacement text taken from the ISO POSIX-2: 1993 standard is clearer about the items that are
not performed.

SD5-XCU-ERN-84 is applied, clarifying how the search for the matching backquote is satisfied.

C.2.6.4 Arithmetic Expansion

The standard developers agreed that there was a strong desire for some kind of arithmetic
evaluator to provide functionality similar to expr, that relating it to ’$’ makes it work well with
the standard shell language and provides access to arithmetic evaluation in places where
accessing a utility would be inconvenient.

The syntax and semantics for arithmetic were revised for the ISO/IEC 9945-2: 1993 standard.
The language represents a simple subset of the previous arithmetic language (which was
derived from the KornShell "(())" construct). The syntax was changed from that of a
command denoted by ((expression)) to an expansion denoted by $((expression)). The new form is
a dollar expansion (’$’) that evaluates the expression and substitutes the resulting value.
Objections to the previous style of arithmetic included that it was too complicated, did not fit in
well with the use of variables in the shell, and its syntax conflicted with subshells. The
justification for the new syntax is that the shell is traditionally a macro language, and if a new
feature is to be added, it should be accomplished by extending the capabilities presented by the
current model of the shell, rather than by inventing a new one outside the model; adding a new
dollar expansion was perceived to be the most intuitive and least destructive way to add such a
new capability.

The standard requires assignment operators to be supported (as listed in XCU Section 1.1.2, on
page 2283), and since arithmetic expansions are not specified to be evaluated in a subshell
environment, changes to variables there have to be in effect after the arithmetic expansion, just
as in the parameter expansion "${x=value}".

Note, however, that "$((x=5))" need not be equivalent to "$(($x=5))". If the value of
the environment variable x is the string "y=", the expansion of "$((x=5))" would set x to 5
and output 5, but "$(($x=5))" would output 0 if the value of the environment variable y is
not 5 and would output 1 if the environment variable y is 5. Similarly, if the value of the
environment variable is 4, the expansion of "$((x=5))" would still set x to 5 and output 5,
but "$(($x=5))" (which would be equivalent to "$((4=5))") would yield a syntax
error.

In early proposals, a form $[expression] was used. It was functionally equivalent to the "$(())"
of the current text, but objections were lodged that the 1988 KornShell had already implemented
"$(())" and there was no compelling reason to invent yet another syntax. Furthermore, the
"$[]" syntax had a minor incompatibility involving the patterns in case statements.

The portion of the ISO C standard arithmetic operations selected corresponds to the operations
historically supported in the KornShell. In addition to the exceptions listed in XCU Section 2.6.4
(on page 2310), the use of the following are explicitly outside the scope of the rules defined in
XCU Section 1.1.2.1 (on page 2283):

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3657

124359

124360

124361

124362

124363

124364

124365

124366

124367

124368

124369

124370

124371

124372

124373

124374

124375

124376

124377

124378

124379

124380

124381

124382

124383

124384

124385

124386

124387

124388

124389

124390

124391

124392

124393

124394

124395

124396

124397

124398

124399

124400

124401

124402

124403

Shell Command Language Rationale for Shell and Utilities

• The prefix operator ’&’ and the "[]", "->", and ’.’ operators.

• Casts

It was concluded that the test command ([) was sufficient for the majority of relational arithmetic
tests, and that tests involving complicated relational expressions within the shell are rare, yet
could still be accommodated by testing the value of "$(())" itself. For example:

a complicated relational expression
while [$(((($x + $y)/($a * $b)) < ($foo*$bar))) −ne 0]

or better yet, the rare script that has many complex relational expressions could define a
function like this:

val() {
return $((!$1))

}

and complicated tests would be less intimidating:

while val $(((($x + $y)/($a * $b)) < ($foo*$bar)))
do

some calculations
done

A suggestion that was not adopted was to modify true and false to take an optional argument,
and true would exit true only if the argument was non-zero, and false would exit false only if the
argument was non-zero:

while true $(($x > 5 && $y <= 25))

There is a minor portability concern with the new syntax. The example "$((2+2))" could have
been intended to mean a command substitution of a utility named "2+2" in a subshell. The
standard developers considered this to be obscure and isolated to some KornShell scripts
(because "$()" command substitution existed previously only in the KornShell). The text on
command substitution requires that the "$(" and ’(’ be separate tokens if this usage is
needed.

An example such as:

echo $((echo hi);(echo there))

should not be misinterpreted by the shell as arithmetic because attempts to balance the
parentheses pairs would indicate that they are subshells. However, as indicated by XBD Section
3.113 (on page 51), a conforming application must separate two adjacent parentheses with white
space to indicate nested subshells.

The standard is intentionally silent about how a variable’s numeric value in an expression is
determined from its normal ‘‘sequence of bytes’’ value. It could be done as a text substitution, as
a conversion like that performed by strtol(), or even recursive evaluation. Therefore, the only
cases for which the standard is clear are those for which both conversions produce the same
result. The cases where they give the same result are those where the sequence of bytes form a
valid integer constant. Therefore, if a variable does not contain a valid integer constant, the
behavior is unspecified.

For the commands:

x=010; echo $((x += 1))

the output must be 9.

For the commands:

3658 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

124404

124405

124406

124407

124408

124409

124410

124411

124412

124413

124414

124415

124416

124417

124418

124419

124420

124421

124422

124423

124424

124425

124426

124427

124428

124429

124430

124431

124432

124433

124434

124435

124436

124437

124438

124439

124440

124441

124442

124443

124444

124445

124446

124447

Rationale for Shell and Utilities Shell Command Language

x=’ 1’; echo $((x += 1))

the results are unspecified.

For the commands:

x=1+1; echo $((x += 1))

the results are unspecified.

Although the ISO/IEC 9899: 1999 standard now requires support for long long and allows
extended integer types with higher ranks, POSIX.1-2008 only requires arithmetic expansions to
support signed long integer arithmetic. Implementations are encouraged to support signed
integer values at least as large as the size of the largest file allowed on the implementation.

Implementations are also allowed to perform floating-point evaluations as long as an
application won’t see different results for expressions that would not overflow signed long
integer expression evaluation. (This includes appropriate truncation of results to integer values.)

Changes made in response to IEEE PASC Interpretation 1003.2 #208 removed the requirement
that the integer constant suffixes l and L had to be recognized. The ISO POSIX-2: 1993 standard
did not require the u, ul, uL, U, Ul, UL, lu, lU, Lu, and LU suffixes since only signed integer
arithmetic was required. Since all arithmetic expressions were treated as handling signed long
integer types anyway, the l and L suffixes were redundant. No known scripts used them and
some historic shells did not support them. When the ISO/IEC 9899: 1999 standard was used as
the basis for the description of arithmetic processing, the ll and LL suffixes and combinations
were also not required. Implementations are still free to accept any or all of these suffixes, but
are not required to do so.

There was also some confusion as to whether the shell was required to recognize character
constants. Syntactically, character constants were required to be recognized, but the
requirements for the handling of <backslash> and single-quote characters (needed to specify
character constants) within an arithmetic expansion were ambiguous. Furthermore, no known
shells supported them. Changes made in response to IEEE PASC Interpretation 1003.2 #208
removed the requirement to support them (if they were indeed required before). POSIX.1-2008
clearly does not require support for character constants.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/3 is applied, clarifying arithmetic
expressions.

C.2.6.5 Field Splitting

The operation of field splitting using IFS, as described in early proposals, was based on the way
the KornShell splits words, but it is incompatible with other common versions of the shell.
However, each has merit, and so a decision was made to allow both. If the IFS variable is unset
or is <space><tab><newline>, the operation is equivalent to the way the System V shell splits
words. Using characters outside the <space><tab><newline> set yields the KornShell behavior,
where each of the non-<space><tab><newline>s is significant. This behavior, which affords the
most flexibility, was taken from the way the original awk handled field splitting.

Rule (3) can be summarized as a pseudo-ERE:

(s*ns*|s+)

where s is an IFS white-space character and n is a character in the IFS that is not white space.
Any string matching that ERE delimits a field, except that the s+ form does not delimit fields at
the beginning or the end of a line. For example, if IFS is <space>/<comma>/<tab>, the string:

<space><space>red<space><space>,<space>white<space>blue

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3659

124448

124449

124450

124451

124452

124453

124454

124455

124456

124457

124458

124459

124460

124461

124462

124463

124464

124465

124466

124467

124468

124469

124470

124471

124472

124473

124474

124475

124476

124477

124478

124479

124480

124481

124482

124483

124484

124485

124486

124487

124488

124489

124490

124491

Shell Command Language Rationale for Shell and Utilities

yields the three colors as the delimited fields.

C.2.6.6 Pathname Expansion

There is no additional rationale provided for this section.

C.2.6.7 Quote Removal

There is no additional rationale provided for this section.

C.2.7 Redirection

In the System Interfaces volume of POSIX.1-2008, file descriptors are integers in the range
0−({OPEN_MAX}−1). The file descriptors discussed in XCU Section 2.7 (on page 2312) are that
same set of small integers.

Having multi-digit file descriptor numbers for I/O redirection can cause some obscure
compatibility problems. Specifically, scripts that depend on an example command:

echo 22>/dev/null

echoing "2" to standard error or "22" to standard output are no longer portable. However, the
file descriptor number must still be delimited from the preceding text. For example:

cat file2>foo

writes the contents of file2, not the contents of file.

The ">|" format of output redirection was adopted from the KornShell. Along with the
noclobber option, set −C, it provides a safety feature to prevent inadvertent overwriting of
existing files. (See the RATIONALE for the pathchk utility for why this step was taken.) The
restriction on regular files is historical practice.

The System V shell and the KornShell have differed historically on pathname expansion of word;
the former never performed it, the latter only when the result was a single field (file). As a
compromise, it was decided that the KornShell functionality was useful, but only as a shorthand
device for interactive users. No reasonable shell script would be written with a command such
as:

cat foo > a*

Thus, shell scripts are prohibited from doing it, while interactive users can select the shell with
which they are most comfortable.

The construct "2>&1" is often used to redirect standard error to the same file as standard
output. Since the redirections take place beginning to end, the order of redirections is significant.
For example:

ls > foo 2>&1

directs both standard output and standard error to file foo. However:

ls 2>&1 > foo

only directs standard output to file foo because standard error was duplicated as standard
output before standard output was directed to file foo.

The "<>" operator could be useful in writing an application that worked with several terminals,
and occasionally wanted to start up a shell. That shell would in turn be unable to run

3660 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

124492

124493

124494

124495

124496

124497

124498

124499

124500

124501

124502

124503

124504

124505

124506

124507

124508

124509

124510

124511

124512

124513

124514

124515

124516

124517

124518

124519

124520

124521

124522

124523

124524

124525

124526

124527

124528

124529

Rationale for Shell and Utilities Shell Command Language

applications that run from an ordinary controlling terminal unless it could make use of "<>"
redirection. The specific example is a historical version of the pager more, which reads from
standard error to get its commands, so standard input and standard output are both available
for their usual usage. There is no way of saying the following in the shell without "<>":

cat food | more − >/dev/tty03 2<>/dev/tty03

Another example of "<>" is one that opens /dev/tty on file descriptor 3 for reading and writing:

exec 3<> /dev/tty

An example of creating a lock file for a critical code region:

set −C
until 2> /dev/null > lockfile
do sleep 30
done
set +C
perform critical function

rm lockfile

Since /dev/null is not a regular file, no error is generated by redirecting to it in noclobber mode.

Tilde expansion is not performed on a here-document because the data is treated as if it were
enclosed in double-quotes.

C.2.7.1 Redirecting Input

There is no additional rationale provided for this section.

C.2.7.2 Redirecting Output

There is no additional rationale provided for this section.

C.2.7.3 Appending Redirected Output

Note that when a file is opened (even with the O_APPEND flag set), the initial file offset for that
file is set to the beginning of the file. Some historic shells set the file offset to the current end-of-
file when append mode shell redirection was used, but this is not allowed by POSIX.1-2008.

C.2.7.4 Here-Document

There is no additional rationale provided for this section.

C.2.7.5 Duplicating an Input File Descriptor

There is no additional rationale provided for this section.

C.2.7.6 Duplicating an Output File Descriptor

There is no additional rationale provided for this section.

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3661

124530

124531

124532

124533

124534

124535

124536

124537

124538

124539

124540

124541

124542

124543

124544

124545

124546

124547

124548

124549

124550

124551

124552

124553

124554

124555

124556

124557

124558

124559

124560

124561

Shell Command Language Rationale for Shell and Utilities

C.2.7.7 Open File Descriptors for Reading and Writing

There is no additional rationale provided for this section.

C.2.8 Exit Status and Errors

C.2.8.1 Consequences of Shell Errors

There is no additional rationale provided for this section.

C.2.8.2 Exit Status for Commands

There is a historical difference in sh and ksh non-interactive error behavior. When a command
named in a script is not found, some implementations of sh exit immediately, but ksh continues
with the next command. Thus, the Shell and Utilities volume of POSIX.1-2008 says that the shell
‘‘may’’ exit in this case. This puts a small burden on the programmer, who has to test for
successful completion following a command if it is important that the next command not be
executed if the previous command was not found. If it is important for the command to have
been found, it was probably also important for it to complete successfully. The test for successful
completion would not need to change.

Historically, shells have returned an exit status of 128+n, where n represents the signal number.
Since signal numbers are not standardized, there is no portable way to determine which signal
caused the termination. Also, it is possible for a command to exit with a status in the same range
of numbers that the shell would use to report that the command was terminated by a signal.
Implementations are encouraged to choose exit values greater than 256 to indicate programs that
terminate by a signal so that the exit status cannot be confused with an exit status generated by a
normal termination.

Historical shells make the distinction between ‘‘utility not found’’ and ‘‘utility found but cannot
execute’’ in their error messages. By specifying two seldomly used exit status values for these
cases, 127 and 126 respectively, this gives an application the opportunity to make use of this
distinction without having to parse an error message that would probably change from locale to
locale. The command, env, nohup, and xargs utilities in the Shell and Utilities volume of
POSIX.1-2008 have also been specified to use this convention.

When a command fails during word expansion or redirection, most historical implementations
exit with a status of 1. However, there was some sentiment that this value should probably be
much higher so that an application could distinguish this case from the more normal exit status
values. Thus, the language ‘‘greater than zero’’ was selected to allow either method to be
implemented.

C.2.9 Shell Commands

A description of an ‘‘empty command’’ was removed from an early proposal because it is only
relevant in the cases of sh −c "", system(""), or an empty shell-script file (such as the
implementation of true on some historical systems). Since it is no longer mentioned in the Shell
and Utilities volume of POSIX.1-2008, it falls into the silently unspecified category of behavior
where implementations can continue to operate as they have historically, but conforming
applications do not construct empty commands. (However, note that sh does explicitly state an
exit status for an empty string or file.) In an interactive session or a script with other commands,

3662 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

124562

124563

124564

124565

124566

124567

124568

124569

124570

124571

124572

124573

124574

124575

124576

124577

124578

124579

124580

124581

124582

124583

124584

124585

124586

124587

124588

124589

124590

124591

124592

124593

124594

124595

124596

124597

124598

124599

124600

124601

Rationale for Shell and Utilities Shell Command Language

extra <newline> or <semicolon> characters, such as:

$ false
$
$ echo $?
1

would not qualify as the empty command described here because they would be consumed by
other parts of the grammar.

C.2.9.1 Simple Commands

The enumerated list is used only when the command is actually going to be executed. For
example, in:

true || $foo *

no expansions are performed.

The following example illustrates both how a variable assignment without a command name
affects the current execution environment, and how an assignment with a command name only
affects the execution environment of the command:

$ x=red
$ echo $x
red

$ export x
$ sh −c ’echo $x’
red

$ x=blue sh −c ’echo $x’
blue

$ echo $x
red

This next example illustrates that redirections without a command name are still performed:

$ ls foo
ls: foo: no such file or directory

$ > foo
$ ls foo
foo

A command without a command name, but one that includes a command substitution, has an
exit status of the last command substitution that the shell performed. For example:

if x=$(command)
then ...
fi

An example of redirections without a command name being performed in a subshell shows that
the here-document does not disrupt the standard input of the while loop:

IFS=:
while read a b
do echo $a

<<−eof
Hello
eof

done </etc/passwd

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3663

124602

124603

124604

124605

124606

124607

124608

124609

124610

124611

124612

124613

124614

124615

124616

124617

124618

124619

124620

124621

124622

124623

124624

124625

124626

124627

124628

124629

124630

124631

124632

124633

124634

124635

124636

124637

124638

124639

124640

124641

124642

124643

124644

124645

124646

Shell Command Language Rationale for Shell and Utilities

Following are examples of commands without command names in AND-OR lists:

> foo || {
echo "error: foo cannot be created" >&2
exit 1

}

set saved if /vmunix.save exists
test −f /vmunix.save && saved=1

Command substitution and redirections without command names both occur in subshells, but
they are not necessarily the same ones. For example, in:

exec 3> file
var=$(echo foo >&3) 3>&1

it is unspecified whether foo is echoed to the file or to standard output.

Command Search and Execution

This description requires that the shell can execute shell scripts directly, even if the underlying
system does not support the common "#!" interpreter convention. That is, if file foo contains
shell commands and is executable, the following executes foo:

./foo

The command search shown here does not match all historical implementations. A more typical
sequence has been:

• Any built-in (special or regular)

• Functions

• Path search for executable files

But there are problems with this sequence. Since the programmer has no idea in advance which
utilities might have been built into the shell, a function cannot be used to override portably a
utility of the same name. (For example, a function named cd cannot be written for many
historical systems.) Furthermore, the PA TH variable is partially ineffective in this case, and only
a pathname with a <slash> can be used to ensure a specific executable file is invoked.

After the execve() failure described, the shell normally executes the file as a shell script. Some
implementations, however, attempt to detect whether the file is actually a script and not an
executable from some other architecture. The method used by the KornShell is allowed by the
text that indicates non-text files may be bypassed.

The sequence selected for the Shell and Utilities volume of POSIX.1-2008 acknowledges that
special built-ins cannot be overridden, but gives the programmer full control over which
versions of other utilities are executed. It provides a means of suppressing function lookup (via
the command utility) for the user’s own functions and ensures that any regular built-ins or
functions provided by the implementation are under the control of the path search. The
mechanisms for associating built-ins or functions with executable files in the path are not
specified by the Shell and Utilities volume of POSIX.1-2008, but the wording requires that if
either is implemented, the application is not able to distinguish a function or built-in from an
executable (other than in terms of performance, presumably). The implementation ensures that
all effects specified by the Shell and Utilities volume of POSIX.1-2008 resulting from the
invocation of the regular built-in or function (interaction with the environment, variables, traps,
and so on) are identical to those resulting from the invocation of an executable file.

IEEE Std 1003.1-2001/Cor 2-2004, item XCU/TC2/D6/4 is applied, updating the case where

3664 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

124647

124648

124649

124650

124651

124652

124653

124654

124655

124656

124657

124658

124659

124660

124661

124662

124663

124664

124665

124666

124667

124668

124669

124670

124671

124672

124673

124674

124675

124676

124677

124678

124679

124680

124681

124682

124683

124684

124685

124686

124687

124688

124689

124690

Rationale for Shell and Utilities Shell Command Language

execve() fails due to an error equivalent to the [ENOEXEC] error.

Examples

Consider three versions of the ls utility:

1. The application includes a shell function named ls.

2. The user writes a utility named ls and puts it in /fred/bin.

3. The example implementation provides ls as a regular shell built-in that is invoked (either
by the shell or directly by exec) when the path search reaches the directory /posix/bin.

If PA TH=/posix/bin, various invocations yield different versions of ls:

Invocation Version of ls

ls (from within application script) (1) function
command ls (from within application script) (3) built-in
ls (from within makefile called by application) (3) built-in
system("ls") (3) built-in
PA TH="/fred/bin:$PA TH" ls (2) user’s version

C.2.9.2 Pipelines

Because pipeline assignment of standard input or standard output or both takes place before
redirection, it can be modified by redirection. For example:

$ command1 2>&1 | command2

sends both the standard output and standard error of command1 to the standard input of
command2.

The reserved word ! allows more flexible testing using AND and OR lists.

It was suggested that it would be better to return a non-zero value if any command in the
pipeline terminates with non-zero status (perhaps the bitwise-inclusive OR of all return values).
However, the choice of the last-specified command semantics are historical practice and would
cause applications to break if changed. An example of historical behavior:

$ sleep 5 | (exit 4)
$ echo $?
4
$ (exit 4) | sleep 5
$ echo $?
0

C.2.9.3 Lists

The equal precedence of "&&" and "||" is historical practice. The standard developers
evaluated the model used more frequently in high-level programming languages, such as C, to
allow the shell logical operators to be used for complex expressions in an unambiguous way, but
they could not allow historical scripts to break in the subtle way unequal precedence might
cause. Some arguments were posed concerning the "{}" or "()" groupings that are required
historically. There are some disadvantages to these groupings:

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3665

124691

124692

124693

124694

124695

124696

124697

124698

124699

124700

124701

124702

124703

124704

124705

124706

124707

124708

124709

124710

124711

124712

124713

124714

124715

124716

124717

124718

124719

124720

124721

124722

124723

124724

124725

124726

124727

124728

Shell Command Language Rationale for Shell and Utilities

• The "()" can be expensive, as they spawn other processes on some implementations. This
performance concern is primarily an implementation issue.

• The "{ }" braces are not operators (they are reserved words) and require a trailing
<space> after each ’{’, and a <semicolon> before each ’}’. Most programmers (and
certainly interactive users) have avoided braces as grouping constructs because of the
problematic syntax required. Braces were not changed to operators because that would
generate compatibility issues even greater than the precedence question; braces appear
outside the context of a keyword in many shell scripts.

IEEE PASC Interpretation 1003.2 #204 is applied, clarifying that the operators "&&" and "||"
are evaluated with left associativity.

Asynchronous Lists

The grammar treats a construct such as:

foo & bar & bam &

as one ‘‘asynchronous list’’, but since the status of each element is tracked by the shell, the term
‘‘element of an asynchronous list’’ was introduced to identify just one of the foo, bar, or bam
portions of the overall list.

Unless the implementation has an internal limit, such as {CHILD_MAX}, on the retained process
IDs, it would require unbounded memory for the following example:

while true
do foo & echo $!
done

The treatment of the signals SIGINT and SIGQUIT with asynchronous lists is described in XCU
Section 2.11 (on page 2330).

Since the connection of the input to the equivalent of /dev/null is considered to occur before
redirections, the following script would produce no output:

exec < /etc/passwd
cat <&0 &
wait

Sequential Lists

There is no additional rationale provided for this section.

AND Lists

There is no additional rationale provided for this section.

OR Lists

There is no additional rationale provided for this section.

3666 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

124729

124730

124731

124732

124733

124734

124735

124736

124737

124738

124739

124740

124741

124742

124743

124744

124745

124746

124747

124748

124749

124750

124751

124752

124753

124754

124755

124756

124757

124758

124759

124760

124761

124762

Rationale for Shell and Utilities Shell Command Language

C.2.9.4 Compound Commands

Grouping Commands

The semicolon shown in {compound-list;} is an example of a control operator delimiting the }
reserved word. Other delimiters are possible, as shown in XCU Section 2.10 (on page 2325);
<newline> is frequently used.

A proposal was made to use the <do-done> construct in all cases where command grouping in
the current process environment is performed, identifying it as a construct for the grouping
commands, as well as for shell functions. This was not included because the shell already has a
grouping construct for this purpose ("{}"), and changing it would have been counter-
productive.

For Loop

The format is shown with generous usage of <newline> characters. See the grammar in XCU
Section 2.10 (on page 2325) for a precise description of where <newline> and <semicolon>
characters can be interchanged.

Some historical implementations support ’{’ and ’}’ as substitutes for do and done. The
standard developers chose to omit them, even as an obsolescent feature. (Note that these
substitutes were only for the for command; the while and until commands could not use them
historically because they are followed by compound-lists that may contain "{...}" grouping
commands themselves.)

The reserved word pair do . . . done was selected rather than do . . . od (which would have
matched the spirit of if . . . fi and case . . . esac) because od is already the name of a standard
utility.

PASC Interpretation 1003.2 #169 has been applied changing the grammar.

Case Conditional Construct

An optional <left-parenthesis> before pattern was added to allow numerous historical KornShell
scripts to conform. At one time, using the leading parenthesis was required if the case statement
was to be embedded within a "$()" command substitution; this is no longer the case with the
POSIX shell. Nevertheless, many historical scripts use the <left-parenthesis>, if only because it
makes matching-parenthesis searching easier in vi and other editors. This is a relatively simple
implementation change that is upwards-compatible for all scripts.

Consideration was given to requiring break inside the compound-list to prevent falling through to
the next pattern action list. This was rejected as being nonexisting practice. An interesting
undocumented feature of the KornShell is that using ";&" instead of ";;" as a terminator
causes the exact opposite behavior—the flow of control continues with the next compound-list.

The pattern ’*’, given as the last pattern in a case construct, is equivalent to the default case in
a C-language switch statement.

The grammar shows that reserved words can be used as patterns, even if one is the first word on
a line. Obviously, the reserved word esac cannot be used in this manner.

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3667

124763

124764

124765

124766

124767

124768

124769

124770

124771

124772

124773

124774

124775

124776

124777

124778

124779

124780

124781

124782

124783

124784

124785

124786

124787

124788

124789

124790

124791

124792

124793

124794

124795

124796

124797

124798

124799

124800

Shell Command Language Rationale for Shell and Utilities

If Conditional Construct

The precise format for the command syntax is described in XCU Section 2.10 (on page 2325).

While Loop

The precise format for the command syntax is described in XCU Section 2.10 (on page 2325).

Until Loop

The precise format for the command syntax is described in XCU Section 2.10 (on page 2325).

C.2.9.5 Function Definition Command

The description of functions in an early proposal was based on the notion that functions should
behave like miniature shell scripts; that is, except for sharing variables, most elements of an
execution environment should behave as if they were a new execution environment, and
changes to these should be local to the function. For example, traps and options should be reset
on entry to the function, and any changes to them do not affect the traps or options of the caller.
There were numerous objections to this basic idea, and the opponents asserted that functions
were intended to be a convenient mechanism for grouping common commands that were to be
executed in the current execution environment, similar to the execution of the dot special
built−in.

It was also pointed out that the functions described in that early proposal did not provide a local
scope for everything a new shell script would, such as the current working directory, or umask,
but instead provided a local scope for only a few select properties. The basic argument was that
if a local scope is needed for the execution environment, the mechanism already existed: the
application can put the commands in a new shell script and call that script. All historical shells
that implemented functions, other than the KornShell, have implemented functions that operate
in the current execution environment. Because of this, traps and options have a global scope
within a shell script. Local variables within a function were considered and included in another
early proposal (controlled by the special built-in local), but were removed because they do not fit
the simple model developed for functions and because there was some opposition to adding yet
another new special built-in that was not part of historical practice. Implementations should
reserve the identifier local (as well as typeset, as used in the KornShell) in case this local variable
mechanism is adopted in a future version of this standard.

A separate issue from the execution environment of a function is the availability of that function
to child shells. A few objectors maintained that just as a variable can be shared with child shells
by exporting it, so should a function. In early proposals, the export command therefore had a −f
flag for exporting functions. Functions that were exported were to be put into the environment
as name()=value pairs, and upon invocation, the shell would scan the environment for these and
automatically define these functions. This facility was strongly opposed and was omitted. Some
of the arguments against exportable functions were as follows:

• There was little historical practice. The Ninth Edition shell provided them, but there was
controversy over how well it worked.

• There are numerous security problems associated with functions appearing in the
environment of a user and overriding standard utilities or the utilities owned by the
application.

• There was controversy over requiring make to import functions, where it has historically
used an exec function for many of its command line executions.

3668 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

124801

124802

124803

124804

124805

124806

124807

124808

124809

124810

124811

124812

124813

124814

124815

124816

124817

124818

124819

124820

124821

124822

124823

124824

124825

124826

124827

124828

124829

124830

124831

124832

124833

124834

124835

124836

124837

124838

124839

124840

124841

124842

124843

Rationale for Shell and Utilities Shell Command Language

• Functions can be big and the environment is of a limited size. (The counter-argument was
that functions are no different from variables in terms of size: there can be big ones, and
there can be small ones—and just as one does not export huge variables, one does not
export huge functions. However, this might not apply to the average shell-function writer,
who typically writes much larger functions than variables.)

As far as can be determined, the functions in the Shell and Utilities volume of POSIX.1-2008
match those in System V. Earlier versions of the KornShell had two methods of defining
functions:

function fname { compound-list }

and:

fname() { compound-list }

The latter used the same definition as the Shell and Utilities volume of POSIX.1-2008, but
differed in semantics, as described previously. The current edition of the KornShell aligns the
latter syntax with the Shell and Utilities volume of POSIX.1-2008 and keeps the former as is.

The name space for functions is limited to that of a name because of historical practice.
Complications in defining the syntactic rules for the function definition command and in
dealing with known extensions such as the "@()" usage in the KornShell prevented the name
space from being widened to a word. Using functions to support synonyms such as the "!!"
and ’%’ usage in the C shell is thus disallowed to conforming applications, but acceptable as an
extension. For interactive users, the aliasing facilities in the Shell and Utilities volume of
POSIX.1-2008 should be adequate for this purpose. It is recognized that the name space for
utilities in the file system is wider than that currently supported for functions, if the portable
filename character set guidelines are ignored, but it did not seem useful to mandate extensions
in systems for so little benefit to conforming applications.

The "()" in the function definition command consists of two operators. Therefore, intermixing
<blank> characters with the fname, ’(’, and ’)’ is allowed, but unnecessary.

An example of how a function definition can be used wherever a simple command is allowed:

If variable i is equal to "yes",
define function foo to be ls −l
#
["$i" = yes] && foo() {

ls −l
}

C.2.10 Shell Grammar

There are several subtle aspects of this grammar where conventional usage implies rules about
the grammar that in fact are not true.

For compound_list, only the forms that end in a separator allow a reserved word to be recognized,
so usually only a separator can be used where a compound list precedes a reserved word (such as
Then, Else, Do, and Rbrace). Explicitly requiring a separator would disallow such valid (if rare)
statements as:

if (false) then (echo x) else (echo y) fi

See the Note under special grammar rule (1).

Concerning the third sentence of rule (1) (‘‘Also, if the parser ...’’):

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3669

124844

124845

124846

124847

124848

124849

124850

124851

124852

124853

124854

124855

124856

124857

124858

124859

124860

124861

124862

124863

124864

124865

124866

124867

124868

124869

124870

124871

124872

124873

124874

124875

124876

124877

124878

124879

124880

124881

124882

124883

124884

124885

124886

Shell Command Language Rationale for Shell and Utilities

• This sentence applies rather narrowly: when a compound list is terminated by some clear
delimiter (such as the closing fi of an inner if_clause) then it would apply; where the
compound list might continue (as in after a ’;’), rule (7a) (and consequently the first
sentence of rule (1)) would apply. In many instances the two conditions are identical, but
this part of rule (1) does not give license to treating a WORD as a reserved word unless it
is in a place where a reserved word has to appear.

• The statement is equivalent to requiring that when the LR(1) lookahead set contains
exactly one reserved word, it must be recognized if it is present. (Here ‘‘LR(1)’’ refers to the
theoretical concepts, not to any real parser generator.)

For example, in the construct below, and when the parser is at the point marked with ’ˆ’,
the only next legal token is then (this follows directly from the grammar rules):

if if...fi then ... fi
ˆ

At that point, the then must be recognized as a reserved word.

(Depending on the parser generator actually used, ‘‘extra’’ reserved words may be in some
lookahead sets. It does not really matter if they are recognized, or even if any possible
reserved word is recognized in that state, because if it is recognized and is not in the
(theoretical) LR(1) lookahead set, an error is ultimately detected. In the example above, if
some other reserved word (for example, while) is also recognized, an error occurs later.

This is approximately equivalent to saying that reserved words are recognized after other
reserved words (because it is after a reserved word that this condition occurs), but avoids
the ‘‘except for . . .’’ list that would be required for case, for, and so on. (Reserved words
are of course recognized anywhere a simple_command can appear, as well. Other rules take
care of the special cases of non-recognition, such as rule (4) for case statements.)

Note that the body of here-documents are handled by token recognition (see XCU Section 2.3, on
page 2299) and do not appear in the grammar directly. (However, the here-document I/O
redirection operator is handled as part of the grammar.)

The start symbol of the grammar (complete_command) represents either input from the
command line or a shell script. It is repeatedly applied by the interpreter to its input and
represents a single ‘‘chunk’’ of that input as seen by the interpreter.

C.2.10.1 Shell Grammar Lexical Conventions

There is no additional rationale provided for this section.

C.2.10.2 Shell Grammar Rules

There is no additional rationale provided for this section.

3670 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

124887

124888

124889

124890

124891

124892

124893

124894

124895

124896

124897

124898

124899

124900

124901

124902

124903

124904

124905

124906

124907

124908

124909

124910

124911

124912

124913

124914

124915

124916

124917

124918

124919

124920

Rationale for Shell and Utilities Shell Command Language

C.2.11 Signals and Error Handling

SD5-XCU-ERN-93 is applied, updating the first paragraph of XCU Section 2.11 (on page 2330).

C.2.12 Shell Execution Environment

Some implementations have implemented the last stage of a pipeline in the current environment
so that commands such as:

command | read foo

set variable foo in the current environment. This extension is allowed, but not required;
therefore, a shell programmer should consider a pipeline to be in a subshell environment, but
not depend on it.

In early proposals, the description of execution environment failed to mention that each
command in a multiple command pipeline could be in a subshell execution environment. For
compatibility with some historical shells, the wording was phrased to allow an implementation
to place any or all commands of a pipeline in the current environment. However, this means that
a POSIX application must assume each command is in a subshell environment, but not depend
on it.

The wording about shell scripts is meant to convey the fact that describing ‘‘trap actions’’ can
only be understood in the context of the shell command language. Outside of this context, such
as in a C-language program, signals are the operative condition, not traps.

C.2.13 Pattern Matching Notation

Pattern matching is a simpler concept and has a simpler syntax than REs, as the former is
generally used for the manipulation of filenames, which are relatively simple collections of
characters, while the latter is generally used to manipulate arbitrary text strings of potentially
greater complexity. However, some of the basic concepts are the same, so this section points
liberally to the detailed descriptions in XBD Chapter 9 (on page 181).

C.2.13.1 Patterns Matching a Single Character

Both quoting and escaping are described here because pattern matching must work in three
separate circumstances:

1. Calling directly upon the shell, such as in pathname expansion or in a case statement. All
of the following match the string or file abc:

abc "abc" a"b"c a\bc a[b]c a["b"]c a[\b]c a["\b"]c a?c a*c

The following do not:

"a?c" a*c a\[b]c

2. Calling a utility or function without going through a shell, as described for find and the
fnmatch() function defined in the System Interfaces volume of POSIX.1-2008.

3. Calling utilities such as find, cpio, tar, or pax through the shell command line. In this case,
shell quote removal is performed before the utility sees the argument. For example, in:

find /bin −name "e\c[\h]o" −print

after quote removal, the <backslash> characters are presented to find and it treats them as

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3671

124921

124922

124923

124924

124925

124926

124927

124928

124929

124930

124931

124932

124933

124934

124935

124936

124937

124938

124939

124940

124941

124942

124943

124944

124945

124946

124947

124948

124949

124950

124951

124952

124953

124954

124955

124956

124957

124958

Shell Command Language Rationale for Shell and Utilities

escape characters. Both precede ordinary characters, so the c and h represent themselves
and echo would be found on many historical systems (that have it in /bin). To find a
filename that contained shell special characters or pattern characters, both quoting and
escaping are required, such as:

pax −r ... "*a\(\?"

to extract a filename ending with "a(?".

Conforming applications are required to quote or escape the shell special characters (sometimes
called metacharacters). If used without this protection, syntax errors can result or
implementation extensions can be triggered. For example, the KornShell supports a series of
extensions based on parentheses in patterns.

The restriction on a <circumflex> in a bracket expression is to allow implementations that
support pattern matching using the <circumflex> as the negation character in addition to the
<exclamation-mark>. A conforming application must use something like "[\ˆ!]" to match
either character.

C.2.13.2 Patterns Matching Multiple Characters

Since each <asterisk> matches zero or more occurrences, the patterns "a*b" and "a**b" have
identical functionality.

Examples

a[bc] Matches the strings "ab" and "ac".

a*d Matches the strings "ad", "abd", and "abcd", but not the string "abc".

a*d* Matches the strings "ad", "abcd", "abcdef", "aaaad", and "adddd".

*a*d Matches the strings "ad", "abcd", "efabcd", "aaaad", and "adddd".

C.2.13.3 Patterns Used for Filename Expansion

The caveat about a <slash> within a bracket expression is derived from historical practice. The
pattern "a[b/c]d" does not match such pathnames as abd or a/d. On some implementations
(including those conforming to the Single UNIX Specification), it matched a pathname of
literally "a[b/c]d". On other systems, it produced an undefined condition (an unescaped ’[’
used outside a bracket expression). In this version, the XSI behavior is now required.

Filenames beginning with a <period> historically have been specially protected from view on
UNIX systems. A proposal to allow an explicit <period> in a bracket expression to match a
leading <period> was considered; it is allowed as an implementation extension, but a
conforming application cannot make use of it. If this extension becomes popular in the future, it
will be considered for a future version of the Shell and Utilities volume of POSIX.1-2008.

Historical systems have varied in their permissions requirements. To match f*/bar has required
read permissions on the f* directories in the System V shell, but the Shell and Utilities volume of
POSIX.1-2008, the C shell, and KornShell require only search permissions.

3672 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

124959

124960

124961

124962

124963

124964

124965

124966

124967

124968

124969

124970

124971

124972

124973

124974

124975

124976

124977

124978

124979

124980

124981

124982

124983

124984

124985

124986

124987

124988

124989

124990

124991

124992

124993

124994

Rationale for Shell and Utilities Shell Command Language

C.2.14 Special Built-In Utilities

See the RATIONALE sections on the individual reference pages.

C.3 Batch Environment Services and Utilities

Scope of the Batch Environment Services and Utilities Option

This section summarizes the deliberations of the IEEE P1003.15 (Batch Environment) working
group in the development of the Batch Environment Services and Utilities option, which covers
a set of services and utilities defining a batch processing system.

This informative section contains historical information concerning the contents of the
amendment and describes why features were included or discarded by the working group.

History of Batch Systems

The supercomputing technical committee began as a ‘‘Birds Of a Feather’’ (BOF) at the January
1987 Usenix meeting. There was enough general interest to form a supercomputing attachment
to the /usr/group working groups. Several subgroups rapidly formed. Of those subgroups, the
batch group was the most ambitious. The first early meetings were spent evaluating user needs
and existing batch implementations.

To evaluate user needs, individuals from the supercomputing community came and presented
their needs. Common requests were flexibility, interoperability, control of resources, and ease-of-
use. Backward-compatibility was not an issue. The working group then evaluated some existing
systems. The following different systems were evaluated:

• PROD

• Convex Distributed Batch

• NQS

• CTSS

• MDQS from Ballistics Research Laboratory (BRL)

Finally, NQS was chosen as a model because it satisfied not only the most user requirements, but
because it was public domain, already implemented on a variety of hardware platforms, and
network-based.

Historical Implementations of Batch Systems

Deferred processing of work under the control of a scheduler has been a feature of most
proprietary operating systems from the earliest days of multi-user systems in order to maximize
utilization of the computer.

The arrival of UNIX systems proved to be a dilemma to many hardware providers and users
because it did not include the sophisticated batch facilities offered by the proprietary systems.
This omission was rectified in 1986 by NASA Ames Research Center who developed the
Network Queuing System (NQS) as a portable UNIX application that allowed the routing and
processing of batch ‘‘jobs’’ in a network. To encourage its usage, the product was later put into
the public domain. It was promptly picked up by UNIX hardware providers, and ported and
developed for their respective hardware and UNIX implementations.

Many major vendors, who traditionally offer a batch-dominated environment, ported the
public-domain product to their systems, customized it to support the capabilities of their

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3673

124995

124996

124997

124998

124999

125000

125001

125002

125003

125004

125005

125006

125007

125008

125009

125010

125011

125012

125013

125014

125015

125016

125017

125018

125019

125020

125021

125022

125023

125024

125025

125026

125027

125028

125029

125030

125031

125032

125033

125034

Batch Environment Services and Utilities Rationale for Shell and Utilities

systems, and added many customer-requested features.

Due to the strong hardware provider and customer acceptance of NQS, it was decided to use
NQS as the basis for the POSIX Batch Environment amendment in 1987. Other batch systems
considered at the time included CTSS, MDQS (a forerunner of NQS from the Ballistics Research
Laboratory), and PROD (a Los Alamos Labs development). None were thought to have both the
functionality and acceptability of NQS.

NQS Differences from the at utility

The base standard at and batch utilities are not sufficient to meet the batch processing needs in a
supercomputing environment and additional functionality in the areas of resource management,
job scheduling, system management, and control of output is required.

Batch Environment Services and Utilities Option Definitions

The concept of a batch job is closely related to a session with a session leader. The main
difference is that a batch job does not have a controlling terminal. There has been much debate
over whether to use the term ‘‘request’’ or ‘‘job’’. Job was the final choice because of the
historical use of this term in the batch environment.

The current definition for job identifiers is not sufficient with the model of destinations. The
current definition is:

sequence_number.originating_host

Using the model of destination, a host may include multiple batch nodes, the location of which
is identified uniquely by a name or directory service. If the current definition is used, batch
nodes running on the same host would have to coordinate their use of sequence numbers, as
sequence numbers are assigned by the originating host. The alternative is to use the originating
batch node name instead of the originating host name.

The reasons for wishing to run more than one batch system per host could be the following.

A test and production batch system are maintained on a single host. This is most likely in a
development facility, but could also arise when a site is moving from one version to another. The
new batch system could be installed as a test version that is completely separate from the
production batch system, so that problems can be isolated to the test system. Requiring the batch
nodes to coordinate their use of sequence numbers creates a dependency between the two
nodes, and that defeats the purpose of running two nodes.

A site has multiple departments using a single host, with different management policies. An
example of contention might be in job selection algorithms. One group might want a FIFO type
of selection, while another group wishes to use a more complex algorithm based on resource
availability. Again, requiring the batch nodes to coordinate is an unnecessary binding.

The proposal eventually accepted was to replace originating host with originating batch node.
This supplies sufficient granularity to ensure unique job identifiers. If more than one batch node
is on a particular host, they each have their own unique name.

The queue portion of a destination is not part of the job identifier as these are not required to be
unique between batch nodes. For instance, two batch nodes may both have queues called small,
medium, and large. It is only the batch node name that is uniquely identifiable throughout the
batch system. The queue name has no additional function in this context.

Assume there are three batch nodes, each of which has its own name server. On batch node one,
there are no queues. On batch node two, there are fifty queues. On batch node three, there are
forty queues. The system administrator for batch node one does not have to configure queues,
because there are none implemented. However, if a user wishes to send a job to either batch

3674 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

125035

125036

125037

125038

125039

125040

125041

125042

125043

125044

125045

125046

125047

125048

125049

125050

125051

125052

125053

125054

125055

125056

125057

125058

125059

125060

125061

125062

125063

125064

125065

125066

125067

125068

125069

125070

125071

125072

125073

125074

125075

125076

125077

125078

125079

Rationale for Shell and Utilities Batch Environment Services and Utilities

node two or three, the system administrator for batch node one must configure a destination
that maps to the appropriate batch node and queue. If every queue is to be made accessible from
batch node one, the system administrator has to configure ninety destinations.

To avoid requiring this, there should be a mechanism to allow a user to separate the destination
into a batch node name and a queue name. Then, an implementation that is configured to get to
all the batch nodes does not need any more configuration to allow a user to get to all of the
queues on all of the batch nodes. The node name is used to locate the batch node, while the
queue name is sent unchanged to that batch node.

The following are requirements that a destination identifier must be capable of providing:

• The ability to direct a job to a queue in a particular batch node.

• The ability to direct a job to a particular batch node.

• The ability to group at a higher level than just one queue. This includes grouping similar
queues across multiple batch nodes (this is a pipe queue).

• The ability to group batch nodes. This allows a user to submit a job to a group name with
no knowledge of the batch node configuration. This also provides aliasing as a special
case. Aliasing is a group containing only one batch node name. The group name is the
alias.

In addition, the administrator has the following requirements:

• The ability to control access to the queues.

• The ability to control access to the batch nodes.

• The ability to control access to groups of queues (pipe queues).

• The ability to configure retry time intervals and durations.

The requirements of the user are met by destination as explained in the following.

The user has the ability to specify a queue name, which is known only to the batch node
specified. There is no configuration of these queues required on the submitting node.

The user has the ability to specify a batch node whose name is network-unique. The
configuration required is that the batch node be defined as an application, just as other
applications such as FTP are configured.

Once a job reaches a queue, it can again become a user of the batch system. The batch node can
choose to send the job to another batch node or queue or both. In other words, the routing is at
an application level, and it is up to the batch system to choose where the job will be sent.
Configuration is up to the batch node where the queue resides. This provides grouping of
queues across batch nodes or within a batch node. The user submits the job to a queue, which by
definition routes the job to other queues or nodes or both.

A node name may be given to a naming service, which returns multiple addresses as opposed to
just one. This provides grouping at a batch node level. This is a local issue, meaning that the
batch node must choose only one of these addresses. The list of addresses is not sent with the
job, and once the job is accepted on another node, there is no connection between the list and the
job. The requirements of the administrator are met by destination as explained in the following.

The control of queues is a batch system issue, and will be done using the batch administrative
utilities.

The control of nodes is a network issue, and will be done through whatever network facilities
are available.

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3675

125080

125081

125082

125083

125084

125085

125086

125087

125088

125089

125090

125091

125092

125093

125094

125095

125096

125097

125098

125099

125100

125101

125102

125103

125104

125105

125106

125107

125108

125109

125110

125111

125112

125113

125114

125115

125116

125117

125118

125119

125120

125121

125122

Batch Environment Services and Utilities Rationale for Shell and Utilities

The control of access to groups of queues (pipe queues) is covered by the control of any other
queue. The fact that the job may then be sent to another destination is not relevant.

The propagation of a job across more than one point-to-point connection was dropped because
of its complexity and because all of the issues arising from this capability could not be resolved.
It could be provided as additional functionality at some time in the future.

The addition of network as a defined term was done to clarify the difference between a network
of batch nodes as opposed to a network of hosts. A network of batch nodes is referred to as a
batch system. The network refers to the actual host configuration. A single host may have
multiple batch nodes.

In the absence of a standard network naming convention, this option establishes its own
convention for the sake of consistency and expediency. This is subject to change, should a future
working group develop a standard naming convention for network pathnames.

C.3.1 Batch General Concepts

During the development of the Batch Environment Services and Utilities option, a number of
topics were discussed at length which influenced the wording of the normative text but could
not be included in the final text. The following items are some of the most significant terms and
concepts of those discussed:

• Small and Consistent Command Set

Often, conventional utilities from UNIX systems have a very complicated utility syntax
and usage. This can often result in confusion and errors when trying to use them. The
Batch Environment Services and Utilities option utility set, on the other hand, has been
paired to a small set of robust utilities with an orthogonal calling sequence.

• Checkpoint/Restart

This feature permits an already executing process to checkpoint or save its contents. Some
implementations permit this at both the batch utility level (for example, checkpointing this
job upon its abnormal termination) or from within the job itself via a system call. Support
of checkpoint/restart is optional. A conscious, careful effort was made to make the qsub
utility consistently refer to checkpoint/restart as optional functionality.

• Rerunability

When a user submits a job for batch processing, they can designate it ‘‘rerunnable’’ in that
it will automatically resume execution from the start of the job if the machine on which it
was executing crashes for some reason. The decision on whether the job will be rerun or
not is entirely up to the submitter of the job and no decisions will be made within the batch
system. A job that is rerunnable and has been submitted with the proper
checkpoint/restart switch will first be checkpointed and execution begun from that point.
Furthermore, use of the implementation-defined checkpoint/restart feature will not be
defined in this context.

• Error Codes

All utilities exit with error status zero (0) if successful, one (1) if a user error occurred, and
two (2) for an internal Batch Environment Services and Utilities option error.

• Level of Portability

Portability is specified at both the user, operator, and administrator levels. A conforming
batch implementation prevents identical functionality and behavior at all these levels.
Additionally, portable batch shell scripts with embedded Batch Environment Services and

3676 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

125123

125124

125125

125126

125127

125128

125129

125130

125131

125132

125133

125134

125135

125136

125137

125138

125139

125140

125141

125142

125143

125144

125145

125146

125147

125148

125149

125150

125151

125152

125153

125154

125155

125156

125157

125158

125159

125160

125161

125162

125163

125164

125165

125166

Rationale for Shell and Utilities Batch Environment Services and Utilities

Utilities option utilities add an additional level of portability.

• Resource Specification

A small set of globally understood resources, such as memory and CPU time, is specified.
All conforming batch implementations are able to process them in a manner consistent
with the yet-to-be-developed resource management model. Resources not in this
amendment set are ignored and passed along as part of the argument stream of the utility.

• Queue Position

Queue position is the place a job occupies in a queue. It is dependent on a variety of factors
such as submission time and priority. Since priority may be affected by the implementation
of fair share scheduling, the definition of queue position is implementation-defined.

• Queue ID

A numerical queue ID is an external requirement for purposes of accounting. The
identification number was chosen over queue name for processing convenience.

• Job ID

A common notion of ‘‘jobs’’ is a collection of processes whose process group cannot be
altered and is used for resource management and accounting. This concept is
implementation-defined and, as such, has been omitted from the batch amendment.

• Bytes versus Words

Except for one case, bytes are used as the standard unit for memory size. Furthermore, the
definition of a word varies from machine to machine. Therefore, bytes will be the default
unit of memory size.

• Regular Expressions

The standard definition of regular expressions is much too broad to be used in the batch
utility syntax. All that is needed is a simple concept of ‘‘all’’; for example, delete all my jobs
from the named queue. For this reason, regular expressions have been eliminated from the
batch amendment.

• Display Privacy

How much data should be displayed locally through functions? Local policy dictates the
amount of privacy. Library functions must be used to create and enforce local policy.
Network and local qstats must reflect the policy of the server machine.

• Remote Host Naming Convention

It was decided that host names would be a maximum of 255 characters in length, with at
most 15 characters being shown in displays. The 255 character limit was chosen because it
is consistent with BSD. The 15-character limit was an arbitrary decision.

• Network Administration

Network administration is important, but is outside the scope of the batch amendment.
Network administration could be done with rsh. However, authentication becomes two-
sided.

• Network Administration Philosophy

Keep it simple. Centralized management should be possible. For example, Los Alamos
needs a dumb set of CPUs to be managed by a central system versus several
independently-managed systems as is the general case for the Batch Environment Services
and Utilities option.

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3677

125167

125168

125169

125170

125171

125172

125173

125174

125175

125176

125177

125178

125179

125180

125181

125182

125183

125184

125185

125186

125187

125188

125189

125190

125191

125192

125193

125194

125195

125196

125197

125198

125199

125200

125201

125202

125203

125204

125205

125206

125207

125208

125209

Batch Environment Services and Utilities Rationale for Shell and Utilities

• Operator Utility Defaults (that is, Default Host, User, Account, and so on)

It was decided that usability would override orthogonality and syntactic consistency.

• The Batch System Manager and Operator Distinction

The distinction between manager and operator is that operators can only control the flow
of jobs. A manager can alter the batch system configuration in addition to job flow. POSIX
makes a distinction between user and system administrator but goes no further. The
concepts of manager and operator privileges fall under local policy. The distinction
between manager and operator is historical in batch environments, and the Batch
Environment Services and Utilities option has continued that distinction.

• The Batch System Administrator

An administrator is equivalent to a batch system manager.

C.3.2 Batch Services

This rationale is provided as informative rather than normative text, to avoid placing
requirements on implementors regarding the use of symbolic constants, but at the same time to
give implementors a preferred practice for assigning values to these constants to promote
interoperability.

The Checkpoint and Minimum_Cpu_Interval attributes induce a variety of behavior depending
upon their values. Some jobs cannot or should not be checkpointed. Other users will simply
need to ensure job continuation across planned downtimes; for example, scheduled preventive
maintenance. For users consuming expensive resources, or for jobs that run longer than the
mean time between failures, however, periodic checkpointing may be essential. However,
system administrators must be able to set minimum checkpoint intervals on a queue-by-queue
basis to guard against, for example, naive users specifying interval values too small on memory-
intensive jobs. Otherwise, system overhead would adversely affect performance.

The use of symbolic constants, such as NO_CHECKPOINT, was introduced to lend a degree of
formalism and portability to this option.

Support for checkpointing is optional for servers. However, clients must provide for the −c
option, since in a distributed environment the job may run on a server that does provide such
support, even if the host of the client does not support the checkpoint feature.

If the user does not specify the −c option, the default action is left unspecified by this option.
Some implementations may wish to do checkpointing by default; others may wish to checkpoint
only under an explicit request from the user.

The Priority attribute has been made non-optional. All clients already had been required to
support the −p option. The concept of prioritization is common in historical implementations.
The default priority is left to the server to establish.

The Hold_Types attribute has been modified to allow for implementation-defined hold types to
be passed to a batch server.

It was the intent of the IEEE P1003.15 working group to mandate the support for the
Resource_List attribute in this option by referring to another amendment, specifically the
IEEE P1003.1a draft standard. However, during the development of the IEEE P1003.1a draft
standard this was excluded. As such this requirement has been removed from the normative
text.

The Shell_Path attribute has been modified to accept a list of shell paths that are associated with
a host. The name of the attribute has been changed to Shell_Path_List.

3678 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

125210

125211

125212

125213

125214

125215

125216

125217

125218

125219

125220

125221

125222

125223

125224

125225

125226

125227

125228

125229

125230

125231

125232

125233

125234

125235

125236

125237

125238

125239

125240

125241

125242

125243

125244

125245

125246

125247

125248

125249

125250

125251

125252

125253

Rationale for Shell and Utilities Batch Environment Services and Utilities

C.3.3 Common Behavior for Batch Environment Utilities

This section was defined to meet the goal of a ‘‘Small and Consistent Command Set’’ for this
option.

C.4 Utilities

For the utilities included in POSIX.1-2008, see the RATIONALE sections on the individual
reference pages.

C.4.1 Utilities Removed in this Version

None.

C.4.2 Utilities Removed in the Previous Version

The following utilities were removed in the previous version of this standard:

calendar
cancel
cc
col
cpio

cu
dircmp
dis
egrep
fgrep

line
lint
lpstat
mail
pack

pcat
pg
spell
sum
tar

unpack
uulog
uuname
uupick
uuto

C.4.3 Exclusion of Utilities

The set of utilities contained in POSIX.1-2008 is drawn from the base documents, with one
addition: the c99 utility. This section contains rationale for some of the deliberations that led to
this set of utilities, and why certain utilities were excluded.

Many utilities were evaluated by the standard developers; more historical utilities were
excluded from the base documents than included. The following list contains many common
UNIX system utilities that were not included as mandatory utilities, in the User Portability
Utilities option, in the XSI option, or in one of the software development groups. It is logistically
difficult for this rationale to distribute correctly the reasons for not including a utility among the
various utility options. Therefore, this section covers the reasons for all utilities not included in
POSIX.1-2008.

This rationale is limited to a discussion of only those utilities actively or indirectly evaluated by
the standard developers of the base documents, rather than the list of all known UNIX utilities
from all its variants.

adb The intent of the various software development utilities was to assist in the
installation (rather than the actual development and debugging) of applications.
This utility is primarily a debugging tool. Furthermore, many useful aspects of adb
are very hardware-specific.

as Assemblers are hardware-specific and are included implicitly as part of the
compilers in POSIX.1-2008.

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3679

125254

125255

125256

125257

125258

125259

125260

125261

125262

125263

125264

125265

125266

125267

125268

125269

125270

125271

125272

125273

125274

125275

125276

125277

125278

125279

125280

125281

125282

125283

125284

125285

125286

125287

125288

Utilities Rationale for Shell and Utilities

banner The only known use of this command is as part of the lp printer header pages. It
was decided that the format of the header is implementation-defined, so this utility
is superfluous to application portability.

calendar This reminder service program is not useful to conforming applications.

cancel The lp (line printer spooling) system specified is the most basic possible and did
not need this level of application control.

chroot This is primarily of administrative use, requiring superuser privileges.

col No utilities defined in POSIX.1-2008 produce output requiring such a filter. The
nroff text formatter is present on many historical systems and will continue to
remain as an extension; col is expected to be shipped by all the systems that ship
nroff.

cpio This has been replaced by pax, for reasons explained in the rationale for that utility.

cpp This is subsumed by c99.

cu This utility is terminal-oriented and is not useful from shell scripts or typical
application programs.

dc The functionality of this utility can be provided by the bc utility; bc was selected
because it was easier to use and had superior functionality. Although the historical
versions of bc are implemented using dc as a base, POSIX.1-2008 prescribes the
interface and not the underlying mechanism used to implement it.

dircmp Although a useful concept, the historical output of this directory comparison
program is not suitable for processing in application programs. Also, the diff −r
command gives equivalent functionality.

dis Disassemblers are hardware-specific.

emacs The community of emacs editing enthusiasts was adamant that the full emacs editor
not be included in the base documents because they were concerned that an
attempt to standardize this very powerful environment would encourage vendors
to ship versions conforming strictly to the standard, but lacking the extensibility
required by the community. The author of the original emacs program also
expressed his desire to omit the program. Furthermore, there were a number of
historical UNIX systems that did not include emacs, or included it without
supporting it, but there were very few that did not include and support vi.

ld This is subsumed by c99.

line The functionality of line can be provided with read.

lint This technology is partially subsumed by c99. It is also hard to specify the degree
of checking for possible error conditions in programs in any compiler, and
specifying what lint would do in these cases is equally difficult.

It is fairly easy to specify what a compiler does. It requires specifying the language,
what it does with that language, and stating that the interpretation of any incorrect
program is unspecified. Unfortunately, any description of lint is required to
specify what to do with erroneous programs. Since the number of possible errors
and questionable programming practices is infinite, one cannot require lint to
detect all errors of any given class.

Additionally, some vendors complained that since many compilers are distributed
in a binary form without a lint facility (because the ISO C standard does not
require one), implementing the standard as a stand-alone product will be much

3680 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

125289

125290

125291

125292

125293

125294

125295

125296

125297

125298

125299

125300

125301

125302

125303

125304

125305

125306

125307

125308

125309

125310

125311

125312

125313

125314

125315

125316

125317

125318

125319

125320

125321

125322

125323

125324

125325

125326

125327

125328

125329

125330

125331

125332

125333

Rationale for Shell and Utilities Utilities

harder. Rather than being able to build upon a standard compiler component
(simply by providing c99 as an interface), source to that compiler would most
likely need to be modified to provide the lint functionality. This was considered a
major burden on system providers for a very small gain to developers (users).

login This utility is terminal-oriented and is not useful from shell scripts or typical
application programs.

lorder This utility is an aid in creating an implementation-defined detail of object libraries
that the standard developers did not feel required standardization.

lpstat The lp system specified is the most basic possible and did not need this level of
application control.

mail This utility was omitted in favor of mailx because there was a considerable
functionality overlap between the two.

mknod This was omitted in favor of mkfifo, as mknod has too many implementation-
defined functions.

news This utility is terminal-oriented and is not useful from shell scripts or typical
application programs.

pack This compression program was considered inferior to compress.

passwd This utility was proposed in a historical draft of the base documents but met with
too many objections to be included. There were various reasons:

• Changing a password should not be viewed as a command, but as part of the
login sequence. Changing a password should only be done while a trusted
path is in effect.

• Even though the text in early drafts was intended to allow a variety of
implementations to conform, the security policy for one site may differ from
another site running with identical hardware and software. One site might
use password authentication while the other did not. Vendors could not
supply a passwd utility that would conform to POSIX.1-2008 for all sites using
their system.

• This is really a subject for a system administration working group or a
security working group.

pcat This compression program was considered inferior to zcat.

pg This duplicated many of the features of the more pager, which was preferred by the
standard developers.

prof The intent of the various software development utilities was to assist in the
installation (rather than the actual development and debugging) of applications.
This utility is primarily a debugging tool.

RCS RCS was originally considered as part of a version control utilities portion of the
scope. However, this aspect was abandoned by the standard developers. SCCS is
now included as an optional part of the XSI option.

red Restricted editor. This was not considered by the standard developers because it
never provided the level of security restriction required.

rsh Restricted shell. This was not considered by the standard developers because it
does not provide the level of security restriction that is implied by historical
documentation.

Part C: Shell and Utilities Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3681

125334

125335

125336

125337

125338

125339

125340

125341

125342

125343

125344

125345

125346

125347

125348

125349

125350

125351

125352

125353

125354

125355

125356

125357

125358

125359

125360

125361

125362

125363

125364

125365

125366

125367

125368

125369

125370

125371

125372

125373

125374

125375

125376

125377

Utilities Rationale for Shell and Utilities

sdb The intent of the various software development utilities was to assist in the
installation (rather than the actual development and debugging) of applications.
This utility is primarily a debugging tool. Furthermore, some useful aspects of sdb
are very hardware-specific.

sdiff The ‘‘side-by-side diff’’ utility from System V was omitted because it is used
infrequently, and even less so by conforming applications. Despite being in
System V, it is not in the SVID or XPG.

shar Any of the numerous ‘‘shell archivers’’ were excluded because they did not meet
the requirement of existing practice.

shl This utility is terminal-oriented and is not useful from shell scripts or typical
application programs. The job control aspects of the shell command language are
generally more useful.

size The intent of the various software development utilities was to assist in the
installation (rather than the actual development and debugging) of applications.
This utility is primarily a debugging tool.

spell This utility is not useful from shell scripts or typical application programs. The
spell utility was considered, but was omitted because there is no known technology
that can be used to make it recognize general language for user-specified input
without providing a complete dictionary along with the input file.

su This utility is not useful from shell scripts or typical application programs. (There
was also sentiment to avoid security-related utilities.)

sum This utility was renamed cksum.

tar This has been replaced by pax, for reasons explained in the rationale for that utility.

unpack This compression program was considered inferior to uncompress.

wall This utility is terminal-oriented and is not useful in shell scripts or typical
applications. It is generally used only by system administrators.

3682 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part C: Shell and Utilities

125378

125379

125380

125381

125382

125383

125384

125385

125386

125387

125388

125389

125390

125391

125392

125393

125394

125395

125396

125397

125398

125399

125400

125401

125402

125403

Rationale (Informative)

Part D:

Portability Considerations

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Part D: Portability Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3683

125404

125405

125406

125407

125408

3684 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

Appendix D

Portability Considerations (Informative)

This section contains information to satisfy various international requirements:

• Section D.1 describes perceived user requirements.

• Section D.2 (on page 3689) indicates how the facilities of POSIX.1-2008 satisfy those
requirements.

• Section D.3 (on page 3697) offers guidance to writers of profiles on how the configurable
options, limits, and optional behavior of POSIX.1-2008 should be cited in profiles.

D.1 User Requirements

This section describes the user requirements that were perceived by the standard developers.
The primary source for these requirements was an analysis of historical practice in widespread
use, as typified by the base documents listed in Section A.1.1 (on page 3411).

POSIX.1-2008 addresses the needs of users requiring open systems solutions for source code
portability of applications. It currently addresses users requiring open systems solutions for
source-code portability of applications involving multi-programming and process management
(creating processes, signaling, and so on); access to files and directories in a hierarchy of file
systems (opening, reading, writing, deleting files, and so on); access to asynchronous
communications ports and other special devices; access to information about other users of the
system; facilities supporting applications requiring bounded (realtime) response.

The following users are identified for POSIX.1-2008:

• Those employing applications written in high-level languages, such as C, Ada, or
FORTRAN.

• Users who desire conforming applications that do not necessarily require the
characteristics of high-level languages (for example, the speed of execution of compiled
languages or the relative security of source code intellectual property inherent in the
compilation process).

• Users who desire conforming applications that can be developed quickly and can be
modified readily without the use of compilers and other system components that may be
unavailable on small systems or those without special application development
capabilities.

• Users who interact with a system to achieve general-purpose time-sharing capabilities
common to most business or government offices or academic environments: editing, filing,
inter-user communications, printing, and so on.

• Users who develop applications for POSIX-conformant systems.

• Users who develop applications for UNIX systems.

An acknowledged restriction on applicable users is that they are limited to the group of
individuals who are familiar with the style of interaction characteristic of historically-derived
systems based on one of the UNIX operating systems (as opposed to other historical systems

Part D: Portability Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3685

125409

125410

125411

125412

125413

125414

125415

125416

125417

125418

125419

125420

125421

125422

125423

125424

125425

125426

125427

125428

125429

125430

125431

125432

125433

125434

125435

125436

125437

125438

125439

125440

125441

125442

125443

125444

125445

125446

User Requirements Portability Considerations (Informative)

with different models, such as MS/DOS, Macintosh, VMS, MVS, and so on). Typical users
would include program developers, engineers, or general-purpose time-sharing users.

The requirements of users of POSIX.1-2008 can be summarized as a single goal: application source
portability. The requirements of the user are stated in terms of the requirements of portability of
applications. This in turn becomes a requirement for a standardized set of syntax and semantics
for operations commonly found on many operating systems.

The following sections list the perceived requirements for application portability.

D.1.1 Configuration Interrogation

An application must be able to determine whether and how certain optional features are
provided and to identify the system upon which it is running, so that it may appropriately adapt
to its environment.

Applications must have sufficient information to adapt to varying behaviors of the system.

D.1.2 Process Management

An application must be able to manage itself, either as a single process or as multiple processes.
Applications must be able to manage other processes when appropriate.

Applications must be able to identify, control, create, and delete processes, and there must be
communication of information between processes and to and from the system.

Applications must be able to use multiple flows of control with a process (threads) and
synchronize operations between these flows of control.

D.1.3 Access to Data

Applications must be able to operate on the data stored on the system, access it, and transmit it
to other applications. Information must have protection from unauthorized or accidental access
or modification.

D.1.4 Access to the Environment

Applications must be able to access the external environment to communicate their input and
results.

D.1.5 Access to Determinism and Performance Enhancements

Applications must have sufficient control of resource allocation to ensure the timeliness of
interactions with external objects.

3686 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

125447

125448

125449

125450

125451

125452

125453

125454

125455

125456

125457

125458

125459

125460

125461

125462

125463

125464

125465

125466

125467

125468

125469

125470

125471

125472

125473

125474

125475

Portability Considerations (Informative) User Requirements

D.1.6 Operating System-Dependent Profile

The capabilities of the operating system may make certain optional characteristics of the base
language in effect no longer optional, and this should be specified.

D.1.7 I/O Interaction

The interaction between the C language I/O subsystem (stdio) and the I/O subsystem of
POSIX.1-2008 must be specified.

D.1.8 Internationalization Interaction

The effects of the environment of POSIX.1-2008 on the internationalization facilities of the C
language must be specified.

D.1.9 C-Language Extensions

Certain functions in the C language must be extended to support the additional capabilities
provided by POSIX.1-2008.

D.1.10 Command Language

Users should be able to define procedures that combine simple tools and/or applications into
higher-level components that perform to the specific needs of the user. The user should be able
to store, recall, use, and modify these procedures. These procedures should employ a powerful
command language that is used for recurring tasks in conforming applications (scripts) in the
same way that it is used interactively to accomplish one-time tasks. The language and the
utilities that it uses must be consistent between systems to reduce errors and retraining.

D.1.11 Interactive Facilities

Use the system to accomplish individual tasks at an interactive terminal. The interface should be
consistent, intuitive, and offer usability enhancements to increase the productivity of terminal
users, reduce errors, and minimize retraining costs. Online documentation or usage assistance
should be available.

D.1.12 Accomplish Multiple Tasks Simultaneously

Access applications and interactive facilities from a single terminal without requiring serial
execution: switch between multiple interactive tasks; schedule one-time or periodic background
work; display the status of all work in progress or scheduled; influence the priority scheduling
of work, when authorized.

Part D: Portability Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3687

125476

125477

125478

125479

125480

125481

125482

125483

125484

125485

125486

125487

125488

125489

125490

125491

125492

125493

125494

125495

125496

125497

125498

125499

125500

125501

125502

125503

125504

User Requirements Portability Considerations (Informative)

D.1.13 Complex Data Manipulation

Manipulate data in files in complex ways: sort, merge, compare, translate, edit, format, pattern
match, select subsets (strings, columns, fields, rows, and so on). These facilities should be
available to both conforming applications and interactive users.

D.1.14 File Hierarchy Manipulation

Create, delete, move/rename, copy, backup/archive, and display files and directories. These
facilities should be available to both conforming applications and interactive users.

D.1.15 Locale Configuration

Customize applications and interactive sessions for the cultural and language conventions of the
user. Employ a wide variety of standard character encodings. These facilities should be available
to both conforming applications and interactive users.

D.1.16 Inter-User Communication

Send messages or transfer files to other users on the same system or other systems on a network.
These facilities should be available to both conforming applications and interactive users.

D.1.17 System Environment

Display information about the status of the system (activities of users and their interactive and
background work, file system utilization, system time, configuration, and presence of optional
facilities) and the environment of the user (terminal characteristics, and so on). Inform the
system operator/administrator of problems. Control access to user files and other resources.

D.1.18 Printing

Output files on a variety of output device classes, accessing devices on local or network-
connected systems. Control (or influence) the formatting, priority scheduling, and output
distribution of work. These facilities should be available to both conforming applications and
interactive users.

D.1.19 Software Development

Develop (create and manage source files, compile/interpret, debug) portable open systems
applications and package them for distribution to, and updating of, other systems.

3688 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

125505

125506

125507

125508

125509

125510

125511

125512

125513

125514

125515

125516

125517

125518

125519

125520

125521

125522

125523

125524

125525

125526

125527

125528

125529

125530

125531

Portability Considerations (Informative) Portability Capabilities

D.2 Portability Capabilities

This section describes the significant portability capabilities of POSIX.1-2008 and indicates how
the user requirements listed in Section D.1 (on page 3685) are addressed. The capabilities are
listed in the same format as the preceding user requirements; they are summarized below:

• Configuration Interrogation

• Process Management

• Access to Data

• Access to the Environment

• Access to Determinism and Performance Enhancements

• Operating System-Dependent Profile

• I/O Interaction

• Internationalization Interaction

• C-Language Extensions

• Command Language

• Interactive Facilities

• Accomplish Multiple Tasks Simultaneously

• Complex Data Manipulation

• File Hierarchy Manipulation

• Locale Configuration

• Inter-User Communication

• System Environment

• Printing

• Software Development

D.2.1 Configuration Interrogation

The uname() operation provides basic identification of the system. The sysconf(), pathconf(), and
fpathconf() functions and the getconf utility provide means to interrogate the implementation to
determine how to adapt to the environment in which it is running. These values can be either
static (indicating that all instances of the implementation have the same value) or dynamic
(indicating that different instances of the implementation have the different values, or that the
value may vary for other reasons, such as reconfiguration).

Unsatisfied Requirements

None directly. However, as new areas are added, there will be a need for additional capability in
this area.

Part D: Portability Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3689

125532

125533

125534

125535

125536

125537

125538

125539

125540

125541

125542

125543

125544

125545

125546

125547

125548

125549

125550

125551

125552

125553

125554

125555

125556

125557

125558

125559

125560

125561

125562

125563

125564

Portability Capabilities Portability Considerations (Informative)

D.2.2 Process Management

The fork(), exec family, posix_spawn(), and posix_spawnp() functions provide for the creation of
new processes or the insertion of new applications into existing processes. The _Exit(), _exit(),
exit(), and abort() functions allow for the termination of a process by itself. The wait(), waitid(),
and waitpid() functions allow one process to deal with the termination of another.

The times() function allows for basic measurement of times used by a process. Various
functions, including fstat(), getegid(), geteuid(), getgid(), getgrgid(), getgrnam(), getlogin(),
getpid(), getppid(), getpwnam(), getpwuid(), getuid(), lstat(), and stat(), provide for access to the
identifiers of processes and the identifiers and names of owners of processes (and files).

The various functions operating on environment variables provide for communication of
information (primarily user-configurable defaults) from a parent to child processes.

The operations on the current working directory control and interrogate the directory from
which relative filename searches start. The umask() function controls the default protections
applied to files created by the process.

The alarm(), pause(), sleep(), ualarm(), and usleep() operations allow the process to suspend until
a timer has expired or to be notified when a period of time has elapsed. The time() operation
interrogates the current time and date.

The signal mechanism provides for communication of events either from other processes or
from the environment to the application, and the means for the application to control the effect
of these events. The mechanism provides for external termination of a process and for a process
to suspend until an event occurs. The mechanism also provides for a value to be associated with
an event.

Job control provides a means to group processes and control them as groups, and to control their
access to the function between the user and the system (the ‘‘controlling terminal’’). It also
provides the means to suspend and resume processes.

The Process Scheduling option provides control of the scheduling and priority of a process.

The Message Passing option provides a means for interprocess communication involving small
amounts of data.

The Memory Management facilities provide control of memory resources and for the sharing of
memory. This functionality is mandatory on POSIX-conforming systems.

The Threads facilities provide multiple flows of control with a process (threads),
synchronization between threads (including mutexes, barriers, and spin locks), association of
data with threads, and controlled cancellation of threads.

The XSI interprocess communications functionality provide an alternate set of facilities to
manipulate semaphores, message queues, and shared memory. These are provided on XSI-
conformant systems to support conforming applications developed to run on UNIX systems.

D.2.3 Access to Data

The open(), close(), fclose(), fopen(), and pipe() functions provide for access to files and data.
Such files may be regular files, interprocess data channels (pipes), or devices. Additional types
of objects in the file system are permitted and are being contemplated for standardization.

The access(), chmod(), chown(), dup(), dup2(), fchmod(), fcntl(), fstat(), ftruncate(), lstat(),
readlink(), realpath(), stat(), and utime() functions allow for control and interrogation of file and
file-related objects (including symbolic links), and their ownership, protections, and timestamps.

3690 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

125565

125566

125567

125568

125569

125570

125571

125572

125573

125574

125575

125576

125577

125578

125579

125580

125581

125582

125583

125584

125585

125586

125587

125588

125589

125590

125591

125592

125593

125594

125595

125596

125597

125598

125599

125600

125601

125602

125603

125604

125605

125606

125607

Portability Considerations (Informative) Portability Capabilities

The fgetc(), fputc(), fread(), fseek(), fsetpos(), fwrite(), getc(), getchar(), lseek(), putchar(), putc(),
read(), and write() functions provide for data transfer from the application to files (in all their
forms).

The closedir(), link(), mkdir(), opendir(), readdir(), rename(), rmdir(), rewinddir(), and unlink()
functions provide for a complete set of operations on directories. Directories can arbitrarily
contain other directories, and a single file can be mentioned in more than one directory.

The faccessat(), openat(), fchmodat(), fchownat(), fstatat(), linkat() renameat(), readlinkat(),
sylimkat(), and unlinkat() functions allow for race-free and thread-safe file access. The
motivation for the introduction of these functions was as follows:

• Interfaces taking a pathname may be limited by the maximum length of a pathname
({PATH_MAX}). The absolute path of files can far exceed this length. The alternative
solution of changing the working directory and using relative pathnames is not thread-
safe.

• A second motivation is that files accessed outside the current working directory are subject
to attacks caused by the race condition created by changing any of the elements of the
pathnames used.

• A third motivation is to allow application code which makes use of a virtual current
working directory for each individual thread. In the alternative model there is only one
current working directory for all threads.

The file-locking mechanism provides for advisory locking (protection during transactions) of
ranges of bytes (in effect, records) in a file.

The confstr(), fpathconf(), pathconf(), and sysconf() functions provide for enquiry as to the
behavior of the system where variability is permitted.

The asynchronous input and output functions aio_cancel(), aio_error(), aio_fsync(), aio_read(),
aio_return(), aio_suspend(), aio_write(), and lio_listio() provide for initiation and control of
asynchronous data transfers.

The Synchronized Input and Output option provides for assured commitment of data to media.

D.2.4 Access to the Environment

The operations and types in XBD are provided for access to asynchronous serial devices. The
primary intended use for these is the controlling terminal for the application (the interaction
point between the user and the system). They are general enough to be used to control any
asynchronous serial device. The functions are also general enough to be used with many other
device types as a user interface when some emulation is provided.

Less detailed access is provided for other device types, but in many instances an application
need not know whether an object in the file system is a device or a regular file to operate
correctly.

Part D: Portability Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3691

125608

125609

125610

125611

125612

125613

125614

125615

125616

125617

125618

125619

125620

125621

125622

125623

125624

125625

125626

125627

125628

125629

125630

125631

125632

125633

125634

125635

125636

125637

125638

125639

125640

125641

125642

125643

Portability Capabilities Portability Considerations (Informative)

Unsatisfied Requirements

Detailed control of common device classes, specifically magnetic tape, is not provided.

D.2.5 Bounded (Realtime) Response

The realtime signal functions sigqueue(), sigtimedwait(), and sigwaitinfo() provide queued signals
and the prioritization of the handling of signals.

The SCHED_FIFO, SCHED_SPORADIC, and SCHED_RR scheduling policies provide control
over processor allocation.

The semaphore functions sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(),
sem_post(), sem_timedwait(), sem_trywait(), sem_unlink(), and sem_wait() provide high-
performance synchronization.

The memory management functions provide memory locking for control of memory allocation,
file mapping for high performance, and shared memory for high-performance interprocess
communication. The Message Passing option provides for interprocess communication without
being dependent on shared memory.

The timers functions clock_getres(), clock_gettime(), clock_settime(), nanosleep(), timer_create(),
timer_delete(), timer_getoverrun(), timer_gettime(), and timer_settime() provide functionality to
manipulate clocks and timers and include a high resolution function called nanosleep() with a
finer resolution than the sleep() function.

The timeout functions — pthread_mutex_timedlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_timedwrlock(), and sem_timedwait() — the Typed Memory Objects option and the
Monotonic Clock option provide further facilities for applications to use to obtain predictable
bounded response.

D.2.6 Operating System-Dependent Profile

POSIX.1-2008 makes no distinction between text and binary files. The values of EXIT_SUCCESS
and EXIT_FAILURE are further defined.

Unsatisfied Requirements

None known, but the ISO C standard may contain some additional options that could be
specified.

D.2.7 I/O Interaction

POSIX.1-2008 defines how each of the ISO C standard stdio functions interact with the POSIX.1
operations, typically specifying the behavior in terms of POSIX.1 operations.

3692 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

125644

125645

125646

125647

125648

125649

125650

125651

125652

125653

125654

125655

125656

125657

125658

125659

125660

125661

125662

125663

125664

125665

125666

125667

125668

125669

125670

125671

125672

125673

125674

Portability Considerations (Informative) Portability Capabilities

Unsatisfied Requirements

None.

D.2.8 Internationalization Interaction

The POSIX.1-2008 environment operations provide a means to define the environment for
setlocale() and time functions such as ctime(). The tzset() function is provided to set time
conversion information.

The nl_langinfo() function is provided to query locale-specific cultural settings.

The multiple concurrent locale functions duplocale(), freelocale(), is*_l(), newlocale(),
strcasecmp_l(), strcoll_l(), strfmon_l(), strncasecmp_l(), strxfrm_l(), tolower_l(), toupper_l(),
towctrans_l(), towlower(), towupper(), uselocale(), wcscasecmp_l(), wcscoll_l(), wcsncasecmp_l(),
wcsxfrm_l(), wctrans_l(), and wctype_l() are provide to support per-thread locale information.

Unsatisfied Requirements

None.

D.2.9 C-Language Extensions

The setjmp() and longjmp() functions are not defined to be cognizant of the signal masks defined
for POSIX.1. The sigsetjmp() and siglongjmp() functions are provided to fill this gap.

The _setjmp() and _longjmp() functions are provided as XSI options to support historic practice.

Unsatisfied Requirements

None.

D.2.10 Command Language

The shell command language, as described in XCU Chapter 2 (on page 2297), is a common
language useful in batch scripts, through an API to high-level languages (for the C-Language
Binding option, system() and popen()) and through an interactive terminal (see the sh utility).
The shell language has many of the characteristics of a high-level language, but it has been
designed to be more suitable for user terminal entry and includes interactive debugging
facilities. Through the use of pipelining, many complex commands can be constructed from
combinations of data filters and other common components. Shell scripts can be created, stored,
recalled, and modified by the user with simple editors.

In addition to the basic shell language, the following utilities offer features that simplify and
enhance programmatic access to the utilities and provide features normally found only in high-
level languages: basename, bc, command, dirname, echo, env, expr, false, printf, read, sleep, tee, test,
time*,9 true, wait, xargs, and all of the special built-in utilities in XCU Section 2.14 (on page 2334).

9. The utilities listed with an asterisk here and later in this section are present only on systems which support the User Portability Utilities

option. There may be further restrictions on the utilities offered with various configuration option combinations; see the individual utility

descriptions.

Part D: Portability Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3693

125675

125676

125677

125678

125679

125680

125681

125682

125683

125684

125685

125686

125687

125688

125689

125690

125691

125692

125693

125694

125695

125696

125697

125698

125699

125700

125701

125702

125703

125704

125705

125706

125707

125708

125709

Portability Capabilities Portability Considerations (Informative)

Unsatisfied Requirements

None.

D.2.11 Interactive Facilities

The utilities offer a common style of command-line interface through conformance to the Utility
Syntax Guidelines (see XBD Section 12.2, on page 215) and the common utility defaults (see XCU
Section 1.4, on page 2288). The sh utility offers an interactive command-line history and editing
facility.

The following utilities can be used interactively as well as by scripts; alias, fc, mailx, unalias, and
write.

The following utilities in the User Portability Utilities option provide for interactive use: ex, more,
and vi; the man utility offers online access to system documentation.

Unsatisfied Requirements

The command line interface to individual utilities is as intuitive and consistent as historical
practice allows. Work underway based on graphical user interfaces may be more suitable for
novice or occasional users of the system.

D.2.12 Accomplish Multiple Tasks Simultaneously

The shell command language offers background processing through the asynchronous list
command form; see XCU Section 2.9 (on page 2316).

The nohup utility makes background processing more robust and usable.

The kill utility can terminate background jobs.

The following utilities support periodic job scheduling, control, and display: at, batch, crontab,
nice, ps, and renice.

When the User Portability Utilities option is supported, the following utilities allow
manipulation of jobs: bg, fg, and jobs.

Unsatisfied Requirements

Terminals with multiple windows may be more suitable for some multi-tasking interactive uses
than the job control approach in POSIX.1-2008. See the comments on graphical user interfaces in
Section D.2.11. The nice and renice utilities do not necessarily take advantage of complex system
scheduling algorithms that are supported by the realtime options within POSIX.1-2008.

D.2.13 Complex Data Manipulation

The following utilities address user requirements in this area: asa, awk, bc, cmp, comm, csplit, cut,
dd, diff, ed, ex*, expand, expr, find, fold, grep, head, join, od, paste, pr, printf, sed, sort, split, tabs, tail, tr,
unexpand, uniq, uudecode, uuencode, and wc.

3694 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

125710

125711

125712

125713

125714

125715

125716

125717

125718

125719

125720

125721

125722

125723

125724

125725

125726

125727

125728

125729

125730

125731

125732

125733

125734

125735

125736

125737

125738

125739

125740

125741

125742

Portability Considerations (Informative) Portability Capabilities

Unsatisfied Requirements

Sophisticated text formatting utilities, such as troff or TeX, are not included. Standards work in
the area of SGML may satisfy this.

D.2.14 File Hierarchy Manipulation

The following utilities address user requirements in this area: basename, cd, chgrp, chmod, chown,
cksum, cp, dd, df, diff, dirname, du, find, ls, ln, mkdir, mkfifo, mv, patch, pathchk, pax, pwd, rm, rmdir,
test, and touch.

Unsatisfied Requirements

Some graphical user interfaces offer more intuitive file manager components that allow file
manipulation through the use of icons for novice users.

D.2.15 Locale Configuration

The standard utilities are affected by the various LC_ variables to achieve locale-dependent
operation: character classification, collation sequences, regular expressions and shell pattern
matching, date and time formats, numeric formatting, and monetary formatting. When the
POSIX2_LOCALEDEF option is supported, applications can provide their own locale definition
files.

The following utilities address user requirements in this area: date, ed, ex*, find, grep, locale,
localedef, more*, sed, sh, sort, tr, uniq, and vi*.

The iconv(), iconv_close(), and iconv_open() functions are available to allow an application to
convert character data between supported character sets.

The gencat utility and the catopen(), catclose(), and catgets() functions provide for message
catalog manipulation.

Unsatisfied Requirements

Some aspects of multi-byte character and state-encoded character encodings have not yet been
addressed. The C-language functions, such as getopt(), are generally limited to single-byte
characters. The effect of the LC_MESSAGES variable on message formats is only suggested at
this time.

D.2.16 Inter-User Communication

The following utilities address user requirements in this area: cksum, mailx, mesg, patch, pax, talk,
uudecode, uuencode, who, and write.

The historical UUCP utilities are included as a separate UUCP Utilities option.

Part D: Portability Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3695

125743

125744

125745

125746

125747

125748

125749

125750

125751

125752

125753

125754

125755

125756

125757

125758

125759

125760

125761

125762

125763

125764

125765

125766

125767

125768

125769

125770

125771

125772

125773

Portability Capabilities Portability Considerations (Informative)

Unsatisfied Requirements

None.

D.2.17 System Environment

The following utilities address user requirements in this area: chgrp, chmod, chown, df, du, env,
getconf, id, logger, logname, mesg, newgrp, ps, stty, tput, tty, umask, uname, and who.

The closelog(), openlog(), setlogmask(), and syslog() functions provide system logging facilities on
XSI-conformant systems; these are analogous to the logger utility.

Unsatisfied Requirements

None.

D.2.18 Printing

The following utilities address user requirements in this area: pr and lp.

Unsatisfied Requirements

There are no features to control the formatting or scheduling of the print jobs.

D.2.19 Software Development

The following utilities address user requirements in this area: ar, asa, awk, c99, ctags, fort77,
getconf, getopts, lex, localedef, make, nm, od, patch, pax, strings, strip, time, and yacc.

The system(), popen(), pclose(), regcomp(), regexec(), regerror(), regfree(), fnmatch(), getopt(),
glob(), globfree(), wordexp(), and wordfree() functions allow C-language programmers to access
some of the interfaces used by the utilities, such as argument processing, regular expressions,
and pattern matching.

The SCCS source-code control system utilities are available on systems supporting the XSI
Development option.

Unsatisfied Requirements

There are no language-specific development tools related to languages other than C and
FORTRAN. The C tools are more complete and varied than the FORTRAN tools. There is no
data dictionary or other CASE-like development tools.

D.2.20 Future Growth

It is arguable whether or not all functionality to support applications is potentially within the
scope of POSIX.1-2008. As a simple matter of practicality, it cannot be. Areas such as graphics,
application domain-specific functionality, windowing, and so on, should be in unique standards.
As such, they are properly ‘‘Unsatisfied Requirements’’ in terms of providing fully conforming
applications, but ones which are outside the scope of POSIX.1-2008.

However, as the standards evolve, certain functionality once considered ‘‘exotic’’ enough to be
part of a separate standard become common enough to be included in a core standard such as
this. Realtime and networking, for example, have both moved from separate standards (with

3696 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

125774

125775

125776

125777

125778

125779

125780

125781

125782

125783

125784

125785

125786

125787

125788

125789

125790

125791

125792

125793

125794

125795

125796

125797

125798

125799

125800

125801

125802

125803

125804

125805

125806

125807

125808

Portability Considerations (Informative) Portability Capabilities

much difficult cross-referencing) into this standard over time, and although no specific areas
have been identified for inclusion in a future version, such inclusions seem likely.

D.3 Profiling Considerations

This section offers guidance to writers of profiles on how the configurable options, limits, and
optional behavior of POSIX.1-2008 should be cited in profiles. Profile writers should consult the
general guidance in POSIX.0 when writing POSIX Standardized Profiles.

The information in this section is an inclusive list of features that should be considered by profile
writers. Subsetting of POSIX.1-2008 should follow XBD Section 2.1.5.1 (on page 20). A set of
profiling options is described in Appendix E (on page 3711).

D.3.1 Configuration Options

There are two set of options suggested by POSIX.1-2008: those for POSIX-conforming systems
and those for X/Open System Interface (XSI) conformance. The requirements for XSI
conformance are documented in the Base Definitions volume of POSIX.1-2008 and not discussed
further here, as they superset the POSIX conformance requirements.

D.3.2 Configuration Options (Shell and Utilities)

There are three broad optional configurations for the Shell and Utilities volume of POSIX.1-2008:
basic execution system, development system, and user portability interactive system. The
options to support these, and other minor configuration options, are listed in XBD Chapter 2 (on
page 15). Profile writers should consult the following list and the comments concerning user
requirements addressed by various components in Section D.2 (on page 3689).

POSIX2_UPE
The system supports the User Portability Utilities option.

This option is a requirement for a user portability interactive system. It is required
frequently except for those systems, such as embedded realtime or dedicated application
systems, that support little or no interactive time-sharing work by users or operators. XSI-
conformant systems support this option.

POSIX2_SW_DEV
The system supports the Software Development Utilities option.

This option is required by many systems, even those in which actual software development
does not occur. The make utility, in particular, is required by many application software
packages as they are installed onto the system. If POSIX2_C_DEV is supported,
POSIX2_SW_DEV is almost a mandatory requirement because of ar and make.

POSIX2_C_BIND
The system supports the C-Language Bindings option.

This option is required on some implementations developing complex C applications or on
any system installing C applications in source form that require the functions in this option.
The system() and popen() functions, in particular, are widely used by applications; the
others are rather more specialized.

Part D: Portability Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3697

125809

125810

125811

125812

125813

125814

125815

125816

125817

125818

125819

125820

125821

125822

125823

125824

125825

125826

125827

125828

125829

125830

125831

125832

125833

125834

125835

125836

125837

125838

125839

125840

125841

125842

125843

125844

125845

125846

Profiling Considerations Portability Considerations (Informative)

POSIX2_C_DEV
The system supports the C-Language Development Utilities option.

This option is required by many systems, even those in which actual C-language software
development does not occur. The c99 utility, in particular, is required by many application
software packages as they are installed onto the system. The lex and yacc utilities are used
less frequently.

POSIX2_FORT_DEV
The system supports the FORTRAN Development Utilities option

As with C, this option is needed on any system developing or installing FORTRAN
applications in source form.

POSIX2_FORT_RUN
The system supports the FORTRAN Runtime Utilities option.

This option is required for some FORTRAN applications that need the asa utility to convert
Hollerith printing statement output. It is unknown how frequently this occurs.

POSIX2_LOCALEDEF
The system supports the creation of locales.

This option is needed if applications require their own customized locale definitions to
operate. It is presently unknown whether many applications are dependent on this.
However, the option is virtually mandatory for systems in which internationalized
applications are developed.

XSI-conformant systems support this option.

POSIX2_PBS
The system supports the Batch Environment Services and Utilities option.

POSIX2_PBS_ACCOUNTING
The system supports the optional feature of accounting within the Batch Environment
Services and Utilities option. It will be required in servers that implement the optional
feature of accounting.

POSIX2_PBS_CHECKPOINT
The system supports the optional feature of checkpoint/restart within the Batch
Environment Services and Utilities option.

POSIX2_PBS_LOCATE
The system supports the optional feature of locating batch jobs within the Batch
Environment Services and Utilities option.

POSIX2_PBS_MESSAGE
The system supports the optional feature of sending messages to batch jobs within the Batch
Environment Services and Utilities option.

POSIX2_PBS_TRACK
The system supports the optional feature of tracking batch jobs within the Batch
Environment Services and Utilities option.

POSIX2_CHAR_TERM
The system supports at least one terminal type capable of all operations described in
POSIX.1-2008.

On systems with POSIX2_UPE, this option is almost always required. It was developed
solely to allow certain specialized vendors and user applications to bypass the requirement
for general-purpose asynchronous terminal support. For example, an application and

3698 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

125847

125848

125849

125850

125851

125852

125853

125854

125855

125856

125857

125858

125859

125860

125861

125862

125863

125864

125865

125866

125867

125868

125869

125870

125871

125872

125873

125874

125875

125876

125877

125878

125879

125880

125881

125882

125883

125884

125885

125886

125887

125888

125889

125890

125891

Portability Considerations (Informative) Profiling Considerations

system that was suitable for block-mode terminals, such as IBM 3270s, would not need this
option.

XSI-conformant systems support this option.

D.3.3 Configurable Limits

Very few of the limits need to be increased for profiles. No profile can cite lower values.

{POSIX2_BC_BASE_MAX}
{POSIX2_BC_DIM_MAX}
{POSIX2_BC_SCALE_MAX}
{POSIX2_BC_STRING_MAX}

No increase is anticipated for any of these bc values, except for very specialized applications
involving huge numbers.

{POSIX2_COLL_WEIGHTS_MAX}
Some natural languages with complex collation requirements require an increase from the
default 2 to 4; no higher numbers are anticipated.

{POSIX2_EXPR_NEST_MAX}
No increase is anticipated.

{POSIX2_LINE_MAX}
This number is much larger than most historical applications have been able to use. At some
future time, applications may be rewritten to take advantage of even larger values.

{POSIX2_RE_DUP_MAX}
No increase is anticipated.

{POSIX2_VERSION}
This is actually not a limit, but a standard version stamp. Generally, a profile should specify
XCU Chapter 2 (on page 2297) by name in the normative references section, not this value.

D.3.4 Configuration Options (System Interfaces)

{NGROUPS_MAX}
A non-zero value indicates that the implementation supports supplementary groups.

This option is needed where there is a large amount of shared use of files, but where a
certain amount of protection is needed. Many profiles10 are known to require this option; it
should only be required if needed, but it should never be prohibited.

_POSIX_ADVISORY_INFO
The system provides advisory information for file management.

This option allows the application to specify advisory information that can be used to
achieve better or even deterministic response time in file manager or input and output
operations.

_POSIX_ASYNCHRONOUS_IO
Support for asynchronous input and output is mandatory in POSIX.1-2008.

10. There are no formally approved profiles of POSIX.1-2008 at the time of publication; the reference here is to various profiles generated by

private bodies or governments.

Part D: Portability Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3699

125892

125893

125894

125895

125896

125897

125898

125899

125900

125901

125902

125903

125904

125905

125906

125907

125908

125909

125910

125911

125912

125913

125914

125915

125916

125917

125918

125919

125920

125921

125922

125923

125924

125925

125926

125927

125928

125929

125930

Profiling Considerations Portability Considerations (Informative)

_POSIX_BARRIERS
Support for barrier synchronization is mandatory in POSIX.1-2008.

This facility allows efficient synchronization of multiple parallel threads in multi-processor
systems in which the operation is supported in part by the hardware architecture.

_POSIX_CHOWN_RESTRICTED
The system restricts the right to ‘‘give away’’ files to other users. It is mandatory that an
implementation be able to support this facility in POSIX.1-2008; however, it is recognized
that implementations need not enable the functionality by default.

Some applications expect that they can change the ownership of files in this way. It is
provided where either security or system account requirements cause this ability to be a
problem. It is also known to be specified in many profiles.

_POSIX_CLOCK_SELECTION
Support for clock selection is mandatory in POSIX.1-2008.

This facility allows applications to request a high resolution sleep in order to suspend a
thread during a relative time interval, or until an absolute time value, using the desired
clock. It also allows the application to select the clock used in a pthread_cond_timedwait()
function call.

_POSIX_CPUTIME
The system supports the Process CPU-Time Clocks option.

This option allows applications to use a new clock that measures the execution times of
processes or threads, and the possibility to create timers based upon these clocks, for
runtime detection (and treatment) of execution time overruns.

_POSIX_FSYNC
The system supports file synchronization requests.

This option was created to support historical systems that did not provide the feature.
Applications that are expecting guaranteed completion of their input and output operations
should require the _POSIX_SYNC_IO option. This option should never be prohibited.

XSI-conformant systems support this option.

_POSIX_IPV6
The system supports facilities related to Internet Protocol Version 6 (IPv6).

This option was created to allow systems to transition to IPv6.

_POSIX_JOB_CONTROL
Support for job control is mandatory in POSIX.1-2008.

Most applications that use it can run when it is not present, although with a degraded level
of user convenience.

_POSIX_MAPPED_FILES
Support for memory mapped files is mandatory in POSIX.1-2008.

This facility provides for the mapping of regular files into the process address space.

Both this facility and the Shared Memory Objects option provide shared access to memory
objects in the process address space. The mmap() and munmap() functions provide the
functionality of existing practice for mapping regular files. This functionality was deemed
unnecessary, if not inappropriate, for embedded systems applications and is expected to be
optional in subprofiles.

3700 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

125931

125932

125933

125934

125935

125936

125937

125938

125939

125940

125941

125942

125943

125944

125945

125946

125947

125948

125949

125950

125951

125952

125953

125954

125955

125956

125957

125958

125959

125960

125961

125962

125963

125964

125965

125966

125967

125968

125969

125970

125971

125972

125973

Portability Considerations (Informative) Profiling Considerations

_POSIX_MEMLOCK
The system supports the locking of the address space.

This option was created to support historical systems that did not provide the feature. It
should only be required if needed, but it should never be prohibited.

_POSIX_MEMLOCK_RANGE
The system supports the locking of specific ranges of the address space.

For applications that have well-defined sections that need to be locked and others that do
not, POSIX.1-2008 supports an optional set of functions to lock or unlock a range of process
addresses. The following are two reasons for having a means to lock down a specific range:

1. An asynchronous event handler function that must respond to external events in a
deterministic manner such that page faults cannot be tolerated

2. An input/output ‘‘buffer ’’ area that is the target for direct-to-process I/O, and the
overhead of implicit locking and unlocking for each I/O call cannot be tolerated

It should only be required if needed, but it should never be prohibited.

_POSIX_MEMORY_PROTECTION
Support for memory protection is mandatory in POSIX.1-2008.

The provision of this facility typically imposes additional hardware requirements.

_POSIX_PRIORITIZED_IO
The system provides prioritization for input and output operations.

The use of this option may interfere with the ability of the system to optimize input and
output throughput. It should only be required if needed, but it should never be prohibited.

_POSIX_MESSAGE_PASSING
The system supports the passing of messages between processes.

This option was created to support historical systems that did not provide the feature. The
functionality adds a high-performance XSI interprocess communication facility for local
communication. It should only be required if needed, but it should never be prohibited.

_POSIX_MONOTONIC_CLOCK
The system supports the Monotonic Clock option.

This option allows realtime applications to rely on a monotonically increasing clock that
does not jump backwards, and whose value does not change except for the regular ticking
of the clock.

_POSIX_PRIORITY_SCHEDULING
The system provides priority-based process scheduling.

Support of this option provides predictable scheduling behavior, allowing applications to
determine the order in which processes that are ready to run are granted access to a
processor. It should only be required if needed, but it should never be prohibited.

_POSIX_REALTIME_SIGNALS
Support for realtime signals is mandatory in POSIX.1-2008.

This facility provides prioritized, queued signals with associated data values.

_POSIX_REGEXP
Support for regular expression facilities is mandatory in POSIX.1-2008.

Part D: Portability Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3701

125974

125975

125976

125977

125978

125979

125980

125981

125982

125983

125984

125985

125986

125987

125988

125989

125990

125991

125992

125993

125994

125995

125996

125997

125998

125999

126000

126001

126002

126003

126004

126005

126006

126007

126008

126009

126010

126011

126012

126013

126014

Profiling Considerations Portability Considerations (Informative)

_POSIX_SAVED_IDS
Support for this feature is mandatory in POSIX.1-2008.

Certain classes of applications rely on it for proper operation, and there is no alternative
short of giving the application root privileges on most implementations that did not provide
_POSIX_SAVED_IDS.

_POSIX_SEMAPHORES
Support for counting semaphores is mandatory in POSIX.1-2008.

_POSIX_SHARED_MEMORY_OBJECTS
The system supports the mapping of shared memory objects into the process address space.

Both this option and the Memory Mapped Files option provide shared access to memory
objects in the process address space. The functions defined under this option provide the
functionality of existing practice for shared memory objects. This functionality was deemed
appropriate for embedded systems applications and, hence, is provided under this option.
It should only be required if needed, but it should never be prohibited.

_POSIX_SHELL
Support for the sh utility command line interpreter is mandatory in POSIX.1-2008.

_POSIX_SPAWN
The system supports the spawn option.

This option provides applications with an efficient mechanism to spawn execution of a new
process.

_POSIX_SPINLOCKS
Support for spin locks is mandatory in POSIX.1-2008.

This facility provides a simple and efficient synchronization mechanism for threads
executing in multi-processor systems.

_POSIX_SPORADIC_SERVER
The system supports the sporadic server scheduling policy.

This option provides applications with a new scheduling policy for scheduling aperiodic
processes or threads in hard realtime applications.

_POSIX_SYNCHRONIZED_IO
The system supports guaranteed file synchronization.

This option was created to support historical systems that did not provide the feature.
Applications that are expecting guaranteed completion of their input and output operations
should require this option, rather than the File Synchronization option. It should only be
required if needed, but it should never be prohibited.

_POSIX_THREADS
Support for multiple threads of control within a single process is mandatory in
POSIX.1-2008.

_POSIX_THREAD_ATTR_STACKADDR
The system supports specification of the stack address for a created thread.

Applications may take advantage of support of this option for performance benefits, but
dependence on this feature should be minimized. This option should never be prohibited.

XSI-conformant systems support this option.

3702 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

126015

126016

126017

126018

126019

126020

126021

126022

126023

126024

126025

126026

126027

126028

126029

126030

126031

126032

126033

126034

126035

126036

126037

126038

126039

126040

126041

126042

126043

126044

126045

126046

126047

126048

126049

126050

126051

126052

126053

126054

126055

126056

Portability Considerations (Informative) Profiling Considerations

_POSIX_THREAD_ATTR_STACKSIZE
The system supports specification of the stack size for a created thread.

Applications may require this option in order to ensure proper execution, but such usage
limits portability and dependence on this feature should be minimized. It should only be
required if needed, but it should never be prohibited.

XSI-conformant systems support this option.

_POSIX_THREAD_PRIORITY_SCHEDULING
The system provides priority-based thread scheduling.

Support of this option provides predictable scheduling behavior, allowing applications to
determine the order in which threads that are ready to run are granted access to a processor.
It should only be required if needed, but it should never be prohibited.

_POSIX_THREAD_PRIO_INHERIT
The system provides mutual-exclusion operations with priority inheritance.

Support of this option provides predictable scheduling behavior, allowing applications to
determine the order in which threads that are ready to run are granted access to a processor.
It should only be required if needed, but it should never be prohibited.

_POSIX_THREAD_PRIO_PROTECT
The system supports a priority ceiling emulation protocol for mutual-exclusion operations.

Support of this option provides predictable scheduling behavior, allowing applications to
determine the order in which threads that are ready to run are granted access to a processor.
It should only be required if needed, but it should never be prohibited.

_POSIX_THREAD_PROCESS_SHARED
The system provides shared access among multiple processes to synchronization objects.

This option was created to support historical systems that did not provide the feature. It
should only be required if needed, but it should never be prohibited.

XSI-conformant systems support this option.

_POSIX_THREAD_SAFE_FUNCTIONS
Support for thread-safe functions is mandatory in POSIX.1-2008.

_POSIX_THREAD_SPORADIC_SERVER
The system supports the thread sporadic server scheduling policy.

Support for this option provides applications with a new scheduling policy for scheduling
aperiodic threads in hard realtime applications.

_POSIX_TIMEOUTS
Support for timeouts for some blocking services is mandatory in POSIX.1-2008.

_POSIX_TIMERS
Support for higher resolution clocks with multiple timers per process is mandatory in
POSIX.1-2008.

This facility is appropriate for applications requiring higher resolution timestamps or
needing to control the timing of multiple activities.

_POSIX_TRACE
The system supports the Trace option.

This option was created to allow applications to perform tracing.

Part D: Portability Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3703

126057

126058

126059

126060

126061

126062

126063

126064

126065

126066

126067

126068

126069

126070

126071

126072

126073

126074

126075

126076

126077

126078

126079

126080

126081

126082

126083

126084

126085

126086

126087

126088

126089

126090

126091

126092

126093

126094

126095

126096

126097

126098

Profiling Considerations Portability Considerations (Informative)

_POSIX_TRACE_EVENT_FILTER
The system supports the Trace Event Filter option.

This option is dependent on support of the Trace option.

_POSIX_TRACE_INHERIT
The system supports the Trace Inherit option.

This option is dependent on support of the Trace option.

_POSIX_TRACE_LOG
The system supports the Trace Log option.

This option is dependent on support of the Trace option.

_POSIX_TYPED_MEMORY_OBJECTS
The system supports the Typed Memory Objects option.

This option was created to allow realtime applications to access different kinds of physical
memory, and allow processes in these applications to share portions of this memory.

D.3.5 Configurable Limits

In general, the configurable limits in the <limits.h> header defined in the Base Definitions
volume of POSIX.1-2008 have been set to minimal values; many applications or implementations
may require larger values. No profile can cite lower values.

{AIO_LISTIO_MAX}
The current minimum is likely to be inadequate for most applications. It is expected that
this value will be increased by profiles requiring support for list input and output
operations.

{AIO_MAX}
The current minimum is likely to be inadequate for most applications. It is expected that
this value will be increased by profiles requiring support for asynchronous input and
output operations.

{AIO_PRIO_DELTA_MAX}
The functionality associated with this limit is needed only by sophisticated applications. It
is not expected that this limit would need to be increased under a general-purpose profile.

{ARG_MAX}
The current minimum is likely to need to be increased for profiles, particularly as larger
amounts of information are passed through the environment. Many implementations are
believed to support larger values.

{CHILD_MAX}
The current minimum is suitable only for systems where a single user is not running
applications in parallel. It is significantly too low for any system also requiring windows,
and if _POSIX_JOB_CONTROL is specified, it should be raised.

{CLOCKRES_MIN}
It is expected that profiles will require a finer granularity clock, perhaps as fine as 1 µs,
represented by a value of 1 000 for this limit.

{DELAYTIMER_MAX}
It is believed that most implementations will provide larger values.

3704 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

126099

126100

126101

126102

126103

126104

126105

126106

126107

126108

126109

126110

126111

126112

126113

126114

126115

126116

126117

126118

126119

126120

126121

126122

126123

126124

126125

126126

126127

126128

126129

126130

126131

126132

126133

126134

126135

126136

126137

126138

126139

Portability Considerations (Informative) Profiling Considerations

{LINK_MAX}
For most applications and usage, the current minimum is adequate. Many implementations
have a much larger value, but this should not be used as a basis for raising the value unless
the applications to be used require it.

{LOGIN_NAME_MAX}
This is not actually a limit, but an implementation parameter. No profile should impose a
requirement on this value.

{MAX_CANON}
For most purposes, the current minimum is adequate. Unless high-speed burst serial
devices are used, it should be left as is.

{MAX_INPUT}
See {MAX_CANON}.

{MQ_OPEN_MAX}
The current minimum should be adequate for most profiles.

{MQ_PRIO_MAX}
The current minimum corresponds to the required number of process scheduling priorities.
Many realtime practitioners believe that the number of message priority levels ought to be
the same as the number of execution scheduling priorities.

{NAME_MAX}
Many implementations now support larger values, and many applications and users
assume that larger names can be used. Many existing profiles also specify a larger value.
Specifying this value will reduce the number of conforming implementations, although this
might not be a significant consideration over time. Values greater than 255 should not be
required.

{NGROUPS_MAX}
The value selected will typically be 8 or larger.

{OPEN_MAX}
The historically common value for this has been 20. Many implementations support larger
values. If applications that use larger values are anticipated, an appropriate value should be
specified.

{PAGESIZE}
This is not actually a limit, but an implementation parameter. No profile should impose a
requirement on this value.

{PATH_MAX}
Historically, the minimum has been either 1 024 or indefinite, depending on the
implementation. Few applications actually require values larger than 256, but some users
may create file hierarchies that must be accessed with longer paths. This value should only
be changed if there is a clear requirement.

{PIPE_BUF}
The current minimum is adequate for most applications. Historically, it has been larger. If
applications that write single transactions larger than this are anticipated, it should be
increased. Applications that write lines of text larger than this probably do not need it
increased, as the text line is delimited by a <newline>.

{POSIX_VERSION}
This is actually not a limit, but a standard version stamp. Generally, a profile should specify
POSIX.1-2008 by a name in the normative references section, not this value.

Part D: Portability Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3705

126140

126141

126142

126143

126144

126145

126146

126147

126148

126149

126150

126151

126152

126153

126154

126155

126156

126157

126158

126159

126160

126161

126162

126163

126164

126165

126166

126167

126168

126169

126170

126171

126172

126173

126174

126175

126176

126177

126178

126179

126180

126181

126182

126183

126184

126185

Profiling Considerations Portability Considerations (Informative)

{PTHREAD_DESTRUCTOR_ITERATIONS}
It is unlikely that applications will need larger values to avoid loss of memory resources.

{PTHREAD_KEYS_MAX}
The current value should be adequate for most profiles.

{PTHREAD_STACK_MIN}
This should not be treated as an actual limit, but as an implementation parameter. No
profile should impose a requirement on this value.

{PTHREAD_THREADS_MAX}
It is believed that most implementations will provide larger values.

{RTSIG_MAX}
The current limit was chosen so that the set of POSIX.1 signal numbers can fit within a
32-bit field. It is recognized that most existing implementations define many more signals
than are specified in POSIX.1 and, in fact, many implementations have already exceeded 32
signals (including the ‘‘null signal’’). Support of {_POSIX_RTSIG_MAX} additional signals
may push some implementations over the single 32-bit word line, but is unlikely to push
any implementations that are already over that line beyond the 64 signal line.

{SEM_NSEMS_MAX}
The current value should be adequate for most profiles.

{SEM_VALUE_MAX}
The current value should be adequate for most profiles.

{SSIZE_MAX}
This limit reflects fundamental hardware characteristics (the size of an integer), and should
not be specified unless it is clearly required. Extreme care should be taken to assure that
any value that might be specified does not unnecessarily eliminate implementations
because of accidents of hardware design.

{STREAM_MAX}
This limit is very closely related to {OPEN_MAX}. It should never be larger than
{OPEN_MAX}, but could reasonably be smaller for application areas where most files are
not accessed through stdio. Some implementations may limit {STREAM_MAX} to 20 but
allow {OPEN_MAX} to be considerably larger. Such implementations should be allowed for
if the applications permit.

{TIMER_MAX}
The current limit should be adequate for most profiles, but it may need to be larger for
applications with a large number of asynchronous operations.

{TTY_NAME_MAX}
This is not actually a limit, but an implementation parameter. No profile should impose a
requirement on this value.

{TZNAME_MAX}
The minimum has been historically adequate, but if longer timezone names are anticipated
(particularly such values as UTC−1), this should be increased.

3706 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

126186

126187

126188

126189

126190

126191

126192

126193

126194

126195

126196

126197

126198

126199

126200

126201

126202

126203

126204

126205

126206

126207

126208

126209

126210

126211

126212

126213

126214

126215

126216

126217

126218

126219

126220

126221

126222

126223

126224

126225

Portability Considerations (Informative) Profiling Considerations

D.3.6 Optional Behavior

In POSIX.1-2008, there are no instances of the terms unspecified, undefined, implementation-
defined, or with the verbs ‘‘may’’ or ‘‘need not’’, that the standard developers anticipate or
sanction as suitable for profile or test method citation. All of these are merely warnings to
conforming applications to avoid certain areas that can vary from system to system, and even
over time on the same system. In many cases, these terms are used explicitly to support
extensions, but profiles should not anticipate and require such extensions; future versions of this
standard may do so.

Part D: Portability Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3707

126226

126227

126228

126229

126230

126231

126232

126233

Portability Considerations (Informative)

3708 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

Rationale (Informative)

Part E:

Subprofiling Considerations

The Open Group
The Institute of Electrical and Electronics Engineers, Inc.

Part E: Subprofiling Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3709

126234

126235

126236

126237

126238

3710 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part E: Subprofiling Considerations

Appendix E

Subprofiling Considerations (Informative)

This section contains further information to satisfy the requirement that the project scope enable
subprofiling of POSIX.1-2008. The approach taken is to include a general requirement in
normative text regarding subprofiling and to include an informative section (here) containing a
proposed set of subprofiling options.

E.1 Subprofiling Option Groups

The following Option Groups11 are defined to support profiling. Systems claiming support to
POSIX.1-2008 need not implement these options apart from the requirements stated in XBD
Section 2.1.3 (on page 16). These Option Groups allow profiles to subset the System Interfaces
volume of POSIX.1-2008 by collecting sets of related functions.

POSIX_ASYNCHRONOUS_IO: Asynchronous Input and Output Functions
aio_cancel(), aio_error(), aio_fsync(), aio_read(), aio_return(), aio_suspend(), aio_write(),
lio_listio()

POSIX_BARRIERS: Barriers
pthread_barrier_destroy(), pthread_barrier_init(), pthread_barrier_wait(), pthread_barrierattr()

POSIX_C_LANG_JUMP: Jump Functions
longjmp(), setjmp()

POSIX_C_LANG_MATH: Maths Library
acos(), acosf(), acosh(), acoshf(), acoshl(), acosl(), asin(), asinf(), asinh(), asinhf(), asinhl(),
asinl(), atan(), atan2(), atan2f(), atan2l(), atanf(), atanh(), atanhf(), atanhl(), atanl(), cabs(),
cabsf(), cabsl(), cacos(), cacosf(), cacosh(), cacoshf(), cacoshl(), cacosl(), carg(), cargf(), cargl(),
casin(), casinf(), casinh(), casinhf(), casinhl(), casinl(), catan(), catanf(), catanh(), catanhf(),
catanhl(), catanl(), cbrt(), cbrtf(), cbrtl(), ccos(), ccosf(), ccosh(), ccoshf(), ccoshl(), ccosl(),
ceil(), ceilf(), ceill(), cexp(), cexpf(), cexpl(), cimag(), cimagf(), cimagl(), clog(), clogf(), clogl(),
conj(), conjf(), conjl(), copysign(), copysignf(), copysignl(), cos(), cosf(), cosh(), coshf(),
coshl(), cosl(), cpow(), cpowf(), cpowl(), cproj(), cprojf(), cprojl(), creal(), crealf(), creall(),
csin(), csinf(), csinh(), csinhf(), csinhl(), csinl(), csqrt(), csqrtf(), csqrtl(), ctan(), ctanf(),
ctanh(), ctanhf(), ctanhl(), ctanl(), erf(), erfc(), erfcf(), erfcl(), erff(), erfl(), exp(), exp2(),
exp2f(), exp2l(), expf(), expl(), expm1(), expm1f(), expm1l(), fabs(), fabsf(), fabsl(), fdim(),
fdimf(), fdiml(), floor(), floorf(), floorl(), fma(), fmaf(), fmal(), fmax(), fmaxf(), fmaxl(), fmin(),
fminf(), fminl(), fmod(), fmodf(), fmodl(), fpclassify(), frexp(), frexpf(), frexpl(), hypot(),
hypotf(), hypotl(), ilogb(), ilogbf(), ilogbl(), isfinite(), isgreater(), isgreaterequal(), isinf(),
isless(), islessequal(), islessgreater(), isnan(), isnormal(), isunordered(), ldexp(), ldexpf(),
ldexpl(), lgamma(), lgammaf(), lgammal(), llrint(), llrintf(), llrintl(), llround(), llroundf(),
llroundl(), log(), log10(), log10f(), log10l(), log1p(), log1pf(), log1pl(), log2(), log2f(), log2l(),
logb(), logbf(), logbl(), logf(), logl(), lrint(), lrintf(), lrintl(), lround(), lroundf(), lroundl(),
modf(), modff(), modfl(), nan(), nanf(), nanl(), nearbyint(), nearbyintf(), nearbyintl(),
nextafter(), nextafterf(), nextafterl(), nexttoward(), nexttowardf(), nexttowardl(), pow(), powf(),

11. These are modeled on the Units of Functionality from IEEE Std 1003.13-1998.

Part E: Subprofiling Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3711

126239

126240

126241

126242

126243

126244

126245

126246

126247

126248

126249

126250

126251

126252

126253

126254

126255

126256

126257

126258

126259

126260

126261

126262

126263

126264

126265

126266

126267

126268

126269

126270

126271

126272

126273

126274

126275

126276

126277

126278

Subprofiling Option Groups Subprofiling Considerations (Informative)

powl(), remainder(), remainderf(), remainderl(), remquo(), remquof(), remquol(), rint(), rintf(),
rintl(), round(), roundf(), roundl(), scalbln(), scalblnf(), scalblnl(), scalbn(), scalbnf(),
scalbnl(), signbit(), sin(), sinf(), sinh(), sinhf(), sinhl(), sinl(), sqrt(), sqrtf(), sqrtl(), tan(),
tanf(), tanh(), tanhf(), tanhl(), tanl(), tgamma(), tgammaf(), tgammal(), trunc(), truncf(),
truncl()

POSIX_C_LANG_SUPPORT: General ISO C Library
abs(), asctime(), atof(), atoi(), atol(), atoll(), bsearch(), calloc(), ctime(), difftime(), div(),
feclearexcept(), fegetenv(), fegetexceptflag(), fegetround(), feholdexcept(), feraiseexcept(),
fesetenv(), fesetexceptflag(), fesetround(), fetestexcept(), feupdateenv(), free(), gmtime(),
imaxabs(), imaxdiv(), isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(),
isprint(), ispunct(), isspace(), isupper(), isxdigit(), labs(), ldiv(), llabs(), lldiv(), localeconv(),
localtime(), malloc(), memchr(), memcmp(), memcpy(), memmove(), memset(), mktime(),
qsort(), rand(), realloc(), setlocale(), snprintf(), sprintf(), srand(), sscanf(), strcat(), strchr(),
strcmp(), strcoll(), strcpy(), strcspn(), strerror(), strftime(), strlen(), strncat(), strncmp(),
strncpy(), strpbrk(), strrchr(), strspn(), strstr(), strtod(), strtof(), strtoimax(), strtok(), strtol(),
strtold(), strtoll(), strtoul(), strtoull(), strtoumax(), strxfrm(), time(), tolower(), toupper(),
tzname, tzset(), va_arg(), va_copy(), va_end(), va_start(), vsnprintf(), vsprintf(), vsscanf()

POSIX_C_LANG_SUPPORT_R: Thread-Safe General ISO C Library
asctime_r(), ctime_r(), gmtime_r(), localtime_r(), rand_r(), strerror_r(), strtok_r()

POSIX_C_LANG_WIDE_CHAR: Wide-Character ISO C Library
btowc(), iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswctype(), iswdigit(), iswgraph(),
iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit(), mblen(), mbrlen(),
mbrtowc(), mbsinit(), mbsrtowcs(), mbstowcs(), mbtowc(), swprintf(), swscanf(), towctrans(),
towlower(), towupper(), vswprintf(), vswscanf(), wcrtomb(), wcscat(), wcschr(), wcscmp(),
wcscoll(), wcscpy(), wcscspn(), wcsftime(), wcslen(), wcsncat(), wcsncmp(), wcsncpy(),
wcspbrk(), wcsrchr(), wcsrtombs(), wcsspn(), wcsstr(), wcstod(), wcstof(), wcstoimax(),
wcstok(), wcstol(), wcstold(), wcstoll(), wcstombs(), wcstoul(), wcstoull(), wcstoumax(),
wcsxfrm(), wctob(), wctomb(), wctrans(), wctype(), wmemchr(), wmemcmp(), wmemcpy(),
wmemmove(), wmemset()

POSIX_C_LANG_WIDE_CHAR_EXT: Extended Wide-Character ISO C Library
mbsnrtowcs(), wcpcpy(), wcpncpy(), wcscasecmp(), wcsdup(), wcsncasecmp(), wcsnlen(),
wcsnrtombs()

POSIX_C_LIB_EXT: General C Library Extension
fnmatch(), getopt(), getsubopt(), optarg, opterr, optind, optopt, stpcpy(), stpncpy(), strcasecmp(),
strdup(), strfmon(), strncasecmp(), strndup(), strnlen()

POSIX_CLOCK_SELECTION: Clock Selection
clock_nanosleep(), pthread_condattr_getclock(), pthread_condattr_setclock()

POSIX_DEVICE_IO: Device Input and Output
FD_CLR(), FD_ISSET(), FD_SET(), FD_ZERO(), clearerr(), close(), fclose(), fdopen(), feof(),
ferror(), fflush(), fgetc(), fgets(), fileno(), fopen(), fprintf(), fputc(), fputs(), fread(), freopen(),
fscanf(), fwrite(), getc(), getchar(), gets(), open(), perror(), poll(), printf(), pread(), pselect(),
putc(), putchar(), puts(), pwrite(), read(), scanf(), select(), setbuf(), setvbuf(), stderr, stdin,
stdout, ungetc(), vfprintf(), vfscanf(), vprintf(), vscanf(), write()

POSIX_DEVICE_IO_EXT: Extended Device Input and Output
dprintf(), fmemopen(), open_memstream(), vdprintf()

POSIX_DEVICE_SPECIFIC: General Terminal
cfgetispeed(), cfgetospeed(), cfsetispeed(), cfsetospeed(), ctermid(), isatty(), tcdrain(), tcflow(),
tcflush(), tcgetattr(), tcsendbreak(), tcsetattr(), ttyname()

3712 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part E: Subprofiling Considerations

126279

126280

126281

126282

126283

126284

126285

126286

126287

126288

126289

126290

126291

126292

126293

126294

126295

126296

126297

126298

126299

126300

126301

126302

126303

126304

126305

126306

126307

126308

126309

126310

126311

126312

126313

126314

126315

126316

126317

126318

126319

126320

126321

126322

126323

126324

126325

126326

Subprofiling Considerations (Informative) Subprofiling Option Groups

POSIX_DEVICE_SPECIFIC_R: Thread-Safe General Terminal
ttyname_r()

POSIX_DYNAMIC_LINKING: Dynamic Linking
dlclose(), dlerror(), dlopen(), dlsym()

POSIX_FD_MGMT: File Descriptor Management
dup(), dup2(), fcntl(), fgetpos(), fseek(), fseeko(), fsetpos(), ftell(), ftello(), ftruncate(), lseek(),
rewind()

POSIX_FIFO: FIFO
mkfifo()

POSIX_FIFO_FD: FIFO File Descriptor Routines
mkfifoat(), mknodat()

POSIX_FILE_ATTRIBUTES: File Attributes
chmod(), chown(), fchmod(), fchown(), umask()

POSIX_FILE_ATTRIBUTES_FD: File Attributes File Descriptor Routines
fchmodat(), fchownat()

POSIX_FILE_LOCKING: Thread-Safe Stdio Locking
flockfile(), ftrylockfile(), funlockfile(), getc_unlocked(), getchar_unlocked(), putc_unlocked(),
putchar_unlocked()

POSIX_FILE_SYSTEM: File System
access(), chdir(), closedir(), creat(), fchdir(), fpathconf(), fstat(), fstatvfs(), getcwd(), link(),
mkdir(), mkstemp(), opendir(), pathconf(), readdir(), remove(), rename(), rewinddir(), rmdir(),
stat(), statvfs(), tmpfile(), tmpnam(), truncate(), unlink(), utime()

POSIX_FILE_SYSTEM_EXT: File System Extensions
alphasort(), dirfd(), getdelim(), getline(), mkdtemp(), scandir()

POSIX_FILE_SYSTEM_FD: File System File Descriptor Routines
faccessat(), fdopendir(), fstatat(), linkat(), mkdirat(), openat(), renameat(), unlinkat(),
utimensat()

POSIX_FILE_SYSTEM_GLOB: File System Glob Expansion
glob(), globfree()

POSIX_FILE_SYSTEM_R: Thread-Safe File System
readdir_r()

POSIX_I18N: Internationalization
catclose(), catgets(), catopen(), iconv(), iconv_close(), iconv_open(), nl_langinfo()

POSIX_JOB_CONTROL: Job Control
setpgid(), tcgetpgrp(), tcsetpgrp(), tcgetsid()

POSIX_MAPPED_FILES: Memory Mapped Files
mmap(), munmap()

POSIX_MEMORY_PROTECTION: Memory Protection
mprotect()

POSIX_MULTI_CONCURRENT_LOCALES: Multiple Concurrent Locales
duplocale(), freelocale(), isalnum_l(), isalpha_l(), isblank_l(), iscntrl_l(), isdigit_l(), isgraph_l(),
islower_l(), isprint_l(), ispunct_l(), isspace_l(), isupper_l(), iswalnum_l(), iswalpha_l(),
iswblank_l(), iswcntrl_l(), iswctype_l(), iswdigit_l(), iswgraph_l(), iswlower_l(), iswprint_l(),
iswpunct_l(), iswspace_l(), iswupper_l(), iswxdigit_l(), isxdigit_l(), newlocale(), strcasecmp_l(),

Part E: Subprofiling Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3713

126327

126328

126329

126330

126331

126332

126333

126334

126335

126336

126337

126338

126339

126340

126341

126342

126343

126344

126345

126346

126347

126348

126349

126350

126351

126352

126353

126354

126355

126356

126357

126358

126359

126360

126361

126362

126363

126364

126365

126366

126367

126368

126369

126370

Subprofiling Option Groups Subprofiling Considerations (Informative)

strcoll_l(), strfmon_l(), strncasecmp_l(), strxfrm_l(), tolower_l(), toupper_l(), towctrans_l(),
towlower(), towupper(), uselocale(), wcscasecmp_l(), wcscoll_l(), wcsncasecmp_l(), wcsxfrm_l(),
wctrans_l(), wctype_l()

POSIX_MULTI_PROCESS: Multiple Processes
_Exit(), _exit(), assert(), atexit(), clock(), execl(), execle(), execlp(), execv(), execve(), execvp(),
exit(), fork(), getpgrp(), getpgid(), getpid(), getppid(), getsid(), setsid(), sleep(), times(), wait(),
waitid(), waitpid()

POSIX_MULTI_PROCESS_FD: Multiple Processes File Descriptor Routines
fexecve()

POSIX_NETWORKING: Networking
accept(), bind(), connect(), endhostent(), endnetent(), endprotoent(), endservent(),
freeaddrinfo(), gai_strerror(), getaddrinfo(), gethostent(), gethostname(), getnameinfo(),
getnetbyaddr(), getnetbyname(), getnetent(), getpeername(), getprotobyname(),
getprotobynumber(), getprotoent(), getservbyname(), getservbyport(), getservent(),
getsockname(), getsockopt(), htonl(), htons(), if_freenameindex(), if_indextoname(),
if_nameindex(), if_nametoindex(), inet_addr(), inet_ntoa(), inet_ntop(), inet_pton(), listen(),
ntohl(), ntohs(), recv(), recvfrom(), recvmsg(), send(), sendmsg(), sendto(), sethostent(),
setnetent(), setprotoent(), setservent(), setsockopt(), shutdown(), socket(), sockatmark(),
socketpair()

POSIX_PIPE: Pipe
pipe()

POSIX_ROBUST_MUTEXES: Robust Mutexes
pthread_mutex_consistent(), pthread_mutexattr_getrobust(), pthread_mutexattr_setrobust()

POSIX_REALTIME_SIGNALS: Realtime Signals
sigqueue(), sigtimedwait(), sigwaitinfo()

POSIX_REGEXP: Regular Expressions
regcomp(), regerror(), regexec(), regfree()

POSIX_RW_LOCKS: Reader Writer Locks
pthread_rwlock_destroy(), pthread_rwlock_init(), pthread_rwlock_rdlock(),
pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_rwlock_tryrdlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock(), pthread_rwlock_wrlock(),
pthread_rwlockattr_destroy(), pthread_rwlockattr_init(), pthread_rwlockattr_getpshared(),
pthread_rwlockattr_setpshared()

POSIX_SEMAPHORES: Semaphores
sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(), sem_post(),
sem_timedwait(), sem_trywait(), sem_unlink(), sem_wait()

POSIX_SHELL_FUNC: Shell and Utilities
pclose(), popen(), system(), wordexp(), wordfree()

POSIX_SIGNAL_JUMP: Signal Jump Functions
siglongjmp(), sigsetjmp()

POSIX_SIGNALS: Signals
abort(), alarm(), kill(), pause(), raise(), sigaction(), sigaddset(), sigdelset(), sigemptyset(),
sigfillset(), sigismember(), signal(), sigpending(), sigprocmask(), sigsuspend(), sigwait()

POSIX_SIGNALS_EXT: Extended Signals
psignal(), psiginfo(), strsignal()

3714 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part E: Subprofiling Considerations

126371

126372

126373

126374

126375

126376

126377

126378

126379

126380

126381

126382

126383

126384

126385

126386

126387

126388

126389

126390

126391

126392

126393

126394

126395

126396

126397

126398

126399

126400

126401

126402

126403

126404

126405

126406

126407

126408

126409

126410

126411

126412

126413

126414

126415

Subprofiling Considerations (Informative) Subprofiling Option Groups

POSIX_SINGLE_PROCESS: Single Process
confstr(), environ, errno, getenv(), setenv(), sysconf(), uname(), unsetenv()

POSIX_SPIN_LOCKS: Spin Locks
pthread_spin_destroy(), pthread_spin_init(), pthread_spin_lock(), pthread_spin_trylock(),
pthread_spin_unlock()

POSIX_SYMBOLIC_LINKS: Symbolic Links
lchown(),12 lstat(), readlink(), symlink()

POSIX_SYMBOLIC_LINKS_FD: Symbolic Links File Descriptor Routines
readlinkat(), symlinkat()

POSIX_SYSTEM_DATABASE: System Database
getgrgid(), getgrnam(), getpwnam(), getpwuid()

POSIX_SYSTEM_DATABASE_R: Thread-Safe System Database
getgrgid_r(), getgrnam_r(), getpwnam_r(), getpwuid_r()

POSIX_THREADS_BASE: Base Threads
pthread_atfork(), pthread_attr_destroy(), pthread_attr_getdetachstate(),
pthread_attr_getschedparam(), pthread_attr_init(), pthread_attr_setdetachstate(),
pthread_attr_setschedparam(), pthread_cancel(), pthread_cleanup_pop(), pthread_cleanup_push(),
pthread_cond_broadcast(), pthread_cond_destroy(), pthread_cond_init(), pthread_cond_signal(),
pthread_cond_timedwait(), pthread_cond_wait(), pthread_condattr_destroy(),
pthread_condattr_init(), pthread_create(), pthread_detach(), pthread_equal(), pthread_exit(),
pthread_getspecific(), pthread_join(), pthread_key_create(), pthread_key_delete(), pthread_kill(),
pthread_mutex_destroy(), pthread_mutex_init(), pthread_mutex_lock(),
pthread_mutex_timedlock(), pthread_mutex_trylock(), pthread_mutex_unlock(),
pthread_mutexattr_destroy(), pthread_mutexattr_init(), pthread_once(), pthread_self(),
pthread_setcancelstate(), pthread_setcanceltype(), pthread_setspecific(), pthread_sigmask(),
pthread_testcancel()

POSIX_THREADS_EXT: Extended Threads
pthread_attr_getguardsize(), pthread_attr_setguardsize(), pthread_mutexattr_gettype(),
pthread_mutexattr_settype()

POSIX_TIMERS: Timers
clock_getres(), clock_gettime(), clock_settime(), nanosleep(), timer_create(), timer_delete(),
timer_getoverrun(), timer_gettime(), timer_settime()

POSIX_USER_GROUPS: User and Group
getegid(), geteuid(), getgid(), getgroups(), getlogin(), getuid(), setegid(), seteuid(), setgid(),
setuid()

POSIX_USER_GROUPS_R: Thread-Safe User and Group
getlogin_r()

POSIX_WIDE_CHAR_DEVICE_IO: Device Input and Output
fgetwc(), fgetws(), fputwc(), fputws(), fwide(), fwprintf(), fwscanf(), getwc(), getwchar(),
putwc(), putwchar(), ungetwc(), vfwprintf(), vfwscanf(), vwprintf(), vwscanf(), wprintf(),
wscanf()

XSI_C_LANG_SUPPORT: XSI General C Library
_tolower(), _toupper(), a64l(), daylight(), drand48(), erand48(), ffs(), getdate(), hcreate(),
hdestroy(), hsearch(), initstate(), insque(), isascii(), jrand48(), l64a(), lcong48(), lfind(),
lrand48(), lsearch(), memccpy(), mrand48(), nrand48(), random(), remque(), seed48(),

12. The lchown() function also depends on POSIX_FILE_ATTRIBUTES.

Part E: Subprofiling Considerations Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3715

126416

126417

126418

126419

126420

126421

126422

126423

126424

126425

126426

126427

126428

126429

126430

126431

126432

126433

126434

126435

126436

126437

126438

126439

126440

126441

126442

126443

126444

126445

126446

126447

126448

126449

126450

126451

126452

126453

126454

126455

126456

126457

126458

126459

126460

126461

Subprofiling Option Groups Subprofiling Considerations (Informative)

setstate(), signgam, srand48(), srandom(), strptime(), swab(), tdelete(), tfind(), timezone(),
toascii(), tsearch(), twalk()

XSI_DBM: XSI Database Management
dbm_clearerr(), dbm_close(), dbm_delete(), dbm_error(), dbm_fetch(), dbm_firstkey(),
dbm_nextkey(), dbm_open(), dbm_store()

XSI_DEVICE_IO: XSI Device Input and Output
fmtmsg(), readv(), writev()

XSI_DEVICE_SPECIFIC: XSI General Terminal
grantpt(), posix_openpt(), ptsname(), unlockpt()

XSI_FILE_SYSTEM: XSI File System
basename(), dirname(), ftw(), lockf(), mknod(), nftw(), realpath(), seekdir(), sync(), telldir(),
tempnam()

XSI_IPC: XSI Interprocess Communication
ftok(), msgctl(), msgget(), msgrcv(), msgsnd(), semctl(), semget(), semop(), shmat(), shmctl(),
shmdt(), shmget()

XSI_JUMP: XSI Jump Functions
_longjmp(), _setjmp()

XSI_MATH: XSI Maths Library
j0(), j1(), jn(), y0(), y1(), yn()

XSI_MULTI_PROCESS: XSI Multiple Process
getpriority(), getrlimit(), getrusage(), nice(), setpgrp(), setpriority(), setrlimit(), ulimit(),

XSI_SIGNALS: XSI Signal
killpg(), sigaltstack(), sighold(), sigignore(), siginterrupt(), sigpause(), sigrelse(), sigset(),

XSI_SINGLE_PROCESS: XSI Single Process
gethostid(), gettimeofday(), putenv()

XSI_SYSTEM_DATABASE: XSI System Database
endpwent(), getpwent(), setpwent()

XSI_SYSTEM_LOGGING: XSI System Logging
closelog(), openlog(), setlogmask(), syslog()

XSI_THREADS_EXT: XSI Threads Extensions
pthread_attr_getstack(), pthread_attr_setstack(), pthread_getconcurrency(),
pthread_setconcurrency()

XSI_TIMERS: XSI Timers
getitimer(), setitimer()

XSI_USER_GROUPS: XSI User and Group
endgrent(), endutxent(), getgrent(), getutxent(), getutxid(), getutxline(), pututxline(),
setgrent(), setregid(), setreuid(), setutxent()

XSI_WIDE_CHAR: XSI Wide-Character Library
wcswidth(), wcwidth()

3716 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Part E: Subprofiling Considerations

126462

126463

126464

126465

126466

126467

126468

126469

126470

126471

126472

126473

126474

126475

126476

126477

126478

126479

126480

126481

126482

126483

126484

126485

126486

126487

126488

126489

126490

126491

126492

126493

126494

126495

126496

126497

126498

126499

126500

Index

(time) resolution ..85
/ ...197
/dev ...197
/dev/console ...197
/dev/null ...197
/dev/tty ...197, 3430
/etc/passwd ..3445
/tmp ..197
<aio.h> ..220
<alert> ...34
<apostrophe> ...35
<arpa/inet.h> ..222
<assert.h> ...223
<backspace> ...38
<blank> ...44
<carriage-return> ..46
<circumflex> ..48
<complex.h> ..224
<control>-V ..2651
<control>-W ...2651
<cpio.h> ..227
<ctype.h> ..229
<dirent.h> ...231
<dlfcn.h> ..233
<dollar-sign> ..54
<errno.h> ..234
<fcntl.h> ...238
<fenv.h> ..243
<float.h> ...247
<fmtmsg.h> ..251
<fnmatch.h> ...253
<form-feed> ...63
<ftw.h> ..254
<glob.h> ..256
<grp.h> ...258
<iconv.h> ..260
<inttypes.h> ...261
<iso646.h> ..263
<langinfo.h> ...264
<libgen.h> ..267
<limits.h> ...268
<locale.h> ...283
<math.h> ..286
<monetary.h> ...293
<mqueue.h> ...294
<ndbm.h> ...296
<net/if.h> ...298

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3717

Index

<netdb.h> ...299
<netinet/in.h> ...303
<netinet/tcp.h> ...307
<newline> ...71
<nl_types.h> ..308
<number-sign> ..72
<period> ...76
<poll.h> ..309
<pthread.h> ..311, 3575
<pwd.h> ...317
<regex.h> ..319
<sched.h> ...321
<search.h> ..323
<semaphore.h> ..325
<setjmp.h> ..327
<signal.h> ...328
<slash> ..89
<space> ...90
<spawn.h> ..337
<stdarg.h> ..339
<stdbool.h> ..341
<stddef.h> ..342
<stdint.h> ...344
<stdio.h> ...351
<stdlib.h> ...355
<string.h> ...359
<strings.h> ...361
<stropts.h> ...362
<sys/dir.h> ..231
<sys/ipc.h> ..367
<sys/mman.h> ..369
<sys/msg.h> ..372
<sys/resource.h> ..374
<sys/select.h> ..376
<sys/sem.h> ..378
<sys/shm.h> ..380
<sys/socket.h> ..382
<sys/stat.h> ...388
<sys/statvfs.h> ..393
<sys/time.h> ...395
<sys/times.h> ..397
<sys/types.h> ..398
<sys/uio.h> ..402
<sys/un.h> ...403
<sys/utsname.h> ..404
<sys/wait.h> ..405
<syslog.h> ..407
<tab> ...97
<tar.h> ...409
<termios.h> ..411
<tgmath.h> ...417
<tilde> ...98

3718 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

<time.h> ...421
<trace.h> ...425
<ulimit.h> ...429
<unistd.h> ..430
<utime.h> ...451
<utmpx.h> ..452
<vertical-tab> ...103
<wchar.h> ...454
<wctype.h> ..459
<wordexp.h> ..461
±0 ...105
_asm_builtin_atoi()...3498
_BSD ..3620
_CFLAGS ..2493
_Complex_I ..224
_CS_PATH..437
_CS_POSIX_V6_ILP32_OFF32_CFLAGS ...439
_CS_POSIX_V6_ILP32_OFF32_LDFLAGS ..439
_CS_POSIX_V6_ILP32_OFF32_LIBS ..439
_CS_POSIX_V6_ILP32_OFFBIG_CFLAGS ..439
_CS_POSIX_V6_ILP32_OFFBIG_LDFLAGS ...439
_CS_POSIX_V6_ILP32_OFFBIG_LIBS ...439
_CS_POSIX_V6_LP64_OFF64_CFLAGS ..439
_CS_POSIX_V6_LP64_OFF64_LDFLAGS ...439
_CS_POSIX_V6_LP64_OFF64_LIBS ...439
_CS_POSIX_V6_LPBIG_OFFBIG_CFLAGS ..439
_CS_POSIX_V6_LPBIG_OFFBIG_LDFLAGS ...439
_CS_POSIX_V6_LPBIG_OFFBIG_LIBS ..439
_CS_POSIX_V6_WIDTH_RESTRICTED_ENVS ...439
_CS_POSIX_V7_ILP32_OFF32_CFLAGS ...437
_CS_POSIX_V7_ILP32_OFF32_LDFLAGS ..438
_CS_POSIX_V7_ILP32_OFF32_LIBS ..438
_CS_POSIX_V7_ILP32_OFFBIG_CFLAGS ..438
_CS_POSIX_V7_ILP32_OFFBIG_LDFLAGS ...438
_CS_POSIX_V7_ILP32_OFFBIG_LIBS ...438
_CS_POSIX_V7_LP64_OFF64_CFLAGS ..438
_CS_POSIX_V7_LP64_OFF64_LDFLAGS ...438
_CS_POSIX_V7_LP64_OFF64_LIBS ...438
_CS_POSIX_V7_LPBIG_OFFBIG_CFLAGS ..438
_CS_POSIX_V7_LPBIG_OFFBIG_LDFLAGS ...438
_CS_POSIX_V7_LPBIG_OFFBIG_LIBS ..439
_CS_POSIX_V7_THREADS_CFLAGS ...439
_CS_POSIX_V7_WIDTH_RESTRICTED_ENVS ...439
_CS_V6_ENV ...439
_CS_V7_ENV ...439
_Exit() ...545
_exit()..545, 2187, 3514, 3533
_Exit() ...3690
_exit()..3690
FILE ...598
_Imaginary_I ..224
_IOFBF ..351, 1855, 1896

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3719

Index

_IOLBF ..351, 860, 1896
_IONBF ...351, 1855, 1896
_LDFLAGS ...2493
_LIBS ...2493
LINE ..598
_longjmp() ...550, 3693
_LVL ..472
_MAX ..471
_MIN ...268, 471
_PC constants

defined in <unistd.h> ...440
used in pathconf ..886

_PC_2_SYMLINKS ..886
_PC_ALLOC_SIZE_MIN ...886
_PC_ASYNC_IO ..886
_PC_CHOWN_RESTRICTED ...886
_PC_FILESIZEBITS ...886
_PC_LINK_MAX ...886
_PC_MAX_CANON ...886
_PC_MAX_INPUT ..886
_PC_NAME_MAX ..886
_PC_NO_TRUNC ...886
_PC_PATH_MAX ..886
_PC_PIPE_BUF ..886
_PC_PRIO_IO ..886
_PC_REC_INCR_XFER_SIZE ..886
_PC_REC_MAX_XFER_SIZE ..886
_PC_REC_MIN_XFER_SIZE ...886
_PC_REC_XFER_ALIGN ...886
_PC_SYMLINK_MAX ..886
_PC_SYNC_IO ...886
_PC_TIMESTAMP_RESOLUTION ...886
_PC_VDISABLE ..886
_POSIX ..268
_POSIX maximum values

in <limits.h>...273
_POSIX minimum values

in <limits.h>...274
_POSIX2 constants

in sysconf..2061
_POSIX2_BC_BASE_MAX ...273, 277
_POSIX2_BC_DIM_MAX ...273, 277
_POSIX2_BC_SCALE_MAX ..273, 277
_POSIX2_BC_STRING_MAX ..273, 277
_POSIX2_CHARCLASS_NAME_MAX ...273, 277
_POSIX2_CHAR_TERM ...435, 2063
_POSIX2_COLL_WEIGHTS_MAX ...273, 277
_POSIX2_C_BIND ...435, 2063
_POSIX2_C_DEV ...435, 2063
_POSIX2_EXPR_NEST_MAX ..273, 277
_POSIX2_FORT_DEV ...435, 2063
_POSIX2_FORT_RUN ..435, 2063

3720 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

_POSIX2_LINE_MAX ...273, 277, 280
_POSIX2_LOCALEDEF ..435, 2063
_POSIX2_PBS ...435, 2063
_POSIX2_PBS_ACCOUNTING ..435, 2063
_POSIX2_PBS_CHECKPOINT ..436, 2063
_POSIX2_PBS_LOCATE ...436, 2063
_POSIX2_PBS_MESSAGE ..436, 2063
_POSIX2_PBS_TRACK ...436, 2063
_POSIX2_RE_DUP_MAX ...270, 273, 277
_POSIX2_SW_DEV ...436, 2063
_POSIX2_SYMLINKS ...437
_POSIX2_UPE ..436, 2063
_POSIX2_VERSION ..430, 2063
POSIX ..470
_POSIX_ADVISORY_INFO ...18, 23, 430, 888, 2061, 3699
_POSIX_AIO_LISTIO_MAX ..268, 274
_POSIX_AIO_MAX ...269, 274
_POSIX_ARG_MAX ..269, 274
_POSIX_ASYNCHRONOUS_IO ...17, 430, 2061, 3419, 3699
_POSIX_ASYNC_IO ...437, 886
_POSIX_BARRIERS ..17, 431, 2061, 3419, 3700
_POSIX_CHILD_MAX ...269, 274
_POSIX_CHOWN_RESTRICTED ...17, 431, 659, 886, 889, 3413, 3700
_POSIX_CLOCKRES_MIN ..273
_POSIX_CLOCK_SELECTION ...17, 431, 2061, 3419, 3700
_POSIX_CPUTIME ..18, 23, 431, 2061, 3700
_POSIX_C_SOURCE ...468-469, 3499, 3502
_POSIX_DELAYTIMER_MAX ..269, 274
_POSIX_FSYNC ...18-19, 23, 431, 2061, 3700
_POSIX_HOST_NAME_MAX ...269, 274
_POSIX_IPV6 ...18, 431, 2061, 3700
_POSIX_JOB_CONTROL ...17, 431, 2061, 3413, 3700, 3704
_POSIX_LINK_MAX ..271, 274
_POSIX_LOGIN_NAME_MAX ..269, 274
_POSIX_MAPPED_FILES ..17, 431, 2062, 3419, 3700
_POSIX_MAX_CANON ...271, 274
_POSIX_MAX_INPUT ..272, 274
_POSIX_MEMLOCK ...18, 23, 431, 2062, 3701
_POSIX_MEMLOCK_RANGE ..18, 23, 431, 2062, 3701
_POSIX_MEMORY_PROTECTION ...17, 431, 2062, 3419, 3701
_POSIX_MESSAGE_PASSING ..18, 23, 431, 2062, 3701
_POSIX_MONOTONIC_CLOCK ...18, 23, 431, 2062, 3701
_POSIX_MQ_OPEN_MAX ..269, 274
_POSIX_MQ_PRIO_MAX ..269, 274
_POSIX_NAME_MAX ..272, 275, 1329, 1339, 1516, 1821, 1830, 1903
_POSIX_NGROUPS_MAX ...273, 275
_POSIX_NO_TRUNC ...17, 111, 432, 886, 3413
_POSIX_OPEN_MAX ...269, 275, 1067
_POSIX_PATH_MAX ..272, 275, 403, 1329, 1339, 1821, 1830, 1903
_POSIX_PIPE_BUF ...272, 275
_POSIX_PRIORITIZED_IO ..18, 23, 432, 498, 2062, 3701
_POSIX_PRIORITY_SCHEDULING ...18, 23-24, 432, 498, 2062, 3701

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3721

Index

_POSIX_PRIO_IO ..437, 886
_POSIX_RAW_SOCKETS ..18, 432, 2062
_POSIX_READER_WRITER_LOCKS ..17, 432, 2062, 3419
_POSIX_REALTIME_SIGNALS ..17, 432, 2062, 3419, 3701
_POSIX_REGEXP ..432, 2062, 3701
_POSIX_RE_DUP_MAX ...275
_POSIX_RTSIG_MAX ...270, 275, 3509, 3706
_POSIX_SAVED_IDS ..17, 432, 2062, 3413, 3702
_POSIX_SEMAPHORES ..17, 432, 2062, 3419, 3702
_POSIX_SEM_NSEMS_MAX ..270, 275
_POSIX_SEM_VALUE_MAX ..270, 275
_POSIX_SHARED_MEMORY_OBJECTS ..18, 23, 432, 2062, 3702
_POSIX_SHELL ...432, 2062, 3702
_POSIX_SIGQUEUE_MAX ..270, 275
_POSIX_SOURCE ..469, 3499
_POSIX_SPAWN..18, 23, 432, 2062, 3702
_POSIX_SPINLOCKS ...3702
_POSIX_SPIN_LOCKS ...17, 432, 2062, 3419
_POSIX_SPORADIC_SERVER ...18, 23-24, 433, 2062, 3702
_POSIX_SSIZE_MAX ..275, 279
_POSIX_SS_REPL_MAX ..270, 275, 2062, 3548
_POSIX_STREAM_MAX ..270, 275
_POSIX_SYMLINK_MAX ..272, 276
_POSIX_SYMLOOP_MAX ...270, 276
_POSIX_SYNCHRONIZED_IO ..18, 23, 433, 2062, 3702
_POSIX_SYNC_IO ..437, 886, 3700
_POSIX_THREADS ...17, 434, 2062, 3419, 3702
_POSIX_THREAD_ATTR_STACKADDR ..18-19, 433, 2062, 3702
_POSIX_THREAD_ATTR_STACKSIZE ...18-19, 433, 2062, 3703
_POSIX_THREAD_CPUTIME ...18, 24-25, 433, 2062
_POSIX_THREAD_DESTRUCTOR_ITERATIONS ..270, 276
_POSIX_THREAD_KEYS_MAX ...270, 276
_POSIX_THREAD_PRIORITY_SCHEDULING ...18, 24, 433, 2062, 3703
_POSIX_THREAD_PRIO_INHERIT ..18, 24, 433, 2062, 3703
_POSIX_THREAD_PRIO_PROTECT ...18, 24, 433, 2062, 3703
_POSIX_THREAD_PROCESS_SHARED ...18-19, 433, 1648, 2062, 3703
_POSIX_THREAD_ROBUST_PRIO_INHERIT ..433, 2062
_POSIX_THREAD_ROBUST_PRIO_PROTECT ...433, 2062
_POSIX_THREAD_SAFE_FUNCTIONS ...17, 434, 2062, 3419, 3703
_POSIX_THREAD_SPORADIC_SERVER ..18, 24-25, 434, 2062, 3703
_POSIX_THREAD_THREADS_MAX ..270, 276
_POSIX_TIMEOUTS ...17, 434, 2062, 3419, 3703
_POSIX_TIMERS ...17, 434, 2062, 3419, 3703
_POSIX_TIMER_MAX ..271, 276
_POSIX_TIMESTAMP_RESOLUTION ..437, 886
_POSIX_TRACE ..18, 25, 434, 2062, 3703
_POSIX_TRACE_EVENT_FILTER ..18, 25, 434, 2062, 3704
_POSIX_TRACE_EVENT_NAME_MAX ...271, 276, 1487, 1489, 2062
_POSIX_TRACE_INHERIT ...18, 25, 434, 2062, 3704
_POSIX_TRACE_LOG ..18, 25, 434, 2062, 3704
_POSIX_TRACE_NAME_MAX ..271, 276, 2062
_POSIX_TRACE_SYS_MAX ..271, 276, 1484, 2062

3722 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

_POSIX_TRACE_USER_EVENT_MAX ...271, 276, 1489, 2062
_POSIX_TTY_NAME_MAX ..271, 276
_POSIX_TYPED_MEMORY_OBJECTS ..18, 23, 434, 2062, 3704
_POSIX_TZNAME_MAX ...271, 276, 3470
_POSIX_V6_ILP32_OFF32 ...434, 2063
_POSIX_V6_ILP32_OFFBIG ..434, 2063
_POSIX_V6_LP64_OFF64 ...434, 2063
_POSIX_V6_LPBIG_OFFBIG ...435, 2063
_POSIX_V7_ILP32_OFF32 ...435, 2062
_POSIX_V7_ILP32_OFFBIG ..435, 2062
_POSIX_V7_LP64_OFF64 ...435, 2062
_POSIX_V7_LPBIG_OFFBIG ...435, 2062
_POSIX_VDISABLE ..17, 443, 886, 3206, 3413
_POSIX_VERSION ..17, 430, 2062, 2149
_PROCESS ..472
_PTHREAD_THREADS_MAX ...1617
_SC constants

defined in <unistd.h> ...440
in sysconf..2061

_SC_2_CHAR_TERM ...2063
_SC_2_C_BIND ..2063
_SC_2_C_DEV ...2063
_SC_2_FORT_DEV ..2063
_SC_2_FORT_RUN ...2063
_SC_2_LOCALEDEF ..2063
_SC_2_PBS_ACCOUNTING ...2063
_SC_2_PBS_CHECKPOINT ...2063
_SC_2_PBS_LOCATE ..2063
_SC_2_PBS_MESSAGE ...2063
_SC_2_PBS_TRACK ..2063
_SC_2_SW_DEV ..2063
_SC_2_UPE ...2063
_SC_2_VERSION ...1408, 2063
_SC_ADVISORY_INFO ..2061
_SC_AIO_LISTIO_MAX ...2061
_SC_AIO_MAX ...2061
_SC_AIO_PRIO_DELTA_MAX ...2061
_SC_ARG_MAX ..2061
_SC_ASYNCHRONOUS_IO ...2061
_SC_ATEXIT_MAX ...2061
_SC_BARRIERS ...2061
_SC_BC_BASE_MAX ..2061
_SC_BC_DIM_MAX ..2061
_SC_BC_SCALE_MAX ...2061
_SC_BC_STRING_MAX ...2061
_SC_CHILD_MAX ..2061
_SC_CLK_TCK ..2061, 2118
_SC_CLOCK_SELECTION ..2061
_SC_COLL_WEIGHTS_MAX ...2061
_SC_CPUTIME ..2061
_SC_DELAYTIMER_MAX ...2061
_SC_EXPR_NEST_MAX ...2061

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3723

Index

_SC_FSYNC ...2061
_SC_GETGR_R_SIZE_MAX ..1014, 2061
_SC_GETPW_R_SIZE_MAX ...2061
_SC_IOV_MAX ..2061
_SC_IPV6 ..2061
_SC_JOB_CONTROL ..2061
_SC_LINE_MAX ..2061
_SC_LOGIN_NAME_MAX ...2061
_SC_MEMLOCK ...2062
_SC_MEMLOCK_RANGE ...2062
_SC_MEMORY_PROTECTION ..2062
_SC_MESSAGE_PASSING ...2062
_SC_MONOTONIC_CLOCK ..2062
_SC_MQ_OPEN_MAX ...2061
_SC_MQ_PRIO_MAX ...2061
_SC_NGROUPS_MAX ...2061
_SC_OPEN_MAX ..2061
_SC_PAGESIZE ...1414, 2063, 3532, 3534
_SC_PAGE_SIZE ...2063
_SC_PRIORITIZED_IO ...2062
_SC_PRIORITY_SCHEDULING ...2062
_SC_RAW_SOCKETS ...2062
_SC_READER_WRITER_LOCKS ...2062
_SC_REALTIME_SIGNALS ...2062
_SC_REGEXP ...2062
_SC_RE_DUP_MAX ...2063
_SC_RTSIG_MAX ..2063
_SC_SAVED_IDS ...2062
_SC_SEMAPHORES ...2062
_SC_SEM_NSEMS_MAX ...2063
_SC_SEM_VALUE_MAX ...2063
_SC_SHARED_MEMORY_OBJECTS ...2062
_SC_SHELL ..2062
_SC_SIGQUEUE_MAX ..2063
_SC_SPAWN ..2062
_SC_SPIN_LOCKS ..2062
_SC_SPORADIC_SERVER ...2062
_SC_SS_REPL_MAX ...2062
_SC_STREAM_MAX ...2063
_SC_SYMLOOP_MAX ...2063
_SC_SYNCHRONIZED_IO ...2062
_SC_THREADS ...2062
_SC_THREAD_ATTR_STACKADDR ..2062
_SC_THREAD_ATTR_STACKSIZE ...2062
_SC_THREAD_CPUTIME ...2062
_SC_THREAD_DESTRUCTOR_ITERATIONS ...2063
_SC_THREAD_KEYS_MAX ..2063
_SC_THREAD_PRIORITY_SCHEDULING ..2062
_SC_THREAD_PRIO_INHERIT ...2062
_SC_THREAD_PRIO_PROTECT ..2062
_SC_THREAD_PROCESS_SHARED ...2062
_SC_THREAD_ROBUST_PRIO_INHERIT ...2062

3724 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

_SC_THREAD_ROBUST_PRIO_PROTECT ..2062
_SC_THREAD_SAFE_FUNCTIONS ..2062
_SC_THREAD_SPORADIC_SERVER ..2062
_SC_THREAD_STACK_MIN ..2063
_SC_THREAD_THREADS_MAX ...2063
_SC_TIMEOUTS ..2062
_SC_TIMERS ..2062
_SC_TIMER_MAX ..2063
_SC_TRACE ...2062
_SC_TRACE_EVENT_FILTER ..2062
_SC_TRACE_EVENT_NAME_MAX ...2062
_SC_TRACE_INHERIT ..2062
_SC_TRACE_LOG ..2062
_SC_TRACE_NAME_MAX ...2062
_SC_TRACE_SYS_MAX ...2062
_SC_TRACE_USER_EVENT_MAX ..2062
_SC_TTY_NAME_MAX ...2063
_SC_TYPED_MEMORY_OBJECTS ..2062
_SC_TZNAME_MAX ...2063
_SC_V6_ILP32_OFF32 ..2063
_SC_V6_ILP32_OFFBIG ...2063
_SC_V6_LP64_OFF64 ...2063
_SC_V6_LPBIG_OFFBIG ..2063
_SC_V7_ILP32_OFF32 ..2062
_SC_V7_ILP32_OFFBIG ...2062
_SC_V7_LP64_OFF64 ...2062
_SC_V7_LPBIG_OFFBIG ..2062
_SC_VERSION ...2062
_SC_XOPEN_CRYPT ..2063
_SC_XOPEN_ENH_I18N ...2063
_SC_XOPEN_REALTIME ..2063
_SC_XOPEN_REALTIME_THREADS ...2063
_SC_XOPEN_SHM ...2063
_SC_XOPEN_STREAMS ..2063
_SC_XOPEN_UNIX ..2063
_SC_XOPEN_UUCP ...2063
_SC_XOPEN_VERSION ...2063
_setjmp() ..550, 3693
_t...472
_TIME ..472
_tolower()...552
_toupper() ..553
_XOPEN_CRYPT ...18, 22, 436, 2063
_XOPEN_ENH_I18N ..436, 2063
_XOPEN_IOV_MAX ...269, 277
_XOPEN_NAME_MAX ...272, 277, 1329, 1339, 1516, 1821, 1830, 1903
_XOPEN_PATH_MAX ...272, 277, 1329, 1339, 1516, 1821, 1830, 1903
_XOPEN_REALTIME ..18, 22-23, 436, 815, 2063
_XOPEN_REALTIME_THREADS ..18, 24, 436, 2063
_XOPEN_SHM ..436, 2063
_XOPEN_SOURCE ...469, 3499
_XOPEN_STREAMS ...18, 25, 436, 2063

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3725

Index

_XOPEN_UNIX ..18-19, 436, 2063
_XOPEN_UUCP ..436, 2063
_XOPEN_VERSION ..19, 430, 2063
__errno()...3506
a64l() ...554
ABDAY_ ..265
ABDAY_1 ..1375
ABMON_ ..265
abort() ...556, 3690
abortive release ..33
abs() ..558
absolute pathname ..33, 111
accept() ...559
access mode..33
access() ...561, 3444, 3690
Account_Name ..2383
acos()...564
acosf() ...564
acosh() ..566
acoshf() ...566
acoshl() ...566
acosl() ...564, 568
ACTION ...1094
actions equivalent to functions ...2283
active trace stream ...3619
adb

rationale for omission...3679
additional file access control mechanism ..33
address families ...3592
address information..916
address space ...33
address string...916
addressing ..3592
addrinfo ..300, 916
admin ..2402
ADV ..7
advanced realtime ...23
ADVANCED REALTIME337, 666, 1410, 1412, 1414, 1416, 1418, 1422, 1430, 1433, 1436, 1438

..1440, 1442, 1444, 1446, 1448, 1450, 1513, 1515
advanced realtime threads ...24
ADVANCED REALTIME THREADS...1611
advisory information..34, 3519
affirmative response ...34
AF_ ..472
AF_INET ...384
AF_INET6 ...384
AF_UNIX ..384
AF_UNSPEC ..385, 690
AIO_ ..471
aio_ ..471
AIO_ALLDONE ..220, 569
aio_cancel()...569, 3527-3528

3726 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

AIO_CANCELED ...220, 569
aio_error() ..571
aio_fsync()..573, 3511, 3526
AIO_LISTIO_MAX ..268, 1222, 2061, 3704
AIO_MAX ..269, 1222, 2061, 3704
AIO_NOTCANCELED ...220, 569
AIO_PRIO_DELTA_MAX ..269, 498, 2061, 3704
aio_read() ...575, 3528
aio_return() ..578
aio_suspend() ..580, 3527, 3553
aio_write()..582, 3528
ai_ ..471
AI_ADDRCONFIG ...300, 917
AI_ALL ...300, 917
AI_CANONNAME ...300, 917
AI_INET6 ..917
AI_NUMERICHOST ...300, 917
AI_NUMERICSERV..300, 917
AI_PASSIVE ...300, 917
AI_V4MAPPED ...300, 917
alarm() ..585, 3516, 3552, 3690
alert ..34
alert character ..34
alias ..2296, 2317, 2407, 3647, 3694
alias name...34
alias substitution ...2300, 3650
alignment ..35
alphasort()..587
alternate file access control mechanism...35
alternate signal stack ..35
ALT_DIGITS ..265
AM_STR ...265
anchoring ..187
ancillary data ...35
AND list..2320, 3666
AND-OR list...2319
angle brackets ..35
anycast ..526
ANYMARK ..365, 1130
API ...36
apostrophe character ..35
appending redirected output ..2313
application ..35
application address ...36
application conformance..29
application instrumentation ..3607
application program interface ...36
application-managed thread stack ...516, 3592
appropriate privileges ..36, 563, 887, 3422
ar. ..2410, 3696-3697
arbitrary file size..3645

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3727

Index

archives
ar command ...2410

AREGTYPE ..409
argc ..780
argument ..36
ARG_MAX ...269, 477, 773, 776, 782, 2061, 3386, 3432, 3640, 3704
arithmetic expansion ..2310, 3657
arithmetic language

bc ..2470
arithmetic precision and operations...2283
arm (a timer) ..36
array identifiers ...2475
as

rationale for omission...3679
asa ..2418, 3694, 3696, 3698
ASCII ...3433
asctime() ...590
asctime_r() ...590
asin() ...593
asinf()..593
asinh()...595
asinhf() ...595
asinhl()..595
asinl() ..593, 597
assert() ..598
asterisk ..36
async-cancel safety..3590
async-cancel-safe function ...36
async-signal-safe ...1529, 3514
async-signal-safe function..37
asynchronous error ...3594
asynchronous events ..37
asynchronous I/O...3526, 3691

completion ..37
operation ...37

asynchronous input and output..37
asynchronous lists ...2319, 3666
asynchronously-generated signal ...37
at...2421, 3694
at-job ..2421
atan()...599
atan2()...601
atan2f() ...601
atan2l() ...601
atanf() ...599, 604
atanh() ..605
atanhf() ...605
atanhl() ...605
atanl() ...599, 607
atexit() ..608, 3590
ATEXIT_MAX ..269, 608, 2061
atof() ...610

3728 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

atoi() ..611, 3497-3498
atol()..613
atoll() ..613
attributes

clock-resolution ...535, 1462
creation-time ..535, 1462
generation-version ..535, 1462
inheritance ..535, 1464
log-full-policy ..533, 535, 1464, 1467
log-max-size ...535, 1465, 1467
max-data-size ...535, 1467
stream-full-policy ...532-533, 535, 1465
stream-min-size ...535, 1468
trace-name ..535, 1462
truncation-status ...1487

AT_EACCESS ..239
AT_FDCWD239, 561, 655, 659, 946, 968, 1216, 1289, 1295, 1299, 1382, 1749, 1782, 2057

..3236
AT_REMOVEDIR ..240, 2154
AT_SYMLINK_FOLLOW ..240, 1216
AT_SYMLINK_NOFOLLOW ..239, 655, 659, 946, 969
authentication ..37
authorization ..38
automatic storage class...2479
awk ..2430, 3694, 3696

actions ...2441
arithmetic functions ..2443
escape sequences ...2439
expression patterns ...2441
expressions ...2433
functions ...2443
grammar ...2447
input/output and general functions ..2445
lexical conventions..2453
output statements..2442
overall program structure ..2432
pattern ranges ..2441
patterns ...2440
regular expressions ...2439
special patterns ..2440
string functions..2444
user-defined functions..2446
variables and special variables..2437

background ..1874, 3428-3430, 3481-3482
background job..38
background process ..38, 2094
background process group ..38
background work

at ..2421
batch ..2467
bg ...2485
crontab ..2555

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3729

Index

fg ..2727
jobs ...2811
nice ..2965
nohup ..2978
renice ...3131

backquote ...38
BACKREF ...191
backslash ..38, 3648
backspace character ..38
bandinfo ..362
banner

rationale for omission...3680
barrier ..39, 3568
basename ..39, 2464, 3693, 3695
basename()...614
basic regular expression ...39, 183, 3472
batch ..2467, 3694

general concepts ..3676
batch access list..39
batch administration...2378
batch administrator...39
batch authorization ...2378
batch client ...39
batch client-server interaction ...2375
batch destination ...40
batch destination identifier..40
batch directive ..40
batch environment ..3673

option definitions ..3674
services ..2375
utilities ..2375
utilities, common behavior ..3679

batch job..40
batch job abort ...2378, 2389
batch job attribute ...40
batch job creation ..2376
batch job execution..2377, 2381
batch job exit ..2378, 2388
batch job identifier ..40, 2397
batch job message request ..2391
batch job name...41
batch job owner ...41
batch job priority ...41
batch job routing ..2377, 2388
batch job state ..41
batch job states...2380
batch job status request ..2392
batch job tracking ..2376
batch name service..41
batch name space ..41
batch node ..42
batch notification...2379

3730 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

batch operator..42
batch queue ..42, 2376
batch queue attribute..42
batch queue position...42
batch queue priority ...42
batch queue status request ...2394
batch rerunability ..43
batch restart ..43
batch server ..43
batch server name ...43
batch server restart ..2389
batch service...43
batch service request ...43
batch services ...2379, 3678
batch submission...43
batch system...44

historical implementations ..3673
history ...3673

batch target user ..44
batch user ...44
baud rate functions ...648
bc...2470, 3693-3694, 3699

grammar ...2471
lexical conventions..2473
operations ...2475
operators ...2475

bcc (mailer blind carbon copy)..2905
bcmp() ..3622
bcopy() ...3622
BC_ constants

in sysconf..2061
BC_BASE_MAX ...273, 2061, 2286, 3640
BC_DIM_MAX ...273, 2061, 2286, 3640
BC_SCALE_MAX ..273, 2061, 2286, 3640
BC_STRING_MAX ..273, 2061, 2286, 2473
BE ...7
bg ...2296, 2317, 2485, 3647, 3694
binary primaries ..3225
bind ...44
bind() ..616
bi_ ..471
blank character ..44
blank line ..44
blkcnt_t ...398
blksize_t ..398
BLKTYPE ..409
block special file ..45
block-mode terminal...45
blocked process (or thread) ..44
blocking ..44
BOOT_TIME ...452, 760-761
bounded response ...3692

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3731

Index

braces ..45
bracket expression

grammar ...3477
brackets ...45
BRE

expression anchoring..3475
grammar lexical conventions ..3477
matching a collating element...3472
matching a single character ...3472
matching multiple characters ..3474
ordinary character...3472
periods ..3472
precedence ..3475
special character ..3472

BRE (ERE) matching a single character ...182
BRE (ERE) matching multiple characters ..182
break ..2335
BRKINT ..412
broadcast ..45
BSD ..3425, 3480, 3507
BSDLY ...413
bsd_signal() ...3622
bsearch()...619
BSn ...413
btowc() ...622
buffer cache ..954
BUFSIZ ..351, 1855
built-in ..46
built-in utilities ..46, 2296, 3646
builtin ..2542
BUS_ ..471
BUS_ADRALN ..333
BUS_ADRERR ...333
BUS_OBJERR ...333
byte ..46
byte input/output functions ...46
byte-oriented stream ...493
byte-stream mode..1738
bzero() ..3623
C Shell ..3427-3429
C-language extensions..3687, 3693
c99 ..2488, 3696

external symbols..2492
standard libraries ..2491

cabs()...623
cabsf() ...623
cabsl() ...623
cacos()...624
cacosf() ...624
cacosh() ..625
cacoshf() ...625
cacoshl() ...625

3732 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

cacosl()..624, 626
cal ...2499
calendar

rationale for omission...3680
calloc() ..627
can ...5
cancel

rationale for omission...3680
cancel-safe ..1695
cancelability state ..511, 1618, 1695
cancelability type...1618, 1695
canceling execution of a thread ...1572
cancellation cleanup handler ...1577, 1589, 1607, 1621, 3588-3589
cancellation cleanup stack ...3588
cancellation points ..512
canonical mode input processing ...202, 3482
canonical name ..917
carg()...629
cargf() ...629
cargl()..629
carriage-control characters...2418
carriage-return character..46
case ..3667
case conditional construct ..2322
case folding ...3445-3446
casin() ...630
casinf() ..630
casinh() ...631
casinhf()..631
casinhl()..631
casinl() ..630, 632
cat ..2501, 3646
catan()...633
catanf()..633
catanh()...634
catanhf() ...634
catanhl() ...634
catanl()..633, 635
catclose() ..636, 3695
catgets() ..637, 3695
catopen() ..639, 3695
CBAUD ...473
cbrt() ...641
cbrtf() ..641
cbrtl() ..641
cc (mailer carbon copy) ..2905
ccos()...642
ccosf() ...642
ccosh() ..643
ccoshf() ...643
ccoshl() ...643
ccosl()..642, 644

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3733

Index

CD ..7
cd ...2296, 2317, 2505, 3647, 3695
ceil() ..645
ceilf() ...645
ceill() ...645
CEO ...3473
cexp() ..647
cexpf()...647
cexpl() ...647
cfgetispeed() ..648
cfgetospeed() ...650
cflow ..2510
cfsetispeed()...651
cfsetospeed()..652
change current working directory ..654, 2283
change file modes..657
change history..3414, 3493, 3637
change owner and group of file ..661
char ..541, 3622
character ...47, 3423

rationale ..3423
character array...47
character class ..47
character counting...3368
character encoding..128, 3454

state-dependent ...132
character set ...47, 3453

description file ...3454
portable filename...3433

character special file..47
character string ..47
CHARCLASS_NAME_MAX ...273, 3459
charmap

description ..129
with localedef...2850
writing names with locale..2844

charmap file ...2848, 3206
CHAR_BIT ...278
CHAR_MAX ..278, 1233, 1235, 3461
CHAR_MIN ...278
chdir() ...653
Checkpoint ...2383
chgrp ..2513, 3645, 3695-3696
child process ...48, 3423
CHILD_MAX ...269, 883, 2061, 3413, 3621, 3640, 3666, 3704
chmod ..2516, 3645, 3695-3696

grammar ...2519
chmod() ..655, 3690
chown ..2523, 3645, 3695-3696
chown() ..659, 3690
chroot

rationale for omission...3680

3734 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

chroot() ...3434
CHRTYPE ...409
cimag()..663
cimagf() ..663
cimagl() ..663
circumflex ...48
cksum ..2527, 3646, 3695
CLD_ ...471
CLD_CONTINUED ..333
CLD_DUMPED ...333
CLD_EXITED ...333
CLD_KILLED ...333
CLD_STOPPED ...333
CLD_TRAPPED ...333
clearerr()...664
CLOCAL ...414
clock ..48, 3548
clock jump ..48
clock tick ...48, 585, 2064, 2118, 3423

per second ..2061
rationale ..3423

clock() ...665
clock-resolution attribute ...535, 1462
clockid_t ..398
CLOCKRES_MIN ..3704
clocks ...3548
CLOCKS_PER_SEC ..398, 421, 665
CLOCK_ ...472
clock_ ..472
clock_getcpuclockid() ...666, 3555-3556
clock_getres()...667
clock_gettime()..667
CLOCK_MONOTONIC ...422, 506, 672
clock_nanosleep() ...671, 3553
CLOCK_PROCESS_CPUTIME_ID ..422, 506, 3555-3556
CLOCK_REALTIME ..273, 422, 506, 667, 672, 1360, 1643, 2110, 3548-3553
clock_settime() ..667, 674
clock_t ...398
CLOCK_THREAD_CPUTIME_ID ..422, 507, 3555-3556
clog() ...675
clogf()..675
clogl()..675
close a file ...678
close()..676, 3533, 3690
closedir() ..680, 3691
closelog() ..682, 3696
cmp ..2532, 3646, 3694
cmsg_ ..472
CMSG_ ..473
CMSG_DATA ...383
CMSG_FIRSTHDR ..383
CMSG_NXTHDR ..383

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3735

Index

coded character set..48
codes ..3417
codeset ..49
CODESET ...265
codeset conversion..2794

tr ...3245
col

rationale for omission...3680
collating element ...49
collating element order ...3473
collation ..49
collation sequence ...49
COLL_ELEM_MULTI ...191
COLL_ELEM_SINGLE ...191
COLL_WEIGHTS_MAX ..273, 2061, 2286, 3640
colon ..2337
column position...50, 3424
COLUMNS ...177, 3469
comm ...2535, 3694
command ..50, 2296, 2317, 2538, 3423, 3647, 3693
command execution..3664
command interpreter

portable ...2187
command language...3687, 3693
command language interpreter ...50
command mode...2618
command search ..2317, 3664
command substitution..2309, 3656
communications commands

mailx ..2882
talk ...3216
uucp ...3287
uudecode ..3291
uuencode ..3294
uustat ..3299
uux ...3302
write ..3378

compare thread IDs...1606
compilation environment ...468, 3498
compilers

c99 ..2488
fort77 ...2751
yacc ..3388

complex ...224
complex data manipulation...3688, 3694
composite graphic symbol ...50
compound commands..2321, 3667
compound-list ..2319
compress ...2544
compression

compress ...2544
uncompress ..3272

3736 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

zcat ..3405
concepts ..3416
concurrent execution ..107, 3443

of processes ..2279
condition variable ...50
conditional construct

case ..3667
if ...3668

configurable limits ..3699, 3704
configuration interrogation ...3686, 3689
configuration options ...3697

shell and utilities ...3697
system interfaces ...3699

configuration values ...2772
conformance ..15, 29, 3414, 3417-3418, 3421-3422, 3446, 3620

POSIX ..15
POSIX system interfaces...17
XSI ...15
XSI system interfaces ..19

conformance document..16, 3414
rationale ..3414

conforming application ..16, 1964, 2415, 3421, 3508, 3643, 3645
conforming application, strictly..585, 780, 3418, 3421, 3514
conforming implementation options ...20
confstr() ..686, 3691
conj() ...689
conjf()..689
conjl() ..689
connect()...690
connected socket..51
connection ..51
connection indication queue..3594
connection mode ...51
connectionless mode...51
consequences of shell errors ..2315
continue ..2339
control character..51, 3203
control data ..494
control mode ..3484
control operator ...51
control-normal ...1738
controlling process ..51
controlling terminal ..52, 200, 2279, 3424, 3481, 3690
CONTTYPE ..409
conversion descriptor ...52, 773, 779, 1100-1101, 1103-1104
conversion specification ...893, 929, 973, 983, 2002

modified ...2010
conversion specifier

modified ...2028
Coordinated Universal Time (UTC) ...2580
copy ...154

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3737

Index

copy files commands
cp ...2547
dd ...2582
ln ..2839
mv ..2955
pax ...3006

copysign() ..693
copysignf() ...693
copysignl() ...693
core ..2187, 3445
core file ..52, 547
cos()...694
cosf() ...694
cosh() ..696
coshf() ...696
coshl() ...696
cosl() ...694, 698
covert channel..1200, 3446
cp ...2547, 3646, 3695
cpio

rationale for omission...3680
cpio format ...3027
cpow()...699
cpowf() ...699
cpowl() ...699
cpp

rationale for omission...3680
cproj() ...700
cprojf() ..700
cprojl() ..700
CPT ..7
CPU ...397
CPU time ..52, 3234

clock ..52
timer ..52

CRDLY ..412
CREAD ...414
creal() ..701
crealf()...701
creall()...701
creat()..702, 3533, 3646
create a per-process timer...2111
create an interprocess channel...1401
create session and set process group ID ..1887
creation-time attribute ..535, 1462
CRn ..412
CRNCYSTR ..265
cron daemon ..2558
crontab ..2555, 3694
CRYPT ...704, 745, 1867
crypt() ...704
csin() ...706

3738 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

csinf() ..706
csinh() ...707
csinhf()..707
csinhl()..707
csinl() ..706, 708
CSIZE ..414, 3484
CSn ..414
csplit ..2559, 3694
csqrt()..709
csqrtf() ..709
csqrtl() ..709
CSTOPB ..414
CS_POSIX_V7_THREADS_LDFLAGS ..439
ctags ...2563, 3696
ctan()...710
ctanf()..710
ctanh()...711
ctanhf() ...711
ctanhl()..711
ctanl()..710, 712
ctermid()...713
ctime()...715, 3693
ctime_r() ...715
cu

rationale for omission...3680
currency_symbol ...154
current job ..52
current working directory ..53, 104, 2279
cursor position...53
cut ..2568, 3694
CX ..7
cxref ...2572
c_...472
C_ constants in <cpio.h>..227
C_IRGRP ...227
C_IROTH ..227
C_IRUSR ...227
C_ISBLK ..227
C_ISCHR ..227
C_ISCTG ...227
C_ISDIR ..227
C_ISFIFO ..227
C_ISGID ..227
C_ISLNK ...227
C_ISREG ...227
C_ISSOCK ..227
C_ISUID ..227
C_ISVTX ...227
C_IWGRP ...227
C_IWOTH ..227
C_IWUSR ..227
C_IXGRP ...227

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3739

Index

C_IXOTH ..227
C_IXUSR ...227
data access ..3686, 3690
data key creation ...1622
data keywords ...3056
data messages ..494
data segment..53
data structure

dirent ...231
entry ..323
group ...258
lconv ..283
msqid_ds ..372
stat ...388

data type ...540, 3620
ACTION ...323
cc_t ...411
DIR ..231
div_t ..355
ENTRY ..323
FILE ...351
fpos_t ...351
glob_t ..256
ldiv_t ...355
lldiv_t ..355
mbstate_t ..454
msglen_t ...372
msgqnum_t ..372
nl_catd ...308
nl_item ..308
pid_t ..328
ptrdiff_t ...342
regex_t ...319
regmatch_t ..319
regoff_t ..319
shmatt_t ..380
sigset_t ..328
sig_atomic_t ...328
size_t ...342
speed_t ..411
tcflag_t ...411
VISIT ...323
wchar_t ...342
wctrans_t ..459
wctype_t ...454
wint_t ..454

data types
defined in <fenv.h> ...243
defined in <sys/types.h>...398

date ..2575, 3695
conversion specifications ...2575
modified conversion specifications ..2576

3740 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

DATEMSK ..177, 1000
datum ..296
daylight ...717, 2143
DAY_ ...265
DBL_ constants

defined in <float.h>...248
DBL_DIG ..249
DBL_EPSILON ..250
DBL_MANT_DIG ...248, 645, 861
DBL_MAX ..250
DBL_MAX_10_EXP ...249
DBL_MAX_EXP ...249, 645, 861
DBL_MIN ...250
DBL_MIN_10_EXP ..249
DBL_MIN_EXP ..249
DBM ...296, 718-719
DBM_ ..471
dbm_ ...471
dbm_clearerr()...718
dbm_close() ...718
dbm_delete() ...718
dbm_error() ...718
dbm_fetch() ...718
dbm_firstkey()...718
DBM_INSERT ..296, 719
dbm_nextkey() ..718
dbm_open() ...718
DBM_REPLACE ..296, 719
dbm_store() ...718
dc

rationale for omission...3680
dd ...2582, 3646, 3694-3695
DEAD_PROCESS ...452, 760-761
DECIMAL_DIG ...248
default queue ...2393
DEFECHO ..473
deferred batch service...53, 2381
deferred cancelability ...1618
defined types..540, 3620
definitions ...3416
delay process execution..1963
DELAYTIMER_MAX ..269, 2061, 2115, 3704
delete batch job request ..2390
delta ...2591
dependency ordering ..733
descriptive name ...916
destination ..2398
destroying a mutex ...1629
destructor functions..1621
detaching a thread ...1604
determinism ...3686
device ..53

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3741

Index

output ..198
device ID...53
device number ...3425
device, logical ..3431
DEV_BSIZE ..391
dev_t ..398
df. ..2595, 3646, 3695-3696
diff ..2599, 3694-3695

binary output format ..2601
default output format ...2601
directory comparison format...2600
−c or −C output format...2602
−e output format..2602
−f output format ..2602
−u or −U output format ..2603

difftime() ..722
DIR ..231, 540, 680, 1744, 1746, 1787, 1809, 2101
dircmp

rationale for omission...3680
direct I/O..3425
directive ..893, 929, 973, 983
directory ...53, 3425

device ..3478
entry ..53, 3425
files ..3478
link ...53
list ..2864
operations ...825
protection ..107, 3444
root ..3434
stream ..54
structure..3478

directory commands
cd ...2505
pwd ...3067

dirent ...231, 825
dirfd() ...723
dirname ...2608, 3693, 3695
dirname() ...725
DIRTYPE ...409
dis

rationale for omission...3680
disarm (a timer) ...54
disk space commands

df ..2595
du ...2611
ulimit ...3261

display ..54, 3425
display line...54
div() ..727
dlclose() ..728
dlerror() ..730

3742 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

dlopen()..732
dlsym() ...735
documentation ...16, 2930
dollar-sign ..54
domain error ..116
dot ..54, 825, 1784, 2341, 3425
dot-dot ..55, 825, 1784, 3425, 3433, 3449
double-quote ..55, 2298, 3648
downshifting ..55
dprintf()..737, 893
drand48() ...738
driver ...55
du ..2611, 3646, 3695-3696
dup() ...741, 3533, 3690
dup2() ...741, 3533, 3690
duplicating an input file descriptor..2314
duplicating an output file descriptor ...2314
duplocale()...743
DUP_COUNT ..191
dynamic package initialization ...1669
d_ ...471
D_FMT ..265
D_T_FMT ..265
E2BIG ..234, 477
EACCES ..234, 478
EADDRINUSE ...234, 478
EADDRNOTAVAIL ...234, 478
EAFNOSUPPORT ...234, 478
EAGAIN ...234, 478, 483
EAI_AGAIN ...301, 990
EAI_BADFLAGS ...301, 990
EAI_FAIL ..301, 990
EAI_FAMILY..301, 990
EAI_MEMORY ..301, 990
EAI_NONAME ..301, 990
EAI_OVERFLOW ..301, 990
EAI_SERVICE ..301, 990
EAI_SOCKTYPE ..301, 990
EAI_SYSTEM ...301, 990
EALREADY ..234, 478
EBADF ..234, 478
EBADMSG ..234, 478
EBUSY ...234, 478, 3506, 3576
ECANCELED ...234, 478, 3504
ECHILD ..234, 478
ECHO ..414
echo ...2615, 3693
ECHOCTL ..473
ECHOE ...414, 3484
ECHOK ...414, 3484
ECHOKE ..473
ECHONL ..414, 3484

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3743

Index

ECHOPRT ..473
ECONNABORTED ...234, 478
ECONNREFUSED ..234, 479
ECONNRESET ..234, 479
ecvt() ...3623
ed ..2618, 3694-3695

addresses ..2620
append command ...2622
change command ..2623
commands ..2621
copy command ..2628
delete command ..2623
edit command..2623
edit without checking command ..2623
filename command..2624
global command..2624
global non-matched command ...2628
help command...2625
help-mode command..2625
insert command...2625
interactive global command ..2624
interactive global not-matched command...2628
join command ..2625
line number command ...2629
list command ...2625
mark command ...2625
move command...2626
null command..2629
number command...2626
print command ..2626
prompt command ...2626
quit command..2626
quit without checking command..2626
read command...2627
regular expressions ...2620
shell escape command..2629
substitute command ...2627
undo command ...2628
write command ...2628

EDEADLK ..234, 479
EDESTADDRREQ ...234, 479
edit buffer ...2638, 3309
edit line ...3167
editors

ed ...2618
ex ..2638
sed ..3153
vi ..3309

EDOM ...234, 479, 3506
EDQUOT ..234, 479
ED_FILE_MAX ..2630
ED_LINE_MAX ...2631

3744 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

EEXIST ..234, 479
EFAULT ..235, 479, 3504
EFBIG ..235, 479
effective group ID..55, 661, 781, 1021, 2279
effective user ID...55, 563, 781, 1200, 2279, 3444
EFTYPE ...3504
EHOSTUNREACH ...235, 479
EIDRM ..235, 479
eight-bit transparency ...55
Eighth Edition UNIX ..2268, 2542
EILSEQ ..235, 479, 494, 3506
EINPROGRESS ..235, 479, 499, 3527
EINTR ..235, 480, 514, 3504, 3507, 3516-3517
EINVAL ..235, 480, 3504
EIO ...235, 480
EISCONN ...235, 480
EISDIR ...235, 480
ELOOP ..235, 480, 3504
ELSIZE ..1263
emacs

rationale for omission...3680
EMFILE ...235, 480
EMLINK ...235, 480
EMPTY ..452, 761
empty directory ...56
empty line...56
empty string (or null string) ..56
empty wide-character string ...56
EMSGSIZE ..235, 480
EMULTIHOP ...235, 480
ENAMETOOLONG ..235, 480, 3505
encoding

character ...128
encoding rule ...56
encrypt()...745
encryption ..22
endgrent() ..747, 3442
endhostent()...749
endnetent() ..751
endprotoent() ..753
endpwent() ..755, 3442
endservent()...758
endutxent() ..760
ENETDOWN ...235, 480
ENETRESET ...235, 481
ENETUNREACH ..235, 481
ENFILE ...235, 481
ENOBUFS ...235, 481
ENODATA ...235, 481
ENODEV ..235, 481
ENOENT ..235, 481
ENOEXEC ..235, 481

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3745

Index

ENOLCK ..235, 481
ENOLINK ...235, 481
ENOMEM ...235, 481, 3505
ENOMSG ..235, 481
ENOPROTOOPT ...235, 481
ENOSPC ...235, 481
ENOSR ..235, 481
ENOSTR ...236, 482
ENOSYS ..236, 482, 3505, 3530
ENOTCONN ..236, 482
ENOTDIR ...236, 482
ENOTEMPTY ..236, 482
ENOTRECOVERABLE ...236, 482
ENOTSOCK ...236, 482
ENOTSUP ...236, 482, 3505
ENOTTY ..236, 482, 3478, 3504-3505
entire regular expression ..56, 181
ENTRY ..1094
env ...2634, 3693, 3696
environ ..763, 781
environment access ...3686, 3691
environment variable..3467

definition ..3467
internationalization ...174

envp ...781
ENXIO ...236, 482
EOF ..352
EOPNOTSUPP ...236, 482
EOVERFLOW ..236, 482, 3505
EOWNERDEAD ..236, 482
EPERM ..236, 482, 2552, 3585
EPIPE ...236, 482, 3506
Epoch ..57, 3426, 3450, 3549
EPROTO ...236, 483
EPROTONOSUPPORT...236, 483
EPROTOTYPE ...236, 483
equivalence class ...57
era ..57
ERA ...265
erand48() ..738, 764
ERANGE ...236, 483, 3506
ERASE ...3482
ERA_D_FMT ..265
ERA_D_T_FMT ...265
ERA_T_FMT ..265
ERE ..3475

alternation ..3476
bracket expression ...3476
expression anchoring..3476
grammar ...3477
grammar lexical conventions ..3477
matching a collating element...3476

3746 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

matching a single character ...3476
matching multiple characters ..3476
ordinary character...3476
periods ..3476
precedence ..3476
special character ..3476

erf() ...765
erfc()..767
erfcf() ..767
erfcl() ..767
erff() ..765, 769
erfl() ..765, 769
EROFS ...236, 483, 3506
errno ..770, 3503

per-thread ...3506
error conditions ...3452, 3662

mathematical functions ..116
error descriptions ..990
error handling..3671
error numbers ..477, 3503, 3507

additional ...484
Error_Path ..2384
escape character...3648
escape character (backslash)..2298
escape sequences

awk ..2439
gencat ..2761
lex ..2830

ESPIPE ..236, 483
ESRCH ..236, 483
EST5EDT ...2143
establish cancellation handlers..1577
establish the locale ..2283
ESTALE ...236, 483
ETIME ...236, 483
ETIMEDOUT ...236, 483
ETXTBSY ..236, 483
eval ..2343
event management..57
EWOULDBLOCK ..236, 483
ex...2638, 3694-3695

<backslash> ..2651
<control>-D command ...2674
<newline> ...2651
abbreviate command ..2654
addressing ..2644
adjust window command ..2672
append command ...2654
args command ...2655
autoindent option..2676
autoprint option ..2677
autowrite option..2677

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3747

Index

beautify option ..2677
change command ..2655
chdir command ...2655
command descriptions ...2651
copy command ..2655
delete command ..2656
directory option...2678
edcompatible option ...2678
edit command..2656
edit options ..2676
errorbells option ..2678
escape command ...2673
execute command ...2675
exrc command ..2678
file command ...2657
global command..2657
ignorecase option ..2678
initialization ...2642
input editing ..2649
insert command...2658
join command ..2658
list command ...2659, 2678
magic command ..2679
map command...2659
mark command ...2661
mesg command ...2679
move command...2662
next command ...2662
number command...2663
number option ...2679
open command..2663
paragraphs option...2679
preserve command..2638, 2663
print command ..2663
prompt command ...2679
put command...2664
quit command..2664
read command...2664
readonly command ...2680
recover command..2665
redraw command..2680
regular expressions ...2675
remap command ...2680
replacement strings...2676
report command..2680
rewind command ..2665
scroll command ...2650, 2681
sections command...2681
set command..2666
shell command...2666
shell option...2681
shift left command ..2674

3748 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

shift right command ...2674
shiftwidth option...2681
showmatch option...2681
showmode command ...2681
slowopen command..2682
source command ...2666
substitute command ...2666
suspend command..2668
tabstop option..2682
tag command ...2668
taglength option ..2682
tags command..2682
term command ..2682
terse command ..2682
unabbrev command..2669
undo command ...2669
unmap command ..2669
version command..2670
visual command ..2670
warn command..2683
window command..2683
wrapmargin option...2683
wrapscan option..2684
write command ...2670
write line number command...2675
writeany option ...2684
xit command ..2671
yank command ..2672

examine and change blocked signals ...1703
examine and change signal action ..1920
EXDEV ..236, 484
exec ..772, 2345, 2979

of shell scripts ..780
exec family563, 678, 812, 858, 884, 1529, 1875, 2186, 2296, 2542, 2963, 3386, 3428

..3531, 3641, 3668, 3690
exec()...3613
execl() ...772
execle() ...772
execlp() ...772
executable file ..57
execute ..58
execute a file...780
execution time..52, 58

measurement ..110, 3447
monitoring ..58, 506, 3554

Execution_Time ...2385
execv() ..772
execve() ..772
execvp() ..772
EXINIT ..2638
exit ...2347
exit status..3662

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3749

Index

and errors ...2315
for commands ..2315

exit()..785, 3514, 3690
EXIT_FAILURE ..355, 545, 785, 3692
EXIT_SUCCESS ...355, 545, 785, 3692
exp() ..786
exp2() ..788
exp2f()...788
exp2l()...788
expand ...58, 2711, 3694
expf()...786
expl()...786
expm1() ..790
expm1f() ...790
expm1l() ...790
export ..2349
expr ..2714, 3693-3694

matching expression ...2716
string operand ...2716

expression argument ..2442
expression list ..2442
EXPR_NEST_MAX ...273, 2061, 2286, 3640
EXTA ...473
EXTB ..473
extended regular expression58, 188, 2430, 2439, 2551, 2741, 2783, 2829, 2957, 3016

..3136, 3383, 3475
extended security controls ...58, 107, 3444
extension

CX ..7
OH ...9
XSI ...12

F-LOCK ...440
fabs() ...792
fabsf()..792
fabsl() ..792
faccessat()...561, 794
false ...2296, 2317, 2719, 3647, 3693
fattach() ..795
fc...2296, 2317, 2721, 3647, 3694
fchdir()..798
fchmod()...799, 3690
fchmodat() ...655, 801
fchown() ...802
fchownat()..659, 804
fclose() ..805, 3690
fcntl() ..807, 3479, 3504, 3533, 3690
fcntl() locks ..3592
fcvt()..3623
FD ..7
fdatasync() ...815
fdetach() ...816
fdim()..818

3750 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

fdimf() ..818
fdiml()...818
fdopen()..820, 3533
fdopendir() ..823
fds_ ..471
FD_ ..471
fd_ ..471
FD_CLOEXEC ..238, 492, 639, 773, 807, 825, 1104, 1379, 1423, 1430, 1898
FD_CLR ..1523
FD_CLR() ...544
FD_ISSET ..544, 1523
fd_set ...376, 395
FD_SET ...544, 1523
FD_SETSIZE ...376
FD_ZERO ...544, 1523
feature test macro ..59, 468, 994, 3499, 3620

_POSIX_C_SOURCE ...468
_XOPEN_SOURCE ...469

feclearexcept() ...827
fegetenv() ...828
fegetexceptflag()..829
fegetround()...830
feholdexcept()..832
fenv_t ..243
feof() ...833
feraiseexcept() ...834
ferror() ..835
fesetenv()..828, 836
fesetexceptflag() ..829, 837
fesetround() ...830, 838
fetestexcept() ...839
feupdateenv() ..841
fexcept_t ..243
fexecve ..843
fexecve() ...772
FE_ ...473
FE_ constants

defined in <fenv.h> ...243
FE_ALL_EXCEPT ..243
FE_DFL_ENV ..244
FE_DIVBYZERO ..243
FE_DOWNWARD ...243
FE_INEXACT ...243
FE_INVALID ..243
FE_OVERFLOW ..243
FE_TONEAREST ...243
FE_TOWARDZERO ..243
FE_UNDERFLOW ..243
FE_UPWARD ...243
FFDLY ...413
fflush() ..844
FFn ...413

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3751

Index

ffs() ..847
fg...2296, 2317, 2727, 3647, 3694
fgetc()..848, 3691
fgetpos() ...850
fgets()..852
fgetwc() ..854
fgetws() ..856
field ..59
field splitting ..2311, 3659
FIFO ...59, 1295-1296, 1385, 2267, 3426, 3433, 3542
FIFO special file ...59, 2940, 3426
FIFOTYPE ...409
file ..59
FILE ...352, 454, 540
file ..2729, 3426

locking ...812
file access permissions..108, 2280, 3444
file accessibility..562
file characteristics

data structure ...391
header ...391

file classes ...3426
file comparisons

cmp ..2532
comm ...2535
diff ...2599
uniq ...3281

file contents ..2282
file control ...812
file conversion

cut ..2568
dd ...2582
expand ...2711
fold ..2747
head ...2791
join ...2815
od ...2982
paste ..2990
patch ..2994
sort ...3183
strings ..3194
tail ..3212
tr ...3245
tsort ..3254
unexpand ..3275
uniq ...3281
uudecode ..3291
uuencode ..3294

file creation ...2280, 3638
file description ...59
file descriptor ...60, 2279, 2312, 3517
file format notation ...3452

3752 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

file group class ...60
file hierarchy ..108, 3444
file hierarchy manipulation ...3688, 3695
file mode ...60
file mode bits..60
file mode creation mask ...2279
FILE object..490
file offset ...60
file other class ..61
file owner class ..61
file permission bits ..61, 563
file permission commands

chgrp ...2513
chmod ...2516
chown ..2523
umask ..3263

file permissions..563, 889, 948, 3444, 3481
file position indicator..490
file read ...2280, 3638
file removal ...2282, 3638
file searching

grep ..2783
file serial number...61
file size, arbitrary...3645
file system...61, 3426
file system, mounted...3431
file system, root ..3434
file time values...2282
file times update ..109, 3446
file tree commands

diff ...2599
find ..2737
ls ...2864
mkdir ...2937
rmdir ...3142

file type ...61
file write..2280, 3638
file, passwd...3433
filename ..60, 109, 3426, 3445
filename portability...109, 3446
FILENAME_MAX ...351
fileno() ..858, 3432
FILESIZEBITS ..271, 886
filter ...62
filtering trace event types...3616
filters

asa ..2418
awk ..2430
compress ...2544
dd ...2582
expand ...2711
fold ..2747

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3753

Index

head ...2791
iconv ..2794
more ..2943
nl ..2969
paste ..2990
pax ...3006
pr ..3044
read ..3128
sed ..3153
tail ..3212
tee ..3220
tr ...3245
uncompress ..3272
unexpand ..3275
zcat ..3405

FIND ..1094
find ...2737, 3694-3695
find string token ..2041
FIPS ...17
FIPS requirements ...3413
first open (of a file) ..62
flockfile() ..859, 3507
floor() ..861
floorf()...861
floorl()...861
flow control ..62
FLT_ constants

defined in <float.h>...248
FLT_DIG ...249
FLT_EPSILON ..250
FLT_EVAL_METHOD ..247
FLT_MANT_DIG ...248
FLT_MAX ...250
FLT_MAX_10_EXP ..249
FLT_MAX_EXP ..249
FLT_MIN ..250
FLT_MIN_10_EXP ...249
FLT_MIN_EXP ...249
FLT_RADIX ..248, 1253
FLT_ROUNDS ...247, 863
FLUSH ..471
FLUSHO ...473
FLUSHR ..364, 1124
FLUSHRW ..364, 1124
FLUSHW ...364, 1124
fma() ...863
fmaf() ..863
fmal() ..863
fmax() ...865
fmaxf() ..865
fmaxl() ..865
fmemopen() ...866

3754 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

fmin() ..869
fminf()...869
fminl()...869
FMNAMESZ ...363-364, 1123
fmod()...870
fmodf() ...870
fmodl()..870
fmtmsg()...872
fnmatch()..875, 3696
FNM_ ..471
FNM_ constants

in <fnmatch.h> ..253
FNM_NOESCAPE ..253, 875
FNM_NOMATCH ...253, 875
FNM_PATHNAME ...253, 875
FNM_PERIOD ...253, 875
fold ..2747, 3694
fopen() ..877, 3427, 3646, 3690
FOPEN_MAX ..270, 351, 820, 867, 879, 2121
for loop..2321, 3667
foreground ...1874, 3428-3430, 3480-3482
foreground job ...62
foreground process ...62

group ...62
group ID ...62

fork() ...881, 3428, 3480, 3522, 3531, 3533, 3613, 3620, 3625, 3690
forkall ..884
form-feed character...63
format of entries ..219, 465
fort77 ...2751, 3696

external symbols..2754
standard libraries ..2753

fpathconf() ...886, 3689, 3691
fpclassify() ...892
FPE_ ..471
FPE_FLTDIV ..333
FPE_FLTINV ..333
FPE_FLTOVF ...333
FPE_FLTRES ..333
FPE_FLTSUB ..333
FPE_FLTUND ..333
FPE_INTDIV ..333
FPE_INTOVF ...333
fprintf()...893
fputc() ...906, 3691
fputs() ...908
fputwc()..910
fputws()..912
FP_ILOGB0 ...1110
FP_ILOGBNAN ...1110
FQDN ..1036
FR ...7

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3755

Index

frac_digits ...155
fread() ...913, 3691
free()..915, 3515, 3589
freeaddrinfo() ..916
freelocale() ...921
freopen()...923
frexp() ...927
frexpf()..927
frexpl() ..927
fsblkcnt_t ..398
FSC ..8
fscanf()..929
fseek() ...937, 3691
fseeko() ...937
fsetpos()..940, 3691
fsfilcnt_t ..398
fstat()...942, 3690
fstatat() ...945
fstatvfs() ...951
fsync() ...954, 3526
ftell() ...956
ftello(0...956
ftime() ...3623
ftok() ...958
ftruncate() ...961, 3532-3533, 3535, 3690
ftrylockfile() ...859, 963
FTW ..254, 471, 1369-1370
ftw() ..964, 3645
FTW_ constants

in <ftw.h> ...254
FTW_CHDIR ..254, 1369
FTW_D ..254, 964, 1369
FTW_DEPTH ...254, 1369
FTW_DNR ..254, 964, 1369-1370
FTW_DP ...254, 1369
FTW_F ...254, 964, 1369
FTW_MOUNT ...254, 1369
FTW_NS ..254, 964, 1369-1370
FTW_PHYS ..254, 1369
FTW_SL ..254, 964, 1369
FTW_SLN ...254, 1370
fully-qualified domain name...1036
function definition command..2324, 3668
function identifiers..2475
functions ...467

implementation ...467, 3497
use ..467, 3497

funlockfile() ...859, 967
fuser ...2757
futimens()...968
fwide() ..972
fwprintf() ...973

3756 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

fwrite()..981, 3691
fwscanf() ..983
f_...472
F_ ...473
F_DUPFD ...238, 807, 809
F_DUPFD_CLOEXEC ...238, 807, 809
F_GETFD ..238, 807, 810
F_GETFL ...238, 807, 810
F_GETLK ..238, 808, 810
F_GETOWN ...238, 807, 810
F_LOCK ..512, 1242
F_OK ...437
F_RDLCK ...238, 810
F_SETFD ...238, 807, 810
F_SETFL ..238, 807, 810
F_SETLK ...238, 808, 810
F_SETLKW ...238, 512, 808, 810
F_SETOWN ..238, 808, 810
F_TEST ..440, 1242
F_TLOCK ..440, 1242
F_ULOCK ...440, 1242
F_UNLCK ...238, 808-809
F_WRLCK ..238
g-file ...2591
gai_strerror()..990
gcvt()...3623
gencat ..2760, 3695

escape sequences ...2761
general terminal interface ..3478
generated file ...2591
generation-version attribute ..535, 1462
get ..2764
get configurable pathname variables ...888
get configurable system variables...2064
get file status ..948
get process times..2118
get supplementary group IDs ...1021
get system time..2108
get thread ID ..1693
get user name...1030
getaddrinfo() ...916, 991
GETALL ..378, 1833
getc() ...992, 3579, 3691
getch()...3691
getchar() ...995
getchar_unlocked()...993, 996
getconf ...2772, 3639, 3689, 3696
getcontext() ..3623
getcwd() ...997
getc_unlocked()...993
getdate() ...1000
getdate_err ...1000

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3757

Index

getdelim()...1005
getegid() ...1007, 3690
getenv() ..781, 1008
geteuid() ...1011, 3690
getgid() ...1012, 3690
getgrent()..747, 1013, 3442
getgrgid() ...1014, 3442, 3580, 3690
getgrgid_r()..1014
getgrnam() ...1018, 3442, 3446, 3580, 3690
getgrnam_r()..1018
getgroups() ..1021, 3435
gethostbyaddr() ..3623
gethostbyname() ...3623
gethostent()..749, 1023
gethostid()..1024
gethostname()..1025
getitimer() ..1026
getline() ..1005, 1028
getlogin()..1029, 3690
getlogin_r() ..1029
getmsg() ...1032
getnameinfo() ..1036
GETNCNT ..378, 1833-1834
getnetbyaddr() ..751, 1039
getnetbyname() ...751, 1039
getnetent()..751, 1039
getopt()..1040, 3487, 3695-3696
getopts ...2296, 2317, 2778, 3647, 3696
getpeername() ...1045
getpgid()...1047
getpgrp() ..1048, 3429
GETPID ...378, 1833-1834
getpid()...1049, 3517, 3690
getpmsg() ...1032, 1050
getppid() ..1051, 3690
getpriority() ...1052, 3543
getprotent() ..1055
getprotobyname() ...753, 1055
getprotobynumber()...753, 1055
getprotoent()..753
getpwent()..755, 1056, 3442
getpwnam() ...1057, 3442, 3446, 3580, 3690
getpwnam_r()..1057
getpwuid() ...1061, 3442, 3580, 3690
getpwuid_r() ...1061
getrlimit() ...1065, 3646
getrusage() ...1068, 3556
gets() ...1070
getservbyname() ...758, 1072
getservbyport() ...758, 1072
getservent()..758, 1072
getsid()..1073

3758 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

getsockname() ...1074
getsockopt() ...1076
getsubopt()...1078
gettimeofday()...1082
getty ...3481
getuid()...1083, 3517, 3621, 3690
getutxent() ...760, 1084
getutxid() ...760, 1084
getutxline() ..760, 1084
GETVAL ..378, 1833-1834
getwc()..1085
getwchar()..1086
getwd() ...3623
GETZCNT ...378, 1833-1834
gid_t ..398, 3442
glob() ..1087, 3696
global storage class ...2479
globfree()..1087, 3696
GLOB_ ..471
GLOB_ constants

defined in <glob.h>...256
error returns of glob..1089
used in glob..1087

GLOB_ABORTED ...256, 1089
GLOB_APPEND ..256, 1087-1088
GLOB_DOOFFS ...256, 1087-1088
GLOB_ERR ...256, 1087, 1089
GLOB_MARK ..256, 1087
GLOB_NOCHECK ..256, 1088-1089
GLOB_NOESCAPE ...256, 1088
GLOB_NOMATCH ...256, 1089
GLOB_NOSORT..256, 1088
GLOB_NOSPACE ...256, 1089
gl_ ..471
GMT0 ..2143
gmtime()...1091, 3451
gmtime_r() ...1091
GNU make ...2925
grammar

conventions ..3642
locale ...165
regular expression ...191

grantpt() ...1093
graphic character...63
grep ..2783, 3694-3695
group database ..63, 3426
group database access ..3443
group file ..3427
group ID ...63
group name ..63
grouping commands...2321, 3667
HALT...873

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3759

Index

hard limit ..63
hard link ...64
hash ...2788
hcreate()..1094
hdestroy()...1094
head ...2791, 3694
headers ..219, 3488
here-document ...2313, 3661
high resolution sleep...1360
historical implementations ..3427
history command

fc ..2721
hold batch job request ...2391
Hold_Types ..2385
HOME ...177, 2655, 3413
home directory ...64
host byte order ...64, 110, 3447
host name ...916
hosted implementation ..3427
hostent ...299
HOST_NAME_MAX ..269
hsearch()...1094
htonl() ...1097
htons() ..1097
HUGE_VAL ..287, 2224
HUGE_VALF ...287
HUGE_VALL ...287
hunk ..2996
HUPCL ...414
hypot()..1098
hypotf() ..1098
hypotl()...1098
h_ ...471
h_errno ..3623
I ..224
ICANON ..414, 3482, 3484
iconv ..2794
iconv()...1100, 3695
iconv_close() ..1103, 3695
iconv_open()..1104, 3695
ICRNL ...412
ic_ ...471
id...2798, 3696
idtype_t ...405
id_t ...398
IEEE Std 754-1985..465
IEEE Std 854-1987..465
IEXTEN ...414
if ...3668
if conditional construct ...2322
ifc_ ...472
ifra_ ..472

3760 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

ifru_ ...472
IF_ ..471
if_ ..471-472
if_freenameindex()..1106
if_indextoname()...1107
if_nameindex ...298
if_nameindex() ..1108
IF_NAMESIZE ...298
if_nametoindex()...1109
IGNBRK ..412
IGNCR ..412
IGNPAR ..412
ILL_ ...471
ILL_BADSTK ...333
ILL_COPROC ..333
ILL_ILLADR ..333
ILL_ILLOPC ...333
ILL_ILLOPN ..333
ILL_ILLTRP ..333
ILL_PRVOPC ...333
ILL_PRVREG ...333
ilogb()..1110
ilogbf() ..1110
ilogbl()...1110
imaginary ...224
imaxabs() ..1112
imaxdiv() ..1113
implementation ...3427

historical ...3427
hosted ..3427
native ...3432
specific ..3427

implementation-defined ...5, 3414-3415
rationale ..3414

IMPLINK_ ..473
in6_ ..471
IN6_ ...473
IN6_IS_ADDR_LINKLOCAL ...305
IN6_IS_ADDR_LOOPBACK ...305
IN6_IS_ADDR_MC_GLOBAL ..305
IN6_IS_ADDR_MC_LINKLOCAL ...305
IN6_IS_ADDR_MC_NODELOCAL ...305
IN6_IS_ADDR_MC_ORGLOCAL ..305
IN6_IS_ADDR_MC_SITELOCAL ...305
IN6_IS_ADDR_MULTICAST ..305
IN6_IS_ADDR_SITELOCAL ...305
IN6_IS_ADDR_UNSPECIFIED ...305
IN6_IS_ADDR_V4COMPAT ..305
IN6_IS_ADDR_V4MAPPED ...305
INADDR_ ...471
INADDR_ANY ..304
INADDR_BROADCAST ..304

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3761

Index

include line...2912
incomplete line ..64
incomplete pathname ...3427
index() ..3623
INET6_ADDRSTRLEN ...305
inet_ ...471
inet_addr() ...1114
INET_ADDRSTRLEN ...304
inet_ntoa() ..1114
inet_ntop()..1116
inet_pton()..1116
Inf ...64, 593
INF ...896, 976
inference rule ...2908
INFINITY ..287, 896, 976
INFO ..873
infu_ ..472
inheritance attribute..535, 1464
init ..548, 1200
initialize a named semaphore..1822
initializing a mutex ...1629
initstate() ..1118
INIT_PROCESS ..452, 760-761
INLCR ...412
ino_t ...398
INPCK ...412
input and output rationale...1740
input file descriptor

duplication ...3661
input mode...2618, 3483
input processing ..3482

canonical mode..3482
non-canonical mode..3482

insque()...1120
instrumented application...64
INT ..473
inter-user communication..3688, 3695
interactive facilities ...3687, 3694
interactive shell..64
interface ..3593

characteristics ...3479
international environment ...1869
internationalization ...65
internationalization variable ...3468
Internet Protocols ..525
interprocess communication ...65, 3518
INTMAX_MAX ...348
INTMAX_MIN ..348
INTN_MAX ..347
INTN_MIN ...347
INTPTR_MAX ...348
INTPTR_MIN ..347

3762 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

int_curr_symbol ..154
INT_FASTN_MAX ..347
INT_FASTN_MIN ...347
int_frac_digits ..155
INT_LEASTN_MAX ...347
INT_LEASTN_MIN ..347
INT_MAX ...278, 1110
INT_MIN ..278, 558
int_n_cs_precedes ...155
int_n_sep_by_space ..156
int_n_sign_posn ..156
int_p_cs_precedes ...155
int_p_sep_by_space ..156
int_p_sign_posn ..156
invalid ...182

use in RE...3472
invariant values ...279
invoke ..65
in_ ..471
IN_ ...473
in_addr ..303
ioctl()...1123, 3479, 3505
iovec ..402
iov_ ..472
IOV_ ..473
IOV_MAX ...269, 402, 1752, 2061, 2271
IP6 ..8
IPC ...367, 496, 1343, 1345, 1348, 1350, 1838, 1843, 1909, 1912, 3518
ipcrm ...2802
ipcs ...2804
IPC_ ...471
ipc_ ..471
IPC_ constants

defined in <sys/ipc.h> ...367
used in semctl ..1833
used in shmctl..1907

IPC_CREAT..367, 1344, 1836, 1911
IPC_EXCL ...367, 1344, 1836
IPC_NOWAIT ...367, 1346-1347, 1349-1350, 1839
IPC_PRIVATE...367, 1344, 1836, 1911
IPC_RMID ..367, 1342, 1834, 1907
IPC_SET ..367, 1342, 1834, 1907
IPC_STAT ...367, 1342, 1833, 1907
IPPORT_ ...473
IPPROTO_ ..471
IPPROTO_ICMP ..304
IPPROTO_IP ..304
IPPROTO_IPV6 ...304
IPPROTO_RAW...304
IPPROTO_TCP ..304
IPPROTO_UDP ...304
IPv4 ..526

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3763

Index

IPv4-compatible address ..527
IPv4-mapped address ...527
IPv6 ..526

compatibility with IPv4..527
interface identification..528
options ..528

IPv6 address
anycast ..526
loopback ...527
multicast ...527
unicast ...526
unspecified ...527

IPV6_ ...471
IPV6_JOIN_GROUP ...305, 528
IPV6_LEAVE_GROUP ..305, 528
ipv6_mreq ...304
IPV6_MULTICAST_HOPS ...305, 528
IPV6_MULTICAST_IF ..305, 528
IPV6_MULTICAST_LOOP ..305, 528
IPV6_UNICAST_HOPS ..305, 528
IPV6_V6ONLY...305, 529
ip_ ..471
IP_ ..473
isalnum() ..1135
isalnum_l() ...1135
isalpha()..1137
isalpha_l()...1137
isascii()..1139
isastream()..1140
isatty()...1141
isblank()..1142
isblank_l()...1142
iscntrl() ...1143
iscntrl_l() ..1143
isdigit() ...1145
isdigit_l() ..1145
isfinite() ..1147
isgraph() ...1148
isgraph_l() ..1148
isgreater() ...1150
isgreaterequal() ...1151
ISIG ..414
isinf()...1152
isless() ...1153
islessequal() ...1154
islessgreater()...1155
islower() ...1156
islower_l() ..1156
isnan() ...1158
isnormal()...1159
ISO/IEC 646: 1991 standard...3433
ISO C standard224, 465, 585, 780, 812, 994, 1265, 1734, 1784, 1869, 1920, 1947, 2108

3764 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

..3421, 3423, 3451, 3479, 3497
isprint()...1160
isprint_l()..1160
ispunct() ...1162
ispunct_l() ..1162
isspace()..1164
isspace_l()...1164
ISTRIP ...412, 3483
isunordered() ...1166
isupper()...1167
isupper_l()..1167
iswalnum()...1169
iswalnum_l()..1169
iswalpha() ..1171
iswalpha_l() ...1171
iswblank() ..1173
iswblank_l() ...1173
iswcntrl() ..1174
iswcntrl_l() ...1174
iswctype()...1176
iswctype_l() ...1176
iswdigit() ..1178
iswdigit_l()...1178
iswgraph()..1180
iswgraph_l()...1180
iswlower() ..1182
iswlower_l() ...1182
iswprint() ...1184
iswprint_l() ..1184
iswpunct() ..1186
iswpunct_l() ...1186
iswspace() ..1188
iswspace_l() ...1188
iswupper() ...1190
iswupper_l() ..1190
iswxdigit()..1192
iswxdigit_l()...1192
isxdigit() ...1194
isxdigit_l() ..1194
itimerspec ...421
itimerval ...395
ITIMER_ ..472
ITIMER_PROF ...395, 1026
ITIMER_REAL ...395, 1026
ITIMER_VIRTUAL ..395, 1026
it_ ...472
IXANY ..412
IXOFF ..412
IXON ...412
I_...471
I_ATMARK ...363, 1130
I_CANPUT ...363, 1130

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3765

Index

I_CKBAND ...363, 1130
I_FDINSERT...363, 1126
I_FIND ..363, 1125
I_FLUSH ...363, 1123
I_FLUSHBAND ...363, 1124
I_GETBAND ...363, 1130
I_GETCLTIME ...363, 1131
I_GETSIG ..363, 1125
I_GRDOPT ..363, 1126, 1738
I_GWROPT ...363, 1128
I_ISVTX ...2518
I_LINK ..363, 1131
I_LIST ..363, 1129
I_LOOK ...363, 1123
I_NREAD ..363, 1126
I_PEEK ..363, 1125
I_PLINK ..363, 1132
I_POP ..363, 1123
I_PUNLINK ..363, 1132
I_PUSH ...363, 1123
I_RECVFD ..363, 478, 1129
I_SENDFD ...363, 1128-1129
I_SETCLTIME ..363, 676, 1130
I_SETSIG ..363, 1124-1125
I_SRDOPT ...363, 1126, 1738
I_STR ...363, 1127
I_SWROPT ..364, 1128, 2265
I_UNLINK ..364, 1131
j0() ...1196
j1()..1196
jn() ...1196
job ..65
job control65, 548, 1048, 1200, 1874, 1887, 2064, 2187, 3427-3430, 3432, 3480-3481

..3508, 3514, 3690
implementing applications ..3430
implementing shells..3428
implementing systems..3430

job control job ID ...65
jobs ...2296, 2317, 2811, 3647, 3694
Job_Owner ..2385
join ...2815, 3694
Join_Path ...2385
jrand48() ...738, 1198
JST-9 ...2143
Keep_Files ..2385
kernel ..3431
kernel entity ...3582
keyword-value pairs...2399
key_t ..398
kill ..2296, 2317, 2820, 3647, 3694
kill() ...1199, 3507-3509, 3512, 3514, 3620
killpg() ..1202

3766 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

l64a() ...554, 1204
labs() ...1205
LANG ..174, 639
last close..1903, 3533
last close (of a file) ...66
LASTMARK ...365, 1130
lchown() ...1206
lcong48()...738, 1209
LC_ALL ..175, 283, 773, 1235, 1375, 1868, 1870
LC_COLLATE175, 273, 283, 1087-1088, 1868, 1870, 1991, 2052, 2202, 2243, 3459

description ..146
LC_CTYPE175, 265, 283, 459, 1176, 1270, 1279, 1281, 1868, 1870, 2126, 2131, 3458

description ..139
LC_MESSAGES ..175, 265, 283, 308, 639, 1868-1870, 1999, 3463

description ..164
LC_MONETARY ...175, 265, 283, 1235, 1868, 1870, 2004, 3461

description ..154
LC_NUMERIC175, 265, 283, 894, 929, 973, 983, 1235, 1868, 1870, 2004, 2036, 2224

..3462, 3487
description ..157

LC_TIME ..175, 265, 283, 1001, 1375, 1868, 1870, 3462
description ..158

ld
rationale for omission...3680

LDBL_ constants
defined in <float.h>...248

LDBL_DIG ..249
LDBL_EPSILON ..250
LDBL_MANT_DIG ...248
LDBL_MAX ..250
LDBL_MAX_10_EXP ..250
LDBL_MAX_EXP ..249
LDBL_MIN ...250
LDBL_MIN_10_EXP ...249
LDBL_MIN_EXP ...249
ldexp() ..1210
ldexpf() ...1210
ldexpl() ...1210
ldiv() ...1212
legacy ..5, 3415

rationale ..3415
lex ..2825, 3696, 3698

actions ...2831
definitions ...2828
escape sequences ...2830
regular expressions ...2829
rules ...2829
table sizes..2828
translation table ...2836
user subroutines ..2829

lfind() ..1213, 1263
lgamma()..1214

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3767

Index

lgammaf() ..1214
lgammal()...1214
libraries

ar command ...2410
library routine ..3431
LIMIT ..2285
limit

numerical ..278
limits ..3639
line ...66

rationale for omission...3680
line counting ..3368
LINES ..177, 3469
LINE_MAX273, 2061, 2286, 2431, 2631, 2639, 2904, 3161, 3284, 3432, 3441, 3640
linger ...66
link ...66, 2837
link count..66
link to a file...1218
link() ...1216, 3425, 3691
linkat() ..1216
LINK_MAX ..271, 480, 886, 1217, 1782, 3640, 3705
lint

rationale for omission...3680
LIO_ ...471
lio_ ...471
lio_listio() ...1221, 3511, 3527
LIO_NOP ..220, 1221
LIO_NOWAIT ..220, 1221
LIO_READ ...220, 1221
LIO_WAIT ..220, 1221
LIO_WRITE ..220, 1221
list directed I/O...1223
listen()...1225
lists ...2319, 3665

AND-OR ...2319
compound-list ..2319

llabs() ..1205, 1227
lldiv() ..1212, 1228
LLONG_MAX ..278, 2044, 2231
LLONG_MIN ...278, 2044, 2231
llrint()..1229
llrintf() ..1229
llrintl() ..1229
llround() ...1231
llroundf()..1231
llroundl() ..1231
ln...2839, 3645, 3695
LNKTYPE ...409
load ordering ...733
LOBLK ..473
local customs..66
local IPC..66

3768 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

local mode ..3484
locale ...67, 135, 2844, 3456, 3695

configuration ..3688, 3695
definition ..136, 3457
definition example ..3464
definition grammar...3464
grammar ...165, 3464
lexical conventions..3464
POSIX ..136

localeconv() ...1233
localedef ..2850, 3695-3696
localization ...67
localtime() ..1238, 3451, 3578
localtime_r() ..1238
locate batch job request ..2392
lockf()..1242
locking ...812

advisory ..813
mandatory ..813

locking and unlocking a mutex...1640
locking file ..2520
log()...1245
log-full-policy attribute ..533, 535, 1464, 1467, 1484
log-max-size attribute...535, 1465, 1467
log10()...1247
log10f() ...1247
log10l()..1247
log1p() ..1249
log1pf() ...1249
log1pl() ...1249
log2()...1251
log2f() ...1251
log2l()..1251
logb() ..1253
logbf() ...1253
logbl() ...1253
logf() ...1245, 1255
logger ..2854, 3696
logical device ...3431
login ...67

rationale for omission...3681
login name..67
login shell ...780
LOGIN_NAME_MAX ..269, 1029, 2061, 3705
LOGIN_PROCESS ...452, 760-761
logl()..1245, 1255
LOGNAME ..178
logname ..2857
LOGNAME ..3413, 3469
logname ..3696
LOG_ ...472
LOG_ constants in syslog...682

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3769

Index

LOG_ALERT..408, 682
LOG_AUTH ...407
LOG_CONS ..407, 683
LOG_CRIT ..408, 682
LOG_CRON ...407
LOG_DAEMON ..407
LOG_DEBUG ...408, 682
LOG_EMERG ...408, 682
LOG_ERR ...408, 682
LOG_INFO ...408, 682
LOG_KERN ..407
LOG_LOCAL ...407, 682
LOG_LPR ...407
LOG_MAIL ..407
LOG_MASK ...407
LOG_NDELAY ..407, 683
LOG_NEWS ...407
LOG_NOTICE ...408, 682
LOG_NOWAIT ..407, 683
LOG_ODELAY ..407, 683
LOG_PID ..407, 683
LOG_USER ...407, 682-683
LOG_UUCP ...407
LOG_WARNING ..408, 682
longjmp() ...1256, 3504, 3515, 3586, 3588, 3693
LONG_BIT ...278
LONG_MAX ..278, 2044, 2231, 3485
LONG_MIN ...278, 2044, 2231, 3485
lorder

rationale for omission...3681
lower multiplexing..92
lp...2859, 3696
lpstat

rationale for omission...3681
LR(1) grammars...3402
lrand48()...738, 1258
lrint()...1259
lrintf() ...1259
lrintl()..1259
lround() ..1261
lroundf() ...1261
lroundl() ...1261
ls ...2864, 3646, 3695
lsearch() ..1263
lseek() ..1265, 3526-3527, 3533, 3577, 3691
lstat()...945, 1267, 3645, 3690
l_. ..471-472
L_ANCHOR ...191
L_ctermid ...351, 713
l_sysid ...813
L_tmpnam ..351
m4 ..2873

3770 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

macro...3416
macro processor ...2873
MAGIC ...227
magic file ..2734
mail

rationale for omission...3681
mailx ..2882, 3694-3695

change current directory ..2893
change folder ...2895
command escapes ...2901
commands ..2892
copy messages ...2893
declare aliases ..2893
declare alternatives ...2893
delete aliases ..2899
delete messages ...2894
delete messages and display ...2894
direct messages to mbox ..2897
discard header fields...2894
display beginning of messages ...2899
display current message number..2901
display header summary ...2896
display list of folders ..2895
display message...2897
display message size...2899
echo a string ...2894
edit message...2894, 2900
execute commands conditionally ...2896
exit ...2895
follow up specified messages ..2895
help ..2896
hold messages..2896
internal variables...2889
invoke a shell ...2899
invoke shell command ...2900
list available commands...2896
mail a message...2897
null command..2901
pipe message..2897
process next specified message ...2897
quit ..2898
read mailx commands from a file ...2899
receive mode ..2882
reply to a message...2898
reply to a message list...2898
retain header fields..2898
save messages ..2898
scroll header display...2900
send mode ..2882
set variables..2899
start-up ..2889
touch messages..2899

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3771

Index

undelete messages...2900
unset variables ...2900
write messages to a file...2900

Mail_Points ..2386
Mail_Users ...2386
make ...2908, 3696-3697

default rules ...2919
inference rules ..2916
internal macros ..2917
libraries ...2917
macros ...2914
makefile execution ..2912
makefile syntax ..2911
target rules ..2913

make, GNU version ..2925
makecontext() ..3623-3624
malloc() ...1268, 3515, 3536, 3538, 3566, 3579, 3589-3590
man ..2930, 3694
manipulate signal sets ..1927
map ..67, 3431
mapped ...3431
mappings ..1314
MAP_ ..471
MAP_FAILED ..1315
MAP_FIXED ..369, 1310, 1313
MAP_PRIVATE..369, 881, 1310, 1314, 1319, 1352
MAP_SHARED ..369, 884, 1310-1311
margin code..3417

notation ...13, 3417
marked message..67
matched ..68, 181
mathematical functions ..2285

domain error ..116
error conditions ...116, 3452
NaN arguments ...118, 3452
pole error ..117
range error ..117

max-data-size attribute...535, 1467
MAXARGS ...340
MAXFLOAT...287
maximum values...273
MAX_CANON ..271, 886, 3482, 3640, 3705
MAX_INPUT ...272, 886, 3640, 3705
may ..5, 3414

rationale ..3414
mblen() ...1270
mbrlen()..1272
mbrtowc() ..1274
mbsinit() ...1276
mbsnrtowcs()...1277
mbsrtowcs() ...1277
mbstowcs()...1279

3772 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

mbtowc() ..1281
MB_CUR_MAX ...355, 1270, 1272, 1274, 1281, 2195, 2245
MB_LEN_MAX ..278
MC1 ...8
MCL_ ...471
MCL_CURRENT ...369, 1307
MCL_FUTURE ..369, 1307, 3530
MCL_INHERIT ..3531
mcontext_t ..331
memccpy() ...1283
memchr()..1284
memcmp()..1285
memcpy() ...1286
MEMLOCK_FUTURE ..1315
memmove() ...1287
memory locking...3529
memory management...499, 3528, 3690
memory management unit ..3529
memory mapped files...68
memory object ...68, 3431
memory synchronization ...110, 3447
memory-resident ...68, 3431
memset() ..1288
mesg ...2934, 3695-3696
message ...68
message catalog...68

descriptor ..69, 545, 773, 779
generation ...2760

message parts...495
message passing ..3520, 3690, 3692
message priority ..495

high-priority ...495
normal ...495
priority ..495

message queue...69, 3520
message-discard mode ...1738
message-nondiscard mode ..1738
MET-1MEST ...2143
META_CHAR ..191
MIL-STD-1753 ..2755
minimum values ...274
Minimum_Cpu_Interval ..2383
MINSIGSTKSZ ..331, 1924
mkdir ...2937, 3695
mkdir() ...1289, 3691
mkdirat() ..1289
mkdtemp() ...1292
mkfifo ..2940, 3695
mkfifo()...1295, 3427
mkfifoat() ...1295
mknod

rationale for omission...3681

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3773

Index

mknod()..1298, 3427
mknodat() ..1298
mkstemp()..1292, 1302
mktemp() ...3624
mktime()...1303, 3451
ML ...8
mlock() ...1305
mlockall() ...1307, 3530
MLR ...8
mmap() ...1309, 3532-3534, 3536
MMU ...3529
MM_ ..471
MM_ macros ..251
MM_APPL ..251, 872
MM_CONSOLE ...251, 872
MM_ERROR ...251, 873-874
MM_FIRM ..251
mm_FIRM ..872
MM_HALT...251, 873
MM_HARD ..251, 872
MM_INFO ..251, 873
MM_NOCON ..252, 873
MM_NOMSG ...251, 873
MM_NOSEV ..251, 873
MM_NOTOK ...251, 873
MM_NRECOV ...251, 872
MM_NULLACT ..251
MM_NULLLBL ...251
MM_NULLMC ..251, 872
MM_NULLSEV ...251
MM_NULLTAG...251
MM_NULLTXT ...251
MM_OK ..251, 873
MM_OPSYS ..251, 872
MM_PRINT ..251, 872, 874
MM_RECOVER ...251, 872
MM_SOFT ..251, 872
MM_UTIL ...251, 872
MM_WARNING ..251, 873
mode ..69
modem disconnect ..3483
mode_t ..398
modf()...1317
modff() ...1317
modfl()..1317
modify batch job request ..2392
MON ...8
monotonic clock ..69, 3552
MON_ ...265
mon_decimal_point ..154
mon_grouping ...154
mon_thousands_sep ...154

3774 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

more ...2943, 3694-3695
discard and refresh ..2949
display position ...2952
examine new file..2951
examine next file..2951
examine previous file..2951
go to beginning of file...2949
go to end-of-file ...2949
go to tag ..2951
help ..2948
invoke editor ..2951
mark position...2950
quit ..2952
refresh the screen ...2949
repeat search ..2950
repeat search in reverse ..2951
return to mark..2950
return to previous position ..2950
scroll backward one half screenful ...2949
scroll backward one line...2948
scroll backward one screenful ...2948
scroll forward one half screenful ..2949
scroll forward one line..2948
scroll forward one screenful ..2948
search backward for pattern..2950
search forward for pattern ...2950
skip forward one line..2949

MORECTL ..365, 1033
MOREDATA ..365, 1033
motion command ..3168
mount point ...69, 3431
mount() ..3431
mounted file system..3431
move batch job request ...2393
mprotect() ..1319, 3533
MQ_ ...471
mq_ ..471
mq_close()..1321
mq_getattr() ...1322
mq_notify() ..1324
mq_open()..1327, 3521
MQ_OPEN_MAX ..269, 2061, 3705
MQ_PRIO_MAX ..269, 1333-1334, 2061, 3705
mq_receive() ..1330, 3522
mq_send() ..1333, 3522
mq_setattr() ...1335
mq_timedreceive()..1330, 1337, 3553
mq_timedsend()..1333, 1338, 3553
mq_unlink() ...1339
mrand48() ..738, 1341
MSG ...8
msg ..471

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3775

Index

msg*() ...3518
msgctl()...1342, 3518
msgget() ...1344, 3518
msgrcv() ...1346, 3518
msgsnd() ..1349, 3518
MSGVERB ...178, 873-874
MSG_ ...471-472
msg_ ..472
MSG_ANY ..365, 1032
MSG_BAND ...365, 1032, 1719
MSG_CTRUNC ...384
MSG_DONTROUTE ...384
MSG_EOR ..384, 1844, 1847, 1851, 1968, 1970
MSG_HIPRI ..365, 1032, 1719
MSG_NOERROR ...372, 1346-1347
MSG_NOSIGNAL ...384, 1844, 1847, 1851
MSG_OOB ..384, 1844, 1847, 1851
MSG_PEEK ..384
msg_perm ...496
MSG_TRUNC ..384
MSG_WAITALL ..384
msqid ...496
MST7MDT ..2143
msync()...1352, 3533
MS_ ..471
MS_ASYNC ..369, 1311, 1352
MS_INVALIDATE ..369, 1352-1353
MS_SYNC ...369, 1311, 1352
multi-byte character..3426, 3482, 3484
multi-character collating element ...69
multicast ...527
multiple tasks...3687, 3694
munlock()...1305, 1355
munlockall() ..1307, 1356
munmap()...1357, 3532-3534, 3536, 3539
mutex ..69, 3570

attributes ...1648
extended attributes ...3573
initialization ...3586
initialization attributes ...1647
performance ...1648

MUXID_ALL ...365, 1131-1132
MUXID_R ...473
mv ..2955, 3646, 3695
MX ...9
M_ ..286, 473
M_E ...286
M_LN ..286
M_LOG10E ...286
M_LOG2E ...286
M_PI ..286
M_SQRT1_2 ..287

3776 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

M_SQRT2 ..287
name ..70
name information..1036
name space ...469, 3499
name space pollution ..3499-3500
named STREAM..70
NAME_MAX ..111, 231, 272, 480, 886, 2415, 3034, 3640, 3705
NaN ...70, 247
NAN ..287
NaN ...593
NAN ..896
NaN ...896
NAN ..976
NaN ...976
NaN arguments ...3452

mathematical functions ..118
nan()..1359
nanf() ..1359
nanl() ..1359
nanosleep() ...1360, 3550, 3552-3553, 3692
native implementation ...3432
native language ...70
NCCS ...411
NDEBUG ..223, 476, 598
nearbyint() ...1362
nearbyintf() ..1362
nearbyintl() ..1362
negative response ..70
negative_sign ...154
netent ..299
network ...70
network address ..70
network byte order ..71, 110, 3447
network interfaces...518
newgrp ..2296, 2317, 2961, 3696
newline character ..71
newlocale() ..1364
news

rationale for omission...3681
NEW_TIME ..452, 760-761
nextafter()...1367
nextafterf() ...1367
nextafterl() ...1367
nexttoward() ..1367
nexttowardf()...1367
nexttowardl()...1367
nftw() ..1369
NGROUPS_MAX ..273, 1022, 2061, 2964, 3413, 3434, 3640, 3699, 3705
nice ..2965, 3694
nice value..71, 3432
nice() ...1373, 3544
Ninth Edition UNIX..2482, 2617, 3053

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3777

Index

NI_DGRAM ...300
NI_NAMEREQD ...300
NI_NOFQDN ...300
NI_NUMERICHOST ..300
NI_NUMERICSCOPE ..300
NI_NUMERICSERV..300
nl...2969
NLDLY..412
nlink_t ...398
NLn ...412
NLSPATH ...175, 639
NL_ ..471
NL_ARGMAX ...279, 893, 929, 973, 983
NL_CAT_LOCALE ...308, 639
nl_langinfo() ..1375, 3693
nl_langinfo_l() ...1375
NL_LANGMAX ..279
NL_MSGMAX ...279
NL_SETD ..308
NL_SETMAX ...280
NL_TEXTMAX ..280
nm ..2973, 3696
noclobber option ...3004, 3660
NOEXPR ...265
NOFLSH ...414
nohup ..781, 2978, 3694
non-blocking ..71
non-canonical mode input processing ...202, 3482
non-local jumps ...1947
non-printable ...2631, 3160, 3219, 3441
non-spacing characters...71
non-volatile storage ..954
normative references ..3414
NOSTR ..265
NQS ...3674
nrand48()..738, 1377
ntohl() ...1097, 1378
ntohs() ..1097, 1378
NUL ...72
NULL ..342, 421, 687, 720, 730, 735, 1314, 1746
null byte..72
null pointer...72
null string ...72
null wide-character code..72
number-sign ...72
numerical limits...278
NUM_EMPL ..1095
NZERO ...280, 1052, 1373
n_ ...471
n_cs_precedes ..155
n_sep_by_space ...155
n_sign_posn ...155

3778 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

OB ..9
object file...72, 2973
obsolescent ...3415

rationale ..3415
OCRNL ...412
octet ...72
od ...2982, 3694, 3696
OF ..9
OFDEL ..412
offset maximum...73
off_t ...398
OFILL ..412
OH ...9
OLD_TIME ..452, 760-761
ONLCR ...412
ONLRET ...412
ONOCR ..412
opaque address ..73
open a file ...1385
open a named semaphore ..1822
open a shared memory object..1900
open file ..73
open file description ...73, 3432
open file descriptors..3662

for reading and writing ..2315
open mode..2638
open() ..1379, 3427, 3481, 3533-3536, 3646, 3690
openat() ..1379, 1390
opendir() ..823, 1391, 3691
openlog()..682, 1392, 3696
OPEN_MAX269, 325, 588, 755, 810, 823, 964, 1327, 1430, 1433, 2061, 2122, 3413, 3640

..3705-3706
open_memstream() ..1388
open_wmemstream() ...1388
operand ...73
operator ..73
OPOST ..412
optarg ..1040, 1393
opterr ...1040, 1393
optind ..1040, 1393
option ..74

ADV ..7
BE ...7
CD ..7
CPT ..7
FD ..7
FR ...7
FSC ..8
IP6 ..8
MC1 ...8
ML ...8
MLR ...8

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3779

Index

MON ...8
MSG ...8
MX ...9
PIO ...9
PS ...9
RPI ...9
RPP ..10
RS ...10
SD ..10
SHM ..10
SIO ...10
SPN ..10
SS ...10
TCT ..10
TEF ...11
TPI ..11
TPP ...11
TPS ...11
TRC ..11
TRI ...11
TRL ..11
TSA ..12
TSH ..12
TSP ...12
TSS ...12
TYM ...12
UP ..12
UU ...12
XSR ..13

option definitions ..3674
option-argument ...74
optional behavior ..3707
options ..3594

shell and utilities ...27
system interfaces ...26

optopt ..1040, 1043, 1393
optstring ...1043
OR lists..2320, 3666
ordinary identifiers ...2475
ORD_CHAR ...191
orientation ..74
orphaned process group ..74, 548, 3432, 3514
output device ...198, 3478
output file descriptor

duplication ...3661
output mode ..3484
output processing ..3483
Output_Path ...2386
overrun conditions..3619
overrun in dumping trace streams ...3619
overrun in trace streams ...3619
O_ ..473

3780 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

O_ constants
defined in <fcntl.h> ...238-239
used in open() ...1379
used in posix_openpt() ..1420

O_ACCMODE ...239, 807
O_APPEND ..239, 498, 582, 718, 821, 1379, 2263
O_CLOEXEC ..240, 1379, 3536
O_CREAT...238, 702, 1327-1328, 1379, 1812, 1820, 1898-1899, 1901
O_DIRECTORY ...240, 1380
O_DSYNC ..239, 573, 1380, 1738, 2264
O_EXCL ...238, 1328, 1380, 1820, 1898-1899
O_EXEC ..239, 1379
O_NDELAY..2268
O_NOCTTY ..238, 1380, 1420
O_NOFOLLOW ...240, 1380
O_NONBLOCK ...239, 479, 1328, 1380
O_RDONLY ...239, 725, 1327, 1379, 1898, 1901
O_RDWR ..239, 798, 1242, 1327, 1379, 1420, 1898, 1901
O_RSYNC ...239, 1380, 1738
O_SEARCH ..239, 1379
O_SYNC ..239, 573, 1381, 1738, 2264
O_TRUNC ..238, 702, 1381, 1899, 1901
O_TTY_INIT ..199, 239, 1381
O_WRONLY...239, 702, 798, 1242, 1327, 1379
pack

rationale for omission...3681
page ...74, 3433, 3532, 3536
page size ...74
PAGESIZE ..269, 499, 1305, 1537, 2063, 3532, 3577, 3705
PAGE_SIZE ..270, 2063
paginators

more ..2943
parallel I/O ..3577
parameter ...75, 3483, 3651

expansion ...2306, 3656
positional ..3651
special ...3651

parameters and variables...2301
PARENB ..414
parent directory ...75, 3433
parent process ..75
parent process ID ..75
PARMRK ..412
PARODD ..414
passwd

rationale for omission...3681
passwd file..3433
paste ..2990, 3694
patch ..2994, 3695-3696

application ..2997
file format ...2996
filename determination ..2997

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3781

Index

PA TH...178, 687, 782, 3469
path prefix ..76
pathchk ...3001, 3695
pathconf()...886, 1394, 3427, 3639, 3689, 3691
pathname ..75

component ..76
expansion ..2311, 3660
incomplete ..3427
resolution ..111, 2283, 3449
variable values...271

pathname manipulation
basename ..2464
dirname ...2608
pathchk ...3001

PA TH_MAX ...272, 280, 480, 886, 2286, 3040, 3138, 3640, 3705
pattern ...76

filename expansion ...3672
for filename expansion ...2333
scanning and processing language...2430

pattern matching ...2738, 3015, 3288, 3304
definition ..2332
in case statements..2322
in shell variables..2307
multiple character ...3672
multiple characters..2332
notation ...2332, 2744, 3033, 3671
single character..2332, 3671

pause()..1395, 3513, 3516, 3690
pax ..3006, 3695-3696

archive character set encoding/decoding ...3038
cpio file data...3029
cpio filename..3029
cpio header...3027
cpio interchange format ...3027
cpio special entries ..3029
extended header ..3019
extended header file times ...3023
extended header keyword precedence ..3022
list mode format specifications ...3014
ustar format..3023
ustar interchange format..3023

pcat
rationale for omission...3681

pclose() ...1396, 3696
pd_ ...471
PENDIN ..473
pending error ...3593
per-thread errno ..3506
performance enhancements...3686
period ..76
permissions ..76
perror() ...1398

3782 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

persistence ..76
persistent connection (I_PLINK)...1132
PF_ ...472
pg

rationale for omission...3681
physical write...954
ph_ ...471
PID_MAX ...3621
pid_t ..398
PIO ...9
pipe ..77, 884, 1385, 2267, 3428, 3433
pipe() ..1400, 3513, 3690
pipelines ...2318, 3665
PIPE_BUF ...272, 886, 2264, 2267, 3640, 3705
PIPE_MAX ...2269
plain characters..2002
PM_STR ..265
pointer to a function ...488
pointer types ..541, 3622
pole error ..117
POLL ...471
poll() ...1403
POLLERR ...309, 1403
pollfd ...309
POLLHUP ..309, 1403
POLLIN ..309, 1403
polling ...77
POLLNVAL ..309, 1404
POLLOUT ..309, 1403
POLLPRI ...309, 1403
POLLRDBAND ...309, 1403
POLLRDNORM ..309, 1403
POLLWRBAND ...309, 1403
POLLWRNORM ..309, 1403
POLL_ ...471
POLL_ERR ...333
POLL_HUP ..333
POLL_IN ..333
POLL_MSG ..333
POLL_OUT ..333
POLL_PRI ...333
popen()..1407, 3693, 3696-3697
portability ...3416
portability codes..3417
portable character set..77, 125, 2914, 3453
portable filename character set ...77, 3433
positional parameter...78, 2301, 3651
positive_sign ..154
POSIX conformance ..15
POSIX locale...136, 3457
POSIX shell and utilities...18

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3783

Index

POSIX system interfaces
conformance ...17

POSIX.1 symbols ...468, 3498
POSIX.13 ...3536
POSIX2_BC_BASE_MAX ..2285-2286, 3699
POSIX2_BC_DIM_MAX ...2285-2286, 3699
POSIX2_BC_SCALE_MAX ...2285-2286, 3699
POSIX2_BC_STRING_MAX ...2285-2286, 3699
POSIX2_CHAR_TERM ...19, 27, 3698
POSIX2_COLL_WEIGHTS_MAX ...2285-2286, 3699
POSIX2_C_BIND ...3641, 3697
POSIX2_C_DEV ...19, 27, 3641, 3697-3698
POSIX2_EXPR_NEST_MAX ..2285-2286, 3699
POSIX2_FORT_DEV ...19, 27, 3641, 3698
POSIX2_FORT_RUN ..19, 27, 3641, 3698
POSIX2_LINE_MAX ...2285, 2287, 3699
POSIX2_LOCALEDEF ..19, 27, 3641, 3695, 3698
POSIX2_PBS ...19, 28, 3698
POSIX2_PBS_ACCOUNTING ..19, 28, 3698
POSIX2_PBS_CHECKPOINT ..28, 3698
POSIX2_PBS_LOCATE ...19, 28, 3698
POSIX2_PBS_MESSAGE ..19, 28, 3698
POSIX2_PBS_TRACK ...19, 28, 3698
POSIX2_RE_DUP_MAX ...2285, 2287, 3699
POSIX2_SW_DEV ...19, 28, 3641, 3697
POSIX2_SYMLINKS ...886, 2287, 3641
POSIX2_UPE ...19, 28, 3641, 3697-3698
POSIX2_VERSION ..3699
POSIX_ ..470
posix_ ..470
POSIX_ALLOC_SIZE_MIN ...272, 886, 3519
POSIX_ASYNCHRONOUS_IO ...3711
POSIX_BARRIERS ...3711
POSIX_CLOCK_SELECTION ...3712
POSIX_C_LANG_JUMP ...3711
POSIX_C_LANG_MATH ...3711
POSIX_C_LANG_SUPPORT...3712
POSIX_C_LANG_SUPPORT_R ..3712
POSIX_C_LANG_WIDE_CHAR ..3712
POSIX_C_LANG_WIDE_CHAR_EXT ...3712
POSIX_C_LIB_EXT ...3712
POSIX_DEVICE_IO ..3712
POSIX_DEVICE_IO_EXT ...3712
POSIX_DEVICE_SPECIFIC ...3712
POSIX_DEVICE_SPECIFIC_R ...3713
POSIX_DYNAMIC_LINKING ..3713
posix_fadvise() ..1410, 3519
POSIX_FADV_DONTNEED ..240, 1410, 3519
POSIX_FADV_NOREUSE ..240, 1410, 3519
POSIX_FADV_NORMAL ..240, 1410
POSIX_FADV_RANDOM ..240, 1410, 3519
POSIX_FADV_SEQUENTIAL ...240, 1410, 3519

3784 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

POSIX_FADV_WILLNEED ...240, 1410, 3519
posix_fallocate() ..1412
POSIX_FD_MGMT ..3713
POSIX_FIFO ...3713
POSIX_FIFO_FD ..3713
POSIX_FILE_ATTRIBUTES ...3713
POSIX_FILE_ATTRIBUTES_FD ..3713
POSIX_FILE_LOCKING ..3713
POSIX_FILE_SYSTEM ..3713
POSIX_FILE_SYSTEM_EXT ..3713
POSIX_FILE_SYSTEM_FD ...3713
POSIX_FILE_SYSTEM_GLOB ...3713
POSIX_FILE_SYSTEM_R ...3713
POSIX_I18N ...3713
POSIX_JOB_CONTROL ...3713
posix_madvise()..1414, 3519
POSIX_MADV_DONTNEED ..369, 1414, 3519
POSIX_MADV_NORMAL ...369, 1414
POSIX_MADV_RANDOM ..369, 1414, 3519
POSIX_MADV_SEQUENTIAL ...369, 1414, 3519
POSIX_MADV_WILLNEED ...370, 1414, 3519
POSIX_MAPPED_FILES ..3713
posix_memalign() ...1418
POSIX_MEMORY_PROTECTION ...3713
posix_mem_offset()...1416, 3536-3537
POSIX_MULTI_CONCURRENT_LOCALES ..3713
POSIX_MULTI_PROCESS ...3714
POSIX_MULTI_PROCESS_FD ..3714
POSIX_NETWORKING ...3714
posix_openpt() ..1420
POSIX_PIPE ...3714
POSIX_REALTIME_SIGNALS ..3714
POSIX_REC_INCR_XFER_SIZE ...272, 886, 3520
POSIX_REC_MAX_XFER_SIZE ..272, 886, 3520
POSIX_REC_MIN_XFER_SIZE ...272, 886, 3520
POSIX_REC_XFER_ALIGN ...272, 886, 3519
POSIX_REGEXP ..3714
POSIX_ROBUST_MUTEXES ...3714
POSIX_RW_LOCKS ..3714
POSIX_SEMAPHORES ..3714
POSIX_SHELL_FUNC ..3714
POSIX_SIGNALS ..3714
POSIX_SIGNALS_EXT ...3714
POSIX_SIGNAL_JUMP ..3714
POSIX_SINGLE_PROCESS ...3715
posix_spawn() ...1422, 3625, 3690
posix_spawnattr_destroy()..1438
posix_spawnattr_getflags() ...1440
posix_spawnattr_getpgroup() ..1442
posix_spawnattr_getschedparam()..1444
posix_spawnattr_getschedpolicy() ..1446
posix_spawnattr_getsigdefault()..1448

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3785

Index

posix_spawnattr_getsigmask()...1450
posix_spawnattr_init()...1438, 1452
posix_spawnattr_setflags()..1440, 1453
posix_spawnattr_setpgroup()...1442, 1454
posix_spawnattr_setschedparam() ..1444, 1455
posix_spawnattr_setschedpolicy()...1446, 1456
posix_spawnattr_setsigdefault() ..1448, 1457
posix_spawnattr_setsigmask() ...1450, 1458
posix_spawnp()...1422, 1459, 3625, 3690
posix_spawn_file_actions_addclose() ...1430
posix_spawn_file_actions_adddup2() ...1433
posix_spawn_file_actions_addopen() ...1430, 1435
posix_spawn_file_actions_destroy()..1436
posix_spawn_file_actions_init() ...1436
POSIX_SPAWN_RESETIDS ...1423, 1440
POSIX_SPAWN_SETPGROUP ..1423, 1440, 1442
POSIX_SPAWN_SETSCHEDPARAM ..1440, 1444
POSIX_SPAWN_SETSCHEDULER ..1423, 1440, 1444, 1446
POSIX_SPAWN_SETSIGDEF ..1424, 1440, 1448
POSIX_SPAWN_SETSIGMASK ..1440, 1450
POSIX_SPIN_LOCKS ...3715
POSIX_SYMBOLIC_LINKS ...3715
POSIX_SYMBOLIC_LINKS_FD ..3715
POSIX_SYSTEM_DATABASE ...3715
POSIX_SYSTEM_DATABASE_R ..3715
POSIX_THREADS_BASE ...3715
POSIX_THREADS_EXT ...3715
POSIX_TIMERS ...3715
POSIX_TRACE_ADD_EVENTSET ...1499
POSIX_TRACE_ALL_EVENTS ...1492
POSIX_TRACE_APPEND ..1465, 1485
posix_trace_attr_destroy()...1460
posix_trace_attr_getclockres() ..1462
posix_trace_attr_getcreatetime() ..1462
posix_trace_attr_getgenversion() ...1462
posix_trace_attr_getinherited() ..1464
posix_trace_attr_getlogfullpolicy() ..1464
posix_trace_attr_getlogsize() ..1467
posix_trace_attr_getmaxdatasize() ..1467
posix_trace_attr_getmaxsystemeventsize() ..1467
posix_trace_attr_getmaxusereventsize() ...1467
posix_trace_attr_getname()...1462, 1470
posix_trace_attr_getstreamfullpolicy()..1464, 1471
posix_trace_attr_getstreamsize()..1467, 1472
posix_trace_attr_init() ..1460, 1473
posix_trace_attr_setinherited() ...1464, 1474
posix_trace_attr_setlogfullpolicy() ..1464, 1474
posix_trace_attr_setlogsize()...1467, 1475
posix_trace_attr_setmaxdatasize() ...1467, 1475
posix_trace_attr_setname() ...1462, 1476
posix_trace_attr_setstreamfullpolicy() ..1464, 1477
posix_trace_attr_setstreamsize() ..1467, 1478

3786 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

posix_trace_clear()..1479
posix_trace_close() ...1481
POSIX_TRACE_CLOSE_FOR_CHILD ..1464
posix_trace_create()..1483
posix_trace_create_withlog() ..1483
POSIX_TRACE_ERROR trace event ..536
posix_trace_event() ..1487
posix_trace_eventid_equal() ...1489
posix_trace_eventid_get_name()..1489
posix_trace_eventid_open() ..1487, 1491, 3614
posix_trace_eventset_add()...1492
posix_trace_eventset_del() ..1492
posix_trace_eventset_empty() ..1492
posix_trace_eventset_fill()...1492
posix_trace_eventset_ismember() ..1492
posix_trace_eventtypelist_getnext_id()...1494
posix_trace_eventtypelist_rewind()...1494
posix_trace_event_info ...533
POSIX_TRACE_FILTER trace event...536, 1499
POSIX_TRACE_FLUSH ...1465
posix_trace_flush() ...1483, 1496
POSIX_TRACE_FLUSHING ...532
POSIX_TRACE_FULL ...531-533
posix_trace_getnext_event() ...1502
posix_trace_get_attr()...1497
posix_trace_get_filter() ..1499
posix_trace_get_status() ..1497, 1501
POSIX_TRACE_INHERITED ..1464
POSIX_TRACE_LOOP ..532, 1464-1465, 1485, 3619
POSIX_TRACE_NOT_FLUSHING ...533
POSIX_TRACE_NOT_FULL ..531-533
POSIX_TRACE_NOT_FULL. ..1479
POSIX_TRACE_NOT_TRUNCATED ..534, 1503
POSIX_TRACE_NO_OVERRUN ..532-533, 1497
posix_trace_open() ...1481, 1505
POSIX_TRACE_OVERFLOW trace event ...536
POSIX_TRACE_OVERRUN ...532-533
POSIX_TRACE_RESUME trace event..536
posix_trace_rewind() ...1481, 1505
POSIX_TRACE_RUNNING ...531-532, 1508
POSIX_TRACE_SET_EVENTSET ...1499
posix_trace_set_filter() ...1499, 1506
posix_trace_shutdown() ..1483, 1507
POSIX_TRACE_START trace event..536, 1508
posix_trace_start() ..1508
posix_trace_status_info ..531
POSIX_TRACE_STOP trace event ..536, 1508
posix_trace_stop()...1508
POSIX_TRACE_SUB_EVENTSET ..1499
POSIX_TRACE_SUSPENDED ...531-532, 1508
POSIX_TRACE_SYSTEM_EVENTS ...1492
posix_trace_timedgetnext_event() ...1502, 1510

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3787

Index

posix_trace_trid_eventid_open()..1489, 1511
POSIX_TRACE_TRUNCATED_READ ..534, 1503
POSIX_TRACE_TRUNCATED_RECORD ..534, 1503
posix_trace_trygetnext_event() ..1502, 1512
POSIX_TRACE_UNTIL_FULL ..532, 1464-1465, 1484
POSIX_TRACE_USER_EVENT_MAX ...1487
POSIX_TRACE_WOPID_EVENTS ...1492
POSIX_TYPED_MEM_ALLOCATE ..370, 1309-1310, 1416, 1513, 1515
POSIX_TYPED_MEM_ALLOCATE_CONTIG370, 1309-1310, 1416, 1513, 1515
posix_typed_mem_get_info() ...1513, 3536
posix_typed_mem_info ..370
POSIX_TYPED_MEM_MAP_ALLOCATABLE ..370, 1357, 1515
posix_typed_mem_open()...1515, 3536
POSIX_USER_GROUPS ...3715
POSIX_USER_GROUPS_R ..3715
POSIX_VERSION ..3705
POSIX_WIDE_CHAR_DEVICE_IO ..3715
post-mortem filtering of trace event types ..3616
pow() ..1518
powf() ...1518
powl() ...1518
pr...3044, 3694, 3696
pread() ..1521, 1737, 3578
preallocation ..78
predefined stream

standard error ..493
standard input ...493
standard output ...493

preempted process (or thread) ..78
preempted thread ..1588
previous job..78
PRI ...473
print-related commands

fold ..2747
lp ..2859
pr ..3044

printable character ..78
printable file ...78
printf ..3049, 3693-3694
printf() ..893, 1522
printing ...3688
priority ..79, 495
Priority ..2387
priority

band ...79
inversion ...79
scheduling ..79

priority-based scheduling..79
PRIO_ ..471
PRIO_ constants

defined in <sys/resource.h> ...374
PRIO_INHERIT ...1643

3788 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

PRIO_PGRP ...374, 1052
PRIO_PROCESS ..374, 1052
PRIO_USER ..374, 1052
privilege ..79, 2935, 2967, 3444
process ..80

attributes ...2279
concurrent execution ..883
ID ...81, 2279
ID reuse ...112, 3450
ID, 1 ...548
ID, rationale ...3621
lifetime ..81, 3434
memory locking...81
scheduling ..501, 3542, 3690
setting real and effective user IDs...1883
single-threaded ..883
termination ...81, 3434
virtual time...82

process creation ...883
process group ...80, 3480

concepts in job control ..3428
ID ...80, 2279, 3428, 3480
leader ...80
lifetime ..80, 3480
orphaned ..548, 3432, 3514
termios ..200

process group ID ...1048, 1875, 1887
process lifetime..1201
process management ..3686, 3690
process shared memory..1648
process status report ...3060
process synchronization ...1648
process termination...547
process-to-process communication ..81
prof

rationale for omission...3681
profiling ..3697
program ..82
programming manipulation..3609
prompting ...3653-3654
protocol ...82, 3593
protoent ..299
PROT_ ...471
PROT_EXEC ...369, 1310, 1319
PROT_NONE ...369, 500, 1309-1310, 1319
PROT_READ ..369, 1310, 1319
PROT_READ constants

in <sys/mman.h> ...369
PROT_WRITE ...369, 1310-1311, 1314, 1319
prs ..3055
PS ...9
ps ...3060, 3694, 3696

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3789

Index

pselect() ..1523
pseudo-random sequence generation functions ..1734
pseudo-terminal ..82
psiginfo()..1528
psignal() ...1528
PST8PDT ...2143
ps_ ...471
pthread ..3617
PTHREAD_ ..471
pthread_ ..471
pthread_atfork()..1529
pthread_attr_destroy() ...1532
pthread_attr_getdetachstate()...1535
pthread_attr_getguardsize() ...1537, 3577
pthread_attr_getinheritsched()...1540
pthread_attr_getschedparam() ...1542
pthread_attr_getschedpolicy()..1544
pthread_attr_getscope()...1546
pthread_attr_getstack()..1548
pthread_attr_getstackaddr() ...3624
pthread_attr_getstacksize() ...1551
pthread_attr_init() ..1532, 1553
pthread_attr_setdetachstate() ...1535, 1554
pthread_attr_setguardsize() ..1537, 1555, 3577
pthread_attr_setinheritsched() ...1540, 1556
pthread_attr_setschedparam()..1542, 1557
pthread_attr_setschedpolicy() ..1544, 1558
pthread_attr_setscope() ...1546, 1559
pthread_attr_setstack() ..1548, 1560
pthread_attr_setstackaddr()..3624
pthread_attr_setstacksize() ...1551, 1561
pthread_barrierattr_destroy()...1566
pthread_barrierattr_getpshared() ..1568
pthread_barrierattr_init() ..1566, 1570
pthread_barrierattr_setpshared() ...1568, 1571
pthread_barrier_destroy() ...1562
pthread_barrier_init() ..1562
PTHREAD_BARRIER_SERIAL_THREAD ..311, 1564, 3568
pthread_barrier_wait()...1564, 3569, 3589
pthread_cancel() ...1572
PTHREAD_CANCELED ..311, 515, 1608
PTHREAD_CANCEL_ASYNCHRONOUS ...311, 511, 1694
PTHREAD_CANCEL_DEFERRED ..311, 511, 515, 775, 1586, 1694
PTHREAD_CANCEL_DISABLE ...311, 511, 515, 1694
PTHREAD_CANCEL_ENABLE ...311, 511, 515, 1694
PTHREAD_CANCEL_ENABLED ..775
pthread_cleanup_pop() ...1574
pthread_cleanup_push()..1574
pthread_condattr_destroy() ..1592
pthread_condattr_getclock() ...1594
pthread_condattr_getpshared()..1596
pthread_condattr_init() ...1592, 1598

3790 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

pthread_condattr_setclock() ...1594, 1599
pthread_condattr_setpshared() ..1596, 1600
pthread_cond_broadcast() ..1579
pthread_cond_destroy() ..1582
pthread_cond_init()..1582, 3565
PTHREAD_COND_INITIALIZER ...311, 1582
pthread_cond_signal() ...1579, 1585
pthread_cond_timedwait() ...1586, 3507, 3552, 3574, 3700
pthread_cond_wait()..1586, 3507, 3524, 3574
pthread_create()...1601, 3565-3566
PTHREAD_CREATE_DETACHED ..311, 486, 1535, 3587
PTHREAD_CREATE_JOINABLE ...311, 486, 775, 1535, 1618
PTHREAD_DESTRUCTOR_ITERATIONS ...270, 1615, 1620, 2063, 3706
pthread_detach()...1604, 3587
pthread_equal()...1606
pthread_exit() ..1607
PTHREAD_EXPLICIT_SCHED ...311, 1540
pthread_getconcurrency() ...1609, 3577
pthread_getcpuclockid() ..1611, 3555-3556
pthread_getschedparam() ...1612
pthread_getspecific()..1615
PTHREAD_INHERIT_SCHED ..311, 1540
pthread_join()..1617, 3507, 3587
PTHREAD_KEYS_MAX ..270, 1620, 2063, 3706
pthread_key_create()..1620, 3568
pthread_key_delete() ...1623
pthread_kill()...1625
pthread_mutexattr_destroy()..1647
pthread_mutexattr_getprioceiling() ..1652
pthread_mutexattr_getprotocol()...1654
pthread_mutexattr_getpshared() ...1657
pthread_mutexattr_getrobust() ..1659
pthread_mutexattr_gettype()..1661, 3575
pthread_mutexattr_init() ...1647, 1663
pthread_mutexattr_setprioceiling() ...1652, 1664
pthread_mutexattr_setprotocol() ...1654, 1665
pthread_mutexattr_setpshared()..1657, 1666
pthread_mutexattr_setrobust()...1659, 1667
pthread_mutexattr_settype() ..1661, 1668, 3575
pthread_mutex_consistent() ...1626
PTHREAD_MUTEX_DEFAULT..311, 1638, 1661, 3574
pthread_mutex_destroy()..1628
PTHREAD_MUTEX_ERRORCHECK ..311, 1634, 1638, 1661, 3574
pthread_mutex_getprioceiling()...1634
pthread_mutex_init() ...1628, 1637, 3565
PTHREAD_MUTEX_INITIALIZER ...311, 1628
pthread_mutex_lock()..1638, 3507, 3574, 3589
PTHREAD_MUTEX_NORMAL ...311, 1638, 1661, 3574
PTHREAD_MUTEX_RECURSIVE ..111, 311, 1638, 1661-1662, 3574
PTHREAD_MUTEX_ROBUST ..1659
pthread_mutex_setprioceiling() ...1634, 1642
PTHREAD_MUTEX_STALLED ..1659

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3791

Index

pthread_mutex_timedlock() ...1643, 3553
pthread_mutex_trylock()...1638, 1646, 3574
pthread_mutex_unlock() ...1638, 1646, 3574
pthread_once() ..1669
PTHREAD_ONCE_INIT ..311, 1669
PTHREAD_PRIO_INHERIT ..311, 1654
PTHREAD_PRIO_NONE ..311, 1634, 1654
PTHREAD_PRIO_PROTECT ..311, 1639, 1654
PTHREAD_PROCESS_PRIVATE....................................311, 1568, 1596, 1648, 1657, 1689, 1705, 3576
PTHREAD_PROCESS_SHARED311, 1568, 1596, 1648, 1657, 1689, 1705, 3576
pthread_rwlockattr_destroy()...1687, 3576
pthread_rwlockattr_getpshared() ..1689, 3576
pthread_rwlockattr_init() ..1687, 1691, 3575
pthread_rwlockattr_setpshared()...1689, 1692, 3576
pthread_rwlock_destroy()...1671
pthread_rwlock_init() ..1671, 3576
PTHREAD_RWLOCK_INITIALIZER ..311, 3576
pthread_rwlock_rdlock()...1674, 3576
pthread_rwlock_t ..3575
pthread_rwlock_timedrdlock() ..1677
pthread_rwlock_timedwrlock() ...1679
pthread_rwlock_tryrdlock()..1674, 1681, 3576
pthread_rwlock_trywrlock()...1682, 3576
pthread_rwlock_unlock() ..1684, 3576, 3591
pthread_rwlock_wrlock()..1682, 1686, 3576
PTHREAD_SCOPE_PROCESS ..311, 509-510, 1546
PTHREAD_SCOPE_SYSTEM ..311, 509-510, 1546
pthread_self() ..1693, 3567
pthread_setcancelstate() ..1694
pthread_setcanceltype()...1694
pthread_setconcurrency()..1609, 1696, 3577
pthread_setprio() ..3585
pthread_setschedparam()..1612, 1697, 3585
pthread_setschedprio() ..1698
pthread_setspecific() ..1615, 1700, 3567
pthread_sigmask()..1701
pthread_spin_destroy() ...1705
pthread_spin_init()...1705
pthread_spin_lock() ...1707, 3569, 3589
pthread_spin_trylock() ..1707, 3569
pthread_spin_unlock()...1709
PTHREAD_STACK_MIN ..270, 1548, 1551, 2063, 3706
pthread_testcancel() ...1694, 1711
PTHREAD_THREADS_MAX ...270, 1601, 2063, 3706
PTRDIFF_MAX ..348
PTRDIFF_MIN ...348
ptsname() ...1712
public locale ...2844
putc() ..1713, 3579, 3691
putchar() ..1715, 3691
putchar_unlocked() ..993, 1716
putc_unlocked() ..993, 1714

3792 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

putenv()..1717
putmsg()...1719
putpmsg() ..1719
puts() ..1723
pututxline()..760, 1725
putwc() ...1726
putwchar() ...1727
PWD ..178
pwd ...2296, 2317, 3067, 3695
pwrite()...1728, 2263, 3578
pw_ ..471
p_ ...471
P_ ...472
P_ALL ...405, 2190
p_cs_precedes ..155
P_PGID ...405, 2190
P_PID ..405, 2190
p_sep_by_space ...155
p_sign_posn ...155
P_tmpdir ...352
qalter ...3070
qdel ..3080
qhold ...3083
qmove ...3086
qmsg ..3089
qrerun ..3092
qrls ...3095
qselect ..3098
qsig ..3107
qsort() ...1729
qstat ...3110
qsub ...3115
queue a signal to a process ..1945
queue batch job request ..2393
queuing of waiting threads ..3591
quiet NaN...247
quote removal ..2311, 3660
QUOTED_CHAR ..191
quoting ..2298, 3648
radix character ...82
RADIXCHAR ...265
raise() ..1731
rand() ..1733, 3589
random()...1118, 1736
RAND_MAX ..355, 1733
rand_r() ..1733
range error ..117

result overflows ...117
result underflows ..117

RCS
rationale for omission...3681

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3793

Index

RE
bracket expression ...3473
grammar ...3477

read ..2296, 2317, 3128, 3647, 3693
read lock ...3575
read()1737, 3428, 3481-3482, 3504, 3513-3514, 3516, 3526-3528, 3532-3533, 3577

..3588, 3621, 3691
read-only file system...82
read-write attribute...3575
read-write lock...82, 3575
readdir() ...1744, 3691
readdir_r()..1744
reading an active trace stream ...3619
reading data ...3482
readlink()..1749, 3690
readlinkat() ..1749
readonly ..2352
readv() ..1752
real group ID..83, 2279
real time ..83
real user ID...83, 562, 1200, 2279
realloc()...1754
realpath()..1756, 3690
realtime ...22
REALTIME294, 815, 1305, 1307, 1321-1322, 1324, 1327, 1330, 1333, 1335, 1339, 1799-1803

..1805, 1898, 1903
realtime ...3519
realtime signal delivery..3510
realtime signal extension..83
realtime signal generation..3510
realtime signals..3524
REALTIME THREADS...24
realtime threads ...24
REALTIME THREADS...1540, 1544, 1546, 1612, 1634, 1652, 1654, 1698
record ..83
recv()...1759
recvfrom() ..1761
recvmsg() ...1764
red

rationale for omission...3681
redirect input ...2312, 3661
redirect output ...2313, 3661
redirection ..83, 2312, 3660
redirection operator ..84
referenced shared memory object...84
references ..3414
refresh ...84
regcomp()...1767, 3696
regerror()..1767, 3696
regexec() ...1767, 3696
regfree() ..1767, 3696
region ..84

3794 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

register fork handlers ...1529
REGTYPE ...409
regular expressions84, 2439, 2551, 2620, 2675, 2716, 2741, 2783, 2829, 2947, 2957

..2969, 3013, 3136, 3155, 3326, 3383, 3470
basic ...183
definitions ...3471
extended ...188
general requirements ..3471
grammar ...191, 3477
related to shell patterns ..2332

regular file ..84, 3434
REG_ ...471
REG_ constants

defined in <regex.h> ...319
error return values of regcomp ...1769
used in regcomp ..1767

REG_BADBR ..320, 1769
REG_BADPAT ...319, 1769
REG_BADRPT ...320, 1769
REG_EBRACE ...320, 1769
REG_EBRACK ...320, 1769
REG_ECOLLATE ..319, 1769
REG_ECTYPE ..319, 1769
REG_EESCAPE ..319, 1769
REG_EPAREN ...320, 1769
REG_ERANGE ..320, 1769
REG_ESPACE ..320, 1769
REG_ESUBREG ...319, 1769
REG_EXTENDED ...319, 1767
REG_ICASE ..319, 1767
REG_NEWLINE ..319, 1767
REG_NOMATCH ..319, 1769
REG_NOSUB ...319, 1767
REG_NOTBOL ..319, 1768
REG_NOTEOL ..319, 1768
rejected utilities..3679
relational database operator ..2815
relative pathname..85, 111
release batch job request ...2394
relocatable file ..85
relocation ..85
remainder() ..1774
remainderf()...1774
remainderl()...1774
remove a directory ..1791, 3142
remove a directory entry..2157
remove a file...3135
remove() ...1776
remque() ...1120, 1778
remquo() ..1779
remquof() ...1779
remquol() ...1779

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3795

Index

rename a file...1784
rename() ...1781, 3691
renameat()..1781
renice ...3131, 3694
replenishment period ...3545
requested batch service ..85, 2390
requirements ..15
rerun batch job request ...2395
Rerunable ...2387
reserved words ..2301, 3651
Resource_List ...2387
result overflows ...117
result underflows ..117
return ...2355
rewind()..1786
rewinddir() ..1787, 3691
re_ ..471
RE_DUP_MAX ..270, 273, 2063, 2286, 3641
rindex()...3624
rint() ..1788
rintf()...1788
rintl()...1788
rlimit ..374
RLIMIT_ ..471
RLIMIT_AS ..375, 1066
RLIMIT_CORE ..374, 1065
RLIMIT_CPU ...374, 1065
RLIMIT_DATA ..375, 1065
RLIMIT_FSIZE ...375, 1065
RLIMIT_NOFILE ...375, 1065, 1067
RLIMIT_STACK ..375, 1066
rlim_ ..471
RLIM_ ...473
RLIM_INFINITY ..374, 1065-1066
RLIM_SAVED_CUR ..374, 1066
RLIM_SAVED_MAX ...374, 1066
rm ..3135, 3645, 3695
rmdel ...3140
rmdir ...3142, 3695
rmdir() ..1790, 3506, 3691
RMSGD ...364, 1126
RMSGN ...365, 1126
RNORM ..365, 1126
robust mutex ..85, 509, 1632, 3571
root directory ..85, 2279, 3434, 3449-3450
root file system...3434
root of a file system ...3434
round robin ..503
round() ...1793
roundf() ..1793
roundl() ..1793
routing ..518, 3593

3796 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

RPI ...9
RPP ..10
RPROTDAT ..365, 1126
RPROTDIS ..365, 1126
RPROTNORM ..365, 1126
RS ...10
rsh

rationale for omission...3681
RS_HIPRI ..364, 1032, 1125, 1719
RTLD_ ...471
RTLD_DEFAULT...735
RTLD_GLOBAL ...233, 728, 732-733, 735
RTLD_LAZY ..233, 732, 735
RTLD_LOCAL ...233, 733
RTLD_NEXT ...735-736
RTLD_NOW ...233, 732-733
RTSIG_MAX ...270, 329, 2063, 3706
runnable process (or thread) ..85
running process (or thread) ...86
runtime values

increasable ..272
invariant ...268

rusage ..374
RUSAGE_ ...471
RUSAGE_CHILDREN ..374, 1068
RUSAGE_SELF ..374, 1068
ru_..471
R_ANCHOR ..192
R_OK ...437
s6_ ..471
sact ...3145
samefile()..3620
saved resource limits ..86
saved set-group-ID ..86, 2279
saved set-user-ID ...86, 2279
SA_ ..471
sa_ ...471-472
SA_ macros

declared in <signal.h> ..331
SA_NOCLDSTOP ...331, 487, 1915, 1920, 3429
SA_NOCLDWAIT ..331, 545-546, 1068, 1917, 2181
SA_NODEFER ...331, 1917
SA_ONSTACK ...331, 774, 1916
SA_RESETHAND ..331, 1916-1917, 3622
SA_RESTART...331, 1526, 1916, 1933, 3622
SA_SIGINFO ..331, 1915-1916, 1919, 1944, 3512
scalb() ...3624
scalbln() ..1795
scalblnf()...1795
scalblnl()...1795
scalbn() ...1795
scalbnf()..1795

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3797

Index

scalbnl() ..1795
scandir() ...587, 1797
scanf() ...929, 1798
sccs ...3148
SCCS commands

admin ..2402
delta ...2591
get ..2764
prs ..3055
rmdel ...3140
sact ...3145
sccs ...3148
unget ...3278
val ..3306
what ...3371

SCHAR_MAX ..278
SCHAR_MIN ..278-279
schedule alarm...585
scheduling ..86
scheduling allocation domain ...86, 3583
scheduling contention scope ..86, 3583-3584
scheduling documentation ..511, 3584
scheduling policy ..87, 112, 3450

round robin ..503
SCHED_ ..471
sched_ ...471
SCHED_FIFO321, 498, 502, 510, 774, 881, 1052, 1373, 1542, 1544, 1612, 1652, 1674, 1823

..3692
sched_getparam() ...1800
sched_getscheduler() ...1801
sched_get_priority_max() ...1799
sched_get_priority_min() ..1799
SCHED_OTHER ..321, 502, 505, 1052, 1544, 1612
SCHED_RR321, 498, 502-503, 510, 774, 881, 1052, 1373, 1542, 1544, 1612, 1674, 1823

..3692
sched_rr_get_interval()..1802
sched_setparam()..1803
sched_setscheduler() ..1805
SCHED_SPORADIC ..321, 498, 502-503, 774, 1674, 1823, 3692
sched_yield() ...1807
SCM_ ...472
SCM_RIGHTS ..383
SCN ...473
scope ..3411
screen ..87
scroll ..87
SD ..10
sdb

rationale for omission...3682
sdiff

rationale for omission...3682
search pattern...2563

3798 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

seconds since the Epoch..113, 3450-3451
security considerations...........................547, 661, 948, 1200, 1874, 3422, 3426, 3430, 3442, 3444, 3481
security, monolithic privileges ..3422
sed ..3153, 3694-3695

addresses ..3155
editing commands...3155
regular expressions ...3155

seed48() ..738, 1808
seekdir() ...1809
SEEK_ ..473
SEEK_CUR ...238, 351, 439, 808, 937, 1265
SEEK_END ...238, 351, 439, 808, 937, 1265
SEEK_GET ..1786
SEEK_SET ...238, 351, 439, 498, 575, 582, 808, 937, 1265
SEGV_ ...471
SEGV_ACCERR ...333
SEGV_MAPERR ..333
select batch jobs request ...2395
select()...1523, 1811
sem ..472
sem*()..3518
semaphore ..87, 113, 3452, 3522, 3692

lock operation ..114
unlock operation..114

semctl() ...1833, 3518
semget()..1836, 3518
semid ...496
semop()...1839, 3518
SEM_ ...471
sem_ ..471
SEM_ ...472
sem_close() ..1812
sem_destroy()..1814
SEM_FAILED ..325, 1821-1822
sem_getvalue() ..1816
sem_init() ...1818, 3522
SEM_NSEMS_MAX ..270, 1818, 2063, 3706
sem_open() ..1820, 3522
sem_perm ...496
sem_post()..1823
sem_timedwait() ...1825, 3553
sem_trywait() ..1828, 3507, 3524
SEM_UNDO ...378, 1839
sem_unlink() ...1830
SEM_VALUE_MAX ..270, 1818, 1820, 2063, 3706
sem_wait() ...1828, 1832, 3507, 3524
send() ..1844
sendmsg() ..1847
sendto() ..1851
sequential lists ...2320, 3666
servent ...299
server shutdown request ..2396

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3799

Index

server status request ...2396
service name ..916
session ...88, 548, 1200, 1875, 1887, 3429, 3433, 3481
session leader...88
session lifetime ..88
session membership..2279
set ...2357, 3653
set cancelability state ..1694
set file creation mask...2147
set process group ID for job control ...1874
set-group-ID ...547, 657, 781, 813, 2279, 2553
set-user-ID ..547, 781, 999, 1200, 2279, 2521, 2553
set-user-ID scripts ...3177
SETALL ...378, 1833, 1836
setbuf() ...1855
setegid()..1856
setenv()...1857
seteuid() ...1859
setgid()..1860, 3434
setgrent() ..747, 1862, 3442
sethostent() ..749, 1863
setitimer()...1026, 1864
setjmp() ..1865, 3693
setkey() ...1867
setlocale() ...1868, 3693

extensions to ..1869
setlogmask() ..682, 1872, 3696
setnetent() ..751, 1873
setpgid() ..1874, 3428-3429, 3480-3481
setpgrp()...1877
setpriority()..1052, 1878, 3543
setprotoent() ..753, 1879
setpwent() ..755, 1880, 3442
setregid() ..1881
setreuid() ..1883
setrlimit() ...1065, 1885, 3646
setservent() ..758, 1886
setsid() ..1887, 3480
setsockopt()..1889
setstate()..1118, 1891
setuid() ...1892, 3434
setutxent() ..760, 1895
SETVAL ...378, 1833, 1836
setvbuf() ...1896
sh ..3163, 3695, 3702

command history list ..3167
command line editing...3167
vi line editing command mode ...3168
vi line editing insert mode ...3168
vi-mode command line editing...3167

shall ...6, 3414
rationale ..3414

3800 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

shar
rationale for omission...3682

shared memory..3534
shared memory object ..88
shell ...88
SHELL ...178
shell ..548, 780, 1030, 1048, 1200, 1875, 2187, 3427-3430
SHELL ...3469
shell ...3480-3481, 3508, 3513-3514

commands ..2316, 3662
errors ...3662
execution environment ...2331, 2408, 3130, 3265, 3651, 3671
grammar ...2325, 3669
grammar rules ...2325, 3670
grammar, lexical conventions..2325, 3670
introduction ...2297
job control ...1200, 3428, 3508, 3514
login ...780, 1030
variables ..2302, 3653

shell command language ...2297
alias substitution ...2300
appending redirected output ..2313
arithmetic expansion ..2310
command substitution..2309
compound commands..2321
consequences of shell errors ..2315
double-quote ..2298
duplicating an input file descriptor..2314
duplicating an output file descriptor ...2314
escape character (backslash)..2298
exit status and errors ..2315
exit status for commands ...2315
field splitting ..2311
function definition command..2324
grammar ...2325
here-document ...2313
introduction ...2297
lists ...2319
open file descriptors for reading and writing...2315
parameter expansion ..2306
parameters and variables...2301
pathname expansion...2311
pattern matching notation ...2332
patterns matching a single character..2332
patterns matching multiple characters ..2332
patterns used for filename expansion ..2333
pipelines ...2318
positional parameters ...2301
quote removal ..2311
quoting ..2298
redirecting input..2312
redirecting output ...2313

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3801

Index

redirection ..2312
reserved words ..2301
shell commands...2316
shell execution environment ...2331
shell grammar lexical conventions ...2325
shell grammar rules ..2325
shell variables ..2302
signals and error handling...2330
simple commands ...2316
single-quote ..2298
special built-in utilities ...2334
special parameter ..2302
tilde expansion...2305
token recognition ...2299
word expansions ...2305

shell script ..89
exec ..780

shell, the..88
Shell_Path_List ..2387
shift ..2364
shl

rationale for omission...3682
SHM ..10, 472
shm ..472
shm*() ...3518
shmat() ...1905
shmctl() ..1907, 3518
shmdt() ...1909, 3518
shmget() ...1911
shmid ..496
SHMLBA ..380, 1905
shm_ ..471
SHM_ ..472
shm_open()...1898, 3533-3536
shm_perm ...496
SHM_RDONLY ...380, 1905
SHM_RND ...380, 1905
shm_unlink()..1903, 3534-3536
should ...6, 3414

rationale ..3414
SHRT_MAX ..279
SHRT_MIN ...279
shutdown() ..1913
SHUT_ ...472
SHUT_RD ...385
SHUT_RDWR ..385
SHUT_WR ..385
SIGABRT...329, 556, 3440, 3507
sigaction() ..1915, 3510, 3512
sigaddset() ...1923
SIGALRM ...329, 585, 1026, 1963
sigaltstack()..1924

3802 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

SIGBUS ..329, 333, 500, 1311, 1314, 1701, 3440, 3508
SIGCANCEL ..1572
SIGCHLD329, 333, 545-546, 683, 1068, 1093, 1915, 1920, 1930, 2069, 2181, 2190, 3429

..3509, 3513
SIGCLD ...1920, 3513
SIGCONT ...329, 490, 546, 548, 1199-1200, 2641, 3429, 3510, 3513-3514
sigdelset()...1926
sigemptyset() ...1927
SIGEMT ..3508
SIGEV_ ..471
sigev_ ..471
SIGEV_NONE ..328, 485, 498, 3510
SIGEV_SIGNAL ...328, 485, 2110, 3510-3511
SIGEV_THREAD ...328, 485-486, 1222, 3510
sigfillset()..1929
SIGFPE ..329, 333, 1701, 1937, 3440, 3508, 3510
sighold() ...1930
SIGHUP ...329, 545-546, 548, 676, 2619, 2641, 3309, 3350, 3514
sigignore()..1930
SIGILL ...329, 333, 1701, 1937, 3440, 3508
siginfo_t ..332
SIGINT ..329, 883, 2069, 2330, 2593, 2619, 2640, 3362, 3430, 3581
siginterrupt() ...1933
SIGIOT ...3507-3508
sigismember()..1935
SIGKILL ..329, 1200, 1915, 1920, 1930, 3507, 3510, 3514
siglongjmp() ..1936, 3504, 3515, 3693
signal ...89, 484, 3434, 3594, 3671

acceptance ..3509
actions ...3513
concepts ..3507
delivery ...484, 3509
error handling..2330
generation ...484, 3509
names ..3507
realtime delivery ...485
realtime generation ...485
stack ...89

signal batch job request ..2396
signal handler ..1937
signal processes ...2820
signal()..1937, 3507, 3509
signaling NaN..247
signbit() ..1939
signgam ..1214
signgam() ...1940
sigpause()...1930, 1941
sigpending() ..1942
SIGPIPE ...329, 806, 845, 906, 911, 938, 941, 1720, 2266, 3440, 3506
SIGPOLL ..329, 333, 676, 1124-1125
sigprocmask()..1701, 1943, 3509
SIGPROF ...329, 1026

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3803

Index

sigqueue() ..1944
SIGQUEUE_MAX ...270, 1944, 2063
SIGQUIT ...329, 2069, 2330, 2619
sigrelse() ...1930, 1946
SIGRTMAX ..329, 485-486, 1918, 1944, 1951, 1955, 3511-3512
SIGRTMIN ...329, 485-486, 1918, 1944, 1951, 1955, 3511-3512
SIGSEGV ...329, 333, 500, 1066, 1357, 1537, 1701, 1937, 3440, 3508
sigset() ..1930, 1946
sigsetjmp() ...1947, 3693
sigset_t ..3507
SIGSTKSZ ...331, 1924
SIGSTOP ...329, 485, 1915, 1920, 1930, 3514
sigsuspend() ..1949, 3513, 3516
SIGSYS ..329, 3508
SIGTERM ..329, 2641, 3507
sigtimedwait() ...1951, 3507, 3527, 3553
SIGTRAP ..329, 333, 3508
SIGTSTP ..329, 485, 2686, 3430, 3514
SIGTTIN ..329, 485, 848, 854, 1739, 3429, 3481, 3514
SIGTTOU329, 485, 805, 844, 906, 910, 938, 940, 2079, 2081, 2083, 2090, 2093-2094, 2266

..3429, 3481, 3514
SIGURG ..329, 1125
SIGUSR1 ...329, 3507
SIGUSR2 ...329, 3507
SIGVTALRM ..329, 1026
sigwait() ...1955, 3507, 3588
sigwaitinfo() ..1951, 1957, 3507, 3527
sigwait_multiple() ..3509
SIGXCPU ..329, 1065
SIGXFSZ ...329, 1065, 2136
SIG_ ...473
SIG_ATOMIC_MAX ...348
SIG_ATOMIC_MIN ..348
SIG_BLOCK ...331, 1701
SIG_DFL ..328, 486, 773, 1066, 1915, 1917, 1937, 3509-3510, 3513
SIG_ERR ...328, 1937
SIG_HOLD ...328, 1930
SIG_IGN328, 487, 545-546, 774, 781, 1068, 1915, 1937, 2181, 2330, 3429, 3509-3510

..3513, 3516
SIG_SETMASK ..331, 1701
SIG_UNBLOCK ...331, 1701
simple commands ...2316, 3663
sin() ...1958
sin6_ ..471
sinf()..1958
single-quote ..89, 2298, 3648
sinh()...1960
sinhf() ...1960
sinhl()..1960
sinl() ..1958, 1962
sin_ ..471
SIO ...10

3804 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

SIOCATMARK ..1966
sival_ ...471
size

rationale for omission...3682
SIZE_MAX ...348
size_t ...398
SI_ ..471
si_ ...471
SI_ASYNCIO ..333, 488
SI_MESGQ ..333, 488
SI_QUEUE ..333, 488
SI_TIMER ...333, 488
SI_USER ..333, 488, 3512
slash ...89
sleep ..3180, 3693
sleep()..1963, 3515-3516, 3690, 3692
SLR(1) grammars...3402
sl_ ...471
SND ...471
SNDTIMEO ..523
SNDZERO ..365, 1128
snprintf() ..893, 1965
SO ..472
sockaddr_in ..303
sockaddr_in6 ..303
sockatmark()..1966
socket ..89, 517, 3592

address ..89
address families ...517
addressing ..517
asynchronous errors ...521
connection indication queue..521
I/O mode..519, 3593
Internet Protocols ..525, 3594
IPv4 ..526, 3594
IPv6 ..526, 3594
local UNIX connection..3594
local UNIX connections..525
options ..522
out-of-band data..520
out-of-band data state...3594
owner ..519, 3593
pending error ...519
protocols ...517
queue limit ...3593
queue limits..519
receive queue ...520, 3593
signals ...521
types ..518, 3593

socket() ...1968
socketpair() ..1970
SOCK_ ...473

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3805

Index

SOCK_DGRAM ...383, 525, 1968, 1970
SOCK_RAW ...383, 526
SOCK_SEQPACKET ...383, 526, 1968, 1970
SOCK_STREAM ..383, 525, 1968, 1970
soft limit..90
software development ..3688, 3696
SOL_SOCKET ..383
SOMAXCONN ..384
sort ...3183, 3694-3695
source code...90
SO_ACCEPTCONN ..384, 523
SO_BROADCAST ...384, 523
SO_DEBUG ..384, 523
SO_DONTROUTE ..384, 523
SO_ERROR ...384, 523
SO_KEEPALIVE ..384, 523
SO_LINGER ...384, 523
SO_OOBINLINE ...384, 523
SO_RCVBUF ..384, 523
SO_RCVLOWAT ...384, 523
SO_RCVTIMEO ...384, 523
SO_REUSEADDR ..384, 523
SO_SNDBUF ..384, 523
SO_SNDLOWAT ...384, 523
SO_SNDTIMEO ...384
SO_TYPE ..384, 523
space character...90
spawn ..90
spawn example..3625
special built-in ...90, 2542, 2967, 2980, 3068, 3177, 3234, 3253, 3668
special built-in utilities ...2334, 3673

break ..2335, 2339
characteristics ...2334
colon ..2337
dot ..2341
eval ..2343
exec ..2345
exit ...2347
export ..2349
readonly ..2352
return ...2355
set ...2357
shift ..2364
times ..2366
trap ..2368
unset ..2372

special characters...3483
special control character...3484
special parameter ..91, 2302, 3651
special targets ...2913
specific implementation ...3427
SPEC_CHAR ..192

3806 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

spell
rationale for omission...3682

spin lock ..91, 3569-3570
split ..3190, 3694
split files

csplit ..2559
split ..3190

SPN ..10
spoofing ..2353
sporadic server ..91
sporadic server policy

execution capacity...503
replenishment period ...503
scheduling ..3545

sprintf() ..893, 1972
spurious wakeup...1580
sqrt() ...1973
sqrtf() ..1973
sqrtl() ..1973
srand() ..1733, 1975
srand48() ..738, 1976
srandom() ...1118, 1977
SS ...10
sscanf() ...929, 1978
SSIZE_MAX ...279, 399, 1330, 1346, 1737, 1749, 2004, 2263, 3621, 3706
ssize_t ..398
SS_ ...471
ss_ ...471-472
SS_DISABLE ...331, 1924-1925
SS_ONSTACK ..331, 1924
SS_REPL_MAX ..270, 3548
stack size...1532
stack_t ...331
standard error ..91, 2312
standard I/O stream ...490, 3517
standard input ...91, 2312
standard output ...91, 2312
standard utilities ..91
START ...2081
stat ...3645
stat data structure..388
stat() ..945, 1979, 3425, 3533, 3645, 3690
state-dependent character encoding ..3454
statvfs()...951, 1980, 3646
stderr ...352, 1981
STDERR_FILENO ...443, 1981
stdin ...352, 1981
STDIN_FILENO ..443, 1407, 1981
stdio

locking functions ...859
with explicit client locking...993

stdout ..352, 1981

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3807

Index

STDOUT_FILENO ..443, 1407, 1981
STOP ..2081
stpcpy() ..1983, 1993
stpncpy() ..1984, 2021
STR ..473
strbuf ...362
strcasecmp()...1985
strcasecmp_l() ...1985
strcat()...1987
strchr() ..1988
strcmp() ..1989
strcoll() ...1991
strcoll_l() ..1991
strcpy() ...1993
strcspn()..1996
strdup() ..1997
stream ..92

byte-oriented ..493
interaction with file descriptors ..491
stream orientation ...493
wide-oriented ...493

stream-full-policy attribute ..532-533, 535, 1465
stream-min-size attribute ...535, 1468
STREAMS25, 92, 236, 362, 478, 676, 795, 816, 1032, 1123, 1140, 1381, 1403, 1523, 1719

..1738, 2265, 3517
access ...495
end ...92
head ...92
head/tail ...494
multiplexed ..1131
multiplexor ...92
overview ...494

STREAM_MAX ...270, 820, 878, 1407, 2063, 2121, 3706
strerror() ...1999
strerror_l()..1999
strerror_r() ...1999
strfdinsert ...362
strfmon() ..2002
strfmon_l() ...2002
strftime() ..2007
strftime_l() ...2007
string ...92
strings ..3194, 3696
strioctl ...362
strip ...3197, 3696
strlen() ..2016
strncasecmp() ..1985, 2018
strncasecmp_l() ...1985, 2018
strncat() ..2019
strncmp()..2020
strncpy() ...2021
strndup() ..1997, 2023

3808 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

strnlen() ..2024
strpbrk() ...2025
strpeek ...362
strptime() ...2026
strrchr() ..2031
strrecvfd ..362
strsignal() ...2032
strspn() ...2033
strstr() ...2034
strtod()..2035
strtof() ...2035
strtoimax() ...2039
strtok() ..2040
strtok_r() ..2040
strtol() ...2043
strtold()...2035, 2046
strtoll() ..2043, 2047
strtoul()...2048
strtoull() ...2048
strtoumax() ..2039, 2051
structures, additions to...3500
strxfrm() ...2052
strxfrm_l() ..2052
str_ ...471
str_list ..362
str_mlist ..363
stty ...3199, 3469, 3696

combination modes...3204
control modes ..3199
input modes ...3200
local modes...3202
output modes...3201
special control character assignments..3203

ST_ ...472
st_ ...472
st_gid ...2415
st_mode ...2415
st_mtime ...2415
ST_NOSUID ...393, 774, 951
ST_RDONLY ..393, 951
st_size ..2415
st_uid ...2415
su

rationale for omission...3682
subprofiling ..20, 3419
subprofiling option groups ..3711
subshell ...93, 3429
successfully completed...3441
successfully transferred ..93
sum ..3646

rationale for omission...3682
sun_ ...472

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3809

Index

superuser562, 661, 1218, 2157, 2725, 2870, 3032, 3422, 3434, 3444, 3653, 3680
supplementary group ID..93, 2279, 3434
supplementary groups ...661, 1021, 3444
supported threads functions..3572
suseconds_t ..398
suspended job ..93
SVID ..1947
SVR4 ..1313, 1360
sv_ ..471
SV_ ...473
swab() ...2054
swapcontext() ..3623
swprintf() ...973, 2055
swscanf() ..983, 2056
SWTCH ...473
symbolic constant..93, 3416, 3435
symbolic link..94, 3436
symbolic name...3416
symbols ...3498

POSIX.1 ...468
symlink() ..2057
symlinkat()...2057
SYMLINK_MAX ...272, 280, 886, 2058
SYMLOOP_MAX ..270, 2063, 3504
SYMTYPE ...409
sync() ..2060
synchronized I/O..3527, 3691

completion ..94
data integrity completion...94, 3441, 3527
file integrity completion...94, 3441, 3527

synchronized I/O operation..94
synchronized input and output ..94
synchronous I/O operation...95
synchronously accept a signal...1952
synchronously-generated signal ...95, 3440
sysconf() ...2061, 3427, 3530, 3532, 3534, 3581, 3639, 3689, 3691
syslog() ...682, 2068, 3696
system ...95

boot ..95
call ...3440
clock ..95
configuration values ...2772
console ..95, 3441
crash ..95, 954
database ..3441
databases ..96
documentation ...96
name ..2149, 3269
process ..96, 3441
reboot ..96, 3441
trace event ..96
trace event type definitions ...535

3810 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

system documentation ...3415
system environment ...3688, 3696
System III..661, 2149, 3433, 3620
system interfaces ...543, 3622
System V...........................548, 585, 661, 782, 812, 888, 1048, 1200, 1290, 1791, 1887, 1920, 1947, 2085

..2149, 3425, 3430, 3508
system()...2069, 3693, 3696-3697
system-wide ...96
S_ ...471
s_...471
S_ ...473
S_ constants

defined in <sys/stat.h> ..389
S_ macros

defined in <sys/stat.h> ..389
S_BANDURG ...364, 1125
S_ERROR ..364, 1125
S_HANGUP ...364, 1125
S_HIPRI ...364, 1124
S_IFBLK ..389, 1298
S_IFCHR ...389, 1298
S_IFDIR ...389, 1298
S_IFIFO ...389, 1298
S_IFLNK ...389
S_IFMT ..389
S_IFREG ..389, 1298
S_IFSOCK ...389
S_INPUT ...364, 1124
S_IRGRP ...799, 942, 945, 1298
S_IROTH ...799, 942, 945, 1298
S_IRUSR ..799, 942, 945, 1298
S_IRWXG ..1298
S_IRWXO ..1298
S_IRWXU ..1298
S_ISBLK ..389
S_ISCHR ...389
S_ISDIR ...389
S_ISFIFO ...389
S_ISGID ...391, 655, 657, 1298, 2136, 2264
S_ISLNK ...390
S_ISREG ..389
S_ISSOCK ...390
S_ISUID ..391, 655, 657, 1298, 2136, 2264
S_ISVTX ..655, 1298
S_IWGRP ..799, 942, 945, 1298
S_IWOTH ...799, 942, 945, 1298
S_IWUSR ..799, 942, 945, 1298
S_IXGRP ...1298
S_IXOTH ...1298
S_IXUSR ..1298
S_MSG ...364, 1124
S_OUTPUT ...364, 1124

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3811

Index

S_RDBAND ...364, 1124-1125
S_RDNORM ...364, 1124
S_TYPEISMQ ...390
S_TYPEISSEM ..390
S_TYPEISSHM ...390
S_TYPEISTMO ...390
S_WRBAND ...364, 1124
S_WRNORM ..364, 1124
tab character...97
TABDLY ..413
TABn ..413
tabs ..3208, 3694
TABSIZE ...619, 1263
tag file creation ..2563
tail ..3212, 3694
talk ...3216, 3695
tan()...2074
tanf() ...2074
tanh() ..2076
tanhf() ...2076
tanhl() ...2076
tanl() ...2074, 2078
tar

rationale for omission...3682
tar format..3023
target queue ...2393
target rule ...2908
tcdrain()..2079
tcflow() ...2081
tcflush() ..2083
tcgetattr()..2085, 3429
tcgetpgrp() ...2087, 3429, 3480
tcgetsid() ..2089
TCIFLUSH ..415, 2083
TCIOFF ...415, 2081
TCIOFLUSH ...415, 2083
TCION ..415, 2081
TCOFLUSH ..2083
TCOOFF ..415, 2081
TCOON ...415, 2081
TCP_ ..471
TCP_NODELAY ..307
TCSADRAIN ..415, 2092
TCSAFLUSH ..415, 2092
TCSANOW ...415, 2092
tcsendbreak() ...2090
tcsetattr() ..2092, 3429, 3479
tcsetpgrp() ..2095, 3428-3429
TCT ..10
tdelete() ..2097
tee ..3220, 3693
TEF ...11

3812 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

telldir()..2101
tempnam() ...2102
TERM ..178, 3469
terminal ...97

access control ...2085, 2093, 3481
controlling ..200
device file..3479
device file, closing ...3483
device name ...2140
type ..198, 3478

terminal characteristics
stty ...3199
tabs ..3208
tput ..3242
tty ...3257

terminal device ..97
terminate a process ...547, 2820
terminology ..3414
termios ..199

canonical mode input processing ...202
control modes ..209
controlling terminal ..200
input modes ...206
local modes...210
non-canonical mode input processing ...202
output modes...207
process group ...200
special control characters ...212

termios structure ...2085, 3483
test ...3223, 3693, 3695
TeX...3695
text column...97
text file ..97, 3441
tfind()..2097, 2104
tgamma()..2105
tgammaf() ..2105
tgammal() ..2105
TGEXEC ..409
TGREAD ...409
TGWRITE ...409
THOUSEP ...265
thread ..97, 3442
thread cancelability

states ..3588
type ..3588

thread cancellation ..3586, 3588
cleanup handlers ...515

thread cancellation points..3588
thread concurrency level..3576
thread creation ...1602
thread creation attributes ...1532, 3565
thread ID...97, 508, 1606, 3442, 3581

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3813

Index

thread interactions ..3592
thread list..98
thread mutex..508, 3582
thread read-write lock ..3590
thread scheduling..509, 3582
thread stack guard size ...3577
thread termination ..1607
thread-safe function ..3442
thread-safety ..98, 114, 507, 859, 3442, 3452, 3578

rationale ..3452
thread-specific data...3567
thread-specific data key ...98

creation ...1621
deletion ...1623

thread-specific data management...1615
threads ..507, 3564

extensions ...3573
implementation models ...3566
regular file operations...516

tilde ..98
tilde expansion...2305, 3655
time ..3232, 3693, 3696
time() ..2107, 3504
timeouts ..98, 3557
timer ..98

ID ...2112
overrun ...98

timers ..3549
TIMER_ ...472
timer_ ..472
TIMER_ABSTIME ..422, 506, 671, 2114, 3549-3551
timer_create() ..2110
timer_delete() ..2113
timer_getoverrun() ...2114
timer_gettime()..2114
TIMER_MAX ...271, 2063, 3706
timer_settime()...2114, 3549-3551
timer_t ...398
times ..2366
times()...2117, 3504, 3556, 3690
timespec ..421
timestamp clock...3618
timeval ..376, 395
timezone() ..2120
time_t ..398, 3451
tm ...421
TMAGIC ...409
TMAGLEN ...409
TMPDIR ..178, 3010
tmpfile()..2121
tmpnam() ...2123
TMP_MAX ..351, 2102, 2122-2123

3814 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

tms ...397
tms_ ...472
tm_ ...472
toascii() ...2125
TOEXEC ..409
token ..99
token recognition ...2299, 3650
tolower()...2126
tolower_l() ...2126
TOREAD ...409
TOSTOP ..414, 805, 844, 906, 910, 938, 940, 2266, 3429
touch ..3236, 3646, 3695
toupper() ..2127
toupper_l() ...2127
towctrans()...2129
towctrans_l()..2129
towlower() ...2131
towlower_l() ..2131
TOWRITE ...409
towupper()...2133
towupper_l()..2133
TPI ..11
TPP ..11
TPS ...11
tput ..3242, 3696
tr . ..3245, 3694-3695
trace analyzer...3607
trace analyzer process ...99
trace controller process ...99
trace event ..99

POSIX_TRACE_ERROR ...536
POSIX_TRACE_FILTER ...536, 1499
POSIX_TRACE_OVERFLOW ...536
POSIX_TRACE_RESUME ..536
POSIX_TRACE_START ..536, 1508
POSIX_TRACE_STOP ..536, 1508

trace event type ...99, 3616
filtering ...3616
mapping ..99

trace examples ...3605
trace filter..99
trace functions ...539
trace generation version...99
trace log ..100
trace model...3600
trace operation control ...3605
trace point...100
trace storage ...3604
trace stream ..100

attribute ..3609
identifier ...100
states ..3603

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3815

Index

trace system..100
trace-name attribute..535, 1462
traced process ..100
TRACE_EVENT_NAME_MAX ..271, 1487, 1489
TRACE_NAME_MAX ..271
TRACE_SYS_MAX ..271, 1484
TRACE_USER_EVENT_MAX ...271, 1487, 1489
tracing ...25, 114
TRACING1460, 1462, 1464, 1467, 1479, 1481, 1483, 1487, 1489, 1492, 1494, 1497, 1499

..1502, 1508
tracing ...3452, 3594

all processes ...3603
detailed objectives...3596
status of a trace stream ...100

track batch job request ..2397
trap ..2368
TRAP_ ...471
TRAP_BRKPT ..333
TRAP_TRACE ...333
TRC ..11
TRI ...11
triggering ..3618
TRL ..11
troff ..3695
trojan horse...2871, 3422
true ..2296, 2317, 3252, 3647, 3693
trunc() ...2135
truncate()..2136
truncation-status attribute ...1487
truncf()..2135, 2138
truncl()..2135, 2138
TSA ..12
tsearch()..2097, 2139
TSGID ..409
TSH ..12
tsort ..3254
TSP ...12
TSS ...12
TSUID ...409
TSVTX ...409
tty ...3257, 3696
ttyname()..2140, 3578
ttyname_r() ..2140
TTY_NAME_MAX ..271, 2063, 2140, 3706
TUEXEC ..409
TUREAD ...409
TUWRITE ...409
TVERSION ...409
TVERSLEN ...409
tv_ ..472
twalk() ..2097, 2142
TYM ...12

3816 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

type ..3259
typed memory ...3536

name space ...100
object ...101
pool ..101
port ..101

TZ ..178, 3469
tzname ..2143
TZNAME_MAX ..271, 2063, 3706
tzset ...2143
tzset() ..2143, 3693
T_FMT ...265
T_FMT_AMPM ..265
t_scalar_t ...362
t_uscalar_t ...362, 1126
ualarm()..3624, 3690
UCHAR_MAX ..278-279
ucontext_t ...331
uc_ ...471
UID_MAX ..3621
uid_t ..398, 3442
UINT ...473
UINTMAX_MAX ..348
UINTN_MAX ..347
UINTPTR_MAX ..348
UINT_FASTN_MAX ...347
UINT_LEASTN_MAX ..347
UINT_MAX ..279, 585, 1964
UIO_MAXIOV ...472
ulimit ...3261
ulimit()..2145
ULLONG_MAX ..279, 2049
ULONG_MAX ...279, 2049, 2238, 3639
UL_ ..472
UL_GETFSIZE ...429, 2145
UL_SETFSIZE ..429, 2145
umask ..2296, 2317, 3263, 3647, 3696
umask() ..2147, 3690
umount() ..3431
unalias ...2296, 2317, 3267, 3647, 3694
uname ...3269, 3696
uname() ..2149, 3689
unary primaries ...3225
unbind ...101
unbounded priority inversion...3586
uncompress ..3272
undefined ...6, 3415

rationale ..3415
underlying function ..493
unexpand ..3275, 3694
unget ...3278
ungetc() ..2151

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3817

Index

ungetwc() ...2152
unicast ...526
uniq ..3281, 3694-3695
unlink ..3285
unlink() ...2154, 3506, 3533-3534, 3536, 3691
unlinkat() ...2154
unlockpt() ..2160
unpack

rationale for omission...3682
unsafe functions ..3514
unset ..2372
unsetenv() ..2161
unspecified ...6, 3415

rationale ..3415
until loop ..2323, 3668
UP ..12
upper multiplexing ...92
upshifting ...101
US-ASCII ...1139
uselocale() ..2162
user database ...101, 3442

access ...3443
user ID...102, 2798

logname ..2857
newgrp ..2961
real and effective ...1883
setting real and effective ..1883
who ..3374

user name ...102
user requirements ..3685
user trace event..102
user trace event type definitions...538
User_List ...2388
USER_PROCESS ..452, 760-761
USHRT_MAX ..279
usleep()...3624, 3690
ustar format..3023
UTC ...2143
utility ...102, 118, 3452

argument syntax..3485
conventions ..3485
description defaults ..3642
limits ..3639
option parsing..2778
syntax guidelines...215, 3486

utimbuf ...451
utime() ..2164, 3690
utimensat()...968, 2166
utimes() ..968, 2166
UTIME_NOW ..390, 968
UTIME_OMIT ..390, 968
utim_ ...472

3818 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

utmpx ..452
uts_ ..472
ut_ ..472
UU ...12
uucp ...3287, 3695
uudecode ...3291, 3694-3695
uuencode ...3294, 3694-3695
uustat ..3299
uux ...3302
val ..3306
variable ...103, 3651
variable assignment ..118, 3452
Variable_List ..2388
va_arg() ..2167
va_copy() ...2167
va_end() ...2167
va_start() ..2167
VDISCARD ..473
vdprintf() ...2168
VDSUSP ..473
VEOF ...411, 3484
VEOL ...411, 3484
VERASE ..411
Version 7 ...585, 1200, 2149, 3449, 3648
vertical-tab character ..103
vfork()...3624
vfprintf()...2168
VFS ..393
vfscanf()..2170
vfwprintf() ...2171
vfwscanf() ..2172
vhangup() ..3430
vi. ..3309, 3694-3695

<ESC> ...3349
append ..3330
change ...3331
change to end-of-line ..3332
clear and redisplay ..3317
command descriptions ...3310
control-D ...3346
control-H ..3346
control-T ...3348
control-U ...3348
control-V ...3348
current and line above..3324
delete ...3332
delete character..3342
delete to end-of-line ..3333
display information ..3316
edit the alternate file ...3318
enter ex mode ..3338
execute ..3329

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3819

Index

execute an ex command ...3328
exit ...3344
find character..3333-3334
find regular expression ...3326
Initialization ...3310
input mode commands ..3344
insert ..3335
insert empty line..3337
join ...3335
mark position...3336
move back..3324-3325, 3330-3331
move cursor...3316, 3319-3320, 3339-3340
move down ..3317
move forward...3324-3325
move to bigword ...3333, 3341
move to bottom of screen ...3335
move to first character in line..3328
move to first non-<blank> ...3324
move to line..3334
move to matching character ..3321
move to middle of screen ...3336
move to next section ...3323
move to specific column...3325
move to top of screen ..3334
move to word...3333, 3341
move up..3317
newline ...3347
nul ..3346, 3349
page backwards ...3315
page forward..3316
put from buffer ...3337-3338
redraw screen ...3318
redraw window ...3343
regular expression ...3329
repeat ...3326
repeat find ..3328, 3336
repeat substitution ..3322
replace character ..3338-3339
replace text with command ...3320
return to previous context..3322
return to previous section ..3323
reverse case ..3330
reverse find character ...3325
scroll backward..3318
scroll backward by line ...3318
scroll forward...3315
scroll forward by line ..3315
search for tagstring ...3319
shift left ...3328
shift right ..3329
substitute character...3339
substitute lines...3339

3820 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

terminate command or input mode ...3319
undo ..3340
undo current line...3341
yank ...3342
yank current line ...3343

VINTR ...411
virtual processor ..3443
VISIT ...2097, 2142
visual mode..2638
VKILL ..411
VLNEXT ...473
VMIN ..3484
vprintf() ..2168, 2173
VQUIT ...411
VREPRINT ...473
vscanf() ...2170, 2174
vsnprintf() ..2168, 2175
vsprintf() ..2168, 2175
vsscanf() ...2170, 2176
VSTART...411
VSTATUS ..473
VSTOP ...411
VSUSP ...411
vswprintf() ...2171, 2177
vswscanf()..2172, 2178
VTDLY ..413
VTIME ...3484
VTn ..413
VWERASE ..473
vwprintf()...2171, 2179
vwscanf()..2172, 2180
wait ..2296, 2317, 3364, 3647, 3693

for process termination ..2186
for thread termination ..1618

wait() ...2181, 3504, 3508, 3513-3514, 3516, 3690
waitid()...2190, 3514, 3690
waiting on a condition..1588
waitpid() ..2181, 2192, 3429, 3432, 3514, 3620, 3690
wall

rationale for omission...3682
WARNING ...873
warning

OB ..9
OF ..9

wc ..3368, 3694
WCHAR_MAX ..348, 454
WCHAR_MIN ...348, 454
WCONTINUED ..405, 2181, 2190
wcpcpy() ..2193, 2204
wcpncpy() ..2194, 2213
wcrtomb() ..2195
wcscasecmp() ..2197

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3821

Index

wcscasecmp_l() ...2197
wcscat() ..2199
wcschr()..2200
wcscmp()..2201
wcscoll() ...2202
wcscoll_l() ..2202
wcscpy() ...2204
wcscspn() ...2205
wcsdup() ..2206
wcsftime() ..2207
wcslen() ..2209
wcsncasecmp() ..2197, 2210
wcsncasecmp_l() ...2197, 2210
wcsncat() ..2211
wcsncmp() ...2212
wcsncpy()...2213
wcsnlen()..2209, 2215
wcsnrtombs()...2216, 2219
wcspbrk() ...2217
wcsrchr() ..2218
wcsrtombs() ...2219
wcsspn() ...2221
wcsstr() ...2222
wcstod()..2223
wcstof()...2223
wcstoimax() ...2227
wcstok()..2228
wcstol()...2230
wcstold() ..2223, 2233
wcstoll()..2230, 2234
wcstombs()...2235
wcstoul() ..2237
wcstoull() ...2237
wcstoumax() ..2227, 2240
wcswcs()...3625
wcswidth() ...2241
wcsxfrm() ...2242
wcsxfrm_l()..2242
wctob() ...2244
wctomb() ..2245
wctrans() ..2247
wctrans_l() ...2247
wctype() ...2249
wctype_l() ..2249
wcwidth()...2251
WEOF454, 459, 541, 1169, 1171, 1174, 1176, 1178, 1180, 1182, 1184, 1186, 1188, 1190

..1192, 2131, 2133, 2152
WERASE ...3482
WEXITED ...405, 2190
WEXITSTATUS ..355, 405, 2182
we_ ..472
what ...3371

3822 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

while loop...2323, 3668
white space...103
who ..3374, 3695-3696
wide characters..129
wide-character code..3454
wide-character code (C language) ..103
wide-character input/output functions...103
wide-character string..103
wide-oriented stream ..493
WIFCONTINUED ...405, 2182
WIFEXITED ..355, 405, 2182
WIFSIGNALED ...355, 405, 2182
WIFSTOPPED ..355, 405, 2182, 2187
WINT_MAX ...348
WINT_MIN ..348
wmemchr() ..2252
wmemcmp() ..2253
wmemcpy()..2254
wmemmove() ..2255
wmemset() ...2256
WNOHANG ..355, 405, 1920, 2181, 2190
WNOWAIT ...405, 2190
word ..104
word counting ...3368
word expansions ...2305, 3654
wordexp() ..2257, 3696
wordfree() ..2257, 3696
WORD_BIT ...278-279
working directory ...104
worldwide portability interface ..104
wprintf()...973, 2262
WRDE_ ...472
WRDE_APPEND ...461, 2258
WRDE_BADCHAR ...461, 2259
WRDE_BADVAL ...461, 2259
WRDE_CMDSUB ..461, 2259
WRDE_DOOFFS ...461, 2258
WRDE_NOCMD ...461, 2258
WRDE_NOSPACE ..461, 2259
WRDE_REUSE ...461, 2258
WRDE_SHOWERR ...461, 2258
WRDE_SYNTAX ...461, 2259
WRDE_UNDEF ...461, 2258
write ...104, 3378, 3694-3695
write lock..3575
write to a file ..2267
write()..2263, 3428-3429, 3481, 3504, 3513-3514, 3516, 3526-3528, 3532-3533

..3621, 3691
writev()...2271
writing data..3483
wscanf()..983, 2273
WSTOPPED ..405, 2190

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3823

Index

WSTOPSIG ...355, 405, 2182
WTERMSIG ..355, 405, 2182
WUNTRACED ...355, 405, 2181, 2187, 3429
W_OK ..437
xargs ..3381, 3693
XOPEN_UNIX ...19, 28
XOPEN_UUCP ..19, 29
XSI ...12, 104, 3443

conformance ...15, 19, 105
XSI interprocess communication ..496
XSI IPC..3518
XSI options groups ..22
XSI STREAMS..25
XSI system interfaces

conformance ...19
XSI_C_LANG_SUPPORT...3715
XSI_DBM ..3716
XSI_DEVICE_IO ..3716
XSI_DEVICE_SPECIFIC ...3716
XSI_FILE_SYSTEM ...3716
XSI_IPC ...3716
XSI_JUMP ...3716
XSI_MATH ...3716
XSI_MULTI_PROCESS ...3716
XSI_SIGNALS ..3716
XSI_SINGLE_PROCESS ...3716
XSI_SYSTEM_DATABASE ...3716
XSI_SYSTEM_LOGGING ..3716
XSI_THREADS_EXT ...3716
XSI_TIMERS ...3716
XSI_USER_GROUPS ...3716
XSI_WIDE_CHAR ...3716
XSR ..13
X_OK ...437, 563
y0() ..2274
y1() ..2274
yacc ..3388, 3696, 3698

algorithms ..3399
code file...3390
completing the program ...3399
conflicts ...3397
debugging the parser..3399
declarations section...3391
description file ...3390
error handling..3397
grammar rules ...3393
header file...3390
input grammar...3395
input language...3390
interface to the lexical analyzer...3398
lexical structure of the grammar...3391
library ..3399

3824 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

Index

limits ..3400
programs section ...3394

YESEXPR ..265
YESSTR ...265
yn()..2274
zcat ..3405
zombie process ..105, 545

Base Specifications, Issue 7 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. 3825

Index

3826 Copyright © 2001-2008, IEEE and The Open Group. All rights reserved. Base Specifications, Issue 7

	Title Page
	Abstract
	IEEE
	The Open Group
	Introduction
	Background
	Audience
	Purpose
	POSIX.1-2008
	Base Definitions
	System Interfaces
	Shell and Utilities
	Rationale (Informative)
	Typographical Conventions

	Notice to Users
	Laws and Regulations
	Copyrights
	Updating of IEEE Documents
	Errata
	Feedback
	Interpretations
	Patents

	Participants
	Contents
	Trademarks
	Acknowledgements
	Referenced Documents
	IMPORTANT NOTICE
	XBD
	1 Introduction
	1.1 Scope
	1.2 Conformance
	1.3 Normative References
	1.4 Change History
	1.5 Terminology
	1.6 Definitions and Concepts
	1.7 Portability
	1.7.1 Codes
	1.7.2 Margin Code Notation

	2 Conformance
	2.1 Implementation Conformance
	2.1.1 Requirements
	2.1.2 Documentation
	2.1.3 POSIX Conformance
	2.1.4 XSI Conformance
	2.1.5 Option Groups
	2.1.6 Options

	2.2 Application Conformance
	2.2.1 Strictly Conforming POSIX Application
	2.2.2 Conforming POSIX Application
	2.2.3 Conforming POSIX Application Using Extensions
	2.2.4 Strictly Conforming XSI Application
	2.2.5 Conforming XSI Application Using Extensions

	2.3 Language-Dependent Services for the C Programming Language
	2.4 Other Language-Related Specifications

	3 Definitions
	3.1 Abortive Release
	3.2 Absolute Pathname
	3.3 Access Mode
	3.4 Additional File Access Control Mechanism
	3.5 Address Space
	3.6 Advisory Information
	3.7 Affirmative Response
	3.8 Alert
	3.9 Alert Character (<alert>)
	3.10 Alias Name
	3.11 Alignment
	3.12 Alternate File Access Control Mechanism
	3.13 Alternate Signal Stack
	3.14 Ancillary Data
	3.15 Angle Brackets
	3.16 Apostrophe Character (<apostrophe>)
	3.17 Application
	3.18 Application Address
	3.19 Application Program Interface (API)
	3.20 Appropriate Privileges
	3.21 Argument
	3.22 Arm (a Timer)
	3.23 Asterisk Character (<asterisk>)
	3.24 Async-Cancel-Safe Function
	3.25 Asynchronous Events
	3.26 Asynchronous Input and Output
	3.27 Async-Signal-Safe Function
	3.28 Asynchronously-Generated Signal
	3.29 Asynchronous I/O Completion
	3.30 Asynchronous I/O Operation
	3.31 Authentication
	3.32 Authorization
	3.33 Background Job
	3.34 Background Process
	3.35 Background Process Group (or Background Job)
	3.36 Backquote Character
	3.37 Backslash Character (<backslash>)
	3.38 Backspace Character (<backspace>)
	3.39 Barrier
	3.40 Basename
	3.41 Basic Regular Expression (BRE)
	3.42 Batch Access List
	3.43 Batch Administrator
	3.44 Batch Client
	3.45 Batch Destination
	3.46 Batch Destination Identifier
	3.47 Batch Directive
	3.48 Batch Job
	3.49 Batch Job Attribute
	3.50 Batch Job Identifier
	3.51 Batch Job Name
	3.52 Batch Job Owner
	3.53 Batch Job Priority
	3.54 Batch Job State
	3.55 Batch Name Service
	3.56 Batch Name Space
	3.57 Batch Node
	3.58 Batch Operator
	3.59 Batch Queue
	3.60 Batch Queue Attribute
	3.61 Batch Queue Position
	3.62 Batch Queue Priority
	3.63 Batch Rerunability
	3.64 Batch Restart
	3.65 Batch Server
	3.66 Batch Server Name
	3.67 Batch Service
	3.68 Batch Service Request
	3.69 Batch Submission
	3.70 Batch System
	3.71 Batch Target User
	3.72 Batch User
	3.73 Bind
	3.74 Blank Character (<blank>)
	3.75 Blank Line
	3.76 Blocked Process (or Thread)
	3.77 Blocking
	3.78 Block-Mode Terminal
	3.79 Block Special File
	3.80 Braces
	3.81 Brackets
	3.82 Broadcast
	3.83 Built-In Utility (or Built-In)
	3.84 Byte
	3.85 Byte Input/Output Functions
	3.86 Carriage-Return Character (<carriage-return>)
	3.87 Character
	3.88 Character Array
	3.89 Character Class
	3.90 Character Set
	3.91 Character Special File
	3.92 Character String
	3.93 Child Process
	3.94 Circumflex Character (<circumflex>)
	3.95 Clock
	3.96 Clock Jump
	3.97 Clock Tick
	3.98 Coded Character Set
	3.99 Codeset
	3.100 Collating Element
	3.101 Collation
	3.102 Collation Sequence
	3.103 Column Position
	3.104 Command
	3.105 Command Language Interpreter
	3.106 Composite Graphic Symbol
	3.107 Condition Variable
	3.108 Connected Socket
	3.109 Connection
	3.110 Connection Mode
	3.111 Connectionless Mode
	3.112 Control Character
	3.113 Control Operator
	3.114 Controlling Process
	3.115 Controlling Terminal
	3.116 Conversion Descriptor
	3.117 Core File
	3.118 CPU Time (Execution Time)
	3.119 CPU-Time Clock
	3.120 CPU-Time Timer
	3.121 Current Job
	3.122 Current Working Directory
	3.123 Cursor Position
	3.124 Datagram
	3.125 Data Segment
	3.126 Deferred Batch Service
	3.127 Device
	3.128 Device ID
	3.129 Directory
	3.130 Directory Entry (or Link)
	3.131 Directory Stream
	3.132 Disarm (a Timer)
	3.133 Display
	3.134 Display Line
	3.135 Dollar-Sign Character (<dollar-sign>)
	3.136 Dot
	3.137 Dot-Dot
	3.138 Double-Quote Character
	3.139 Downshifting
	3.140 Driver
	3.141 Effective Group ID
	3.142 Effective User ID
	3.143 Eight-Bit Transparency
	3.144 Empty Directory
	3.145 Empty Line
	3.146 Empty String (or Null String)
	3.147 Empty Wide-Character String
	3.148 Encoding Rule
	3.149 Entire Regular Expression
	3.150 Epoch
	3.151 Equivalence Class
	3.152 Era
	3.153 Event Management
	3.154 Executable File
	3.155 Execute
	3.156 Execution Time
	3.157 Execution Time Monitoring
	3.158 Expand
	3.159 Extended Regular Expression (ERE)
	3.160 Extended Security Controls
	3.161 Feature Test Macro
	3.162 Field
	3.163 FIFO Special File (or FIFO)
	3.164 File
	3.165 File Description
	3.166 File Descriptor
	3.167 File Group Class
	3.168 File Mode
	3.169 File Mode Bits
	3.170 Filename
	3.171 File Offset
	3.172 File Other Class
	3.173 File Owner Class
	3.174 File Permission Bits
	3.175 File Serial Number
	3.176 File System
	3.177 File Type
	3.178 Filter
	3.179 First Open (of a File)
	3.180 Flow Control
	3.181 Foreground Job
	3.182 Foreground Process
	3.183 Foreground Process Group (or Foreground Job)
	3.184 Foreground Process Group ID
	3.185 Form-Feed Character (<form-feed>)
	3.186 Graphic Character
	3.187 Group Database
	3.188 Group ID
	3.189 Group Name
	3.190 Hard Limit
	3.191 Hard Link
	3.192 Home Directory
	3.193 Host Byte Order
	3.194 Incomplete Line
	3.195 Inf
	3.196 Instrumented Application
	3.197 Interactive Shell
	3.198 Internationalization
	3.199 Interprocess Communication
	3.200 Invoke
	3.201 Job
	3.202 Job Control
	3.203 Job Control Job ID
	3.204 Last Close (of a File)
	3.205 Line
	3.206 Linger
	3.207 Link
	3.208 Link Count
	3.209 Local Customs
	3.210 Local Interprocess Communication (Local IPC)
	3.211 Locale
	3.212 Localization
	3.213 Login
	3.214 Login Name
	3.215 Map
	3.216 Marked Message
	3.217 Matched
	3.218 Memory Mapped Files
	3.219 Memory Object
	3.220 Memory-Resident
	3.221 Message
	3.222 Message Catalog
	3.223 Message Catalog Descriptor
	3.224 Message Queue
	3.225 Mode
	3.226 Monotonic Clock
	3.227 Mount Point
	3.228 Multi-Character Collating Element
	3.229 Mutex
	3.230 Name
	3.231 Named STREAM
	3.232 NaN (Not a Number)
	3.233 Native Language
	3.234 Negative Response
	3.235 Network
	3.236 Network Address
	3.237 Network Byte Order
	3.238 Newline Character (<newline>)
	3.239 Nice Value
	3.240 Non-Blocking
	3.241 Non-Spacing Characters
	3.242 NUL
	3.243 Null Byte
	3.244 Null Pointer
	3.245 Null String
	3.246 Null Wide-Character Code
	3.247 Number-Sign Character (<number-sign>)
	3.248 Object File
	3.249 Octet
	3.250 Offset Maximum
	3.251 Opaque Address
	3.252 Open File
	3.253 Open File Description
	3.254 Operand
	3.255 Operator
	3.256 Option
	3.257 Option-Argument
	3.258 Orientation
	3.259 Orphaned Process Group
	3.260 Page
	3.261 Page Size
	3.262 Parameter
	3.263 Parent Directory
	3.264 Parent Process
	3.265 Parent Process ID
	3.266 Pathname
	3.267 Pathname Component
	3.268 Path Prefix
	3.269 Pattern
	3.270 Period Character (<period>)
	3.271 Permissions
	3.272 Persistence
	3.273 Pipe
	3.274 Polling
	3.275 Portable Character Set
	3.276 Portable Filename Character Set
	3.277 Positional Parameter
	3.278 Preallocation
	3.279 Preempted Process (or Thread)
	3.280 Previous Job
	3.281 Printable Character
	3.282 Printable File
	3.283 Priority
	3.284 Priority Band
	3.285 Priority Inversion
	3.286 Priority Scheduling
	3.287 Priority-Based Scheduling
	3.288 Privilege
	3.289 Process
	3.290 Process Group
	3.291 Process Group ID
	3.292 Process Group Leader
	3.293 Process Group Lifetime
	3.294 Process ID
	3.295 Process Lifetime
	3.296 Process Memory Locking
	3.297 Process Termination
	3.298 Process-To-Process Communication
	3.299 Process Virtual Time
	3.300 Program
	3.301 Protocol
	3.302 Pseudo-Terminal
	3.303 Radix Character
	3.304 Read-Only File System
	3.305 Read-Write Lock
	3.306 Real Group ID
	3.307 Real Time
	3.308 Realtime Signal Extension
	3.309 Real User ID
	3.310 Record
	3.311 Redirection
	3.312 Redirection Operator
	3.313 Referenced Shared Memory Object
	3.314 Refresh
	3.315 Regular Expression
	3.316 Region
	3.317 Regular File
	3.318 Relative Pathname
	3.319 Relocatable File
	3.320 Relocation
	3.321 Requested Batch Service
	3.322 (Time) Resolution
	3.323 Robust Mutex
	3.324 Root Directory
	3.325 Runnable Process (or Thread)
	3.326 Running Process (or Thread)
	3.327 Saved Resource Limits
	3.328 Saved Set-Group-ID
	3.329 Saved Set-User-ID
	3.330 Scheduling
	3.331 Scheduling Allocation Domain
	3.332 Scheduling Contention Scope
	3.333 Scheduling Policy
	3.334 Screen
	3.335 Scroll
	3.336 Semaphore
	3.337 Session
	3.338 Session Leader
	3.339 Session Lifetime
	3.340 Shared Memory Object
	3.341 Shell
	3.342 Shell, the
	3.343 Shell Script
	3.344 Signal
	3.345 Signal Stack
	3.346 Single-Quote Character
	3.347 Slash Character (<slash>)
	3.348 Socket
	3.349 Socket Address
	3.350 Soft Limit
	3.351 Source Code
	3.352 Space Character (<space>)
	3.353 Spawn
	3.354 Special Built-In
	3.355 Special Parameter
	3.356 Spin Lock
	3.357 Sporadic Server
	3.358 Standard Error
	3.359 Standard Input
	3.360 Standard Output
	3.361 Standard Utilities
	3.362 Stream
	3.363 STREAM
	3.364 STREAM End
	3.365 STREAM Head
	3.366 STREAMS Multiplexor
	3.367 String
	3.368 Subshell
	3.369 Successfully Transferred
	3.370 Supplementary Group ID
	3.371 Suspended Job
	3.372 Symbolic Constant
	3.373 Symbolic Link
	3.374 Synchronized Input and Output
	3.375 Synchronized I/O Completion
	3.376 Synchronized I/O Data Integrity Completion
	3.377 Synchronized I/O File Integrity Completion
	3.378 Synchronized I/O Operation
	3.379 Synchronous I/O Operation
	3.380 Synchronously-Generated Signal
	3.381 System
	3.382 System Boot
	3.383 System Clock
	3.384 System Console
	3.385 System Crash
	3.386 System Databases
	3.387 System Documentation
	3.388 System Process
	3.389 System Reboot
	3.390 System Trace Event
	3.391 System-Wide
	3.392 Tab Character (<tab>)
	3.393 Terminal (or Terminal Device)
	3.394 Text Column
	3.395 Text File
	3.396 Thread
	3.397 Thread ID
	3.398 Thread List
	3.399 Thread-Safe
	3.400 Thread-Specific Data Key
	3.401 Tilde Character (<tilde>)
	3.402 Timeouts
	3.403 Timer
	3.404 Timer Overrun
	3.405 Token
	3.406 Trace Analyzer Process
	3.407 Trace Controller Process
	3.408 Trace Event
	3.409 Trace Event Type
	3.410 Trace Event Type Mapping
	3.411 Trace Filter
	3.412 Trace Generation Version
	3.413 Trace Log
	3.414 Trace Point
	3.415 Trace Stream
	3.416 Trace Stream Identifier
	3.417 Trace System
	3.418 Traced Process
	3.419 Tracing Status of a Trace Stream
	3.420 Typed Memory Name Space
	3.421 Typed Memory Object
	3.422 Typed Memory Pool
	3.423 Typed Memory Port
	3.424 Unbind
	3.425 Unit Data
	3.426 Upshifting
	3.427 User Database
	3.428 User ID
	3.429 User Name
	3.430 User Trace Event
	3.431 Utility
	3.432 Variable
	3.433 Vertical-Tab Character (<vertical-tab>)
	3.434 White Space
	3.435 Wide-Character Code (C Language)
	3.436 Wide-Character Input/Output Functions
	3.437 Wide-Character String
	3.438 Word
	3.439 Working Directory (or Current Working Directory)
	3.440 Worldwide Portability Interface
	3.441 Write
	3.442 XSI
	3.443 XSI-Conformant
	3.444 Zombie Process
	3.445 Plus or Minus Zero

	4 General Concepts
	4.1 Concurrent Execution
	4.2 Directory Protection
	4.3 Extended Security Controls
	4.4 File Access Permissions
	4.5 File Hierarchy
	4.6 Filenames
	4.7 Filename Portability
	4.8 File Times Update
	4.9 Host and Network Byte Orders
	4.10 Measurement of Execution Time
	4.11 Memory Synchronization
	4.12 Pathname Resolution
	4.13 Process ID Reuse
	4.14 Scheduling Policy
	4.15 Seconds Since the Epoch
	4.16 Semaphore
	4.17 Thread-Safety
	4.18 Tracing
	4.19 Treatment of Error Conditions for Mathematical Functions
	4.19.1 Domain Error
	4.19.2 Pole Error
	4.19.3 Range Error

	4.20 Treatment of NaN Arguments for the Mathematical Functions
	4.21 Utility
	4.22 Variable Assignment

	5 File Format Notation
	6 Character Set
	6.1 Portable Character Set
	6.2 Character Encoding
	6.3 C Language Wide-Character Codes
	6.4 Character Set Description File
	6.4.1 State-Dependent Character Encodings

	7 Locale
	7.1 General
	7.2 POSIX Locale
	7.3 Locale Definition
	7.3.1 LC_CTYPE
	7.3.2 LC_COLLATE
	7.3.3 LC_MONETARY
	7.3.4 LC_NUMERIC
	7.3.5 LC_TIME
	7.3.6 LC_MESSAGES

	7.4 Locale Definition Grammar
	7.4.1 Locale Lexical Conventions
	7.4.2 Locale Grammar

	8 Environment Variables
	8.1 Environment Variable Definition
	8.2 Internationalization Variables
	8.3 Other Environment Variables

	9 Regular Expressions
	9.1 Regular Expression Definitions
	9.2 Regular Expression General Requirements
	9.3 Basic Regular Expressions
	9.3.1 BREs Matching a Single Character or Collating Element
	9.3.2 BRE Ordinary Characters
	9.3.3 BRE Special Characters
	9.3.4 Periods in BREs
	9.3.5 RE Bracket Expression
	9.3.6 BREs Matching Multiple Characters
	9.3.7 BRE Precedence
	9.3.8 BRE Expression Anchoring

	9.4 Extended Regular Expressions
	9.4.1 EREs Matching a Single Character or Collating Element
	9.4.2 ERE Ordinary Characters
	9.4.3 ERE Special Characters
	9.4.4 Periods in EREs
	9.4.5 ERE Bracket Expression
	9.4.6 EREs Matching Multiple Characters
	9.4.7 ERE Alternation
	9.4.8 ERE Precedence
	9.4.9 ERE Expression Anchoring

	9.5 Regular Expression Grammar
	9.5.1 BRE/ERE Grammar Lexical Conventions
	9.5.2 RE and Bracket Expression Grammar
	9.5.3 ERE Grammar

	10 Directory Structure and Devices
	10.1 Directory Structure and Files
	10.2 Output Devices and Terminal Types

	11 General Terminal Interface
	11.1 Interface Characteristics
	11.1.1 Opening a Terminal Device File
	11.1.2 Process Groups
	11.1.3 The Controlling Terminal
	11.1.4 Terminal Access Control
	11.1.5 Input Processing and Reading Data
	11.1.6 Canonical Mode Input Processing
	11.1.7 Non-Canonical Mode Input Processing
	11.1.8 Writing Data and Output Processing
	11.1.9 Special Characters
	11.1.10 Modem Disconnect
	11.1.11 Closing a Terminal Device File

	11.2 Parameters that Can be Set
	11.2.1 The termios Structure
	11.2.2 Input Modes
	11.2.3 Output Modes
	11.2.4 Control Modes
	11.2.5 Local Modes
	11.2.6 Special Control Characters

	12 Utility Conventions
	12.1 Utility Argument Syntax
	12.2 Utility Syntax Guidelines

	13 Headers
	<aio.h>
	<arpa/inet.h>
	<assert.h>
	<complex.h>
	<cpio.h>
	<ctype.h>
	<dirent.h>
	<dlfcn.h>
	<errno.h>
	<fcntl.h>
	<fenv.h>
	<float.h>
	<fmtmsg.h>
	<fnmatch.h>
	<ftw.h>
	<glob.h>
	<grp.h>
	<iconv.h>
	<inttypes.h>
	<iso646.h>
	<langinfo.h>
	<libgen.h>
	<limits.h>
	<locale.h>
	<math.h>
	<monetary.h>
	<mqueue.h>
	<ndbm.h>
	<net/if.h>
	<netdb.h>
	<netinet/in.h>
	<netinet/tcp.h>
	<nl_types.h>
	<poll.h>
	<pthread.h>
	<pwd.h>
	<regex.h>
	<sched.h>
	<search.h>
	<semaphore.h>
	<setjmp.h>
	<signal.h>
	<spawn.h>
	<stdarg.h>
	<stdbool.h>
	<stddef.h>
	<stdint.h>
	<stdio.h>
	<stdlib.h>
	<string.h>
	<strings.h>
	<stropts.h>
	<sys/ipc.h>
	<sys/mman.h>
	<sys/msg.h>
	<sys/resource.h>
	<sys/select.h>
	<sys/sem.h>
	<sys/shm.h>
	<sys/socket.h>
	<sys/stat.h>
	<sys/statvfs.h>
	<sys/time.h>
	<sys/times.h>
	<sys/types.h>
	<sys/uio.h>
	<sys/un.h>
	<sys/utsname.h>
	<sys/wait.h>
	<syslog.h>
	<tar.h>
	<termios.h>
	<tgmath.h>
	<time.h>
	<trace.h>
	<ulimit.h>
	<unistd.h>
	<utime.h>
	<utmpx.h>
	<wchar.h>
	<wctype.h>
	<wordexp.h>

	XSH
	1 Introduction
	1.1 Relationship to Other Formal Standards
	1.2 Format of Entries

	2 General Information
	2.1 Use and Implementation of Interfaces
	2.1.1 Use and Implementation of Functions
	2.1.2 Use and Implementation of Macros

	2.2 The Compilation Environment
	2.2.1 POSIX.1 Symbols
	2.2.2 The Name Space

	2.3 Error Numbers
	2.3.1 Additional Error Numbers

	2.4 Signal Concepts
	2.4.1 Signal Generation and Delivery
	2.4.2 Realtime Signal Generation and Delivery
	2.4.3 Signal Actions
	2.4.4 Signal Effects on Other Functions

	2.5 Standard I/O Streams
	2.5.1 Interaction of File Descriptors and Standard I/O Streams
	2.5.2 Stream Orientation and Encoding Rules

	2.6 STREAMS
	2.6.1 Accessing STREAMS

	2.7 XSI Interprocess Communication
	2.7.1 IPC General Description

	2.8 Realtime
	2.8.1 Realtime Signals
	2.8.2 Asynchronous I/O
	2.8.3 Memory Management
	2.8.4 Process Scheduling
	2.8.5 Clocks and Timers

	2.9 Threads
	2.9.1 Thread-Safety
	2.9.2 Thread IDs
	2.9.3 Thread Mutexes
	2.9.4 Thread Scheduling
	2.9.5 Thread Cancellation
	2.9.6 Thread Read-Write Locks
	2.9.7 Thread Interactions with Regular File Operations
	2.9.8 Use of Application-Managed Thread Stacks

	2.10 Sockets
	2.10.1 Address Families
	2.10.2 Addressing
	2.10.3 Protocols
	2.10.4 Routing
	2.10.5 Interfaces
	2.10.6 Socket Types
	2.10.7 Socket I/O Mode
	2.10.8 Socket Owner
	2.10.9 Socket Queue Limits
	2.10.10 Pending Error
	2.10.11 Socket Receive Queue
	2.10.12 Socket Out-of-Band Data State
	2.10.13 Connection Indication Queue
	2.10.14 Signals
	2.10.15 Asynchronous Errors
	2.10.16 Use of Options
	2.10.17 Use of Sockets for Local UNIX Connections
	2.10.18 Use of Sockets over Internet Protocols
	2.10.19 Use of Sockets over Internet Protocols Based on IPv4
	2.10.20 Use of Sockets over Internet Protocols Based on IPv6

	2.11 Tracing
	2.11.1 Tracing Data Definitions
	2.11.2 Trace Event Type Definitions
	2.11.3 Trace Functions

	2.12 Data Types
	2.12.1 Defined Types
	2.12.2 The char Type
	2.12.3 Pointer Types

	3 System Interfaces
	FD_CLR
	_Exit
	_longjmp
	_tolower
	_toupper
	a64l
	abort
	abs
	accept
	access
	acos
	acosh
	acosl
	aio_cancel
	aio_error
	aio_fsync
	aio_read
	aio_return
	aio_suspend
	aio_write
	alarm
	alphasort
	asctime
	asin
	asinh
	asinl
	assert
	atan
	atan2
	atanf
	atanh
	atanl
	atexit
	atof
	atoi
	atol
	basename
	bind
	bsearch
	btowc
	cabs
	cacos
	cacosh
	cacosl
	calloc
	carg
	casin
	casinh
	casinl
	catan
	catanh
	catanl
	catclose
	catgets
	catopen
	cbrt
	ccos
	ccosh
	ccosl
	ceil
	cexp
	cfgetispeed
	cfgetospeed
	cfsetispeed
	cfsetospeed
	chdir
	chmod
	chown
	cimag
	clearerr
	clock
	clock_getcpuclockid
	clock_getres
	clock_nanosleep
	clock_settime
	clog
	close
	closedir
	closelog
	confstr
	conj
	connect
	copysign
	cos
	cosh
	cosl
	cpow
	cproj
	creal
	creat
	crypt
	csin
	csinh
	csinl
	csqrt
	ctan
	ctanh
	ctanl
	ctermid
	ctime
	daylight
	dbm_clearerr
	difftime
	dirfd
	dirname
	div
	dlclose
	dlerror
	dlopen
	dlsym
	dprintf
	drand48
	dup
	duplocale
	encrypt
	endgrent
	endhostent
	endnetent
	endprotoent
	endpwent
	endservent
	endutxent
	environ
	erand48
	erf
	erfc
	erff
	errno
	exec
	exit
	exp
	exp2
	expm1
	fabs
	faccessat
	fattach
	fchdir
	fchmod
	fchmodat
	fchown
	fchownat
	fclose
	fcntl
	fdatasync
	fdetach
	fdim
	fdopen
	fdopendir
	feclearexcept
	fegetenv
	fegetexceptflag
	fegetround
	feholdexcept
	feof
	feraiseexcept
	ferror
	fesetenv
	fesetexceptflag
	fesetround
	fetestexcept
	feupdateenv
	fexecve
	fflush
	ffs
	fgetc
	fgetpos
	fgets
	fgetwc
	fgetws
	fileno
	flockfile
	floor
	fma
	fmax
	fmemopen
	fmin
	fmod
	fmtmsg
	fnmatch
	fopen
	fork
	fpathconf
	fpclassify
	fprintf
	fputc
	fputs
	fputwc
	fputws
	fread
	free
	freeaddrinfo
	freelocale
	freopen
	frexp
	fscanf
	fseek
	fsetpos
	fstat
	fstatat
	fstatvfs
	fsync
	ftell
	ftok
	ftruncate
	ftrylockfile
	ftw
	funlockfile
	futimens
	fwide
	fwprintf
	fwrite
	fwscanf
	gai_strerror
	getaddrinfo
	getc
	getc_unlocked
	getchar
	getchar_unlocked
	getcwd
	getdate
	getdelim
	getegid
	getenv
	geteuid
	getgid
	getgrent
	getgrgid
	getgrnam
	getgroups
	gethostent
	gethostid
	gethostname
	getitimer
	getline
	getlogin
	getmsg
	getnameinfo
	getnetbyaddr
	getopt
	getpeername
	getpgid
	getpgrp
	getpid
	getpmsg
	getppid
	getpriority
	getprotobyname
	getpwent
	getpwnam
	getpwuid
	getrlimit
	getrusage
	gets
	getservbyname
	getsid
	getsockname
	getsockopt
	getsubopt
	gettimeofday
	getuid
	getutxent
	getwc
	getwchar
	glob
	gmtime
	grantpt
	hcreate
	htonl
	hypot
	iconv
	iconv_close
	iconv_open
	if_freenameindex
	if_indextoname
	if_nameindex
	if_nametoindex
	ilogb
	imaxabs
	imaxdiv
	inet_addr
	inet_ntop
	initstate
	insque
	ioctl
	isalnum
	isalpha
	isascii
	isastream
	isatty
	isblank
	iscntrl
	isdigit
	isfinite
	isgraph
	isgreater
	isgreaterequal
	isinf
	isless
	islessequal
	islessgreater
	islower
	isnan
	isnormal
	isprint
	ispunct
	isspace
	isunordered
	isupper
	iswalnum
	iswalpha
	iswblank
	iswcntrl
	iswctype
	iswdigit
	iswgraph
	iswlower
	iswprint
	iswpunct
	iswspace
	iswupper
	iswxdigit
	isxdigit
	j0
	jrand48
	kill
	killpg
	l64a
	labs
	lchown
	lcong48
	ldexp
	ldiv
	lfind
	lgamma
	link
	lio_listio
	listen
	llabs
	lldiv
	llrint
	llround
	localeconv
	localtime
	lockf
	log
	log10
	log1p
	log2
	logb
	logf
	longjmp
	lrand48
	lrint
	lround
	lsearch
	lseek
	lstat
	malloc
	mblen
	mbrlen
	mbrtowc
	mbsinit
	mbsrtowcs
	mbstowcs
	mbtowc
	memccpy
	memchr
	memcmp
	memcpy
	memmove
	memset
	mkdir
	mkdtemp
	mkfifo
	mknod
	mkstemp
	mktime
	mlock
	mlockall
	mmap
	modf
	mprotect
	mq_close
	mq_getattr
	mq_notify
	mq_open
	mq_receive
	mq_send
	mq_setattr
	mq_timedreceive
	mq_timedsend
	mq_unlink
	mrand48
	msgctl
	msgget
	msgrcv
	msgsnd
	msync
	munlock
	munlockall
	munmap
	nan
	nanosleep
	nearbyint
	newlocale
	nextafter
	nftw
	nice
	nl_langinfo
	nrand48
	ntohl
	open
	open_memstream
	openat
	opendir
	openlog
	optarg
	pathconf
	pause
	pclose
	perror
	pipe
	poll
	popen
	posix_fadvise
	posix_fallocate
	posix_madvise
	posix_mem_offset
	posix_memalign
	posix_openpt
	posix_spawn
	posix_spawn_file_actions_addclose
	posix_spawn_file_actions_adddup2
	posix_spawn_file_actions_addopen
	posix_spawn_file_actions_destroy
	posix_spawnattr_destroy
	posix_spawnattr_getflags
	posix_spawnattr_getpgroup
	posix_spawnattr_getschedparam
	posix_spawnattr_getschedpolicy
	posix_spawnattr_getsigdefault
	posix_spawnattr_getsigmask
	posix_spawnattr_init
	posix_spawnattr_setflags
	posix_spawnattr_setpgroup
	posix_spawnattr_setschedparam
	posix_spawnattr_setschedpolicy
	posix_spawnattr_setsigdefault
	posix_spawnattr_setsigmask
	posix_spawnp
	posix_trace_attr_destroy
	posix_trace_attr_getclockres
	posix_trace_attr_getinherited
	posix_trace_attr_getlogsize
	posix_trace_attr_getname
	posix_trace_attr_getstreamfullpolicy
	posix_trace_attr_getstreamsize
	posix_trace_attr_init
	posix_trace_attr_setinherited
	posix_trace_attr_setlogsize
	posix_trace_attr_setname
	posix_trace_attr_setstreamfullpolicy
	posix_trace_attr_setstreamsize
	posix_trace_clear
	posix_trace_close
	posix_trace_create
	posix_trace_event
	posix_trace_eventid_equal
	posix_trace_eventid_open
	posix_trace_eventset_add
	posix_trace_eventtypelist_getnext_id
	posix_trace_flush
	posix_trace_get_attr
	posix_trace_get_filter
	posix_trace_get_status
	posix_trace_getnext_event
	posix_trace_open
	posix_trace_set_filter
	posix_trace_shutdown
	posix_trace_start
	posix_trace_timedgetnext_event
	posix_trace_trid_eventid_open
	posix_trace_trygetnext_event
	posix_typed_mem_get_info
	posix_typed_mem_open
	pow
	pread
	printf
	pselect
	psiginfo
	pthread_atfork
	pthread_attr_destroy
	pthread_attr_getdetachstate
	pthread_attr_getguardsize
	pthread_attr_getinheritsched
	pthread_attr_getschedparam
	pthread_attr_getschedpolicy
	pthread_attr_getscope
	pthread_attr_getstack
	pthread_attr_getstacksize
	pthread_attr_init
	pthread_attr_setdetachstate
	pthread_attr_setguardsize
	pthread_attr_setinheritsched
	pthread_attr_setschedparam
	pthread_attr_setschedpolicy
	pthread_attr_setscope
	pthread_attr_setstack
	pthread_attr_setstacksize
	pthread_barrier_destroy
	pthread_barrier_wait
	pthread_barrierattr_destroy
	pthread_barrierattr_getpshared
	pthread_barrierattr_init
	pthread_barrierattr_setpshared
	pthread_cancel
	pthread_cleanup_pop
	pthread_cond_broadcast
	pthread_cond_destroy
	pthread_cond_signal
	pthread_cond_timedwait
	pthread_condattr_destroy
	pthread_condattr_getclock
	pthread_condattr_getpshared
	pthread_condattr_init
	pthread_condattr_setclock
	pthread_condattr_setpshared
	pthread_create
	pthread_detach
	pthread_equal
	pthread_exit
	pthread_getconcurrency
	pthread_getcpuclockid
	pthread_getschedparam
	pthread_getspecific
	pthread_join
	pthread_key_create
	pthread_key_delete
	pthread_kill
	pthread_mutex_consistent
	pthread_mutex_destroy
	pthread_mutex_getprioceiling
	pthread_mutex_init
	pthread_mutex_lock
	pthread_mutex_setprioceiling
	pthread_mutex_timedlock
	pthread_mutex_trylock
	pthread_mutexattr_destroy
	pthread_mutexattr_getprioceiling
	pthread_mutexattr_getprotocol
	pthread_mutexattr_getpshared
	pthread_mutexattr_getrobust
	pthread_mutexattr_gettype
	pthread_mutexattr_init
	pthread_mutexattr_setprioceiling
	pthread_mutexattr_setprotocol
	pthread_mutexattr_setpshared
	pthread_mutexattr_setrobust
	pthread_mutexattr_settype
	pthread_once
	pthread_rwlock_destroy
	pthread_rwlock_rdlock
	pthread_rwlock_timedrdlock
	pthread_rwlock_timedwrlock
	pthread_rwlock_tryrdlock
	pthread_rwlock_trywrlock
	pthread_rwlock_unlock
	pthread_rwlock_wrlock
	pthread_rwlockattr_destroy
	pthread_rwlockattr_getpshared
	pthread_rwlockattr_init
	pthread_rwlockattr_setpshared
	pthread_self
	pthread_setcancelstate
	pthread_setconcurrency
	pthread_setschedparam
	pthread_setschedprio
	pthread_setspecific
	pthread_sigmask
	pthread_spin_destroy
	pthread_spin_lock
	pthread_spin_unlock
	pthread_testcancel
	ptsname
	putc
	putc_unlocked
	putchar
	putchar_unlocked
	putenv
	putmsg
	puts
	pututxline
	putwc
	putwchar
	pwrite
	qsort
	raise
	rand
	random
	read
	readdir
	readlink
	readv
	realloc
	realpath
	recv
	recvfrom
	recvmsg
	regcomp
	remainder
	remove
	remque
	remquo
	rename
	rewind
	rewinddir
	rint
	rmdir
	round
	scalbln
	scandir
	scanf
	sched_get_priority_max
	sched_getparam
	sched_getscheduler
	sched_rr_get_interval
	sched_setparam
	sched_setscheduler
	sched_yield
	seed48
	seekdir
	select
	sem_close
	sem_destroy
	sem_getvalue
	sem_init
	sem_open
	sem_post
	sem_timedwait
	sem_trywait
	sem_unlink
	sem_wait
	semctl
	semget
	semop
	send
	sendmsg
	sendto
	setbuf
	setegid
	setenv
	seteuid
	setgid
	setgrent
	sethostent
	setitimer
	setjmp
	setkey
	setlocale
	setlogmask
	setnetent
	setpgid
	setpgrp
	setpriority
	setprotoent
	setpwent
	setregid
	setreuid
	setrlimit
	setservent
	setsid
	setsockopt
	setstate
	setuid
	setutxent
	setvbuf
	shm_open
	shm_unlink
	shmat
	shmctl
	shmdt
	shmget
	shutdown
	sigaction
	sigaddset
	sigaltstack
	sigdelset
	sigemptyset
	sigfillset
	sighold
	siginterrupt
	sigismember
	siglongjmp
	signal
	signbit
	signgam
	sigpause
	sigpending
	sigprocmask
	sigqueue
	sigrelse
	sigsetjmp
	sigsuspend
	sigtimedwait
	sigwait
	sigwaitinfo
	sin
	sinh
	sinl
	sleep
	snprintf
	sockatmark
	socket
	socketpair
	sprintf
	sqrt
	srand
	srand48
	srandom
	sscanf
	stat
	statvfs
	stdin
	stpcpy
	stpncpy
	strcasecmp
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strdup
	strerror
	strfmon
	strftime
	strlen
	strncasecmp
	strncat
	strncmp
	strncpy
	strndup
	strnlen
	strpbrk
	strptime
	strrchr
	strsignal
	strspn
	strstr
	strtod
	strtoimax
	strtok
	strtol
	strtold
	strtoll
	strtoul
	strtoumax
	strxfrm
	swab
	swprintf
	swscanf
	symlink
	sync
	sysconf
	syslog
	system
	tan
	tanh
	tanl
	tcdrain
	tcflow
	tcflush
	tcgetattr
	tcgetpgrp
	tcgetsid
	tcsendbreak
	tcsetattr
	tcsetpgrp
	tdelete
	telldir
	tempnam
	tfind
	tgamma
	time
	timer_create
	timer_delete
	timer_getoverrun
	times
	timezone
	tmpfile
	tmpnam
	toascii
	tolower
	toupper
	towctrans
	towlower
	towupper
	trunc
	truncate
	truncf
	tsearch
	ttyname
	twalk
	tzset
	ulimit
	umask
	uname
	ungetc
	ungetwc
	unlink
	unlockpt
	unsetenv
	uselocale
	utime
	utimensat
	va_arg
	vfprintf
	vfscanf
	vfwprintf
	vfwscanf
	vprintf
	vscanf
	vsnprintf
	vsscanf
	vswprintf
	vswscanf
	vwprintf
	vwscanf
	wait
	waitid
	waitpid
	wcpcpy
	wcpncpy
	wcrtomb
	wcscasecmp
	wcscat
	wcschr
	wcscmp
	wcscoll
	wcscpy
	wcscspn
	wcsdup
	wcsftime
	wcslen
	wcsncasecmp
	wcsncat
	wcsncmp
	wcsncpy
	wcsnlen
	wcsnrtombs
	wcspbrk
	wcsrchr
	wcsrtombs
	wcsspn
	wcsstr
	wcstod
	wcstoimax
	wcstok
	wcstol
	wcstold
	wcstoll
	wcstombs
	wcstoul
	wcstoumax
	wcswidth
	wcsxfrm
	wctob
	wctomb
	wctrans
	wctype
	wcwidth
	wmemchr
	wmemcmp
	wmemcpy
	wmemmove
	wmemset
	wordexp
	wprintf
	write
	writev
	wscanf
	y0

	XCU
	1 Introduction
	1.1 Relationship to Other Documents
	1.1.1 System Interfaces
	1.1.2 Concepts Derived from the ISO C Standard

	1.2 Utility Limits
	1.3 Grammar Conventions
	1.4 Utility Description Defaults
	1.5 Considerations for Utilities in Support of Files of Arbitrary Size
	1.6 Built-In Utilities

	2 Shell Command Language
	2.1 Shell Introduction
	2.2 Quoting
	2.2.1 Escape Character (Backslash)
	2.2.2 Single-Quotes
	2.2.3 Double-Quotes

	2.3 Token Recognition
	2.3.1 Alias Substitution

	2.4 Reserved Words
	2.5 Parameters and Variables
	2.5.1 Positional Parameters
	2.5.2 Special Parameters
	2.5.3 Shell Variables

	2.6 Word Expansions
	2.6.1 Tilde Expansion
	2.6.2 Parameter Expansion
	2.6.3 Command Substitution
	2.6.4 Arithmetic Expansion
	2.6.5 Field Splitting
	2.6.6 Pathname Expansion
	2.6.7 Quote Removal

	2.7 Redirection
	2.7.1 Redirecting Input
	2.7.2 Redirecting Output
	2.7.3 Appending Redirected Output
	2.7.4 Here-Document
	2.7.5 Duplicating an Input File Descriptor
	2.7.6 Duplicating an Output File Descriptor
	2.7.7 Open File Descriptors for Reading and Writing

	2.8 Exit Status and Errors
	2.8.1 Consequences of Shell Errors
	2.8.2 Exit Status for Commands

	2.9 Shell Commands
	2.9.1 Simple Commands
	2.9.2 Pipelines
	2.9.3 Lists
	2.9.4 Compound Commands
	2.9.5 Function Definition Command

	2.10 Shell Grammar
	2.10.1 Shell Grammar Lexical Conventions
	2.10.2 Shell Grammar Rules

	2.11 Signals and Error Handling
	2.12 Shell Execution Environment
	2.13 Pattern Matching Notation
	2.13.1 Patterns Matching a Single Character
	2.13.2 Patterns Matching Multiple Characters
	2.13.3 Patterns Used for Filename Expansion

	2.14 Special Built-In Utilities
	break
	colon
	continue
	dot
	eval
	exec
	exit
	export
	readonly
	return
	set
	shift
	times
	trap
	unset

	3 Batch Environment Services
	3.1 General Concepts
	3.1.1 Batch Client-Server Interaction
	3.1.2 Batch Queues
	3.1.3 Batch Job Creation
	3.1.4 Batch Job Tracking
	3.1.5 Batch Job Routing
	3.1.6 Batch Job Execution
	3.1.7 Batch Job Exit
	3.1.8 Batch Job Abort
	3.1.9 Batch Authorization
	3.1.10 Batch Administration
	3.1.11 Batch Notification

	3.2 Batch Services
	3.2.1 Batch Job States
	3.2.2 Deferred Batch Services
	3.2.3 Requested Batch Services

	3.3 Common Behavior for Batch Environment Utilities
	3.3.1 Batch Job Identifier
	3.3.2 Destination
	3.3.3 Multiple Keyword-Value Pairs

	4 Utilities
	admin
	alias
	ar
	asa
	at
	awk
	basename
	batch
	bc
	bg
	c99
	cal
	cat
	cd
	cflow
	chgrp
	chmod
	chown
	cksum
	cmp
	comm
	command
	compress
	cp
	crontab
	csplit
	ctags
	cut
	cxref
	date
	dd
	delta
	df
	diff
	dirname
	du
	echo
	ed
	env
	ex
	expand
	expr
	false
	fc
	fg
	file
	find
	fold
	fort77
	fuser
	gencat
	get
	getconf
	getopts
	grep
	hash
	head
	iconv
	id
	ipcrm
	ipcs
	jobs
	join
	kill
	lex
	link
	ln
	locale
	localedef
	logger
	logname
	lp
	ls
	m4
	mailx
	make
	man
	mesg
	mkdir
	mkfifo
	more
	mv
	newgrp
	nice
	nl
	nm
	nohup
	od
	paste
	patch
	pathchk
	pax
	pr
	printf
	prs
	ps
	pwd
	qalter
	qdel
	qhold
	qmove
	qmsg
	qrerun
	qrls
	qselect
	qsig
	qstat
	qsub
	read
	renice
	rm
	rmdel
	rmdir
	sact
	sccs
	sed
	sh
	sleep
	sort
	split
	strings
	strip
	stty
	tabs
	tail
	talk
	tee
	test
	time
	touch
	tput
	tr
	true
	tsort
	tty
	type
	ulimit
	umask
	unalias
	uname
	uncompress
	unexpand
	unget
	uniq
	unlink
	uucp
	uudecode
	uuencode
	uustat
	uux
	val
	vi
	wait
	wc
	what
	who
	write
	xargs
	yacc
	zcat

	XRAT
	A Rationale for Base Definitions
	A.1 Introduction
	A.1.1 Scope
	A.1.2 Conformance
	A.1.3 Normative References
	A.1.4 Change History
	A.1.5 Terminology
	A.1.6 Definitions and Concepts
	A.1.7 Portability

	A.2 Conformance
	A.2.1 Implementation Conformance
	A.2.2 Application Conformance
	A.2.3 Language-Dependent Services for the C Programming Language
	A.2.4 Other Language-Related Specifications

	A.3 Definitions
	A.4 General Concepts
	A.4.1 Concurrent Execution
	A.4.2 Directory Protection
	A.4.3 Extended Security Controls
	A.4.4 File Access Permissions
	A.4.5 File Hierarchy
	A.4.6 Filenames
	A.4.7 Filename Portability
	A.4.8 File Times Update
	A.4.9 Host and Network Byte Order
	A.4.10 Measurement of Execution Time
	A.4.11 Memory Synchronization
	A.4.12 Pathname Resolution
	A.4.13 Process ID Reuse
	A.4.14 Scheduling Policy
	A.4.15 Seconds Since the Epoch
	A.4.16 Semaphore
	A.4.17 Thread-Safety
	A.4.18 Tracing
	A.4.19 Treatment of Error Conditions for Mathematical Functions
	A.4.20 Treatment of NaN Arguments for Mathematical Functions
	A.4.21 Utility
	A.4.22 Variable Assignment

	A.5 File Format Notation
	A.6 Character Set
	A.6.1 Portable Character Set
	A.6.2 Character Encoding
	A.6.3 C Language Wide-Character Codes
	A.6.4 Character Set Description File

	A.7 Locale
	A.7.1 General
	A.7.2 POSIX Locale
	A.7.3 Locale Definition
	A.7.4 Locale Definition Grammar
	A.7.5 Locale Definition Example

	A.8 Environment Variables
	A.8.1 Environment Variable Definition
	A.8.2 Internationalization Variables
	A.8.3 Other Environment Variables

	A.9 Regular Expressions
	A.9.1 Regular Expression Definitions
	A.9.2 Regular Expression General Requirements
	A.9.3 Basic Regular Expressions
	A.9.4 Extended Regular Expressions
	A.9.5 Regular Expression Grammar

	A.10 Directory Structure and Devices
	A.10.1 Directory Structure and Files
	A.10.2 Output Devices and Terminal Types

	A.11 General Terminal Interface
	A.11.1 Interface Characteristics
	A.11.2 Parameters that Can be Set

	A.12 Utility Conventions
	A.12.1 Utility Argument Syntax
	A.12.2 Utility Syntax Guidelines

	A.13 Headers
	A.13.1 Format of Entries
	A.13.2 Removed Headers in Issue 7

	B Rationale for System Interfaces
	B.1 Introduction
	B.1.1 Change History
	B.1.2 Relationship to Other Formal Standards
	B.1.3 Format of Entries

	B.2 General Information
	B.2.1 Use and Implementation of Interfaces
	B.2.2 The Compilation Environment
	B.2.3 Error Numbers
	B.2.4 Signal Concepts
	B.2.5 Standard I/O Streams
	B.2.6 STREAMS
	B.2.7 XSI Interprocess Communication
	B.2.8 Realtime
	B.2.9 Threads
	B.2.10 Sockets
	B.2.11 Tracing
	B.2.12 Data Types

	B.3 System Interfaces
	B.3.1 System Interfaces Removed in this Version
	B.3.2 System Interfaces Removed in the Previous Version
	B.3.3 Examples for Spawn

	C Rationale for Shell and Utilities
	C.1 Introduction
	C.1.1 Change History
	C.1.2 Relationship to Other Documents
	C.1.3 Utility Limits
	C.1.4 Grammar Conventions
	C.1.5 Utility Description Defaults
	C.1.6 Considerations for Utilities in Support of Files of Arbitrary Size
	C.1.7 Built-In Utilities

	C.2 Shell Command Language
	C.2.1 Shell Introduction
	C.2.2 Quoting
	C.2.3 Token Recognition
	C.2.4 Reserved Words
	C.2.5 Parameters and Variables
	C.2.6 Word Expansions
	C.2.7 Redirection
	C.2.8 Exit Status and Errors
	C.2.9 Shell Commands
	C.2.10 Shell Grammar
	C.2.11 Signals and Error Handling
	C.2.12 Shell Execution Environment
	C.2.13 Pattern Matching Notation
	C.2.14 Special Built-In Utilities

	C.3 Batch Environment Services and Utilities
	C.3.1 Batch General Concepts
	C.3.2 Batch Services
	C.3.3 Common Behavior for Batch Environment Utilities

	C.4 Utilities
	C.4.1 Utilities Removed in this Version
	C.4.2 Utilities Removed in the Previous Version
	C.4.3 Exclusion of Utilities

	D Portability Considerations (Informative)
	D.1 User Requirements
	D.1.1 Configuration Interrogation
	D.1.2 Process Management
	D.1.3 Access to Data
	D.1.4 Access to the Environment
	D.1.5 Access to Determinism and Performance Enhancements
	D.1.6 Operating System-Dependent Profile
	D.1.7 I/O Interaction
	D.1.8 Internationalization Interaction
	D.1.9 C-Language Extensions
	D.1.10 Command Language
	D.1.11 Interactive Facilities
	D.1.12 Accomplish Multiple Tasks Simultaneously
	D.1.13 Complex Data Manipulation
	D.1.14 File Hierarchy Manipulation
	D.1.15 Locale Configuration
	D.1.16 Inter-User Communication
	D.1.17 System Environment
	D.1.18 Printing
	D.1.19 Software Development

	D.2 Portability Capabilities
	D.2.1 Configuration Interrogation
	D.2.2 Process Management
	D.2.3 Access to Data
	D.2.4 Access to the Environment
	D.2.5 Bounded (Realtime) Response
	D.2.6 Operating System-Dependent Profile
	D.2.7 I/O Interaction
	D.2.8 Internationalization Interaction
	D.2.9 C-Language Extensions
	D.2.10 Command Language
	D.2.11 Interactive Facilities
	D.2.12 Accomplish Multiple Tasks Simultaneously
	D.2.13 Complex Data Manipulation
	D.2.14 File Hierarchy Manipulation
	D.2.15 Locale Configuration
	D.2.16 Inter-User Communication
	D.2.17 System Environment
	D.2.18 Printing
	D.2.19 Software Development
	D.2.20 Future Growth

	D.3 Profiling Considerations
	D.3.1 Configuration Options
	D.3.2 Configuration Options (Shell and Utilities)
	D.3.3 Configurable Limits
	D.3.4 Configuration Options (System Interfaces)
	D.3.5 Configurable Limits
	D.3.6 Optional Behavior

	E Subprofiling Considerations (Informative)
	E.1 Subprofiling Option Groups

	Index

